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ABSTRACT OF THE DISSERTATION
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Doctor of Philosophy in Chemical Engineering
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Crystallization plays a vital role in separation and purification methods for the produc-

tion of therapeutic drugs. Considering the fact that crystal size and shape distributions have

a significant influence on the bioavailability of drugs such as the dissolution rate, filter-

ability, and stability as a carrier to the target site, the production of crystals with desired

size and shape distributions is of particular interest to the pharmaceutical industry. Moti-

vated by these considerations, this dissertation focuses on the development of a multiscale

modeling and simulation framework for crystallization processes that elucidates the rela-

tionship between molecular-level processes like crystal nucleation, growth and aggregation

and macroscopically-observable process behavior and allows computing optimal design

ii



and operation conditions. Using protein crystallization as a model system, the multiscale

framework encompasses: a) equilibrium Monte-Carlo modeling for computing solid-liquid

phase diagrams and determining initial crystallization conditions that favor crystal nucle-

ation, b) kinetic Monte-Carlo modeling for simulating crystal growth and aggregation and

predicting the evolution of crystal shape distribution, and c) integrated multiscale computa-

tion linking molecular-level models and continuous-phase macroscopic equations, covering

both batch and continuous crystallization systems. The multiscale model parameters and

predictions are calibrated and tested with respect to available experimental data. Then,

this dissertation addresses model predictive controller designs that utilize the insights and

results from the multiscale modeling work and real-time measurements of solute concen-

tration and temperature to manipulate crystallizer conditions that lead to the production of

crystals with desired size and shape distributions. To enhance the ability of the predictive

controller to deal with batch-to-batch parametric drifts, a common problem in industrial

crystallization owing to changes, for example, in the pH level or impurity concentration

in the feedstock container, a run-to-run-based model parameter estimation scheme will be

presented that uses moving horizon estimation principles to update the predictive controller

model parameters after each batch and leads to the consistent production of crystals of de-

sired shape at the end of each batch.
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Chapter 1

Introduction

The biopharmaceutical market is one of the fastest growing areas in the $1 trillion phar-

maceutical industry. Within biopharmaceutical production, protein crystallization plays a

crucial role. For example, more than 100 therapeutic proteins have been licensed and more

proteins are currently under research or development. However, of the 100 therapeutic pro-

teins with production licenses, only a few are being sold in crystalline form in the market

due to significant technological challenges in their production. The main technological

challenge in producing protein crystals lies in the complexity of protein crystallization and

the presence of nonlinearities in many factors involved in the system. More specifically,

the production of crystals with desired size and shape distributions from crystallization pro-

cesses is a subject of great interest to the pharmaceutical industry, because crystal size and

shape significantly influence the bioavailability of drugs such as the stability of a carrier to

the target site, melting points, and dissolution rates [131].
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1.1 Batch crystallization system with nucleation, crystal

growth, and aggregation processes

Researchers recently have developed models for protein nucleation [40, 100] and crys-

tal growth [31, 35, 38, 64], and consequently significant advances have been made in

the field of modeling of crystallization processes describing the shape and size distribu-

tions of the produced protein crystals. To this end, kinetic Monte Carlo (kMC) simu-

lation methods, which have been widely used to simulate molecular dynamic processes

[10, 29, 30, 42, 43, 103, 104, 119, 44], have been successfully applied to compute the net

crystal steady-state growth rate accounting for the dependence of migration and detach-

ment rates on the local surface configuration. To implement the kMC methodology over

the entire lattice, we extended the methodology of [25] to rate equations which were first

developed by [32]. There have been a number of computational and theoretical studies

to improve the understanding of the shape control of crystals in a variety of small-scale

crystallization systems [78, 77, 126], however no significant advancement has been made

associated with the shape control of crystal aggregates in a large batch crystallization sys-

tem. Crystal aggregation is caused by shear-induced forces from a stirring process which

is necessary for a large-scale batch crystallizer in order to maintain the particulate phase in

suspension (i.e., to avoid crystal sinking) [112].

Within this context, the present work focuses on the modeling of aggregation of protein

crystals along with crystal nucleation and growth to investigate the influence of stirring on
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the size and morphology of crystal aggregates. It is assumed that the continuous phase is

dilute enough to make only binary aggregation possible. Furthermore, the corresponding

turbulent shear rate within the crystallizer is characterized by the average velocity gradi-

ent of the flow field. An appropriate aggregation kernel is used to compute the rate at

which binary aggregation occurs, and this rate strongly depends on the crystal sizes and

the crystallizer operating parameters [65, 109]. The aggregation of lysozyme crystals with

a diameter approximately in the range of 1-50 micrometers is mainly induced by shear

forces according to the Kolmogorov microscale analysis [65]. An aggregate will be formed

as two crystals completely merge along with their internal coordinates resulting in a de-

crease in the total number of crystals and an increase in the average crystal size. For the

purpose of simulation, it is assumed that the shape of the crystal resulting from aggregation

is identical to that of the larger crystal participating in the aggregation event. Extensive

simulation studies are carried out to evaluate the influence of aggregation on the shape and

size distributions of the crystals at the end of the batch run.

1.2 Continuous crystallization system

Traditionally, batch crystallization processes have been widely used in the pharmaceutical

industry. However, the batch process has a few well-known potential drawbacks such as

batch-to-batch variability and the difficulty in the scale-up and the production of crystals

with desired crystal size and/or shape distributions. Recently, continuous crystallization,

which is able to consistently produce crystals with desired size and shape distributions
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starting from fresh raw materials, is receiving growing attention in the pharmaceutical in-

dustry. Specifically, once a steady-state has been achieved in a continuous crystallizer, all

crystals are produced under a uniform supersaturation level, which leads to greater repro-

ducibility and controllability of major characteristics of crystals such as size and shape

distributions. As a result, the number of downstream operations required to amend crystals

with undesired size and shape distributions (e.g., granulation for the solid dosage forms)

may be reduced. Consequently, using a continuous manufacturing process can stimulate

the growth of the pharmaceutical industry as it may reduce the size of production facilities,

operating costs, waste, energy consumption, and raw material usage considerably. More-

over, the reproducibility and controllability of the active pharmaceutical ingredients (APIs)

in the final dosage form can be improved.

Motivated by this, a mixed suspension mixed product removal (MSMPR) crystalliza-

tion process, which is analogous to the conventional continuously stirred tank crystallizer

(CSTC), has received growing attention, and many efforts have been made to produce crys-

tals from the MSMPR process with a higher production rate and desired product quality

than those of batch crystallization processes [48, 3, 54]. Specifically, the presence of back-

mixing is modeled by employing the residence time mixing model in order to account for

the fact that those crystals nucleated at a later stage during the crystallization process will

reside a relatively short amount of time in the crystallizer and thus they will end up leav-

ing the crystallizer with undesired size and shape distributions [68]. The modeling of a

plug flow crystallizer (PFC) which is used to produce crystals with narrow size and shape
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distributions has been performed as well [33, 123].

1.3 In-batch model predictive control and post-batch run-

to-run control

A population balance equation (PBE) is widely used to describe the evolution of the crystal

volume distribution for batch and continuous crystallization processes. In practice, how-

ever, the complexity of a population balance model usually leads to an implementation

issue with the controller design [22]. Therefore, the method of moments is used to de-

rive reduced-order ordinary differential equation (ODE) models in time, which are used to

approximate the dominant dynamic behavior of the evolution of the crystal volume distri-

bution in a continuous crystallizer [34, 59]. In order to obtain a closed form of the moment

model, a normal distribution assumption is used to approximate the crystal volume distri-

bution. In addition to a set of polynomials that describes the dependence of the crystal

growth of each face on a supersaturation level, the mass and energy balance equations and

the moment models are considered to design an in-batch model predictive control (MPC)

system, which is used to produce crystals with a desired shape distribution. To improve the

controller performance, an advanced real-time monitoring technique is necessary in prac-

tice, because the production of crystals which are off the desired specification at the outlet

of the process is irreversible. Within this context, the measurements of crystals through

the use of focused beam reflectance measurement (FBRM) and process vision and mea-
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surement (PVM) [8, 63] are modeled using kMC simulations to account for the real-time

physical crystallization process.

However, the conventional MPC technique is not designed to take advantage of the

repetitive nature of batch processes and thus in most cases the control performance is not

improved as batch runs are repeated. Furthermore, the control performance of the MPC is

very sensitive to model uncertainties such as changes in the kinetic parameters, which tend

to persist from run-to-run [91].

Motivated by the above considerations, we propose a Run-to-Run-based (R2R-based)

MPC to enhance the controller performance by learning from the past batch runs. Further-

more, the idea of the parameter adaptive control (PAC) strategy that estimates controller

model parameters and utilizes them for the computation of improved control inputs is bor-

rowed and used along with the offset drift cancellation (ODC) scheme [107, 108, 88, 85,

17, 128]. The major benefit of the proposed R2R-based MPC scheme is its unique capa-

bility to deal with the uncertainties and drift in the process while simultaneously satisfying

the constraints imposed on the state variables and inputs; this integrated approach will lead

to the production of crystals with a desired shape distribution from batch-to-batch.

1.4 Outline of the dissertation

Chapter 2 focuses on the modeling of a batch crystallization process used to produce tetrag-

onal hen egg white (HEW) lysozyme crystals via kinetic Monte Carlo (kMC) simulation.
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The kMC simulation simulates the batch protein crystallization via adsorption, desorp-

tion, and migration mechanisms on the (110) and (101) faces. Then, in order to describe

the nucleation occuring at different times in the batch simulations, the nucleation rate ex-

pression was extracted from experimental results by [41]. In addition, the dependence

of the crystal growth on temperature and protein solute concentration is demonstrated in

3-D nonlinear models constructed from open-loop kMC simulations. The present work

also develops mass and energy balances to account for the depletion in the protein solute

concentration and the drop in the crystallizer temperature by crystallization. Finally, an

MPC, which makes use of the mass and energy balances, is designed to produce crystals

with a desired morphology by regulating the crystal growth conditions in the crystallizer

through the manipulation of the jacket temperature which is in accordance with standard

batch crystallization practice.

Chapter 3 focuses on the modeling of aggregation of protein crystals along with crystal

nucleation and growth to investigate the influence of stirring on the size and morphology

of crystal aggregates. First of all, it is assumed that the continuous phase is dilute enough

to make only binary aggregation possible. Furthermore, the corresponding turbulent shear

rate within the crystallizer is characterized by the average velocity gradient of the flow field.

An appropriate aggregation kernel is used to compute the rate at which binary aggregation

occurs, and this rate strongly depends on the crystal sizes and the crystallizer operating

parameters [65, 109]. The aggregation for lysozyme crystals with diameters approximately

in the range of 1-50 micrometers is mainly induced by shear forces according to the Kol-
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mogorov microscale analysis [65]. An aggregate will be formed as two crystals completely

merge along with their internal coordinates resulting in a decrease in the total number of

crystals and an increase in the average crystal size. For the purpose of simulation, it is

assumed that the shapes of the resulting bigger crystals are maintained for the aggregate

after the aggregation process. Extensive simulation studies are carried out to evaluate the

influence of aggregation on the shape and size distributions of the crystals at the end of the

batch run. Additionally, this chapter focuses on the simulation and control of protein crystal

aggregation along with crystallization. Initially, a population balance model is presented

for the process which accounts for simultaneous nucleation, crystal growth, and shear-

induced aggregation. The high-dimensionality of the population balance model, however,

leads to complicated controller design, which cannot be readily implemented in practice

[22]. To circumvent these problems, the method of moments is used to derive the moment

model that describes the dynamic evolution of the three leading moments of the crystal

volume distribution in a crystallizer [59]. The moment model is closed according to the

fact that crystal volume can be properly approximated by a lognormal distribution. Along

with nonlinear algebraic equations that describe the dependence of crystal growth rates

on temperature and protein solute concentration, and the energy and mass balance models

that describe the changes of the temperature in the crystallizer and the solute concentra-

tion in the continuous phase, the moment model is employed to design a model predictive

controller (MPC). The proposed model predictive control scheme is used to regulate the

average shape of crystal aggregates to a desired set-point value with a low polydispersity.
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Chapter 4 focuses on the modeling of the nucleation and crystal growth in a continuous

crystallization process with a fines trap through kinetic Monte Carlo (kMC) simulation.

The simulation of a fines trap is performed using a classification function which uses a

selection curve for fines dissolution in the continuous crystallizer. In addition to the solute

depletion and the temperature change in the continuous phase by crystallization, the in-

terplay of inflow/outflow in the continuous crystallizer is included in the mass and energy

balance equations. To deal with a real-time implementation issue of a controller based on

the population balance equation (PBE), moment models are developed to describe the dom-

inant dynamic behavior of the continuous crystallization with a fines trap. Subsequently,

the three leading moments are used along with the balance equations in order to design a

model predictive controller.

Chapter 5 focuses on modeling and control of a continuous PFC used to produce tetrag-

onal hen egg white (HEW) lysozyme crystals and proposes an optimization-based control

scheme to produce crystals with desired size and shape distributions in the presence of feed

disturbances. Initially, we model a continuous plug flow crystallizer with five segments for

the production of lysozyme crystals through kMC simulation methods described in [66]

using the rate equations originally developed by [32]. A seeding strategy is used to decou-

ple the nucleation process from the crystal growth process [78, 33, 9, 36]. Furthermore, an

upper bound on the supersaturation level is imposed as a constraint so that the system is

forced to stay in the metastable regime where the degree of primary nucleation is negligi-

ble [116]. Then, a PBE is presented to describe the spatio-temporal evolution of the crystal
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volume distribution, and by applying the method of moments to the PBE, a reduced-order

moments model is derived because kMC models are not immediately available in a closed

form [26]. Together with the mass and energy balance equations, the leading moments

are used for the estimation of the spatio-temporal evolution of the crystal size and shape

distributions in an optimization problem. Specifically, the crystallizer jacket temperatures

at each segment and the superficial flow velocity are chosen as the decision variables in the

optimization problem and the objective function is defined by the sum of the squared de-

viations of the average crystal size and shape from desired set-points throughout the PFC.

Subsequently, the dynamic model developed in Section 5.2 is used for the design of a feed-

forward control (FFC) strategy for the production of crystals with desired size and shape

distributions that suppresses the undesired effects caused by disturbances [45]. Lastly, the

simulation results are presented, followed by discussion and conclusions.

Chapter 6 considers a batch process for the crystallization of lysozyme crystals with

uncertainties in the crystal growth rates in the directions of the (110) and (101) faces as

well as in the solubility. The kMC simulation originally developed in the previous work

[67] is regarded as a representation of the batch crystallization process and is used for

the simulation of tetragonal HEW lysozyme crystals. In order to produce crystals with a

desired shape distribution, the optimal jacket temperature profile is computed from a con-

ventional MPC using a nominal reduced-order moment model and is applied to the first

batch. After the first run, the post-batch measurements (e.g., the crystal size and shape

distributions and number of crystals) are used to solve a multivariable optimization prob-
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lem (MOP) off-line for the identification of the process model parameters used in the MPC

for the crystal growth rates and solubility. Additionally, the real-time measurements for

the solute concentration and temperature in the crystallizer from the previous batch are

used in the form of constraints in the MOP to ensure the physical relevance of the process

model parameters computed from the MOP. Along with the adapted process model parame-

ters, the exponentially-weighted-moving-average (EWMA) scheme is used to deal with the

remaining offset in the crystal shape values and thereby to compute a set of new optimal

jacket temperatures. As a result, the production of crystals with a desired shape distribution

is achieved by suppressing the inherent variations and process drift in the crystal growth

rates and solubility. Lastly, the control performance of the proposed R2R-based MPC is

compared with those of the conventional MPC and EWMA-type constant supersaturation

control (CSC).

Chapter 7 focuses on developing a run-to-run model parameter estimation scheme based

on moving horizon estimation concepts in order to model the batch-to-batch dynamics of

the process drift and compute improved estimates of process model parameters, utilizing

post-batch measurements from multiple batch runs. The moving horizon estimation (MHE)

approach is employed because it provides improved parameter estimation and greater ro-

bustness to poor guesses for initial states because of its ability to incorporate physical con-

straints into the optimization problem used for parameter estimation. Specifically, the key

elements of the proposed R2R model parameter estimation scheme based on MHE concepts

are: First, the variation of the process model parameters from batch-to-batch is estimated
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by solving an R2R model parameter estimation scheme using the post-batch measurements

from multiple batch runs. Second, the batch-to-batch parametric drift is modeled through

the use of a nonlinear function (e.g., second, third, fourth order polynomial), and used to

update the parameters of the model predictive controller (MPC) model (used for real-time

feedback control within each batch) to suppress the undesired effects of the process drift in

the next batch run.

Chapter 8 focuses on further refining the approach proposed in Chapter 7 by relaxing

the requirement of the in-batch and post-batch process measurements over multiple batch

runs and developing the use of the proposed parametric drift detection and isolation (PDDI)

scheme for the detection and isolation of the parametric drift. Thus, it becomes easier to

precisely calculate the magnitude of the process drift because we determine the parame-

ter(s) in which the parametric drift is located. First, a PDDI scheme is proposed for the

purpose of the detection and isolation of parametric drifts introduced to a batch crystal-

lization process. Then, a parametric drift-tolerant control scheme (PDTC) is proposed that

uses the PDDI scheme to improve the model of the in-batch model predictive controller

(MPC) to achieve the production of crystals with a desired shape distribution.

Chapter 9 focuses on the development of a parallelized multiscale, multidomain mod-

eling scheme that reduces computation time requirements without compromising the ac-

curacy of established chemical models. Specifically, the parallelized multiscale modeling

strategy is executed according to the following three steps to model a multiscale batch

crystallization process. First, the nucleation and crystal growth processes in a batch crys-
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tallization system are decomposed into a collection of tasks, where each task represents the

crystal growth of a nucleated crystal. Second, the tasks are assigned according to a modulus

function where the number of crystal modules is equal to the number of processors avail-

able. Third, the message passing interface (MPI) settings that use the information passing

between the processors is used to link the macroscopic model to the microscopic models.

A series of results demonstrating the computational efficiency of the approach using the

batch crystallization process multiscale model are presented.

Finally, Chapter 10 summarizes the contributions of this dissertation.
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Chapter 2

Protein crystal shape and size control in

batch crystallization

2.1 Introduction

This chapter focuses on a batch protein crystallization process used to produce tetrago-

nal hen egg white lysozyme crystals, and presents a comparative study of the performance

of a model predictive control strategy formulated to account for crystal shape and size dis-

tribution with conventional operating strategies used in industry, namely, constant temper-

ature control (CTC) and constant supersaturation control (CSC). Initially, a comprehensive

batch crystallizer model is presented involving a kMC simulation model which describes

the nucleation and crystal growth via adsorption, desorption, and migration mechanisms on
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the (110) and (101) faces and mass and energy balances for the continuous phase, which

are developed to estimate the depletion in the protein solute concentration and the variation

in the crystallizer temperature. Existing experimental data are used to calibrate the crystal

growth rate and to develop an empirical expression for the nucleation rate. Simulation re-

sults demonstrate that the proposed MPC, which adjusts the crystallizer jacket temperature,

is able to drive the crystal shape to a desired set-point value with a low polydispersity for

crystal size compared to CTC and CSC operating policies. The proposed MPC determines

the optimal operating conditions needed to obtain protein crystals of a desired shape and

size distribution as it helps avoid the small crystal fines at the end of the batch run.

2.2 Modeling and simulation

As noted previously, we will use kMC simulations in order to model protein crystal growth.

We employ the solid-on-solid lattice model, and the resulting protein crystal becomes very

compact by avoiding voids and overhangs. For this work we will focus on square lattice

models of length and width N = 50 sites with periodic boundary conditions. Previous work

[60] demonstrates that no finite size effects were found among systems of sizes N = 30,

N = 60, and N = 120 sites. The rate equations for adsorption, desorption, and migration

mechanisms, which are similar to those of Durbin and Feher [32], are introduced in the

following section and they are normalized over all of the lattice sites. Then, by generating

random numbers, each event of our kMC simulation is chosen and executed based on the

nomalized rates of the three microscopic phenomena. For further details including deriva-
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tion of the rate equations, update of each lattice height, and execution of events, you may

refer to our earlier work [93, 66].

2.2.1 Surface kinetics

As noted in the previous work by [93, 66], the following rate expressions on the crystal

surface follow those of [32], which were further developed by [60] for migration events.

Every lattice site is considered for attachment where the attachment rate is independent of

the surface micro-configuration and is defined as

ra = K+ (∆µ) = K+
0 exp

∆µ
kBT

, (2.1)

where K+
0 is the attachment coefficient, kB is the Boltzmann constant, T is the temperature

in Kelvin, and ∆µ = kBT ln(c/s), where c is the protein solute concentration, s is the protein

solubility, and ∆µ is the crystallization driving force. The protein solubility is dependent

on temperature (◦C) and defined for pH = 4.5 and 4%(w/v) NaCl by [12, 13] with the

following third-order polynomial:

s(T ) = 2.88×10−4T 3 −1.65×10−3T 2 +4.619×10−2T +6.008×10−1, (2.2)

where the solubility computed by Eq. 2.2 has an error of 6.8% [13]. The migration rate is

modeled by [60] by introducing an additional term in the desorption rate which causes mi-

gration to have a higher rate compared to the desorption rate. The desorption and migration

rates are defined in the following way:

rd (i) = K+
0 exp

(
ϕ

kBT
− i

Epb

kBT

)
, (2.3)
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rm (i) = K+
0 exp

(
ϕ

kBT
− i

Epb

kBT
+

Epb

2kBT

)
, (2.4)

where Epb is the average binding energy per bond, Eb = iEpb is the total binding energy,

and ϕ is the binding energy per molecule of a fully occupied lattice where the binding en-

ergies cannot be evaluated by experiments [32, 35]. A set of values of Epb and ϕ for the

(110) and (101) faces is determined through open-loop kMC simulations until the differ-

ence between the calculated and the experimental growth rates becomes negligible [32].

In contrast to the attachment events, the detachment and migration events are dependent

on the surface micro-configuration because they take into consideration the total binding

energy determined by the number of nearest neighbors as is shown in Eqs. 2.3 and 2.4.

Therefore, the growth rate cannot be computed by simply subtracting the detachment from

the attachment rates.

