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A Perturbation Method for Dynamic Analysis
of Under-Integrated Shell Elements

By
L. Vu-Quoct

Abstract

An eflicient perturbation method that allows reliable and accurate dynamic analyses of gen-
eral shell structures using under-integrated elements is proposed. Both the perturbation of the
stiffness matrix and the projection of the mass matrix are performed directly in the global coordi-
nate system (thus avoiding local-global transformations of element matrices), and only once for
each element instead of at each integration point. The method does not require any factor to be
fully integrated over the element. Due to the consistency of the perturbed stiffness, the 9-node
element passes several patch tests, including higher order ones. Further, algebraic expression for
the projection operator of the mass matrix is derived, and contributes significantly to the
efficiency of the methodology. Several examples are presented to assess the effectiveness of the
proposed method in filtering all spurious modes from the eigen-spectrum, and the accuracy of the
resulting eigen-frequencies of the genuine mode shapes.
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A Perturbation Method for Dynamic Analysis
of Under-Integrated Shell Elements

By
L. Vu-Quoc

1. Introduction

We present a methodology based on a perturbation approach to extend the capabil-
ity of under-integrated shell elements, which are plagued by the existence of undesirable
spurious modes polluting the response, to allow eflicient, reliable, and accurate dynamic

analyses of general shell structures.

The advantages of evaluating the stiffness matrix of shell elements using
selective/reduced-integration (Pawsey & Clough (1971}, and Zienkiewicz, Taylor & Too
(1971]) versus full-integration are manyfold: Not only that the membrane/shear locking
problem as the element thickness decreases is resolved, the computational effort is on the
other hand considerably reduced by the same factor. This reduction becomes even more
significant in nonlinear analysis as well noted by Flanagan & Belytschko [1981]. A
mathematical framework for the selective/reduced-integration approach 1s provided in
the classical paper by Malkus & Hughes [1978]. For 9-node shell elements, an analysis of
the above welcomed effects of reduced-integration is given by Parisch [1979]. The disad-
vantage of using reduced-integration is, however, rooted in the existence of spurious
zero-energy modes, which is due to the rank deficiency of under-integrated stiffness
matrices. In static analyses, Koslofl & Frazier [1978] pioneered a perturbation method by
adding an artificially small energy to these spurious modes, which are therefore filtered
from the response. This method has been applied to shell elements by many authors. In
the dynamic case, Belytschko, Tsay & Liu [1982] proposed to increase the artificial
energy that is injected into the spurious modes to push them into the higher frequency

range.
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The main goal of the present paper is to present a methodology that allows a com-
plete filtering of the undesirable spurious dynamics for a class of under-integrated shell
elements formulated in Vu-Quoc & Mora [1987]. Emphasis will be focused on the more
difficult case of the 9-node bi-quadratic shell element, as compared with the more
straightforward case of the 4-node bilinear shell element (which needs not be flat). A
careful analysis of spurious zero-energy modes of a large class of under-integrated 9-node
shell elements is performed. We give exact expressions of spurious modes as functions of
the Jacobian of element isoparametric mapping in these cases. Understanding how
these modes change with element shapes and distortion is essential for constructing a

simple, efficient, and reliable filtering method.

The proposed perturbation method for dynamic analysis is a two-stage strategy
that consists of (i) a perturbation of the under-integrated stiffness to fully compensate its
rank, and (ii) a projection of the mass matrix either to nullify the generalized mass of
some spurious modes, or to render impossible for other spurious modes to become eigen-
vectors of the perturbed eigenvalue problem. That both stages (i) and (ii) are carried
out directly in the global coordinate system, thus avoiding the costly local-global
transformation of element matrices, is an important feature of the proposed approach,

for therein lies the efficiency of the method.

The perturbation of the stiffness in stage (i) is constructed to be orthogonal to a
displacement field that is linear in the coordinates for a 4-node shell element, or for a
general curved 9-node shell element, and quadratic in the coordinates for a flat 9-node
element. In Vu-Quoc & Mora [1987], we have established the better performance of a
consistent perturbed stiffness over an inconsistent one. Due to this consistency, the
present 9-node shell element passes several patch tests, including the higher order tests
where displacement field involves quadratic polynomials in the coordinates. These patch
tests, proposed in Huang & hinton [1986], include several states of stress imposed on a

square patch of elements: stretching, (in and out-of-plane) shearing, pure bending,
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(Reissner-Mindlin and Kirchhoff-Love) twisting.

As mentioned earlier, one approach to remove spurious modes from the low fre-
quency range 1s to increase the perturbation factor of the stiffness matrix, thus pushing
the spurious modes to higher frequencies as proposed by Belytschko, Tsay & Liu [1982).1
However, only increasing the generalized stifiness (or the perturbation energy) of the
spurious modes is not a reliable method, since these spurious modes are merely shifted
out of the bandwidth of the low frequencies into the higher ones. Moreover, there is a
limit to how far one can increase the perturbation factor and yet still maintain the struc-
ture flexibility acquired through reduced integration for small thickness. The consequent
persisting presence of spurious modes must therefore be accounted for when using step-

by-step integration of the equations of motion.

We examine the dynamic analysis using the proposed perturbed system by consid-
ering the equivalence between step-by-step integration of the complete system of equa-
tions of motion and integration of the scalar modal equations, which then leads to
methods for constructing the desired damping matrix and mass matrix to filter all spuri-
ous dynamics from the response. We propose an efficient and reliable projection opera-
tor for the mass matrix, where similar to the perturbation of the stiffness matrix the
projection is performed directly in the global coordinate system, thus avoiding all local-
global transformation. Furthermore, the proposed projection method conserves the total

element mass under rigid body motions.

Several examples of shell structures are presented to demonstrate the appearance of
spurious modes in the low-frequency range when using the unperturbed system, and the
effects of mesh refinement on the eigen-frequencies of spurious modes. Also to be demon-
strated through these examples are the eflectiveness, efficiency, and accuracy of the pro-

posed perturbation approach in filtering undesirable spurious modes from the eigen-

t A spurious mode may, or may not, appear depending on the finite element mesh and boundary conditions.
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spectrum. The results obtained also point to the superior performance of the perturbed
system with the present projected mass matrix in yielding better eigen-frequencies than

systems with various types of mass matrix.

2. Formulation of shell element

In this section, we summarize briefly the formulation of a class of degenerated shell
elements discussed in Vu-Quoc & Mora [1987]. In particular, the expressions of the
strain-displacement relations are recalled here for later work on spurious zero-energy
modes. Emphasis is, however, to set the stage for introducing the inertia operat.r, and
for developing the methodology for transient dynamic analysis using under-integrated

shell elements.

2.1. Geometry and stiffness operator. Let (60} = (6", ¢°, 6%) denote the con-
vected curvilinear coordinates inscribed on the shell body QcC R3 such that
(01 = (6", 8%) coordinatize the shell mid-surface, and 6° the transverse fiber.tf The
tangent vectors to these coordinate lines are denoted by {A,, A,, A}, whose components
with respect to the orthonormal basis {E,, E, E;} of the ambient space IR® are written
as A that is, A, = A/E;T The deformed configuration in the ambient space is defined
by the basis {e;, e, e;}, chosen such that e; = E, i = 1,2,3, for convenience. A continu-
ous field of orthonormal vectors {T,, T,, T,}, with T, = T/e; and with T, lying along

the transverse fiber, is assumed to cover the shell mid-surface.
The displacement vector uf of a point (6{'}) is given by

. g°h . hooa X
W) = u XX To= |+ HCTY T e (2.1)

124
-

where u(01®) = »#(01°)e,; is the displacement of the point (8110} in the mid-surface,

t Roman indices take values in {1,2,3}, whereas Greek indices take values in {1.2}.
t Summation convention is implied on repeated indices.
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h(61%Y) the thickness and x(61%) = XN T 461°h the (infinitesimal) rotation vector of
the transverse fiber T,(0{°}).

Let {Pl(ﬁ{a}); I=1,..,N°} be a family of interpolatory functions on a shell element
with N nodes and whose domain is denoted by Q1°. For each element, the values of
(9“) are restricted to the bi-unit cube (|1, 1])>. The element stiffness matrix K* is

evaluated by

K = [BT[¢c"®]Bdo e R"™" (2.2)
QC
with n°® := 5N° being the number of dof’s per element, B¢ R**" the strain-

displacement matrix, and [C%"] € R™® the matrix of plane-stress elastic moduli. The
basic ordering of the n° dof’s of an element throughout the paper is assumed to be
{u{ xleb ujé,’;},xjiﬁ}."r The strain tensor within the element is denoted by
=T, A"® A’ where {A' A% A’} are cotangent vectors conjugate with {A;, A, A,)
— see Vu-Quoc & Mora [1987] for the details. It proved convenient to split the strain-
displacement matrix B into sub-matrices which correspond to the translational dof’s «'
denoted by BJ,, and those sub-matrices corresponding to the rotation dof’s x¢, denoted
by Bf. Detailed expressions of these sub-matrices, corresponding to the five strain com-

rot -

ponents {I'y;, Toy, 2703, 2Ty, 210}, are given below

t Throughout this paper, a matrix is defined by its representative coeflicient (enclosed in brackets), whose
dummy indices are to be expanded, with Roman indices taking values in {1,2,3} and Greek indices in {1,2}.
This expansion does not apply to those indices enclosed in parentheses.
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A P1.1,"',PN,1

Al PLQ,"',PN,Q}

B/;u = Aé PIQ; 5 PN,Q € RSXN‘ ) (23&)
A 1 Pui, -, Pag }
AP+ ALPy, ], R [A'lPN,Q + APy, ]
93A1' {h1P1.1T51, T, hNPN.xTﬁN }
93A2’ {hlpl,‘.?rrﬁl; T hNPN,QTﬂN }
B2, = _% eap | M(P1o0°As+ PiA)eTs,  , hn(Pyof®As + PyAg)Tay |€ RN (2.3b)
hi(P0°As + PA)Ts, - hn(Py 0°Ay + PyAy) Ty
}L1‘93(P1.1A‘z + PioAy)eTa, -, hNga(PN,1A2 + PyoAy)eTay |

where Py, =0P;/00% and e,z is the permutation symbol defined such that €1y = €go= 0
and ey = —ey = 1. The values of 4 and Tj; at a node I with coordinates (0, 07) are
denoted by Ay and Tg, for I= 1,.,N°. Coordinates of the nodal points and the
corresponding interpolatory functions for a 4-node (N° = 4) bi-linear element are given

by

{000, 00) 3 == {(60,00), ..., (88, 6)} = { (=1, =1), (1, —1), (1, 1), (=1, 1) } , (2.42)
2.4a
Pty = T+ 04N+ 507 for I= 1234,

and for the 9-node (N° = 9) Lagrangian element by:
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{ ('911) 812) } L { (“lr ""1)7 (17 “1)’ (17 1)7 (wla 1)7 (O} '_1): (l) O): (0» 1)} (“19 O)* (O? O) } »
00 ~6}) ¢(0° 1)

PI(G{"}) = = = , forl= 1,234,
L0407 92
PI(€<G}) = [1 —(01)"]'_"('*—"‘)”‘*—1‘-)— 5 fOr I == 577 ; (24}))
91 91 ...()1
Pyotehy = ( 1):’1 —(6%], forl= 68,

() L
Po(0') = (1 = (671 — (627 .
The tangent vectors {A,} to the coordinate lines 8%} are computed from the nodal posi-

tion vectors X; = XIE; as follows

Nt

A, = EPI,O
I=1

03k, L
Xt 5 Ta |, Ay= 5 3 PhTy. (2.5)
- “ =1

It is useful to recall briefly the structure of the element stiffness matrix K* in (2.2)
in terms of the strain-displacement matrices B}, and B2, as an assemblage of sub-
matrices of size N®x N¢:

AT . u
K = f A [ EB:iis] [C'pq”}Bj{e & {Brc;t] {OW”]Bgﬂ
qe 7 €{1.2.3)
af € {1,2}

o [Bi )i o [z (cerpy, Jaa, (2.6)

where the symbols A and @ are used to designate the assembling operation.

