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Abstract
Intense ion beams are an extreme example of, and difficult to maintain as, a non-neutral
plasma. Experiments and simulations are used to study the complex interactions between

beam ions and (unwanted) electrons. Such “electron clouds” limit the performance of

many accelerators. To characterize electron clouds, a number of parameters are measured
including: total and local electron production and loss for each of three major sources,

beam potential versus time, electron line-charge density, and gas pressure within the
beam. Electron control methods include surface treatments to reduce electron and gas

emission, and techniques to remove, or block, electrons from the beam. Detailed, self-

consistent simulations include beam-transport fields, and electron and gas generation and
transport, to compute unexpectedly rich behavior, much of which is confirmed

experimentally. For example, in a quadrupole magnetic field, ion and dense electron
plasmas interact to produce multi-kV oscillations in the electron plasma and distortions of

the beam velocity space distribution, without becoming homogenous or locally neutral.

[159 words, ~150 allowed]
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I. INTRODUCTION

Nonneutral plasmas exhibit a wide range of phenomena [1]. We study a configuration

consisting of a positive ion beam that has a high rigidity, and to which we add electrons,
either intentionally or inadvertently. The ion beam creates a positive space-charge

potential of 2 kV, which can provide radial confinement of electrons. Electrodes can be

biased negatively at either end of a 2 m long section that includes four quadrupole
magnets to transport the ion beam. This provides axial confinement of electrons. The

configuration is analogous to an Electron-Beam Ion Trap (EBIT) [2]; it could be termed
an Ion-Beam Electron Trap (IBET).

Our work is motivated by the observation that electron clouds and gas pressure rise

limit the performance of many major accelerator rings, and may limit linacs being
developed as drivers for heavy-ion-inertial fusion (HIF) [3] and for warm dense matter

physics (WDM) [4]. We are working to understand the underlying physics and find

mitigation mechanisms, through the coordinated application of experiment, theory, and
simulation as will be discussed in this paper. Some of our simulation work has been

described previously [5]; we will discuss experimental work and more recent simulation
results here.

We expect that a major source of electrons and gas in HIF will be loss, or scrape off,

of halo ions to the beam tube, which must be as close as possible to the beam envelope in
order to reduce the cost of a power plant accelerator. Most of the beam current falls

within the beam “envelope”, but a small fraction of beam ions undergo radial excursions
of the order of a few envelope radii; these are known as halo ions, and are the most likely

to be lost by scraping off on the beam tube.

Electron cloud effects typically occur gradually, over many passes of a beam through
an accelerator ring. However, we have demonstrated in both experiment and simulation

that high electron densities, approaching the beam density, can significantly degrade
beam properties in the short distance of four quadrupole magnets (two lattice periods) in

a linac [5].  These extreme electron densities produce exaggerated effects on ions,

enabling us to validate simulations using a relatively small accelerator.
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Although electrons are generally harmful in accelerators and storage rings, they can

be beneficial in particular situations. In particular, longitudinal drift compression of
intense space-charge dominated beams to a short length, or focusing to a small radius

spot, are usually limited by the beam space charge. Our program has demonstrated that
the space charge limits can be removed by performing drift compression and focusing

within a plasma that exceeds the  compressed and focused beam density and neutralizes

the beam space charge. Neutralized drift compression of a 300 kV K+ beam places a
head-to-tail velocity tilt on a beam. The tail of the beam then catches up with the head,

achieving a factor of 60 compression to a duration of 3 ns [6]. Neutralization of a beam
after the focusing magnets, but not within them, focused a beam to a radius of 0.11 cm,

compared with a radius of 1.4 cm with minimal neutralization [7]. These new capabilities

will enable near term WDM experiments using ion beams to heat targets to ~1 eV
temperatures [4]. Such benefits of electrons in beams will not be discussed further in this

paper.

II. TOOLS

Our goal in electron-cloud studies is to use simulations and the HCX experiment to

understand electron sources and accumulation in positive charged particle beams,

determine effects on the beam, and find mitigation mechanisms. The experimental and
simulation tools to accomplish this are discussed in this section.