In summary, the nature of lysozyme crystals is that only half the molecules on the

(101) face have points of attachment for incoming molecules, whereas every molecule

on the (110) face has dangling bond [32], and this is reflected in the present study by

accepting 50% of adsorption events on the (101) face, compared to 100% of those on the

(110) face in the kMC simulation. On the other hand, desorption and migration events are

always accepted as long as there exists at least one available site. Specifically, an available

migration site implies an adjacent site which is lower in height than the current lattice

site where a lysozyme molecule can migrate. If there exist mutiple sites available for the

migrating molecule, a site is chosen randomly [44].
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2.2.2 Mass balance

In [116], the authors modeled the 3-D crystal growth by multiplying a crystal shape factor

to the third moment of the crystal size distribution. However, the crystal shape factor is de-

pendent on the temperature and the solute concentration and is not constant. In the present

work, the mass balance is evaluated by considering the geometry of lysozyme crystals, and

thus we are able to model the shape evolution of lysozymes more precisely by considering

the crystal growth in the (110) and (101) directions independently. We model a lysozyme

as a rectangular prism, as shown in Fig. 2.1, whose bottom is a square with a side of h110

and a height of h101. In [32], the growth rates for the (110) and (101) faces, G110 and G101,

are respectively related to h110 and h101 as follows:

G101 = 0.45
dh101

dt
∼= 0.45

∆h101

∆t
⇒ ∆h101 = 2.22∆tG101, (2.5)

G110 = 0.5
dh110

dt
∼= 0.5

∆h110

∆t
⇒ ∆h110 = 2∆tG110, (2.6)

where ∆t = 1 second. From Eqs. 2.5 and 2.6, the crystal size at time j∆t can be written as

h101( j∆t) =
j

∑
k=1

∆h101(k)+h101(0) h110( j∆t) =
j

∑
k=1

∆h110(k)+h110(0), (2.7)

where ∆h101(k) = h101(k∆t)−h101((k−1)∆t) and ∆h110(k) = h110(k∆t)−h110((k−1)∆t)

for k = 1,2, · · · , j. Also, the volume of the crystal with a side h110(t) and a height h101(t)

at time t, Vc(t), follows as

Vc(t) = h2
110(t)h101(t), (2.8)

and thus the volume change between time t −∆t and t, ∆Vc(t), can be written as

∆Vc(t) =Vc(t)−Vc(t −∆t). (2.9)
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Figure 2.1: The geometry model for lysozyme crystals used in the present work.

The amount of the protein solute that is transported from the continuous phase to the

crystal at time t can be calculated and takes the following form:

V ∆c(t) = ∆Vc(t)ρcNc(t), (2.10)

where V is the volume of the continuous phase (assuming the change in V is negligible),

Nc(t) is the number of crystals in batch at time t, ρc is the crystal density, and ∆c(t) is

the change in the protein solute concentration between time t −∆t and t where ∆c(t) =

c(t)− c(t −∆t). We update the concentration after every ∆t(1.0 second). To integrate Eq.

2.10 into the controller, we estimate the total volume change of all the crystals (from i to

Nc(t)) at time t as follows:

Nc(t)

∑
i=1

∆Vc,i(t)≈ Nc(t)⟨∆Vc(t)⟩ , (2.11)

where the average change in volume over Nc(t) crystals at time t, ⟨∆Vc(t)⟩, is approximated
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by

⟨∆Vc(t)⟩ ≈
[
⟨h110(t)⟩2 ⟨h101(t)⟩−⟨h110 (t −∆t)⟩2 ⟨h101(t −∆t)⟩

]
. (2.12)

2.2.3 Energy balance

The energy balance of the batch crystallization process takes the following form [24]:

dT
dt

=
ρc∆Hc

ρCp

dε
dt

−
U jA j

ρCpV

(
T −Tj

)
, (2.13)

where ε = V−Vc
V = 1− Vc

V is the solids free volume fraction, T is the crystallizer temperature

and Tj is the jacket temperature and the manipulated input. The process parameters used in

the kMC simulations are given in Table 2.1. Taking the derivative of ε with respect to time

and using Eq. 2.12, it follows that

dT
dt

=−ρc∆Hc

ρCp

(
1
V

Nc(t)

∑
i=1

∆Vc,i(t)

)
−

U jA j

ρCpV

(
T −Tj

)
, (2.14)

since

dε
dt

=
d
dt

(
1− Vc

V

)
=− 1

V
dVc

dt
∼=− 1

V

(
Nc(t)

∑
i=1

∆Vc,i(t)

)
. (2.15)

2.2.4 Simulation results with mass and energy balances

There are many simulation conditions that affect the crystal growth and the nucleation

including temperature, pH, salt, and protein solute concentrations. Specifically, the super-

saturation σ is defined as σ = ln(c/s) where c (mg/mL) is the protein solute concentration

and s (mg/mL) is the solubility which is determined by Eq. 2.2 in terms of temperature (◦C)
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Figure 2.2: The expected growth rates versus the degree of supersaturation at c= 45 mg/mL

and 4% NaCl are shown as the solid (110 face) and the dashed (101 face) lines. The (�)

and (�) represent the measured experimental data for the 101 and 110 faces with 5% NaCl;

(•)/(◦) represent the measured experimental data with 3.5% NaCl; extracted from [31] at

pH= 4.6.
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ρc crystal density 1400 mg/cm3

∆Hc enthalpy of crystallization 44.5 kJ/kg

ρ continuous phase solution density 1045 mg/cm3

Cp specific heat capacity 4.13 kJ/K kg

V crystallizer volume 1 liter

A j surface area of heat transfer between crystallizer and jacket pipe 0.25 m2

U j heat transfer coefficient between crystallizer and jacket pipe 1800 kJ/m2 h K

Table 2.1: Parameters for the batch crystallizer model of Eqs. 2.12 and 2.14

at pH = 4.5 and 4%(w/v) NaCl. In Fig. 2.2, crystals have been grown at supersaturation,

2.1 ≤ σ ≤ 3.95, where c = 45.0 mg/mL. Through the trial and error procedure proposed

in the previous work of our group [93, 66], our simulation results have been properly cal-

ibrated with the experimental result in Fig. 2.2 and a set of parameters was appropriately

chosen to verify the crossover behavior of the growth rates of the (110) and (101) faces.

The estimated simulation results at 4.0% NaCl are plotted against the experimental results

at 3.5% and 5.0% NaCl from [40], in Fig. 2.2. The parameters for the kMC simulation in

Figs. 2.2 to 2.9 are listed in Table 2.2.

In order to complete the kMC simulation model, mass and energy balances are devel-

oped in Sections 2.2.2 and 2.2.3 to estimate the depletion in the protein solute concentration

and the drop in the crystallizer temperature due to the heat of fusion by crystallization. The

evolution of the solute concentration, the supersaturation, and the temperature in the kMC
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Face Epb/kB ϕ/kB

(110) 1077.26 K 227.10 K

(101) 800.66 K 241.65 K

Table 2.2: Parameters for faces (110) and (101) at 45 mg/mL NaCl and pH= 4.5 at T =

18◦C. Additionally, K+
o = 0.211 seconds−1.

simulation is shown in Fig. 2.3 for the initial solute concentration at 44 mg/mL and three

different initial temperatures of 6, 10, and 18◦C. It is observed that the solute concentration

decreases more rapidly as the batch process proceeds further because, for an equivalent

growth rate, larger crystals require more deposition compared to small crystals. The tem-

perature of the crystallizer is also affected by the crystallization due to the heat of fusion in

the crystallization process. It is verified from Fig. 2.3(a) that at a low initial temperature

(i.e., low solubility and thus a high supersaturation level), crystals grow faster which results

in a significant drop in the supersaturation level because of the loss in the protein solute for

the continuous phase. We note that the drops in the temperature and the supersaturation

depend on the length of batch process time and the size of the crystallizer.

For comparison purposes, kMC simulations are run under existing control strategies, a

constant temperature control (CTC) and a constant supersaturation control (CSC). Under

CTC, the decrease in the solute concentration throughout the entire batch process imme-

diately leads to the drop in the supersaturation level since temperature is constant, and

thus less nucleation and lower growth rates are observed. Under CSC, in order to main-
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Figure 2.3: Open-loop simulation results of solute concentration, supersaturation, and tem-

perature for tetragonal lysozyme protein crystals at pH = 4.5. The data from the open-loop

kMC simulations show the depletion in the protein solute concentration and the drop in

the temperature due to the crystallization process. The initial protein concentration is 44

mg/mL and the different initial temperature values (6, 10 and 18◦C) are used to verify the

effect of the crystal growth.
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tain a constant supersaturation level, the depletion in the solute concentration results in the

decline in the temperature. Since there is a lower limit on the temperature, if the solute

concentration drops too much, a method of simply lowering temperature cannot maintain

the supersaturation level at a desired value (i.e., the controller is not robust). This prob-

lem steers us to design a new controller, which is presented in the next section in order to

provide optimality as well as robustness in batch processes. Specifically, the crystal shape

distribution of the final crystals can be driven to a desired range by the controller design

described in the following section.

2.3 Model predictive control of crystal size and shape

In the kMC simulations, crystal nucleation and growth are considered along with mass and

energy balances via molecular attachment, detachment, and migration events. Since the

role of mass and energy balances becomes significant as crystal size increases, the balance

equations have been considered in the controller design. The nucleation and the crystal

growth rates have been manipulated by changing the temperature for a given concentra-

tion. In Table 2.2, parameters of crystal growth conditions (e.g., Epb/kB and ϕ/kB) for

kMC simulations are chosen to show the experimentally observed cross-over behavior in

the crystal growth rates between the (110) and (101) faces [31, 32]. In addition to the non-

linear models described in Fig. 2.4, the mass and energy balances introduced play a key role

in describing the behavior of the system dynamics such as the depletion in the solute con-

centration and the heat removal in the crystallizer due to the crystallization process. Then,
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based on these equations, a model predictive controller is designed to produce crystals with

the desired shape and size through the manipulation of the jacket temperature. MPC re-

solves the drawbacks of the classical control schemes such as proportional (P) control, as it

explicitly takes into consideration the input/state constraints, optimality issues, the nature

of the nonlinearity in the nonlinear growth rate, and the balance equations. A dynamic

open-loop optimization method may be used. However, open-loop optimizations are not

robust with respect to model imperfections and uncertainty in the protein concentration and

the batch crystallizer.

2.3.1 The population balance equation for protein crystallization

A population balance equation (PBE) can describe the evolution of the particle growth in

a batch protein crystallization with respect to its size and shape. To describe the behavior

of the crystal size and shape distributions for the crystals nucleated at different times in a

crystallization process, it is necessary to know the nucleation rate.

∂n(h110,h101, t)
∂ t

+G110(T,c)
∂n(h110,h101, t)

∂h110
+G101(T,c)

∂n(h110,h101, t)
∂h101

=B(T,c)δ (h110,h101).

(2.16)

In the kMC simulations, the characteristic crystal lengths are h110 and h101, and n(h110,h101, t)

is the number of crystals of heights h110 and h101 for the (110) and (101) faces per unit

volume, respectively, at time t. The nucleation rate is denoted as B(T,c)δ (h110,h101)

and is a function of temperature, T , and protein solute concentration, c and the func-

tion δ (h110,h101) has a nonzero value only at h110 = h101 = 0. Owing to the depen-
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Figure 2.4: Plots of the growth rate data obtained for the (110) face, the (101) face, and the

growth rate ratio between the (110) and (101) faces for tetragonal lysozyme protein crystals

at pH = 4.5. The data from the open-loop kMC simulations are plotted to demonstrate the

effect of temperature and concentration variations on growth rates. Protein concentration

and temperature range from 30 to 50 mg/mL and 4 to 25◦C, respectively.
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dence of detachment and migration rates on the surface configuration, [93] suggested

kMC simulations to compute the net, steady-state growth rate as a function of tempera-

ture and protein concentration in the continuous phase. Therefore the growth rates for

the (110) and (101) faces, G110(T,c) and G101(T,c), are expressed as functions of tem-

perature, T , and protein solute concentration, c. Then we define a growth rate ratio,

α(T,c) = h110/h101 = G110(T,c)/G101(T,c), where the growth rate ratio is equal to the

aspect size ratio at the steady-state and the growth rate ratio is obtained from kMC simula-

tion. Then Eq. 2.16 can be written as follows,

∂n(h110,h101, t)
∂ t

+G110(T,c)
∂n(h110,h101, t)

∂h110
+G101(T,c)

∂n(h110,h101, t)
∂h110

∂h110

∂h101
=B(T,c)δ (h110,h101),

(2.17)

where ∂h110
∂h101

= α(T,c) and substituting this into the above we obtain,

∂n(h110,h101, t)
∂ t

+(G110(T,c)+α(T,c)G101(T,c))
∂n(h110,h101, t)

∂h110
=B(T,c)δ (h110,h101).

(2.18)

In the present work we assume that crystals are nucleated at negligibly small size (i.e.,

h110 = h101 = 0), and the number of nuclei newly formed at time t is denoted as n(0,0, t).

This assumption can be justified as follows. Initially, an HEW lysozyme nucleus is formed

through the aggregation of three to four lysozyme molecules, and its size is relatively in-

finitesimal compared to the final crystal size which is on the order of several hundred mi-

crometers [92]. Additionally, a nuclei cannot be detected until its size reaches the resolution

limit, ∼ 0.5 µm [120]. Because B(T,c)δ (h110,h101) acts only at h110 = h101 = 0, and the

nucleus size in the (110) and (101) directions is uniformly negligible, for the simplicity of

28



calculations, we can assume that B(T,c)δ (h110,h101) ∼= B(T,C)δ (h110). In other words,

the crystal sizes in the directions of the (110) and (101) faces are on the same order of mag-

nitude. As is pointed out by [83], Eq. 2.18 can be written replacing B(T,c)δ (h110,h101)

with an appropriate boundary condition. Integrating Eq. 2.18 over h110 from 0− to 0+

gives,

(G110(T,c)+α(T,c)G101(T,c))
∫ 0+

0−

∂n(h110,h101, t)
∂h110

dh110 = B(T,c), (2.19)

because, ∫ 0+

0−
B(T,c)δ (h110)dh110 = B(T,c),

and, ∫ 0+

0−

∂n(h110,h101, t)
∂ t

dh110 = 0.

It also follows that,

n(h110,h101, t)= 0 at h110 = h101 = 0− n(h110,h101, t)= n(0,0, t) at h110 = h101 = 0+,

assuming all nuclei form with size h110 = h101 = 0. Then Eq. 2.19 can be reduced to the

following:

(G110(T,c)+α(T,c)G101(T,c))n(0,0, t) = B(T,c). (2.20)

Therefore the desired boundary condition is

n(0,0, t) =
B(T,c)

(G110(T,c)+α(T,c)G101(T,c))
at h110 = h101 = 0 (2.21)

and with this boundary condition the resulting population balance of Eq. 2.16 has the
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following form:

∂n(h110,h101, t)
∂ t

+G110(T,c)
∂n(h110,h101, t)

∂h110
+G101(T,c)

∂n(h110,h101, t)
∂h101

= 0

α(T,c) = fG(T,c)

G110(T,c) = f110(T,c, t)

G101(T,c) = f101(T,c, t)

B(T,c) = fnucleation(σ(t))

n(0,0, t) =
B(T,c)

(G110(T,c)+α(T,c)G101(T,c))
at h110 = h101 = 0

(2.22)

where G110(T,C) and G101(T,C) are the growth rates for the (110) and (101) faces, and

α(T,c) = G110(T,C)
G101(T,C) is the growth rate ratio. The nonlinear equations fG, f110, and f101 are

written in terms of their dependencies on temperature, solute concentration and time. In this

work, it is assumed that the nucleation rate on a surface is negligible. The number of crys-

tals nucleated at time t is obtained from [41] and the nucleation rate, fnucleation(0,0, t)(σ),

at time t (with units [cm−3 ·sec−1]), was obtained from [41] at pH= 4.5 and 4%(w/v) NaCl:

fnucleation(0,0, t)(σ) =


0.041σ +0.063 for σ ≥ 3.11

8.0×10−8 exp(4.725σ) for σ < 3.11

(2.23)

We execute multiple kMC simulations for crystals nucleated at different times which is

considered to be comparable to solving Eq. 2.22 directly. Theoretically speaking, it re-

quires an infinite number of lattice sites in the kMC simulation to completely regenerate

the deterministic PBE described by Eq. 2.22. From a practical standpoint, however, a kMC

simulation with a finite number of lattice sites is used for the simulation of the crystalliza-

tion process which may lead to a mismatch between the PBE and the kMC simulations.
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Here we assume that the number of lattice sites being used in the kMC simulation is suffi-

cient to make the mismatch negligible since, as described previously, no size effects were

found in the systems with more lattice sites.

2.3.2 Model predictive control formulation

We consider the control of the shape and size of crystals nucleated at different times along

with mass and energy balances as the batch crystallization process proceeds by using a

Model Predictive Control (MPC) design. The control objective is to minimize the expected

value of the growth rate ratio, ⟨α⟩=⟨G110/G101⟩. In order to prevent the formation of

many small crystal fines at the end of the batch run, a desired minimum crystal size is

considered in the cost function of the MPC formulation. Though various factors affect the

evolution of the crystal morphology and the growth rate during the crystallization process

[1, 90, 129, 86, 82], the jacket temperature is used as the manipulated input. The solute

concentration is continuously measured, assuming all other parameters remain constant for

the closed-loop simulations (e.g., pH, NaCl concentration, buffer concentration).

We note that the proposed modeling and control methods can be extended to the case

of multiple manipulated variables. A number of practical considerations, including the

mass and energy balances in Eqs. 2.12 and 2.14, and additional constraints are consid-

ered in the control problem. First, a constraint on the range of the jacket temperature(
4◦C ≤ Tj ≤ 25◦C

)
is imposed to ensure that the protein is not damaged. Second, there is

a constraint of 2◦C/min on the rate of change of the jacket temperature because of actuator
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limitations. Another constraint limits the number of crystals nucleated during the second

half of the batch run to avoid small crystal fines at the end of the batch run. The control ac-

tion (jacket temperature) at time t is obtained by solving a finite-dimensional optimization

problem in a receding horizon fashion. The cost function in the optimal control problem

includes a penalty on the deviation of ⟨α⟩ from its desired crystal shape. An additional

penalty cost is included to account for the negative deviation of the crystal size when its

size is less than the desired minimum. In the proposed MPC, crystal growth and nucleation

are estimated by using the nonlinear equations, Fig. 2.4, and Eq. 2.23, respectively. The
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proposed MPC formulation is presented as follows:

minimize
Tj,1,...,Tj,i,...,Tj,p

p

∑
i=1

F⟨α⟩,i +Fh110,i +Fh101,i

subject to F⟨α⟩,i = (⟨α⟩−αset)
2

Fh j,i =


h j,min−⟨h j(ti)⟩

h j,min
for ⟨h j(ti)⟩< h j,min

0 for ⟨h j(ti)⟩ ≥ h j,min

Gi = fr(T,C, ti) G j(ti) = f j(T,C, ti)

Tmin ≤ Tj,i ≤ Tmax

∣∣∣∣Tj,i+1 −Tj,i

∆

∣∣∣∣≤ RT

dT
dt

=−ρc∆Hc

ρCp

(
1
V

Nc(t)

∑
i=1

∆Vc,i

)
−

U jA j

ρCpV

(
T −Tj,i

)
∆c(t) =

ρc

V

Nc(t)

∑
i=1

∆Vc,i

n(0,0, t)≤ nlimit ∀t ≥ t f /2

⟨h j(ti)⟩=
⟨h j(ti−1)⟩n(h110,h101, ti−1)

n(h110,h101, ti)
+R j(ti−1)∆

n(h110,h101, ti) = n(h110,h101, ti−1)+n(0,0, ti−1) ∀i

i = 1,2, . . . , p j ∈ {110,101}

(2.24)

where t is the current time, ti, i= 1,2, . . . , p, is the time of the ith prediction step (ti = t+ i∆),

t f is the total time of the batch simulation, F⟨α⟩,i is the cost function expressing the deviation

of ⟨α⟩ from its set-point, αset, Fh110,i and Fh101,i are cost functions written as a penalty on

the negative deviation of ⟨h110⟩ and ⟨h101⟩ from their desired values h110,min and h101,min at

time ti, p is the number of prediction steps, p∆ is the specified prediction horizon, Tj,i, i =

1,2, . . . , p, is the jacket temperature at the ith time step
(
Tj,i = Tj(t + i∆)

)
, Tmin and Tmax are
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the lower and upper bounds on the jacket temperature, respectively, RT is the limit on the

rate of change of the jacket temperature, and nlimit limits the number of crystals nucleated

during the latter half of the simulation time. The number of crystals, n(h110,h101, ti), and

the average height of crystal face j, ⟨h j(ti)⟩, at time ti are updated at every sampling time

through the recursive equations (cf. Eq. 2.24). The set of optimal jacket temperatures,

(Tj,1,Tj,2, . . . ,Tj,p), is obtained by solving the multi-variable optimization problem of Eq.

2.24, and only the first value of the optimal jacket temperature trajectory, Tj,1, is applied to

the protein crystallization process until the next sampling time. Then, a new measurement

of protein concentration in the continuous phase is received from the kMC simulation, and

the MPC problem of Eq. 2.24 is re-solved for the computation of the next optimal input

trajectory. In a previous work [116], empirical expressions were used to simulate the crystal

growth and nucleation. In the present work, however, the kMC simulations are executed

based on the rate equations described previously to simulate the crystallization process to

a higher degree of accuracy. Furthermore, the uncertainty in the system and the model

mismatch will be taken into account in the protein concentration variations. For further

results including robust control of crystallization systems and model predictive control,

readers may refer to [115, 23].

2.4 Batch crystallization under closed-loop operation

In this section, the proposed model predictive controller of Eq. 2.24 is solved via a local

constrained minimization algorithm using the nonlinear algebraic models described previ-
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ously (cf. Fig. 2.4) which show the solute concentration and temperature dependencies

of the crystal growth rates and growth rate ratio, respectively. At each sampling time (1

second), the optimal jacket temperature, obtained by solving the optimization problem of

Eq. 2.24, is applied to the closed-loop system until the next sampling time.

In this work, the solute concentration randomly fluctuates following the Gaussian dis-

tribution given by Eq. 2.25 below to simulate the uncertainty in the system at pH 4.5 and

4.0% NaCl, i.e.,

⟨C(t)⟩=Cn, ⟨C(t)C(t ′)⟩= σ2
nC2

n , (2.25)

where Cn is the nominal concentration of the system and σ2
n shows how far a set of mea-

sured concentrations deviates from its nominal value. We also note that the concentration

variation affects the attachment rate (cf. Eq. 2.1). For all closed-loop simulations, the nom-

inal concentration is 44 mg/mL, and the deviation, σn, is equal to 1.5%. The maximum

rate of change of the jacket temperature is 2◦C/min. The volume of the crystallizer is 5.0

L. We note that we have taken into account the following heuristic: In the beginning, the

crystallizer operates in the labile zone where the supersaturation level is so high that both

nucleation and crystal growth occur. Then the crystallizer operates in the metastable region

which is a relatively high supersaturation region where nucleation rarely occurs, but the

crystal growth still occurs. This will help prevent the small crystal fines from appearing at

the end of the batch run, and this heuristic is taken into consideration in this work as one

of the constraints restricting the number of crystals nucleated during the latter half of the

simulation time, nlimit = 500. Since the MPC formulation uses steady-state growth rates
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(cf. Fig. 2.4(b) and 2.4(c)) which assumes that it is a slowly varying process, the number

of prediction steps is set to be p = 1. The time interval between the two sampling times is

1 second. The prediction horizon of each step is fixed at p∆ = 1 second. For the purpose of

simulation, the solute concentration is set to be fluctuating every 1 second with the nominal

value Cn(t) at time t. The computation time that is required to solve the optimization prob-

lem with the current available computing power is negligible with respect to the sampling

time interval. The closed-loop simulation duration is t f = 8000 seconds.

