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Abstract
The multivariate time series classification (MTSC) task aims to predict a class label for 
a given time series. Recently, modern deep learning-based approaches have achieved 
promising performance over traditional methods for MTSC tasks. The success of these 
approaches relies on access to the massive amount of labeled data (i.e., annotating or 
assigning tags to each sample that shows its corresponding category). However, obtain-
ing a massive amount of labeled data is usually very time-consuming and expensive 
in many real-world applications such as medicine, because it requires domain experts’ 
knowledge to annotate data. Insufficient labeled data prevents these models from learn-
ing discriminative features, resulting in poor margins that reduce generalization perfor-
mance. To address this challenge, we propose a novel approach: supervised contrastive 
learning for time series classification (SupCon-TSC). This approach improves the clas-
sification performance by learning the discriminative low-dimensional representations of 
multivariate time series, and its end-to-end structure allows for interpretable outcomes. It 
is based on supervised contrastive (SupCon) loss to learn the inherent structure of multi-
variate time series. First, two separate augmentation families, including strong and weak 
augmentation methods, are utilized to generate augmented data for the source and tar-
get networks, respectively. Second, we propose the instance-level, and cluster-level Sup-
Con learning approaches to capture contextual information to learn the discriminative 
and universal representation for multivariate time series datasets. In the instance-level 
SupCon learning approach, for each given anchor instance that comes from the source 
network, the low-variance output encodings from the target network are sampled as 
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positive and negative instances based on their labels. However, the cluster-level approach 
is performed between each instance and cluster centers among batches, as opposed to the 
instance-level approach. The cluster-level SupCon loss attempts to maximize the simi-
larities between each instance and cluster centers among batches. We tested this novel 
approach on two small cardiopulmonary exercise testing (CPET) datasets and the real-
world UEA Multivariate time series archive. The results of the SupCon-TSC model on 
CPET datasets indicate its capability to learn more discriminative features than existing 
approaches in situations where the size of the dataset is small. Moreover, the results on 
the UEA archive show that training a classifier on top of the universal representation fea-
tures learned by our proposed method outperforms the state-of-the-art approaches.

Keywords  Multivariate time series data · Contrastive learning · Classification · 
Interpretability

1  Introduction

The goal of time series classification (TSC) is to predict the class label for a given 
time series data, which is a sequence of real-value observations ordered by time. 
While most state-of-the-art methods proposed for TSC have focused on univariate 
TSC, where each case consists of a single series (i.e., one dimension), real-world 
time series datasets in many applications are multivariate-containing multiple 
dimensions but a single label. With the advancement of sensor technologies, the 
Multivariate Time Series Classification (MTSC) problem has received great atten-
tion in a wide range of research domains and applications such as Human Activity 
Recognition (Minnen et al. 2006), EEG/ECG data analysis (Wang et al. 2015), and 
Motion Recognition (Rakthanmanon and Keogh 2013).

An ideal TSC method should be accurate, efficient, and interpretable. However, 
even accurate state-of-the-art TSC models suffer from a lack of interoperability or 
efficiency. Most general TSC approaches involve a preliminary learning phase to 
extract feature candidates from the time series data, such as a bag of patterns (Senin 
and Malinchik 2013) or time series shapelet (Ye and Keogh 2009). These meth-
ods become less computationally efficient when dealing with long-time series data 
as selecting features from a larger feature space increases the computational com-
plexity of the model. The challenge is amplified in the multivariate case, where fea-
ture selection from a vast feature space becomes more difficult (Zhang et al. 2020). 
Recently, ensemble methods have achieved high accuracy for TSC tasks, while their 
computational complexity increases with the number of time steps and dimensions. 
For instance, the Hierarchical Vote Collective of Transformation-based Ensembles 
(HIVE-COTE) (Lines et al. 2016), has high training complexity O(N2

⋅ T4) , as high-
lighted by (Lucas et al. 2019), where T represents the length of the series and N is 
the number of dimensions. The latest version, HIVE-COTE v2.0, (Middlehurst et al. 
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2021) for multivariate data requires a substantial run time (Ruiz et al. 2021). How-
ever, studies indicate that deep learning models significantly surpass HIVE-COTE 
in terms of run time. Importantly, these methods do not provide interpretable results.

Recently, deep learning-based methods with cross-entropy loss function have 
demonstrated promising performance in TSC tasks (e.g. ResNet (Wang et al. 2017), 
Inception (Ismail Fawaz et al. 2020). One of the main advantages of the deep learn-
ing approaches is their capability to manage large feature spaces by learning low-
dimensional feature representations (Zhang et al. 2020). Moreover, these approaches 
require less domain-specific knowledge compared to the traditional methods for 
handling time series data. However, these advantages come at the cost of a substan-
tial requirement for a large amount of labeled data during training, posing challenges 
when dealing with time series data that has limited labeling. Zhang et  al. (2020) 
suggested that the traditional TSC models can effectively mitigate the issue of lim-
ited data by using distance-based methods. They proposed the TapNet deep learning 
model (Zhang et  al. 2020) with a distance-based loss function instead of a cross-
entropy loss function to address the issue of limited data.