A. Experimental tools
The main experimental tool is the High-Current Experiment (HCX), located at

Lawrence Berkeley National Laboratory (LBNL). The HCX consists of an injector
producing a singly-charged potassium ion beam (K+) at 1 MeV kinetic energy, followed

by a transport lattice made up of an electrostatic quadrupole matching section, a ten-
quadrupole electrostatic section and a four-quadrupole magnetic section, shown in Fig. 1.

The nearly flat top of the beam pulse averages 180 mA and its duration is 4 µs, as shown

in Fig. 2. Details of the beam transport through 10 electrostatic quadrupoles, preceding
the 4 magnetic quadrupoles, have been reported [8].
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The HCX beam is space-charge dominated in the radial direction, as well as in the

axial direction, by the beam space-charge potential of 2 kV. The defocusing forces of the
beam space-charge, on average, cancel a large fraction of the applied focusing forces of

magnetic quadrupoles in the lattice. This results in a factor of 10 reduction in the phase
advance of ion oscillations in the presence of space charge relative to a single ion moving

in the applied focusing field. The beam potential approaches that of high-energy physics

(HEP) and other accelerator rings and is sufficient for many experiments on the
generation, accumulation, effects, and mitigation of electron-cloud effects.

The HCX in the region of four magnetic quadrupoles is shown in Fig. 1. To the left is
the D2 diagnostic region, an 18  cm long drift region, between 10 electrostatic

quadrupoles and the 4 magnetic quadrupoles. In D2 we measure the beam current and ion

phase space distribution, to characterize the beam entering the quadrupole magnets.
Similar diagnostics are used after the magnets to determine any changes due to the

magnets or to electron clouds. Each magnetic quadrupole has 30 cm long magnetic field

coils in a 47 cm length elliptical tube that has major and minor inner radii of 5 cm and 3
cm respectively. Between each pair of magnets, and after the last one, diagnostic access

is provided in a 5 cm gap, each with 7 ports.
A variety of diagnostics are mounted on the outside of octagonal tubes that fit within

the elliptical-bore of quadrupole-magnet beam tubes, as shown in Fig. 3. A gap of about

0.7 cm annular space is provided between the octagonal mounting tube for diagnostics
and the elliptical magnet bore for the recessed diagnostics and cables.  The octagonal

tubes present a smooth inner surface to the beam, and allow external assembly of the
diagnostic arrays. Two different arrays are placed within the third and fourth

quadrupoles, and can be interchanged with other arrays. These diagnostics include

electrodes shielded from the beam electric field by grids, recessed capacitive electrodes,
and 8 cm2 electrodes that are flush with the diagnostics tube in the fourth quadrupole, and

will be discussed further in the next subsection [9,10,11].
Other diagnostics are installed between and at the ends of the magnetic quadrupoles:

suppressor electrode(s), clearing electrodes to remove electrons, a retarding field

analyzer, and the gas electron source diagnostic (GESD) to measure electron emission
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and ion desorption due to ions striking stainless steel surfaces near grazing incidence.

These are discussed further below.
A suppressor ring electrode, surrounding the beam after it exits the last quadrupole

magnet, is biased to –10 kV to prevent ion-induced electron emission off an end wall
(which can be a slit plate, that can also be biased or grounded) from reaching the

magnets, or it can be left unbiased to allow electrons to be emitted from the end wall and

to flow into the magnets, flooding them until the average electron line charge in the final
magnet is near the value of the beam line charge (line charge is the charge per unit

length). In recent experiments, we replaced the ring electrode with a pair of parallel plates
– both of these can be biased negatively to suppress electron emission in a manner similar

to the ring suppressor; but they can also be biased to produce an electric dipole field

across the beam.
As mentioned in the introduction, when the suppressor electrodes are biased

negatively, they also prevent electrons from leaving the beam axially at the exit of the

fourth quadrupole magnet. The exit electrode of the electrostatic quadrupoles, preceding
the magnetic quadrupoles, is also negative; this prevents electrons from being lost

upstream of the quadrupole magnets. These electrodes provide axial confinement and the
positive ion beam provides radial confinement of electrons, so that electrons are confined

in all directions. Once trapped, we expect electrons to remain trapped until the beam

potential decreases at the end of the pulse, unless they are removed earlier by clearing
electrodes.