In the closed-loop simulations, the control objective is to regulate the expected growth

rate ratio to the desired set-point values, αset = 0.85 and αset = 1.11. We chose these two

values to represent two different crystal morphologies available with lysozyme crystals.

For the former set-point value, its protein crystal shape is slightly elongated along the (101)

direction, while it is more equidimensional for the latter case. Thus, the cost function of

this problem contains a penalty on the deviation of the expected growth rate ratio from the

desired shape.

We compare the performance of the proposed MPC to that of two other conventional

control strategies, constant temperature control (CTC) and constant supersaturation control

(CSC). Compared to MPC, the crystal shape distribution as well as the solute concentration,

the temperature, and the supersaturation propagate in very different manners under CTC

and CSC. Under CTC, the crystallizer temperature is maintained constant which results in

a constant solubility during the batch run, and thus the depletion in the solute concentration

eventually leads to the decrease of supersaturation. Under CSC, however, the CSC scheme
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Figure 2.5: The propagation of temperature, concentration, and supersaturation with time

during the batch run under closed-loop operation at different initial temperature values and

supersaturation levels, including MPC aiming at growth rate ratio set-point value αset =

0.85.
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tries to maintain a constant supersaturation throughout the batch run, and the jacket temper-

ature is constantly decreased for the duration of the batch run to possibly maintain constant

supersaturation despite the falling concentration levels. Under CSC, therefore, the growth

rate, which only depends on the supersaturation itself, remains constant during the batch

run. The nucleation rate also stays constant under CSC since it is only dependent on the

supersaturation. In the cases of MPC and CTC, however, a biased nucleation occurs (e.g.,

50% of crystals nucleate in the first 10% of the entire batch simulation time) throughout

the batch run due to the change in the supersaturation because of the depletion in the solute

concentration or the drop in the crystallizer temperature. We note that if the temperature

reaches its optimal state relatively late in the batch run, the biased nucleation could result

in a broader crystal shape distribution from a desired set-point value compared to that of

the operation under CSC.

For the lower growth rate ratio set-point value, αset = 0.85, the results of the closed-

loop simulations are shown in Figs. 2.5, 2.6, and 2.7 for the crystallizer temperature, the

solute concentration, the supersaturation, the nucleation time distribution, and the crystal

shape distribution at the end of the batch run. Specifically, Fig. 2.5 shows results for batch

runs under three different control strategies (i.e., MPC, CTC at three different temperature

values, and CSC at three different supersaturation values). Note that we chose three values

for the initial temperature for the simulations under CTC at To = 13◦C, To = 18◦C, and

To = 23.4◦C, which are two extremes and one in the middle of the temperature trajectory

computed by the MPC executed at c = 44 mg/mL and To = 13◦C. The three values for
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Figure 2.6: The final crystal shape distribution at the end of the batch simulation under

different closed-loop operations under CTC and CSC at different initial temperature val-

ues and supersaturation levels for CTC and CSC, respectively, and MPC for the growth

rate ratio set-point value, αset = 0.85. It is noted that the crystal shape distribution is a

dimensionless variable and is normalized over the entire population so that summing over

all histograms will add up to 1 for each control strategy.
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Figure 2.7: Profiles of nucleated crystals with time during the batch run under closed-loop

operation using MPC aiming for different growth rate ratio set-point values, αset = 0.85

and αset = 1.11. It is noted that the nucleation time distribution is a dimensionless variable

and is normalized over the entire crystal population so that summing over all histogram

bars, for each different set of growth rate ratios, will add up to one.

the supersaturation were chosen in the same manner for the simulations under CSC at

σ = 2.34, σ = 2.84, and σ = 3.41 respectively. As is pointed out in Figs. 2.2 and 2.4,

two different sets of the solute concentration and the temperature may result in the same

supersaturation σ , and supersaturation is the main driving force for the crystal growth and

nucleation. Therefore the evolution of supersaturation can be used with the nucleation time

distribution, Fig. 2.7, to explain the behavior of the crystal shape distribution under MPC

for different set-point values.

It has been shown in our recent work [66] that the final crystal shape distribution is
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very narrow when the initial temperature is close to the optimal temperature. Additionally,

depending on the desired crystal morphology and the initial temperature of the crystallizer,

it takes a different amount of time for the temperature to reach the desired set-point value.

Specifically, in Fig. 2.6, for the lower desired crystal growth rate ratio, αset = 0.85, the ini-

tial temperature of the crystallizer was chosen to be To = 13◦C, although it is not very close

to the optimal temperature ∼23.4◦C. Therefore, starting from a high initial temperature is

recommended, because the system reaches its optimal temperature faster which enables the

crystals to uniformly nucleate along the batch and they experience the optimal temperature

from the beginning. Note that the proposed MPC with a relatively low initial temperature

still outperforms other conventional polices as is seen in Fig. 2.6, and the performance of

the MPC can be further improved by using a higher initial temperature. Fig. 2.5(a) displays

that the solute concentration has depleted significantly for the simulations under the CSC

at σ = 3.41 and the CTC at To = 13◦C, which both result in the high supersaturation level

and hence high growth and nucleation rates. On the other hand, the proposed MPC, CTC

at the relatively high temperatures To = 18◦C and To = 23.4◦C, and the CSC at the low

supersaturation levels σ = 2.34 and σ = 2.84 show no significant changes in their solute

concentration because of a low growth rate resulting from a low supersaturation level. We

note that in Fig. 2.5, the solute concentration, the supersaturation, and the temperature with

time under CTC at To = 18◦C are very similar to those of CSC at σ = 2.84. The result-

ing crystal size and shape distributions are very similar as is shown in Fig. 2.6 and Table

2.3, which implies that CTC and CSC policies result in a similar performance when their
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growth and nucleation rates are low and their initial conditions are identical. Due to the

negligible depletion in the solute concentration, the black solid line in Fig. 2.5(b) shows

that the MPC computes a jacket temperature first monotonically increasing to the optimal

value and then staying constant. Usually for a low growth rate ratio, the optimal tempera-

ture is high and the system is usually very sensitive to the solute concentration changes as

is shown in Fig. 2.4. Specifically, the growth rate ratio declines drastically at high temper-

ature, where the desired low growth rate ratio is available, in response to a small variation

in the concentration.

In Fig. 2.7, for αset = 0.85, the optimal temperature is ∼23.4◦C and high initial su-

persaturation levels in the earlier stage result in the nucleation of 34% of the total crystals

within the first 500 seconds of the batch run. In this case, owing to the favored nucleation

in the beginning, the MPC results in a similar crystal shape distribution compared to that

of CTC at To = 23.4◦C where the constant optimal temperature is maintained for the crys-

tallizer over the entire batch. However, the final crystal shape distribution for the MPC in

Fig. 2.6 can be very narrow and even closer to the desired values by adjusting the initial

temperature closer to the optimal temperature, from To = 13◦C to To = 23.4◦C. Evaluating

the sensitivity of the controller design with respect to the initial temperature of crystallizer

has been presented more rigorously in our recent work [66].

In Table 2.3, the characteristics of crystal size along the (110) direction of the final crys-

tals at the end of the batch run are compared under different control strategies, including the

expected crystal size along the (110) direction, ⟨h110⟩, and r10, r50, r90, which are the 10%,
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Control strategy ⟨h110⟩ r10 r50 r90 span

MPC 11.83 3.15 12.56 18.82 1.25

CTC: T=13◦C 58.41 11.29 57.79 106.68 1.65

CTC: T=18◦C 29.78 6.52 29.73 52.96 1.56

CTC: T=23.4◦C 3.39 0.92 3.39 5.87 1.46

CSC: σ = 2.34 3.96 0.95 3.93 6.91 1.52

CSC: σ = 2.84 29.75 6.50 29.63 52.79 1.56

CSC: σ = 3.41 67.98 14.19 67.94 121.79 1.58

Table 2.3: Comparison between the simulation results for the crystal size in the (110)

direction under five different control strategies for the desired growth rate ratio of αset =

0.85.

50%, and 90% population fractions of the crystal size distribution for h110, respectively,

representing the percentage of the population with a crystal size less than that value. Only

the crystal size for the (110) direction, h110, is included since h110 and h101 are on the same

order of magnitude. This table also includes the span which is defined as (r90 − r10)/r50,

and it is a widely used characteristic in the pharmaceutical industry. Comparing the results

of the five control strategies listed in Table 2.3, it is clear that the MPC is able to increase

the crystal size and achieve a low polydispersity while it also drives the expected crystal

shape, ⟨α⟩, to the desired value as in Fig. 2.6. Although the CTC at To = 23.4◦C results

in a similar ⟨α⟩ to that of MPC, it leads to much smaller crystal sizes with a high poly-

dispersity, when neither of these attributes is desirable. The very low span value for the
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MPC indicates a narrow crystal size distribution (a low polydispersity) which is obtained

by properly dealing with the biased nucleation rate described previously. Again, the con-

troller perfomance can be improved if we choose an initial temperature as close as possible

to the optimal temperature.

In contrast to the results when the set-point is αset = 0.85, when the set-point is the

higher desired crystal growth rate ratio, αset = 1.11, changes in the solute concentration

are more significant because of the high growth and nucleation rates. Specifically, the solid

black line in Fig. 2.8 shows that the crystallizer temperature manipulated by the proposed

MPC results in the supersaturation first increasing due to a drastic drop in the crystallizer

temperature, then decreasing almost to the lowest level, which is then followed by a series

of rises and falls until the end of the batch run. Since the control objective is to obtain

a very narrow final crystal shape distribution at a desired set-point value, the results can

be understood as follows: after a drastic initial rise in the supersaturation (from σ=3.4 to

σ=3.87), which does not significantly increase the number of crystals nucleated because

a small increase in the supersaturation level does not result in a substantial increase in the

nucleation rate for σ > 3.11 as is shown in Eq. 2.23, the supersaturation drops to a low level

in order to minimize the nucleation rate as the growth condition is changing from the labile

to the metastable zone. Thereafter, the following series of rises and falls is attributed to the

optimal jacket temperature trajectory computed by the proposed MPC to bring the system

to the vicinity of optimal growth conditions for a desired growth rate ratio while dealing

with the solute concentration reduction from 44 to 35 mg/ml in Figs. 2.8(a)–2.8(c). Note
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Figure 2.8: The propagation of temperature, concentration, and supersaturation with time

during the batch run under closed-loop operation at different initial temperature values and

supersaturation levels, including MPC aiming at growth rate ratio set-point value αset =

1.11.
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that a high supersaturation level, which is necessary for the desired equidimensional shape,

can result in a significant solute concentration drop due to a higher crystal nucleation rate

as well as the fast crystal growth. The crystal growth rate ratio, however, is dependent on

supersaturation which is the ratio between the solute concentration and the solubility. Thus,

a desired supersaturation level can be maintained by appropriately decreasing the solubility,

which is a function of the crystallizer temperature. In Fig. 2.8(b), the computed trajectory

for the crystallizer temperature in the proposed MPC is similar to that of the standard CSC;

however, it is different in the sense that the MPC deals with the nuclei formation in order

to avoid the small crystal fines at the end of batch process. In Fig. 2.7, the crystallizer was

run with a temperature which is relatively close to the optimal temperature ∼11◦C and,

as a result, crystals nucleate uniformly throughout the batch run. Due to the insensitivity

of the system to variation in the temperature and solute concentration at a high desired

crystal growth rate ratio, the crystal shape distribution under MPC is not as distinguished

compared to that of the MPC at the low growth rate ratio, αset = 0.85, as is seen in Fig. 2.9.

The results in Table 2.4, compared to those in Table 2.3 for αset = 0.85, show that the

MPC simulations result in a higher polydispersity but a narrower distribution around the

desired crystal shape with a nearly uniform crystal nucleation rate when compared with the

simulations under CTC and CSC. In addition, the MPC successfully deals with the signif-

icant concentration drop to maintain the desired crystal shape, αset = 1.11. Although the

CTC and CSC result in similar shape distributions to that of MPC, their performances are

not robust to a severe concentration drop. The relatively high span value for the MPC indi-
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Control strategy ⟨h110⟩ r10 r50 r90 span

MPC 22.76 4.54 22.29 42.57 1.71

CTC: T=11◦C 25.14 4.45 24.58 46.82 1.72

CTC: T=13◦C 21.03 4.08 20.79 38.38 1.65

CSC: σ = 3.34 22.39 4.71 22.37 40.07 1.58

CSC: σ = 3.52 28.23 5.84 28.21 50.63 1.59

Table 2.4: Comparison between the simulation results for the crystal size in the (110)

direction under five different control strategies for the desired growth rate ratio of αset =

1.11.

cates a wide size distribution (high polydispersity) which results from the significant drop

in the concentration at the end of the batch crystallization process described previously.

In summary, MPC successfully drives the final crystal shape distribution to a desired

set-point value and is found to be robust with respect to both a fast nucleation rate in the

earlier stage and a drastic drop in the solute concentration. Additionally, a low polydis-

persity can be achieved depending on the desired crystal morphology. For instance, for

αset = 1.11, we are more likely to produce crystals with a narrow crystal shape distribution

and with a high polydispersity because the crystallizer promptly responds to the depletion

in the solute concentration which is reflected as a series of rises and falls in the crystal-

lizer temperature in Fig. 2.8, and the high polydispersity results from uniformly nucleated

crystals. For αset = 0.85, however, crystals with the desired shape and a low polydispersity

can be achieved at a very high initial temperature in the crystallizer, because the system
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Figure 2.9: The final crystal shape distribution at the end of the batch simulation under

different closed-loop operations using CTC and CSC at different initial temperature values

and supersaturation levels for CTC and CSC, respectively, and MPC for the growth rate

ratio set-point value αset = 1.11. It is noted that the crystal shape distribution is a dimen-

sionless variable and is normalized over the entire population so that summing over all

histograms will add up to one for each control strategy.
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reaches its optimal temperature quickly which results in the crystals being uniformly nu-

cleated throughout the batch.

2.5 Conclusions

The present work focused on comparing the performance of the proposed model predictive

controller with that of CTC and CSC in regulating crystal shape and size distributions to

desired values. In general, the CTC operating strategy drives the crystallizer conditions

from the labile zone to the metastable zone, and the CSC policy maintains the crystallizer

conditions in the metastable zone to maximize the size of protein crystals.

First, we focused on the modeling of a batch crystallization process used to produce

tetragonal hen egg white lysozyme crystals via kinetic Monte Carlo (kMC) simulation.

The kMC simulation simulated the batch protein crystallization via adsorption, desorption,

and migration mechanisms on the (110) and (101) faces. Then, in order to describe the

nucleation occurring at different times in the batch simulations, the nucleation rate ex-

pression was extracted from experimental results by [41]. In addition, the dependence of

the crystal growth on temperature and protein solute concentration was demonstrated in

3-D nonlinear models constructed from open-loop kMC simulations. The present work

also developed mass and energy balances to account for the depletion in the protein solute

concentration and the drop in the crystallizer temperature by crystallization. Finally, an

MPC was designed to produce crystals with a desired morphology by regulating the crystal
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growth conditions in the crystallizer through the manipulation of the jacket temperature

which was in accordance with standard batch crystallization practice.

Simulation results showed that the proposed MPC was able to regulate the crystal shape

distribution to a desired set-point value while reducing the effects of an undesirable bi-

ased nucleation in the processing window and a drastic drop in the solute concentration.

Comparing the simulation results of the MPC with those of other conventional operating

strategies, crystals with a low polydispersity were produced depending on the desired crys-

tal morphology. For instance, for αset = 1.11, the crystallizer under MPC resulted in a

narrow crystal shape distribution with a high polydispersity, because the crystallizer imme-

diately responded to the depletion in the solute concentration and produced a series of rises

and falls in the jacket temperature computed from the proposed MPC in Fig. 2.8, and a

high polydispersity resulted from uniformly nucleated crystals. For αset = 0.85, however,

crystals with desired morphology and a lower polydispersity were obtained at a very high

initial temperature in the crystallizer, because the system reached its optimal temperature

quickly and it caused a uniform nucleation rate throughout throughout the batch. In this

case, therefore, we reduced the batch time considerably, because the system reached its op-

timal state more quickly. Furthermore, only protein solute concentration and temperature

measurements were needed to implement this operating policy in practice; no additional

measurements such as crystal size and shape were required in the controller.
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Chapter 3

Modeling and control of shape

distribution of protein crystal aggregates

3.1 Introduction

This chapter focuses on the modeling and control of protein crystal aggregates in a large-

scale batch crystallizer used to produce tetragonal HEW lysozyme crystals. Initially, a

kinetic Monte Carlo (kMC) simulation is presented for the modeling of the crystal nucle-

ation, growth, and shear-induced aggregation in an effort to control the evolution of the

crystal shape distribution. Through experimental data, the crystal growth rate is calibrated

and an empirical expression for the nucleation rate is also developed. Then the method

of moments is applied to a comprehensive population balance model to derive a reduced-

order moment model that describes the dynamic evolution of the three leading moments
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of the crystal volume distribution. Along with mass and energy balances for the continu-

ous phase, the moment model is used to design a model predictive control (MPC) strategy

which drives the crystal shape distribution to a desired set-point value through the manipu-

lation of the crystallizer jacket temperature. Compared to conventional operating strategies

used in industry, it is demonstrated that the proposed MPC strategy is able to produce crys-

tal aggregates with a desired shape distribution and a low polydispersity, effectively dealing

with the undesired effects of biased nucleation, depletion in the solute concentration, and

changes in the average crystal shape due to the aggregation process.

3.2 Crystallization process description and modeling

3.2.1 Crystal nucleation

In our previous work [69], we assume that a HEW lysozyme nucleus is a cube with in-

finitesimal size (i.e., V = 0) [92, 120]. The supersaturation σ is defined as σ = ln(c/s)

where c (mg/mL) is the protein solute concentration and s (mg/mL) is the solubility. The

protein solubility depends on temperature (◦C) and is expressed by the following third-

order polynomial at pH = 4.5 and 4%(w/v) NaCl [12, 13]:

s(T ) = 2.88×10−4T 3 −1.65×10−3T 2 +4.62×10−2T +6.01×10−1. (3.1)
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The nucleation rate, B(T,c), at pH = 4.5 and 4%(w/v) NaCl is taken from [41]:

B(T,c) =


0.041σ +0.063 for σ ≥ 3.11

8.0×10−8 exp(4.725σ) for σ < 3.11

(3.2)

with units [cm−3 · sec−1].

3.2.2 Crystal growth

We model the 3-D crystal growth with two representative faces (i.e., the (110) and (101)

directions) via kMC simulations. Interested readers may refer to our earlier work [93, 66,

69] for further details regarding the kMC methodology. The following rate expressions

adopted from [32] and [60] are used to simulate the kinetics of crystal growth.

Attachment rate:

ra = K+
0 exp

∆µ
kBT

, (3.3)

where K+
0 is the attachment coefficient, kB is the Boltzmann constant, T is the temperature

(K), and ∆µ = kBT σ .

Detachment rate:

rd (i) = K+
0 exp

(
ϕ

kBT
− i

Epb

kBT

)
, (3.4)

Migration rate:

rm (i) = K+
0 exp

(
ϕ

kBT
− i

Epb

kBT
+

Epb

2kBT

)
, (3.5)

where Epb is the average binding energy per bond, ϕ is the total binding energy per molecule

of a fully occupied lattice, and i is the number of nearest neighbors.
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3.2.3 Crystal aggregation

General considerations

Aggregation processes result in a decrease in the total number of particles and an increase

in the average particle size. The shear force induced by agitation, which is required in

the scale-up of a particulate process, plays a key role in the aggregation maintaining the

particulate phase in suspension. Aggregation has an important influence on the quality of

particulate products, especially for dense particles such as protein crystals, and should be

taken into consideration in the modeling of large-scale crystallization processes. This work

is a comprehensive attempt to model the batch particulate process including nucleation,

crystal growth, and aggregation in a stirred batch process, so that the design of the batch

crystallizer and the subsequent scale-up process can be carried out in a more quantitative

way because the effect of stirring is directly considered. In this context, it is necessary to

find key kinetic expressions for aggregation that enable us to quantify the major factors

including aggregation efficiency and frequency.

The aggregation process can be divided into two steps. First, particles must be trans-

ported into a very small neighborhood of one another. A simple idea is that an aggregate

will be formed if an aggregate is sufficiently stable such that it can overcome repulsive

forces such as hydrodynamic drag and the viscous fluid layer between those particles un-

dergoing aggregation. More specifically, there are several aggregation types. Brownian

motion is the prevailing mechanism for the induction of aggregation for submicrometer
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particles. Particles whose sizes are in the range of 1-50 µm are under the influence of shear

forces, and the aggregation process induced by the shear force dominates in particulate

processes. Although it is not of particular interest in this work, crystals with a size larger

than 50 µm are under the influence of differential sedimentation or inertia [21].

Maximum local energy dissipation rate εmax

In [118] and [53], it is shown that crystallization experiments at higher stirrer speeds result

in a reduced formation of crystal aggregates which is favorable in the subsequent separation

process by filtration. Although higher stirrer speeds are preferred in order to achieve more

crystals with uniform size and shape, it is apparent that there is a physical limitation on the

stirrer speed that is achievable by a motor. Therefore it is important to identify a maximum

local energy dissipation rate (εmax), which measures the hydromechanical stress resulting

from agitation and is related to the highest impeller speed for the batch crystallizer. This

energy is usually converted into heat, but leads to a negligible temperature change. For a

given input power level, P, we can calculate the corresponding mean power input, ε̄ , for a

batch crystallizer as follows [118]:

ε̄ =
P

ρVbatch
=

ωMtorque

ρVbatch
=

2πnMtorque

ρVbatch
(3.6)

where ρ is the density of the continuous phase in the stirred tank, and Vbatch is the volume

of the batch crystallizer. Additionally, the mean power input, ε̄ , by stirring in a tank is de-

termined by measuring the torque, Mtorque, at the agitator shaft at a specific stirrer speed, n.

The ratio of the maximum local energy dissipation, εmax, which depends on the geometrical
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parameters of the reactor and stirrer types, and the impeller power, ε̄ , is determined from

the following equation [52]:

εmax

ε̄
≈ a

(d/D)2 (h/d)2/3 z0.6 (sinθ)1.15 z2/3
I (H/D)−2/3

(3.7)

The details of the geometry of the batch crystallizer and the stirrer type are taken from

[118]: unbaffled vessel (a= 16); diameter of the impeller (d = 0.06m); inner tank diameter

(D = 0.12m); height of the impeller blade (h = 0.04m); tank filling height (H = 0.12m);

number of impeller blades (z = 3); blade inclination to the horizontal (θ = 40o); number

of impellers (zI = 1). Under these specifications, εmax/ε̄ = 72.

Shear rate Gshear

In this work, the optimum mean power input of ε̄ = 30 mW/kg is considered, which cor-

responds to the maximum energy dissipation of εmax = 2.16 W/kg according to Eq. 3.7.