To enable deep learning models to handle limited labelings in TSC tasks while learn-
ing the low-dimensional feature representations, we propose the supervised contrastive 
learning for time series classification (SupCon-TSC) model. It is based on supervised 
contrastive learning (SupCon) and provides interpretable outcomes. The recent success 
of the SupCon learning approach in various computer vision tasks inspired us to adapt 
this competitive approach for the TSC tasks. The SupCon loss function overcomes the 
shortcomings of the cross-entropy loss function, such as a lack of robustness to noisy 
labels (Zhang and Sabuncu 2018; Sukhbaatar et al. 2014) and the potential for deci-
sion boundaries with poor margins resulting in poor classification performance. Lever-
aging the SupCon learning approach alleviates the challenge of defining classification 
boundaries between classes. It achieves this by bringing the representations of instances 
with the same label closer together while moving them farther from those with differ-
ent labels. In addition, because the SupCon loss function is a distance-based loss, it 
effectively addresses the issue of limited data in time series tasks. However, despite 
the advantages of the SupCon loss function, the intra-class variances and inter-class 
similarities found in many real-world time series make it challenging to learn univer-
sal low-dimensional feature representations using SupCon loss. To address this issue, 
we extend the SupCon learning approach by proposing to learn the low-dimensional 
universal representation, not only by applying the SupCon loss between time series 
instances but also between the clusters of instances across batches, as depicted in Fig. 2. 
In this approach, we cluster the time series instances based on their labels within each 
batch. Subsequently, we apply the SupCon learning approach between each instance 
and centers of generated clusters across batches. This introduces cluster-level Sup-
Con as a complement to an instance-level contrastive strategy. We introduce a cluster 
memory bank that allows us to access representations of clusters generated in previ-
ous batches during training. This approach helps in bringing clusters with the same 
label closer and distancing those with different labels. This process results in clearer 
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boundary decisions by reducing intra-class variances and inter-class similarities. Unlike 
existing contrastive loss function studies, our proposed approach does not depend on 
designing complex augmentation methods, which are challenging for time series data. 
The temporal dependencies in time series data present challenges in designing augmen-
tation methods. This complexity is amplified when dealing with the MTSC task, as it 
requires considering the cross-correlations between variables across time. The major 
contributions of this paper are summarized as follows: 

1.	 We proposed SupCon-TSC for time series data to capture contextual information, 
which provides interpretable outputs.

2.	 Even though the contrastive objective is usually based on augmented context 
views to get good results, the proposed approach does not depend on adopting 
well-known augmentation methods. In other words, the proposed approach is 
capable of learning the universal low-dimensional feature representations without 
introducing undetected inductive bias created by adopting well-known augmenta-
tion methods such as transformation- and cropping-invariance.

3.	 We evaluate the performance of the SupCon-TSC model on two small CPET 
datasets to demonstrate the model’s capability for learning better discriminative 
features than existing models.

4.	 We conduct extensive experiments on multivariate time series data to show the 
effectiveness of our method compared to standard approaches in the literature. 
Our new approach outperforms existing SOTAs on 29 UEA Archive datasets.

5.	 We design a SupCon loss at the cluster level in addition to the instance level 
to alleviate the negative impact induced by intra-class variances and inter-class 
similarities during training.

The rest of the paper is structured as follows: Section 2 presents the related work 
in MTSC, and our new model is introduced in Sect.  3. Section  4 discusses the 
experimental results on two CPET datasets and UEA Archive datasets, and the 
summary of the research is presented in Sect. 5.

2 � Related works

In this section, we discuss relevant related work in the area of time-series classi-
fication. The state-of-the-art MTS classifiers are generally categorized into three 
groups: similarity-based, feature-based, and deep learning methods.

The similarity-based approaches typically utilize a similarity function such as 
Euclidean distance (Keogh and Kasetty 2003), edit distance (Chen et  al. 2005), 
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wavelets (Chan and Fu 1999), and Dynamic Time Warping (DTW) (Senin 2008) 
to measure the similarity between two instances. In these approaches, the new time 
series instance is classified best on its similarity to the top-k neighbors in the his-
torical data. DTW is the most popular distance function, and two versions of it for 
MTSC are the independent ( DTWI ) and dependent approaches ( DTWD ) (Shokoohi-
Yekta et al. 2017). The independent strategy defines a different point-wise distance 
matrix for each dimension and then sums them up. In contrast, the dependent strat-
egy performs warping over all the given dimensions simultaneously by calculating 
the Euclidean distance between vectors containing all dimensions.

On the other hand, conventional feature-based classification methods involve the 
manual design of feature extraction algorithms combined with machine learning mod-
els for classification. Based on the literature, Shapelets-based (gRSF (Karlsson et  al. 
2016) and UFS (Wistuba et al. 2015)) and Bag of Word-based classifiers (LPS (Bay-
dogan and Runger 2016), mv-ARF (Tuncel and Baydogan 2018), SMTS (Baydogan 
and Runger 2015) and WEASEL+MUSE (Schäfer and Leser 2017)) are two popular 
feature-based algorithms. To classify time series data, Shapelets-based models trans-
form the original time series into a lower-dimensional space by using subsequences. 
However, Bag of Word-based classifiers perform the classification by converting time 
series into a Bag of Words (BoW) and building a classifier upon the BoW represen-
tation. Recently, the WEASEL+MUSE (Schäfer and Leser 2017) model, which uses 
the bag of Symbolic Fourier Approximation (SFA) symbol model, outperforms gRSF, 
LPS, mv-ARF, SMTS, and UFS. However, both shapelets-based and BoW-based meth-
ods are computationally expensive and have a long learning process (He et al. 2022).

Recently, deep learning techniques (XCM (Fauvel et al. 2021), FCN (Wang et al. 
2017), MLSTM-FCN (Karim et al. 2019), MTEX-CNN (Assaf et al. 2019), ResNet 
(Wang et  al. 2017), and TapNet (Zhang et  al. 2020)) have been used extensively 
for time series classification. These techniques offer the advantage of automati-
cally extracting the important features from time-series data for classification, as 
opposed to the feature-based methods listed above that require significant manual 
effort. However, a large amount of data is needed to train these models. These tech-
niques commonly contain the stack of CNN layers and LSTM layers to extract fea-
tures along with the softmax layer to predict the label. We describe these techniques 
briefly below. However, Ismail Fawaz et al. (2019) provides a more elaborate survey. 
Karim et  al. (2019) proposed a model named MLSTM-FCN which consists of an 
LSTM layer and a stacked CNN layer to extract features.

Assaf et  al. (2019) proposed MTEX-CNN, which utilizes a sequence of 2D 
and 1D convolution filters to extract MTS features corresponding to the observed 
variables and time, respectively. However, this model has some limitations which 
have been addressed by Fauvel et al. (2021). Fauvel et al. (2021) propose the XCM 
model, which uses the 2D and 1D convolution filters parallelly over the input data to 
extract features corresponding to observed variables and time, separately.

Even though deep learning-based methods can learn the latent features by training 
convolutional or recurrent networks, they require large-scale labeled data. Recently, 
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Zhang et al. (2020) proposed the TapNet model with a distance-based loss function 
instead of a cross-entropy loss function to address the issue of limited data. None of 
the existing work addresses the problem of the limited labeled data, except TapNet.