Clearing electrodes were installed in the 5 cm gaps between quadrupole magnets for
the purpose of sweeping electrons from each drift region by applying a positive bias

voltage. Each clearing electrode is a ring with an inner diameter of 8 cm and a minor

diameter of 1.3 cm, which places the electrodes about 1 cm outside of the minor radius of
the magnet bore such that beam halo ions do not strike the electrodes.

B. Additional experimental tools and applications

To interpret the electron emission currents from electrodes that scrape the beam halo,
we need to know the electron emission and gas desorption coefficients γe and γ0
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respectively, due to ion bombardment of metal surfaces near grazing incidence. In order

to infer the current of ions that scrape off, we need to divide the electron emission current
by the electron emission coefficient γe. With this, if we also know the gas desorption

coefficient γ0, from the scrape-off current we can infer the total gas desorption.

We designed and commissioned the Gas-Electron Source Diagnostic (GESD) to

measure γe and γ0, as described in detail in Ref. 12. The GESD has also proven useful for

studying mitigation techniques. It is a nearly closed box that includes a small entrance

aperture (0.3 by 2.5 cm for the 1 MeV K+ experiments) to admit ~100 µA of beam, a
small Faraday cup to measure the beam current, a stainless steel target that can be varied

in angle relative to the beam, and an ion gauge to measure the gas pressure rise after a
pulse. Electron emission coefficients are determined from the ratio of the target emission

to the beam current into the GESD. Gas desorption coefficients are determined from the

ratio of the pressure rise (in a known volume) to the number of beam ions in a pulse
(from integrating the Faraday cup current). We find that γe ~ 102 and γ0 ~104 for 1 MeV

K+ ions incident on stainless steel [12]. The electron emission coefficient is observed to

vary with the ion angle of incidence θ as γe ∝ 1/cos(θ), where d/cos(θ) is the ion path

length through a thin d ≈ 2 nm thick surface layer (where the beam-induced emitted

electrons originate). Similar scaling of emission with θ is observed at higher ion energies

by Thieberger [13].
These studies of electron emission and gas desorption have increased our

understanding of emission and desorption processes, and have yielded new mitigation
techniques, as will be discussed. The value of these results greatly exceeds our original

goal of calibrating halo scraping diagnostics.

We have studied the scaling of electron emission with K+ ion energy between 50 and
393 keV, due to ions impinging at various angles within 10° of grazing incidence on

stainless steel. Our experimental results and modeling for three representative ion

energies are shown in Fig. 4. We found that emission scaled with the electronic

component of ion stopping in stainless steel, dE/dx [14], as has been found previously at
higher energies [15]. However, the emission varied more slowly with the ion angle of

incidence than 1/cos(θ), unlike measurements with 1 MeV K+ [12] and higher energy

ions [13]. Based on a modified Sternglass model [16], we have modeled the dependence
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on ion energy and the ion angle of incidence [14], evaluating a dE/dx model with the

SRIM code [20]. The modelled electron yield in Fig. 4 shows reasonable agreement with
measured electron yield for variations of both the ion energy and angle.

Gas can be desorbed from a wall by the impact of lost halo ions, by electron clouds
against the wall, or by synchrotron or UV radiation. Gas can degrade a particle beam,

directly through stripping or charge exchange of a beam ion with the gas, and indirectly

through generation of electrons from ionization of the gas. With 1 MeV K+ ions,
approximately 104 molecules are generated for each ion striking a stainless steel surface

near grazing incidence [12].
The 1/cos(θ) variation of electron emission with the ion angle of incidence [highest

near grazing incidence (θ = 90 deg)], suggests a mitigation technique: if we sandblast or

beadblast a smooth surface, ions that would have struck near grazing incidence now hit
the rims of micro-craters at angles closer to normal. This was found to reduce electron

emission by an order of magnitude, and gas desorption (which varies much less with
angle) by a factor of ~2 [12]. However, this technique is restricted to ions of low enough

energy that their range is less than the thickness of the micro-crater rims. Much higher-

energy grazing-incidence ions can penetrate multiple crater rims, generating electrons
and gas at each entrance and exit [13]. An axially-thick, antigrazing ring can be used to

stop high energy ions at normal incidence, before they strike a wall at grazing incidence
[18].

