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Abstract 

 

Interfacial Region Thermophysics and Intrinsic Stability of Thin Free Liquid Films 

by 

Yu Gan 

Doctor of Philosophy in Engineering – Mechanical Engineering 

University of California, Berkeley 

Professor Van P. Carey, Chair 

 

The film rupture process that dictates merging of adjacent bubbles is particularly important in 
nucleate boiling heat transfer, bubbly two-phase flow in small tubes, and the mechanisms that 
dictate the Leidenfrost transition. To understand the mechanisms of bubble merging in nano-
structured boiling surfaces and in nanotubes, it is useful to explore film stability and onset of 
rupture at the molecular level. This dissertation reports the results of such an investigation 
combining three strategies that includes a new formulation of capillarity theory for free liquid 
films, molecular dynamics (MD) simulations using similar interaction potentials and bubble 
merging experiments. Two forms of our molecular film capillarity theory are developed here: 
one for non-polar fluids based on a Lennard-Jones interaction potential, and a second specifically 
for water using a modified treatment of the SPC/E interaction potential that accounts for water 
dipole interactions. The capillarity theory provides theoretical relationships among parameters 
that govern film structure and thermophysical behavior, while the companion MD simulations 
allow more detailed molecular level exploration of the film thermophysics. Results obtained with 
theoretical models and MD simulation studies indicate that the wave instability and the lack of 
thermodynamics intrinsic stability can lead to rupture of the liquid film, as its thickness 
decreases below a critical value. It is further predicted that wave instability predominates as an 
onset of rupture mechanism for liquid films of macroscopic extent, but for free liquid films with 
nanoscale lateral extent (in, for example, nanostructured boiling surfaces), lack of core stability 
is more likely to be the mechanism. For electrolyte aqueous solutions, theoretical models and 
MD simulation studies suggest that dissolved salts tend to alter the surface tension at liquid 
vapor interfaces and affect the stability of the free liquid film between adjacent bubbles. Bubble 
merging experiments are designed and carried out for various electrolyte aqueous solutions. The 
interaction of pairs of bubbles injected into solution with different dissolved salt concentrations 
is studied experimentally to determine the probability of merging from statistics for ensembles of 
bubble pairs. The results of these experiments indicate that for some types of salts, very low 
dissolved salt concentrations can strongly reduce the tendency of adjacent bubbles to merge, 
implying that the presence of the dissolved salt in such cases strongly enhances the stability of 
the free liquid film between adjacent bubbles. The trends are compared to predictions of free 
liquid film stability by wave instability theory and MD simulations. 
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CHAPTER 1 – INTRODUCTION  

 

 

§ 1.1 WAVE INSTABILITY MODEL STUDIES ON FILM STABILITY 

 

The stability of thin free liquid films has been explored in a number of earlier investigations. 
These studies were motivated by the importance of film rupture as a mechanism in coalescence 
of bubbles during boiling, bubble merging in two-phase flow, and collapse of foams. Here we are 
particularly interested in these phenomena in nano-structured boiling surfaces and in nano-
channel two-phase flow where the lateral extent of the interface is small. Most of the earliest 
investigations of free liquid film stability developed a model analysis that focuses on the fluid 
dynamics and/or thermodynamics of the wave motion at the film interfaces. Typical of these  
investigations are the early studies of Squire [1] and Hagerty and Shea [2], which focus on the 
fluid dynamics of wave motion, and the studies of Scheludko [3], Vrij [4], Vrij and Overbeek [5], 
and Donner and Vrij [6] which emphasize thermodynamics and the effect of the free energy 
change associated with wave motion. 

The circumstance of interest here is a free liquid film that is progressively thinned by bubble 
growth, bubble motion or drainage of the liquid film between bubbles due to capillary effects or 
gravity. The key issue is determination of the conditions under which the film will rupture. These 
earlier studies indicate that in systems of this type, a range of wavelengths are generally 
amplified, and the analysis is used to determine the ‘‘most dangerous” wavelength that grows in 
amplitude ܣ	most rapidly [7]. Usually a timescale ߬ of interest is dictated by the nature of the 
application, and a critical film thickness ߜ௖ can be determined by multiplying half the maximum 
growth rate by the timescale: ߜ௖ = ܣ݀)0.5 ⁄ݐ݀ )௠௔௫߬ . The critical thickness thus defined is the 
film thickness at which the wave amplitude grows to the point of film rupture (ܣ =  ௖) in theߜ0.5
characteristic time	߬. In more recent investigations, the wave perturbation theory was further 
developed by Radoev, et al. [8] and Manev et al. [9]. These investigations examine the 
establishment of conditions necessary to wave amplitude growth, and the rate of subsequent 
growth as factors that impact stability and rupture.  

As shown in Figure 1.1, in Scheludko’s [3] model of wave instability, two opposite effects of 
perturbing waves on system free energy are postulated: an increase in free energy Δܨ௦ due to the 
increase in interface surface area, and a decrease in free energy Δܨ௩	due to the decrease in 
volumetric energy: 
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As noted above, there are also circumstances of interest in which the lateral extent of the thin 
liquid film may be very small. Researchers are, for example, now fabricating nano-structured 
boiling surfaces in which bubbles may form in liquid-filled structure spaces with dimensions on 
the order of 10-50 nm [10, 11]. Liquid films separating bubbles during boiling in the structure 
will have a lateral extent on the order of about 10 nm. The thin liquid film between two adjacent 
bubbles in a nano-channel could also have a lateral extent on the order of about 10 nm. The 
model analysis developed by Vrij [4] can be applied to thin liquid films of limited lateral extent. 
Vrij [4] incorporated film thinning dynamics into Scheludko’s model and applied certain 
simplifications in his study, such as only considering the perturbation components of 
wavelengths much greater than initial film thickness [7], assuming that the van der Waals 
interaction term predominates over the electrostatic repulsion term, etc. For the simple case of a 
stationary film, i.e. no draining in the liquid film, Vrij [4] proposed that the maximum 
perturbation wavelength is restricted by the lateral film size	ܮ, and therefore ߣ௠௔௫ =  can be	ܮ
substituted in Eq. (1.3) to get a quantitative way of calculating the critical thickness	ߜ௖ as 

 

௖ߜ = ቆܣுܮଶ4ߨଷߪቇ଴.ଶହ (1.4)

 

Although wave instability has been the primary focus of efforts to predict conditions that result 
in film rupture, it has also been suggested that for ultra thin films, onset of rupture could result 
from hole formation due to thermal fluctuations in the film, or interaction of the interfacial 
regions in thin free liquid films. The analysis of De Vries [12] indicated that for common fluids, 
the free energy of forming a hole which is big enough to breach the film would require a free 
energy increase so large that its spontaneous formation due to thermal fluctuations is very 
unlikely unless the film is extremely thin. For common fluids at temperatures near 300 K, the 
film thickness would have to be on the order of 2 nm for this sort of hole formation to be a likely 
event. As noted by Vrij [4] and Donner and Vrij [6], experimentally measured critical film 
thicknesses for film rupture are typically in the order of tens of nanometer, which suggests that 
hole formation is not the determining mechanism. 

 

§ 1.2 REDLICH-KWONG MODEL STUDIES ON THE INTERFACIAL REGION 

 

The wave perturbation model studies summarized above were based on the assumption that the 
vapor-liquid interfacial region between two phases can be simplified as a well-defined 2-D 
surface without thickness. This assumption is questionable when the critical thickness is 
comparable to the interfacial region thickness. In van de Waals theory of capillarity [13], it 
generally argued that a step change of density from one phase to another is less 
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නߨ2− ݎଶ݀ݎ(ݎ)߶ = ܽோ଴ߛ଴(ܶ)ߟ଴ ൬ܸܰ൰௥೘ೌೣ௥೘೔೙  (1.8)

 

in which, ߛ଴(ܶ) and ߟ଴(ܸ ܰ⁄ )	are of the forms: 

(ܶ)଴ߛ  = ܶିଵଶ (1.9)

଴ߟ ൬ܸܰ൰ = ܸܾܰோ ln ൬ܸ + ܾܰோܸ ൰ (1.10)

 ܽோ଴	and ܾோ	are the constants of Redlich-Kwong equation of states for a fluid of uniform density.  

Consistent with this approach, Carey [14] similarly postulated that: 

 

3ߨ2− න ݎସ݀ݎ(ݎ)߶ = ܽோଵߛଵ(ܶ)ߟଵ ൬ܸܰ൰௥೘ೌೣ௥೘೔೙  (1.11)

 

Substituting Equation 1.8 and Equation 1.11 into Equation 1.7 yields: 

 

Φ(ݖ) = −ܽோ଴ߛ଴(ܶ)ߟ଴ ൬ܸܰ൰ܰଶܸ − 12 ܽோଵߛଵ(ܶ)ߟଵ ൬ܸܰ൰ܰ(1.12) (ݖ)"ߩ

 

The above given relation for Φ(z)	can be used to obtain the natural log of the canonical partition 
function as: 
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ln ܳ = ܰ + ൬32ܰ ൰ ln ቈ2݇ܯߨ஻ܶ(ܸ − ܾܰோ)ଶ ଷ⁄ܰଶ ଷ⁄ ℎଶ ቉ + ܰ ൤ߦ − 52 ln ߨ − ln +௦൨ߪ ߦ) − 3)ܰ2 ln ቆ ௥௢௧,௠ቇߠܶ + ܽோ଴ܾܰோ݇஻ܶଷ ଶ⁄ ln ൬ܸ + ܾܰோܸ ൰+ ܽோ଴2ܾ(ݖ)"ߩܸߢோ݇஻ܶଷ ଶ⁄ ln ൬ܸ + ܾܰோܸ ൰ 

(1.13)

 

where ܯ	is the molecular mass of the molecule, ݇஻	is the Boltzmann constant, ℎ	is Planck’s 
constant, ߦ	is the number of translational and rotational storage modes, ߪ௦	is the symmetry 
number for the molecule, ߠ௥௢௧,௠	is the mean rotational temperature for the molecule if it is a 
polyatomic species, and ߢ	, which arises due to the non-uniform density distribution, is defined 
as: 

 

ߢ = ܽோଵߛଵߟଵܽோ଴ߛ଴ߟ଴ = 3ߨ2− ׬ ߨ௥೘ೌೣ௥೘೔೙−2ݎସ݀ݎ(ݎ)߶ ׬ ௥೘ೌೣ௥೘೔೙ݎଶ݀ݎ(ݎ)߶  (1.14)

 

Using the partition function from Equation 1.13, Carey [14] defined the free energy per unit 
volume ߰	as: 

 

߰ = ܨܸ = −݇஻ܶ lnܸܳ  (1.15)

 

in which, ܨ	is the Helmholtz free energy. The interfacial free energy ߪ	is the system excess free 
energy (per unit area of interface) above that for a step changes in density ߩො	at the interface at ݖ = 0	(as shown in Figure 1.2): 

 

ߪ = න ሾ߰ − ݖሿ݀(ො௩ߩ)߰ + න ሾ߰ − ஶݖሿ݀(ො௟ߩ)߰
଴

଴
ିஶ  (1.16)

 

here,  ߩො௩	and  ߩො௟	are the molar densities of the bulk vapor and bulk liquid phases respectively. By 
substituting Equations 1.13 and 1.15 into Equation 1.16, the interfacial free energy ߪ	is 
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Also reported in Carey’s work [14] is that within the interfacial region is a sublayer that lacks the 
intrinsic stability usually associated with a stable phase. Both the thickness of the interfacial 
region and the thickness of the unstable sublayer increase with the increase of system reduced 
temperature. 

 

§ 1.3 MOLECULAR DYNAMICS STUDIES ON THE INTERFACIAL REGION 

 

Besides the method of thermodynamics analysis, computer simulation method is also widely 
adopted in the research of interfacial region and film stability. By investigating the system on a 
“bottom-up” approach, computer simulations provide additional insight into the behaviors of 
molecules and their interactions within the interfacial region.  

Monte Carlo (MC) and Molecular Dynamics (MD) are two major methods used for computer 
simulations. In MC simulations, a sequential series of proposed molecular configuration are 
accepted or rejected based on criteria related to the possible system potential energy change. In 
MD simulations, the molecular configuration is updated for each of a series of time steps based 
on the integration of Newton’s second law. Although the MC simulation has the advantage in the 
ease of implementation, MD simulation is generally preferred since it provides a physically 
meaningful temporal evolution of the system. 

A number of previous investigations have used MD simulations to explore the free liquid film 
structure and stability. Studies of this type have considered films of Lennard-Jones fluids [17, 
18], argon [17, 19–22], nitrogen [21], water [18, 23-24], water and alcohol mixtures [25–27], 
hydrocarbons [28] and fluorocarbons [29]. Statistical analysis of MD simulation results appears 
to support Carey’s study [14] by Redlich-Kwong capillarity model discussed above. It is reported 
that the core of the interfacial region exhibits high levels of property fluctuations and is at best 
weakly stable [20, 27]. As the thickness of a free liquid film diminishes, the stable core fluid 
separating the interfacial regions becomes thinner, which may strengthen the interaction between 
the interior sublayers in the interfacial regions that lack intrinsic stability. This suggests that the 
interaction of these subregions may be a precursor to film rupture. 

Although significant work has recently been performed in MD simulations, many areas are left 
unexplored for the properties of vapor-liquid interfacial regions, such as the nature of the 
interaction between adjacent interfacial regions and its effects on thin film stability, the 
relationship of surface tension to the critical film thickness. Therefore, one of the major focuses 
in our research is to use MD simulations in tandem with extended film capillarity theory to 
explore the thermophysics of vapor-liquid interfacial regions and stability of free thin liquid 
films. A more detailed description about the MD simulations and simulation data analysis is 
presented in later sections.  
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§ 1.4 THE EFFECT OF ELECTROLYTE ON ITS AQUEOUS SOLUTION PROPERTIES 

 

Among investigations of electrolytes in their aqueous solutions, two topics are especially 
important and tightly related with our research: the effect of electrolytes on surface tension of 
solutions and the influence of electrolytes on bubble coalescence.   

 

Surface tension 

Investigations of the surface tension of electrolytes aqueous solution have been reported in a 
number of literatures. The widely cited experimental results were reported by Weissenborn and 
Pugh [30], in which the surface tension of aqueous solutions of 36 inorganic electrolytes had 
been measured as a function of electrolyte concentration up to 1M (mol/l) at room temperature of 
25 °C. Plots of these data are shown in Figure 1.5a and 1.5b for 1:1 electrolytes and electrolytes 
containing multivalent ions respectively. For higher concentration electrolyte aqueous solution, 
Abramzon and Gaukhberg [31], and Svenningsson et al. [32] reported their experimental 
measurement of surface tension at room temperature up to 5M. Matubayasi et al. [33] and Ikeda 
et al. [34] measured the surface tension of NaCl aqueous solution for various NaCl 
concentrations at different temperatures. Their experiment results suggested that the surface 
tension of NaCl aqueous solution increases with the increase of NaCl concentration and the 
decrease of temperature, as shown in Figure 1.6a and 1.6b respectively.  
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distribution and its relation with the surface tension are examined in details in our study of MD 
simulations. 

 

Bubble coalescence 

Because the critical thickness of a free liquid film is generally in the order of nano-meters, direct 
experiment measurements of the critical thickness and its variation are hard to achieve without 
the help of complex optical and electronic auxiliary systems. An alternative experiment method 
to study the effect of the electrolyte concentrations on film stability is to observe the variation of 
the probabilities of bubble merging in different electrolyte aqueous solutions. 

A bubble merging experiment platform normally consists of three parts: a container filled by 
electrolyte aqueous solution at specified concentrations; a mechanism generating bubbles in the 
solution with constant speed and bubble size; an observing system that helps count the 
percentage of bubble coalescence. It is reasonable to assume that the separations of bubbles, i.e. 
the thicknesses of the separating film between bubble pairs, distribute randomly within a 
relatively small range, given that the experiment conditions are fixed. Therefore, the extent of 
bubbling merging is a good indicator for the stability of separating films: a high probability of 
bubble merging means the low stability of the solution film, and vice verse.  