Furthermore, the range of stirrer speeds considered in this work is from 50 to 300 rpm,

which is taken from the experimental work by [118] because the crystal growth condition

is similar to that of our simulation. The turbulent shear rate within the stirred tank, Gshear,

was characterized by the average velocity gradient of the flow field as is shown in the

following expression from [16]:

Gshear =
( ε

ν

)0.5
(3.8)

where the kinematic viscosity is ν = 2.3× 10−6 cm2/s, the initial solute concentration is

c = 47 mg/mL, and the shear rate computed by Eq. 3.8 is Gshear = 970/s.
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Kolmogorov microscale η

The Kolmogorov microscale, η , has been used to indicate the length scale of the smallest

eddies in turbulent solid-liquid systems and is related to the local energy dissipation rate,

ε , and kinematic viscosity, ν , as follows [65]:

η =

(
ν3

ε

)1/4

(3.9)

In this study, the Kolmogorov microscale is 48.7 µm when the optimum mean power input

and the corresponding maximum energy dissipation are ε̄ = 30 mW/kg and εmax = 2.16

W/kg, respectively.

Collision frequency βi j

For particles and aggregates smaller than the Kolmogorov microscale, collisions induced

by the shear force dominate those caused by viscous forces [65]. The aggregation kernel,

β (Vi,Vj), represents the rate at which particles with volumes Vi and Vj aggregate induced

by the shear force and is as follows:

βi j = β
(
Vi,Vj

)
= ψGshear

(
V 1/3

i +V 1/3
j

)3
(3.10)

where ψ is a constant that depends on the type of flow. For example, ψ is 4/3 for laminar

flow, and [109] derived ψ = 1.29 for turbulent flow. Additionally, [56] states that this

expression for collision frequency can be used for particles with diameters of up to 5–10

times the Kolmogorov microscale.
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Mass fractal dimension d f

Assume for the moment that a crystal aggregate is a solid particle without any empty inner

space and that its density is identical to that of protein crystals. For the purpose of sim-

ulation focusing on the shape evolution of crystals, we assume that there are only binary

collisions and that the shape of a crystal aggregate after collision follows that of the bigger

crystal when the binary aggregation occurs. Then, the mass M(h110,h101) of the aggregate

enclosed within a small neighborhood from a suitably chosen center is given by:

M (h110,h101) =
4
3

ρh2
110h101 (3.11)

which is a function of a set of two internal coordinates in the (110) and (101) directions.

More specifically, the characteristic crystal lengths are h110 and h101 as presented in Fig.

3.1. In general, if we were to account for the fact that the region enclosed within the sphere

of radius R is not completely filled with particles but contains empty spaces, then the actual

mass will be less than that given by Eq. 3.11. In fact, it turns out that in many cases, one

can write

M(R) ∝ kaRd f (3.12)

where d f is the mass fractal dimension and it is usually less than three due to the porosity

in aggregates, ka is the shape factor (e.g., it is 4
3ρπ for a sphere), and R is the characteristic

length. Interested readers may refer to [58] for further analysis on the mass and fractal

dimension. In aggregation, it is assumed that the shape of the crystal resulting from aggre-

gation is identical to that of the larger crystal participating in the aggregation event, but the
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total number of crystals is reduced by one after each aggregation. Suppose there are two

crystals where the volume of crystal 1 is greater than that of crystal 2, and we denote the di-

mension of each crystal for the (110) and (101) faces as (h110,1,h101,1) and (h110,2,h101,2),

respectively. Therefore, we note that the volume of each crystal can be expressed in terms

of a crystal shape factor, α1 = h110,1/h101,1 and α2 = h110,2/h101,2, as follows:

V1 = h2
110,1h101,1 =

h3
110,1

α1
V2 = h2

110,2h101,2 =
h3

110,2

α2

As mentioned previously, the crystal shape after the aggregation, αagg, remains identical to

that of the bigger crystal (i.e., αagg = α1 since V1 > V2). Then the final crystal height in

both faces after aggregation can be computed by the following balance equation based on

the equation of total volumes before and after the aggregation:

h2
110,1h101,1 +h2

110,2h101,2 =
h3

110,agg

αagg

where h110,agg and h101,agg are the crystal heights of the new aggregate for the (110) and

(101) faces, respectively. Therefore, we can eventually compute h110,agg and h101,agg in the

following way:

h110,agg = α1/3
agg
(
h2

110,1h101,1 +h2
110,2h101,2

)1/3

and,

h101,agg =

(
h2

110,1h101,1 +h2
110,2h101,2

α2
agg

)1/3

The physical properties and other operating parameters of the particulate process are pre-

sented in Table 3.1.

59



ψ a constant depending on the type of flow 1.29 ·

Gshear shear rate 970 1/s

ε̄ effective mean power input 0.03 m2/s3

εmax maximum local energy dissipation rate 2.16 m2/s3

ν kinematic viscosity 2.3×10−6 m2/s

µ dynamic viscosity 0.0024 kg/m s

AH Hamaker constant 10−19 J

Table 3.1: Process parameters for aggregation.

Collision efficiency αi j

In a stirred crystallizer, the aggregates of crystals are compact because they are subject

to strong shear flow, and thus the collision efficiency corresponding to the impermeable

aggregate is modeled by an equation in [122]. The collision efficiency αi j, which is defined

as the ratio of the number of collisions to the number of collisions that result in aggregation

(i.e., the actual aggregation rate to the theoretical aggregation rate), is then computed by

the following equation [127]:

αi j = 0.43Fl−0.18 where 10 < Fl < 105 (3.13)

where Fl is the flow number computed by [7] as follows:

Fl =
6πµ

(
V 1/3

i +V 1/3
j

)3
Gshear

8AH
(3.14)
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Fl can be understood as the ratio between the repulsive shear force and the attractive Van

der Waals force. The coefficient 0.43 in Eq. 3.13 was obtained by [127]. The Hamaker con-

stant AH indicates the extent of Van der Waals interaction, and the value is approximately

between 10−20 and 10−19 J for solid-liquid systems. In this study, the value of 10−19 J

is chosen for AH . Therefore, by Eqs. 3.10 and 3.13, we can conclude that increasing the

shear rate increases the relative velocity (i.e., the average velocity gradient) of the parti-

cles, and hence the collision frequency is enhanced. However, the efficiency of collisions

decreases to zero with further increases in the shear rate. This is because higher shear rates

result in stronger hydrodynamic forces acting against the formation of aggregates and thus

aggregates are not formed since they do not have sufficient time or energy to form bonds

for aggregates. Since the aggregation rate is determined by the product of the collision

frequency and the efficiency, shear rate has two conflicting effects on the aggregation. For

the particular system considered in this work, we can compute the Kolmogorov time scale,

(ν/ε)0.5, which indicates how much time is needed for the collision to be successful. With

the system parameters described in Table 3.1, it is calculated that the Kolmogorov time

scale is 10−4 s. This is sufficiently small such that the aggregation occurs successfully with

the current mean power input, ε̄ = 30 mW/kg.

Total collision rate Ni j

Let Ni j be the total number of collisions occurring per unit time per unit volume between

crystals with volumes Vi and Vj. The shape of lysozyme protein crystals is assumed to
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be a rectangular prism, and aggregations are treated as binary hard sphere collisions. The

number of aggregations occurring during sampling time ∆ can be written in terms of the

aggregation kernel β
(
Vi,Vj

)
, the batch reactor volume Vbatch, the collision efficiency αi j,

and the concentrations of particles of volumes Vi and Vj as follows:

Ni j = αi jβ
(
Vi,Vj

)
mim jVbatch∆ 1 ≤ i, j ≤Ctotal (3.15)

where mi is the number concentration (i.e., the number of particles of class i per unit vol-

ume). The number Ctotal denotes the total number of crystal sizes. In the case of a discrete

volume, the rate of formation of particles of size k from the collision of particles of volumes

Vi and Vj is 1
2 ∑Vi+V j=Vk

Ni j where the notation Vi +Vj = Vk indicates that the summation

is over all the different combinations of collisions. A factor of 1/2 is introduced because

each collision is counted twice in the summation.

In order to execute an aggregation event between two lysozyme crystals in the simula-

tion, the binary collision probability must first be calculated according to Eq. 3.15. For the

purposes of the batch crystallization simulation, aggregation events are considered to occur

every 0.5 seconds. By doing this we can multiply Eq. 3.15 by 0.5 seconds and the reactor

volume to get the total number of collisions during the time period. This is the probability

that aggregation occurs between the crystals of volumes Vi and V j. Then, a random number

in the interval [0,1) is generated, and the aggregation event is executed when the random

number is less than the calculated probability. This process applies to all of the crystal

sizes, and continues throughout the entire batch crystallization simulation.
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3.2.4 Mass and energy balances for the continuous phase

Mass balance

The mass balance in the present work is modeled by assuming that the geometry of a

lysozyme crystal is a rectangular prism as shown in Fig. 3.1, and that the shape of a

lysozyme crystal is approximated by a ratio of crystal heights in the (110) and (101) di-

rections. The amount of the protein solute removed from the continuous phase due to

crystallization can be computed using the following equation:

∆c(t) =−∆Vc(t)ρcNc(t)
Vbatch

, (3.16)

where Vbatch is the volume of the continuous phase (assuming the change in Vbatch is neg-

ligible), ∆Vc(t) is the total volume change of the entire set of crystals, Nc(t) is the number

of crystals in batch at time t, ρc is the crystal density, and ∆c(t) is the change of the protein

solute concentration in the continuous phase. For the derivation of Eq. 3.16, please refer to

[69].

Energy balance

Similarly, the energy balance for the batch crystallization process is shown below:

dT
dt

=−ρc∆Hc

ρCp

(
1
V

∆Vc(t)
)
−

U jA j

ρCpV

(
T −Tj

)
(3.17)

where T is the crystallizer temperature, and Tj is the temperature of the jacket. For the

derivation of Eq. 3.17, please refer to [69].
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Figure 3.1: The geometry model for lysozyme crystals used in the present work.

Table 3.2: Parameters for the batch crystallizer

ρc crystal density 1400 mg/cm3

∆Hc enthalpy of crystallization -4.5 kJ/kg

ρ continuous phase solution density 1000 + c mg/cm3

Cp specific heat capacity 4.13 kJ/K kg

Vbatch crystallizer volume 1 L

A j surface area of crystallizer wall 0.25 m2

U j heat transfer coefficient of crystallizer wall 1800 kJ/m2 h K
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3.3 Population balance modeling

3.3.1 Population balance model of crystal volume distributions

In this section, we present a population balance model (PBM) for the lysozyme crystalliza-

tion process accounting for simultaneous nucleation, crystal growth, and aggregation. The

evolution of the crystal volume distribution in the batch crystallizer can be obtained from

the following partial integro-differential equation:

∂n(V, t)
∂ t

+Gvolume
∂n(V, t)

∂V
= δ (V −V0)B(T,c)︸ ︷︷ ︸

Birth by nucleation

+
1
2

∫ V

0
αe f f β (V −V̄ ,V̄ )n(V −V̄ , t)n(V̄ , t)dV̄︸ ︷︷ ︸

Birth by aggregation

−n(V, t)
∫ ∞

0
αe f f β (V,V̄ )n(V̄ , t)dV̄︸ ︷︷ ︸

Death by aggregation
(3.18)

where V and V − V̄ denote the crystal volumes of the two crystals participating in the ag-

gregation event, t is the time, n(V, t) denotes the lysozyme crystal distribution with volume

V , αe f f is a constant aggregation efficiency, β (V −V̄ ,V̄ ) is the aggregation rate between

the crystals with volumes V and V −V̄ , δ (V ) is the standard Dirac function, and B(T,c) is

the nucleation rate. As in [69], dV
dt , which will be denoted as Gvolume for the remainder, is

computed by measuring the solute concentration drop,

Gvolume =
dV
dt

≈− 1
∆t

(
Vbatch∆c(t)

ρcNc(t)

)
, (3.19)

where the parameters on right hand side are as in Eq. 3.16.

Then, we can write Eq. 3.18, along with the boundary condition which is derived in
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Section 3.8.1, as follows:

∂n(V, t)
∂ t

+Gvolume
∂n(V, t)

∂V

=
1
2

∫ V

0
αe f f β (V −V̄ ,V̄ )n(V −V̄ , t)n(V̄ , t)dV̄ −n(V, t)

∫ ∞

0
αe f f β (V,V̄ )n(V̄ , t)dV̄

(3.20)

n(0, t) =
B(T,c)
Gvolume

3.3.2 Lognormal volume distribution and moment model

Due to the complexity of the population balance model, it is not directly applicable for

numerical computation of the size distribution in real-time, or for the design of model pre-

dictive controllers that can be readily implemented in practice. In order to circumvent these

problems, the method of moments is applied to Eq. 3.18 for the construction of a low-order

ordinary differential equation (ODE) model that accurately reproduces the dominant dy-

namics of the particulate process. More specifically, the constructed low-order ODEs are

used to describe the evolution of the three leading moments of the crystal volume distribu-

tion in the turbulent shear regime in a 5 L batch crystallizer. Then, under the assumption

that the changes in the collision efficiency are negligible, we construct a framework for

the moment models that describes aggregation mechanisms over the entire batch. These

moment models provide acceptable simplification of the population balance equation by

modeling the key behavior of crystal growth, nucleation, and aggregation in the continuous

phase. First of all, it is shown in Fig. 3.3 that the lysozyme crystal volume distribution

obtained from kMC simulations can be appropriately characterized by the following log-

66



normal function:

n(V, t) =
1

3
√

2πlnσ̄
exp

−
ln2
(

V
Vg

)
18ln2σ̄

 1
V

(3.21)

where Vg =
M2

1

M3/2
0 M1/2

2

is the average crystal volume, and σ̄ is the standard deviation of the

crystal volume distribution which is expressed as ln2σ̄ = 1
9 ln
(

M0M2
M2

1

)
. Then we apply the

method of moments to Eq. 3.18 to compute the approximate models that describe the

evolution of the three leading moments of the volume distribution. For this purpose, we

define the jth moment model of the crystal volume distribution as follows:

M j =
∫ ∞

o
V jn(V, t)dV (3.22)

Furthermore, the moment models of the system can be closed according to the assumption

above that the volume distribution follows that of a lognormal distribution, and thus an

arbitrary moment, Mk, is computed as follows:

Mk = M0V k
g exp

(
9
2

k2ln2σ̄
)

For further details of the derivation of moment models, the reader may refer to Section

3.8.2. The equations given below describe the three leading moment models for j = 0,1,2.

Zeroth moment:

dM0

dt
= B(T,c)−αe f f

(
M0M1 +3M1/3M2/3

)
(3.23)

where αe f f is the collision efficiency described in Eq. 3.13, and B(T,c) is replaced by the

boundary condition in Eq. 3.20.
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First moment:

dM1

dt
= GvolumeM0 (3.24)

Second moment:

dM2

dt
= 2GvolumeM1 +2αe f f

(
M1M2 +3M4/3M5/3

)
(3.25)

In summary, we can complete the moment models as follows:

Gvolume ≈− 1
∆t

(
Vbatch∆c(t)

ρcM0

)
dM0

dt
= B(T,c)−αe f f

(
M0M1 +3M1/3M2/3

)
dM1

dt
= GvolumeM0

dM2

dt
= 2GvolumeM1 +2αe f f

(
M1M2 +3M4/3M5/3

)
dT
dt

=−ρc∆Hc

ρCpV
dM1

dt
−

U jA j

ρCpV

(
T −Tj

)
∆c(t) =−ρc

V
dM1

dt

Mk = M0V k
g exp

(
9
2

k2ln2σ̄
)

for k =
(

1
3
,
2
3
,
4
3
,
5
3

)
Vg =

M2
1

M3/2
0 M1/2

2

ln2σ̄ =
1
9

ln
(

M0M2

M2
1

)

(3.26)

Although an aggregation kernel with a constant collision efficiency was used to close the

moment models, the model can be further improved by using a nonconstant collision effi-

ciency.
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3.3.3 Relation between crystal volume and shape distributions

In the moment model, we can accurately estimate M0, which represents the number of crys-

tals in the system, and it is highly coupled with other moments as is shown in Eqs. 3.24–

3.25. Therefore, we should carefully connect M0 to the shape distribution, α = h110/h101.

In the model predictive controller (please see Eq. 3.30 below), the average height of the

(110) face, ⟨h110(t)⟩, at time t is estimated at every sampling time through the following

equation:

⟨h110(t)⟩=
⟨h110(t −∆)⟩M0(t −∆)

M0(t)
+G110(t −∆)∆ (3.27)

where G110(t) is the growth rate for the (110) face, and in the same manner the average

height of the crystal face (101), ⟨h101(t)⟩, can be computed as follows,

⟨h101(t)⟩=
⟨h101(t −∆)⟩M0(t −∆)

M0(t)
+G101(t −∆)∆ (3.28)

where G101(t) is the growth rate for the (101) face. By the above equations, we can ap-

proximate the average crystal shape in the following way:

⟨α⟩ ≈ ⟨h110(t)⟩
⟨h101(t)⟩

(3.29)

3.4 Open-loop simulation results

Executing multiple kMC simulations with an infinite number of lattice sites can be consid-

ered to be similar to solving Eq. 3.18 directly [37, 87]. In this work, we assume that the

number of lattice sites used in the kMC simulation is sufficiently large, and as a result, no
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size effects are observed in the systems with more lattice sites [60].

In Fig. 3.2, crystal growth at pH = 4.5 and 4%(w/v) NaCl has been properly modeled

through a procedure described in previous works [93, 66, 69], and plotted against the ex-

perimental results at 3.5% and 5.0% NaCl from [31]. In particular,
(
ϕ/kB,Epb/kB

)
110 =

(1077.26 K,227.10 K) and
(
ϕ/kB,Epb/kB

)
101 = (800.66 K,241.65 K) provide a best fit

between the simulation results and the experimental data for the (110) and (101) faces, re-

spectively. Additionally, K+
o = 0.211 seconds−1. Then, a set of 3-D plots (cf. Fig. 3.4)

are made from the open-loop kMC simulation using the parameters presented above and

they are used to describe the temperature and solute concentration dependencies of the

steady-state crystal growth rates for the (110) and (101) faces and the crystal growth rate

ratio.

One of the major contributions of this work is the development of the aggregation pro-

cess along with nucleation and crystal growth in the kMC simulation. In addition to the

growth conditions including temperature, protein solute concentration, pH, and salt con-

centration [1, 129, 86, 82], there are many other factors that affect the aggregation rate, as

discussed in the previous sections and shown in Eqs. 3.6–3.15. Additionally, the evolution

of aggregation along with nucleation and crystal growth is estimated by using the moment

models described in Eq. 3.26. To verify the accuracy of the moment models, an open-loop

simulation is run. Then, the evolution of the number of crystals (M0), the average crystal

shape, the temperature, the solute concentration, and the moment model in the kMC sim-

ulation are plotted together in Fig. 3.3. The concentration remains almost constant at 47
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Figure 3.2: Growth rates versus the degree of supersaturation at c = 45 mg/mL and 4%

NaCl. The solid and dashed lines show the growth rates for the kMC model on the (110)

and (101) faces, respectively. Experimental data from [31] is also shown at pH= 4.6 where

the (�) and (�) represent the (101) and (110) faces with 5% NaCl and the (•)/(◦) represent

the (101) and (110) faces with 3.5% NaCl.
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mg/mL. As is seen in Eq. 3.13, the collision efficiency decreases as the crystal sizes in-

crease, because crystals are less likely to adhere to one another due to a short contact time

which is unfavorable for aggregation.

In this work, however, a constant aggregation efficiency is used to deal with the closure

issue in the moment models, and it results in a minor mismatch in M0 between the moment

models and the kMC simulations as is shown in Fig. 3.3. This happens because the constant

aggregation efficiency is not able to capture the size-dependent nature of the aggregation.

Regardless of the discrepancy in M0 between the moment models and the kMC simulations,

Eqs. 3.27–3.29 successfully estimate the average crystal shape distribution based on the

growth rates for the (110) and (101) faces and the number of crystals in the crystallizer.

The moment models are used in the next section to design a new controller in order to

provide optimality as well as robustness in regulating the batch process.

3.5 Model predictive control of size and shape of crystal

aggregates

In the batch crystallization simulation, the role of aggregation events becomes significant

in a scaled-up crystallizer as crystal size and the number of crystals increase. Then, the mo-

ment model is considered in the controller design in order to predict the system dynamics

with a set of low-order ordinary differential equations. The rates of nucleation and crystal

growth are determined by the crystallizer temperature and solute concentration. However,
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Figure 3.3: Profiles of the open-loop evolution of the number of crystals, temperature,

protein solute concentration, and crystal shape for tetragonal lysozyme protein crystals at

pH = 4.5. Please note that c and T profiles obtained from the moment models and the kMC

simulations are identical.
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the shear rate, which is determined by the stirrer speed (i.e., the only controllable variable

in the aggregation rate), is fixed throughout the entire batch run.

In addition to the nonlinear models described in Fig. 3.4, and the mass and energy bal-

ances introduced in Eqs. 3.16 and 3.17, moment models, which account for the number of

crystals (M0) and the average volume (M1) in the crystallizer, play a key role in estimating

the evolution of the crystal volume and shape distributions (Eqs. 3.27–3.29). Conventional

operating strategies may be used; however, there are some issues. For example, due to a

lower limit on the temperature, the supersaturation level cannot be maintained at a set-point

value when the depletion in the solute concentration is significant. Motivated by these con-

siderations, a model predictive controller is designed using the manipulation of the jacket

temperature to produce crystals with a desired shape and size.

3.5.1 Model predictive control formulation

In this work, we consider the control of crystals aggregates using the moment models and

the balance equations in a model predictive control (MPC) design. The control objective

is to minimize the deviation of the average crystal shape, ⟨α⟩, from a set-point value. The

jacket temperature is chosen as a manipulated input, and only the measurements of the

solute concentration and the crystallizer temperature are required for the computation of

the optimal jacket temperature, assuming other factors remain constant.

The mass and energy balance equations (Eqs. 3.16 and 3.17) and the moment model

(Eq. 3.26) are considered along with other practical constraints in the control formulation.
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Figure 3.4: Profiles for (a) the growth rate ratio between the (110) and (101) faces, and

the growth rates for the (b) (110) and (c) (101) faces, over a protein concentration range

from 30 to 50 mg/mL and a temperature range of 4 to 25◦C. Each point on the three plots

is generated by running the kMC simulation under open-loop conditions at pH= 4.5.
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First, a constraint on the crystallizer temperature is imposed
(
4◦C ≤ Tj ≤ 25◦C

)
. Next,

RT = 2.0◦C/min is a constraint which restricts the maximum rate of change for the jacket

temperature. The cost function penalizes the deviation of the average crystal shape, ⟨α⟩,

from a set-point value. The proposed MPC formulation is as follows:

minimize
Tj,1,...,Tj,i,...,Tj,p

p

∑
i=1

F⟨α⟩,i

subject to F⟨α⟩,i = (⟨α⟩−αset)
2

4◦C ≤ Tj ≤ 25◦C
∣∣∣∣Tj,i+1 −Tj,i

∆

∣∣∣∣≤ 2.0◦C/min

dT
dt

=−ρc∆Hc

ρCpV
dM1

dt
−

U jA j

ρCpV

(
T −Tj,i

)
∆c(t) =−ρc

V
dM1

dt

⟨hl(ti)⟩=
⟨hl(ti−1)⟩M0(ti−1)

M0(ti)
+Gl(ti−1)∆

dM0

dt
= B(T,c)−αe f f

(
M0M1 +3M1/3M2/3

)
dM1

dt
= GvolumeM0

dM2

dt
= 2GvolumeM1 +2αe f f

(
M1M2 +3M4/3M5/3

)
Mk = M0V k

g exp
(

9
2

k2ln2σ̄
)

for k =
(

1
3
,
2
3
,
4
3
,
5
3

)
Vg =

M2
1

M3/2
0 M1/2

2

ln2σ̄ =
1
9

ln
(

M0M2

M2
1

)

i = 1,2, . . . , p and l ∈ {110,101}

(3.30)

where ∆ is the sampling time, t is the current time, ti, i = 1,2, . . . , p, is the time of the

ith prediction step, (ti = t + i∆), t f is the total simulation time, F⟨α⟩,i is the cost function

penalizing the deviation of the average crystal shape ⟨α⟩ from a desired crystal shape αset,
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p is the number of prediction steps, p∆ is the prediction horizon, and Tj,i is the jacket

temperature at the ith step,
(
Tj,i = Tj(t + i∆)

)
. The set of optimal manipulated input values

along the prediction horizon, (Tj,1,Tj,2, . . . ,Tj,p), is obtained by solving the problem of Eq.