We use a retarding field analyzer (RFA), derived from the popular Rosenberg-Harkay

design that uses inexpensive, commercially produced “window frames” as grid mounts,
separated by standard alumina-insulators [19]. Our version adds two grids, one that

serves as an electron repeller after the entrance aperture, and one that serves as an ion
repeller. We provide gaps between grids of 0.8 to 1 cm to allow bias voltages of 3 kV

[20]. This allows it to measure the energy of either ions or electrons. Previous

experiments have used similar analyzers to measure the flux and energy of electrons
reaching the wall, yielding a qualitative measurement of electron cloud density [21]. We

measure the expelled ion energy distribution, which perhaps counter-intuitively provides

a more quantitative measurement of electron cloud density than does measuring electrons
directly. This is because we measure low energy ions resulting from beam impact on gas.
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These ions are expelled by the beam potential, providing a measurement of the potential,

and of the degree to which it is reduced by the accumulation of electrons. From this we
infer the electron line charge normalized to the ion line charge [22].

Electron currents to clearing electrodes provide an independent and corroborating
measurement of electron line charge as a function of time. When the electrodes are biased

positively, they remove electrons that would otherwise accumulate between the negative

electrodes at either end of the quadrupole magnets. Integration of this current yields the
time-dependent electron line charge that would accumulate in the case when clearing

electrodes are off. To obtain the line charge of electrons when clearing electrodes are on,
we divide the clearing electrode current by the electron drift velocity in quadrupole

magnets (~0.6 m/µs) [23]. This assumes that the electrons are generated by ion halo

impact near the axial center of magnets where the beam-envelope major radius is the
largest, a plausible but not yet proven assumption. The line-charge of electrons from

clearing-electrode currents agrees with that inferred from RFA measurements [22].

Simulations show that electrons from different sources have differing radial and
azimuthal density profiles, within the beam  envelope for ionization of gas and extending

beyond the beam for the other sources. Each type of electron source can therefor affect an
ion beam differently [23]. This motivates developing diagnostics that can measure each

major electron source independently. The major types of sources are ionization of gas,

electron emission from beam tubes, and electron emission from an end wall. The latter is
measured by the current to the most downstream clearing electrode to be biased

positively, usually clearing electrode (c). Emission from beam tubes will be discussed
later in this section. Measuring the electron source due to ionization of gas involves an

issue that we will discuss next.

Electrodes that are exposed to the beam receive a significant capacitive current at the
head and tail of the beam (of order 50 µA/cm2), while the beam potential is changing

between 0 and +2 kV. However, we would like to measure particle currents into the wall
that are 1 to 3 orders of magnitude smaller than the capacitive currents. These include the

ionization of gas by beam-ion impact, which results in an electron that is trapped and an

ion that is expelled by the positive beam potential. This current is about 3 orders of
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magnitude smaller than capacitive signals, occurs throughout a pulse, and can be

measured during the current flattop.
Another particle current, which we would like to measure, is that due to electrons that

have been trapped and accumulate during the pulse, then detrap during the beam tail
when the beam potential is falling to zero. The maximum magnitude and polarity of this

integrated electron charge at the end of a pulse is the same for a completely neutralized

beam as for the integrated charge from a capacitively coupled beam with no electrons.
We need to distinguish whether the current is from detrapped electrons or capacitive

coupling, furthermore, we would like to be able to measure detrapped electrons that
constitute only about 1% of the beam charge.

Shielding the electrodes with grids achieves the goal of blocking capacitive pickup,

and enabling small currents of ions or electrons to be detected. We measured that
capacitive pickup could be reduced by a factor of ~30 with the use of one or by ~500

with the use of two electromesh grids separated by 400 µm, each ~5 µm thick nickel with

a mesh opening center-to-center of 280 µm [11].
Gridded ion collectors (GIC), inside quadrupole magnets, are used to determine local

densities of gas within an ion beam, and the rate of electron generation by ionization of
gas, from the magnitude of the expelled ion current. We collect expelled ions across a

quadrupole magnetic field; the magnetic field suppresses electron emission from the

collector electrode. The requirement that expelled ions cross the quadrupole field restricts
this technique to beams with relatively high space charge and low beam energy (for low

quadrupole field strength), so that the beam potential gradient provides sufficient force to
drive ions across the quadrupole magnetic field. (This restriction is eliminated for the