One of the works most closely related to our proposed SupCon-TSC model is 
TS2Vec (Yue et al. 2022), which also leverages contrastive learning to capture robust 
contextual representations for arbitrary time steps and sub-series of the original time 
series, for a wide range of tasks including univariate and multivariate time series clas-
sification. TS2Vec employs hierarchical contrasting to discriminate between positive 
and negative samples at both instance-wise and temporal dimensions. This allows it 
to capture contextual representations at varying granularities while imposing the con-
straint of contextual consistency. In addition, it imposes the constraint of contextual 
consistency that states that representations for the same sub-series in two different 
augmented contexts should be consistent, ensuring robustness. The key differences 
between SupCon-TSC and TS2Vec lie in how we apply contrastive loss at both the 
instance level and the cluster level. The use of cluster-level contrastive loss is advanta-
geous as it mitigates the negative impact caused by intra-class variances and inter-class 
similarities during training. Moreover, the SupCon-TSC model is based on supervised 
contrastive learning whereas TS2Vec is an unsupervised learning approach. The 
incorporation of the supervised contrastive (SupCon) loss in our model’s supervised 
learning setting encourages the extraction of more distinguishable features between 
different classes. This is because the loss function is designed to learn the similarity 
function. Additionally, the SupCon-TSC model effectively addresses the challenge of 
limited data in time series tasks due to its distance-based loss nature.

3 � Methodology

In this section, we first provide a brief introduction to the problem formulation in 
Sect. 3.1. Following that, we elaborate on the details of the proposed method and 
our framework in Sect. 3.2.

3.1 � Problem formulation

In multivariate time series classification, a data set consists of pairs (X, y) , where 
X = {�

�
,�

�
,�

�
, ...,�

�
} ∈ Rn×m×l contains n multi-dimensional time series observa-

tions and y ∈ Rn contains corresponding discrete class variables with c possible val-
ues for each observation. Here, each time series observation can be represented as a 
matrix with the dimension m and time series length l. The goal of the MTSC tasks 
is to train a classifier on the observed pairs of (X, y) , enabling it to predict the class 
label of a new, unlabeled time series observation.
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3.2 � New model

In this section, we introduce our novel approach, i.e., SupCon-TSC, which aims to 
enhance model performance for downstream tasks like classification by learning a 
universal representation for multivariate time series data. The proposed approach 
consists of two stages: a) Learning the universal representation, and b) Training 
the classifier, as depicted in Fig. 1. The first stage of SupCon-TSC is built upon the 
SupCon framework (Khosla et al. 2020), initially designed for image representation 
learning. However, we have made modifications to adapt it to learning a universal 

Fig. 1   Diagram of training process
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representation of multivariate time series data for supervised MTSC. Algorithm 1 
outlines the pseudo-code for this first stage. Specifically, the provided pseudo-code 
outlines an algorithm for learning a universal representation for multivariate time 
series data using instance-level and cluster-level supervised contrastive learning. 
The algorithm begins by initializing hyperparameters, encoder, and projection head 
weights, and creating an empty buffer. During the training process, as the algorithm 
progresses through a fixed number of epochs ( Ne ), a check is performed to deter-
mine whether the current epoch falls within the warm-up period ( Nw ) (i.e., lines 3 
to 7). If the current epoch is within the warm-up period, the variable � is set to 0, 
implying that the cluster-level contrastive learning step is skipped. However, if the 
current epoch is equal to or greater than the number of warm-up epochs, � is set to 1, 
indicating that the cluster-level contrastive learning step will be executed as part of 
the algorithm for that epoch. The algorithm then iterates over sampled mini-batches, 
as depicted in lines 2–37. For each instance in the mini-batch, the algorithm applies 
augmentation techniques to generate weak ( xw

k
 ) and strong ( xs

k
)views of the given 

input sequence (i.e., lines 10 and 11). Lines 12–15 demonstrate that the encoder 
processes these augmented sequences, and the projection head projects their hid-
den representations into lower-dimensional feature vectors. The algorithm performs 
clustering on the instances in the mini-batch based on their labels according to lines 
16–18. Each instance is assigned to the cluster with the same label. As observed 
in lines 20–23, for each unique label, the algorithm calculates the average feature 
vector of instances ( zcl

i
 ) with the associated label ( ck ) and adds it to the buffer along 

with the corresponding label. The algorithm then proceeds to compute the instance-
level and cluster-level contrastive losses in lines 25–36. More details on Learning 
the Universal Representation, instance-level, and cluster-level contrastive learning 
approaches have been provided in the following sections.

The second stage of SupCon-TSC contains training the multilayer perceptron 
(MLP) classifier on top of the frozen representations using a cross-entropy loss.
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Algorithm 1 Proposed instance-level and cluster-level SupCon algorithm

3.2.1 � Learning the universal representation

This stage serves as the pre-training phase for training the encoder to generate the 
universal representation. As depicted in Fig.  1a, the Siamese network consists of 



	 N. Moradinasab et al.

1 3

source ( Es ) and target encoders ( Et ), which take two augmented versions of a multi-
variate time series instance sampled from two distinct augmentation families.

where, xs , and xt represent the strongly and weakly augmented view of x, respec-
tively. The high-variance strong augmentation ( Ts ) and low-variance weak augmen-
tation ( Tt ) families are used to generate these strongly and weakly augmented views 
of x for the source and target networks, respectively. Wang et  al. (2022) demon-
strated that these settings enhance the model performance on downstream tasks such 
as classification. Noted, even though an essential part of the success of the contras-
tive learning methods is designing and utilizing good data augmentation methods 
(Grill et al. 2020), our approach does not depend on the well-known augmentation 
methods. We propose to use only jittering augmentation with low variance (weak 
augmentation) for the target network and high variance (strong augmentation) for 
the source network. After generating the augmented views of a given instance (x), 
they are passed to the encoder to learn the universal low dimensional representations 
(h=E(x)). To train the encoder, first, the encoder output will be sent to the MLP pro-
jection head to obtain the normalized embedding (z = proj(E(x)). In each iteration, 
the buffer is updated with the output from the target network. For every iteration, 
the target outputs of the given batch are clustered according to their labels, and the 
buffer is updated with the mean value of the clusters. Subsequently, the SupCon loss 
is calculated between the output of the source network, the output of the target net-
work, and the buffer. This process aims to learn a discriminative representation that 
effectively characterizes instance x. The SupCon loss function enforces the normal-
ized embeddings from the same class to pull closer together than embeddings from 
different classes. For this purpose, it tries to maximize the dot product between the 
given anchor and positive samples (i.e., samples with the same labels) while mini-
mizing the dot product with negative samples (i.e., samples with different labels) 
within the batch. The SupCon learning is conducted at the instance and cluster level, 
which are explained in the following sections in detail.