3.30. The controller is implemented in a receding horizon scheme where the first value

of the optimal input trajectory, Tj,1, is applied to the process until the next sampling time.

Then, a new protein concentration measurement is obtained from the kMC simulation, and

the MPC problem of Eq. 3.30 is re-solved by rolling the horizon one step forward.

3.6 Closed-loop simulations of the batch crystallization pro-

cess

The proposed model predictive controller solves a constrained minimization problem over

a prediction horizon, and computes the optimal jacket temperature, which is then applied to

the closed-loop system at each sampling time (∆=1 second). Additionally, the uncertainty

in the crystallizer is reflected through random fluctuations in the solute concentration with

the Gaussian distribution presented in Eq. 3.31,

⟨C(t)⟩=Cn, ⟨C(t)C(t ′)⟩= σ2
nC2

n , (3.31)

where Cn is the nominal concentration and σnCn is the standard deviation of the concen-

tration measurements. For all closed-loop simulations, the nominal concentration is 47

mg/mL, and the standard deviation, σnCn, is set to be 0.47 mg/mL at pH 4.5 and 4.0%

NaCl. The volume of the crystallizer is 5 L. Since the MPC makes use of the steady-state
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Figure 3.5: Normalized nucleation time distribution for the batch run under closed-loop

MPC operation for αset = 0.85 and αset = 1.11.

growth rates (cf. Fig. 3.4(b) and 3.4(c)), the number of prediction steps is set to be p = 1.

For the purpose of simulation, the solute concentration fluctuates every 1 second with the

nominal value Cn(t) at time t. The closed-loop simulation duration is t f = 20000 seconds.

In the closed-loop simulations, two desired crystal morphologies, αset = 1.11 and αset =

0.85, are chosen where these two shapes represent the protein crystal with equidimensional

and more elongated length in the (101) direction, respectively.

To verify the performance of the proposed MPC, its performance is compared with

those of two other conventional control strategies, CTC and CSC. For further details re-

garding how CTC and CSC operate, readers may refer to [69]. Specifically in Fig. 3.5,

for αset = 0.85, the optimal temperature is ∼24.2◦C, and the nucleation of over 30% of

the total crystals occurs within the first 5% of the entire batch run due to the high initial
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Figure 3.6: Profiles of the average crystal shape distribution with time under CTC and CSC.

Additionally, MPC is shown with the set-point αset = 0.85.

supersaturation level maintained until the system reaches its optimal temperature. We note

that the MPC in this case results in a broader crystal shape distribution compared to those

of CTC and CSC from a desired set-point value owing to the biased nucleation in the begin-

ning. In spite of this, the simulation under MPC shows a similar crystal shape distribution

compared to that of CTC at To = 24.2◦C where the optimal temperature is maintained for

the crystallizer over the entire batch.

The average crystal shape obtained at the end of the batch run for the MPC in Figs. 3.6

and 3.7 can be very narrow and even closer to the desired value when the initial temperature

is much closer to the optimal temperature (for example, if To is changed from 13◦C to

24.2◦C). Furthermore, the controller performance can be further improved by adjusting RT

so that the system is able to change its temperature more quickly. For further analysis on
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Figure 3.7: Profiles of the average crystal shape distribution with time under CTC and CSC.

this, readers may refer to [79].

For the closed-loop simulations at the lower set-point value, αset = 0.85, the simulation

results are shown in Figs. 3.6, 3.7, and 3.8 for the evolution of the crystallizer temper-

ature, the protein solute concentration, the supersaturation, and the average crystal shape

throughout the batch operation. Additionally, the crystal shape distribution at four different

times (5000, 10000, 15000, 20000 seconds) is presented in Fig. 3.13. In order to deter-

mine set-points for the CTC and CSC schemes, a simulation under MPC at c = 47 mg/mL

and To = 13◦C was run. For the temperature set-points of the simulations under CTC, two

extremes of the temperature profile computed by the simulation under MPC are chosen as

follows: To = 13◦C and To = 24.2◦C. Similarly, two extremes of the supersaturation profile

computed by the simulation under MPC are chosen as follows: σ = 2.27 and σ = 3.40.

For the lower desired crystal growth rate ratio, αset = 0.85, it is recommended to start
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(b) crystallizer temperature vs time
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Figure 3.8: Profiles of protein solute concentration, crystallizer temperature, and supersatu-

ration versus time under closed-loop MPC operation compared with closed-loop operations

under CTC and CSC during the batch run. The growth rate ratio set-point value is set at

αset = 0.85, and the data shown has different initial temperature values and supersaturation

levels provided in the legend of each plot. For MPC, the starting temperature is 13◦C.
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the crystallizer with a higher initial temperature, allowing the system to achieve the optimal

temperature earlier in the batch run which will result in a uniform crystal nucleation during

the batch run, and the crystals will grow under optimal growth conditions from the begin-

ning [66]. It is observed in Fig. 3.8(a) that the simulations under the CSC at σ = 3.4 and

the CTC at To = 13◦C demonstrate significant depletion in the solute concentration because

they both are at high supersaturation levels, and hence high nucleation and growth rates are

expected. In contrast, in the proposed MPC, CTC at the high temperature To = 24.2◦C, and

the CSC at the low supersaturation σ = 2.27, no significant solute concentration drop is

observed as a result of the low nucleation and growth rates. On the other hand, in Figs. 3.6,

3.7, and 3.8, the solute concentration, the supersaturation, the temperature, and the average

of the shape distribution with time under CTC at To = 13◦C are very similar to those of

CSC at σ = 3.40. Therefore, we note that the CTC and CSC policies show similar con-

troller performances when their supersaturation levels are nearly identical over most of the

batch run. We also note that the proposed MPC with a relatively high initial temperature

can outperform other conventional policies, and the performance of the MPC can be by far

improved by adjusting the constraint on the rate of change for the jacket temperature.

In Fig. 3.8(b), the jacket temperature is increased early on in the batch run to the opti-

mal value by the proposed MPC due to the fact that the solute concentration has minimal

depletion for this To. The optimal temperature for the crystal growth at a low growth rate

ratio is usually high when the system is especially sensitive to small changes in the solute

concentration and the temperature as is shown in Fig. 3.4. The interested reader may refer
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to our recent work [66] for further analysis on the sensitivity of the controller design in

relation to the initial temperature of the crystallizer.

Control strategy ⟨h110⟩ r10 r50 r90 span

MPC 26.04 3.13 23.72 48.71 1.91

CTC: T=13◦C 41.27 0.52 3.43 20.94 5.96

CTC: T=24.2◦C 20.11 0.70 18.04 39.20 2.13

CSC: σ = 2.27 46.06 8.02 41.82 78.73 1.69

CSC: σ = 3.40 45.33 0.60 2.89 19.25 6.44

Table 3.3: The simulation results for the crystal size in the (110) direction under MPC for

αset = 0.85, as well as CTC and CSC. Units for the ⟨h110⟩, r10, r50, and r90 are given in

µm.

In Table 3.3, a comparison is shown under different control strategies for the average

crystal size along the (110) direction, ⟨h110⟩, and r10, r50, r90, which are the 10%, 50%, and

90% population fractions. For instance, r10 for MPC is 3.13 µm, which means that 10% of

crystals are smaller than 3.13 µm at the end of the batch run. The span, which is defined

as (r90 − r10)/r50, indicates the extent of crystal size distribution. In Table 3.3 and Figs.

3.6–3.7, it is demonstrated that the MPC is able to achieve a low polydispersity (a low span

value) and a desired crystal shape distribution by appropriately dealing with the undesired

effects such as the biased nucleation, disturbances, and the mismatch of moment models

with the actual process. The controller performance can be further improved if we choose

an initial temperature sufficiently close to the optimal temperature and use an actuator with
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less restrictions on the jacket temperature change.

For αset = 1.11, a high supersaturation level is favored for crystal growth with equidi-

mensional shape. As a result, the high nucleation and growth rates result in a significant

drop in the solute concentration level. In Fig. 3.9, it is shown that the supersaturation

level constantly fluctuates, which is attributed to the jacket temperature computed by the

proposed MPC. Reflecting the heuristic that the system progresses from the metastable to

the labile regime, the initial rise-and-fall in the supersaturation level can be understood

as follows: Initially, the formation of small crystals occurs, and they grow spontaneously.

Once a sufficient amount of nucleation occurs, the supersaturation level decreases to a min-

imum value and it eventually decreases the nucleation rate as well. In the end, the system

proceeds to a regime where crystal growth dominates the crystal nucleation. The rise-and-

fall in supersaturation, which results from the optimal temperature profile computed by the

proposed MPC, extends to the end of the batch run as the solute concentration steadily

decreases from 47 to 40 mg/mL as is shown in Figs. 3.9(a)–3.9(c). It is also demonstrated

in Fig. 3.9(b) that the optimal temperature trajectory computed by the proposed MPC does

not remain at a constant value, as the proposed MPC responds promptly to the solute con-

centration drop and disturbances in order to avoid the formation of small crystal fines at

the end of the batch process. In Fig. 3.5, since the system reaches the optimal temperature

quickly, the profile of nucleated crystals with time is uniform throughout the batch run.

However, due to the insensitivity of the system to the changes in the supersaturation level

in the high supersaturation region, the simulation results under other strategies are close to
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Figure 3.9: Profiles of protein solute concentration, crystallizer temperature, and supersatu-

ration versus time under closed-loop MPC operation compared with closed-loop operation

under CTC and CSC during the batch run. The growth rate ratio set-point value is set at

αset = 1.11, and the data shown has different initial temperature values and supersaturation

levels provided in the legend of each plot. For MPC, the starting temperature is 13◦C.
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Figure 3.10: Profiles of the average crystal shape distribution with time under CTC and

CSC. Additionally, MPC is shown using αset = 1.11.

those under MPC, as is seen in Figs. 3.10 and 3.11.

In Table 3.4, αset = 1.11 shows a high polydispersity because of the significant drop in

the concentration, but a narrow crystal shape distribution is obtained by a nearly uniform

crystal nucleation rate under MPC. The CTC at T=14◦C and CSC with σ = 3.4 result in

similar shape distributions to that of MPC, but they show high standard deviation in Figs.

3.10 and 3.11, and their spans are also high as is shown in Table 3.4, which implies that

they are not robust when the depletion in the solute concentration is significant.

In Fig. 3.12, the more equidimensional crystal shape, αset = 1.11, can be achieved over

a broad supersaturation range, and thus both the proposed MPC and other conventional

strategies show good performances in regulating the crystal shape to a desired morphology.

However, the conventional control strategies do not guarantee a low polydispersity, because
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Control strategy ⟨h110⟩ r10 r50 r90 span

MPC 31.30 0.49 5.24 14.5 2.67

CTC: T=7.05◦C 73.61 0.45 1.97 3.84 1.72

CTC: T=14◦C 23.10 0.74 4.30 17.35 3.87

CSC: σ = 3.4 33.98 0.93 4.84 20.88 4.12

CSC: σ = 3.9 88.17 0.41 1.45 3.55 2.16

Table 3.4: The simulation results for the crystal size in the (110) direction under MPC for

αset = 1.11, as well as CTC and CSC. Units for ⟨h110⟩, r10, r50, and r90 are given in µm.
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Figure 3.11: Profiles of the average crystal shape distribution with time under CTC and

CSC.
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Figure 3.12: The normalized crystal shape distribution at four different times during the

batch simulation under MPC for αset = 1.11.

polydispersity depends on the growth conditions as is shown in Table 3.4. In Fig. 3.13, it is

apparent that the proposed MPC steadily drives the crystal shape distribution to a desired

value, and eventually a narrow shape distribution is obtained at the end of the batch run.

In conclusion, MPC can successfully achieve the desired crystal shape distribution and

is robust with respect to biased nucleation and a significant drop in the solute concentra-

tion, as has been demonstrated; however, whether a low polydispersity can be achieved is

determined by the desired set-point value. For αset = 0.85, crystals with both the desired

morphology and a low polydispersity can be achieved at a sufficiently high temperature in

the crystallizer, which is typically close to an optimal temperature, because it takes less

time for the system to reach its optimal state, causing uniform nucleation to occur through-
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Figure 3.13: The normalized crystal shape distribution at four different times during the

batch simulation under MPC for αset = 0.85.

out the batch run. For αset = 1.11, however, crystals with a narrow shape distribution and a

high polydispersity can be obtained regardless of the initial temperature, because the crys-

tallizer instantly responds to the depletion in the solute concentration, as is shown in Fig.

3.9. More details regarding robust control of crystallization systems and model predictive

control can be found in [115, 23, 34].

On a final note, all the batch crystallization simulations executed in this work were done

in parallel using Message Passing Interface (MPI) on the Hoffman2 cluster at UCLA. The

Hoffman2 cluster is a shared resource comprised of 1032 nodes with a total of 9772 cores.

The memory on each node, as well as the CPU speed, varies over the cluster. By using MPI

we are able to divide the computational cost and memory requirements over multiple cores.

The most computationally expensive part of these simulations is the crystal growth step.
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Since the crystal growth step is executed independently for each crystal between controller

calls, concentration fluctuations, and aggregation events, this step is easily parallelizable.

It is also noted that the nucleation process does not affect the crystal growth stage since

when a new crystal is born it directly enters the crystal growth process. Fig. 3.14 shows

the amount of time necessary to run one batch crystallization simulation depending on the

number of cores used. It can also be noticed that since the CPU speed varies, the error

bars are quite large for the cases with less CPUs. Through our testing we found that using

20 cores was an appropriate tradeoff between time spent sending and receiving messages

between cores while still reducing the time spent in the crystal growth process, as well as

making sure the scheduler on the Hoffman2 cluster would accept our jobs in a reasonable

amount of time. On average, the kMC simulations finished in 0.254 hours, spending 46%

of the time in the crystal growth process for 20 cores. Due to the fact that all processors

do not have the same speed, the process also spent 34% of the simulation time waiting for

all cores to align in simulation time before controller calls, concentration fluctuations, and

aggregation events. When looking at the single core case, 97% of the time was spent in

the crystal growth process. It is noted that when using more cores, additional overhead is

added when trying to balance the number of lysozyme crystals assigned to each core.

3.7 Conclusions

Initially, the present work focused on the modeling of protein crystal aggregation along

with crystal nucleation and growth in a batch crystallization process via kinetic Monte
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Figure 3.14: The amount of real time necessary to complete the batch crystallization simu-

lations for varying numbers of cores. The standard error bars represent one standard devia-
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time = 1.7492(cores)−0.65 with an R2 = 0.9614.
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Carlo (kMC) simulation. More specifically, the kMC simulation modeled crystal growth

via adsorption, desorption, and migration mechanisms on the (110) and (101) faces, and

the nucleation rate from the experimental results by [41] was used in this work. Then the

aggregation of protein crystals in the batch simulation was modeled through an aggregation

kernel accounting for collision efficiency. Having considered the sizes of lysozyme crys-

tals in this study, the aggregation was mainly induced by shear forces. Moreover, binary

aggregation was assumed and thus an aggregate was formed as two crystals completely

merged along their internal coordinates. Furthermore, we supposed the crystal shape of

the aggregate followed that of the bigger crystal. Additionally, the high-dimensionality in

the PBM could lead to a complicated controller design, which could not be immediately

implemented in practice. To this end, moment models were derived to describe the dy-

namic evolution of the three leading moments of the crystal volume distribution. Finally,

the moment model was used along with a nonlinear algebraic equation and energy and

mass balances in order to design a novel model predictive controller (MPC). Under MPC,

the shapes of crystal aggregates were regulated through the manipulation of the jacket tem-

perature measuring the protein solute concentration and the crystallizer temperature, which

was a common practice in batch crystallization.

Then the simulation results of the proposed MPC were compared with those of other

strategies, CTC and CSC, where these strategies were not robust to a significant concen-

tration drop and the uncertainties in the model. However, the proposed MPC was able to

drive the crystal shape distribution to a desired set-point value by properly dealing with
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the biased nucleation and a significant solute concentration drop. Moreover, the produc-

tion of crystals with a low polydispersity was achieved depending on the desired crystal

shape. For example, for αset = 1.11, crystals with a narrow shape distribution were ob-

tained as the MPC promptly counteracted the depletion in the solute concentration. The

ability to deal with this undesired effect was reflected as a fluctuation in the optimal crys-

tallizer temperature computed by the proposed MPC as was shown in Fig. 3.9, and it led

to an unsteady growth condition which produced crystals with a relatively high polydis-

persity. For αset = 0.85, however, crystals with a desired shape distribution and a narrow

size distribution were achieved at a high initial temperature which was close to the optimal

temperature, because the unwanted biased nucleation could be avoided. Additionally, al-

lowing for a faster jacket temperature (manipulated input) change could be another choice

reducing the amount of time needed to obtain crystals with desired properties, because the

state of system could reach its optimal value faster.

3.8 Appendix

3.8.1 Derivation of the boundary condition for PBM

As is pointed out by [83], Eq. 3.18 can be rewritten by replacing the nucleation term with

an appropriate boundary condition. Integrating Eq. 3.18 over V from 0− to 0+ gives,

Gvolume

∫ 0+

0−

∂n(V, t)
∂V

dV = B(T,c),
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since ∫ 0+

0−
B(T,c)δ (V )dV = B(T,c),

and ∫ 0+

0−

∂n(V, t)
∂ t

dV = 0.

Additionally, when the average crystal volume is very small (i.e., V ≃ 0), aggregation rarely

occurs and thus it is assumed that the aggregation terms are negligible,

1
2

∫ 0+

0−

∫ V

0
β (V −V̄ ,V̄ )n(V −V̄ )n(V̄ )dV̄ dV =

∫ 0+

0−
n(V )

∫ ∞

0
β (V,V̄ )n(V̄ )dV̄ dV = 0

and,

n(V, t) = 0 at V = 0− n(V, t) = n(0, t) at V = 0+,

assuming all nuclei form with size V = 0. Then Eq. 3.18 can be reduced to the following:

Gvolumen(0, t) = B(T,c) at V = 0.

3.8.2 Derivation of the first moment model

We multiply the both sides of Eq. 3.18 by the jth power of the crystal volume V j, and

integrate from V = 0 to V = ∞, to obtain:

dM j

dt
+Gvolume

([
V jn(V, t)

]∞
0 −

∫ ∞

o
jV j−1n(V, t)dV

)
=

1
2

∫ ∞

0
V j
∫ ∞

0
αe f f β (V −V̄ ,V̄ )n(V −V̄ )n(V̄ )dV̄ dV −

∫ ∞

0
V jn(V )

∫ ∞

0
αe f f β (V,V̄ )n(V̄ )dV̄ dV︸ ︷︷ ︸

aggregation

Suppose n(V, t) is finite at V = 0 and n(V, t)→ 0 as V → ∞. This implies that there are a

finite number of nucleated crystals with infinitesimal volume but there are no crystals with
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infinite size at time t. Since the total crystal volume is independent of the aggregation rate

and depends only on the nucleation rate, the right hand side in the equation above, which

is denoted as “aggregation,” does not contribute to the first moment equation that describes

the evolution of M1 with time. As an example, the derivation of first moment model is

presented with more details.

First moment: Making the substitution V −V̄ = y and thus dV = dy on the right hand

side of the equation above, and using that M1 =
∫ ∞

o V n(V, t)dV , we obtain:

dM1

dt
−GvolumeM0

=
1
2

∫ ∞

0
V
[∫ ∞

0
αe f f β (y,V̄ )n(V̄ , t)dV̄

]
n(y, t)dy−

∫ ∞

0
V
[∫ ∞

0
αe f f β (V,V̄ )n(V̄ , t)dV̄

]
n(V, t)dV

=
1
2

∫ ∞

0
(V̄ + y)

[∫ ∞

0
αe f f

(
V̄ 1/3 + y1/3

)3
n(V̄ , t)dV̄

]
n(y, t)dy

−
∫ ∞

0
V
[∫ ∞

0
αe f f

(
V 1/3 +V̄ 1/3

)3
n(V̄ , t)dV̄

]
n(V, t)dV

=
αe f f

2
[
8M1M3 +6M2

2 +2M0M4
]
−αe f f

[
M0M4 +4M1M3 +3M2

2
]
= 0
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Chapter 4

Modeling and control of crystal shape in

continuous protein crystallization

4.1 Introduction

In this chapter, a continuous crystallization process with a fines trap is modeled in an effort

to produce tetragonal hen egg white (HEW) lysozyme crystals with a desired shape distri-

bution. The crystal shape of tetragonal lysozyme crystals is defined by the aspect ratio of

the crystal heights in the directions of the (110) and (101) faces. A kinetic Monte Carlo

(kMC) simulation is used to model the crystal nucleation, growth, and dissolution through

a fines trap in a continuous crystallization process. Specifically, the crystal growth pro-

cesses are simulated through adsorption, desorption, and migration mechanisms, and the

crystal growth rates are calibrated through experimental data [31]. Additionally, a nucle-

96



ation rate expression is developed based on the results from an experimental work [41] to

simulate the crystals nucleated at different times. Then, the method of moments is used

to approximate the dominant behavior of a population balance equation (PBE) describing

the evolution of the crystal volume distribution through the three leading moments. The

moment model is used, along with solute mass and energy balance equations, to design a

model predictive controller (MPC), which forces the crystallizer to produce crystals with a

desired shape distribution. In the proposed MPC, the jacket temperature is manipulated to

appropriately suppress the influence of undesired effects such as process disturbances and

measurement noise, while handling significant changes in the set-point value. Furthermore,

it is demonstrated that a continuous process with a fines trap can produce crystals with a

low polydispersity.

4.2 Process descriptions

4.2.1 Continuous crystallizers

There are two types of continuous crystallizers that are widely used in the pharmaceutical

industry: mixed suspension mixed product removals (MSMPR) and plug flow crystallizers

(PFC). The choice of which to use is mainly determined by the characteristics of the pro-

cess, as MSMPRs are generally preferred for low conversions and longer residence times,

while PFCs are preferred for higher conversions with shorter residence times. In general,

MSMPRs are preferred because they are fairly similar to the conventional batch processing
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method traditionally used in the pharmaceutical industry [20].