RFA, which is in a magnetic field-free drift region.) The GICs provide response times of

0.2 to 1 µs, the time for the 2 kV beam potential to expel ionized residual gas, with
masses ranging from hydrogen to argon. This time is substantially less than the beam

FWHM of 5 µs, and provides the capability of measuring the time dependence of
desorbed gas reaching the beam [9]. One conclusion from this diagnostic, is that desorbed

gas from the walls does not reach the beam within 5 µs, because the current does not

show an upwards inflection partway through the pulse.
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Gridded-electron collectors (GEC), inside quadrupole magnets, are used to collect

electrons that detrap while the beam potential is falling to zero at the end of a pulse. For
this, it is essential that the GECs are located at azimuths where quadrupole field lines

enter the beam tube. Then, electrons that are detrapped, as the beam potential falls to zero
at the end of the pulse, can flow along magnetic field lines from the electron cloud to the

collector. This azimuthal location does not allow the magnetic suppression of electrons

that is achieved with the GIC, which are located at azimuths where magnetic field lines
are tangent to the surface [9], but which would also render impossible the collection of

magnetized electrons. Therefore we can bias the collector to suppress electron emission
from either the collector or the grids, but not from both; with the consequence that the

inferences from the GEC are less quantitative than those from the GIC [11].

C. Simulation tools

The simulation tool is based on a merge of the Heavy Ion Fusion accelerator particle-

in-cell (PIC) code WARP [24] and the high-energy physics electron-cloud code
POSINST [25], supplemented by additional modules for gas generation and ionization

[26] as well as ion-induced electron emission from the Tech-X package TxPhysics [27].

The package allows for multi-dimensional (2-D or 3-D) modeling of a beam in an
accelerator lattice and its interaction with electron clouds generated from photon-induced,

ion-induced or electron-induced emission at walls, or from ionization of background and
desorbed gas. The generation and tracking of all species (beam particles, ions, electrons,

and gas molecules) is performed in a self-consistent manner (the electron, ion and gas

distributions can also be prescribed -if needed- for special study or convenience). The
code runs in parallel and benefits from adaptive mesh refinement [28], particle timestep

sub-cycling [29] and a new “drift-Lorentz” particle mover for tracking charged particles
in magnetic fields using large time steps [30,31]. These advanced numerical techniques

allow for significant speed-up in computing time (orders of magnitude) relative to brute-

force integration techniques, allowing for self-consistent simulations of electron-cloud
effects and beam dynamics, which were out of reach with previously available tools.
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We have established a list of different functional modules, and their inter-

relationships, that are ultimately needed to reach self-consistency for the modeling of HIF
beams with e-cloud and gas, and have summarized it in a block diagram (see Fig. 1 of

Ref. [31]). We can imagine this as a “roadmap” of a self-consistent modeling capability
of electron clouds effects. The initial block of the roadmap is a self-consistent PIC

module that follows the beam through an accelerator lattice with its self-field and images

at the wall. Ions from the beam halo that strike the wall can desorb neutrals and electrons
that have enough time to reach the beam before the end of the pulse, and interact with it.

The time-dependent motion of neutrals and electrons must therefore be tracked. The gas
can be ionized by beam ions and electrons, leading to new electrons and ions that must be

tracked as well. All these particles can hit the walls and produce more neutrals and

electrons. Finally, beam ions can be reflected at the wall, and charge-exchange reactions
can occur in the gas. More details on the analysis that led to the establishment of this

roadmap can be found in Refs. 5,12,27,30.

We follow the convention of labeling the electrons created by the beam hitting the
end wall as “primary”, while labeling the electrons created by the primary electrons

hitting the vacuum pipe surrounding the magnets as “secondary” (these encompass any
subsequent generation of electrons).  The primary electrons created by ion impact on the

end plate and propagating upstream can enter only two quadrants of the fourth (last)

magnet (the upper and lower quadrants, as in Fig. 6 of Ref. 5.), and then drift upstream,
because the E×B and ∇B drifts are both upstream (anti-parallel to the ion beam) in these

quadrants for electrons in the electric field from the 2 kV beam potential. Electrons in the

side quadrants drift downstream, parallel to the ion beam.

III. OSCILLATIONS OF ELECTRONS

We discovered an unexpected effect while studying electron clouds in ion beams.