In the experiment of Lessard and Zieminski [36], the percentage of bubble coalescence in pure 
water without the addition of electrolyte is 100%, and the coalescence percentage drops to 50% 
in 0.175M NaCl aqueous solution. At NaCl concentration of 0.25M, the coalescence percentage 
further reduces to 10%. They also reported three experiments on sea water at three temperatures, 
showing that with the increase of temperature from 6 °C to 31°C, the percentage of coalescence 
increase from 12% to 50%. Aguilera et al [37] reported similar experiments for NaCl aqueous 
solutions from 0.001M to 0.145M concentration at room temperature of 25 °C. Their experiment 
results show 100% coalescence percentage for pure water, 50% coalescence percentage in 0.1M 
NaCl aqueous solution, and 0% coalescence percentage in 0.145M NaCl aqueous solution. In 
Aguilera’s work [37], they also cited the experiment results from Liendo [38] and compared with 
their own results, as shown in Figure 1.7. 
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CHAPTER 2 – FILM CAPILLARITY THEORY FOR FREE LIQUID FILMS  

 

 

This chapter outlines the development of the film capillarity theoretical model based on Carey’s 
work of a single vapor-liquid interface system. After deriving appropriate partition functions for 
the thermodynamics systems of argon and water, the interfacial free energy is expressed as a 
functional, mapping the density function into the interfacial free energy’s value. The calculus of 
variation method is used to obtain the density profile that minimize the interfacial free energy, 
and based on the density profile derived, the critical thickness is determined using the intrinsic 
stability analysis. Surface tension variation with the film thickness is discussed, and its impact on 
film stability is examined.    

 

§ 2.1 PARTITION FUNCTION 

 

As mentioned previously in the introduction chapter, for a system containing a Redlich-Kwong 
fluid with spatially varying density, Carey [14] derived Equation 1.13 for the partition function. 
Given a specified fluid, most parameters in the partition function can be easily determined. (ݖ)"ߩ	in Equation 1.13 is the second derivative of the density variation along z-axis, which needs 
be solved by using Calculus of Variable method in the following sections, and the parameter	ߢ	 
arises due to the non-uniform density distribution, which can be evaluated by Equation 1.14 as 
the effective pair-wise intermolecular potential function	߶(ݎ)	is provided. 

 

Partition function for monatomic fluid – argon  

To calculate	ߢ for monatomic fluid argon, the Lennard-Jones 12-6 potential function (Equation 
1.17) is adopted for	߶(ݎ). The upper integral limit	ݎ௠௔௫	in Equation 1.14 is set to be	∞, and the 
lower limit ݎ௠௜௡	is chosen to be the mean separation of the closest molecules in a bulk saturated 
liquid phase. Modeling the liquid as a three-dimensional cubic array of molecules with nearest 
neighbors separated by a center-to-center distance of	ݎ௠௜௡, the relationship between the saturated 
liquid molar density	ߩො௟	and ݎ௠௜௡	is: 

௠௜௡ݎ  = ො௟ߩ) ஺ܰ)ିଵଷ (2.1)
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Substituting Equation 1.17 into Equation 1.14 with the two integral limits ݎ௠௔௫	and	ݎ௠௜௡	defined 
above, after integration we obtain: 

 

௔௥௚௢௡ߢ = 9ܽ௔(ߩො௟ ஺ܰ)଻ଷ − 63ܾ௔(ߩො௟ ஺ܰ)ଵଷ21ܽ௔(ߩො௟ ஺ܰ)ଷ − 63ܾ௔(ߩො௟ ஺ܰ) (2.2)

 

where  

 ܽ௔ = 4߳௟௝ݎ௟௝ଵଶ (2.3a)ܾ௔ = 4߳௟௝ݎ௟௝଺  (2.3b)

 

To get the numerical value of ߢ௔௥௚௢௡	from Equation 2.2, ߩො௟	must be specified. The Redlich-
Kwong fluid property model developed by Carey [14] is used to compute reduced bulk 
equilibrium properties for the saturated liquid and vapor phases. Resulting values for specific 
reduced temperatures ( ௥ܶ = ܶ/ ௖ܶ	) are listed in Table 2.1. Saturation densities are computed 
from these results and the critical constants:	ߩො௟ = ො௩ߩ ො௖, andߩ௥,௟௜௤௨௜ௗߩ =  ො௖. At the criticalߩ௥,௩௔௣௢௥ߩ
point, the properties of argon should satisfy the Redlich-Kwong equation of state, the zero slope 
and inflection point conditions for isotherms on the ܲ −   :diagram, which gives us ݒ

 

௖ܲ = ܴ ௖ܶݒො௖ − ஺ܾܰோ − ܽோ଴ ஺ܰଶ
௖ܶଵଶݒො௖(ݒො௖ + ஺ܾܰோ) (2.4a)

൬߲߲ܲݒො൰ ೎் = 0 (2.4b)

ቆ߲ଶ߲ܲݒොଶቇ ೎் = 0 (2.4c)

The resulting three equations 2.4a – 2.4c are solved simultaneously at the experimentally 
determined ௖ܶ 	and ௖ܲ values for argon to obtain the numerical values of Redlich-Kwong 



Interfacial Region Thermophysics and Intrinsic Stability of Thin Free Liquid Films 
Chapter 2 – Film Capillarity Theory for Free Liquid Films 

19 
 

constants	ܽோ଴, ܾோ, and the critical density ߩො௖ in Table 2.2. After substituting ߢ௔௥௚௢௡	and other 
constants from Table 2.2 into Equation 1.13, the functional dependence of the partition function ln(ܳ)	on temperature, local equilibrium properties, and the second derivative of the density 
profile (ݖ)"ߩ	is defined. 

 

Table 2.1 
Reduced saturation liquid and vapor densities based on the Redlich-Kwong model [14] 

௥ܶ 0.6 0.65 0.7 0.75 0.8 0.85 0.9 ߩ௥,௟௜௤௨௜ௗ ௥,௩௔௣௢௥ߩ 1.987 2.264 2.428 2.603 2.758 2.898 3.025   0.01172 0.02452 0.04559 0.07793 0.1256 0.1950 0.2980 

 

Table 2.2 
Properties and constants used for the partition function of argon ܯ	(kg)  6.633×10-26 ߪ 3  ߦ௦  1 ߳௟௝	(J)  1.670×10-21

(m)  3.400×10-10	௟௝ݎ

௖ܲ 	(Pa)  4.86×106 

௖ܶ	(K)  150.69 ߩො௖	(mol/m3)  11644.6 ܽோ଴	(JK0.5m3)  4.671×10-48ܾோ	(m3)  3.707×10-29

   

 

Partition function for polyatomic fluid – water  

Due to the dipole character of water, the Lennard-Jones 12-6 potential function is not a 
completely suitable model of molecular interactions for water. In this investigation, we therefore 
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Table 2.3 
Properties and constants used for the partition function of water ܯ	(kg)  2.987×10-26 ߠ௥௢௧,௠	(K)  22.394 ܮ௕,ைு	(m)  1.00×10-10ߙுு	(°)  109.47 ܦ௪௔௧௘௥	(C∙m)  -1.358×10-19ߪ 6  ߦ௦  2 ߳௦௣௖/௘	(J)  1.080×10-21

(m)  3.166×10-10	௦௣௖/௘ݎ

௖ܲ 	(Pa)  2.218×107

௖ܶ	(K)  650.83 ߩො௖	(mol/m3)  12296.8 ܽோ଴	(J∙K0.5∙m3)  39.7×10-48ܾோ	(m3)  3.51×10-29

   

As shown in Equation 2.7, the electrostatic part of the potential ߶௘௟	requires specifying all nine 
separations ݎ௜௔௕௝among all three atoms in molecules ݅ and ݆. We therefore cannot directly 
substitute the potential into Equation 1.14 to calculate ߢ. To deal with this problem, a more 
suitable expression for ߶௘௟ is needed. Instead of using the columbic type of form in Equation 2.7, 
we consider ߶௘௟	as the potential energy of one molecule in a field generated by the second 
molecule. As is well-known from electrostatic theory [40], the field generated by a system of 
point charges, the second molecule in this case, may be represented as a series expanded in 
multi-pole moments. If the two molecules are at a separation distance greater than the 
dimensions of each molecule, the higher order terms which are of small magnitude in the 
expansion can be neglected, thus giving us a simplified expression of ߶௘௟	in terms of ݎைை	and Ω, 
the set of Euler’s angles between the dipole moments of molecule ݅	and molecule ݆	. Because the 
molecules are not affected by any external fields in this study, the probability of having different 
Euler’s angles Ω	is determined by the Boltzmann factor ݁ିథ೐೗(௥ೀೀ,ஐ) (௞ಳ்)⁄ . Calculating the 
thermal ensemble average of < ߶௘௟(ݎைை, Ω) >ஐ	over all possible Ω, we can get the 
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Assuming the distance between the point-charge-system ݅	and ݆	is much larger than separations 

within the molecules, we can expand ߮௜ ቀݎைണሬሬሬሬሬԦቁ	into a series of multipole moments of molecule ݅. 
Neglecting higher order terms, which are of small magnitude, this leads to: 

 

߮௜ ቀݎைണሬሬሬሬሬԦቁ = ைണሬሬሬሬሬԦቚݎ௜ቚݍ + ݀పሬሬሬԦ ⋅ ைണሬሬሬሬሬԦቚݎைണሬሬሬሬሬԦቚݎ  (2.9)

 

where ݍ௜	and ݀పሬሬሬԦ	are the monopole and dipole moments for molecule ݅	given by: 

௜ݍ  = ைݍ + ு (2.10)݀పሬሬሬԦݍ2 = ைഢሬሬሬሬԦݎைݍ + ுഢ,భሬሬሬሬሬሬሬԦݎுݍ + ுഢ,మሬሬሬሬሬሬሬԦ (2.11)ݎுݍ

 

As for ߮௜ ቀݎுണ,భሬሬሬሬሬሬሬԦቁ	and ߮௜ ቀݎுണ,మሬሬሬሬሬሬሬԦቁ, since: 

 ቚݎுണ,భሬሬሬሬሬሬሬԦ − ைണሬሬሬሬሬԦቚݎ ≪ ቚݎைണሬሬሬሬሬԦቚ (2.12a)

ቚݎுണ,మሬሬሬሬሬሬሬԦ − ைണሬሬሬሬሬԦቚݎ ≪ ቚݎைണሬሬሬሬሬԦቚ (2.12b)

 

we can expand them into Taylor series about ݎைണሬሬሬሬሬԦ. Neglecting higher order terms, which are of 

small magnitude, this leads to: 

 ߮௜ ቀݎுണ,భሬሬሬሬሬሬሬԦቁ = ߮௜ ቀݎைണሬሬሬሬሬԦቁ + ∇߮ ቀݎைണሬሬሬሬሬԦቁ ⋅ ቀݎுണ,భሬሬሬሬሬሬሬԦ − ைണሬሬሬሬሬԦቁ (2.13a)ݎ

߮௜ ቀݎுണ,మሬሬሬሬሬሬሬԦቁ = ߮௜ ቀݎைണሬሬሬሬሬԦቁ + ∇߮ ቀݎைണሬሬሬሬሬԦቁ ⋅ ቀݎுണ,మሬሬሬሬሬሬሬԦ − ைണሬሬሬሬሬԦቁ (2.13b)ݎ
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By substituting Equations 2.13a and 2.13b back into Equation 2.8, the relation for ߶௘௟	is written 
as: 

 ߶௘௟ = ߮௜ ቀݎைണሬሬሬሬሬԦቁ ைݍ) + (ுݍ2 + ∇߮௜ ቀݎைണሬሬሬሬሬԦቁ ⋅ ቂݍு ቀݎுണ,భሬሬሬሬሬሬሬԦ − ைണሬሬሬሬሬԦቁݎ + ுݍ ቀݎுണ,మሬሬሬሬሬሬሬԦ − =	ைണሬሬሬሬሬԦቁቃݎ ߮௜ ቀݎைണሬሬሬሬሬԦቁ ைݍ) + (ுݍ2 + ∇߮௜ ቀݎைണሬሬሬሬሬԦቁ ⋅ ቂݍைݎைണሬሬሬሬሬԦ + ுണ,భሬሬሬሬሬሬሬԦݎுݍ + ுണ,మሬሬሬሬሬሬሬԦݎுݍ − ைݍ) + =	ைണሬሬሬሬሬԦቃݎ(ுݍ2 ߮௜ ቀݎைണሬሬሬሬሬԦቁ ௝ݍ + ∇߮௜ ቀݎைണሬሬሬሬሬԦቁ ⋅ ቂ ఫ݀ሬሬሬԦ − ைണሬሬሬሬሬԦቃ (2.14)ݎ௝ݍ

 

in which ݍ௝	and ఫ݀ሬሬሬԦ	are monopole and dipole moments of molecule ݆	respectively.  

Substituting Equation 2.9 into Equation 2.14 and using the fact that the monopole moments of 
water ݍ௜	and ݍ௝	equal zero, we are able to express ߶௘௟	ܽݏ: 
 

߶௘௟ = ݀పሬሬሬԦ ⋅ ఫ݀ሬሬሬԦቚݎைണሬሬሬሬሬԦቚଷ − 3 ቀ݀పሬሬሬԦ ⋅ ைണሬሬሬሬሬԦቁݎ ቀ ఫ݀ሬሬሬԦ ⋅ ைണሬሬሬሬሬԦቚହݎைണሬሬሬሬሬԦቁቚݎ  (2.15)

 

Based on the position configuration shown in Figure 2.2, we have ݎைഢሬሬሬሬԦ	equals zero and: 

 

ைണሬሬሬሬሬԦݎ = ൭ ைை൱ (2.16)ݎ00

 

The dipole moment ݀పሬሬሬԦ	is given by: 

 

݀పሬሬሬԦ = ைഢሬሬሬሬԦݎைݍ + ுഢ,భሬሬሬሬሬሬሬԦݎு൫ݍ + ுഢ,మሬሬሬሬሬሬሬԦ൯ݎ = ௕,ைுܮுݍ2 cos ுு2ߙ ⋅ ൭100൱ (2.17)

 

The dipole moment of ఫ݀ሬሬሬԦ	is expressed with respect to ݀పሬሬሬԦ	by using the rotation matrix	ܴெ: 
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ఫ݀ሬሬሬԦ = ܴெ݀పሬሬሬԦ (2.18)

 

where, 

 

ܴெ = ൥ cos ଵߚ cos ଶߚ cos ଷߚ − sin ଵߚ sin ଷߚ sin ଵߚ cos ଶߚ cos ଷߚ + cos ଵߚ sin ଷߚ − sin ଶߚ cos −ଷߚ cos ଵߚ cos ଶߚ sin ଷߚ − sin ଵߚ cos ଷߚ − sin ଵߚ cos ଶߚ sin ଷߚ + cos ଵߚ cos ଷߚ sin ଶߚ sin ଷcosߚ ଵߚ sin ଶߚ sin ଵߚ sin ଶߚ cos ଶߚ ൩ 
 (2.19)

 

here, Ω = ,ଵߚ) ,ଶߚ ଷ), in which 0ߚ ≤ ,ଵߚ ଷߚ ≤ 0 ,ߨ2 ≤ ଶߚ	 ≤  are the Euler’s angles that ,ߨ
describe the mutual orientation between dipole moments ݀పሬሬሬԦ	and ఫ݀ሬሬሬԦ. Using Equations 2.16-2.18 to 
simply Equation 2.15, we get the following form of ߶௘௟	as a function of ݎைை	and Ω: 

 

߶௘௟(ݎைை, Ω) = −2 ቀ2ݍுܮ௕,ைு cos ுு2ߙ ቁଶ (cos ଵߚ cosߚଶ cos ଷߚ − sin ଵߚ sin ைைଷݎ(ଷߚ  (2.20)

 

To eliminate the dependence of ߶௘௟	on Ω	, the thermal ensemble average 〈߶௘௟(ݎைை, Ω)〉ஐ	is taken 
over all possible mutual orientations in space. It follows that: 