The low conversion in MSMPRs can be improved by strategies such as the addition of

a recycle stream or the addition of a fines trap. More specifically, an increase in yield was

observed in [3, 130] through the implementation of recycle streams to MSMPR systems for

the crystallization of cyclosporine. Additionally, it was demonstrated that the multistage

MSMPR approach was simplified into a single-stage MSMPR by implementing a recycle

stream and a fines trap [48].

Figure 4.1: MSMPR crystallizer used in this work.

A fines trap is one of the most widely used product classification processes, and it

can be established by shielding a part of a mixed crystallizer with a baffle as is shown in

Fig. 4.1. As a result, the circulation of the continuous phase through the baffled region

is typically slow, and larger crystals sink to the bottom of crystallizer while small crystal

fines float on the top where a stream is drawn off and sent to the fines trap where small
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crystals are dissolved and are recycled back to the crystallizer. By manipulating the stirrer

speed in the baffled continuous crystallizer, we can control the maximum particle size Lmax

that will enter the fines trap stream. Specifically, while we can easily control the flow

rate Q of a stream to the crystallizer, it is rather difficult to model and control the motion

of particles which are under the influence of shear forces induced by agitation. In this

work, we assume that the extent of aggregation is negligible because the residence time

of a continuous process is typically one or two hours, and thus the average crystal size of

the final products is not large enough to be influenced by the shear force due to significant

stirring. Furthermore, a fines trap can considerably reduce the number of crystals, and thus

it lowers the collision rates between crystals.

4.3 Description and modeling of continuous crystalliza-

tion process

4.3.1 Crystal nucleation

In this work, only primary nucleation of HEW lysozymes is considered. Motivated by

[92, 120, 67], we assume that crystals are nucleated with infinitesimal size (i.e., V = 0).

Whether the nucleus grows or dissolves into the continuous phase is determined by the

amount of free energy required for the formation of the crystal structure compared to the

free energy required for the formation of the surface adjacent to the continuous phase. We
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define the supersaturation σ = ln(C/S) as the difference in chemical potential between

the current state, C (mg/mL), and the saturated state, S (mg/mL). The nucleation rate at

pH = 4.5 and 4%(w/v) NaCl, B(σ), is obtained from [41]:

B(σ) =


0.041σ +0.063 for σ ≥ 3.11

8.0×10−8 exp(4.725σ) for σ < 3.11

(4.1)

with units [cm−3 · sec−1]. Also, the solubility is an explicit function of temperature T (◦C)

and is computed using the following expression [12, 13]:

s(T ) = 2.88×10−4T 3 −1.65×10−3T 2 +4.62×10−2T +6.01×10−1. (4.2)

4.3.2 Modeling of crystal growth and dissolution

In most crystallization processes, the solute molecules move from the bulk solution to

the crystal surface and then they are converted into the crystalline form through surface

reaction. The diffusion coefficient is usually high in crystallization systems, and thus the

crystal growth is primarily controlled by the surface reaction (reaction-limited). As a result,

the growth rate becomes size-independent, and it is usually assumed that the dissolution

rate is also size-independent because the dissolution process is the reverse of the growth

process [80].

For the purpose of comparison, the crystal is assumed to be equidimensional. As is

given by [111], the time necessary to grow a lysozyme crystal from R0=1 to R=10 µm,
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assuming that the growth is reaction-limited, can be calculated as follows:

trxn =
ρB

k′′CAMB
(R−R0)

Similarly, the time necessary to grow a lysozyme crystal from R0 to R, assuming the growth

is mass-transfer-limited, is:

tmt =
ρB

2DAMBCA
(R2 −R2

0)

where k
′′

is the rate coefficient of surface reaction per unit area, MB is the molecular weight

of a lysozyme, CA is the reactant concentration, ρB is the density of a lysozyme crystal,

and DA is the diffusion coefficient. The value of DA is 105 − 106cm2/sec [62], and k
′′

can be considered the growth rate of the lysozyme crystal in this study, which is 0.1− 1

µm/min. Therefore, we can calculate tmt/trxn from the preceding equations along with the

approximated numbers for DA and k
′′

as follows:

tmt

trxn
=

k
′′

2DA
(R+R0) (4.3)

where tmt/trxn ∼= 10−11 − 10−13. Therefore, the crystal growth process is reaction-limited

and thus is size-independent, as is the dissolution process.

4.3.3 Crystal growth

In kMC simulations, the protein crystals are very compact without voids and overhangs

due to the solid-on-solid model which is assumed in this work. Additionally, along with a

periodic boundary condition, we employ a square lattice model of length and width N = 30
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sites because no finite size effects are observed [60]. Additionally, the rate equations are

used to simulate the crystal growth mechanisms [32, 60].

Surface reaction Rate equations

Adsorption ra: K+
0 exp(σ)

Desorption rd(i): K+
0 exp

(
ϕ

kBT − i Epb
kBT

)
Migration rm(i): K+

0 exp
(

ϕ
kBT − i Epb

kBT +
Epb

2kBT

)
Table 4.1: Surface rate equations used to simulate the crystal growth process.

In Table 4.1, K+
0 is the adsorption coefficient, i is the number of adjacent neighbors, Epb

is the average binding energy per bond, and ϕ is the total binding energy when a molecule

is fully surrounded by neighbors (i.e., when i=4). Additionally, the fact that the migration

rate is higher than the desorption rate is accounted for by multiplying an exponential factor

into the desorption rate expression [60]. To evaluate a set of Epb and ϕ values for the (110)

and (101) faces, open-loop kMC simulations are executed by adjusting model parameters

to make the difference between the growth rates in the simulations and the experiments

from literature very small.

4.3.4 Mass and energy balances

Mass balance

A variety of shape descriptors are available such as roundedness, 2-D area, convexity,

length/width, and aspect ratio. Therefore, the most appropriate shape descriptor to quantify
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the crystal shape Fand use it in the controller design was carefully selected [51, 98]. A con-

stant crystal shape factor has been widely used to model three-dimensional (3-D) crystal

growth; however, this factor usually depends on the supersaturation level in practice. The

mass balance is developed by modeling a representation of the crystal shape information

as an aspect ratio of crystal heights in the (110) and (101) directions.

The inlet and outlet flows and the fines trap, which are key components in the continu-

ous crystallizer, are considered in the mass balance for the protein solute in the continuous

phase. Therefore, the amount of the protein solute, C, that remains in the continuous phase

can be approximated through the following equation:

dC
dt

=− ρc

VMSMPR

dVcrystal

dt︸ ︷︷ ︸
removed by crystals

+
C0

τ︸︷︷︸
incoming f low

+
ρc

VMSMPR

dV̄f ines

dt︸ ︷︷ ︸
added by f ines trap

− C
τ︸︷︷︸

outgoing f low

(4.4)

where VMSMPR is the crystallizer volume, τ is the residence time of the crystallizer, and

Vcrystal is the total volume of crystals removed from the continuous phase considering the

geometry of the lysozyme crystals. In the kMC simulation, we have a constraint that the

volume of crystals removed through the fines trap should not exceed 50% of the crystals

leaving through the product stream. Initially, the residence time of a crystal is determined

by the residence time distribution with a mean residence time of 1 hour. Then, the size of

each crystal will be checked every second and, when its size is less than the cut-off size,

it will be removed through the fines trap with a probability of 50% (i.e., accounting for

the efficiency of the fines trap). However, in the controller, the moment models are solved

in order to approximate the crystal volume distribution using the same residence time for

both the product stream and the fines trap stream. We assume that the fines trap removes
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crystals of volume Vm(= 1 µm3) or smaller. To this end, V̄ f ines is introduced to indicate

the total volume of crystals passed through the fines trap and dissolved. In Eq. 4.4, the

first term represents the depletion of the solute concentration in the continuous phase due

to crystallization. Then, the second and third terms stand for the incoming flow of fresh

solution to the crystallizer and the incoming flow of a particle-free solution from the fines

trap, respectively. The last term indicates the outflow from the crystallizer.

Energy balance

The energy balance accounts for the temperature change due to the enthalpy of crystal-

lization, the heat transfer by manipulating the jacket temperature, and the heat transported

in/out in the inflow/outflow as follows:

dT
dt

=− ρc∆Hc

ρCpVMSMPR

dVcrystal

dt
−

U jA j

ρCpVMSMPR

(
T −Tj

)
+

Tin −T
τ

(4.5)

where T is the temperature inside the crystallizer, Tin is the inflow temperature, Tj is the

jacket temperature, ρc = 1400 mg/cm3 is the crystal density, ∆Hc = −44.5 kJ/kg is the

enthalpy of crystallization, ρ = (1000+C) mg/cm3 is the continuous phase solution den-

sity, Cp = 4.13 kJ/K ·kg is the specific heat capacity, VMSMPR = 1 L is the continuous

crystallizer volume, A j = 0.25 m2 is the surface area of crystallizer wall, and U j = 500

kJ/m2·h ·K, which is usually smaller than that of a batch process, is the heat transfer co-

efficient of the crystallizer wall. In practice, an appropriate cooling process is placed after

the fines trap so that the changes in the crystallizer temperature caused by those streams are

negligible.
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In the kMC simulation, the residence time of a crystal is assumed to be distributed

exponentially [76] as follows:

exp(−Tr/τ) = RN

where Tr is the residence time of a crystal in the crystallizer, τ is the mean residence time,

and RN is a random number generated between 0 and 1.

4.3.5 On-line imaging techniques for real-time measurement

As mentioned previously, crystal shape can significantly affect the bioavailability of phar-

maceutical products. Nevertheless, the direct characterization of particle shape has been

limited to off-line techniques. For example, the PharmaVision System 830 (PVS830) has

been widely used for the characterization of chord length distribution (CLD) and crystal

shape distribution (CSD). To perform the image analysis, a sample has to be collected using

a pipette and quickly placed on a sample tray under a high-speed video camera. However,

this imaging technique has a number of issues. Firstly, it cannot take images of particles as

they actually exist in the crystallizer. Secondly, the sampling may alter the system condi-

tion and it leads to undesired dissolution, growth, and agglomeration of particles. Thirdly,

in the course of sample preparation through dilution, cooling, or heating, the particles may

be significantly damaged before they are measured.

Motivated by the above, new on-line in-process imaging techniques have been devel-

oped and released to the market such as the process vision measurement (PVM) developed

by Lasentec, which has been widely used to capture the size and shape distributions of
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crystals in crystallization processes. The PVM produces images of crystals which can be

viewed through an external window. Through the PVM, measurements of both CLD and

CSD are available by taking images of a number of crystals. Moreover, images taken

using the PVM can be quickly verified through comparison with those from other analyti-

cal equipments such as focused beam reflectance measurement (FBRM) which is another

widely used equipment using a focused beam of laser light to scan the size and shape of

particles. As this light scans across those particles, passing in front of the probe window,

light is scattered in all directions and the light scattered back to the probe is used to calcu-

late CLD and the number of crystals every 30–40 seconds. Overall, the PVM, along with

Lasentec FBRM, provides new insight into crystallization processes by quantifying CLD,

CSD, and crystal count. To this end, a new software program has been developed to link

PVM images with FBRM measurements [15, 14].

We note that the CLD and CSD are also influenced by system disturbances (i.e., particle

orientation, noise in the system, and so on). Reflecting the presence of uncertainty in the

kMC simulation, noise is introduced to the measurement of CLD and CSD in the simu-

lations to account for the lack of knowledge of the direct measurements of actual particle

distributions in practice. The noise is set to be 20% of its nominal value. In other words,

when the measurements are sent to controller, they can be distorted up to 20% from their

actual values.
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4.4 Population balance modeling

4.4.1 PBE of crystal volume distributions

In this section, we describe the profile of the crystal volume distribution with time in a

continuous crystallizer with a fines trap accounting for nucleation and crystal growth as

follows:

∂n(V, t)
∂ t

+Gvol
∂n(V, t)

∂V
=− n(V, t)

τ︸ ︷︷ ︸
out f low

− h̄(V )
n(V, t)

τ̄︸ ︷︷ ︸
f ines trap

+δ (V −V0)B(σ)︸ ︷︷ ︸
nucleation

(4.6)

where V denotes the crystal volume, t is the time, τ̄ is the residence time for the fines

trap, n(V, t) denotes the number of crystals with volume V at time t, B(σ) is the nucleation

rate, and dV/dt is the volumetric growth rate of crystals. The selection function for fines

removal, h̄(V ), is shown below:

h̄(V ) =


1 for V ≤Vm

0 for V >Vm

where Vm is the cut-off size of a fines trap. Approximating the total volume of the entire

lysozyme crystal population as V (t)∼ M0(t)⟨h110(t)⟩2⟨h101(t)⟩, we can compute the volu-

metric growth rate Gvol by calculating the volumetric growth rate of crystals, dV/dt, using

the following equation:

Gvol =
dV (t)

dt
=

dM0(t)⟨h110(t)⟩2⟨h101(t)⟩
dt

= M0(t)
(

2
d⟨h110⟩

dt
⟨h110(t)⟩⟨h101(t)⟩+

d⟨h101⟩
dt

⟨h110(t)⟩2
)
+

dM0

dt
⟨V (t)⟩

(4.7)
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where the right hand side is readily available from measurements along with Eqs. 4.18-

4.19, which will be discussed in Section 4.5.1. In the kMC simulation, which models an

actual crystallizer, dVcrystal/dt and dV̄ f ines/dt are computed by summing the total volume

of crystals grown and removed throughout a sampling time, respectively. Furthermore,

dV̄f ines/dt is approximated by summing the number of crystals removed by the fines trap

whose sizes are less than the cut-off size because the statistics (e.g., mean and standard

deviation) of the crystal volume distribution are available from measurements along with

Eqs. 4.13-4.14. Additionally, Eq. 4.6 can be rewritten with the addition of an appropriate

boundary condition as is shown below:

∂n(V, t)
∂ t

+
n(V, t)

τ
+ h̄(V )

n(V, t)
τ̄

+Gvol
∂n(V, t)

∂V
= 0 (4.8)

n(0, t) =
B(σ)

Gvol

Further details regarding the derivation of the boundary condition can be found in our

previous work [67] .

4.4.2 Moment models

The numerical computation of the crystal volume distribution using Eq. 4.6 is computa-

tionally expensive and not readily accessible in general because of the complexity in the

PBE. To deal with this issue, the method of moments is applied to Eq. 4.6 in order to derive

moment models. Specifically, the jth moment is defined as follows:

M j =
∫ ∞

o
V jn(V, t)dV (4.9)
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Along with the balance equations of Eqs. 4.4 and 4.5, the three leading moments are used

to approximate the dominant behavior of the nucleation and crystal growth in a continuous

crystallizer with a fines trap. For more details regarding the derivation of the following

three moment models, the reader may refer to our earlier work [67].

Zeroth moment: The zeroth moment describes the rate of change of the total num-

ber of crystals with time and is the solution to the following differential equation given a

suitable initial conditions:

dM0

dt
= B(σ)− M0

τ
−
∫ Vm

0

n(V, t)
τ̄

dV (4.10)

where B(σ) is replaced by the boundary condition of Eq. 4.8. On the right hand side, the

term including an integral indicates the number of crystals below the cut-off size of the

fines trap, and it can be evaluated from the measurement of the crystals when the statistics

of size and shape distributions are available (e.g., mean, standard deviation).

First moment: The first moment describes the rate of change in the total crystal volume

with time:

dM1

dt
= GvolM0 −

M1

τ
−
∫ Vm

0
V

n(V, t)
τ̄

dV (4.11)

Second moment: The second moment describes the rate of change in the squared

volume of the entire crystal population with time:

dM2

dt
= 2GvolM1 −

M2

τ
−
∫ Vm

0
V 2 n(V, t)

τ̄
dV (4.12)

When a fines trap is not used (i.e., h̄(V ) = 0), the first three moment equations and

the mass and energy balance equations, Eqs. 4.4-4.5, constitute a closed set of differential
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equations. However, the set of moment models above does not close owing to the classifi-

cation function, h̄(V ), for the fines trap. In order to close the set of moment equations and

the balance equations, n(V, t) is assumed to follow a normal distribution as follows:

n(V, t) =
1

σN
√

2π
exp
(
−(V −µ)2

2σ2
N

)
(4.13)

where µ is the mean of crystal volume distribution, and σN is its standard deviation. They

can be linked to the first three moments through the expressions below:

µ =
M1

M0
σN =

√
M2

M0
−µ2 (4.14)

The volume distribution of crystals obtained from the kMC simulations at t = 1 hour is

presented in Fig. 4.2, verifying the normal distribution assumption. We should note that

the volume distribution may show a biased bimodal behavior due to a burst of nucleation

at a higher supersaturation level; however the assumption of a normal distribution is still

acceptable as it does not affect the controller performance significantly in such a circum-

stance. Using Eqs. 4.13 and 4.14, we can numerically integrate the fines trap term in the

moment models, Eqs. 4.10-4.12.

4.5 Open-loop simulation results

Analytically solving PBE for the profiles of the crystal shape and size distributions is equiv-

alent to executing multiple kMC simulations over an infinite number of lattice sites. In

this work, the kMC simulation is further developed from the previous work [67] to model
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Figure 4.2: The normalized crystal volume distribution obtained from the kMC simulations

at t = 1 hour.

continuous crystallization along with the dissolution of small crystal fines. In particular,

N = 30 is used for the number of lattice sites, because no finite size effect is observed in

the kMC simulations with lattice sites more than N = 30 as noted in [60].

In Fig. 4.3, the profiles of the number of crystals (M0), the average crystal shape ⟨α⟩,

the crystallizer temperature, and the solute concentration obtained from the moment models

(cf. Eqs. 4.10–4.12) are compared with those of the kMC simulation. The number of

crystals decreases in the beginning until it reaches a steady-state because the simulation

begins with a crystal-free solution. Afterward, the variables remain constant reflecting

the steady-state operation of the continuous crystallizer. For example, the concentration

and crystallizer temperature remain constant at 45 mg/mL and 23.7◦C. Overall, the results

obtained by the reduced moment models show a very good match with those of the kMC
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Figure 4.3: Profiles for open-loop simulations of the number of crystals, the crystallizer

temperature, the protein solute concentration, and the average crystal shape ratio for the

crystallization of tetragonal lysozyme protein at pH = 4.5.
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simulation.

Sometimes, highly oscillatory behavior takes place in the crystallizer as a result of the

interplay between nucleation and crystal growth. As is described in [22, 23], this is mainly

caused by the nonlinearity in the nucleation rate (i.e., exponential dependence on supersat-

uration) as compared to that in the growth rate (i.e., linear dependence on supersaturation)

which causes the following scenario: The number of fines progressively decreases as the

supersaturation drops due to the consumption of protein solute by the crystal growth as

well as the nucleation. As a consequence, the supersaturation level drops to a point where

the nucleation rate begins to drop drastically, and thus no further nucleation occurs and the

present small crystal fines grow into coarse crystals. Then, the supersaturation level starts

to increase due to the absence of the nucleation until it reaches a point where a burst in the

nucleation occurs with the production of a large number of fines. In this study, however,

this oscillatory behavior of crystal size, number of crystals, supersaturation level, and so

on, is not observed because the working range (e.g., the supersaturation level) is relatively

high so that the nucleation rate shows a linear dependence on the supersaturation level (cf.

the regime where σ ≥ 3.11 in Eq. 4.1).

In Fig. 4.5,
(
ϕ/kB,Epb/kB

)
values in the directions of the (110) and (101) faces are

(1077.26 K,227.10 K) and (800.66 K,241.65 K), respectively, K+
o = 0.211 s−1 is used for

the open-loop simulation, and the crystal growth rates at 4%(w/v) NaCl and pH = 4.5 have

been compared with the experimental results from [31] at 3.5% and 5.0% NaCl.
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Figure 4.4: Geometry of tetragonal lysozyme crystal.

4.5.1 Modeling of crystal shape distribution from measurements

In kMC simulation, the 3-D crystal growth is modeled along the two representing char-

acteristic lengths, h110 and h101, which are shown in Fig. 4.4. Furthermore, the growth

rates, G110(σ) and G101(σ), from Fig. 4.5 are approximated by the following polynomial

expressions as functions of supersaturation:

G110(σ) = 0.1843×σ3 −1.1699×σ2 +2.8885×σ −2.5616

G101(σ) = 0.1893×σ3 −1.2264×σ2 +2.9887×σ −2.5348

(4.15)

with units µm/min. These polynomials fit the experimental results very well with an R2

value of nearly 1. Additionally, we note here that the growth rate ratio, G110(σ)/G101(σ),

is equal to the aspect ratio between the two heights at the steady-state.

The measurements of the mean of CLD, ⟨h⟩, and the mean of CSD, ⟨α⟩, are available

through the measurements of the crystals inside the crystallizer. By the definition of CLD
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Figure 4.5: The solid and dashed lines show the growth rates for the kMC model on the

(110) and (101) faces at C = 45 mg/mL and 4% NaCl. The (•)/(◦) represent the growth

rates for the (101) and (110) faces with 3.5% NaCl and the (�) and (�) represent the

growth rates with 5% NaCl at pH= 4.6, which are both taken from [31] .
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and CSD, we can link ⟨h⟩ and ⟨α⟩ with ⟨h110⟩ and ⟨h101⟩ as follows:

⟨α⟩ ≈ ⟨h110⟩
⟨h101⟩

⟨h⟩ ≈ ⟨h110⟩+ ⟨h101⟩
2

(4.16)

In general, it is nearly impossible to obtain online measurements of the average crystal

height in each direction, ⟨h110⟩ and ⟨h101⟩, during the processing. Instead, we will approx-

imate the average heights on each face with the measurements of ⟨h⟩ and ⟨α⟩, which are

available through the PVM and FBRM:

⟨h101⟩=
2⟨h⟩

⟨α⟩+1
⟨h110⟩=

2⟨h⟩⟨α⟩
⟨α⟩+1

(4.17)

We additionally note here that M0(t) is the number of crystals inside the crystallizer, which

can also be measured using the FBRM. Then, we will make predictions of the average

height of the (110) crystal face using the following ODE:

d⟨h110⟩
dt

= G110 −
BVMSMPR⟨h110⟩

M0
(4.18)

In the same manner, the average height of the (101) crystal face can be predicted as follows,

d⟨h101⟩
dt

= G101 −
BVMSMPR⟨h101⟩

M0
(4.19)

By combining the equations above, we can predict the average crystal shape in the follow-

ing manner:

⟨α⟩ ≈ ⟨h110(t)⟩
⟨h101(t)⟩

(4.20)
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4.6 Model predictive control of crystal shape in continu-

ous crystallization

4.6.1 Real-time feedback control of crystal shape

In order to control the crystal shape by manipulating the jacket temperature in the crystal-

lizer, a control scheme inspired by our previous work [69, 67] is proposed in this work. The

incoming stream to the crystallizer is a crystal-free solution with a protein solute concen-

tration C=45 mg/mL at a flow rate of Q. At the same rate, crystals are removed from the

crystallizer in the outgoing stream which has a solute concentration that is identical to that

in the continuous phase in the crystallizer. In the simulation, it is assumed that CLD and

CSD are measured in real time and that the measurements are used to estimate the average

aspect ratio ⟨α⟩= ⟨h110⟩/⟨h101⟩ shown in Eq. 4.20. This can be achieved in practice using

the aforementioned imaging techniques such as PVM and FBRM. Additionally, noise that

fluctuates up to 20% from the nominal value is introduced to account for inaccuracies in

currently available measurement techniques. Along with the noise, measurements are sent

to a controller which computes the optimal jacket temperature to control the crystal shape

⟨α⟩ to a desired value. Please note that the set-points αset = 1.1 and αset = 0.85 correspond

to an equidimensional crystal and an elongated prism, respectively. For example, if a higher

aspect ratio (elongated prism) is desired, the controller lowers the jacket temperature and

thus the crystallizer temperature is lowered to a moderate value that favors the production

of the desired shape.
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4.6.2 Model predictive control formulation

A continuous crystallization process with a fines trap is modeled through a set of moment

models along with the mass and energy balances in order to describe the evolution of the

crystal size and shape distributions with time. Through the modeling of the crystallization

process, we design a model predictive controller to regulate the shape and size distributions

of crystals nucleated during the process. The controller minimizes the sum of the deviations

of the average crystal aspect ratio and the growth rate ratio from the desired values while

penalizing the control action. The jacket temperature is the manipulated input. However,

in the continuous crystallizer, the proposed control design can be applied to the case of

multiple inputs [1, 129, 86, 82] such as the solute concentration in the feed stream, the

flow rates of the fines trap stream, and so on. Additionally, the measurements of the solute

concentration, CLD and CSD, are assumed to be available at every sampling time (∆=40

seconds). In particular, the uncertainty in the measurement of the solute concentration is

reflected in the simulation by introducing the fluctuation of the concentration in the manner

described in our earlier work [67].