3.2.2 � Supervised contrastive learning at the instance‑level

As depicted in Algorithm 1, within a batch of N samples, two encoding representa-
tions are generated for each instance: the source encoding representation ( zs ) and the 
target encoding representation ( zt ). We expect the source encoding to have higher 
variance in comparison with the target encoding representation as we use higher 
variance in the corresponding augmentation method.

The instance-level Supervised contrastive loss is as follows:

xs ∼ Ts(x)

xt ∼ Tt(x)

(1)LSupCon =
−1

∣ P(k) ∣

�

p∈P(k)

log
exp(zs

k
⋅ zt

p
∕�)

∑

a∈A(i) exp(z
s
k
⋅ zt

a
∕�)
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where, � is the temperature. For an anchor embedding zs
k
 that comes from the source 

network, we denote zt
p
 as a positive sample which is the output of the target network 

corresponding to the sample in the batch with the same label as the anchor image. 
Hence, ( zs

k
, zt

p
 ) is a positive pair and the number of positive pairs for the anchor k is 

equal to the number of instances with the same label as the anchor instance in the 
batch. A(i) is a set of all indexes in the given batch, while P(k) indicates a set of pos-
itive samples for the anchor k. P(k) contains indexes of those samples in the batch 
which have the same label as the anchor k.

Noted, the size of negative samples for the anchor k is N(k) =∣ A(i) ∣ − ∣ P(k) ∣ . 
Figure 2 presents the Instance-level supervised contrastive learning between a given 
anchor and positive and negative samples in each batch.

3.2.3 � Supervised contrastive learning at the cluster‑level among batches

In this approach, we propose a cluster memory bank that contains the representation 
of the cluster’s center generated in the previous batches during training. In each batch 
with N samples, we perform clustering over the target embeddings based on their 
labels. We assign the target embedding of each time series sample xk to the cluster 
with the same label ( ck ). Then, we determine the cluster centers using Eq. (2). The 
representations of the cluster centers generated in each batch will be stored in the 
cluster memory bank. The cluster memory bank is built with size Nbuffer × Nl × D , 
where Nbuffer , Nl , and D are the memory size, number of unique classes for time 
series data set and the dimension of representation embedding, respectively.

As shown in Algorithm  1, the cluster-level SupCon learning is conducted using 
Eq. (3) among the batches during training in addition to the instance-level SupCon 
learning in each batch.

(2)zcl
i
=

∑N

k=1
I{ck = i}zt

k
∑N

k=1
I{ck = i}

Fig. 2   Diagram of proposed approach
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We aim to optimize the following objectives: 1) Maximize the similarity between 
each instance embedding in a batch zs

k
 and positive samples zclus

p
 retrieved from the 

cluster memory bank, 2) Minimizing the similarity between each instance embed-
ding in a batch zs

k
 and negative samples also sourced from the cluster memory bank. 

In Eq.  (3), Abuf (i) denotes the set of all indexes within the cluster memory bank, 
while pbuf (k) represents the set of positive samples which have the same label as 
the anchor k in the cluster memory bank. Figure 2 outlines the cluster-level SupCon 
learning approach, depicting the interaction between a given anchor instance and 
positive and negative samples (i.e. centers of the clusters with the same and different 
labels) extracted from the cluster memory bank. The overall piece-wise training loss 
can be defined as follows:

We only utilize the instance-level contrastive loss to train the model during the first 
epochs. After training the model for Nw epochs, we take into account the cluster-
level loss in addition to the instance-level loss to train the model.

3.2.4 � Training the classifier

Illustrated in Fig. 1b, the objective of the second stage is to train a classifier on top of 
the source encoder, utilizing cross-entropy loss for predicting class labels in MTSC 
tasks. During this step, we discard the projection head (Proj(.)), and the classifier is 
incorporated into the preserved frozen universal representation. Subsequently, the 
classifier is trained using the cross-entropy loss function.

4 � Experiments

In this section, we assess the performance of SupCon-TSC on three different data-
sets: the UEA multivariate time series archive dataset and two cardiopulmonary 
exercise testing datasets. Firstly, we provide detailed descriptions of the datasets, 
metrics used for evaluation, and the implementation specifics. Subsequently, we pre-
sent a comprehensive analysis of experimental results, comparing the performance 
across diverse datasets. Finally, we delve into the ablation studies section, conduct-
ing in-depth analyses to further understand the model’s effectiveness.

(3)Lclus−level
k

=
−1

∣ Pbuf (k) ∣

�

p∈Pbuf (k)

log
exp(zs

k
⋅ zclus

p
∕�)

∑

a∈Abuf (i)
exp(zs

k
⋅ zclus

a
∕�)

(4)L =

N
∑

k=1

LIns−level
k

+ �Lcl−level
k

(5)𝛼 =

{

0 epoch ≤ Nw

1 epoch > Nw
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4.1 � Datasets

1.	 UEA multivariate time series archive1 (Bagnall et al. 2018): The archive includes 
data sets collected from different applications such as human activity recognition, 
motion classification, and ECG/EEG signal classification. For variable-length 
datasets, we pad all series to the same length, setting NaNs for missing observa-
tions. When an observation is missing (NaN), the corresponding mask position 
is set to zero. Also, we noticed inconsistencies between the current ERing dataset 
available at the UEA multivariate time series archive and the dataset used in the 
referenced papers Fauvel et al. (2021), Zhang et al. (2020). To ensure the integrity 
of our experiments, we removed the ERing dataset from our analysis.