To remove shear and membrane locking in thin shells, the element stiffness in (2.6)
is numerically evaluated using uniformly reduced integration. The coordinates of the
reduced-integration points are (f!, ¢%) = (0,0) for the 4-node element, and

0! 0% = (+ L 4 —-l-w) for the 9-node element. It was observed through numerical exper-
VBTN

iments in Belytschko and co-workers [1984,1985], and shown analytically in Vu-Quoc &

Mora [1987] that the displacement mode {u{!} = {ui . cun )T =z, where

z1={'311}::{+1,——1,+1,~—1}T,forNe:4,
g
2= { z;} = {——1,—-1,~1,~1,+1,+1,+1,+1,0}T, for N* = 9 | (H'I)

produces zero strain at the reduced integration point(s), i.e., Bz, = 0, independently of

iy
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the element shape. Concerning the spurious rotation modes, provided the element has
constant thickness and constant field of local triads, we have B%,z, = 0 for N* = 4, and
Br:(r —3z,) = 0 for N* = 9, independently of element shape, with r = {1,..,1}T € RV’
being the rigid body mode.

Let K¢ denote the under-integrated element stiffness, and §K° a perturbation
matrix. We have proposed in Vu-Quoc & Mora [1987] an efficient construction of §K*,
which is carried out directly in the global coordinates (thus avoiding unnecessary local-
global transformations), and based on the spurious (hourglass) mode z, such that this
mode produces a small non-zero energy in the perturbed stiffness K™ = K °® + §K°.
Further, this perturbation must be orthogonal to linear displacement field in general
curved shell elements (4-node or 9-node), and to quadratic displacement field in flat 9-
node shell elements. That is, the perturbation should not generate any additional energy
for displacements that are linear (for general curved elements) or quadratic (for flat ele-
ments) functions in the coordinates. As a result, the element passes basic patch tests
(including the pure bending test of a flat shell with quadratic displacement field), and is
free of spurious modes in a large number of static problems. Further, the perturbed
stiffness thus constructed is robust with respect to element distortion. We refer to Vu-

Quoc & Mora [1987] for the details.

2.2. Inertia operator. Let 7* be the admissible variation of u* in the 3-D case,
and similarly let (7, £) be the variations of (u, x). The same relationship as in (2.1) holds
for these variations. The variational form of the inertia operator of the shell then leads

to

- -

v ae a3k v oo e3p [ .. i
[t eutd = f[n.u+ T{E~T3><u+ 7ex X Ty ]+ p ]E-x }dQ. (2.8)
Q

Q

where a superposed " " denotes time differentiation, and 1, the px p identity matrix.

[ntroducing the spatial discretization

=
Ve

701 = PN, (8 = S P(athur(e®) | (2.92)

1 To= |

T
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Poth)xy (2.9b)

M=

N
) = MP(ENE, X0l ~
I=1 I

L]

1

into (2.8), we obtain the mass matrix M whose submatrix My, coupling the dof’s at node
bl 1 1J p o

I'to those at node J is given below

MY MY
M} e fo
H M MY

Je R 8 = J Tu= TuE;, (2.10a)

h o
M} = | [PPdO [1,€ R, M} = {;ifegplpjdﬂ 8 e R™? t+ (2.10b)
Qe - Q¢
21 hy 3 2% 8 WA 22 hihy 3\2 T 22
M = -—;f{? PP |6, R , M7 = 5 {(0°Y° PP ;A0 897 R i (2.100)
s 0

for I, J= 1,.,N°. A modified mass matrix can be obtained to account for homogeneous
rotation boundary conditions, prescribed along an arbitrary axis lying in the plane
(T, T), but not collinear with either T, or Ty, following the same procedure applied for

the stiffness matrix as proposed in Vu-Quoc & Mora [1987].

Remark 2.1. The integrals in (2.10), corresponding to a full mass matrix, are
numerically evaluated using full (3% 3) integration with the Gauss-Legendre quadrature
rule. To obtain a diagonal (lumped) mass matrix, we use the Gauss-Lobatto (nodal)
quadrature, and neglect the coupling terms in Mif. The result is a diagonal mass matrix

with

kel [ied (h 2 2l b <y
M = {f(PI)»dQ I;€ R®, M@ = %f(PQ“dQ e R, (2.11)
Qe

where the equality © )61 = 1, had been used. O

Remark 2.2. Parallel to the expression for the element stiffness in (2.6), we can

write the element mass matrix as follows

N T T T .
M= [ oA PLPLe PrlPie PP s P ) Pi Jdn e meoenr
§,7 2,

¢

af e {12}

t No sum on repeated indices in these formulae.
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(2.12a)
where, with §;; being the Kronecker delta, the matrices P}, and P/, are defined by
9
Pl = {8z ({ P1,. .., P,.} € RV (2.12b)

i3

{hlPIT/.%lf"‘; hNeJPNaT1 }

aNe
P2, = %gfﬁeaﬁ {MP\Th ., by Py T2} |€ RN (2.12¢)
{MPTh o, hy Pl T )

Expression (2.12a) will be subsequently used in the construction of a projected mass

matrix for a complete filtering of spurious dynamics. O

3. Spurious zero-energy modes. Perturbed stiffness matrix

In this section, we will focus our attention strictly to the 9-node shell element. The
perturbation stiffness matrix for this element, constructed based on the hourglass mode
z; alone, does not completely filter all possible spurious zero-energy modes for certain ele-
ment geometry, but those corresponding to mode z;. That is, the perturbed stiffness is
still rank deficient. Here, we will characterize the additional spurious modes, as well as
propose a perturbation matrix that completely compensates the rank of an under-
integrated stiffness matrix, and includes the previously used perturbation matrix, which
is based only on mode z;, as a particular case. Exact expressions of these additional
spurious zero-energy modes, which depends on element shape, are given for some partic-
ular geometrical shapes. The present 9-node shell element passes several higher-order
patch tests, in addition to the basic ones reported in Vu-Quoc & Mora 11987]. The new
perturbation matrix not only duplicates the performance of the old one, but in fact con-

stitutes the first stage of the proposed perturbation method for dvnamic analyses.
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3.1. Spurious zero-energy modes in a bi-unit square element. Consider a
square 9-node element with length 2 on each side and nodal coordinates as given in
(2.4b). The element has uniform thickness 4. At the reduced-integration points,
A =T, =E; for i = 123 Similarly, let the local triads at the nodes coincide with the

global basis. Define the matrices z., 23, and z, as follows

zo={zy}i={-1,1,1,-1,0, -1 o %,O}Temgxl,

zy= {2} = {11, —1,—1, *%, 0,20 01T € RO¥! (3.1)

5
2= {2y} =13z, = {44 4 4, -2 —2, =2, -2 1T ¢ R
It has been shown that at the reduced-integration points (0!, 6%) = (% »\%-, + —\»1/5—),
Bl,z, = 0, for i = 1,23, and Bjzy= 0 ,for o = 1,2, (3.2&)

independently of the transverse coordinate 6°. On the other hand, we have

1 2
Bdisz’z + Bd:‘sZS = {_

T
ne ne e _ 22
P e S P P G . 1,0}_ (3.2¢)

- - o

1 2 N
BrotZB ”BrotZQ - {"

The equations in (3.2b) and (3.2¢) vanish for 6' = 62 = i“\}fg’ Le., at the reduced-

integration points, and independently of the transverse coordinate §° in both displace-
ment mode as well as in rotation mode. The matrices Zy, g, 2z, and z, are therefore the
matrix representation of spurious zero-energy modes of an under-integrated stiffness
matrix of a bi-unit 9-node shell element. It should be noted that while {ufl} = 2, is a
spurious zero-energy mode for any ¢ = 1,23 the column-matrices z; and z; always
appear together in a related spurious mode: for instance, in a spurious displacement
mode with components {1211} = gz, and {'z;f} = zg, and In a spurious rotation mode with
components {x/'} = z; and {xf} = —z,.

We have thus identified all possible zero-energy modes of a square bi-unit shell ele-

ment lying in the plane {e,, e.}. There are in total seven independent spurious modes:
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{’f‘l} 2 | |0 0] |% 0 0 0
{uf} 0o ]lz| o] |2 0 0 0
fufy = Jo Lol llo} o | ]|o|]o|lemsxt, (3.3)
{x{} 0 0 0 0 Z3 Z4 0
{)212} 0119 RY 0 ~ Ep 0 Z4

Remark 3.1. Note the difference between the left-hand sides of equations (3.2b)
and (3.2¢). The reason is that while Bj, depends only on the components of the tangent
vectors A;, the matrix B, depends on the relative orientation between the vectors {A;}
and {T,;}. Thus the same left-hand side as in (3.2b) will be obtained for (3.2¢), ie.,
B/ fz, + BXz;= 0 at the reduced-integration points, if we choose the new local triads
to be such that T" = Ty, Tsf = ~T), and Tff =T, O

Remark 3.2. The following important orthogonal property holds among the modes
z3, and z, :

r, Zy, Zo

)

rez; = 0, for i = 123, (3.4&)
z;2z; = 0, for ¢ j, and 5= 123, (3.4b)
ZyoZy = Zgezg= 0. (3.4¢)

That is, {r, z,, 2y, 23} forms a set of orthogonal vectors in R similarly, {z,, 25, z,} is yet

another set of orthogonal vectors in R?. O

We will later make use of the above orthogonal property to achieve a complete
filtering of spurious modes, specifically in the construction of the perturbed under-

integrated stiffness matrix and of the projection operator for the mass matrix.

3.2. Spurious zero-energy modes in 9-node shell elements. \We now examine
how zero-energy spurious modes change under element distortion, and under arbitrary
orientation of the element in space. From our previous investigation, we already know
that the three displacement modes (¢ = 1,2,3) with component {ufhy = 2, are spurious

zero-energy modes regarless of element shape and orientation. For some particular field
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of local triads, the two spurious rotation modes (e = 1,2) with component {x{*} = g,
has the same invariant property with respect to element shape (see Vu-Quoc & Mora
[1987]); this is, however, not the case for a general fleld of triads. On the other hand,
the two spurious modes with components equal to {z;} and to {z;} do not share the
above invariant property. That is, the matrix representation of these spurious modes

has coeflicients that vary with element distortion and orientation.

Consider an arbitrary distortion of a bi-unit 9-node square element. The distorted
element (which could be non-flat) can be thought of as a result of a continuous deforma-
tion process started from the bi-unit square element. The dimension of the null space of
the under-integrated stiffness K of a distorted element can collapse down from seven
(for the bi-unit element) to a smaller dimension. In general, as the distortion proceeds,
the null space of the under-integrated stiffness changes with the degree of distortion, l.e.,
the null space depends on the Jacobian matrix. We recall that this null space contains
an Invariant subspace, spanned by the three (+ = 1,2,3) displacement modes with non-
zero component {uf} = z,.

For general shell elements, it is not easy to evaluate analytical expressions of the
(variant) spurious modes, so that a corresponding filtering scheme could be devised. For
some particular element geometry and field of local triads, however, analytical expres-
sions of spurious modes can be explicitly given. This will shed some light into how
spurious modes evolve with element distortion. Knowing such evolution is of fundamen-

tal importance for designing an efficient and reliable perturbation method.