In the control formulation, several process limitations are taken into account in the form

of constraints along with the mass and energy balances (Eqs. 4.4 and 4.5). A limit on the

range of the crystallizer temperature (4◦C ≤ T ≤ 25◦C), is imposed to prevent lysozyme

proteins from being damaged. Additionally, there is a limit on the rate of the jacket tem-

perature change of 2.0◦C/min to account for actuator limitations. The cost function of the

optimal control problem has penalties on the deviations of both ⟨α⟩ and G110/G101 from
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the parameter αset corresponding to the desired crystal shape, as well as a penalty on the

control input. Furthermore, by adjusting the coefficients for the penalties on the off-spec

production of the crystal shape and the control action, we can prevent unnecessarily ag-

gressive control action. For example, when the penalty on the off-spec production of the

crystal shape is more heavily weighted, the control actions will quickly force the crystals

to reach a desired growth condition, subject to other constraints. On the other hand, when

the penalty on the control actions is more heavily weighted, the controller will force the

crystals to the desired growth condition more slowly. However, this is outside the scope

of this work and will be further considered with details in the future. The MPC has the
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following form:

minimize
Tj,1,...,Tj,i,...,Tj,p

p

∑
i=1

w1

(
⟨α(ti)⟩−αset

αset

)2

+w2

 G110(σ(ti))
G101(σ(ti))

−αset

αset

2

+w3

(
Tj,i+1 −Tj,i

Tj,i+1

)2

subject to 4◦C ≤ Ti ≤ 25◦C
∣∣∣∣Tj,i+1 −Tj,i

∆

∣∣∣∣≤ 2◦C/min

G110(σ) = 0.1843×σ3 −1.1699×σ2 +2.8885×σ −2.5616

G101(σ) = 0.1893×σ3 −1.2264×σ2 +2.9887×σ −2.5348

dM0

dt
= B(σ)− M0

τ
−
∫ Vm

0

n(V, t)
τ̄

dV

dM1

dt
= GvolM0 −

M1

τ
−
∫ Vm

0
V

n(V, t)
τ̄

dV

dM2

dt
= 2GvolM1 −

M2

τ
−
∫ Vm

0
V 2 n(V, t)

τ̄
dV

dC
dt

=− ρc

VMSMPR

dM1

dt
+

C0

τ
+

ρc

VMSMPR

d
dt

(∫ Vm

0
V

n(V, t)
τ̄

dV
)
− C

τ
dT
dt

=− ρc∆Hc

ρCpVMSMPR

dM1

dt
−

U jA j

ρCpVMSMPR

(
T −Tj

)
+

Tin −T
τ

d⟨hl⟩
dt

= Gl(σ)− B(σ)VMSMPR⟨hl(t)⟩
M0(t)

⟨α(t)⟩ ≈ ⟨h110(t)⟩
⟨h101(t)⟩

σ = ln(C/s)

i = 1,2, . . . , p and l ∈ {110,101}
(4.21)

where p = 10 is the number of prediction steps, w1,w2,w3 are weighting coefficients,

ti = t+ i∆ is the time of the ith prediction step, and Tj,i is the jacket temperature at the ith pre-

diction step. At every sampling time, the first three moments and the balance equations are

updated along with the rate of change of the average height on each face l (cf. Eqs. 4.18–

4.20). Then, the first value of the set of optimal jacket temperatures, (Tj,1,Tj,2, . . . ,Tj,p), is
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applied to the system over the following sampling time. Then, a set of new measurements

for CLD, CSD, protein solute concentration, and the number of crystals is collected from

the kMC simulation, and a new set of optimal jacket temperatures is obtained by re-solving

Eq. 4.21 based on the new measurements. In [116], empirical expressions are used to model

the evolution of crystallization including both nucleation and crystal growth. However, in

this work, the kMC simulations are used for more realistic modeling of a continuous crys-

tallization process based on the rate equations described in Table 4.1. Additionally, readers

who are interested in robust model predictive control of a crystallization process may refer

to [115, 23].

4.7 Continuous crystallization under closed-loop opera-

tion

In Fig. 4.5, it is shown that the value of growth rate ratio G110(σ)/G101(σ) ranges from 0.7

to 1.1. Two desired crystal morphologies, αset = 1.1 and αset = 0.86, are chosen as desired

set-points in the closed-loop simulations.

Due to the dependence of the nucleation rate on the supersaturation level, an abrupt

change in the crystallizer temperature in an effort to achieve a desired optimal temperature

may result in biased nucleation. The biased nucleation is cumbersome, because the crystals

nucleated in the earlier stage can go through undesired growth conditions, which leads to

poor controller performance. In our earlier work [66], it was shown that, when the desired
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Figure 4.6: The profile of crystallizer temperature (T ) and jacket temperature (Tj) at τ =

3600 seconds under MPC for the initial crystal shape set-point value, αset = 0.86. After

t = 10 hours, the set-point is changed to αset = 1.1.
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Figure 4.7: The profile of crystallizer temperature (T ) and jacket temperature (Tj) at τ =

7200 seconds under MPC for the initial crystal shape set-point value, αset = 0.86. After

t = 10 hours, the set-point is changed to αset = 1.1.

shape is αset = 0.86 and the initial temperature is T0 = 5◦C, the corresponding optimal

temperature is ∼23.7◦C and the nucleation of ∼34% of the entire crystal population occurs

within the first ∼5% of the entire 4000-second batch process. In a continuous crystallizer,

however, the issue with the biased nucleation can be avoided by simply operating a system

at a steady-state, where the nucleation rate remains constant.

The steady-state crystallizer temperature is determined by the interplay among the in-

flow, crystallizer, and jacket temperatures as is shown in the energy balance equation (cf.

Eq. 4.5). As in a batch process, the initial crystallizer temperature, which is equivalent to

the inflow temperature, is important to the controller performance. For example, if the in-

flow temperature is too far from an optimal temperature, it results in a discrepancy between
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the optimal temperature and the steady-state temperature due to the limited heat transfer

rate. The difference can be more critical to the controller performance when the production

of crystals with a lower set-point value is desired, because crystals with a low ⟨α⟩ are usu-

ally produced at a high temperature where the crystal morphology is very sensitive to small

changes in the supersaturation level [66]. In such cases, we can achieve better controller

performance through the following: Firstly, adjusting the inflow temperature appropriately

can enhance the performance of the proposed MPC by achieving a crystallizer temperature

which is closer to an optimal temperature. Secondly, the heat transfer rate can be increased

by using a material with a higher overall heat transfer coefficient, U j, and thus the discrep-

ancy can be reduced. Thirdly, the choice of an appropriate residence time is also important

because the crystallizer temperature at steady-state is influenced by the residence time (cf.

Eq. 4.5). For example, if the residence time is too small (e.g., less than an hour), crystals

with desired shape and size distributions cannot be produced because crystals do not stay

inside a crystallizer for a sufficient amount of time. On the other hand, if the residence

time is too large, the dynamics of a continuous process become similar to those of a batch

process in that crystals stay for a very long time inside a crystallizer, and thus a severe drop

in the protein solute concentration is observed. Specifically, it is shown in Figs. 4.6, 4.7

and 4.8 that increasing the residence time will enable the system to reach a steady-state

temperature which is much closer to a desired value, and thus will result in a narrow range

of desired crystal shape distributions. Moreover, when τ ≥ 2 hours, a significant concentra-

tion drop was observed, and thus simply lowering temperature is not sufficient to maintain
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Figure 4.8: The profile of the average crystal shape ⟨α⟩ under MPC for the initial crystal

shape set-point value, αset = 0.86. After t = 10 hours, the set-point is changed to αset = 1.1.

the supersaturation level at an optimal value. It thus leads to poor controller performance,

as is shown in Figs. 4.8 and 4.9.

In Figs. 4.6 to 4.11, the foregoing analysis is demonstrated through the profiles of

the crystallizer temperature, the jacket temperature, the protein solute concentration, the

average crystal volume, and the average crystal shape throughout the simulation at different

residence times. In the beginning, the jacket temperature increases to the optimal value by

the proposed MPC as is shown by Figs. 4.6 and 4.7, and the crystallizer temperature is

driven by the jacket temperature accordingly. A burst of crystal nucleation, which is caused

by a high supersaturation level, is appropriately suppressed through a fines trap where most

of the small crystal fines are destroyed by adjusting the temperature, and thereby dissolution

rates. As a result, large crystals grow larger and small crystal fines are dissolved back to the
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Figure 4.9: The profile of solute concentration (C) under MPC for the initial crystal shape

set-point value, αset = 0.86. After t = 10 hours, the set-point is changed to αset = 1.1.

continuous phase. However, we note that no significant rise in the solute concentration is

observed because typically the fraction of fines removed is 10−6 −10−5 of the production

rate on a mass basis.

In order to test the response time of the MPC to a change in the desired set-point, after

10 hours, the set-point is changed from αset = 0.86 to αset = 1.1 where a high supersatura-

tion level is favored for the production of crystals with a shape more elongated in the (110)

direction. As a result, the crystallizer temperature is decreased to T = 15.0◦C, owing to

the jacket temperature computed by MPC, as is shown in Figs. 4.6 and 4.7. Specifically,

for the closed-loop simulation of τ = 1 hour, the crystallizer temperature remains constant

once the system reaches a new steady-state for αset = 1.1. However, for τ = 2 hours, the
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Figure 4.10: The profile of the average number of crystals (M0) with time under MPC for

the initial crystal shape set-point value, αset = 0.86. After t = 10 hours, the set-point is

changed to αset = 1.1.
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Figure 4.11: The profile of the average volume (M1/M0) of the crystal population in Fig.

4.10 with time under MPC for the initial shape set-point value, αset = 0.86. After t = 10

hours, the set-point is changed to αset = 1.1.
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jacket temperature keeps decreasing to counteract the severe protein solute concentration

drop and maintain a desired supersaturation level. In both cases above, the MPC is able to

drive the crystal population to a desired value as is shown in Fig. 4.12. Additionally, as we

change the set-point from αset = 0.86 to αset = 1.1, it is shown in Fig. 4.13 that it takes

about 2 hours for the system to reach the new steady-state for τ = 2 hour. Considering

the fact that the mean residence time is 2 hours, a response time of about 2 hours is rea-

sonable. Therefore, this verifies that the proposed MPC responds promptly to the change

in the set-point, the severe concentration drop, and the system disturbances in an effort to

produce crystals with a desired morphology. Furthermore, the system’s response time to

the set-point change can be even shorter when we use a shorter residence time, because the

crystals with an undesired shape will exit the crystallizer more quickly. We can also use

an actuator with less restrictions on the jacket temperature change, which will allow the

system to reach the optimal jacket temperature value faster.

In conclusion, the MPC with a fines trap is able to drive the crystal population to a

desired shape distribution by appropriately dealing with undesired effects such as biased

nucleation, disturbances, and the mismatch of moment models from the actual process

model as demonstrated by Figs. 4.8 and 4.12. It should be noted that the controller per-

formance does not show further improvement although a longer prediction horizon is used,

because the control action is restricted by a constraint on the rate of temperature change.

Therefore, the controller performance can be further improved by adjusting the constraint

on the rate of change of the manipulated input (i.e., jacket temperature) so that the system
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Figure 4.12: The normalized crystal shape distribution at three different times during the

continuous simulation at τ = 7200 seconds under MPC for the initial crystal shape set-

point value, αset = 0.86. After t = 10 hours, the set-point is changed to αset = 1.1. The

histograms are obtained by averaging 10 independent kMC simulations where the standard

deviations for t = 1, t = 10, and t = 20 hours are 0.019, 0.003, and 0.002, respectively.
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Figure 4.13: The normalized crystal shape distribution at four different times during the

transition period ( t = 10−12 hour ) in the continuous simulation under MPC at τ = 7200

for the crystal shape set-point change from αset = 0.86 to αset = 1.1. The histograms are

obtained by averaging 10 independent kMC simulations where the standard deviations for

t = 10, t = 10.2, t = 11, and t = 12 hours are 0.003, 0.008, 0.025, and 0.011, respectively.

takes more aggressive actions. Additionally, compared to a batch process, a continuous

process can achieve a low polydispersity more easily for the following two reasons. Firstly,

the fines trap removes most of the small crystal fines whose sizes are less than the pre-

specified cut-off size, and this allows the remaining crystals to grow larger. Secondly, once

the system reaches its steady-state during continuous crystallization, an optimal condition

for the production of crystals with a desired shape can be maintained until the process is

terminated.
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4.8 Conclusions

Initially, we presented the modeling of the nucleation and crystal growth in a continuous

crystallization process with a fines trap through kinetic Monte Carlo (kMC) simulation.

The simulation of a fines trap was performed using a classification function which used a

selection curve for fines dissolution in the continuous crystallizer. In addition to the solute

depletion and the temperature change in the continuous phase during crystallization, the

interplay of inflow/outflow in the continuous crystallizer was included in the mass and

energy balance equations. To deal with a real-time implementation issue of a controller

based on PBM, moment models were developed to describe the dominant dynamic behavior

of the continuous crystallization along with a fines trap. Subsequently, the three leading

moments were used along with the balance equations in order to design a model predictive

controller.

The simulation results demonstrated that the crystal growth was successfully regulated

at steady-state by properly adjusting the jacket temperature. The MPC also suppressed the

influence of the biased nucleation, the disturbances in the measurements, and the sudden

change in the desired operating environment (i.e., changes in the desired set-point value).

Additionally, measurements of CSD and CLD through FBRM and PVM, respectively, were

assumed to be available from the kMC simulation. Compared to a batch process, crystals

with a lower polydispersity were produced due to the fines trap since it dissolved most of

the fines whose volumes were less than 1 µm3 in the crystallizer. We reduced the response

time of the system toward the sudden set-point change by allowing a larger step change in
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the jacket temperature.
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Chapter 5

Crystal shape and size control using a

plug flow crystallization configuration

5.1 Introduction

This chapter focuses on modeling and control of a continuous plug flow crystallizer (PFC)

used to produce tetragonal hen-egg-white (HEW) lysozyme crystals and proposes an optimization-

based control scheme to produce crystals with desired size and shape distributions in the

presence of disturbances. Initially, a kinetic Monte Carlo (kMC) model is developed to

simulate the crystal growth in a seeded PFC, which consists of five distinct segments. The

crystal growth rate equations taken from [31] are used in the kMC simulations for the

modeling of the crystal growth in the directions of the (110) and (101) faces. Then, a popu-

lation balance equation (PBE) is presented to describe the spatio-temporal evolution of the
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crystal volume distribution of the entire crystal population, and the method of moments is

applied to derive a reduced-order moment model. Along with the mass and energy balance

equations, the leading moments that describe the dominant dynamic behavior of the crystal

volume distribution are used in the optimization-based controller to compute optimal jacket

temperatures for each segment of the PFC and the optimal superficial velocity, in order to

minimize the squared deviation of the average crystal size and shape from the set-points

throughout the PFC. Furthermore, a feed-forward control (FFC) strategy is proposed to

deal with feed flow disturbances that occur during the operation of the PFC. Using the pro-

posed optimization and control schemes, crystals with desired size and shape distributions

are produced in the presence of significant disturbances in the inflow solute concentration

and size distribution of seed crystals.

5.2 Modeling of plug flow crystallizer

5.2.1 Process configuration

We consider a continuous plug flow crystallizer used to produce crystals with desired size

and shape distributions through the manipulation of a set of jacket temperatures and of

the superficial flow velocity which are computed by solving a multivariable optimization

problem. The system parameters for the crystallizer considered in this work are taken from

[2, 80] and are presented as follows: each segment of the PFC is 400 cm in length and 1.27

cm in inner diameter, and the PFC consists of 5 segments where the configuration of the

135



TW,1

Ti, Ci, Q

TW,2 TW,3 TW,4 TW,5

zone1 zone2 zone3 zone4 zone5

T, C, Q

Figure 5.1: Plug flow crystallizer configuration. T is the crystallizer temperature, Ti is the

inflow temperature, Tw,k is the crystallizer jacket temperature at segment k, Ci is the inflow

solute concentration, C is the solute concentration, and Q is the flow rate of the inflow

stream.

PFC is presented in Fig. 5.1. It is assumed that the segments are connected without any

gap. Additionally, we assume that the PFC is perfectly mixed in the radial direction and

that there is no back-mixing in the axial direction.

In order to study the effect of manipulating a set of jacket temperatures on the shape

and size distributions of crystals produced by the plug flow crystallizer, it is operated in

the regime where primary nucleation is negligible. Therefore, a number of seed crystals

with a height of 30 µm in the directions of both the (110) and (101) faces are fed through

the entrance of the crystallizer. Specifically, the kMC simulations are used to simulate

the crystal growth in the plug flow crystallizer described above. The crystal growth rates

obtained from the kMC simulations are calibrated with literature data [31]. Additionally,

the kMC simulations can be used to predict the crystal growth dynamics at the operating

conditions where experimental data are not currently available. The details of the kMC

simulations for the growth of the tetragonal lysozyme crystals, and the basic assumptions

and the rate equations for the microscopic processes (adsorption, desorption and migration)
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have been discussed extensively in previous work [66] and will not be repeated here.

During the PFC simulations, crystals are seeded at a rate of Bseed and continue along

the PFC at the flow velocity until they exit the final segment. During this time the kMC

simulations [66] are used to model the crystal growth depending on the local environment

at the current location of the crystal. Each segment of the PFC has 80 sections where the

solute phase properties are considered constant and an upwind finite difference method is

used to update the solute concentration and temperature values every 0.333 seconds. It is

noted that a variable number of the PFC sections were tested to ensure stability of the finite

difference method.

5.2.2 Mass balance

The mass balance employed in this work to compute the spatio-temporal evolution of the

solute concentration is as follows:

∂C
∂ t

=−vz
∂C
∂ z

−ρc

∫ ∞

0
Gvol(V,σ)n(V,z, t)dV (5.1)

where n(V,z, t) is the number distribution of lysozyme crystals and is a function of crystal

volume V and of the position z ∈ [0,L] in the axial direction at time t, L is the length of

the reactor, vz is the superficial flow velocity of the incoming flow in the axial direction,

C(z, t) is the protein solute concentration in the continuous phase, ρc = 1400 mg/cm3 is

the crystal density, and σ = ln(C/s) is the relative supersaturation where s (mg/mL) is the

solubility. The solubility depends on the temperature T in Celsius, the pH of the solution,

and the concentration of added electrolyte. At 4%(w/v) NaCl and pH=4.5, [13] represented
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the experimental solubility data as a function of the temperature T in Celsius using the

following third-order polynomial:

s(T ) = 2.88×10−4T 3 −1.65×10−3T 2 +4.62×10−2T +6.01×10−1. (5.2)

Alternatively, since the saturated liquid solution is sufficiently dilute in protein, the exper-

imental solubility data at 4%(w/v) NaCl and pH=4.5 can be fitted with the following van’t

Hoff type of formula:

ln(s) =
∆Hc

R

(
1

T +273.15

)
+ c. (5.3)

Linear regression gives c= 27.45 and ∆Hc =−4.5 kJ/kg for the enthalpy of crystallization,

which is in good accord with experiments [110]. For modeling and control purposes, the

polynomial representation, Eq. 5.2, that gives the same results as the van’t Hoff equation

in the operating range of interest, is used in this work. Additionally, Gvol(V,σ) is the

volumetric crystal growth rate, which can be calculated as follows:

Gvol(V,σ) = 2G110⟨h101⟩+G101⟨h110⟩2 (5.4)

where ⟨h110⟩ and ⟨h101⟩ are the average crystal heights in the directions of the (110) and

(101) faces, respectively, and G110 and G101 are the crystal growth rates in the directions of

the (110) and (101) faces, respectively, where the geometry of the HEW lysozyme crystals

considered in this work is presented in Fig. 5.2. The kMC simulations produce dense grids

of points of the growth rates for both the (110) and (101) faces as a function of σ and

thus, for a given σ , the value of the growth rates for each are obtained from interpolation.

Lastly, Eq. 5.1 is subject to an initial condition at t = 0 and a boundary condition at z = 0

138



Figure 5.2: Geometry of HEW lysozyme crystal.

as follows:

C(z,0) =Ci

C(0, t) =Ci

(5.5)

where Ci is the inflow concentration and initial concentration of the PFC.

Remark 5.1 In this work, the HEW lysozyme protein is chosen because it is one of the most

widely studied proteins, and thus a significant amount of experimental data is available in

the literature for the nucleation and crystal growth rates of HEW lysozyme protein crystals.

The proposed control scheme can be applied to other plug flow crystallization systems

provided that experimental data for the crystal nucleation and growth rates are available.
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5.2.3 Energy balance

The spatio-temporal evolution of the crystallizer temperature can be obtained by solving

the following energy balance equation:

∂T
∂ t

=−vz
∂T
∂ z

− ρc∆Hc

ρCp

∫ ∞

0
Gvol(V,σ)n(V,z, t)dV −

U jA j

ρCp

(
T −Tw,k

)
(5.6)

where T is the crystallizer temperature, A j is the heat transfer area per unit volume (4/D)

where D is the inner diameter of the plug flow crystallizer, Tw,k is the crystallizer jacket

temperature of the kth segment, ∆Hc =−4.5 kJ/kg is the enthalpy of crystallization [110],

ρ(z, t) = 1000+C(z, t) mg/cm3 is the suspension density, Cp = 4.13 kJ/K kg is the spe-

cific heat capacity, and U j = 500 kJ/m2 h K is the overall heat transfer coefficient of the

crystallizer wall. Due to the small value of the enthalpy of crystallization, the term associ-

ated with latent heat effects in Eq. 5.6 makes negligible contribution to the rate of change of

temperature. Furthermore, Eq. 5.6 is subject to an initial condition at t = 0 and a boundary

condition at z = 0 as follows:

T (z,0) = T0

T (0, t) = T0

(5.7)

where T0 is the inflow temperature and initial temperature of the PFC.