 

߶௘௟(ݎைை) = 〈߶௘௟(ݎைை, Ω)〉ஐ = ׬ ߶௘௟(ݎைை, Ω) ⋅ ݁ି థ೐೗(௥ೀೀ,ஐ)௞ಳ் ݀Ωஐ ׬ ݁ି	థ೐೗(௥ೀೀ,ஐ)௞ಳ் ݀Ωஐ  (2.21)

 

Since in our study ߶௘௟ ≪ ݇஻ܶ	, the Boltzmann exponential term may be approximated by: 
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݁ି	థ೐೗(௥ೀೀ,ஐ)௞ಳ் ≈ 1 − ߶௘௟(ݎைை, Ω)݇஻ܶ  (2.22)

 

Substituting Equation 2.22 into Equation 2.21 and using ׬ ׬ ׬ ሾ⋯ ሿ݀ߚଵ݀ߚଶ݀ߚଷ	ଶగ଴గ଴ଶగ଴ for ׬ ሾ⋯ ሿஐ ݀Ω, 
we get the simplified form of ߶௘௟	, which is independent on Ω: 

 

߶௘௟(ݎைை) = − ௪௔௧௘௥ସ2݇஻ܶܦ3 ⋅ ைை଺ݎ  (2.23)

 

in which, ܦ௪௔௧௘௥	is the magnitude of water’s dipole moment: 

௪௔௧௘௥ܦ  = ௕,ைுܮுݍ2 cosߙுு2  (2.24)

 

By substituting Equation 2.23 and 2.6 into Equation 2.5, we get the relation for ߶௜,௝ as a function 
of ݎைை	only: 

 

߶௜,௝(ݎைை) = 4߳௦௣௖/௘ ቈ൬ݎ௦௣௖/௘ݎைை ൰ଵଶ − ൬ݎ௦௣௖/௘ݎைை ൰଺቉ − ௪௔௧௘௥ସ2݇஻ܶܦ3 ⋅ ைை଺ݎ  (2.25)

 

With ߶௜,௝	depending only on the separation between two oxygen atoms of water molecules, we 
can now substitute Equation 2.25 into Equation 1.14 to evaluate ߢ	for water. The lower integral 
limit 	ݎ௠௜௡	is again determined by Equation 2.1, while the upper limit ݎ௠௔௫	is set to be	∞. 
Executing the integration using the derived relation for the potential function, the net result of the 
analysis for water is:  

 

௪௔௧௘௥ߢ = 9ܽ௪(ߩො௟ ஺ܰ)଻ଷ − 63ܾ௪(ߩො௟ ஺ܰ)ଵଷ21ܽ௪(ߩො௟ ஺ܰ)ଷ − 63ܾ௪(ߩො௟ ஺ܰ) (2.26)
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in which, 

 ܽ௪ = 4߳௦௣௖/௘ݎ௦௣௖/௘ଵଶ  (2.27a)

ܾ௪ = 4߳௦௣௖/௘ݎ௦௣௖/௘଺ + ௪௔௧௘௥ସ2݇஻ܶܦ3  (2.27b)

As in the case of argon, ߩො௟	has to be specified for a given temperature to determine a numerical 
value of ߢ௪௔௧௘௥ from Equation 2.26. Because in Carey’s scheme [14] density is set to be uniform 
in the system for the bulk saturation state (i.e. ߩොᇱand ߩො"	are set to be zero), ߢ	and the potential 
function will not play a role in the calculation of the saturated liquid density	ߩො௟. So, for water, the 
Redlich–Kwong model predictions of saturation properties, represented in dimensionless form in 
Table 2.1, are used to determine the saturation liquid density, and the relation for ߢ௪௔௧௘௥, 
Equation 2.26, incorporating dipole and van der Waals forces is used to account for density 
variation ߩො"	effects in the capillarity model. By matching water’s measured critical temperature ௖ܶ and critical pressure ௖ܲ, the equation of state, zero slope: (߲ܲ ⁄ොݒ߲ )் = 0, and inflection point: (߲ଶܲ ⁄ොଶݒ߲ )் = 0	relations are solved simultaneously, yielding the numerical values of Redlich-
Kwong constants ܽோ଴, ܾோ, and the critical density ߩො௖	indicated in Table 2.3. After substituting ߢ௪௔௧௘௥ and other constants from Table 2.3 into Equation 1.13 for a given temperature, the log of 
the partition function ln(ܳ)	incorporates the effect of the second derivate of the density profile (ݖ)"ߩ	in a form that facilitates its use in the film molecular capillarity analysis. 

 

§ 2.2 INTERFACIAL VOLUMETRIC FREE ENERGY 

 

Using the definition of free energy per unit volume ߰	in Equation 1.15 and the expression of ln ܳ 
given in Equation 1.13, we have: 

 

߰ = ොܴܶߩ− − ොܴܶߩ ln ൤1 − ොߩ ஺ܾܰோߩො ஺ܰΛଷ ൨ − ොܴܶߩ ൤ߦ − 52 ln ߨ − ln −௦൨ߪ ߦ − 32 ොܴܶߩ ln ቆ ௥௢௧,௠ቇߠܶ − ܽோ଴ ஺ܰߩොܾோܶଵ ଶ⁄ ln(1 + ොߩ ஺ܾܰோ)− ܽோ଴ ஺ܰߩߢො"(ݖ)2ܾோܶଵ ଶ⁄ ln(1 + ොߩ ஺ܾܰோ) 
(2.28)

 

in which, ܴ	is the universal gas constant, and Λ	is defined as: 
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Λ = ቈ ℎଶ2݇ܯߨ஻ܶ቉ଵ ଶ⁄
 (2.29)

 

Since in Equation 2.28 only the last term on the right side accounts for the effect of non-uniform 
density profile, we consider the volumetric free energy ߰	consisting of two parts: 

 ߰ = ߰଴(ߩො) − (ොߩ)݉ ⋅ ොߩ ⋅ ො" (2.30)ߩ

 

where ߰଴(ߩො)	accounts for the uniform density part of ߰: 

 

߰଴(ߩො) = ොܴܶߩ− − ොܴܶߩ ln ൤1 − ොߩ ஺ܾܰோߩො ஺ܰΛଷ ൨ − ොܴܶߩ ൤ߦ − 52 ln ߨ − ln −௦൨ߪ ߦ − 32 ොܴܶߩ ln ቆ ௥௢௧,௠ቇߠܶ − ܽோ଴ ஺ܰߩොܾோܶଵ ଶ⁄ ln(1 + ොߩ ஺ܾܰோ) (2.31)

 

and ݉(ߩො) ⋅ ොߩ ⋅  ො" provides the correction for the effect of non-uniform density distribution, inߩ
which ݉(ߩො)	is defined as: 

 

(ොߩ)݉ = ܽோ଴ ஺ܰ2ܾߢோܶଵ ଶ⁄ ln(1 + ොߩ ஺ܾܰோ) (2.32)

 

We consider here the idealized configuration of a sandwiched liquid film (see Figure 1.8) with a 
characteristic thickness	ߜ௠௟ = ො݊" ⁄ො௟ߩ 	, where ො݊"	is the moles of fluid per unit area of film and ߩො௟		is the saturation molar density for bulk liquid. Note that this film molar loading thickness 
quantifies the molar (or mass) loading of the film per unit area. It is the thickness that the film 
would have if the density everywhere in the film was equal to the saturated bulk liquid value. 
The half film (centerline to vapor) free energy ߪ is defined as one half of the system excess free 
energy (per unit area of interface) above that for step changes in density at the interfaces of ݖ = ௠௟ߜ− 2⁄ 	and ݖ = ௠௟ߜ 2⁄   for the idealized initial state. The half film free energy ߪ	is 
computed as: 
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߰௦௟௔(ߩො) = (ො௩ߩ)߰ + ቈ߰(ߩො௩) − ො௩ߩ(ො௟ߩ)߰ − ො௟ߩ ቉ ොߩ) − ො௩) (2.35)ߩ

 

Substituting Equation 2.30, Equation 2.31, Equation 2.32 into Equation 2.35, and noticing that 
for a pure substance the specific Gibbs function ො݃ = መ݂ +  ො is equivalent to the chemicalݒܲ
potential	̂ߤ, the expression of ߰௦௟௔	simplifies to: 

 ߰௦௟௔ = ߰଴(ߩො௩) + ොߩ)௩ߤ̂ − ො௩) (2.36)ߩ

 

where, ̂ߤ௩	is the molar chemical potential for saturated vapor. Substituting Equation 2.30, 
Equation 2.36 back into Equation 2.34, and using the symmetry property of the configuration, we 
can reorganize Equation 2.34 as: 

 

ߪ = න ߰௘(ߩො)݀ݖ଴
ିஶ −න (ොߩ)݉ ⋅ ොߩ ⋅ ଴ݖ݀"ොߩ

ିஶ  (2.37)

 

where, ߰௘(ߩො)	is defined as excess volumetric free energy: 

 ߰௘(ߩො) = ߰଴(ߩො) − ߰଴(ߩො௩) − ௩ߤ̂ ⋅ ොߩ) − ො௩) (2.38)ߩ

 

Two boundary conditions are specified for the density profile	ߩො(ݖ):  
ොᇱ|௭ୀ଴ߩ  = ො|௭→ିஶߩ(2.39) 0 = ො௩ (2.40)ߩ
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Condition 2.40 implies that:  

ොᇱ|௭→ିஶߩ  = 0 (2.41)

 

The first boundary condition 2.39 comes from the symmetry of the configuration; the second 
2.40 and Equation 2.41 come from the requirement that density and density gradient at infinity 
should not be affected by density variations in the film. 

By using boundary conditions Equation 2.39 and 2.41, the expression of interfacial free energy 
can be further simplified via integration by parts on the second integral term in Equation 2.37 to 
obtain: 

 

ߪ = න ൤߰௘(ߩො) + ොᇱଶߩ12 ෥݉(ߩො)൨଴
ିஶ (2.42) ݖ݀

 

where, 

 

෥݉(ߩො) = 2 ൤݉ + ෝߩ ොߩ݉݀݀ ൨ = ܽோ଴ ஺ܰଶ1)ߢ + ොܾோߩ ஺ܰ) ⋅ ܶଵ ଶ⁄  (2.43)

 

 

§ 2.3 DETERMINATION OF DENSITY PROFILES 

 

Based on thermodynamic arguments, the equilibrium density profile ߩො(ݖ)	is that which 
minimizes the half film interfacial free energy	ߪ	determined from the integral in Equation 2.42. 
The density profile ߩො(ݖ)	 must also satisfy the three boundary conditions given in Equations 2.39, 
2.40 and 2.41. The law of conservation of mass also requires that ߩො(ݖ)	must satisfy the following 
constraint condition: 
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න ොߩ) − ଴ݖ݀(ො௩ߩ
ିஶ = ௠௟2ߜ ො௟ߩ) − ො௩) (2.44)ߩ

 

This formulation defines a classical isoperimetric calculus of variations problem to determine a 
functional solution minimizing an integral and satisfying a constraint condition.  Mathematically, 
this type problem is solved by converting it to an Euler-Lagrange equation [16]. Introducing the 
Lagrange multiplier	ߣ, and setting: 

 

,ݖ)݂ ,ොߩ (ොᇱߩ = ߰௘(ߩො) + ොଶߩ12 ෥݉(ߩො) (2.45)݃(ݖ, ,ොߩ (ොᇱߩ = ොߩ − ො௩ (2.46)ߩ

 

we obtain the corresponding Euler-Lagrange equation as: 

 ߲(݂ + ߣ ⋅ ොߩ߲(݃ − ݖ݀݀ ቈ߲(݂ + ߣ ⋅ ොᇱߩ߲(݃ ቉ = 0 (2.47)

 

Substituting the expressions for	݂	and 	݃	(Equation 2.45 and Equation 2.46) into Equation 2.47, 
we get the following second-order non-linear ordinary differential equation for	ߩො: 
 ݀߰௘(ߩො)݀ߩො − ොᇱଶߩ12 ݀ ෥݉(ߩො)݀ߩො − ෥݉(ߩො)ߩො" + ߣ = 0  (2.48)

 

This equation can be simplified to a first-order ordinary differential equation by introducing	ߩො′ as 
a new variable and using the identity: 

 

"ොߩ = ′ොߩ ොߩ݀݀ ′ොߩ  (2.49)
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This converts Equation 2.48 to: 

 

2݀߰௘݀ߩො − ොߩ݀݀ ො′ଶߩ) ෥݉) + ߣ2 = 0 (2.50)

 

This can be solved by integration using boundary conditions Equation 2.40 and Equation 2.41, 
yielding the relation: 

 

ොᇱߩ = ቈ2߰௘ + ොߩ)ߣ2 − ො௩)෥݉ߩ ቉ଵଶ (2.51)

 

The Lagrange multiplier	ߣ is a purely mathematical term.  But we can relate it to	ߩො௖௟, the local 
density at the centerline (ݖ = 0)	by combining the boundary condition of Equation 2.39 with 
Equation 2.51 to obtain: 

 

ߣ = ߰௘(ߩො௖௟)ߩො௩ − ො௖௟ (2.52)ߩ

 

With this result, Equation 2.51 can be written as: 

 

ොᇱߩ = ൞2߰௘(ߩො) − 2߰௘(ߩො௖௟) ൤ ොߩ − ො௖௟ߩො௩ߩ − (ොߩ)ො௩൨෥݉ߩ ൢଵଶ (2.53)

 

To determine	ߩො௖௟, the constraint condition equation 2.44 is used: 
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௠௟2ߜ ො௟ߩ) − (ො௩ߩ = න ොߩ) − ො௩)଴ߩ
ିஶ ݖ݀ = න ොߩ) − (ො௩ߩ ොᇱ௭→଴ߩ1

௭→ିஶ ොߩ݀ = න ොߩ) − (ො௩ߩ ොᇱߩ1 ොఘෝ→ఘෝ೎೗ఘෝ→ఘෝೡߩ݀
= න ۔ۖەۖ

ොߩ)ۓ − (ො௩ߩ ⋅ ൦ ෥݉(ߩො)2߰௘(ߩො) − 2 ൤ ොߩ − ො௖௟ߩො௩ߩ − ൪(ො௖௟ߩ)ො௩൨߰௘ߩ
ଵଶ
ۙۘۖ
ۖۗ ොఘෝ೎೗ఘෝೡߩ݀  

(2.54)

 

Rearranging Equation 2.54, we obtain an equation that dictates	ߩො௖௟: 
௠௟ߜ  = (2.55) (ො௖௟ߩ)௘௤௨௜௩ߜ

 

where the function on the right hand side has unit of lengths and is a function of	ߩො௖௟: 
 

(ො௖௟ߩ)௘௤௨௜௩ߜ = ො௟ߩ2 − ො௩ߩ ⋅ න ۔ۖەۖ
ොߩ)ۓ − (ො௩ߩ ⋅ ൦ ෥݉(ߩො)2߰௘(ߩො) − 2 ൤ ොߩ − ො௖௟ߩො௩ߩ − ൪(ො௖௟ߩ)ො௩൨߰௘ߩ

ଵଶ
ۙۘۖ
ۖۗ ොఘෝ೎೗ఘෝೡߩ݀  (2.56)

 

Note that the lower limit on the integral is chosen to exceed	ߩො௩ by a small amount	߳ఘෝ  because	߰௘ 
is zero and the integrand is singular at	ߩො௩. Likewise, the upper limit is chosen to be no more than ߩො௖௟ − ߳ఘෝ  because the integrand is singular at	ߩො௖௟. The integrand approaches a well-defined limit 
as	߳ఘෝ → 0 because of its asymptotical behavior. Computationally, choosing	߳ఘෝ  to be very small 
compared to	ߩො௩ provides an accurate prediction of this asymptotical value. 