2.	 Cardiopulmonary exercise testing (CPET) dataset 1 (Brown et al. 2022): The 
CPET dataset consists of the breath-by-breath readings of 30 patients with two 
clinically diagnosed conditions: heart failure (HF) and metabolic syndrome 
(MS) (15 patients each). The testing protocol for gathering data involved using a 
treadmill with three stages: rest, testing, and recovery. This dataset contains the 
following variables: metabolic equivalent of task (METS)(1 MET = 3.5 ml/kg/
min); heart rate (HR); inspired volumes of oxygen (VO2); expired volumes of 
carbon dioxide (VCO2); ventilation (VE); respiratory rate (RR); expiratory tidal 
volume (VTex); and inspiratory tidal volume (VTin); respiratory exchange ratio 
(RER); speed of the treadmill; elevation of the treadmill; binary outcome vari-
able indicating the clinically diagnosed condition of the patient. The aggregated 
second-by-second values of normalized CPET variables (i.e. HR, RR, VO2, VE, 
VCO2, RER, VTin, VTex) for participants with label HF as an example is shown 
in Fig. 3. In other words, we compute the mean of each CPET variable per second 
over all participants with the label HF.

3.	 Cardiopulmonary exercise testing (CPET) dataset 2 (Coronato et al. 2022): This 
dataset comprises breath-by-breath readings from 78 healthy children and ado-
lescents who underwent the (multiple brief exercise bouts) (MBEB) task at low, 
moderate, and high-intensity work rates. Even though all participants completed 
the ten bouts at low and moderate-tensity, half of them failed and stopped before all 
ten bouts had been completed (task failure) high-tensity work rate. This dataset the 
following variables: heart rate (HR); inspired volumes of oxygen (VO2); expired 
volumes of carbon dioxide (VCO2); respiratory rate (RR); gender; maturational 
status; body mass; total fat; binary outcome variable indicating whether the par-
ticipant completed the test. The aggregated second-by-second values of CPET 
variables (i.e. HR, RR, VO2, VCO2) over all participants are shown in Fig. 4.

4.2 � Metric

Each model is evaluated using the accuracy score (i.e. TP+TN

TP+FP+TN+FN
 ). where TP, FP, 

TN, and FN are true positive, false positive, true negative, and false negative, 
respectively.

1  Datasets are available at http://timeseriesclassification.com
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4.3 � Friedman test and Wilcoxon test

To find the differences between the methods, we leverage the Freidman test which 
is a non-parametric statistical test. Moreover, the Wilcoxon-signed rank test is 
used to compare pairs of classifiers over the datasets. The Friedman test and Wil-
coxon-signed rank test with Holm’s �(5%) are conducted by following the process 
described in (Demšar 2006).

4.4 � Interpretability

Gradient-weighted class activation mapping (Grad-CAM) (Selvaraju et al. 2017) is 
one of the well-known methods for generating saliency maps to support convolu-
tional neural network predictions. The Grad-CAM aims to identify the regions of the 
input data that the most influence the predictions using the class-specific gradient 
information. In this study, we use the Grad-CAM approach to identify those time 
steps of the time series that influence the most on the model’s decision for a specifi-
cally assigned label. The following paragraph explains how we adapt Grad-CAM for 
the SupCon-TSC model.

In order to build the attribution map, we apply grad-CAM to the output features 
of the last 1D convolution layer. First, we compute the importance of each feature 

Fig. 3   The aggregated second-by-second VE, RER, VTex, VTin, METS, RR, VCO2, VO2, for patients 
with label HF
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map ( wc
k
 ) by obtaining the gradient of the output score for specific class c ( yc ) with 

respect to each feature map activation Ak as:

where Z is the total number of units in A. Then, wc
k
 is used to compute a weight 

combination of feature maps for class c by Eq. (7). The ReLU non-linearity is used 
to keep only positive values.

4.5 � Architecture details

The model architecture is as follows: 

1.	 Encoder: ResNet (Wang et al. 2017)
2.	 Head: two linear layers with ReLu activation function.
3.	 Classifier: two linear layers with ReLu activation function and Softmax on top.

(6)wc
k
=

1

Z

∑

i

�yc

�Ak
i

(7)Lc
1D

= ReLU(
∑

k

wc
k
Ak)

Fig. 4   The aggregated second-by-second RR, VCO2, VO2, and HR over all participants from CPET 
dataset 2
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4.6 � Hyperparameters

The grid search along with the 5-fold cross-validation on the training set is used 
to set hyperparameters for each dataset. Please refer to Appendix 1 for the hyper-
parameters used in our experiments.

4.7 � Models

We have compared the performance of the proposed method with the follow-
ing state-of-the-art MTSC models on the UEA Multivariate time series archive 
datasets.

•	 TapNet: Multivariate time series classification with attentional prototypical net-
work was applied to time series data (Zhang et al. 2020).

•	 WEASEL+MUSE (WM): Word ExtrAction for time Series cLassification plus 
Multivariate Unsupervised Symbols and dErivatives was applied to time series 
data (Schäfer and Leser 2017).

•	 MLSTM-FCN (MF): Multivariate LSTM fully convolutional networks for time 
series classification was applied to time series data (Karim et al. 2019).

•	 MTEX-CNN (MC): Multivariate time series explanations for predictions with 
convolutional neural networks was applied to time series data (Assaf et al. 2019).

•	 CMFM+RF (CMRF): Random forest (RF) was applied to the set of time series 
features obtained by complexity measures and features for multivariate time 
series (CMFMTS) approach (Baldán and Benítez 2021).

•	 CMFM+SVM (CMSVM): Support vector machine (SVM) was applied to the 
set of time series features obtained by CMFMTS approach (Baldán and Benítez 
2021).

•	 CMFM+ C5.0B (CMC5.0B): C5.0 with boosting (C5.0B) was applied to the 
set of time series features obtained by CMFMTS approach (Baldán and Benítez 
2021).

•	 CMFM+1NN (CM1NN): 1-nearest neighbor classifier with Euclidean distance 
(1NN-ED) was applied to the set of time series features obtained by CMFMTS 
approach (Baldán and Benítez 2021).