3.2.1. Parallelogrammic element with normal director field. As portrayed in
Figure 3.1, the 9-node element, contained in the plane {E;, Eo}, has identical tangent
vectors {A,} at all 2x 2 integration points, with A, chosen to be collinear with E,. The
element has a constant normal director field, Ay =E,. Further, the local triads are
chosen to be identical to the global base vectors, Ty =E;, for + = 1,23 and [ = 1,...9.

We have
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AI'TH: All y Al'TQI 0, Az’TaI=‘— Aé] ; _
AgeTy=0, V a= 12, (3.5)

This particular choice of position of the element facilitates the search for spurious
modes; in the subsequent section, we will show how to obtain expressions of these spuri-
ous modes for arbitrary positioning of the element in space. Here, we study the evolu-
tion of spurious modes under the distortional mapping of a bi-unit square into a paral-
lelogrammic element.

The mode with components {u}} = z, and {uf} = z4 no longer produces zero strain

at the reduced-integration points (8!, %) = (¢ (%: * *\173'), because

92 2 _
__All 3( )‘) 1 0
o2 L2301 1
—34/6'? A=
Bl Bis = | : P e

0 0

) I\ - 2 2

"f,ﬁ* L%‘ B0 —1] + 6A11919~] 3A70'

has non-vanishing second coefficient (for A} = 0, since Ag = 0is a trivial case) and fifth

coefficient (4] # 0). Noting, however, that
1

; o

-

T
2(p2)2 _
{0, ~3A420%" 0, 0, »Ag-‘ﬂ-)—-—-i} , (3.7)

58
S0
&

N
[N

i
[l I ol

then together with (3.6), one can see that a judicious choice of linear combination of Zy
and z; 1s possible to nullify the strains at the reduced-integration points. Indeed, a dis-
placement mode with components {uf} = A%z, and {uf} = (A} zs — At z.) leads to the

strain field

Atad

B} (‘q’gzﬂ) + Bf{:;is(All Z3 _—A‘Zl zﬁ) =

dis

T
{—-1’3(02)3 —1], [3(6'* =1}, 0,0, 0 } . (38)

1

which clearly vanishes at §* = ¢% = 4 {;3«
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Similarly, the rotation mode with components {x{} = z; and {X{'} = —2 no longer
yields zero strains at the reduced-integration points in the parallelogrammic element, as

it did in the bi-unit square element:

0 All 03 3('92)2 ~1
4z 3(612 —1 2
T 3AL610%°
Y b, o o 91 2 _ 3 02 2 »
Blizs ~Bliz = L Agﬁ‘ﬂ%—i -1 A(Z’H‘——LJ(E———}» (3.9)
0 p 1 3(6°)° =1
3426'0%° Al 2
6° .
&gt -] + 64; 0
2 LN
But noticing that
3(6%)% —1 3(6%)? 8
Bl z, = {0, —3A70'9%° mAgeli-—){:——, 0, —_A§03~(——-)0—:-1— } , (3.10)

similar to the displacement case, we consider the rotation mode with components
(X} = (Alz, ~Alz) and {xf} = Afzy, which then yields vanishing strains at the

reduced-integration points:

T
AfAZ {-493 [3(0%)° —1], 6° [3(9") —1], 67 [3(6")> —1], —6" [3(6%)* —1] } : (3.11)

Again, recall that Remark 3.1 applies to the present case as well. On the other hand, z,

remalns a matrix representation of spurious rotation modes for this element, since

T
Bz, = {0, GAZO%°[3(0")° —1], AF[3(6")* —1][3(6%)7 —1], 0, 645 0'6%[3(6%)2 —1] } , (3.12a)
and

BEotz4 = Ag [3(01)2 — 13
AL 30 —1

+
oS
P s
Y
)
w
A2
<
-
%

!
-
A ——

66° [4501{3(09)2’ —1
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vanish identically at the reduced-integration points. Thus, for the parallelogrammic ele-

ment with constant normal director field, the seven independent spurious zero-energy

modes, given in (3.3) for the bi-unit square element, now become

{uf} 211071 o Afz, . o1 To
{uf} o |z | |0 |Alzs—Adz 0 0 0
{uf} 010 | |z 0 0 0 | {0 e R*¥! (3.13)
{xi} 0 0 0 0 Alz, —Alz, 4 0
| ol todlo ° —Adz | L0 L%

3.2.1. Cylindrical element. The geometry of a cylindrical 9-node shell element,
with uniform thickness, is depicted in Figure 3.2a. The nodal coordinates of the element
has the plane {E,, E;} as plane of symmetry. The orientation of the director field and
the local triads has important influence on the spurious modes, as can be observed from
expressions of the strain-displacement matrices Bj, and BZ,. Corresponding to the

matrix representation {z,, z;}, instead of (3.2b), we obtain for the displacement field

1 2 _
Bi,zo + Bj,zs =

s g

T
2y2 Y e - : \22__ . .
{—Af M) =1 g SO =L gaggge, —ag BOP =Ly g Ag)@‘ﬁ“} . (3.14)

where we recall that A/ = A;+E'=A,.E. In (3.14), the fifth coefficient of Bl,z, is
(—3A410'9"%), whereas the fifth coefficient of B%,z, is 342092 At the reduced-integration

points (0',0%) = (& %%r,* —\%), the first, second, and fourth coefficients in (3.14) vanish.

The third and the fifth coeflicients do not vanish in general. We shall consider the fol-

lowing two cases of director field.

3.2.2a. Case with constant director field A; = E,. We consider first the simple
case where Ty =E;, for + = 1,23, Then by virtue of (2.5),, we have that Ay =T; =E,
everywhere in the element, and thus A} = 0. This assumption therefore leads to the
vanishing of the third coefficient. This situation is depicted in Figure 3.2b. From (3.14),

one can see that the matrix representation of spurious mode with components {u(} = z,
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and {u{} = z; changes to {u}} = zo/A} and {uf} = z5/A7 (or equivalently to
{uf} = A2z, and {uf} = Alzg), so that Bl {uf} + B5{ufl —0 at the reduced-
integration points. This identity holds at all 2x 2 reduced-integration points because, for
the current choice of geometry and orientation of the element, the components A} and
AF are constant throughout the element. Note that the above matrix representation
clearly holds also for the case where A} = Ad.

For the rotation field, a similar modified matrix representation of spurious mode is
obtained. Again, since A,+T = A;*E; = Al is the same at all reduced-integration

points, for all I = 1,..,9, we obtain instead of (3.2¢)

5 1 3077 —1 L., 3(6Y)F —1
Br}otzs ”Brotz‘:’ = ”5' {wAl}‘ 93 m')?"—"r -‘42 (73 -—(..——:é_.._._,._.]
T
Lol Hz bl ] 02 z - o ]
agr SULL o MO s s | (3.15)

The first four coeflicients vanish identically at the reduced-integration points. Unless
Al = A§, the last coefficient will vanish for the spurious rotation mode with com-
ponents {x/} = z;/A% and {xf} = ~2;/A{ (or with components {y/} = Alz; and
{xf} = —AZ%z,). Also, we recall Remark 3.1 for the present situation.

On the other hand, z, remains the matrix representation of spurious rotation

modes, since

S
e

! —
Brotz4 - P

-

{o, 60°0%(3(6")* —1], [3(6')* —1)[3(6%)° — 1], 0, 66'9%[3(6%)% 1] } (3.16a)

A ! < 0 2 < N0 3 o o -
Bz, = ~--9-L {60’03§3(0~)~ —1],0,0, [3(6")" —1][3(6%)° —1], 66°6°3(6")* —1] } (3.16b)

P4

vanish at the reduced-integration points. Thus, for the cylindrical element with con-
stant director field, there are seven independent spurious zero-energy modes with matrix

representation
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{?fl} ZI 0 0 ,AQZQ 0 O O

{ur} 0 z, 0| |Alz 0 0 0

tufy = fo bjofla | o || o |o}|o|ers:, (317
{ill} 0 0 0 0 Al z, z, 0

{x7} 0 o110 0 ~AZz, Lo Zy

which differs only slightly from (3.3).

3.2.2b. Case with radial director field. In the more general situation where the
local triads {Ty;, Ty, Ty} are not identical to the global {E,, E,, E;f, ie., when A} = 0,
then the third coefficient in (3.14) corresponding to the strain Fy3 vanishes only for
' = ¢ = 0. To make this coefficient vanish, we have to bring in the contribution of the
rotation field to the strain components, especially to I',;. Recall that the fifth coefficient
in (3.14) corresponding to the strain I';, can be nullified by choosing {u{} = Afzy, and
{uf} = Alz, as done in the previous sub-section.

Consider the case where the director field is symmetric with respect to the plane
{E;, Ea}, as depicted in Figure 3.2c. As a result, the following symmetry conditions in
the scalar product (A, «T,;) hold

Al(el)'{Tu, Ty, Tig} = Al(—ﬁl)'{Tlﬂr T3, Tie}
Ay (0")+{Ts Ty, Ty} = A(—0Y)+{T5, Ty, Tyo} ,

As(gl)’{Tn; Ty, T} = “Ag(*el)'{Tm; T35 Ty},

3.18b
Ay0) (T, Ti7, Ty} = —Ay(—0')+{Tys, Tyy, To} . (3.18b)

where to alleviate the notation we write A,(0") instead of A (("}), since the symmetry
conditions apply only to 8'. We are looking for a displacement or rotation mode that
vields a strain T3 proportional to the product (0'4%), which will be used to nullify the

third coefficient in Bj,(A45z,) + B3, (A 2,). To this end, defining the matrix
z50= {1, -1,1,-1,0,0,0,0 0T € R™! (3.19)

5

and considering the rotation mode with component {y/} = z;, we have

-
B}, zs = AQ‘J{O, 9'9° 9'6, 0, 9°9° } , (3.20)
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The strain component I'y; = 4262 ip (3.20) is what we need, but the other strain com-
ponents are, however, not zero at the reduced-integration points. To nullify these
strains, we consider the displacement mode with component {uf} = z; to produce the

desired strain field
Bj,zs = A7{0,0' 0,0, 6%)7 (3.21)

It should be noted that the strains components in (3.20) depends on the transverse coor-

dinate 8°. Hence, the final step to obtain the sought-after expression for Spurious zero-

energy mode is to integrate the stiffness matrix through the thickness, i.e., with respect
[¢3

to #°. The strain-displacement matrices, especially B2, will be then given in resultant

form.

To do this, we further assume that the director field is radial, and that the element
1s geometrically a perfect cylindrical shell. That 1s, the position vector of a material point
within the shell body is not interpolated from position vectors of nodal points, but
known analytically. The coordinate line #' in this case is not a parabola, but a circular
arc. The tangent vectors {A;} to the (cylindrical) coordinate lines (6%, 6%, 6°) are there-
fore  orthogonal. Without loss  of generality, we further assume that
Al = d(R + d.8%), where d, are normalizing constants so that 8',6° € [~1, 1], and R
the radius of the cylinder; also, Al = (44)°, and lAslf = 1. The metric tensor
G= G;A"®A’, with G; = (A, *A;), then has a diagonal matrix representation
[Gyi] = Diag[df(R + d6°)7 (42)2 1). The plane-stress elastic moduli matrix [C*™] can be

shown to take the form (cf. Vu-Quoc & Mora [1987])

rC«ml cne ] M 4 (X ;‘r #) -
onz o [di(R + do0%) (N + 24)

;3 0o no 2 3
(M) = o B e . L . (3.22a)

Cv3311 [AQ dI(R -+ dgg H (>\ + Q'u)

CIIEQJ o _ 401{(‘1% + ) )
(A7) (N + 2p)

(7233 _ H : C3811 # ol # . (3,2'2b)

(A45) [d(R + d.0°))" " [(AZd((R + do6°)]
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)
{3

where X and p are the Lamé’s constants. Notice the decoupling between the in-plane

strains (I'yy, I'yp), the transverse shear strains (I, T3), and the in-plane shear strain T,,.