In executing this analysis, for a given temperature and film molar loading thickness	ߜ௠௟ =ො݊" ⁄ො௖௟ߩ  , we first determine the centerline density	ߩො௖௟ by numerically integrating Equation 2.55.  
Then, by integrating Equation 2.53 numerically with the derived	ߩො௖௟, we obtain the 
corresponding density profile. 
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§ 2.4 COMPARISON OF THICK HALF FILM WITH A SINGLE INTERFACE  

 

If we increase the film molar loading thickness	ߜ௠௟ to infinite in our model and only consider 
half of the system based on the argument of symmetry, the configuration of our model essentially 
reduces to Carey’s single-interface model [14]. In this limit	ߜ௠௟ → ො௖௟ߩ	,∞ =  ො௟, and the freeߩ
energy and interfacial region thickness for each half film should then be equivalent to a single 
interface between two bulk phases under comparable conditions. To calculate the thick film limit 
values of the non-dimensional interfacial region thickness	ߜ௜/ܮ௜ and the non-dimensional surface 
tension	ߪ/( ௖ܲܮ௜)	as	ߜ௠௟ → ∞ at various temperatures, we first calculate the corresponding 
asymptotical density profiles. The non-dimensionalization constants used here are the critical 
pressure	 ௖ܲ and the length scale	ܮ௜ defined as: 

 

௜ܮ = ൬݇஻ ௖ܶ௖ܲ ൰ଵଷ (2.57)

 

For most fluids, this length scale is close to nanometer. For argon, ܮ௜ = 0.753 nm, whereas for 
water	ܮ௜ = 0.739 nm. Invoking the fact that	ߩො௖௟ =  ො௟ in this limit, after some algebraߩ
manipulation of Equation 2.53, we obtain: 

 

ොᇱߩ = ቈ2߰௘(ߩො)෥݉(ߩො) ቉ଵଶ (2.58)

 

The density profile is then computed by numerical integration Equation 2.58 for half of the film: ݖ ∈ (−∞, 0). 
We define	ݖ௖ as the	ݖ coordinate at the centerline of the interface, dictated by: 

 

௭ୀ௭೎|(ݖ)ොߩ = ො௩ߩ + ො௟2ߩ  (2.59)

 

Following Carey [14], the thickness of the interfacial region	ߜ௜ is then defined as: 
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௜ߜ = ො௟ߩ − ොᇱ|௭ୀ௭೎ߩො௩ߩ  (2.60)

 

Using density profile results generated by our model together with Equation 2.60 and computed 
values of the half film free energy, limiting case	(ߜ௠௟ → ∞) values of 	ߜ௜/ܮ௜ and	ߪ/( ௖ܲܮ௜)	are 
obtained for water and argon at various	 ௥ܶ. The numerical results of	ߜ௜/ܮ௜ and	ߪ/( ௖ܲܮ௜)	for argon 
are exactly the same as those predicted by the model of Carey [14], since the same Lennard-
Jones 12-6 potential function is used in both Carey’s model and our model. For water, the 
numerical results are slightly different due to the fact that SPC/E potential function was used in 
our study. For water, as the temperature approaches the critical point value, ߜ௜/ܮ௜ and	ߪ/( ௖ܲܮ௜) 
approach the following power law asymptotic variations: 

௜ܮ௜ߜ  = 0.768(1 − ௥ܶ)ି଴.ହଽଵ (2.61)ߪ௖ܲܮ௜ = 17.8(1 − ௥ܶ)ଵ.ସସଵ (2.62)

 

In contrast, the Redlich-Kwong model developed by Carey [14] predicts that for water as	 ௥ܶ → 1, 
the power law asymptotic variations of ߜ௜/ܮ௜ and	ߪ/( ௖ܲܮ௜) are: 

௜ܮ௜ߜ  = 0.683(1 − ௥ܶ)ି଴.଺଻଴ (2.63)ߪ௖ܲܮ௜ = 14.4(1 − ௥ܶ)ଵ.ଷଶ଼ (2.64)

Using the same power law function form, we curve-fit the asymptotic variation of NIST 
recommended surface tension data [41] for water: 

௜ܮ௖ܲߪ  = 20.4(1 − ௥ܶ)ଵ.ସସଵ (2.65)
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Also shown in some of the above figures are the mean density film thicknesses	ߜ௙ for 
equilibrium film density profiles, and thicknesses of the intra-spinodal sublayers	ߜ௜௦. ߜ௙ is 
defined as: 

௙ߜ  = ௥ݖ − ௟ (2.66)ݖ

 

where, ݖ௟ and	ݖ௥ are the	ݖ coordinates at which the local density in the interfacial regions is equal 
to the mean value of	ߩො௖௟ and	ߩො௩:  

 

௭ୀ௭೗ழ଴|(ݖ)ොߩ = ௭ୀ௭ೝவ଴|(ݖ)ොߩ = ො௩ߩ + ො௖௟2ߩ  (2.67)

 

In general,	ߜ௙ differs from the film molar loading thickness	ߜ௠௟. The intra-spinodal sublayer 
thickness ߜ௜௦ is defined as: 

௜௦ߜ  = ௦௣௜௡௢ௗ௔௟,௟ݖ − ௦௣௜௡௢ௗ௔௟,௩ (2.68)ݖ

 

where,	ݖ௦௣௜௡௢ௗ௔௟,௟ and ݖ௦௣௜௡௢ௗ௔௟,௩ are the	ݖ coordinates at which the local density within the left 
half of the film (ݖ < 0) is equal to the spinodal liquid density	ߩො௦௣௜௡௢ௗ௔௟,௟ and the spinodal vapor 
density	ߩො௦௣௜௡௢ௗ௔௟,௩ respectively: 

 

௭ୀ௭ೞ೛೔೙೚೏ೌ೗,೗ழ଴|(ݖ)ොߩ  = ௭ୀ௭ೞ೛೔೙೚೏ೌ೗,ೡழ଴|(ݖ)ොߩො௦௣௜௡௢ௗ௔௟,௟ (2.69a)ߩ = ො௦௣௜௡௢ௗ௔௟,௩ (2.69b)ߩ

 

The values of	ߜ௙ and	ߜ௜௦ ⁄௜ܮ  predicted by the model analysis are also listed in Table 2.4 for argon. 

Based on the series of plots shown from Figure 2.6 to Figure 2.9, some common characteristics 
of density profiles can be summarized: 
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1. Density profiles exhibit steep gradient interfacial regions at the edges of the film. The 
maximum local densities exist at	ݖ = 0, where centers of initial film regions are located: ߩො௠௔௫ = ො௖௟ (2.70)ߩ

2. With the decrease of film molar loading thickness	ߜ௠௟, the local density at the centerline 	ߩො௖௟	decreases. 
3. Consistent with Carey’s study of the interfacial region between semi-infinite vapor and 

semi-infinite liquid regions [14], our results also indicate that there are two inner 
sublayers of the interfacial regions in which local densities are between the spinodal 
vapor and spinodal liquid densities predicted by the Redlich-Kwong equation of state.  
Based on classical thermodynamics, these intra-spinodal sublayers are expected to lack 
stability because the intrinsic stability requirement criterion	(߲ܲ ⁄ොݒ߲ )் < 0 is not 
satisfied. 

4. With the decrease of film molar loading thickness	ߜ௠௟, the intra-spinodal sublayer 
thickness ߜ௜௦ increases, meaning that unstable intra-spinodal sublayers on both sides of a 
film span an increasing fraction of the film. Eventually the unstable sublayers merge and 
span most of the thickness of the film. This apparent progressive destabilization of the 
film appears to be a mechanism for film rupture. We therefore take the onset of rupture 
to correspond to	ߩො௖௟ between the spinodal limits. When this is the case, the core of the 
film is an intra-spinodal layer, suggesting that the bulk of the film lacks intrinsic stability. 
For these conditions,	ߜ௜௦ and	ߜ௙ are not indicated in Figure 2.9. 

Here we interpret the thinnest stable film thickness (critical thickness)	ߜ௖, as the value of	ߜ௙ 
corresponding to the incipient merging of the intra-spinodal sublayers from both sides of a film. 
As shown in Figure 2.8, in terms of density, the merging is equivalent to the decrease of	ߩො௖௟ to 
the liquid spinodal density	ߩො௦௣௜௡௢ௗ௔௟,௟. This dictates the following condition as a means to 
calculate the critical thickness: 

ො௖௟ߩ  = ො௦௣௜௡௢ௗ௔௟,௟ (2.71)ߩ

 

Substituting this value of	ߩො௖௟ back into Equation 2.53 and integrating it numerically, we are able 
to obtain the density profile, from which we determine the mean density film thickness	ߜ௙, i.e., 
the critical thickness	ߜ௖ corresponding to this specified temperature. For the case of argon 
at	 ௥ܶ = 0.6, which we demonstrated here, the critical thickness therefore is indicated in Figure 
2.8 as ߜ௖ = 1.39 nm. 

With density profiles derived, the half-interface free energy	ߪ for each film molar loading 
thickness	ߜ௠௟ are calculated by numerical integration on Equation 2.42. Summarized in Table 
2.4 are the local density at the centerline	ߩො௖௟, non-dimensional half-interface free energy 	ߪ ( ௖ܲܮ௜)⁄ , non-dimensional intra-spinodal sublayer thickness ߜ௜௦ ⁄௜ܮ , non-dimensional interfacial 
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region thickness	ߜ௜ ⁄௜ܮ  (for thick film only, which represents interfaces between bulk phases), 
and the mean density film thicknesses	ߜ௙. 

 

Table 2.4 
Calculated results for argon at	 ௥ܶ = 0.6 for four typical	ߜ௠௟ values ߜ௠௟	(nm) 3.44 1.15 1.05 0.57 ߩො௖௟	(mol/m3) 35,216 29,434 27,243 17,472 ߪ ( ௖ܲܮ௜)⁄ ௜௦ߜ 3.78 4.61 4.71 4.84  ⁄௜ܮ ௜ߜ − 1.53 1.25 1.12  ⁄௜ܮ  − ௙ (nm) 4.40 1.47 1.39ߜ − − − 1.20 

 

   

Density profiles and intrinsic stability for water liquid film at ࢘ࢀ = ૙. ૟ 

By using water properties from Table 2.3, together with	ߢ௪௔௧௘௥ from Equation 2.26, the variation 
of the local density	ߩො௖௟ at the centerline (ݖ = 0)	with film molar loading thickness	ߜ௠௟ for water 
at	 ௥ܶ = 0.6, as predicted by Equation 2.55, is plotted in Figure 2.10. 
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The group of density profiles of water showing from Figure 2.11 to 2.14 demonstrates same 
features as that we summarized for the analysis of argon. As shown in Figure 2.13, using the 
density condition, Equation 2.71, to calculate the critical thickness, we obtain ߜ௖ = 1.33	nm for 
water at	 ௥ܶ = 0.6.  

The half-interface free energy	ߪ for each film molar loading thickness	ߜ௠௟ is calculated by 
numerical integration on Equation 2.42 after deriving the density profiles. Summarized in Table 
2.5 are the local density at the centerline	ߩො௖௟, non-dimensional half-interface free energy 	ߪ ( ௖ܲܮ௜)⁄ , non-dimensional intra-spinodal sublayer thickness ߜ௜௦ ⁄௜ܮ , non-dimensional interfacial 
region thickness	ߜ௜ ⁄௜ܮ  (for thick film only, which represents interfaces between bulk phases), 
and the mean density film thicknesses	ߜ௙ for water. 

 

Table 2.5 
Calculated results for water at	 ௥ܶ = 0.6 for four typical	ߜ௠௟ values ߜ௠௟	(nm) 3.38 1.13 1.01 0.56 ߩො௖௟	(mol/m3) 37,186 31,319 28,769 18,455 ߪ ( ௖ܲܮ௜)⁄ ௜௦ߜ 3.69 4.47 4.60 4.72  ⁄௜ܮ ௜ߜ − 1.49 1.21 1.09  ⁄௜ܮ  − ௙ (nm) 4.03 1.41 1.33ߜ − − − 1.30 

 

 

   

§ 2.6 SURFACE TENSION DEVIATION 

 

As shown in Table 2.4 and 2.5, for both liquid argon films and water films, values of surface 
tension ߪ	decrease with the decrease of film molar loading thickness	ߜ௠௟. As the film thickness 
approaches to the critical thickness, the surface tension value deviates significantly from its bulk 
value between bulk liquid phase and vapor phase under comparable conditions. This is somewhat 
analogous to the Tolman length associated with droplets of diminishing size [42], although here 
the change in surface tension is not due to curvature of the interface, but instead is a consequence 
of the interaction of the interfacial regions.  
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ஶߪߪ = 11 + 2 ௗݎ்ݎ = 1 − 2 ൬்ݎݎௗ൰ + ݋ ൬்ݎݎௗ൰ (2.72)

 

in which, ߪஶ	is the surface tension value between a bulk liquid phase and a bulk vapor phase, ݎௗ	is the droplet radius, and ்ݎ	is the characteristic Tolman length for a specified fluid. Other 
previous studies suggest that away from the critical point, the Tolman length of a specified fluid 
is on the order of its effective molecular diameter	ܦ. The numerical values of ்ݎ 	reported in 
literatures are general in the range of 0.2ܦ	to	0.7ܦ. For a Lennard-Jones 12-6 fluid, Haye and 
Bruin [43] found that ்ݎ ⁄ܦ  is close to 0.2 for 0.696 ≤ ௥ܶ ≤ 0.835. Since argon has an effective 
diameter of ܦ௔௥௚௢௡ = 0.188	nm, this suggests the Tolman length of argon is about 0.038 nm. 
For water, Pruppacher and Klett [44] recommended a value of 0.157 nm for its Tolman length. 

In contrast, the values of the threshold thickness ߜ௧௛	showed in our study, which characterize the 
deviation of surface tension for a liquid film with thinning film thickness, are an order of 
magnitude greater than the corresponding effective molecular diameter for both argon and water. 
Also as shown in Figure 2.15, the dropping of the surface tension for a thinning film occurs more 
abruptly near the threshold thickness ߜ௧௛ than that of a droplet with diminishing radius described 
by Equation 2.72. We therefore propose a function form, Equation 2.73, to curve-fit the 
theoretical predictions of the surface tension variation with thickness for use in further analysis.  

ஶߪߪ  = 1 − ܤ ቆߜ௧௛ߜ௙ ቇ௠ (2.73)

 

where, the coefficient ܤ = 0.01	is dictated by the definition of ߜ௧௛	described above. Values of 
the power constants ݉	that best fit the predictions of argon and water at ௥ܶ = 0.6 are also given 
in Figure 2.15. 

 

§ 2.7 EFFECT OF TEMPERATURE ON CRITICAL THICKNESS AND SURFACE TENSION 

 

The same procedure for deriving the critical thickness and the surface tension used for both 
water and argon analysis at ௥ܶ = 0.6	is applied for other reduced temperatures from ௥ܶ = 0.6	to ௥ܶ = 0.9. The resulting variations of ߜ௖	with temperature for argon and water, showing in Figure 
2.16, indicate that the critical film thickness for both fluids increases as the system temperature 
increases. 
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Table 2.6 
Surface tension deviation correlation constants at various reduced temperatures 

 ௥ܶ 0.6 0.65 0.7 0.75 0.8 0.85 0.9 

Argon 

௧௛ (nm) 1.63 1.76 1.96 2.22 2.57 3.06 3.81 ݉ 8.73 8.92 8.07 8.70ߜ ௖ (nm) 1.39 1.50 1.64 1.83 2.08 2.44 3.12ߜ 8.51 8.10 10.12 

Water 

௧௛ (nm) 1.53 1.69 1.90 2.15 2.51 2.96 3.76 ݉ 11.41 9.12 8.59 8.09ߜ ௖ (nm) 1.33 1.44 1.58 1.77 2.02 2.40 3.08ߜ 7.69 8.36 9.48 

  

 

  

§ 2.8 MODIFIED WAVE INSTABILITY MODEL 

 

As noted in the introduction, earlier investigations have postulated that onset of film rupture is 
associated with conditions that result in amplifications of waves on the film interface. These 
wave instability models are based on implicit idealizations that the liquid-vapor interfacial region 
is a well-defined 2-D surface and the surface tension is a constant, presumably at bulk fluid value 
for the system temperature. However, the prediction of the film molecular capillarity model 
developed here indicates that the interfacial region between two phases has finite thickness, 
within which there is an intra-spinodal sublayer that lacks the intrinsic stability. As the film 
thickness decreases, the unstable intra-spinodal sublayers on both sides of a film span and 
interact with each other, causing a significant deviation of surface tension from its bulk value 
when the film thickness drops below the threshold film thickness	ߜ௧௛. Eventually the unstable 
sublayers merge and destabilize the entire film core region, which can be a different mechanism 
for the onset of film rupture.  