Experiments show oscillations in the current to a clearing electrode in a drift region
between the last two quadrupole magnets when we do not suppress the copious electron

emission from the linac end wall, as shown by the red line in Fig. 5(b). Electron

suppression is disabled by grounding the suppressor ring electrode, thus allowing
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electrons to propagate upstream. The three clearing electrodes were biased to +9 kV to

remove electrons from the drift regions between quadrupole magnets. The current
measured by clearing electrode (c) is compared with simulation in Fig. 5(b). The

simulation and experimental results agree on the magnitude and frequency (~6 MHz) of
the observed oscillations. WARP PIC code simulations not only show the clearing

electrode oscillations that agree with experiment in both magnitude and frequency, as

shown by the black line in Fig. 5. The simulations show that electrons increase in density
as they stagnate at a quadrupole magnet. Non-linear structures are launched, growing to

electron line charges exceeding the ion beam line charge, as shown in Fig. 6.
The current to clearing electrode (b), shown in Fig. 5(a) is an order of magnitude

smaller, and does not show oscillations with large amplitude. From comparing the

magnitude with that of clearing electrode (c), with and without the suppressor electrode
biased, we conclude that clearing electrode (c) removes essentially all the electrons

emitted from the end wall, so that clearing electrodes (a) and (b) each collect only

electrons that are generated in the adjacent quadrupole magnets. This conclusion is
confirmed by other data.

The simulations reveal that these time-dependent oscillations, recorded by clearing
electrode (c), are related to axial bunching of electrons. The effect of this bunching is

revealed in the plot of line charge densities in Fig. 6. Bunching first appears at the exit of

the final quadrupole magnet (at 4.3 m in Fig. 6) where electron velocities are reduced
from a few meters per microsecond thermal velocity to a 0.6 m/µs drift velocity through a

magnet; this stagnation results in higher electron density there. Subsequently, bunching is
observed to start near the center of the fourth magnetic quadrupole, where oscillations of

large amplitude and wavelength of approximately 5 cm are observed in the electron

density. The effect is so pronounced that the peak electron line charge density reaches
1.75 times the beam line charge density, as shown in Fig. 6.

The bunching of electrons results in radial drifts, apparently due to E×B, in addition

to the axial E×B and ∇B drifts resulting from the unperturbed beam potential, as shown

in Fig. 7 where electron bunches are easily observable from the middle of the quadrupole

and upstream. (The beam potential is responsible for most of the electron kinetic energy;
therefore ∇B drifts, as well as E×B drifts, are proportional to the beam potential.) We
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used the 3-D graphics capability of WARP to provide a variety of visual perspectives that

help to clarify what is happening, and to evaluate the processes that are occurring. Figure
8 shows a 3-D perspective of conditions similar to those in Fig. 7. The over-neutralization

of the beam space-charge (blue) by these electron bunches is evident in Fig. 9, where
islands of negative potential of –250 to –500 V are formed at the location of the bunches.

Closed potential contours are observed to form and drift upstream (to the left) through the

magnet. In Fig. 8, we show the primary electron density contours. Primary electrons are
emitted from the end wall when it is bombarded by the 1 MeV K+ beam ions. Although

some possible candidate explanations have been eliminated, for example the electron-ion
two-stream instability [32], the nature of these oscillations has not been firmly identified.

To experimentally benchmark WARP/POSINST simulations of oscillations in

electron charge that grow and propagate upstream against the beam, we temporarily
replaced the array of diagnostics mounted on an octagonal tube with an axial array of

capacitively-coupled electrodes mounted on a tube that snugly fits in the elliptical magnet

bore of the fourth magnetic quadrupole. Observing in the simulations that the oscillations
begin near the center of the last magnet and propagate upstream against the beam with a

frequency of several MHz and have a wavelength of ~5 cm, we chose the axial locations
of electrodes as shown in Fig. 10. The electrodes are 1 cm long axially, 4 cm wide

azimuthally, and are separated axially center-to-center by 2.5 cm, half the predicted

wavelength. The oscillations were predicted to begin near the center of the fourth magnet,
which guided the positioning of the electrodes, with an additional electrode 5 cm further

downstream from the center. The quadrupole magnetic field is nearly constant in
magnitude between 0 and ±12 cm (positions indicated by vertical lines in Fig. 10(b)). The

magnetic field at the electrode E-10.5 [where the electrode number refers to the axial

position of its center (cm)] is down by 4%, the field at the next electrode E-13 is
decreased by 50%.