It should be noted that the tangent vectors {A,} appearing in the expressions for
the strain-displacement matrices Bj, and BS, in (2.3) need not necessarily be obtained
according to the approximation in (2.5), but could be chosen independently from the

interpolation of the displacement and rotation fields. Hence, since To=E,, we have

that A;« Ty = Az+Ty = 0, and therefore

{0,...,0}
{Pl,Zr B )PQ,Q}
B,y = 6°hAZ{ {Py, ..., Py} € R, (3.23)
{0,...,0}
{Pi, - Py}

It follows from the decoupling in the elastic moduli matrix (3.22) and from the expres-
sion of By, in (3.23) that an a-priori integration with respect to 8% leads to a resultant
strain-displacement matrix similar to B/}, in (3.23), with some multiplicative factors to

the strain components. Let ¢, and ¢, be those multiplicative factors, (3.20) becomes
T
BrlotzE) = AL?{O: Clgli 0201021 07 6102 } : ('324)

Hence, using (3.14), (3.21), and (3.24), a linear combination of the matrices Zo, z3, and zg
can be found for the matrix representation of a spurious mode.

Note that for this cylindrical element, we still have the rotation mode with com-
ponent {)21‘} = z, as spurious zero-energy mode, since Bl,z,= 0 at the reduced-
integration points. In summary, the null space of the under-integrated stiffness matrix
for the cylindrical 9-node element with radial director field contains the following five

spurious modes
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r 5 AQ?ZO
- i
{ur} 2] (o] o L 3o, AL (AR 0
{uf} 0 Z 0 Arzs = co % 0
{uf} |= |0 | 0| |z 0 Lo [emr™ . (3.25)
{x1} 0 0 0 3A4A% z4
o 0 0 0 c %o 0
{x1} 2
L J O

Except in the case of constant director field examined earlier, the null space (not count-
ing rigid body modes) of the under-integrated stiffness of 9-node cylindrical elements
with director field satisfying the symmetry conditions (3.18) has dimension five (down
from seven for the bi-unit square element), based on numerical solution of the related
eigenvalue problem. In the present case, this null space is therefore spanned by the five

spurious modes in (3.25).

From the matrix representation of spurious modes of the above particular cases of
distorted element, in particular positions relative to the (global) basis vectors
{E,, E;, E5}, one can see that these spurious modes have at least a component that is
not simultaneously orthogonal to the matrices z;, z,, z;, and z,. This property remalns
true for a large class of 9-node shell elements. It suffices therefore to construct a filtering
scheme that, in addition to z;, is based on z,, z, and z; to eliminate all spurious zero-
energy modes of under-integrated 9-node shell elements, in both static and dynamic ana-
lyses. Before reaching this stage, we still have to consider the case where an element is
placed arbitrarily in the ambient space IR®, since the filtering scheme — which will be
constructed using the fired matrices z,, z,, zs, and z,, and directly in the global coordi-

nates — should remain valid in this general situation as well.

3.2.3. Matrix representation of spurious modes under rigid transforma-
tion of the element. Rigid transformation of an element can also be thought of as
part of the process of distortion of a bi-unit square element mentioned above. Basically,
the matrix representation of displacement spurious modes of the rigidly transformed ele-

ment are made up of linear combinations of components from the matrix representation
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of the original element — except for those modes whose matrix representation is invari-

ant with respect to element shape and orientation.

Consider an arbitrary under-integrated shell element with zero-energy mode
{uft ] )}1{"‘}}. It suffices to study only rigid rotation, since nothing changes under rigid
translation. Let R = RJE;® E’€ SO(3) be a rotation tensor with an orthogonal matrix

of components [R]]. Under this rotation, the vectors A; and T, are transformed into

AF = RA;, T/ =RT;, and AF T} = A;+T; . (3.26)

It follows that the matrices BZ,, which depends only on A, «T;, remain the same for the
rotated element, and therefore the rotation components of spurious mode also remain
the same: x+ =x On the other hand, the matrices Bj, change with the vectors A
and consequently their null space. Thus we can consider the strains I',, as functions bil-
inear in the Jacobian {A4}} and in the displacement {u{}, and write T, ({AD, {uf}). We

have T, ({Af}, {J{I})EO at the reduced-integration points. Hence, for the rotated ele-

ment, the strain I'* = [FA'* ® A’* has components computed by
L = RPIRIT, (AL}, (uf}) = Tp({RPADY, (Rjuf}) = T, ({4}, {ud*}) =0, (3.27)

where we made use of the bilinearity of [,. For the rotated element, the matrix
representation of spurious modes that are not invariant has their displacement com-
ponents {u{} changed to {R}'uAf‘}, i.e., a linear combination of {uf}, j = 1,2,3.

Thus, the properties obtained for the un-rotated elements in the previous section
still hold for the rotated element. In particular, the matrix representation of a spurious
mode of a general 9-node shell element has at least a component that is not simultane-
ously orthogonal to the matrices z,, z,, z, and z,. This is a crucial point that will be
exploited next to construct a simple, efficient, and reliable perturbed stiffness matrix for

the 9-node shell element.

3.3. Perturbed stiffness matrix for filtering of spurious modes. The pertur-

bation matrix is required to produce no additional strains under displacements that are
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linear (for curved elements) or quadratic (for flat elements) functions in the coordinates.
Based on results obtained in the previous section, it suffices to use the fired matrix
representation of spurious modes z,, z,, 2z, and 2z, to construct a perturbation stiffness
submatrix of size 9x 9, which will be used for each of the five dof’s v', i = 1,23, and y°
o= 12 We emphasize that the same perturbation submatrix is used for all five dof’s.
The present perturbation matrix is a direct extension of the one given in Vu-Quoc &
Mora [1987], which uses only the hourglass mode z;. The present perturbation matrix
possesses the same advantages as the old one: (i) it is constructed directly in global coor-
dinates, thus avoiding unnecessary local-global transformations, and (ii} the 9-node shell
element can pass several higher-order (static) patch tests. But most importantly, the
proposed perturbation is part of a methodology permitting a complete filtering of spuri-

ous modes in dynamic analyses.

We consider the type of diagonal perturbation where the stiffness sub-matrix

corresponding to each of the five dof’s are perturbed independently,

K™= K4 6K, 6K* = max |R(yl |canii @ etz ] 4 (3.25)

FI &3 {1,2,3}
o € {1,2}

but in exactly the same manner in the sense that the normalized perturbation matrices
K, K2, € R™? are chosen to be identical. Therefore, we only need to construct a

perturbation sub-matrix only once for all five dof’s. In (3.28), the perturbation factors

€4, and ¢,, are in general chosen in the order of 10~¢,

Remark 3.3. If the element dof’s are ordered with all displacement dof’s first, fol-
lowed by the rotation dof’s, as in {u/, .. ., uh{,,‘;} [ afer, o Xfﬁ}}? then the perturba-

tion matrix is in block diagonal form, i.e.,

OK® = max *1’;; (en)l Di.(lg [éd{e 5K;{57 ed{um(%{m 6dt'35K2|'a7 Erothrlah erotéKSot} . (329)
n{

,,,,,

i 1,\7’(”) is the {1,7) coeflicient of the under-integrated element stiffness matrix Ix °.



L. Vu-Quoc: Perturbation Method for Dynamic Analysis of Shells 26
0
Consider the following vectors
E,- = { b_,I} = @iy + ia;jwj eR?, for ¢ = 1,2,3, (3,3021)
j=1

where the coefficients a,; are to be computed such that
b;ez; = k; % 0, and S,A-wj =0, VY 7=1,..,m. (3.30b)
The coefficients of vectors {w, . . . , W, } are polynomials which are linear in the coordi-

nates of element nodal points for curved elements, and quadratic for flat elements.
Details of the set-up of vectors w; as summarized in the Appendix and the computation
of the coefficients a,; follows identically the procedure discussed in Vu-Quoc & Mora

[1987]. We consider here a perturbation matrix of the form

. by, by, by(b,, by, by|T
0Kl =0K2, = b 2 ailby oL — e R (3.31)
max [(611)° + (ba)® + ( 31)”]

.....

where, due to the normalizing factor, the coeflicients on the diagonal of §K/[, or K2,
have maximum value equal to one. It can be seen that when only b, is used the pertur-

bation matrix in (3.31) reduces exactly to the one employed in Vu-Quoc & Mora [1987].

Remark 3.4. The efficiency of the present perturbation matrix in (3.31) lies in its
direct construction in global coordinate system, i.e., a direct perturbation of the stiffness
matrix in global coordinates. This perturbation matrix is constructed, not at each
integration point, but only once for each element. In addition, the same perturbation
matrix 1s employed for all dof’s. Belytschko and co-workers [1984,1985] employed a
diagonal perturbation in local coordinate systems, which further required local-global

transformations of the perturbed stiffness. O

t Note that since z, = r -3z, and Egz, # 0, and 5,‘r = 0, it follows that S‘oz4 # 0. We need to use
only {zy, 24, 23} in {3.30),
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3.4. Patch tests. The proposed 9-node shell element, either with the old pertur-
bation stiffness based on only on the mode z;, or with the present perturbation stiffness
based on the modes {2, 2o, z3}, passes several patch tests that include higher-order ones,
such as bending and twisting of a square patch of elements. The patch tests employed
here are the same as those proposed in Huang & Hinton [1986] for their 9-node shell ele-
ment formulated using the so-called assumed-strain method. Under these tests, a patch
of elements is subjected to several states of stress: stretching, (in-plane and out-of-plane)
shearing, pure bending, and (Mindlin-Reissner and Kirchhofl-Love) twisting. The two
types of test containing displacement fields that are quadratic in the coordinates are the
bending test and the twisting test. The reader is referred to Taylor et al [1986] for dis-
cussions on higher-order patch tests. We will comment only on the twisting tests — all

other patch tests are passed exactly. I

Following Huang & Hinton [1986], a five-element patch shown in Figure 3.3a§ is
employed to discretize a square plate of side length L = 10, lying in the plane {E,, E,}.
All local triads are assumed to coincide with the global basis vectors, Le., T; = E;, for
i = 1,2,3. We consider the range of thickness varymng between h = 0.0001 and h = 1.
The material properties chosen are Young’s modulus £ = 2.1x% 10° and Poisson’s ratio
v = 0.3. In setting up the perturbation matrix, we use ky = ko= ky = 1 in (3.30b) and
€4 = €, = 107% in (3.28). For both types of twisting test, the transverse displacement

at three corners of the plate are restrained,
w¥(L,0) = «¥%0,0)= v%0, L) = 0. (3.32)
Twisting of a Reissner-Mindlin plate. In addition to the above boundary con-

ditions, the following rotation dof’s are restrained: XX, 0) = 0, and (0, X2) = 0 for
) g

XX e 0, L]. A distributed couple is applied along the two remaining free edges:

$ Up to seven significant digits are considered in all numerical results in the present paper.
§ The 9-node elements here are quadrilaterals with mid-side nodes exactly in the middle of each side, and with
interior nodes on the intersection of lines passing through mid-side nodes.
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M(L, X*) = M/LE,, and M(X', L) = —M/LE, (see Figure 3.3b).T The exact expression

for the transverse displacement u® using Reissner-Mindlin theory is given by

s_ 121+ ) M 0
w = BN e (3.33)

The present 9-node element passes perfectly this test for a large range of thickness (see

table 3.1). Clearly, the passing of this test is due to the orthogonality (3.30b) where the

vectors w; contain polynomials quadratic in the coordinates.