Therefore, we propose to extend the wave instability model of Vrij [4] in the following way to 
count for the effects of interactions between interfacial regions and the surface tension deviation 
with thinning film thickness. Assuming Equation 1.4 applies at the critical thickness, and 
substituting our curve-fit Equation 2.73 for the surface tension	ߪ, we obtain the following 
relation for the critical thickness	ߜ௖: 
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௖ߜ = ቆ ஶቇ଴.ଶହߪଷߨଶ4ܮுܣ ቈ1 − ܤ ൬ߜ௧௛ߜ௖ ൰௠቉ି଴.ଶହ (2.74)

 

Equation 2.74 can be solved iteratively to determine	ߜ௖	at different temperatures. 

As shown in Equation 1.4 and Equation 2.74, both the original wave instability model of Vrij [4] 
and the modified wave instability model with surface tension correction account for the effect of 
the lateral dimension ܮ	of the liquid film on film stability. Because the lateral film size ܮ	is an 
upper bound to the wavelength of perturbing wave components that can exist on a film surface in 
wave instability models, the greater ܮ is, the less stable a film will be, resulting the increase of 
critical thickness ߜ௖ with the increase of	ܮ. In the film molecular capillarity model developed 
here, however, because intrinsic stability of the liquid in the film is independent on its lateral 
extent, the film’s lateral dimension ܮ	does not affect the impact of this mechanism on film 
instability and rupture.  

The variations of ߜ௖	with ܮ	predicted by the original (uncorrected) and corrected versions of 
Vrij’s wave instability model [4] are shown in Figure 2.17 and 2.18 for argon and water at ௥ܶ = 0.6 respectively. The Hamaker constant ܣு in Equation 1.4 and Equation 2.74 is calculated 
by [45]:  

 

ுܣ = 34݇஻ܶ ቆ߳ௗ௜௘௟௘௖௧௥௜௖,௩ − ߳ௗ௜௘௟௘௖௧௥௜௖,௟߳ௗ௜௘௟௘௖௧௥௜௖,௩ + ߳ௗ௜௘௟௘௖௧௥௜௖,௟ቇଶ + 3ℎߥ௘16√2 ⋅ (݊௩ଶ − ݊௟ଶ)ଶ(݊௩ଶ + ݊௟ଶ)ଵ.ହ (2.75)

 

where, ߳ௗ௜௘௟௘௖௧௥௜௖,௩	and ߳ௗ௜௘௟௘௖௧௥௜௖,௟	are dielectric constants for saturated vapor and liquid, 
respectively [46,47], ݊௩	and ݊௟ are the refractive index for saturated vapor and liquid, 
respectively [47,48], and ߥ௘	is the main electronic absorption frequency (typically 3 × 10ଵହ	s-1 
for various materials [45]). 
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The original Vrij’s wave instability model predicts that the critical thickness	ߜ௖ is proportional to 
the square root of the lateral film dimension	ܮ, as indicated by Equation 1.4, therefore variations 
of ߜ௖	with ܮ are shown as inclined lines in the log-log plots of Figure 2.17 and 2.18 for argon and 
water. The prediction by the modified Vrij’s wave instability model with surface tension correct 
shows less dependence of the critical thickness	ߜ௖ on the lateral film dimension ܮ	for small 
values of	ܮ, suggesting in this regime wave instability has less impact on the film stability than 
the interaction between interfacial regions does. 

Also shown in Figure 2.17 and 2.18 is the characteristic transition length	ܮ௧௥௔௡, at which lateral 
film dimension the critical thickness ߜ௖ predicted by the wave instability model is the same as 
that predicted by our film molecular capillarity model. It can be seen that above the lateral size 
transition value	ܮ௧௥௔௡, the critical film thickness predicted by the wave instability model are 
greater than that predicted by our capillarity model for the intrinsic stability mechanism. This 
implies that for	ܮ >  ௧௥௔௡, as a film becomes thinner it would become wave unstable first. Forܮ
films with lateral extents smaller than	ܮ௧௥௔௡, the critical film thickness for intrinsic stability is 
larger than that for wave instability, implying that as the film becomes thinner for this regime, it 
will likely rupture due to lack of intrinsic stability before wave instability occurs. The transition 
value of ܮ௧௥௔௡	for the corrected wave instability model is slightly smaller than that for the 
original model of Vrij for constant surface tension. Since the corrected wave instability model 
takes both the wave instability and the interaction between interfacial regions into account and 
shows the consistent physics in its prediction of ߜ௖ variation with	ܮ, we conclude that its 
predictions of ܮ௧௥௔௡	are more accurate. The values of ܮ௧௥௔௡ for argon and water are 17.13 nm and 
23.57nm respectively. 

Note that ܮ௧௥௔௡	can be predicted by combining the critical thickness prediction of our film 
capillarity model with the corrected wave model, Equation 2.74. Figure 2.19 shows the variation 
of ܮ௧௥௔௡	predicted in this way for water and argon. This plot implies that film rupture due to the 
lack of intrinsic stability in the film will likely be important only when the film has lateral 
dimensions less than 10 nm. While this is unlikely in macroscopic systems, for films in nano-
channels, or films modeled with MD simulations of small lateral extent, the intrinsic stability 
mechanism may play a role in film rupture. 
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The prediction that surface tension diminishes as the film thickness decreases below a threshold 
value of film thickness is a key outcome of our model analysis. Although for argon and water 
at	 ௥ܶ < 0.9, the film thickness must drop to less than a few nanometers for surface tension 
reduction to be significant, this effect can be important, however, as the liquid film thins towards 
conditions for onset of rupture, or for bubbles of small physical size in, for example, nano-
structured boiling surfaces. Therefore we propose that wave instability theory should be 
modified to account for the effects of surface tension reduction with film thickness in this range. 
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The numbers of liquid f.c.c lattice cells in ݕ ,ݔ	and ݖ	directions are represented by ݊௫,௟, ݊௬,௟ and ݊௭,௟ respectively. ݊௫,௟ and ݊௬,௟ are set equal to represent the lateral size ܮ௫,௬ of a square segment 
of liquid film, which is also the lateral dimension of the simulation domain , as Equation 3.2: 

௫,௬ܮ  = ݊௫,௟ × ௟௔௧௧௜௖௘,௟ (3.2)ܮ

 

The number of vapor f.c.c lattice cells in ݔ and ݕ	directions ݊௫,௩ and ݊௬,௩ are determined from 
the lateral size of the simulation domain ܮ௫,௬ as: 

 

݊௫,௩ = ݊௬,௩ = ቞ ௟௔௧௧௜௖௘,௩቟ (3.3)ܮ௫,௬ܮ

 ݊௭,௟, the number of liquid f.c.c lattice cells in ݖ	direction, dictates the characteristic molar loading 
thickness ߜ௠௟ of the liquid film: 

 

௠௟ߜ = ො݊"ߩො௟ = ݊௭,௟ × ௟௔௧௧௜௖௘,௟ (3.4)ܮ

 

The dimension in the ݖ	direction for each side of the vapor phase,	ܮ௭,௩, is set as 2 ×  ௫,௬ in orderܮ
to ensure independence of each liquid film in simulations with the periodic boundary condition. 
The number of vapor f.c.c lattice cells in ݖ	direction ݊௭,௩ for each side of the vapor phase is 
determined as: 

 

݊௭,௩ = ቞2 × ௟௔௧௧௜௖௘,௩቟ (3.5)ܮ௫,௬ܮ

 

Therefore, the total simulation domain length in the ݖ	direction is: 
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(௫ݒ)݂ = ߨ2√1்ܿ ݁ି ௩మೣଶ௖೅మ 

݂൫ݒ௬൯ = ߨ2√1்ܿ ݁ି ௩೤మଶ௖೅మ 

(௭ݒ)݂ = ߨ2√1்ܿ ݁ି ௩೥మଶ௖೅మ 

(3.11a)

(3.11b)

(3.11c)

where, ݂(ݒ௫)݀ݒ௫	is the probability that the ݔ component of velocity lies between ݒ௫ and ݒ௫ +  :௫, and ்ܿ is a characteristic velocity, defined asݒ݀

்ܿ = ඨ݇஻ܶ݉  (3.12)

and ݉	is the mass of the particle.  

To apply this distribution in MD program, the following procedure is followed: 

 

1. Generating two random number ܴଵ	and ܴଶ	in the range of ሾ0,1ሿ 
2. Calculate two intermediate parameters ߞ	and ߠ	as: 

ߞ  = ඥ−2 lnܴଵ (3.13)ߠ = ଶ (3.14)ܴߨ2

 

3. Calculate the ݔ	and ݕ	components of velocity as: 
௫ݒ  = ்ܿߞ cos ௬ݒ(3.15) ߠ = ்ܿߞ sin (3.16) ߠ

 

4. Repeat step 1 through step 3 to determine	ݒ௭, neglecting the second component of the 
velocity in step 3. 

 



 

Velocity

For poly
method 
the rotat

 

where ߳
energies

To apply
determin

 

Figu

y initializat

yatomic mo
that is desc
tional Boltz

߳௥௢௧	is the ro
s between ߳௥
y this distrib
ne the value

ure 3.9 The f

Int

tion for pol

lecules, the 
cribed above
zmann distri

݂(߳௥௢
otational ene௥௢௧	and ߳௥௢௧
bution in M
e of	߳௥௢௧. 

flow chart use

terfacial Regio

lyatomic m

translationa
e. The rotati
ibution [51]

௢௧) = 2ඥ√ߨ(݇
ergy, and ݂(௧ + ݀߳௥௢௧.  

MD program,

ed to determi

on Thermophy
Chapter 3

66 

olecules  

al componen
ional kinetic
: 

ඥ߳௥௢௧݇஻ܶ)ଷ ଶ⁄ ݁ିఢ
 (߳௥௢௧)݀߳௥௢௧

, the followi

ine the rotati

ysics and Intrin
 – MD Simula

nt of velocit
c energy of t

ఢೝ೚೟ (௞ಳ்)⁄  

is the fracti

ing flow cha

ional kinetic 

nsic Stability o
ations Techniq

ty is initiali
the molecul

ion of molec

art of Figure

energy of po

of Thin Free L
ques and Impl

zed by the s
le is determi

cules with r

e 3.9 is used

olyatomic mo

Liquid Films 
ementations 

same 
ined by 

(3.17)

rotational 

d to 

olecule 



 

Upon de
rotation

 

in which
chosen. 

 

 

§ 3.3 PE

 

Periodic
domains
domain 
the orig
Figure 3
counterp
original

 

etermining	߳
nal energy is

h, ߦ represen

ERIODIC B

c boundary c
s in ݕ ,ݔ	and
has mirror 
inal simulat
3.10, any pa
part in a nei
 simulation 

Int

߳௥௢௧, random
s applied. Th

߱క

nt the ݕ ,ݔ	o

BOUNDARY

condition is
d ݖ direction
image coun
tion domain
article leavin
ighboring do
domain is d

Figure 3

terfacial Regio

m numbers a
he rotationa

క = ඨ2߳௥௢௧ܫకక
or ݖ	directio

Y CONDIT

s applied by
ns througho

nterparts in a
n are matche
ng one side 
omain enter
devoid of an

3.10 Schema

on Thermophy
Chapter 3

67 

 

are assigned
al velocity in

ߦ = ሼݔ, ݕ
 

on, and ܫకక is

TION 

 constructin
ut space. Ev
all other rep
ed exactly in
of a simulat

ring through
ny boundari

atic for period

ysics and Intrin
 – MD Simula

d to determi
n that directi

,ݕ or  ሽݖ
s the momen

ng infinite ar
very particle

plicated simu
n all other re
tion domain
h the opposi
es, and surf

dic boundary

nsic Stability o
ations Techniq

ine the direc
ion is expre

nt of inertia

rrays of rep
e in the orig
ulation dom
eplica doma
n is automat
ite side. Con
face effects 

 

y condition 

of Thin Free L
ques and Impl

ction in whic
essed as:  

a in the direc

licated simu
ginal simulat

mains, and ch
ains. As illu
tically replac
nsequently, 
are eliminat

Liquid Films 
ementations 

ch the 

(3.18)

ction 

ulation 
tion 
hanges in 
strated in 
ced by its 
the 
ted. 



Interfacial Region Thermophysics and Intrinsic Stability of Thin Free Liquid Films 
Chapter 3 – MD Simulations Techniques and Implementations 

68 
 

 

§ 3.4 POTENTIAL FUNCTIONS 

 

Inter-particle potential functions are the core of MD simulations. The force upon an atom, a 
molecule, or an ion is determined by the potential function and the position configuration of the 
system in current time step, as:  

 

ప(߬)ሬሬሬሬሬሬሬሬሬԦܨ = −෍∇߶௜௝ே
௝ஷ௜  (3.19)

 

The Lennard-Jones 12-6 potential form is used for argon, and the extended simple point charge 
(SPC/E) potential form is used for water and ions. It should be noted that all potential models are 
empirical in nature, and their parameters are originally derived to match the interatomic radial 
distribution functions of experiment data as closely as possible.  

 

Potential function for argon 

The Lennard-Jones 12-6 potential function applied in MD simulations for argon is the same as 
that used in our film capillarity theory model, Equation 1.17, with the energy and length 
parameters, ߳௟௝ and ݎ௟௝, from Table 2.2. The corresponding force vector on molecule ݅ from the 
interaction with molecule ݆ is: 

 

పఫሬሬሬሬԦܨ = − ௜௝ݎపఫሬሬሬԦݎ ݀߶௜௝݀ݎ௜௝ 	= 24 ߳௟௝ݎ௟௝ଶ ቆݎ௟௝ݎ௜௝ቇ଼ ൥2 ቆݎ௟௝ݎ௜௝ቇ଺ − 1൩ పఫሬሬሬԦ (3.20)ݎ

 

in which, ݎ௜௝ is the distance between molecule ݅	and ݆: 
௜௝ݎ  = หݎపఫሬሬሬԦห (3.21)

 

The total potential energy of a system of ܰ	molecules is stated as: 
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ܷ = 12෍෍߶௜௝ே
௝ஷ௜

ே
௜ୀଵ = 2߳௟௝෍෍൥ቆݎ௟௝ݎ௜௝ቇଵଶ − ቆݎ௟௝ݎ௜௝ቇ଺൩ே

௝ஷ௜
ே
௜ୀଵ  (3.22)

 

However, because the periodic boundary condition is imposed on the MD simulations, the 
intermolecular interactions have to include not only those among the ܰ	molecules in the original 
simulation domain, but also those among the infinite array of periodic images. In order to avoid 
this difficulty, the potential cutoff method and the minimum image convention are used in 
simulations.  

Since the short-range Lennard-Jones 12-6 potential of Equation 1.17 decays rapidly for distances 
beyond	3ݎ௟௝, the cutoff radius is set as	ݎ௖௨௧ =  ,݅	௟௝.  To calculate the interactions of moleculeݎ3
we use its position as the origin and draw a sphere of radius	ݎ௖௨௧. Depending on the location of 
molecule	݅, the sphere may contain regions in both the original simulation domain and the replica 
simulation domains. Molecule	݅ only interacts with other molecules falling within the sphere, 
either real molecules in the original simulation domain, or image molecules in the replica 
simulation domain. Interactions with molecules or image molecules outside of the sphere are 
neglected. 