Data from this array are taken at a rate of 1 gigasample/sec (GS/s) for each electrode,
and are shown in Fig. 11(a). The data begin with the right hand electrode E+4.5, and

progress upstream from there. Electrode locations can be determined from Fig. 10. The

spatial growth of the oscillations is hard to see in Fig. 11(a) (but easier in Fig. 12). In Fig.
11(a) the display autoscales the vertical axis so axes values can differ for each channel;
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and in Figs. 11(a) and 11(b) the first 2 µs of each frame should be ignored because the

oscillations take a few microseconds, in both the simulation and the experiment, to settle
to a dominant frequency and grow to their saturated state. After this, downstream

channels are more quiescent, while upstream channels through E-13 grow in amplitude.
The four electrodes at the left side (upstream end) of Fig. 10: E-15.5, E-18 and E-20.5 are

in the fringe field of the quadrupole magnet, and show progressively smaller signals as

the magnetic field decreases.
In Fig. 11(b), we show the simulated data for each channel, with a constant plot scale,

so the spatial growth in oscillation amplitude is more readily apparent here as we advance
from left to right. Significant similarities are observed with the measured data. The

positive signal at the beginning is due to capacitive pickup from the rising beam potential

at the head of the beam. Shortly after the head, electron oscillations begin and continue
throughout the duration of the pulse. The horizontal scales differ, between Figs. 11(a) and

11(b), because the digital oscilloscopes are triggered by a separate signal that is offset

from the beam arrival time.
We compute the oscillation power spectrum by squaring the absolute value of the fast

Fourier transform (FFTs) of each channel between 5 and 6 µs [Fig. 11(a)] and dividing
by the number of data points. We plot the results in Fig. 12, averaged over 1 to 31 Mhz,

as a function of electrode position (from Fig. 10). The spatial growth of the oscillations is

clear. The oscillations begin near the center of the last quadrupole magnet and grow in
the upstream direction, until the magnetic field magnitude begins to decrease at 15 cm

(E-15.5 and beyond).
In WARP, the spatial growth of oscillations is computed from a Fourier transform as

in the experiment, and is also shown in Fig. 12. The measurements agree with

simulations, finding the same wavelength (5 cm), frequency range (5-15 Mhz), and
amplitude of oscillations. As the oscillations move upstream, both WARP and the

experiment show the oscillation amplitude growing spatially faster than it did near the
magnet center. The agreement is very good, except that the simulation shows the

amplitude decreasing beyond the end of the constant quadrupole field where the magnetic

field has dropped to 0.5 of the central value, whereas the experimental amplitude doesn’t
decrease until the next electrode at 17.5 cm (not shown) where the magnetic field is 0.1
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of the central value. The discrepancies may be due to small differences, between the

experiment and simulations, in the fall-off of the magnetic field near the ends of the
magnet, and to small (~1 mm) axial errors in locating the electrode array in HCX, but we

have not demonstrated this.
Experiments and simulations are continuing to improve our understanding of the

mechanism responsible for the oscillations, and the conditions necessary for the

oscillations to exist. From simulations where the beam radius is varied, we observe that
the further electrons extend outside the ion beam, the greater the oscillation amplitude.

Motivated by these simulations, we have taken data similar to that in Figs. 11, except
that we varied the end-wall potential. Biasing the end-wall positively is expected to have

two effects: (1) Electrons emitted from the end wall will not extend radially as far outside

of the beam, which by analogy with the simulations should reduce the oscillation
amplitude. In addition, these electrons should not be able to reach the beam tube at

ground potential to generate secondary electrons. (2) The beam potential should no

longer be reduced to near zero when flooded with electrons but should be reduced only to
a potential near the end-wall potential. We observe that biasing the end wall to +500 V

reduces the oscillation amplitude to near zero, see Fig. 13. This is in qualitative
agreement with the simulations, however quantitative comparison will await subsequent

simulations that directly simulate the experimental conditions, including effect (2) above.