•	 XCM: The eXplainable convolutional neural network model was applied to time 
series data (Fauvel et al. 2021).

•	 LCEM: Local cascade ensemble for multivariate data classification (LCEM) was 
applied to time series data (Fauvel et al. 2020).

•	 XGBM: The extreme gradient boosting algorithm was applied to the LCEM 
transformation (Fauvel et al. 2020).

•	 RFM: Random forest for multivariate (RFM) algorithm was applied to the 
LCEM transformation (Fauvel et al. 2020).

•	 DWI / DWI(n) : a 1-nearest neighbor classifier was applied to the sum of DTW 
distances for each dimension with and without normalization (n) (Shokoohi-
Yekta et al. 2017).
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•	 DWD / DWD(n) : Dimension-dependent dynamic time warping (Shokoohi-Yekta 
et  al. 2017) was employed with and without normalization (n). Distances are 
computed using multidimensional points, and subsequently, a 1-nearest neighbor 
classifier was applied to them.

4.8 � Classification performance evaluation

We evaluate the performance of the SupCon-TSC model on two small CPET data-
sets and the UEA Multivariate time series archive.

4.8.1 � CPET datasets

Table  1 shows the performance of the SupCon-TSC alongside the state-of-the-art 
deep learning models on small CPET datasets 1 and 2. To maintain consistency with 
prior research (Brown et al. 2022; Coronato et al. 2022), we conducted experimenta-
tion through the same k-fold cross-validation method. Additionally, for our experi-
ment, we focused exclusively on the initial four bouts from the second dataset. We 
then proceeded to smooth and align these bouts as recommended in (Coronato et al. 
2022). Four bouts of CPET variables after converting the discrete time series to 
78 smoothed and aligned curves are shown in Fig. 5. As shown, the SupCon-TSC 
model has achieved better accuracy on both datasets.  The best accuracy for each 
dataset is denoted in boldface.

To investigate the interpretability of the model, we present a comprehensive anal-
ysis of the attention mechanism of our SupCon-TSC model when applied to CPET 
dataset 2. The dataset consists of samples with binary labels indicating whether the 
participant completed the test. We sought to understand how the model’s attention 
is distributed across the input data during the prediction process. Figure 6 shows the 
network’s attention for two samples with different labels from CPET dataset 2. The 
attention maps provide valuable insights into the regions of interest that the model 
deems crucial for making predictions. As shown, the network’s attention is spread 
approximately across time steps 150–190, 310–380, 510–540, and 690–710, which 
are associated with the valleys in the graphs (i.e., displayed by red circles on the first 
HR graph). Remarkably, these identified intervals align remarkably well with the 
recovery points observed in the heart rate (HR) and gas exchange change graphs. 
From a physiological standpoint, these recovery points have significant implications 
as they are widely recognized indicators of an individual’s fitness level (Fan et al. 
(2020); Matsuo et al. (2020)). Notably, we found that the identified recovery points 

Table 1   The model’s 
performance on the second 
CPET datasets 1 and 2

Dataset Model k-fold CV Accuracy ( %)

CPET 1 CNN (Brown et al. 2022) 5-fold 90
SupCon-TSC 5-fold 97

CPET 2 GADF + Attention (Coro-
nato et al. 2022)

10-fold 80.8

SupCon-TSC 10-fold 86.07
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align with the findings from studies Coronato et  al. (2022) and Bar-Yoseph et  al. 
(2022). These studies suggest that incomplete recovery from individual exercise 
bouts may result in a cumulative response deficiency. This deficiency, over time, 

Fig. 5   Four bouts of CPET variables after smoothing and aligning the curves

Fig. 6   Time attention corresponding to a prediction for two participants with label task-failure and task 
completer
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could potentially manifest in physiological signals that can impact cognitive exercise 
behavior, which aligns with the patterns identified by the SupCon-TSC model.

4.8.2 � UEA multivariate time series archive

The accuracy results of SupCon-TSC and the other state-of-the-art algorithms on 
the public UEA test sets are presented in Table 2. In the SupCon-TSC approach, 
ensemble learning is used to make the final prediction by taking the average over 
the five different models’ outputs trained using 5-fold cross-validation. We per-
form the hyper-parameter tunning for XCM, TapNet, MTEX-CNN, and MLSTM-
FCN models. The results of other baseline models are taken from the Fauvel et al. 
(2021), and Baldán and Benítez (2021). The dash shows that the approach ran out 
of memory. Also, the best accuracy for each dataset is boldfaced. The SupCon-
TSC was implemented in Python3 using Pytorch 1.10 and all the experiments are 
conducted on a single Tesla k80 GPU with 11GB memory. As Table 2 indicates, 
SupCon-TSC achieves better performance on 11 out of 29 UEA datasets in com-
parison with the baseline methods followed by LCEM with 7 datasets. The aver-
age rank is computed using a pairwise Wilcoxon signed rank test and we observe 
that the best average rank belongs to SupCon-TSC (5.07) which is followed by 
LCEM (5.26). Furthermore, Table  2 indicates that the SupCon-TSC approach 
outperforms LCEM methods in 18 out of 29 datasets.

We applied the Friedman test to investigate if there is a significant difference 
between the methods. The output of the Friedman test is p = 4.205e − 19 , which 
is smaller than � = 0.05 , indicating that there is a significant difference among all 
ten methods. Figure  7 shows the accuracy scatter plots of SupCon-TSC against 
each of the LCEM and MLSTM-FCN.