Twisting of a Kirchhoff-Love plate. A force PE, is applied at the free corner —
the other three corners are restrained according to (3.32), see Figure (3.3c). Similar to
(3.33), the exact expression of the transverse displacement u® using Kirchhoff-Love

theory,

3 6(1 + v) 12
= P XX 3.34
* ER® ( )

contains the quadratic term X'X*. From Table 3.1, one observes a very small error in
the results: The percentage error in the transverse deflection under the load with respect
to the exact value decreases, however, with the thickness. Even though the formulation
is not based on the Kirchhoff-Love theory and therefore numerical error is to be

expected, yet the element performs well under this test.

Table 3.1. Twisting of a square plate (I, = 10).
Percentage error of tip deflection versus thickness.

Thickness & | Reissner-Mindlin Kirchhoff-Love
Percentage error Percentage error
1.0 0. 14.31
0.1 0. 1.21
0.01 0. 0.92
0.001 0. 0.40
0.0001 -0.0001 0.01

t The nodal values of these distributed moments as given in Figure 3.3b for a one-element patch are the same

for the five-element patch in Figure 3.3a.
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In summary, the present 9-node shell element, with a reduced-integrated stiffness and its
consistent perturbation as given in (3.31), can reproduce every possible states of constant
strain, as well as the state of pure bending and constant twisting of the (Reissner-
Mindlin) plate, for a wide range of thickness. On the other hand, as the thickness
decreases, this element reproduces results under twisting that approach those predicted

by the Kirchhoff-Love theory for thin plates.

4. Dynamic analysis using under-integrated shell elements

While the filtering of spurious modes via a judicious perturbation of the stiffness
matrix as proposed in the previous section provides good results in static analyses, 1t is
msufficient to avoid spurious modes in dynamic analyses using under-integrated shell ele-
ments. The reason for this difficulty is immediate because spurious modes, having
significant (generalized) masses, are associated with artificially low energy that is intro-
duced in the perturbation procedure. Hence by virtue of the Rayleigh quotient

corresponding to a (global) spurious mode &,

T K" g 2T 6K z
2 Mz - Mz’ (4'1)

where K* = K + 6K is the perturbed under-integrated stiffness (recall that K z = 0),
and M the (positive definite) mass matrix, one can clearly see that spurious modes can
appear as very low-frequency modes, and can effectively pollute the computed dynamic
response. For a fixed mesh topology of a given structure, the eigen-frequencies of spuri-
ous modes increase as the element size decreases. This is because the pattern of spurious
modes is repeated in each element of the mesh, and as the number of elements increases,
so 1s the number of repeated patterns of element spurious modes. Exactly how spurious
eigen-frequencies change with element size depends, however, on how the element
stiffness was perturbed. Examples of spurious dynamics in shell structures will be given

later in the examples section.
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We propose in this section a projection method for the mass matrix, which
effectively constitutes the second stage of the proposed perturbation approach for
dynamic analysis using under-integrated shell elements — the first stage being the per-
turbation of the under-integrated stiffness matrix. Emphasis will be focused on the more
difficult case of the 9-node shell elements, with some remarks on the much easier case of
the 4-node shell elements. Related issues concerning transient dynamic analysis with the

present perturbation method will also be discussed.

4.1. Equivalence with modal step-by-step integration. We recall here a
well-known result, which constitutes a starting point for our proposed approach. Con-

sider the semi-discrete equations of motion (for a linear problem)
Md + Cd + Kd = F(1), (4.2)

where M € R" " is the positive definite (consistent or lumped) mass matrix of the struc-
ture, C € R™" the damping matrix, K € R*** the stiffness matrix, d € R" the vector
contalning all system dof’s, and F € R" the forcing-function vector. Then assuming

that the damping matrix is diagonalizable via modal decomposition — for instance,

n ~1 R

using the extended Caughey series C = M Y] ¢;(M™'K)' as discussed in Wilson & Pen-
i=0

zien [1972] — then the system (4.2) can be decomposed into an equivalent systermn of un-

coupled scalar differential equations:

[K “W?M}¢t = Oy ¢1TM¢] = 6{;' ) d(t) = Zwt(1)¢l ’ (433')
1=

Ui+ e + wliy = ¢TF(t), for 1= 1,..n (4.3b)

where ¢, = ¢1C¢, , wf= ¢ K, . (4.3¢)

In addition, the time discretization of the coupled system (4.2) and of the un-coupled
system (4.3) using the Newmark (implicit) method are entirely equivalent, leading to a
commutative diagram as presented in Hughes [1983]. We refer to this reference for

detailed discussions on the above equivalence.
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Even though it is sufficient to require that the (fully-integrated) stiffness K in (4.2)
and in (4.3) be positive semi-definite, to simplify the discussions that follow, we assume
in addition that the stiffness K is positive definite, i.e., the structure does not admit
rigid-body motions. Accordingly, the frequencies w; in (4.3) are strictly positive. Then,
it can be clearly seen that problems will arise when one attempts to replace the fully-
integrated K in (4.2) with the under-integrated K, which is positive seml-definite, to
remove shear/membrane locking: The response, depending on initial conditions and the
loading, could be polluted by zero-energy modes, which are not rigid-body modes, but
spurious modes. Moreover, unlike in static problems, this undesirable effect does not
disappear when we employ the perturbed stiffness K* in the place of K. The reason is
that, as stated earlier, spurious modes can appear arbitrarily at low {requency depending
on the finite-element mesh. Such problem would be solved if we could move these spuri-
ous modes to the high frequency end of the eigen-spectrum — or better yet, to com-
pletely filter spurious dynamics from the response — by considering an appropriate per-
turbation of system (4.2). Of course, this operation should not affect the accuracy of the

genuine mode shapes.

4.2. Projection method for filtering of spurious dynamics. Consider per-
turbed system (4.2), with (M*, C*, K"), with zero generalized masses for the spurious
modes. Eigen-frequencies of the spurious modes are thus pushed to infinity, so to speak.
Let the eigenvectors ¢, be reordered such that the first m modes, {¢,, ... .}, are
significant to participate in the dynamic response, while the remaining (n —m) modes,
{éms1, ... 4.}, are spurious zero-energy modes.t That is, K ¢; = 0, and M*¢; = 0, for

i = m+1,..,n. Equations (4.3b) then becomes

Ui+ b + iy, = $TF(1), for i= 1,..m , (4.4a)
c,rt,ﬁi + WY, = ¢,~TF(1), for 1= m+1,..n, (4.4b)

t This ordering is not in increasing magnitude of the eigen-frequencies.
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[

where now ¢; = ¢TC*¢;, and wi= ¢TK 9, Note, however, that while {w,, . . . , Wy, } are
eigen-frequencies of the eigenvalue problem [K* —w?M*|¢; = 0, the remaining values
wi= ¢TK* ¢, = ¢ToK$, = O ¢ max |K iyl ), for i = m+1,.. .,n, (44c)
J=1,., n

are not (see (3.28)). For a rapid decay of spurious dynamics, from initial conditions
$;(0), for ¢ = m+1, ..., n, it suffices to choose the corresponding damping coefficients ¢;
such that the ratios w?/c;, are large enough. Note that if we set ¢; = 0, for
i= m+1,..n, then ¥, = ¢JF(t)/w?, and thus the amplitude of ¥; depends on the parti-
cipation factor of F(t) with respect to the spurious modes (which is in general small) and
on the perturbation factor ¢ through «}? by (4.4¢). To make the integration of system
(4.2) stable with any forcing vector F, it is therefore advisable to use non-zero damping

coefficients for spurious modes chosen as mentioned.

Remark 4.1. In linear problems where the forcing-function vector F(t) has low-
frequency content with small factors ¢'F in the high-frequency range, it is more efficient
to Integrate only a few low-frequency modal equations, instead of integrating the whole
system (4.2). In this case, one can select for use the appropriate modes, with non-zero
frequencies, of the un-perturbed problem [ﬁ —w*M]¢ = 0. We note, however, that the
perturbed system (M" K") in general yields better eigenvalues and convergence rates
with respect to discretization than the un-perturbed system, as will be shown in the

examples section. O

4.3. Construction of projected mass matrix M* and damping matrix C*.
The method of constructing the matrices M* and C* discussed here clearly applies to the
case where we have to use (implicit) step-by-step integration to solve the semi-discrete
equations of motion, which are either linear as in (4.2), or having non-linear internal

force 1n the more general situation.

4.3.1. Global projection using eigenvectors. The projected mass M* will be a

positive semi-definite matrix whose null space should contain all spurious modes of the
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system. Let {¢,, ..., ,é,}, with k¥ < m, be the chosen (non-spurious) eigenvectors as dis-
cussed In Remark 4.1. Then, the required projected mass M* can be evaluated as follows

M = f}(Mgb,)(M‘p,-)T € R (4.5)

i=1
Next, once the values of the damping coefficients ¢, for i = 1,..,n, are chosen, a
diagonalizable damping matrix C* can be easily constructed by a direct generalization of

(15),

ct = i‘c,»(Mgb,»)(M‘;s,»)T € R (4.6)

[
as proposed in Wilson & Penzien [1972]. Note that in (4.5) and (4.6) one could use the
eigenvectors ¢; of the un-perturbed eigenvalue problem [ﬁ —w'M]¢ = 0. Also, if needed,
the global rigid body modes could be included in the construction of M* in (4.5). In
practice, the eigenvectors associated with the zero eigenvalue of the problem
[ﬁ —wiM]¢; = 0 often appear as linear combinations of rigid body modes and spurious
modes. A separation of rigid body modes from spurious modes is possible if one consider
the eigenvalue problem [K" —w®™M|¢ = 0; nevertheless, visual selection of spurious modes
Is not a convenient task. In addition, a recognized disadvantage of this projection

method is the fullness of the matrices in (4.5) and (4.6).

One way to retain the bandedness of the mass matrix is to perform the projection
similar to (4.5) at the element level. But this approach requires solving an eigenvalue
problem [K ¢ —w?M|¢{ = 0 for each element before the computation of the projected
element mass M** following (4.5). In the next sub-section, the idea of doing the projec-
tion at the element level will be refined to a practical approach that resolves the men-
tioned shortcomings.

4.3.2. Local projection using spurious modes at element level. By making

use of the properties of spurious modes of shell elements as studied in Section 3, we pro-

pose — for the filtering of spurious dynamics — an eflicient method to construct a
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projected mass matrix M** and an appropriate damping matrix C°*, and at the element
level. The computational advantage here is evident: Unlike in the previous sub-section,
one does not need to solve an eigenvalue problem prior to the construction of M* and
C*. For the damping matrix, one could simply choose C°* = ¢§K*, where the constant
¢ has to be chosen with care along the line of the discussions in Section 4.2 for
effectiveness in the results. It remains to focus our attention on the projection of the

mass matrix,

The proposed construction of the projected element mass matrix M** € R*>"°
hinges on finding a projection matrix Q € R* **° such that
Me* — QT Me Q, —

P T"— ; Jg T—Ia . T—' — T'.— : ¢ 4
AR P e Pu)Fhe Fu)Plhe Bu)Pi Jaerrx (17a)
Qe b -

a8 € {1,2}

where
P 3 ] 3XN°® po o oy 3XNE ~
Pdia = P(’iia Qc'is'a € R » rot Prot rot € R ! ’ (4lb)

g € € o e . .
and QJ, € RY>¥ and Q2, € RV %M are sub-matrices of Q. Based on the results in
Section 3, since spurious modes have matrix representation with components not simul-

taneously orthogonal to z;, for j = 1,... 4, we consider enforcing the following conditions
Qinr=r, and Ql,z, = Q%z, = 0, (4.8a)

for the 4-node shell element, and
Ql,r=r, and Qlnz; = Qz; = 0, j€{1234}, (4.8b)

for the 9-node shell element. Thus, spurious modes whose components are linear combi-
nations of the vectors z; will have zero generalized masses, and furthermore, the total

mass of an element will be preserved in rigid body modes:

Mz =0, f"™Fr =M . (4.9)
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Remark 4.2. In (4.7a), suppose M*® is fully integrated, and therefore is a positive
definite matrix. The projected mass matrix M is on the other hand a positive semi-

definite matrix. O

For the 9-node element, it is impossible, however, to enforce totally conditions
(4.8b) for zy = r —3z, is a linear combination of r and z). One of the two conditions,
Qliezy = 0 or Qluz, = 0, will have to be relaxed. In fact, as will be seen shortly, the
relaxation of conditions (4.8b) is possible in the sense that it is not necessary to force the
generalized masses of all spurious modes to zero. It suffices to project certain mode in a
way — to be precisely explained below — that it cannot possibly appear as an eigenvec-
tor of the perturbed problem [K* —wiM |4, = 0. Also, it should be noted that the gen-
eralized mass of a spurious mode whose matrix representation depends on element dis-
tortion is not exactly zero, but reduced, since through the projection we have eliminated

the contribution to the generalized mass coming from the vectors z;.