However, it should be noted that although the interactions beyond cutoff radius are insignificant, 
the inherent discontinuity of this cutoff method leads to a resultant impulse on the molecules 
near the cutoff distance, which may disrupt the simulation as reported in the studies of Mecke et 
al. [52] and Trokhymchuk and Alejandre [53]. Therefore, the force-shift truncation [54-57] is 
adopted in our MD simulations to implement the potential cutoff as: 

 

߶௜௝,௙ି௦ = ߶௜௝ − ൫߶௜௝൯௥೔ೕୀ௥೎ೠ೟ − ቆ݀߶௜௝݀ݎ௜௝ ቇ௥೔ೕୀ௥೎ೠ೟ ൫ݎ௜௝ − ௖௨௧൯ (3.23)ݎ

పఫ,௙ି௦ሬሬሬሬሬሬሬሬሬሬሬሬԦܨ = − ௜௝ݎపఫሬሬሬԦݎ ݀߶௜௝,௙ି௦݀ݎ௜௝ = − ௜௝ݎ1 ቎݀߶௜௝݀ݎ௜௝ − ቆ݀߶௜௝݀ݎ௜௝ ቇ௥೔ೕୀ௥೎ೠ೟቏ పఫሬሬሬԦ (3.24)ݎ

 

The force-shift modified potential function ߶௜௝,௙ି௦	and force ܨపఫ,௙ି௦ሬሬሬሬሬሬሬሬሬሬሬሬԦ	both approach exactly zero at 
the cutoff distance, as	ݎ௜௝ →   .௖௨௧ݎ
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Potential function for water and ions 

The extended simple point charge (SPC/E) potential form is used for interactions among water 
molecules and various ions: 

 

߶௜,௝ = 4߳௦௣௖ ௘⁄ ,௪ି௪ ൥ቆݎ௦௣௖ ௘⁄ ,௪ି௪ݎ௜௝ ቇଵଶ − ቆݎ௦௣௖ ௘⁄ ,௪ି௪ݎ௜௝ ቇ଺൩ + ௜௔௕௝ଷݎ௕ݍ௔ݍ଴෍෍߳ߨ14
௕ୀଵ

ଷ
௔ୀଵ  (3.25)

߶௜,ఈ = 4߳௦௣௖ ௘⁄ ,௪ି௜௢௡ ቈ൬ݎ௦௣௖ ௘⁄ ,௪ି௜௢௡ݎ௜ఈ ൰ଵଶ − ൬ݎ௦௣௖ ௘⁄ ,௪ି௜௢௡ݎ௜ఈ ൰଺቉ + ௜௔ఈଷݎఈݍ௔ݍ଴෍߳ߨ14
௔ୀଵ  (3.26)

߶ఈ,ఉ = 4߳௦௣௖ ௘⁄ ,௜௢௡ି௜௢௡ ൥ቆݎ௦௣௖ ௘⁄ ,௜௢௡ି௜௢௡ݎఈఉ ቇଵଶ − ቆݎ௦௣௖ ௘⁄ ,௜௢௡ି௜௢௡ݎఈఉ ቇ଺൩ + ଴߳ߨ14 ఈఉݎఉݍఈݍ  (3.27)

in these relations, ݅, ݆	represent water molecules, ߚ ,ߙ	represent ions, and subscripts ܽ	and ܾ 
varying from 1 to 3 sequentially represent H-O-H atoms within water molecules. Also, ߳	and ݎ	with subscripts	ܿ݌ݏ ݁⁄ , and ݓ	or ݅݊݋	are respectively the energy parameter and length 
parameter in the SPC/E type interaction potentials, and ߳଴	is the vacuum permittivity. In these 
relations, ݎ	with subscripts	݅, ݆, ܽ, ܾ, ߙ or ߚ is the distance between two interacting particles. If 
one of the interacting particles is a water molecule without the subscript ܽ or ܾ	specifying an 
atom, the distance is measured based on the oxygen atom in that water molecule. ݍ	is the point 
charge assigned to a specified atom or ion. Values of these constants used in our MD studies are 
summarized in Table 3.1 [58-63].   
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Table 3.1 
Constants of SPC/E form potential functions used in MD simulations for water and ions ݎ௦௣௖ ௘,௪ି௪⁄  3.166×10-10 (m) ߳௦௣௖ ௘,௪ି௪⁄  1.080×10-21 (J)ݎ௦௣௖ ௘,ே௔శିே௔శ	⁄  2.350×10-10 (m) ߳௦௣௖ ௘,ே௔శିே௔శ⁄  9.033×10-22 (J)ݎ௦௣௖ ௘,஼௔మశି஼௔మశ	⁄  3.029×10-10 (m) ߳௦௣௖ ௘,஼௔మశି஼௔మశ⁄ 8.657×10-22 (J)ݎ௦௣௖ ௘,஼௟షି஼௟ష	⁄  4.400×10-10 (m) ߳௦௣௖ ௘,஼௟షି஼௟ష⁄  6.957×10-22 (J)ݎ௦௣௖ ௘,ூషିூష	⁄  4.168×10-10 (m) ߳௦௣௖ ௘,ூషିூష⁄ 8.661×10-22 (J)ݎ௦௣௖ ௘,(஼௟ைర)షି(஼௟ைర)ష	⁄  3.604×10-10 (m) ߳௦௣௖ ௘,(஼௟ைర)షି(஼௟ைర)ష	⁄  1.060×10-21 (J)ݎ௦௣௖ ௘,௪ିே௔శ⁄ 	 2.758×10-10 (m) ߳௦௣௖ ௘,௪ିே௔శ⁄  9.915×10-22 (J)ݎ௦௣௖ ௘,௪ି஼௔మశ⁄  3.097×10-10 (m) ߳௦௣௖ ௘,௪ି஼௔మశ⁄ 9.727×10-22 (J)ݎ௦௣௖ ௘,௪ି஼௟ష⁄  3.783×10-10 (m) ߳௦௣௖ ௘,௪ି஼௟ష⁄  8.877×10-22 (J)ݎ௦௣௖ ௘,௪ିூష	⁄  3.667×10-10 (m) ߳௦௣௖ ௘,௪ିூష⁄ 9.729×10-22 (J)ݎ௦௣௖ ௘,௪ି(஼௟ைర)ష⁄  3.385×10-10 (m) ߳௦௣௖ ௘,௪ି(஼௟ைర)ష⁄ 1.070×10-21 (J)ݎ௦௣௖ ௘,ே௔శି஼௟ష	⁄  3.375×10-10 (m) ߳௦௣௖ ௘,ே௔శି஼௟ష⁄ 7.995×10-22 (J)ݎ௦௣௖ ௘,ே௔శିூష	⁄  3.259×10-10 (m) ߳௦௣௖ ௘,ே௔శିூష⁄ 8.847×10-22 (J)ݎ௦௣௖ ௘,ே௔శି(஼௟ைర)ష	⁄  2.977×10-10 (m) ߳௦௣௖ ௘,ே௔శି(஼௟ைర)ష	⁄  9.816×10-22 (J)ݎ௦௣௖ ௘,஼௔మశି஼௟ష	⁄  3.714×10-10 (m) ߳௦௣௖ ௘,஼௔మశି஼௟ష⁄ 7.807×10-22 (J)ݍு 0.4238 (e) ே௔శݍை -0.8476 (e)ݍ  1 (e) ஼௔మశݍ  2 (e)ݍ௖௟ష	/		ݍூష  -1 (e) ష(஼௟ைర)ݍ  -1 (e)

 

  

As seen in Equation 2.35-2.37, the electrostatic portion of the SPC/E potential does not decay as 
rapidly as the Lennard-Jones potential (as ିݎଵ versus	ିݎ଺). Therefore, the electrostatic potential 
cannot be truncated simply by the cutoff radius	ݎ௖௨௧. Instead, the Ewald summation technique [64, 
65 and 23], is applied in our MD simulations for handling the long-range interactions. 
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In the Ewald summation technique, a shielding charge distribution is placed on top of the point 
charges to reduce the error of the columbic potential and force calculation at the cutoff radius. 
The charge density of the shielding charge converted the dependence of the real-space potential 
to	erfc(ݎ)  ଵ relationship in the originalିݎ which decayed much more rapidly than the ,ݎ/
potential function. To neutralize the introduced shielding charge distribution, a compensating 
charge distribution is also added to the simulation. The periodicity of the compensating charge 
due to the periodic boundary condition allows for it to be handled by a Fourier analysis over the 
reciprocal lattices generated from repeating the simulation domain in all directions. Therefore, 
we divide the columbic potential into four components:  

 ߶௖௢௟௨௠௕௜௖ = ߶௥ + ߶௙ − ߶௦ − ߶௠ (3.28)

 

in which, ߶௥is the potential induced by the coupling of the original point charges and the 
shielding charge distribution and is calculated in real-space; ߶௙is the Fourier component 
stemming from the compensating charge distribution; the Fourier calculation of ߶௙	includes the 
self-interacting term ߶௦	among the compensating charge distribution, which is therefore 
subtracted from the overall potential; similarly, since ߶௙	also includes the interactions among the 
compensating charge distribution and the original point charges on the same molecule, this intra-
molecular component ߶௠is subtracted in Equation 3.28. Expressions of these four terms used in 
MD simulations are given as: 

 

߶௥ = ଴෍߳ߨ14 ෍ ෍ ෍ ௜௔௕௝ݎ௝௕ݍ௜௔ݍ erfc൫ߢ௪ݎ௜௔௕௝൯ேೌ೟೚೘
௕ୀଵ

ே
௝வ௜

ேೌ೟೚೘
௔ୀଵ

ே
௜ୀଵ  (3.29)

߶௙ = ଴߳ߨ14 ⋅ ߨ2ܸ ⋅෍ܳ(݇)หܵ൫ሬ݇Ԧ൯หଶ௞ஷ଴  (3.30)

߶௦ = ଴߳ߨ14 ⋅ ߨ√௪ߢ ⋅෍ ෍ ௜௔ଶேೌ೟೚೘ݍ
௔ୀଵ

ே
௜ୀଵ  (3.31)

߶௠ = ଴߳ߨ14 ⋅ 12 ⋅෍ ෍ ෍ݍ௜௔ݍ௜௕ݎ௜௔௕ erfc(ߢ௪ݎ௜௔௕)௕ஷ௔
ேೌ೟೚೘
௔ୀଵ

ே
௜ୀଵ  (3.32)

 

where, 
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ܳ(݇) = 1݇ଶ ݁ି ௞మସ఑మೢ  (3.33)

ܵ൫ሬ݇Ԧ൯ =෍ ෍ ௜௔݁i⋅௞ሬԦݍ ⋅௥ഢೌሬሬሬሬሬԦேೌ೟೚೘
௔ୀଵ

ே
௜ୀଵ  (3.34)

 

From Equation 3.19, the corresponding force due the electrostatic portion of potential is then 
obtained as:  ܨప௔ሬሬሬሬሬԦ = ప௔௥ሬሬሬሬሬԦܨ + ప௔௙ሬሬሬሬሬԦ (3.35)ܨ

 

in which, ܨప௔௥ሬሬሬሬሬԦ	and ܨప௔௙ሬሬሬሬሬԦ	are the force components calculated in the real-space and the Fourier-space 
respectively: 

 

ప௔௥ሬሬሬሬሬԦܨ = ଴෍߳ߨ௜௔4ݍ ෍ ௜௔௕௝ଷݎ௝௕ݍ ൤ ߨ√2 ௜௔௕௝݁ି఑మೢݎ௪ߢ ௥೔ೌ್ೕమ + erfc൫ߢ௪ݎ௜௔௕௝൯൨ ప௔௕ఫሬሬሬሬሬሬሬሬԦேೌ೟೚೘ݎ
௕ୀଵ

ே
௝ஷ௜  (3.36)

ప௔௙ሬሬሬሬሬԦܨ = − ଴߳ߨ௜௔4ݍ ෍ܳ(݇)௞ஷ଴ߨ4ܸ Im൬݁ି௞ሬԦ⋅௥ഢೌሬሬሬሬሬԦܵ൫ሬ݇Ԧ൯൰ ሬ݇Ԧ (3.37)

 

Note that the self-interacting term in Equation 3.28 does not provide an additional force on the 
molecules since its gradient is zero. 

Above equations (Equation 3.29 to 3.37) use water molecules as examples to illustrate the MD 
implementation of the electrostatic portion of Equation 3.25. ݍ௜௔	and ݎప௔ሬሬሬሬԦ are the charge value and 
position vector for atom ܽ	of water molecule	݅. For the electrostatic portions of Equation 3.26 
and 3.27 (for interactions between water molecules and ions, and interactions among ions), ݍ௜௔	and ݎప௔ሬሬሬሬԦ	are replaced by ݍఈ and ݎఈఉሬሬሬሬሬሬԦ	respectively to represent their counterparts of ions.  

The vector ሬ݇Ԧ	is the reciprocal lattice vector used in the Fourier space calculation: 

 ሬ݇Ԧ = ௫ܮ௫݊ߨ2 Ԧݔ + ௬ܮ௬݊ߨ2 Ԧݕ + ௭ܮ௭݊ߨ2 Ԧ (3.38)ݖ
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where, ݔԦ, ݕԦ and ݖԦ are unit vectors in the principal Cartesian directions, and ݊ represents the 
number of repeated cells in a given direction. ݇	in Equation 3.29-3.37 is the magnitude of ሬ݇Ԧ: ݇ = หሬ݇Ԧห.  ߢ௪ in Equation 3.29-3.37 is the shielding charge width, one of the key control parameters in the 
Ewald summation technique. ߢ௪	together with the real-space cutoff radius ݎ௖௨௧ and the Fourier 
cutoff number ݊௖௨௧ control the speed of convergence and the calculation accuracy in both the 
real-space and the Fourier-space in MD simulations. The process of determining these three 
parameters is discussed in detail by Frenkel and Smit [64], Kolafa and Perram [66].  

For our non-cubic MD simulation configuration, the most accurate possible value for the real-
space cutoff radius ݎ௖௨௧ is half of the minimum length of the simulation domain: 

 

௖௨௧ݎ = ௠௜௡2ܮ = ௫,௬2ܮ  (3.39)

 

Frenkel and Smit [64] provided a relation for the value of ߢ௪ that minimizes the computational 
cost: 

 

௪ߢ = ܮ1 ቆ߬௥ߨଷܰ߬௙ ቇଵ ଺⁄
 (3.40)

 

where, ߬௥ and ߬௙ are the computational time for each real-space and Fourier-space calculation 
respectively. In our simulations, ݇௪ = 5.6 ⁄ܮ  is found by Equation 3.40 to optimize the 
calculation speed. 

Kolafa and Perram [66] discussed that the increase of calculation accuracy in Fourier-space 
decreases the accuracy in the real-space. Using the error analysis method, they proposed a 
relation among ݎ௖௨௧, ߢ௪ and ݊௖௨௧ to balance the calculation accuracies in both spaces: 

௖௨௧ݎ௪ߢ  = ܮ௪ߢ௖௨௧݊ߨ  (3.41)

 

Therefore, we can determine the Fourier cutoff number ݊௖௨௧ from ݎ௖௨௧ and ߢ௪ as: 
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݊௖௨௧ = ௪ଶߢ ߨ௖௨௧ݎܮ  (3.42)

 

Substituting the Fourier cutoff number ݊௖௨௧ into Equation 3.38, we obtain the magnitude of 
cutoff vector as:  

 

݇௖௨௧ = ܮ௖௨௧݊ߨ2  (3.43)

 

In each step of MD simulations, the magnitudes of the Fourier vectors of reciprocal lattice points หሬ݇Ԧห are compared with ݇௖௨௧. Only vectors of หሬ݇Ԧห < ݇௖௨௧ are considered in the energy calculation. 

 

§ 3.5 ADVACING ALGORITHMS AND SIMULATION STAGES 

 

In MD simulations, positions and velocities of all molecules are updated at each time step based 
on the applied intermolecular potentials. Algorithms of advancing the simulation in time adopted 
in our study are the velocity Verlet algorithm [67] for monatomic molecules and ions, and the 
RATTLE algorithm [68] for polyatomic molecules.   