Fig. 7   Scatter plots of accuracy on 29 UEA MTSC problems. Left: SupCon-TSC vs LCEM showing that 
SupCon-TSC beats LCEM on 18 problems. Right: SupCon-TSC vs MLSTM-FCN showing that SupCon-
TSC beats MLSTM-FCN on 19 problems
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Table 2   Accuracy results on the UEA Multivariate time series datasets. Abbreviations:ST-SupCon-
TSC,WM-WEASEL+MUSE, MF-MLSTM-FCN, MC-MTEX-CNN, CMRF-CMFM+RF, CMSVM-
CMFM+SVM, CM1NN-CMFM+1NN

Datasets ST TapNet MC XCM MF WM LCEM XGBM RFM

ArticularyWordRecognition 
(AW)

0.98 0.964 0.913 0.977 0.986 0.993 0.993 0.99 0.99

AtrialFibrillation (AF) 0.467 0.333 0.333 0.467 0.133 0.267 0.467 0.40 0.333
BasicMotions (BM) 1 1 0.68 1 1 1 1 1 1
CharacterTrajectories (CT) 0.997 0.997 0.974 0.995 0.993 0.990 0.979 0.983 0.985
Cricket (C) 1 0.958 0.78 0.986 0.986 0.986 0.986 0.972 0.986
DuckDuckGeese (DDG) 0.54 0.44 0.4 0.3 0.579 0.575 0.375 0.40 0.40
EigenWorms (EW) 0.885 0.86 0.419 0.526 0.908 0.89 0.527 0.55 1
Epilepsy (EP) 0.993 0.978 0.94 0.94 0.985 0.993 0.986 0.978 0.986
EthanolConcentration (EC) 0.231 0.231 0.251 0.32 0.254 0.316 0.372 0.422 0.433
FaceDetection (FD) 0.565 0.55 0.50 0.58 0.556 0.545 0.614 0.629 0.614
HandMovementDirection 

(HMD)
0.338 0.37 0.432 0.405 0.472 0.378 0.649 0.541 0.50

FingerMovements (FM) 0.61 0.52 0.61 0.59 0.579 0.54 0.59 0.53 0.56
Handwriting (HW) 0.566 0.37 0.17 0.4 0.544 0.531 0.287 0.267 0.267
Heartbeat (HB) 0.746 0.752 0.721 0.72 0.731 0.727 0.761 0.693 0.80
InsectWingbeat (IW) 0.667 0.208 0.105 0.105 0.105 - 0.228 0.237 0.224
JapaneseVowels (JV) 0.987 0.965 0.951 0.986 0.992 0.978 0.978 0.968 0.970
Libras (LIB) 0.85 0.877 0.6 0.77 0.883 0.894 0.772 0.767 0.783
LSST (LSST) 0.657 0.55 0.57 0.51 0.601 0.628 0.652 0.633 0.612
MotorImagery (MI) 0.59 0.53 0.5 0.5 0.529 0.50 0.60 0.46 0.55
NATOPS (NATO) 0.894 0.93 0.75 0.71 0.905 0.883 0.916 0.90 0.911
PenDigits (PD) 0.993 0.98 0.896 0.98 0.99 0.969 0.977 0.951 0.951
PEMS-SF (PEMS) 0.861 0.77 0.838 0.83 0.809 - 0.942 0.983 0.983
PhonemeSpectra (PS) 0.322 0.19 0.08 0.13 0.266 0.19 0.288 0.187 0.222
RacketSportsc(RS) 0.875 0.83 0.723 0.78 0.875 0.914 0.941 0.928 0.921
SelfRegulationSCP1 (SRS1) 0.73 0.75 0.767 0.860 0.829 0.744 0.839 0.829 0.826
SelfRegulationSCP2 (SRS2) 0.55 0.55 0.50 0.55 0.494 0.522 0.55 0.483 0.478
SpokenArabicDigits (SA) 0.995 0.983 0.986 0.995 0.994 0.982 0.973 0.970 0.968
StandWalkJump (SWJ) 0.6 0.47 0.4 0.533 0.6 0.333 0.40 0.333 0.467
UWaveGestureLibrary (UW) 0.812 0.89 0.69 0.88 0.881 0.903 0.897 0.894 0.907
Total best acc 11 4 1 5 4 3 7 2 5
Ours 1-to-1-Wins/ties - 23 26 24 19 19 18 20 18
Avg. Rank 5.07 7.4 12.36 8.47 6.09 7.37 5.26 8.03 6.11

Datasets CMRF CMSVM CM1NN CMC5.0B DW
I

DW
D

DW
I
(n) DW

D
(n)

ArticularyWordRecognition 
(AW)

0.99 0.977 0.983 0.91 0.98 0.987 0.98 0.987

AtrialFibrillation (AF) 0.20 0.267 0.133 0.20 0.267 0.20 0.267 0.220
BasicMotions (BM) 0.975 0.925 0.95 0.85 1 0.975 1 0.975
CharacterTrajectories (CT) 0.970 0.970 0.933 0.942 0.969 0.990 0.969 0.989
Cricket (C) 0.972 0.958 0.972 0.861 0.986 1 0.986 1
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Figure  8 shows a critical difference diagram obtained by using the pairwise 
Wilcoxon signed-rank test. The numbers on each line are the average rank 
of the corresponding method and the solid bars indicate the groups of meth-
ods between which there are no significant differences in terms of accuracy. As 
shown in Fig. 8, the SupCon-TSC model has the first rank followed by LCEM and 
MLSTM-FCN approaches.

4.9 � Ablation studies

To study the effect of proposed supervised contrastive learning, we separately train 
ResNet models with and without proposed supervised contrastive learning. As 
shown in Table  3, the Supervised Contrastive Learning component improves the 
performance of the model in 22 out of 29 datasets which verifies the effectiveness 
of the proposed approach. The best accuracy for each dataset is denoted in boldface.

Table 2   (continued)

Datasets CMRF CMSVM CM1NN CMC5.0B DW
I

DW
D

DW
I
(n) DW

D
(n)

DuckDuckGeese (DDG) 0.52 0.44 0.40 0.42 0.55 0.60 0.55 0.60
EigenWorms (EW) 0.817 0.84 0.794 0.817 0.603 0.618 - 0.618
Epilepsy (EP) 1 0.978 0.957 0.884 0.978 0.964 0.978 0.964
EthanolConcentration (EC) 0.335 0.327 0.304 0.35 0.304 0.323 0.304 0.323
FaceDetection (FD) 0.548 0.548 0.579 0.54 0.513 0.529 - 0.529
HandMovementDirection 