Remark 4.3. If the element dof’s are ordered as stated in Remark 3.3, then the

projection matrix Q will have a block diagonal form

Q = Dl.(lg [ Q(}iu Q’gs‘u Qgiﬂr 3ot7 Qrzot ] S mn’)(n" ) (410)

similar to the perturbation matrix §K¢ in (3.29), but the projection of the mass matrix
as proposed in (4.7) does not parallel, in terms of matrix operations, the diagonal pertur-
bation of the stiffiness matrix as given in (3.28). O

As a consequence of the analysis in Section 3.2.3. it would be computationally very
efficient if we could construct only one projection sub-matrix of Q, and use it for all five

dof’s, I.e.,
Qi = Q% = Q, € RV XN (4.11)

Construction of projection matrix Q4 - For the 4-node shell element (not
necessarily a flat one), only the matrix representation z; as defined in (2.7), needs be con-

sidered. Whereas for the 9-node shell element, we have to account for all matrix
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representations of spurious mode {z,, zo, zs, z,}. Consider the following expression for

er
al
. I e . ~ £
Q = € RY>N°  with q = q ~ ZﬂubJ , (41‘2&)
) J== 1
AT
ay

where the vectors qy are the standard unit basis vectors in RV,
Q= {65} =1{0..1,.03T e R ¢ (4.12b)

x the number of spurious modes accounted for in the projection, and {b, , ..., b,} a set
of independent vectors in RY" to be determined shortly. The coefficients 3;; are to be
found so that the conditions in (4.8) hold.

Even though, in principle, the independent set of vectors {b;} appearing in (4.12)
could be chosen arbitrarily, it is numerically more efficient to choose by to be the same as

the vectors appearing in conditions (4.8). Thus, for b; = r and b, = z,, we have

zl E RN‘ ? (413)

- 2”
q = qy —
Zy° 2,

which for the 4-node shell element (NV* = 4) clearly satisfies the conditions in (4.8a).1 For
a 9-node shell element, the projection (4.13) is clearly insufficient, and a decision is to be
made regarding the choice of the set {b;} as one of the following two sets of independent
vectors in R®: {r, z;, 25, 23} and {r, 2, 25, z,}. The first set contains orthogonal vectors,
whereas the second set is only partially orthogonal — see Remark 3.2, As noted earlier,
zy and z, are mutually exclusive by conditions (4.8b), ie., they cannot appear together
(with r) in the same set. For the discussion that follows, it is good to keep in mind the

case of a square plate with free boundary conditions, and the results of Section 3.1.§

t Recall that &y stands for the Kronecker delta.

t Recall that the vector r is orthogonal to the mode z, for both N? = 4 and N? = 9. Also zy; is the Ith
coeflicient of the vector z,.

§ Numerical results of eigenvalue analysis for a square plate with free boundary conditions will be given later in
the examples section.
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First, we look at the relaxation of conditions (4.8b): specifically, whether to retain
Qirzy = 00r Quz,= 0. If we opt to retain the condition Q4 2z, = 0 and work with the

first set of orthogonal vectors {r, z,, z,, z3}, then

z; € R ¢ (4.14)

for I=1,..9. Since Qur= r and z; = 1 —3z;, 1t follows that Quz,= r = 0. As a
result, the generalized mass corresponding to the spurious rotation mode z, 1S not zero.
Further, having non-zero generalized stiffness by perturbation of the under-integrated
stiffness K as done in (3.28), this rotation mode may appear in the low-frequency eigen-
vectors (more so for a moderately thick shell than for a thin one; an example will be
given where these spurious rotation modes appear at the very beginning of the eigen-
spectrum). Thus, apart from the modes z; and z;, while we can filter the mode z; with

the above choice, we fail at filtering the mode z,.

Remark 4.4. Using either the projection in (4.13) or (4.14) for the mass matrix of
a square plate (see Example 5.1), the displacement "bat” mode as depicted in Figure 5.2,
in addition to the spurious rotation modes, cannot be filtered out. The persistence of
the "bat"” mode is due to its matrix representations, given in (5.1), which have non-zero

components along the vectors {r, Zy, Zo, Zs, z4}. .

Next, we will show that retaining the condition Q424 = 0 and working with the
second set of vectors {r, zy, z;, z,} achieves a complete filtering of both modes z, and z,.

Instead of (4.14), we now have

<31 241
72 9 - 9 - 72

-

z, € RY, (4.15)

for T=1,.,9. We only need to examine the case of the spurious displacement mode z,,

since the filtering of mode z, with the current choice is evident because its generalized

+ Recall that z yis the Ith coeflicient of vector z,.
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mass is nullified by the projection. Let z, € R™ denote a vector with zero coeflicients
except for the displacement component ' such that {u{)} = z, € R¥"; a similar
definition applies to the displacement rigid body mode r € IR®. We can see how the
mode z; is filtered out by looking at the solution for eigenvalue problem
[K"* —w,-QMe*]qS = 0. Since Quz, = r/3, it follows that Me*fz, =M7r. Thus, if z, is a
starting vector for the inverse iteration, it has to converge to a rigid (displacement)
mode.} That is, the spurious displacement mode z, cannot appear as an eigenvector.
Expression (4.15) therefore constitutes the desired projection matrix Qg as given in
(4.12a).

Remark 4.5. Consider the subspace orthogonal to the one spanned by {r, z,} for
N°® = 4, or to the one spanned by {r, z,, 25, z,} for N° = 9. The direct sum of this sub-
space and the rigid body displacement r forms an invariant subspace with respect to the

projection matrix Q. o

5. Numerical examples

In this section, several numerical examples are given to assess the performance of
the proposed filtering scheme in dynamic analysis using the present 9-node shell element.
To this end, it suffices to compare the eigen-spectrum of the unperturbed system
[ﬁ —w/M|¢; = 0, where one encounters spurious modes, to the eigen-spectrum of the
perturbed system {K* —w!M$; = 05 where a complete filtering of spurious modes is
achieved. Unlike in static analysis, there is no proposed "standard” course of obstacles
for dynamic analysis of shells. The reason stems in our interest in the low end of the
eigen-spectrum of the free vibration problem where the finite element approximation is
most accurate. If a formulation performs well in static analysis, it will do well in

dynamic analysis at the low frequency range. The difference between various element

1 The same is not true with z, because while B} r = 0, we have B2 r % 0.
§ The projection of the mass rmatrix is that given in (4.15).
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formulations will be more distinctly revealed in the high frequency range.

The effectiveness of our proposed filtering scheme for analysis of general shell struc-
tures is illustrated through examples that are particularly chosen where the difficulties
encountered with the existence of spurious dynamics are most severe. Of course, these
examples must have either analytical or experimental solutions, serving as a norm upon
which is measured the accuracy in the numerical results. We will consider the free
vibration of a moderately thick square plate and a thin square plate, both with free
boundary conditions, a clamped thick circular plate, and a thin cylindrical shell with free
ends as well as with rigid diaphragms.

The 9-node Lagrangian shell element with the proposed filtering scheme has been
implemented in the research version of FEAP, a Finite Element Analysis Program,
developed by R.L. Taylor, and run under the Berkeley Unix 4.3 BSD operating system.
The reader is referred to Chapter 24 of Zienkiewicz [1977] for a description of a
simplified version of this program. In all examples, element stiffness matrices are under-
integrated in the lamina, with three integration points in the thickness direction, and
perturbed in the consistent manner discussed in Section 3.3. Throughout all calculation,
the perturbation constants in (3.28) are set to €4s = € = 107° and and the constant
in (3.30b) to ky = ky= ky= 1.

In addition to results obtained with the projection of the fully-integrated consistent
mass matrix (represented by solid lines in the convergence plots of eigen-frequencies), we
also present results obtained with the projection of the reduced-integrated consistent
mass and the lumped mass matrices (dotted lines in convergence plots of eigen-
frequencies). To be established through these numerical results is the superior perfor-
mance of the use of the projected fully-integrated consistent mass matrix — which will
be often referred to shortly as the projected mass — over the other two types of pro-

jected mass.
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5.1. Square plate with free boundary conditions. Since the square plate is
similar in both geometry and boundary conditions to the bi-unit square element studied
in Section 3, we must be able to observe all possible spurious modes in the eigenvalue
problem [K —~w/M¢; = 0. Further, the availability of both analytical and experimental
results for many vibrational modes makes it easy to verify the computed results as well
as to compare the performance of different types of projected mass matrix. The plate
has unit side length (L = 1), and lies in the first quadrant of the plane {E;, E,}. The
local triads are chosen such that T;=E; for I= 1,23, Two values of the plate thick-
ness are considered: & = 0.1 and & = 0.001. The material properties chosen are Young’s

modulus £ = 1000, Poisson’s ratio v = 0.3, and mass density p = 0.01.

Belytschko, Tsay & Liu [1982] used a square plate to establish the order of magni-
tude of a parameter r characterizing the norm of their perturbation matrix. As this
parameter r is increased (r > 0.03), the stiffness in the elements increases, and conse-
quently so do the eigen-frequencies. But, by the orthogonality property of the perturba-
tion stiffness matrix 6K, the eigen-frequencies of the genuine lower modes are only per-
turbed by a small amount, whereas the eigen-frequencies of the spurious modes increase
with r. These authors therefore propose to increase the value of r to remove spurious
modes in the low frequency range. But this method requires some trial-and-error runs
for general shell structures until spuriéus modes are pushed out of the bandwidth of the
interested low frequencies. In any case, no complete elimination of spurious dynamics
can be achieved in this way, and moreover there is a limit to increasing the magnitude of

r, lest the stiffness would change significantly.

5.1.1. Moderately thick plate (A = 0.1). Both displacement and rotation spuri-
ous modes appear at the very beginning of the eigen-spectrum of the un-perturbed prob-
lem [K —wM]$, = 0, where the projection of the mass matrix is not used. Analysis are
made using meshes with 1, 4, and 16 elements. The typical results, using for example

the uniform 4-element mesh, are shown in Table 5.1. The reference values for the first
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Table 5.1. Moderately thick square plate. Eigen-frequencies
using unprojected mass matriz (uniform 4-element mesh).

Mode | Freq. {rad/s) | Ratio Description

1 2.6783 — Spurious transverse (hourglass) mode {u’} = g, (Figure 5.1a).

2 26783 — Spurious in-plane (hourglass) mode {ul{a}} = z; (Figure 5.1b)

3 2.6783 — Spurious in-plane (hourglass) mode {ul{a}} = g,

4 2.7289 — Spurious in-plane mode (disp. "bat” mode) (Figure 5.2).