 

The velocity Verlet algorithm for monatomic molecules and ions  

The major advantage of the velocity Verlet algorithm comparing to the original Verlet and the 
leap-frog Verlet algorithms is the ability to control the particles’ velocities directly at each time 
step. It also contains less inherent numerical errors than the original Verlet algorithm, and 
conserves energy as well as the other two methods. Therefore, the velocity Verlet algorithm is 
applied in our MD simulations for monatomic molecules and ions. 

The algorithm is implemented via the flow chart shown in Figure 3.11 for each particle in the 
system.    
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The RATTLE algorithm for polyatomic molecules  

Atoms in polyatomic molecules (water) feel both interatomic and constraint forces. Calculations 
of constraint force are difficult and computationally expensive. Therefore, the RATTLE 
algorithm is used for polyatomic molecules in order to avoid calculating constraint forces. The 
original version of SHAKE algorithm was devised by Ryckaert et al. [69] corresponding to the 
leap-frog Verlet algorithm. RATTLE was developed by Andersen [68] as an adaptation of the 
SHAKE algorithm to the velocity Verlet algorithm. 

The RATTLE algorithm is implemented via the flow chart shown in Figure 3.12 for each water 
molecule in the system. 
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To rescale the particle velocities such that they conform to a desired temperature	 ௗܶ௘௦௜௥௘ௗ, 
Equation 3.46 is applied to alter the velocities: 

 

ప,௔ௗఫ௨௦௧௘ௗሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦݒ  = పሬሬሬԦට்೏೐ೞ೔ೝ೐೏்೎ೌ೗೎ݒ  (3.46)

 

Besides the velocity adjustment for the purpose of temperature control, the particles’ position 
vectors need be adjusted for all simulation stages in order to remove the velocity bias. The 
random velocity distribution ideally provides no net momentum of the liquid layer in the ݖ	direction. However, the finite size of the simulation domain may accumulate the velocity bias 
from each time step, resulting in a small amount of	ݖ	directional momentum. In order to ensure 
that the liquid film region remains in the center of the simulation domain, which is very 
important in the data collecting stage as we obtain results of density or ion concentration profiles, 
the particles’ position vectors are adjusted at each time step. 

Because the number of particles in the liquid region is much greater than that in the vapor region, 
we can safely approximate that the center of mass of the liquid film is equal to that of the entire 
simulation domain, which may be calculated as: 

 

.ܥ (߬)௭,௖௔௟௖ܯ.ܱ = 1ܰ ෍ݖ௜ே
௜ୀଵ (߬) (3.47)

 

For fixing the liquid film at the center of the simulation domain, the desired center of mass for 
the entire system should maintain the same as that from the previous time step: 

 

.ܥ (߬)௭,ௗ௘௦௜௥௘ௗܯ.ܱ = .ܥ ߬)௭ܯ.ܱ − 1) = 1ܰ෍ݖ௜(߬ − 1)ே
௜ୀଵ  (3.48)

 

Applying the position adjustment equally among all simulating particles to obtain the desired 
system center of mass, each position vector is altered according to Equation 3.49: 
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(߬)௜,௔ௗ௝௨௦௧௘ௗݖ = (߬)௜ݖ + ቀܥ. (߬)௭,ௗ௘௦௜௥௘ௗܯ.ܱ − .ܥ =௭,௖௔௟௖(߬)ቁܯ.ܱ (߬)௜ݖ + 1ܰ ൭෍ݖ௜(߬ − 1)ே
௜ୀଵ −෍ݖ௜(߬)ே

௜ୀଵ ൱ 
(3.49)

 

 

§ 3.6 THERMODYNAMIC PROPERTIES CALCULATION 

 

Several thermodynamic properties are collected during the data collecting stage for the purpose 
of film stability analysis, such as the local mass density, the local ion concentration, and surface 
tension. Some properties, like temperature, system total energy, are monitored in all simulation 
stages in order to make the program running smoothly. The statistical thermodynamics methods 
for calculating these properties based on MD simulation data are presented in this section. 

 

Local mass density and ion concentration calculations 

After equilibrium is reached, the simulation domain is divided into 100 bins along the ݖ-axis 
(normal to the film interface), as shown in Figure 3.15. The local mass density data and the local 
ion concentration data (for electrolyte aqueous solutions) are collected in each bin at every step 
in the data collecting stage.  The mass density of a bin ݇ at time step ߬, denoted as ߩ௠,௞(߬), is 
determined from the number of molecules in the bin ܰ௠,௞(߬)	and the bin’s volume ௞ܸ:  

 

(߬)௠,௞ߩ = ݉ܰ௠,௞(߬)௞ܸ  (3.50)

 

where ݉	is the molecular mass. For a polyatomic molecule, the position of the center of mass of 
that molecule is used to decide whether it belongs to the bin ݇	or not. The time average local 
mass density ߩ௠,௞ is then calculated as the mean of ߩ௠,௞(߬) values over all time steps of the data 
collecting stage: 

௠,௞ߩ  = ఛ〈(߬)௠,௞ߩ〉 ∈ ሾହ଴଴଴଴, ଼଴଴଴଴ሿ  (3.51)
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Pressure and surface tension calculation for argon 

The pressure for a monatomic fluid is calculated from the intermolecular forces and the system 
kinetic energy by [70]: 

 

ܲ = 13ܸ෍݉௜|ݒపሬሬሬԦ|ଶே
௜ୀଵ + 13ܸ෍෍ܨపఫሬሬሬሬԦ ⋅ పఫሬሬሬԦேݎ

௝வ௜
ே
௜ୀଵ  (3.54)

 

Note that for an ideal gas, the intermolecular forces are zero everywhere except when the 
intermolecular distance is zero. Therefore, the dot product in the second term is zero everywhere. 
This modification, couple with Equation 3.45 for temperature, gives the well-known expression 
for an ideal gas, 

 ܸܲ = ܰ݇஻ܶ (3.55)

 

In some MD simulation cases, values of local pressure are more concerned than the total pressure 
given by Equation 3.54. To obtain local pressure values, the simulation domain is divided into 
100 bins along the ݖ-axis (normal to the film interface), the same way as that used in collecting 
local density data shown in Figure 3.15. The expression used to calculate the local pressure ܲ(݇) 
of bin ݇ is proposed by Weng et al. [22] as: 

 

ܲ(݇) = 13 ௞ܸ ෍ ݉௜|ݒపሬሬሬԦ|ଶ௜	∈	௕௜௡	௞ + 13 ௞ܸ෍෍ ௜݂௝௞ܨపఫሬሬሬሬԦ ⋅ పఫሬሬሬԦேݎ
௝வ௜

ே
௜ୀଵ  (3.56)

 

The coefficient ௜݂௝௞ represents the portion of the interaction between molecules ݅ and ݆ that falls 
in bin	݇. Figure 3.16 illustrate the determination of ௜݂௝௞ in various scenarios: 
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Since in our MD simulation configurations, the normal to the film interface is in ݖ direction, the 
normal pressure component points in the ݖ	direction and the tangential pressure component is the 
average of ݔ and ݕ	direction pressure values. Therefore, ௡ܲ(݇) and ௧ܲ(݇) in Equation 3.57 are 
calculated as: 

 

௡ܲ(݇) = 1ܸ ෍ ݉௜ݒ௜,௭ଶ௜	∈	௕௜௡	௞ + 1ܸ෍෍ ௜݂௝௞ܨ௜௝,௭ݎ௜௝,௭ே
௝வ௜

ே
௜ୀଵ  (3.59)

௧ܲ(݇) = 12ܸ ෍ ݉௜൫ݒ௜,௫ଶ + ௜,௬ଶݒ ൯௜	∈	௕௜௡	௞ + 12ܸ෍෍ ௜݂௝௞൫ܨ௜௝,௫ݎ௜௝,௫ + ௜௝,௬൯ேݎ௜௝,௬ܨ
௝வ௜

ே
௜ୀଵ  (3.60)

 

Pressure and surface tension calculation for water and electrolyte aqueous solutions 

In our MD simulations, the center-of-mass approximation proposed by Ciccotti [71] is used for 
polyatomic fluid, water. In this approximation, all interatomic forces are assumed to act on the 
center of mass of the molecule. The calculation for pressure using this approximation is:  

 

ܲ = 13ܸ෍݉௠,௜หݒ௠,పሬሬሬሬሬሬሬԦหଶே
௜ୀଵ + 13ܸ෍෍ቌ ෍ ෍ ప௔௕ఫሬሬሬሬሬሬሬሬሬԦܨ ⋅ ప௔௕ఫሬሬሬሬሬሬሬሬԦேೌ೟೚೘ݎ

௕ୀଵ
ேೌ೟೚೘
௔ୀଵ ቍே

௝வ௜
ே
௜ୀଵ  (3.61)

 

where ݉௠,௜ is the molecular mass and ݒ௠,పሬሬሬሬሬሬሬԦ is the center of mass velocity vector for molecule ݅; ݎపఫሬሬሬԦ is the vector between the centers of mass of molecule ݅	and ݆, and ܨప௔௕ఫሬሬሬሬሬሬሬሬሬԦ is the force vector 
between atom ܽ	on molecule ݅	and atom ܾ	on molecule ݆.  
Incorporation of the Ewald sum technique into Equation 3.61 is required in order to handle the 
electrostatic portion of interactions. Alejandre et al. [23] provided relations for the columbic 
contribution to pressure in the Cartesian coordinate system: 

  



Interfacial Region Thermophysics and Intrinsic Stability of Thin Free Liquid Films 
Chapter 3 – MD Simulations Techniques and Implementations 

87 
 

కܲ = ଴ܸ෍߳ߨ18 ෍ ෍ ෍ ௝௕ݍ௜௔ݍ ൤ ߨ√2 ௜௔௕௝݁ି఑మೢݎ௪ߢ ௥೔ೌ್ೕమ + erfc൫ߢ௪ݎ௜௔௕௝൯൨ேೌ೟೚೘
௕ୀଵ

ே
௝ஷ௜

ேೌ೟೚೘
௔ୀଵ

௜௔௕௝ଷேݎ௜௔௕௝,కݎ௜௝,కݎ
௜ୀଵ+ ଴߳ߨ14 ଶ෍ܳ(݇)หܵ൫ሬ݇Ԧ൯หଶߨ2ܸ ቆ1 − 2݇కଶ݇ଶ − ݇కଶ2ߢ௪ଶ ቇ௞ஷ଴− 1ܸ෍ ෍ ൤(ݎప௔ሬሬሬሬԦ − (పሬሬԦݎ ൬ܨప௔௙ሬሬሬሬሬԦ൰൨కேೌ೟೚೘

௔ୀଵ
ே
௜ୀଵ ߦ = ሼݔ, ,ݕ or  ሽݖ

(3.62)

 

where ܳ(݇), ܵ൫ሬ݇Ԧ൯ and ܨప௔௙ሬሬሬሬሬԦ are given by Equation 3.33, 3.34 and 3.37 respectively.   

Equations 3.61 and 3.62 use water molecules as an example to illustrate the MD implementation 
of the pressure calculation. For electrolyte aqueous solutions, interactions among water 
molecules and dissolved ions need be included in Equation 3.61 and 3.62. The subscripts of	݅, ݆, ܽ, ܾ are replaced by ߚ ,ߙ accordingly to represent the counterparts for ions in the above 
equations.  

Surface tension is calculated using Equation 3.57 in the same manner as for the monatomic 
system of argon. In MD simulations, the integral in Equation 3.57 is carried out across the 
simulation domain. Therefore, for simulations which only yield total pressure values without 
local pressure results in individual bins, the surface tension of Equation 3.57 can be 
approximated as: 

 

ߪ = 12 ൤ ௭ܲ − 12 ൫ ௫ܲ + ௬ܲ൯൨ (3.63)

 

 

§ 3.7 SUMMARY 

 

In this chapter the fundamentals of MD implementation of a system incorporating liquid-vapor 
interfacial regions have been discussed. The initialization process provided molecules in a f-c-c 
lattice structure for both the liquid and vapor regions with velocities matching the Maxwell-
Boltzmann distribution. Periodic boundary conditions are applied to eliminate surface effects due 
to limited dimensions of simulation domain. For monatomic molecule argon, the Lennard-Jones 
12-6 potential function is used to calculate the intermolecular interactions. For polyatomic 
molecule water and various dissolved electrolyte ion, SPC/E type of potential functions are used 
in MD simulations. The long-range electrostatic portion of SPC/E potential is handled by the 
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Ewald summation technique in both real-space and Fourier-space. The velocity Verlet and 
RATTLE algorithms are used to advance the simulation in time for systems with and without 
intra-molecular constraint forces respectively. This chapter is ended by the discussion of deriving 
macroscale statistical thermodynamic properties from MD simulations, such as the mean density 
and ion concentration profiles, pressure and surface tension, based on which the stability of thin 
liquid film is analyzed.  
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CHAPTER 4 – STABILITY ANALYSIS BY MD SIMULATIONS 

 

 

MD simulations of free thin liquid films have been carried out for systems consisting of argon, 
water and various electrolyte aqueous solutions. The stability of thin liquid films is studied using 
the thermodynamic intrinsic stability criteria and density profiles derived from MD simulations. 
Effects of film thickness, system temperature and electrolyte concentration on film stability are 
investigated by series of MD simulations with specified system variables. Also discussed are the 
surface tension of liquid-vapor interfacial regions and the relations of surface tension with film 
thickness, system temperature, electrolyte species and dissolved ion concentration profile. 

   

 § 4.1 DENSITY PROFILES AND CRITICAL THICKNESSES 

 

In the data collecting stage of MD simulations, local density data are collected in each bin at 
every time step. Time averaged mean values are obtained for each bin at the end of simulations. 
Figure 4.1, 4.2 and 4.3 show the mean density profiles predicted by the simulations of argon, 
pure water and 0.38 M (mol/l) NaCl aqueous solution respectively. In these simulations, the 
system reduced temperature is set as	 ௥ܶ = 0.6, the lateral film dimension for argon is fixed as ܮ௫,௬ = 3.83 nm (݊௫,௟ = ݊௬,௟ = 7), for water and NaCl aqueous solution ܮ௫,௬ = 2.48 nm (݊௫,௟ =݊௬,௟ = 5), the film molar loading thickness for argon varies from 0.55 nm to 3.83 nm (݊௭,௟ =1~7), and for water and NaCl aqueous solution the film molar loading thickness varies from 
0.50 nm to 2.48 nm (݊௭,௟ = 1~5), as shown in these Figures respectively.     
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In MD models, the definition of the mean film thickness ߜ௙ is based on the density profile as 
well: 

௙ߜ  = ௥ݖ − ௟ (4.1)ݖ

 

where, ݖ௟ and ݖ௥ are the ݖ	coordinates at which the local density in the interfacial region is equal 
to the mean value of ߩ௖௖തതതത and ߩ௩: 

௭ୀ௭೗ழ଴|(ݖ)ߩ  = ௭ୀ௭ೝவ଴|(ݖ)ߩ = ௩ߩ + ௖௖തതതത2ߩ  (4.2)

 

Comparing the definitions of ߜ௙ in the film capillarity model (Equation 2.66 and 2.67) and in 
MD simulation model, we notice that ߩො௖௟ in Equation 2.67 is replaced by ߩ௖௖തതതത in Equation 4.2. 
Due to the fluctuating nature of MD simulations, using the mean density of the central core 
region is more reasonable than using the local density of a single bin containing the center line of 
simulation domain. In general, ߜ௙ derived from MD simulation results also differ from the film 
molar thickness	ߜ௠௟. 
Showing in Figure 4.4, 4.5 and 4.6 are the variation of ߩ௖௖തതതത with the film thickness ߜ௙ for argon, 
pure water and 0.38 M NaCl aqueous solution respectively. Each data point in Figure 4.4 to 4.6 
corresponds to a density profile as those shown in Figure 4.1 to 4.3, and the connecting lines 
between data points are drawn by curve fitting in order to show the trends of variations. 
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From the point of view of the wave instability model [4], the presence of the Na+ and Cl- ions 
tends to enhance the increase of free energy due to the increase of surface area in a perturbing 
wave and increase the interfacial tension of the solution. Thus, in turn, has the effect of 
enhancing the stability of the film by reducing the critical film thickness as shown in Equation 
1.3 and Equation 2.74. This is also consistent with the conclusions reached by our MD 
simulation results regarding the impact of dissolved ionic solids on film stability. 