(HMD)
0.284 0.324 0.189 0.338 0.306 0.231 0.306 0.231

FingerMovements (FM) 0.52 0.46 0.53 0.44 0.52 0.53 0.52 0.53
Handwriting (HW) 0.282 0.184 0.249 0.165 0.509 0.607 0.316 0.286
Heartbeat (HB) 0.766 0.732 0.62 0.741 0.659 0.717 0.658 0.717
InsectWingbeat (IW) 0.677 0.10 0.266 - - 0.115 - -
JapaneseVowels (JV) 0.837 0.778 0.695 0.795 0.959 0.949 0.959 0.949
Libras (LIB) 0.867 0.833 0.828 0.839 0.894 0.872 0.894 0.870
LSST (LSST) 0.652 0.648 0.50 0.631 0.575 0.551 0.575 0.551
MotorImagery (MI) 0.51 0.50 0.44 0.49 0.39 0.50 - 0.50
NATOPS (NATO) 0.817 0.75 0.739 0.817 0.85 0.88 0.85 0.883
PenDigits (PD) 0.951 0.959 0.944 0.933 0.939 0.977 0.939 0.977
PEMS-SF (PEMS) 1 0.694 0.775 0.965 0.734 0.711 0.734 0.711
PhonemeSpectra (PS) 0.287 0.25 0.158 0.224 0.151 0.151 0.151 0.151
RacketSportsc(RS) 0.809 0.809 0.711 0.728 0.842 0.803 0.842 0.803
SelfRegulationSCP1 (SRS1) 0.812 0.792 0.703 0.812 0.765 0.775 0.765 0.775
SelfRegulationSCP2 (SRS2) 0.417 0.461 0.50 0.539 0.533 0.539 0.533 0.539
SpokenArabicDigits (SA) 0.976 0.979 0.915 0.933 0.960 0.963 0.959 0.963
StandWalkJump (SWJ) 0.333 0.20 0.133 0.257 0.333 0.20 0.333 0.20
UWaveGestureLibrary (UW) 0.772 0.738 0.753 0.641 0.869 0.903 0.868 0.903
Total best acc 3 0 0 0 1 3 1 2
Ours 1-to-1-Wins/ties 21 27 26 26 24 22 21 23
Avg. Rank 8.52 11.31 13.41 12.10 10.81 9.48 11.23 9.98
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5 � Conclusion

This paper has proposed supervised contrastive learning for time series classification 
(SupCon-TSC). This model is based on the instance-level and cluster-level supervised 
contrastive learning approaches to learn the discriminative and universal representa-
tion for the multivariate time series dataset. As this approach is an end-to-end model, 
it allows us to detect those time steps of the time series that have the maximum influ-
ence on the model’s prediction via utilizing the Grad-CAM method. The experimen-
tal results on small CPET datasets indicate the capability of our SupCon-TSC model 
to learn discriminative features where the labeled dataset is insufficient. Furthermore, 

Table 3   Effect of the proposed supervised contrastive learning

Datasets AW AF BM CT C DDG

w/o SupCon 0.97 0.266 1.0 0.995 0.986 0.44
w/SupCon 0.98 0.467 1.0 0.997 1.0 0.54

Datasets EW EP EC FD HMD FM

w/o SupCon 0.862 0.985 0.277 0.559 0.378 0.52
w/ SupCon 0.885 0.993 0.231 0.565 0.338 0.61

Datasets LIB LSST MI NATO PD PEMS

w/o SupCon 0.872 0.662 0.59 0.911 0.986 0.843
w/ SupCon 0.85 0.657 0.59 0.894 0.993 0.861

Datasets HW HB IW JV PS SA

w/o SupCon 624 0.741 0.665 0.983 0.313 0.993
w/ SupCon 0.566 0.746 0.667 0.987 0.322 0.995

Datasets RS SRS1 SRS2 SWJ UW

w/o SupCon 0.848 0.703 0.488 0.333 0.837
w/ SupCon 0.875 0.730 0.55 0.6 0.812

Fig. 8   Critical difference diagram ( � = 0.05)
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the new model outperforms the state-of-the-art models in 11 out of 29 UEA archive 
datasets. In our future work, we would like to focus on the augmentation methods and 
evaluate their impact on SupCon-TSC performance.

Hyperparameters selection

Table shows the hyperparameters used in our experiments.
See Table 4.

Table 4   Selected hyperparameters. Abbreviations: LR1 - Learning rate 1, LR2 - Learning rate 1, BS1 - 
Batch size 1, BS2 - Batch size 2

Datasets LR1 BS1 Epoch1 LR2 BS2 Epoch2

ArticularyWordRecognition 0.001 40 100 0.005 20 100
AtrialFibrillation 0.001 15 100 1e-05 15 100
BasicMotions 0.001 10 100 0.001 5 100
CharacterTrajectories 0.001 50 100 0.001 50 100
Cricket 0.001 10 100 0.001 50 100
DuckDuckGeese 0.001 30 100 0.001 5 150
EigenWorms 0.001 10 100 0.001 10 150
Epilepsy 0.001 10 100 0.001 50 150
EthanolConcentration 0.001 10 100 0.001 20 150
FaceDetection 0.001 50 100 0.001 70 100
HandMovementDirection 0.001 50 100 0.0001 5 100
FingerMovements 0.005 100 100 0.0005 100 150
Handwriting 0.001 30 100 0.001 5 150
Heartbeat 0.001 50 100 0.001 10 100
InsectWingbeat 0.001 1000 100 0.0001 1000 100
JapaneseVowels 0.001 20 100 0.001 5 100
Libras 0.0001 30 100 0.001 5 150
LSST 0.001 20 100 0.001 5 100
MotorImagery 0.001 70 100 0.001 10 100
NATOPS 0.005 25 100 0.005 10 100
PenDigits 0.001 100 100 0.001 50 100
PEMS-SF 0.001 70 100 0.001 5 100
Phoneme 0.001 50 100 0.001 200 100
RacketSports 0.001 30 100 1e-05 5 150
SelfRegulationSCP1 0.001 20 100 1e-05 100 100
SelfRegulationSCP2 0.001 20 100 0.0001 5 100
SpokenArabicDigits 0.001 20 100 0.001 10 100
StandWalkJump 0.001 3 100 0.001 9 100
UWaveGestureLibrary 0.001 15 100 0.001 10 150
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