5 92.440 — Spurious rotation mode {x{} = z,

6 92.440 — Spurious rotation mode { Y7} = z,

7 94.346 e Spurious rotation mode (rot. "bat” mode).
12513 0971 | First elastic bending mode (Figure 5 3a)
188.83 1.007 | Second elastic bending mode (Figure 5 4a).

10 238.00 1.025 | Third elastic bending mode (Figure 5 5a)

three elastic bending modes are based on the theory of thin plate (Leissa [1969, p.104]):
wy = 128.93rad /s, wy = 187.52rad/s, and w, = 232 25rad/s; the ratios of computed fre-
quencies over their reference values are shown in Table 5.1. We note that the displace-
ment and rotation modes with matrix representation {22, 23} of the one-element (see
(3.3)) mesh become the "bat" modes (named after its shape as shown in Figure 5.2) in

the refined meshes with matrix representations

= -l L 15 s
ZS"{17070717 4)0) 4 214} ERY

51
26={1,1,00 -2 -10 -1 23 Te R (5.1)

which as noted in Remark 4.4 are not orthogonal to {r, 2y, 2., z;, z,}. As the mesh is
refined, a shift of the spurious eigen-modes to the higher frequencies can be observed
from Table 5.2 where the spurious eigen-frequencies roughly double when the element
size 1s halved.t Under mesh distortion, spurious modes such as the "bat" modes, which
depends on the Jacobian matrix, may appear at a higher frequency, whereas the invari-

ant spurious modes z, and z, remain practically unchanged. Also note that, for the same

t The typical upward shift of spurious eigen-frequencies is demonstrated using for example only two spurious
modes: the displacement hourglass mode and the displacement "bat” mode,
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Table 5.2 Moderately thick plate. Shift of spurious frequencies
with mesh refinement.

No. of Hourglass mode Disp. "bat"” mode
Elements

Frequency (rad/s) | Ratio || Frequency (rad/s) | Ratio

i 1.3538 1.00 1.3834 1.00
2.6783 1.98 2.7289 1.97
16 5.3419 3.95 5.3853 3.89

mesh, decreasing the plate thickness will push the spurious rotation modes to the higher
frequency range in the spectrum; the spurious displacement modes on the other hand
remain at low frequency (see next example). All of the above spurious modes are com-
pletely filtered out of the spectrum when using the projected mass.} Further, exactly the
same results as above are obtained for the square plate arbitrarily rotated in space.
With this example, we have therefore exhibited all properties of the spurious eigen-
modes, and shown that the proposed filtering scheme works for arbitrarily oriented ele-
ments. [t remains to look at its effects on the accuracy of the computed frequencies of

the genuine mode shapes.

5.1.2. Thin plate (h = 0.001). An advantage here is that we have analytical solu-
tion, complemented with experimental measures, of the vibrational frequencies and mode
shapes. Parallel to Table 5.1 is Table 5.3 where as noted the rotation spurious modes

have been shifted well beyond the 24th mode due to thickness decrease.

Figures 5.3b to 5.7b show the convergence results, with respect to mesh size, for the
first six eigen-frequencies§ whose reference values are obtained from Leissa (1969,
pp04-111]:  w; = 1.2893rad/s,  wy = 1.8752rad/s,  wy= 2.3225rad /s, Wy = g =
3.3643rad/s, and ws = 6.0946rad/s. In these convergence plots, results obtained with four

different types of mass matrix are displayed: the unprojected consistent massT and three

t 30 eigenvectors, including the six first rigid body modes, were checked.
§ Note that the fourth and the fifth modes are just symmetric counterpart of each other, and have exactly the
same eigen-frequency.

t Full integration is implied when we refer to a consistent mass, When uniformly reduced integration is used to
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Table 5.3. Thin square plate. Eigen-frequencies
using unprojected mass matriz (uniform §-element mesh).

Mode | Freq. (rad/s) | Ratio Description

1 1.3030 1011 | First elastic bending mode (Figure 5 3a).

2 1.9540 1.042 | Second elastic bending mode (Figure 5 4a).

3 2.4730 1.065 | Third elastic bending mode (Figure 5 5a).

4 2.6685 — Spurious transverse (hourglass) mode {u{’} = g, (Figure 5.1a).
5 2 6685 — Spurious in-plane (hourglass) mode {ul(“}} = g, (Figure 5.1b).
6 2.6685 — Spurious im-plane (hourglass) mode {ul{“}} =z

7 27235 e Spurious in-plane mode (disp. "bat" mode) (Figure 5.2).

8 3.4030 1011 | Fourth elastic bending mode (Figure 5.6a).

9 3.4030 1.011 | Fifth elastic bending mode (Figure 5 6a).
10 6.3577 1.043 | Sixth elastic bending mode (Figure 5 7a)

types of projected masses (using fully-integrated consistent mass matrix, under-
integrated consistent mass matrix, and lumped mass matrix). Again, spurious modes are

completely filtered from the perturbed eigen-system [K* ~wiM' g, = 0.F

Consistently in all of the first six modes, the projected mass yields better computed
values of the eigen-frequencies than with other types of mass matrix. Starting already
from the 4-element mesh, these computed frequencies — bracketed by those of the
unprojected consistent mass (from above) and by those of the projected lumped mass
(from below) — are on the low side of the reference values.§ All results show convergence

of eigen-frequencies with respect to mesh refinement.

Figure 5.8 reports the percentage error of the first 20 eigenvalues obtained using
the projected mass matrix with the uniform 64-element mesh and the uniform 256-
element mesh. The reference frequencies for these modes, given in Leissa [1969, pp.104-

111] and gathered in Table 5.4, are obtained by series solution, except for modes 7, 8 17,

evaluate the consistent mass, the result is always explicitly referred to as under-integrated consistent mass,

$ The first 40 modes of the 4-element mesh, and the first 20 modes of the 64-element and of 256-element
meshes were examined.

§ In the fourth and fifth modes, the computed frequency from both the projected mass and the unprojected
consistent mass are about 1.5% lower than the reference value for the 64-element mesh. Op the other hand, the
computed frequency with the one-element mesh is surprisingly good.
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18, and 19 where experimental values are used. This explains the larger error in fre-
quencies when we compared computed values with experimental measures. For the
remaining modes, the relative error for the 256-element mesh falls within 29 — on the
low side — of the theoretical values. Note that unlike in the reference solution of Table
5.4, the computed modes 7 and 8 appear before mode 6, whose computed frequency is

slightly higher.

Table 5.4. Thin free square plate. Reference frequencies
for the first 20 eigenvectors.

Mode | Frequency (rad/s) || Mode | Frequency (rad/s)
1 1.2893 11 10.093
2 1.8752 12 10.093
3 2.3225 13 11.207
4 3.3643 14 11.712
5 3.3643 15 12.581
6%* 6.0946 16 12.581
7* 4+ 6.2555 17 ¢+ 14.956
8* t 6.2555 18 ¢ 16.123
9 6.6511 19 ¢+ 16.620
10 7.4251 20 20.379

* The order of these modes changes in computed results.
t Experimental values are used for these modes.

It is seen in the above two examples that the proposed perturbation method
achieves in a very efficient manner a complete filtering of undesirable spurious modes
polluting the dynamic response. Further, the use of the projected (fully-integrated con-
sistent) mass matrix yields reliable and accurate results, even for coarse meshes. The
superiority of this type of mass matrix over the others is consistently established for all
the eigenmodes considered above. The projected under-integrated consistent mass and
lumped mass, in addition to being less accurate, yield unpredictable results for coarse
meshes; they are not recommended for use in general analysis. In the following exam-
ples, only results obtained with the (fully-integrated) consistent mass matrix are

presented.
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5.2. Simply-supported thick circular plate. In many cases, boundary condi-
tions alone are not sufficient to prevent the appearance of spurious modes; the reliability
and effectiveness of the proposed perturbation method is again demonstrated in this
example. Consider a circular plate, with radius R = 5 and thickness 4 = 1, simply sup-
ported on its circumference. The material properties used are E = 1000 and v — 0.3.
Only a quarter of the plate is modeled. We consider only those modes that are sym-
metric with respect to the planes {E,, E;} and {E, E,}. Using the unprojected mass, a
spurious transverse displacement mode of the type z, appears in a 3-element mesh (Fig-
ure 5.9) as the ninth mode with frequency 290.72rad /s, in a 12-element mesh as the 16th
mode with frequency 378.26rad /s, and in a 48-element mesh as the 20th mode with fre-

quency 398.66rad /s. This spurious mode disappears when the projected mass is used.

The computed frequencies of the first three modes normalized with respect to the
value obtained with the 48-element mesh, are presented in Figure 5.10. These reference
numerical values are: w; = 34.112rad /s, w, = 131.21rad /s, and wy = 149.26rad/s. Fast
convergence 1s obtained with both the unprojected consistent mass and the projected
consistent mass, with results from the latter on the lower side as in the case of the

square plate above.

5.3. Thin cylindrical shell. We now apply the perturbation method to the
important case of cylindrical shells. Consider a cylinder with thickness & = 15, radius
R = 300 and length L = 1200. The material properties are £ = 3% 10° and v = 0.3.
Two types of end conditions are considered: (i) the free ends, and (ii) the rigid
diaphragms.

5.3.1. Cylinder with free ends. The unrestrained ends of the cylinder allows
appearance of spurious modes because the under-integrated stiffness matrix is here rank
deficient. This example therefore provides a test for the proposed perturbation scheme
in eliminating spurious modes. We study only eigenmodes with three planes of sym-

metry, which then require modeling over only 1/8th of the cylinder.t The eigenfunctions

t Note that by modeling only 1/8th of the cylinder, and by imposing symmetric boundary conditions in the
plane of symmetry, we already prevent some of the spurious modes to appear.
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of a cylinder are characterized by a doublet (m, n), where m designates the number of
half-waves along the longitudinal direction, and n the number of full-waves along the

circumferential direction.

Since no reference solution is available, we present in Table 5.5 only results
obtained using a 4-element mesh. The order of the frequencies reported corresponds to
the eigenvalue analysis using the unprojected consistent mass matrix. The ratio of these
frequencies with those of the projected consistent mass matrix indicates that in general

the projected mass yields lower computed frequencies.

Table 5.5. Thin cylinder with free ends. 4-element mesh.
Numerical results for the first twelve frequencies

Mode | Frequency (rad/s) | Frequency (rad/s) | Ratioof freq. | m | n
Unprojected Mass Projected Mass Unproj./Proj.

1 2.3745 2.3666 1.0033 0 2
2% 14.8454 — e — | —
3 14.9697 14.8183 1.0102 1 2
4 15.2580 14.7466 1.0347 0 4
5 17.3628 16.9320 1.0254 1 4
6 29.1246 29.5928 0.9842 3 4
7 39.8828 39.4061 1.0121 3 2
8 43.0092 42.9038 1.0025 1 0
9 45.5208 e — 5 0
i0 45.7791 44.6116 1.0262 5 4
11* 45.7942 — — — | —
12 46.8714 47 8572 0.9794 5 2

* These modes are spurious.

Modes 2 and 11, plotted in Figures 5.11a and 5.11b, are spurious modes obtained
when using the unprojected mass matrix. The ninth mode with nodal pattern
(m,n) = (50) does not appear in the analysis using the projected mass matrix. However,
a characteristic of the vibrational frequencies of a cylinder is to be noted: A finer mesh
will reveal more lower-frequency modes with higher values of wave numbers (m, n); the

mode {m, n) = (5,0) can be recovered using a finer mesh.
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5.3.2. Cylinder with rigid diaphragms. The ends of the cylinder are res-
trained by rigid diaphragms. These boundary conditions have received particular atten-
tion in the literature because they can be exactly satisfied by simple trigonometric funec-
tions leading to analytical results, and thereby allowing an assessment on the accuracy of

the proposed perturbation method.