In conclusion, we have developed a variety of diagnostics that measure the three major
types of sources of electrons – ionization of gas, emission from beam tubes, and emission

from an end wall. We have measured the time-dependent absolute magnitude of electron
accumulation in an ion beam. We have measured electron emission and gas desorption

yields and increased the understanding of the scalings and processes involved. We have

observed oscillations of dense electron clouds in both experiment and simulation,
experimentally validating the simulations by detailed quantitative agreement with the

magnitude and time dependence of measured data from each channel of an 8 channel
array. These data validated the simulation predictions of frequency content, wavelength,

and the oscillation power and measured spatial growth rates. Further experiments and

simulations of varying the relative radii of the electron cloud and the ion beam yielded
qualitatively similar effects on the oscillation amplitudes, and here we plan further
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simulations that will more closely match the experimental conditions for a quantitative

comparison.
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 Fig. 1. (Color online) The magnetic quadrupole region of HCX, from the D2 diagnostic

region on the left to the D-End diagnostic region beginning on the right is shown in an
elevation view. The lattice half-period length is 0.52 m. Clearing electrodes a, b, and c

are shown in the drift regions between each pair of quadrupoles. A suppressor electrode
prevents beam-induced electron emission, from structures hit by beam in D-End, from

reaching the quadrupole magnets. Vacuum pumps are located in each of the diagnostic

tanks a-c, as well as at both ends of the region shown. Gas can be fed at tank b. The
cylindrical suppressor ring has been replaced with 2 separately biased plates that can

perform additional functions.

Fig. 2. Beam current of 1 MeV K+ ions, measured with a Faraday cup.

Fig. 3. Octagonal tube for mounting multiple diagnostics inside an elliptical-bore

quadrupole magnet.

Fig. 4. (Color online) Ion-induced electron emission yields, measured and modeled, with

aid of TRIM code, for three energies of potassium ions.

Fig. 5. (Color online) Currents to clearing electrodes (b) and (c), showing both

measurements (red) and simulations (black).

Fig. 6. (Color online) Line charge of the ion beam, and electrons in the fourth quadrupole
magnet, after oscillations in electron cloud are saturated.

Fig. 7. (Color) Warp simulation results in the Y-Z plane for the 4 magnetic quadrupoles,
showing the ion beam (black), primary electrons from ions impacting a wall (red), and

secondary electrons from electrons impacting a wall (blue). Each color is opaque and
hides the other species. Oscillations are seen in the primary electron radii in magnet 4,

identified by a circle.
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Fig. 8. (Color online) The charge density of primary electrons (color coded) emitted from

the end wall extending from the drift region between the last two magnets on the left,
through the last magnet, to the grounded end wall on the right.

Fig. 9. (Color online) The potential contours (color coded) extending from the drift

region between the last two magnets on the left, through the last magnet, to the grounded

end wall on the right.

Fig. 10. The location of capacitively coupled electrodes in the beam tube of the last
quadrupole magnet is indicated, relative to the center of the magnet. (BPM stands for

Beam-Position Monitor, a frequent application of capacitively-coupled electrodes. An

array of 11 electrodes is distributed axially in the bottom quadrant. At –12.5 to –13.5 cm,
an azimuthal array of electrodes, one electrode per quadrant is provided. Top and bottom

quadrant electrodes extend 1 cm axially and 4 cm azimuthally. Side quadrant electrodes

extend 1 cm axially and 6 cm azimuthally.

Fig. 11. Data from 10 channels of the axial array: (a) experiment, (b) simulation.

Fig. 12. The results from Fig. C are integrated over a frequency range of 4 to 8 MHz, and

plotted as a function of electrode position (from Fig. 6). the oscillations begin near the
center of the last quadrupole magnet and grow in the upstream direction, until the

magnetic field magnitude begins to decrease at 15 cm. Experimental measurements (blue
triangles), WARP simulation of experiment (tan circles).

Figure 13. (Color online) We compare the measured oscillating line charge to that of the
beam (0.082 µC/m), as a function of the end-wall bias voltage.

-
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Fig. 3.
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Fig. 4.
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Fig. 5.
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Fig. 6
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Fig. 8.
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Fig. 10.
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Fig. 12
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Fig. 13.

BPM4.7-3, Shots 5-9, 1/26/06
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