Although no theoretical model or explicit experimental data about the critical thickness of NaCl 
aqueous solution film can be found in literatures, many previous studies showed consistent 
conclusions that NaCl enhances bubble stability. The observations of Huang and Carey [72], 
regarding the effect of dissolved salt on the Leidenfrost temperature for water spheroids 
deposited on a hot aluminum surface, found that addition of dissolved NaCl significantly raised 
the Leidenfrost temperature, the minimum surface temperature required to sustain film boiling. 
Theories of the Leidenfrost transition proposed by Bernardin and Mudawar [73,74]) and others 
are based on the premise that bubble merging under liquid droplet or spheroid masses in contact 
with a hot surface is the mechanism that dictates the transition from transition boiling to film 
boiling on the side of the droplet facing the surface. If this theory of the mechanisms is correct, 
any alteration of the process that tends to suppress bubble merging will push the surface 
temperature for the onset of film boiling to a higher level. The data obtained by Huang and Carey 
[72] indicate that the Liedenfrost temperature that defines this transition is increased 
substantially by the addition of a small amount of dissolved NaCl. Our MD simulation results 
described here imply that increasing NaCl concentration enhances the stability of the thin liquid 
film between adjacent bubbles, which makes it more difficult for the bubbles to merge and 
makes it more difficult to establish a stable vapor film between a liquid spheroid an a heated 
surface. Therefore the surface temperature must be pushed to a higher level to create 
circumstance that produced more rapidly growing bubbles to overcome the added resistance of 
bubble merging by adding NaCl to the water. As shown in Figure 4.13 the critical thickness 
changes slowly with increasing NaCl concentration. In aqueous solutions with dilute salt 
concentrations, the effect of dissolved ion on film stability may therefore be low. However, for 
films between bubbles growing through vaporization, the salt concentration may be locally 
enhanced, resulting in a stronger stabilizing effect. 

 

§ 4.3 SURFACE TENSION 

 

Surface tension derived from MD simulations is of great importance in our study. The abundant 
experimental measurement data in literatures make the surface tension an ideal indicator to 
validate our MD simulation model. Since most of the surface tension data found in literatures 
were measured for its bulk value at the interface between semi-infinite bulk liquid and semi-
infinite bulk vapor phases, values of surface tension from MD simulations to make the 
comparison are taken from thick film cases, which contain both stable vapor and liquid phases. 
For examples, at ௥ܶ = ௠௟ߜ ,0.6 = 3.28 nm case for argon, or ߜ௠௟ = 2.48 nm case for pure water 
and NaCl aqueous solution contain both stable vapor and liquid phases as indicated by both the 
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we use the same definition of the characteristic threshold thickness ߜ௧௛ and use the same function 
form of Equation 2.73 as those used in the film capillarity model to describe the surface tension 
deviation predicted by MD simulations. As a comparison, at reduced temperature	 ௥ܶ = 0.6, the 
film molecular capillarity model predicts ߜ௧௛ = 1.53 nm for pure water and the value of ߜ௧௛ 
predicted by MD simulations for pure water at the same temperature is 1.62 nm. Determination 
of ߜ௧௛ from MD simulation data requires curve-fitting of the variation of ߪ with	ߜ௙, which has 
inherent uncertainties. It can be seen, however, that the order of magnitude of ߜ௧௛ predicted by 
MD simulations is consistent with our film molecular capillarity theory results.  

For pure water at room temperature of		 ௥ܶ = 0.46, the correlation-constants of Equation 2.73 are: ߪஶ = 69.22 mN/m, ߜ௧௛ = 1.498 nm and	݉ = 2.906. Given in Table 4.1 are the correlation-
constants of Equation 2.73 for NaCl, NaI, NaClO4

 and CaCl2 aqueous solutions with various 
solute concentrations at	 ௥ܶ = 0.46, which are going to be used in the following chapter to 
compare the modified wave instability model (Equation 2.74) with the bubble merging 
experiments at room temperature of 25 °C.     

 

Table 4.1 
Surface tension deviation correlation constants for NaCl, NaI, NaClO4

 and CaCl2 aqueous solutions at 
room temperature of 25°C. 

Concentration (M) 0.375 0.751 1.127 1.502 1.878 ߪஶ,ே௔஼௟  (mN/m)  69.97 71.16 71.76 72.41 73.46 ߜ௧௛,ே௔஼௟  (nm)  0.685 0.633 0.622 0.619 0.615 ݉ே௔஼௟  2.127 2.913 2.632 ௧௛,ே௔ூ (nm)  0.921 0.809 0.752 0.729 0.706 ݉ே௔ூߜ ஶ,ே௔ூ (mN/m)  69.84 70.54 71.20 71.61 72.27ߪ 2.279 2.098 ஶ,ே௔஼௟ைరߪ 2.506 2.154 2.149 2.463 2.217  (mN/m)  69.35 69.70 69.81 69.95 70.17 ߜ௧௛,ே௔஼௟ைర  (nm)  1.453 1.415 1.381 1.355 1.341 ݉ே௔஼௟ைర ஶ,஼௔஼௟మߪ 2.561 2.701 2.946 2.669 2.964    (mN/m)  70.73 71.86 74.05 74.94 76.15 ߜ௧௛,஼௔஼௟మ  (nm)  0.627 0.603 0.596 0.591 0.590 ݉஼௔஼௟మ   2.215 2.359 2.952 2.300 2.540 
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§ 4.5 SUMMARY 

 

By using the method described in the previous chapter, MD simulations are carried out in this 
chapter for various fluid systems, film thickness, system temperatures and solute concentrations. 
Simulation results of density distribution profiles, ion distribution profiles and surface tension 
values are examined and analyzed in detail. 

First, the stability of thin liquid films is studied and the critical thickness is defined, using the 
thermodynamic intrinsic stability criteria and density profiles derived from MD simulations. 
Based on the critical thickness variations with respect to system temperature and the electrolyte 
solute concentration, the effects of these two parameters on film stability are investigated.  

Values of surface tension from MD simulations for various temperatures and system 
compositions are compared with the experimental data in literatures. Fairly good consistencies 
showed in the comparisons indicate that MD simulation is an acceptable method for our research 
purpose. In addition, the surface tension deviation for thinning films is also observed in our MD 
simulation results. We are able to characterize and describe this surface tension deviation using 
the definition of threshold thickness and the correlation proposed in the film capillarity model. 
For electrolyte aqueous solutions, constants of the surface tension deviation correlation derived 
from MD simulations supplement the results we derived for argon and pure water from the film 
capillarity theoretical analysis. 

 

 

 

 

 

 

 

 

 

 

 



Interfacial Region Thermophysics and Intrinsic Stability of Thin Free Liquid Films 
Chapter 5 – Experiment and Comparison 

109 
 

 

 

CHAPTER 5 – EXPERIMENT AND COMPARISON 

 

 

In previous chapters, film stability is investigated by the wave instability models, the film 
capillarity intrinsic stability model and MD simulations. Critical thickness, corresponding to the 
thinnest stable film before the first occurrence of film rupture, is generally reported on the order 
of nanometers. Direct experimental measurements for films with thickness in the nanometer 
length scale are commonly difficult and involve complex optical systems. Therefore, although 
indirect, the bubble merging experiment method is adopted in our study. Since the bubble 
merging probability is tightly related with the critical thickness of separating liquid films 
between pairs of bubbles, by examining the variation of bubble merging probabilities with 
electrolyte species and concentrations, the effect of dissolved electrolyte ions on film stability is 
studied and compared with our predictions from the wave instability model, the film capillarity 
intrinsic stability model and MD simulations. 

The apparatus and procedure of the bubble merging experiment are first described. Experiment 
results for various system compositions and concentrations are presented with the discussion of 
the relationship between the bubble merging probability and film stability in order to interpret 
the experiment results. Finally, conclusions of film stability analysis reached by the wave 
instability models, the film capillarity intrinsic stability model, MD simulations and bubble 
merging experiments are compared.    

 

§ 5.1 EXPERIMENT APPARATUS AND PROCEDURE 

 

In the experiments, pairs of contacted air bubbles are generated by two brass injection tubes with 
diameter 4.76mm aligned vertically in a transparent Plexiglas cylindrical chamber as shown in 
Figures 5.1. The cylindrical chamber is filled by pure water or electrolyte aqueous solutions at 
desired concentrations. The schematic diagram of the apparatus used is shown in Figures 5.1. 
The two injection tubes are connected to two 20 ml gas-tight syringes by polyvinyl tubes 
respectively. The pistons of the syringes are fixed on a rigid platform, which can be raised and 
lowered mechanically along a threaded bolt. Raising the platform at a constant speed pushes the 
pistons of two syringes simultaneously. Pairs of bubbles are generated on the tips of injection 
tubes in the solution.  Buoyancy acts to push the bubble ejected from the lower tube upward 
against the bubble ejected downward form the upper tube. Because the vertical buoyant force 
acting on a bubble is dominant, placing the injection tubes vertically in the solution reduces the 
disturbance introduced by external vibrations or other sources. The separation between the tips of 
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dimension of the separating film ܮ ≈ 3.5 mm is orders of magnitude greater than the transitional 
dimension	ܮ௧௥௔௡, the film ruptures observed during the experiment are expected to be due to the 
wave instability rather than lack of intrinsic stability predicted by MD simulations. As it is 
expected, Figures 5.8 to 5.11 show that the modified wave instability model with interfacial 
region thickness taking into account has the best agreement with the experiment results. For 
NaCl, NaI and CaCl2 solutions, the results indicate steep declines in film critical thickness 
precisely over the range of concentrations in which the measured probabilities of bubble merging 
rapidly drop to a value close to zero. And for NaClO4 aqueous solutions, the presence of the salt 
and its concentration variations do not show significant effects on liquid film stability and bubble 
coalescence. 

 

§ 5.4 SUMMARY  

 

In this chapter, the setup and procedure of bubble merging experiments have been discussed in 
detail. Four common engineering inorganic electrolytes: NaCl, NaI, NaClO4 and CaCl2 are 
examined in the experiments to study their impacts on bubble coalescence and the stability of the 
liquid film separating adjacent bubbles. Various electrolyte concentration solutions have been 
tested and the bubble merging probabilities are reported and compared with coalescence 
experiment results reported by other researchers.  

Conclusions of film stability analysis reached by the wave instability models, the film capillarity 
intrinsic stability model, MD simulations and bubble merging experiments are compared. The 
first comparison is made among the wave instability models, the film capillarity intrinsic stability 
model, and MD simulations, using argon and pure water as examples. The effects of system 
temperatures on film stability are demonstrated in this comparison and consistent trends of 
critical thickness variation with temperatures are shown for all three models and MD simulations. 
The second comparison is made among the wave instability models, MD simulations and 
experiments, using electrolyte aqueous solutions as examples. Because the critical thickness is 
not directly measured in experiments, the relationship between the bubble merging probability 
and the film stability is examined first, proposing a comparison on a dimensionless basis. The 
effects of electrolyte solute concentration on film stability are demonstrated in this comparison 
and consistent trends of critical thickness variation with electrolyte concentrations are shown for 
the wave instability models, MD simulations and experiments, in which the modified wave 
instability model with interfacial region thickness taking into account has the best agreement 
with the experiment results. 
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CHAPTER 6 – CONCLUSIONS 

 

 

In this report, the thin liquid film stability has been investigated by three strategies: 
thermodynamics theoretical analysis, molecular dynamics computer simulations and bubble 
merging experiments.  

The thermodynamics theoretical analysis has demonstrated the viability of extending classical 
molecular capillarity theory to a full free liquid film. This extension has been formulated for 
molecules that are well-modeled by a Lennard-Jones interaction potential, and applied to argon 
liquid films. We have also developed the extension of capillarity theory to liquid water films by 
incorporating an averaged form for the SPC/E interaction potential which accounts for the dipole 
character of water. This new approach to modeling liquid water films predicts half film excess 
free energy values for thick films that agree well with NIST recommended values of interfacial 
tension between bulk liquid and vapor water phases.  

The investigation documented here also demonstrated the usefulness of combining the film 
capillarity theory with MD simulations using the same or similar molecular interaction potentials. 
The capillarity theory, although more idealized, provides closed form relations that predict the 
relationships among parameters that govern the film structure and thermophysical behavior. The 
use of comparable MD simulations allows more detailed explorations of the molecular-level 
features of the film structure and thermophysics. Using approaches of both the film capillarity 
theory and MD simulations, we have deduced the conditions for incipient film rupture due to 
lack of intrinsic stability in the film core, and we have demonstrated that this prediction is close 
to observed film rupture conditions indicated by comparable MD simulations. Specifically, the 
critical film thickness corresponding to incipient film rupture for a thinning film predicted by the 
capillarity theory model was shown to be slightly higher than that observed in the corresponding 
MD simulation.  

A key outcome of the film capillarity theory and MD simulations is the prediction that surface 
tension diminishes as the film thickness decreases below a threshold value of film thickness. The 
capillarity theory model predicts that for argon and water at	 ௥ܶ < 0.9, the film thickness must 
drop to less than a few nanometers for surface tension reduction to be significant. Our 
comparable MD simulations confirm this trend. Free liquid films between bubbles during boiling 
and two-phase flow are frequently much thicker than a few nanometers and we therefore expect 
that the effect of film thickness on surface tension will be negligible in those cases. The effect 
can be significant, however, as the liquid film thins towards conditions for onset of rupture, or 
for bubbles of small physical size in, for example, nanostructured boiling surfaces.  

The predictions of the film capillarity theory model indicate that lack of core intrinsic stability in 
the liquid film can be a mechanism for onset of film rupture if the film thins to below 5 nm in 
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thickness without rupturing due to some other mechanism. Wave instability theory for thin free 
liquid films indicates that liquid films of macroscopic lateral extent will rupture by wave 
instability at film thicknesses much larger than 10 nm. However, our capillarity theory model 
and the comparable MD simulations both indicate that films with lateral extent on the order of 10 
nm can be stable to thicknesses below 10 nm nanometers, and in such cases, lack of intrinsic 
stability may be the dominant mechanism that initiates film rupture. The results of our 
investigation also indicate that for films with thicknesses less than 10 nm, wave instability theory 
should be modified to account for the effects of surface tension reduction with film thickness.  

As at the molecular level, the MD simulation is used as our exploratory and verificational tool, at 
the macroscopic levels, the bubble merging experiment is designed and carried out for electrolyte 
aqueous solutions to validate our conclusions reached by the modified version of wave instability 
model and MD simulations. We measured how salt concentration affects bubble merging 
probability in saline solutions and clearly defined how dissolved ionic solids would impact the 
film stability that plays a key role in bubble merging mechanism. Our experiments have shown 
that the presence of some types of electrolyte solutes in water makes it less likely that bubbles 
brought into contact will merge, which is consistent with the trend indicated by MD simulations 
and wave instability models. However, for bubbles with dimensions in the micron range or larger, 
wave instability is expected to be the dominant mechanism for film rupture.  The prediction of 
critical thickness by our modified version of wave perturbation theory was consistent with our 
experimental results. For some types of electrolyte solutes, the improved wave perturbation 
model indicates a steep decline in film critical thickness precisely over the range of concentration 
in which the measured probability of bubble merging rapidly drops to a value close to zero, 
implying that the decrease in critical film thickness is enhancing the stability of the film and 
suppressing bubble merging.  

Although the film molecular capillarity theory and the MD simulation models described here 
have limited accuracy in the systems of interest, and the bubble merging experiments in this 
study are limited in scope, they provide important insight into the free liquid film stability, and 
shed light on the effects of system variables on the stability, which are of significant engineering 
importance for applications involving coalescence of bubbles, two-phase flows, and collapse of 
foams.  
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