In shell theory, for given values of m and n, the vibrational frequencies are solu-
tions of a third degree polynomial — we refer to Leissa [1973, pp.43-83]. Thus, a
cylinder with finite length may vibrate in any three different modes, corresponding to
three different frequencies, with the same number of longitudinal and circumferential
waves (m, n). The modes are classified as primarily flexural, extensional or torsional,
according to the type of strain energy stored in the motion. In general, the lowest fre-
quency is primarily flexural. Determining the fundamental frequency of a finite cylinder
Is not an easy task: Eigenfunctions obtained for larger values of m and n may have

lower frequencies than those obtained for smaller values of m and =. Therefore, as men-

tioned earlier, by refining the mesh — thus allowing the appearance of modes with
higher number of waves — one sees the emergence of yet more modes with lower fre-
quencies.

Only eigenmodes with a single longitudinal half-wave (m = 1) are considered in this
study. Modeling only an eighth of the cylinder and using three different sets of boun-
dary conditions allows one to obtain the different circumferential patterns. The eigen-
modes for the first five circumferential modes (n = 0,...,4) are shown in Figures 5.12a to
9.12¢, and the convergence of eigen-frequencies in Figures 5.13a and 5.13b. Results for
n = 0,1,2 are obtained using meshes with 1, 4, and 16 elements; those for n = 3,4 are
obtained using meshes with 4, 16, and 64 elements. The reference solution of this exam-
ple, based on a three-dimensional theory, is presented in Leissa 1973, p.55]. These refer-
ence f{requencies for the above mentioned five modes are: w, = 43.0021rad/s,

Wy = 15.5550rad /s, wy = 7.3383rad /s, w, = 7.8608rad /s and w, = 13.2604rad /s, where the
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e 6]

subscripts designate the wave number n, and not the customary order in magnitude of
the frequencies. The mode (m, n) = (1, 0) is a primarily extensional mode, whereas oth-
ers are primarily flexural modes. Similar to the results in the previous examples, the fre-
quencies obtained using the projected mass matrix are generally lower and more accurate

than those obtained without employing the proposed projection.

Closure

We have presented a perturbation method for dynamic analysis using under-
integrated shell elements, which achieves a complete filtering of all spurious modes from
the eigen-spectrum. The present approach not only retains all of the previously obtained
properties of the 9-node shell element, but extends its capability to dynamic analysis.
Based on a careful examination of the 9-node element in various geometrical shapes, we
propose highly efficient (i) perturbation method for the stiffness matrix and (i) projec-
tion method for the mass matrix, with both methods performed directly in the global
coordinate system. The efficiency of the method therefore lies in (a) the complete
absence of local-global coordinate transformation of element matrices, (b) that the per-
turbation factor for the stiffness does not involve terms requiring full integration over
the element, but in fact requires no additional computing effort, (¢) that the projection
operator for the mass matrix is known a-priori in algebraic form, (d) that these opera-
tions are carried out only once for each element, and not at each integration point. [t
can be seen from all the above examples that the proposed perturbation method offers a
reliable, effective, and accurate method for dynamic analysis of general shell structures

using under-integrated elements.
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Appendix

We summarized here details of the vectors w; € RM* employed in the construction
of the perturbation matrix as discussed in Section 3.3. For a 4-node (N® = 4) shell ele-
ment or for a curved 9-node (N° = 9) shell element, the perturbation is required to be
orthogonal to a displacement field that is linear in the coordinates; thus, in the expres-

sion for vectors b, in (3.30a), we have m = 3, and
1 X Xx?

{Wl, WQ, W3 ] = . . . e RN‘X3 . (Al)

1 2
Xy X

Note that w; = r. For a flat 9-node element, the perturbation is further required to be

orthogonal to a displacement field that is quadratic in the coordinates; thus, to the

9)

above vectors w; we append (NV®

r

(X3P (XP) (XPP (XIXD) (X2XP) (XPXD) |

[W4,...,Wg}= . . . . . . eRgxs. (A2)

(X (9) (X8 (XE) (337 (X3X7) |
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Figure captions
Figure 3.1. Parallelogrammic 9-node shell element. Gevometry.
~ Figure 3.2a. Cylindrical 9-node shell element. Geometry.
Figure 3.2b. Cylindrical 9-node shell element. Constant director ﬁel(i A; =E,.
Figure 3.2c. C’ylz’ndrzfcal 9-node shell element. Radial director field.
Figure 3.3a. Patch test for 9-node shell element. A 5-element patéh.

Figure 3.3b. Patch test for 9-node shell element. Twisting of a Reisner-Mindlin
plate. Boundary conditions, and nodal values of distributed moment on a one-element
patch. '

Figure 3.3c. Patch test for 9-node shell element. Twisting of a Kirchhoff-Love
plate. Boundary conditions, and nodal values of distributed moment on a one-element
patch.

Figure 5.1a. Free square plate. 4-element mesh. Spurious transverse displace-
ment (hourglass) mode.

Figure 5.1b. Free square pldte. 4-element mesh. Spurious in-plane displacement
(hourglass) mode.

Figure 5.2. Free square plate. The "bat” mode: in-plane spurious mode. (a) in 4-
element mesh. (b) in 16-element mesh.

Figure 5.3a. F'ree square plate. First eigen-mode (for both values of thickness).

Figure 5.3b. Thin free square plate. First eigen-frequency. Convergence plot.
Solid line: Projected mass. C: Unprojected consistent mass. R: Projected under-
integrated consistent mass. L: Projected lumped mass.

Figure 5.4a. Free square plate. Second eigen-mode (for both values of thickness).

Figure 5.4b. Thin free square plate. Second eigen-frequency. Convergence plot.
Solid line: Projected mass. C: Unprojected consistent mass. R: Projected under-
integrated consistent mass. L: Projected lumped mass. :

Figure 5.5a. Free square plate. Third eigen-mode (for both values of thickness).

Figure 5.5b. Thin free square plate. Third eigen-frequency. Convergence plot.
Solid line: Projected mass. C: Unprojected consistent mass. R: Projected under-
integrated consistent mass. L: Projected lumped mass.

Figure 5.6a. Free square plate. Fourth and fifth eigen-mode (for both values of
thickness). '
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Figure 5.6b. Thin free square plate. Fourth and fifth eigen-frequency. Conver-
gence plot. Solid line: Projected mass. C: Unprojected consistent mass. R: Projected
under-integrated consistent mass. L: Projected lumped mass.

Figure 5.7a. Free square plate. Sixth eigen-mode (for both values of thickness).

Figure 5.7b. Thin free square plate. Sixth eigen-frequency. Cbnvergence plot.
Solid line: Projected mass. C: Unprojected consistent mass. R: Projected under-
integrated consistent mass. L: Projected lumped mass.

Figure 5.8. Thin free square plate. Relative error of the first 20 eigen-frequencies
using 64-element (dotted line) and 256-element (solid line) meshes.

Figure 5.9. Simply-supported thick circular plate. Ninth mode: Spurious
transverse displacement mode of type z,.

Figure 5.10. Simply-supported thick circular plate. Conv‘ergence of the first three
eigen-frequencies. Solid line: Projected mass. Dotted line: Unprojected mass.

Figure 5.11a. Cylindrical shell with free ends. Mode 2: First spurious mode.
Figure 5.11b. Cylindrical shell with free ends. Mode 11: Second spurious mode.
Figure 5.12a. Cylindrical shell with rigid diaphragms. Mode k(m, n) = (1,0).
Figure 5.12b. Cylindrical $/zell with rigid diaphragms. Mode (m, n) = (1,1).
Figure 5.12¢c. Cylindrical shell with rigid diaphragms. Mode (m, n)= (1,2).
Figure 5.12d. Cylindrical shell with rigid diaphragms. Mode (m, n) = (1,3).
Figure 5.12e. Cylindrical shell with rigid diaphragms. Mode (m, n)= (1,4).
Figure 5.13a. Cylindrical shell with rigid diaphragms. Convergence of frequencies

for modes (m, n) = (1,0), (1,1), (1,2). Solid line: Projected mass. Dotted line: Unprojected
mass.

Figure 5.13b. Cylindrical shell with rigid diaphragms. Convergence of frequencies
for modes (m, n)= (1,3), (1,4). Solid line: Projected mass. Dotted line: Unprojected

mass.
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Figure 3.2a. Cylindrical 9-node shell element. Geometry.
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Figure 3.3a. Patch test for 9-node shell element. A 5-element patch.
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Figure 3.3b. Patch test for 9-node shell element. Twisting of a Reisner-Mindlin
plate. Boundary conditions, and nodal values of distributed moment on a one-element
patch. :

4 7 3
ud= 0 ? . @"LP
8 9 6
® @
E,
- @& @
1 E, 5 2
b R—,
u =0 W= 0

Figure 3.3c. Patch test for 9-node shell element. Twisting of a Kirchhoff-Love
plate. Boundary conditions, and nodal values of distributed moment on a one-element
patch.



Figure 5.1a. Free square plate. 4-element mesh. Spurious transverse displace-
ment (hourglass) mode. '

Figure 5.1b. Free square plate. 4-element mesh. Spurious in-plane displacement
(hourglass) mode. :



(a) 4-element mesh with lines connecting mid-side nodes to interior nodes drawn.

(b) 16-element mesh

Figure 5.2. Free square plate. The "bat” mode: in-plane spurious mode. (a) in 4-
element mesh. (b) in 16-element mesh.



Figure 5.3a. Free square plate. First eigen-mode (for both values of thickness).
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Figure 5.3b. Thin free square plate. First eigen-frequency. Convergence plot.
Solid line: Projected mass. C: Unprojected consistent mass. R: Projected under-
integrated consistent mass. L: Projected lumped mass.



Figure 5.4a. Free square plate. Second eigen-mode (for both values of thickness).
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Figure 5.4b. Thin free square plate. Second eigen-frequency. Convergence plot.

Solid line: Projected mass. C: Unprojected consistent mass. R:

integrated consistent mass. L: Projected lumped mass.
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Figure 5.5a. Free square plate. Third eigen-mode {for both values of thickness).
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Figure 5.5b. Thin free square plate. Third eigen-frequency. Convergence plot.

Solid line: Projected mass. C: Unprojected consistent mass. R:

integrated consistent mass. L: Projected lumped mass.
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Figure 5.6a. Free square plate. Fourth and fifth eigen-mode (for both values of

thickness). :
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Figure 5.6b. Thin free square plate. Fourth and fifth eigen-frequency. Conver-
gence plot. Solid line: Projected mass. C: Unprojected consistent mass. R: Projected

under-integrated consistent mass. L: Projected lumped mass.



Figure 5.7a. Free square plate. Sixth eigen-mode (for both values of thickness).
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Figure 5.7b. Thin free square plate. Sixth eigen-frequency. Convergence plot.

Solid line: Projected mass. C: Unprojected consistent mass. R:

integrated consistent mass. L: Projected limped mass.
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Figure 5.9. Simply-supported thick circular plate. Ninth mode: Spurious
transverse displacement mode of type z,. :
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Figure 5.10. Simply-supported thick circular plate. Convergence of the first three
eigen-frequencies. Solid line: Projected mass. Dotted line: Unprojected mass.
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Figure 5.11a. Cylindrical shell with free ends. Mode 2: First spurious mode.

Figure 5.11b. Cylindrical shell with free ends. Mode 11: Second spurious mode.






Figure 5.12d. Cylindrical shell with rigid diaphragms. Mode (m, n) = (1,3).



Figure 5.12e. Cylindrical shell with rigid diaphragms. Mode (m, n) = (1,4).
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Figure 5.13a. Cylindrical shell with rigid diaphragms. Convergence of frequencies
for modes (m, n) = (1,0), (1,1), {1,2). Solid line: Projected mass. Dotted line: Unprojected
mass.
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