5.2.4 Population balance equation

The population balance describing the spatio-temporal evolution of the crystal volume dis-

tribution for the PFC processes with seeding can be written in the form of the following
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equation:

∂n(V,z, t)
∂ t

+ vz
∂n(V,z, t)

∂ z
+

∂ (Gvol(V,σ)n(V,z, t))
∂V

= Bseedδ (V −V0,z− z0) (5.8)

where Bseed is the seeding rate, δ (·) is the dirac delta function and V0 is the size of the

crystal seed. The term vz∂n(V,z, t)/∂ z corresponds to the transport of crystals due to con-

vection, and ∂ (Gvol(V,σ)n(V,z, t))/∂V corresponds to the crystal growth.

5.2.5 Method of moments

By applying the method of moments to Eq. 5.8, we derive moment models that allow us

to compute the spatio-temporal evolution of the number of crystals (i.e., zeroth moment

M0) and the total volume (i.e., first moment M1) of crystals in the PFC processes. The jth

moment equation has the following form:

∂M j

∂ t
=−vz

∂M j

∂ z
+ jGvolM j−1 (5.9)

where we define the jth moment as M j(z, t) =
∫ ∞

0 V jn(V,z, t)dV . For the derivation of the

moment model, please refer to Section 5.8.1.

5.3 Steady-state model

Initially, we study the behavior of the PFC process at steady-state. The steady-state mass

and energy balance equations, and the steady-state population balance equation, are ob-

tained by setting the accumulation terms in Eqs. 5.1, 5.6, and 5.8 equal to zero. The
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population balance equation at steady-state is a one-dimensional hyperbolic partial differ-

ential equation (PDE) and thus suggests the use of the method of characteristics for the

computation of its solution, which will transform Eq. 5.8 into two ordinary differential

equations (ODEs) of the crystal location, z, and of the crystal volume distribution, V , along

the characteristic line (cf. Eq. 5.17). As a result, it is derived in Section 5.8.2 that a spatial

profile of the average volume distribution is described as:

dV
dz

=
Gvol

vz

5.3.1 Moment models

Specifically, the zeroth moment ( j = 0) of the moment model, Eq. 5.9, at steady-state is as

follows:

0 =−vz
dM0

dz
(5.10)

Thus, it follows that M0(z) is an explicit function of z:

M0(z) = M0(0) (5.11)

where M0(0) is the number of seed crystals fed to the plug flow crystallizer through the

entrance at steady-state. This result is expected due to the lack of nucleation, aggregation,

or breakage in the PFC process.
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5.3.2 More profile equations at steady-state

The spatial profiles of both the solute concentration and the crystallizer temperature at

steady-state are derived in Section 5.8.3. Specifically, the solute concentration C(z) at

steady-state is as follows:

C(z) =Ci −
ρcGvolM0(0)

vz
z

Furthermore, the crystallizer temperature T (z) at steady-state is obtained as follows:

T (z) =
(

Tw,k −
A
B

)(
1− e−Bz)+T0e−Bz

where A = ρc∆HcGvolM0(0)
ρCpvz

and B =
U ja j
ρCpvz

Remark 5.2 The transient solution obtained from the dynamic model has been computed

and has been found to converge to the steady-state profile obtained from the steady-state

model for a sufficiently large time and for the same set of parameters.

5.4 Multivariable optimization problem formulation

In this section, we propose a multivariable optimization problem (MOP), which will be

solved in order to compute a set of optimal crystallizer jacket temperatures and an optimal

superficial flow rate for the multi-segment PFC to produce crystals with desired size and

shape distributions. To this end, an objective function is defined by the sum of the squared

errors of the average crystal size and shape of the crystals throughout the PFC from the

desired set-point values, (⟨V (z, t)⟩−Vset)
2 and (⟨α(z, t)⟩−αset)

2, respectively. In particu-
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lar, ⟨α(z, t)⟩ is the average crystal shape which is defined as the ratio between the average

crystal heights in the directions of the (110) and (101) faces throughout the PFC as follows:

⟨α(z, t)⟩ ≈ ⟨h110(z,t)⟩
⟨h101(z,t)⟩ . The average crystal shape is approximated by this expression in order

to make use of the measurements of ⟨h110⟩ and ⟨h101⟩ which are available on-line in real-

time as is shown [68]. The decision variables are the jacket temperatures for each segment

of the PFC, (Tw,1, Tw,2, Tw,3, Tw,4, Tw,5), and the superficial flow velocity, vz. A constraint

on the range of the crystallizer temperature is imposed (4◦C ≤ T ≤ 25◦C) to make sure the

model protein remains in a proper condition for crystal growth. Please note that the growth

rate expressions, G110 and G101, used in the MOP below are calibrated in [66] with the

experimental data of [31] for 2.1 ≤ σ ≤ 4.1 and are presented in Fig. 5.3. We note that the

constraint (cf. σ(z, t) ≤ 2.6) in Eq. 5.12 is chosen in this range. Additionally, the inflow
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temperature T0 is set to be 18◦C. The resulting optimization problem is as follows:

Minimize
Tw,1,Tw,2,Tw,3,Tw,4,Tw,5,vz

t f

∑
t=1

L

∑
z=1

w1 (⟨α(z, t)⟩−αset)
2 +w2 (⟨V (z, t)⟩−Vset)

2

subject to G110 = 0.1843×σ3 −1.1699×σ2 +2.8885×σ −2.5616

G101 = 0.1893×σ3 −1.2264×σ2 +2.9887×σ −2.5348

4◦C ≤ T ≤ 25◦C σ(z, t)≤ 2.6

∂M0

∂ t
=−vz

∂M0

∂ z
∂M1

∂ t
=−vz

∂M1

∂ z
+GvolM0

∂C
∂ t

=−vz
∂C
∂ z

−ρc
∂M1

∂ t
∂T
∂ t

=−vz
∂T
∂ z

− ρc∆Hc

ρCp

∂M1

∂ t
−

U ja j

ρCp

(
T −Tw,k

)
Gvol = 2G110⟨h101⟩⟨h110⟩+G101⟨h110⟩2 k ∈ {1,2,3,4,5}

d⟨hi⟩
dz

=
Gi

vz
i ∈ {110,101}

⟨α(z, t)⟩ ≈ ⟨h110(z, t)⟩
⟨h101(z, t)⟩

⟨V (z, t)⟩= ⟨h110(z, t)⟩2⟨h101(z, t)⟩

(5.12)

where the weighting coefficients of the two objective functions, w1 and w2, are determined

by trial and error until the optimal jacket temperatures and the superficial flow velocity

drive both size and shape distributions of the crystal products to a set of desired values.

Furthermore, the supersaturation level is defined as the logarithmic difference between the

solute concentration and the solubility, σ(z, t) = ln(C(z, t)/s(z, t)), and t f is the total simu-

lation time. An upper bound on the range of supersaturation level is provided as a constraint

(cf. σ(z, t)≤ 2.6) in Eq. 5.12 to prevent the primary nucleation of crystals during the pro-

cess. The corresponding range of the average crystal shape is ⟨α⟩ ≤ 1.05. The polynomial

145



expressions for the growth rates, G110 and G101, are obtained from open-loop simulations

in [68]. The forward upwind (FU) discretization scheme, which guarantees the numerical

stability of the system if the time and spatial discretization steps are relatively small [46],

is applied to the moment models and the mass and energy balance equations in the MOP

(cf. Eq. 5.12) to evaluate the spatio-temporal evolution of the system variables. Then, a

set of optimal jacket temperatures and the superficial flow velocity, (Tw,1, Tw,2, Tw,3, Tw,4,

Tw,5, vz), are obtained by solving Eq. 5.12 off-line, and are applied to the crystallizer.

We observed that the computation time needed to solve the optimization problem using the

moments model is about 5-10 seconds. Therefore, if real-time measurements of the crystal-

lizer outlet stream are available with a reasonable sampling time, the proposed method can

be applied to an experimental plug flow crystallization system. In general, the computation

time and the convergence of the solution computed from an optimization problem depend

on the integration step size used to solve the moments model and thus should be chosen

carefully to obtain an accurate solution meeting real-time computation requirements.

Remark 5.3 The growth rates of the HEW lysozyme crystals in the directions of the (110)

and (101) faces used in the simulations presented in the manuscript have been calibrated

with available experimental results. However, no experimental results are currently avail-

able for the production of HEW lysozyme crystals through PFC. We note that the proposed

optimization and control framework can be applied to other plug flow crystallization sys-

tems provided that the modeling, measurement, and computational requirements needed to

implement the proposed approach in a practical setting are satisfied.
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Figure 5.3: The solid and dashed lines show the growth rates for the kMC model on the

(110) and (101) faces, respectively, at C = 45 mg/mL and 4% NaCl. The (•)/(◦) repre-

sent the growth rates for the (101) and (110) faces with 3.5% NaCl and the (�) and (�)

represent the growth rates with 5% NaCl at pH= 4.6, which are both taken from [31].
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5.5 Feed-forward control

In continuous crystallization processes, disturbances (e.g., changes in the inflow solute

concentration) influence the size and shape distributions of the crystal products during the

steady-state operation of the PFC process [113]. Motivated by this, the following feed-

forward control (FFC) strategy is proposed for the production of crystals with desired size

and shape distributions to deal with a disturbance in the inflow solute concentration. We

assume that the actuator limit on the rate of change of the jacket temperature is sufficiently

high that the crystallizer temperature can be changed instantaneously. We note that if the

jacket temperature change is not instantaneous, it will take additional time for the PFC

temperature to reach a desired profile, and as a result the system may produce crystals with

undesired size and shape distributions during the time required for the PFC temperature to

reach the desired profile.

1. Initially, we compute a set of optimal jacket temperatures, (Tw,1, Tw,2, Tw,3, Tw,4, Tw,5),

and an optimal superficial flow velocity, vz, for the initial solute concentration, Ci.

They are applied to the crystallizer until the change in the inflow solute concentration

is measured (i.e., a disturbance is detected). In this step, the spatial temperature

profile at the steady-state is similar to the one for t = 4 hours in Fig. 5.4.

2. When a change in the solute concentration is measured at the entrance of the PFC, a

set of new optimal jacket temperatures, (T new
w,1 , T new

w,2 , T new
w,3 , T new

w,4 , T new
w,5 ), is computed

for the new inflow solute concentration, Cnew
i while the superficial flow velocity re-
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mains identical. Then, the old jacket temperature for zone 1 immediately replaced

with the new jacket temperature and, for zone 2 to zone 5, the jacket temperatures

remain identical because the inflow with the new solute concentration, Cnew
i , has not

reached zone 2 to zone 5 yet. Thus, the resulting set of jacket temperatures becomes

(T new
w,1 , Tw,2, Tw,3, Tw,4, Tw,5).

3. When the inflow with the new solute concentration, Cnew
i , has reached zone 2, the old

jacket temperature, Tw,2, is replaced with the new jacket temperature, T new
w,2 . Thus,

the resulting set of jacket temperatures becomes (T new
w,1 , T new

w,2 , Tw,3, Tw,4, Tw,5) and it

is maintained until the inflow with the new solute concentration, Cnew
i , reaches zone

3. In this step, the spatial temperature profile at the steady-state is similar to the one

for t = 10 hours in Fig. 5.4.

4. This strategy continues until the inflow with a new solute concentration, Cnew
i , reaches

the entrance of zone 5, at which time the set of jacket temperatures becomes (T new
w,1 ,

T new
w,2 , T new

w,3 , T new
w,4 , T new

w,5 ), which will be maintained for the rest of simulation. In this

step, the spatial temperature profile at the steady-state is similar to the one for t = 16

hours in Fig. 5.4.

5. If a new disturbance in the inflow solute concentration is detected, Step 1 to Step 4

will be repeated.

For example, the set of the optimal jacket temperatures for the inflow solute concentra-

tion Ci = 43 mg/cm3 is presented in Fig. 5.5, which is applied to the PFC until a change in
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Figure 5.4: The spatial evolution of the crystallizer temperature (T ) at different times under

FFC. The desired set-point values are h110 = 130 µm and αset = 0.85 for the average crystal

height in the direction of the (110) face and the crystal shape, respectively. The disturbance

was introduced at t = 8.33 hours (= 30 000 seconds) when the inflow solute concentration

was changed from Ci = 43 to 34.4 mg/cm3. It is noted that some of the data points for

t = 10 hours have been excluded for clarity since they overlay the data points for t = 4

hours.
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the inflow solute concentration is measured at t = 8.33 hours (= 30 000 seconds). Specifi-

cally, this disturbance to the system is modeled by decreasing the inflow solute concentra-

tion, Ci, from 43 to 34.4 mg/cm3 at t = 30 000 seconds in the kMC simulations. Then, the

set of new optimal jacket temperatures for the new inflow solute concentration Cnew
i = 34.4

mg/cm3 is computed and applied for 8.33 < t < 14.16 hours according to the FFC strategy

described above. For the production of crystals with desired size and shape distributions,

the optimal superficial velocity vz = 0.0763 cm/sec is computed for a given simulation

time, t f = 20 hours. In Table 5.1, a set of the jacket temperatures at different times is pre-

sented for clarity. For t > 14.16 hours, the inflow disturbance has reached zone 5 and as a

result the set of old jacket temperatures has been completely replaced with the set of new

jacket temperatures as is presented in Fig. 5.5. Owing to the FFC scheme, existing crystals

that are in the middle or close to the outlet of the PFC can grow through the previous opti-

mal jacket temperature profile, and as a result they are successfully produced with desired

size and shape distributions. Furthermore, this FFC strategy only requires the measurement

of the inflow solute concentration at the entrance of the PFC so it is robust to the inaccuracy

of the on-line measurements. More results on the robust control of crystallization processes

can be found in [23].

Remark 5.4 The proposed optimization/control approach can be extended to account for

crystal agglomeration and/or breakage events by constructing moment models that capture

the dominant dynamic behavior of the agglomeration and breakage processes within the

crystallization process.
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Figure 5.5: The spatial profile of the jacket temperature (Tw) computed by solving the MOP

when the desired set-point values are h110 = 130 µm and αset = 0.85 for the average crystal

height in the direction of the (110) face and the crystal shape, respectively. To deal with

the disturbance introduced in the inflow solute concentration, a set of new Tw values for

8.33 < t < 14.16 hours is updated according to the FFC strategy.
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jacket temperature (◦C)

Tw,1 Tw,2 Tw,3 Tw,4 Tw,5

tim
e

(0 ≤ t < 8.33) hours 23.91 23.62 23.07 22.09 20.18

(8.33 ≤ t < 9.79) hours 21.66 23.62 23.07 22.09 20.18

(9.79 ≤ t < 11.24) hours 21.66 21.31 23.07 22.09 20.18

(11.24 ≤ t < 12.70) hours 21.66 21.31 20.64 22.09 20.18

(12.70 ≤ t < 14.16) hours 21.66 21.31 20.64 19.33 20.18

(14.16 ≤ t < 20) hours 21.66 21.31 20.64 19.33 15.92

Table 5.1: The set of jacket temperatures at different times.

Remark 5.5 As a complementary strategy to the proposed FFC scheme, a set of proportional-

integral-derivative (PID) control schemes can be implemented for each zone to make slight

adjustments to the optimal jacket temperatures (for a given crystallizer feed) and can be

used to suppress the effect of unmodeled disturbances/modeling uncertainty through the

use of real-time on-line measurements of the size and shape distributions of the crystals of

the PFC outlet stream.

5.6 Simulation results of continuous plug flow crystallizer

Continuous PFC processes have been traditionally operated at steady-states. However, a

limitation of the steady-state model is that it cannot describe transient behavior of the sys-

tem when there is a disturbance such as an abrupt change in the inflow solute concentration
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Figure 5.6: The spatial evolution of the protein solute concentration (C) at different times

when there is no disturbance. The desired set-point values are h110 = 130 µm and αset =

0.85 for the average crystal height in the direction of the (110) face and the crystal shape,

respectively.
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Figure 5.7: The normalized crystal size distribution obtained from the kMC simulations

under the FFC scheme is compared with that under no control scheme. The jacket temper-

atures computed by solving the MOP are applied to the PFC, and the crystals are collected

over a time period. The desired set-point values are h110 = 130 µm and αset = 0.85 for the

average crystal height in the direction of the (110) face and the crystal shape, respectively.

during the steady-state operation of the PFC. In light of this, we developed a dynamic model

in Section 5.2 that describes the spatio-temporal evolution of system variables including the

average crystal volume and shape, the number of crystals, and the solute concentration and

crystallizer temperature. In this work, the PFC operates at 4%(w/v) NaCl and pH = 4.5.

In Fig. 5.6, the transient solute concentration profiles obtained from the dynamic model

employed in the kMC simulation are depicted at different times, and the concentration

eventually reaches the steady state at t ≃ 26 500 seconds.
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Figure 5.8: The normalized crystal shape distribution obtained from the kMC simulations

under the FFC scheme is compared with that under no control scheme. The jacket temper-

atures computed by solving the MOP are applied to the PFC, and the crystals are collected

over a time period. The desired set-point values are h110 = 130 µm and αset = 0.85 for the

average crystal height in the direction of the (110) face and the crystal shape, respectively.
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The constant supersaturation control (CSC) strategy is one of the most widely used

operating strategies for the operation of crystallization processes in industry. Furthermore,

the controller performance of a CSC strategy in batch processes can be close to that of

model predictive control (MPC) if the desired supersaturation level is chosen appropriately.

In a PFC, however, it is rather difficult to maintain a constant supersaturation level because

the solute concentration drops along the spatial coordinate of the crystallizer. Thus, a

PFC requires the design of a particular spatial temperature profile to compensate for the

concentration drop, which is not possible without using a combination of steady-state and

dynamic models. In addition, the size distribution of the crystals produced from the PFC

depends on the total length of the PFC. Therefore, using the model-free CSC scheme does

not guarantee the production of crystals with desired size and shape distributions.

In this work, however, the production of crystals with both desired size and shape dis-

tributions is achieved by applying the set of optimal jacket temperatures and the superficial

flow velocity computed by solving the MOP (cf. Eq. 5.12) according to the proposed FFC

strategy to deal with the change (i.e., disturbance) in the inflow solute concentration. All

simulations are performed in parallel using Message Passing Interface (MPI) to make use

of heightened computational and memory requirements for this continuous crystallization

process. The desired set-point value, αset = 0.85, is chosen for the crystal shape because

of the desire to work in a zone where the nucleation rate is negligible (i.e., the metastable

regime). Also, the set-point ⟨h110⟩= 130 µm is chosen for the crystal size in the direction

of the (110) face. As presented in Figs. 5.7 and 5.8, the effect of the disturbance is suf-
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Figure 5.9: The spatio-temporal evolution of the protein solute concentration obtained from

the kMC simulations in response to the disturbance introduced to the inflow solute concen-

tration at t = 8.33 hours (= 30 000 seconds) for which the inflow solute concentration is

changed from Ci = 43 to 34.4 mg/cm3. A set of optimal jacket temperatures is obtained for

the desired set-point values, h110 = 130 µm and αset = 0.85, for the average crystal height

in the direction of the (110) face and the crystal shape, respectively. Please note that the

origin, (z, t) = (0,0), is at the upper left of the position axis.
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Figure 5.10: The spatio-temporal evolution of the crystallizer temperature obtained from

the kMC simulations in response to the disturbance introduced to the inflow solute concen-

tration at t = 8.33 hours (= 30 000 seconds) for which the inflow solute concentration is

changed from Ci = 43 to 34.4 mg/cm3. The desired set-point values are h110 = 130 µm

and αset = 0.85 for the average crystal height in the direction of the (110) face and the

crystal shape, respectively. Please note that the origin, (z, t) = (0,0), is at the upper left of

the position axis.
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Figure 5.11: The spatio-temporal evolution of the supersaturation level obtained from the

kMC simulations in response to the disturbance introduced to the inflow solute concentra-

tion at t = 8.33 hours (= 30 000 seconds) when Ci is changed from 43 to 34.4 mg/cm3.

The desired set-point values are h110 = 130 µm and αset = 0.85 for the average crystal

height in the direction of the (110) face and the crystal shape, respectively.
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Figure 5.12: The spatial evolution of the protein solute concentration (C) at different times

under FFC. The desired set-point values are h110 = 130 µm and αset = 0.85 for the average

crystal height in the direction of the (110) face and the crystal shape, respectively. The

disturbance was introduced at t = 8.33 hours (= 30 000 seconds) when the inflow solute

concentration was changed from Ci = 43 to 34.4 mg/cm3.

ficiently suppressed, and as a result, the average crystal size in the direction of the (110)

face and the average crystal shape are successfully regulated to the desired values. Without

the implementation of the proposed FFC scheme, as presented in Figs. 5.7 and 5.8, the

effect of the disturbance cannot be sufficiently suppressed and as a result ∼ 30% of the

crystal products deviate from the desired set-point values. The optimal superficial flow ve-

locity used in the kMC simulation is vz = 0.0763 cm/sec, and the sets of the optimal jacket

temperatures are (23.91, 23.62, 23.07, 22.09, 20.18) ◦C and (21.66, 21.31, 20.64, 19.33,

15.92) ◦C for Ci = 43 and Ci = 34.4 mg/cm3, respectively.
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The spatio-temporal profiles of the solute concentration, the crystallizer temperature,

and the supersaturation level are presented in Figs. 5.9, 5.10, and 5.11, respectively. Be-

cause of the difference between the new jacket temperature profile computed for the new

inflow solute concentration and the old jacket temperature profile, a set of discontinuous

jumps is observed in Fig. 5.11. In Fig. 5.12, when the system is in a transient state at

t = 4 hours, the spatial profile of the solute concentration is determined by the combination

of the neighboring steady-state profiles at t = 0 and t = 8 hours, and a similar behavior is

observed for another transient state at t = 12 hours. The benefit of using 5 different jacket

temperatures is that we can avoid the unnecessary temperature change for those crystals

which are quite far from the disturbance and there is no need to change the jacket temper-

ature for those crystals. As a result, crystals with a desired size and shape distribution can

be produced while the crystallizer is in a transient state.

The sensitivity of the size and shape of the crystals produced at the outlet of the PFC to

the size of the initial seed crystals has been also investigated. Specifically, crystal size and

shape distributions obtained from the kMC simulations for monodisperse seed crystals with

different heights, (10, 20, 30, 40, 50, 60) µm, in the direction of the (110) face have been

reported in Figs. 5.13 and 5.14. The weighting coefficients of the two objective functions

used are w1 = 0.085 and w2 = 1. Fig. 5.13 shows that the average size of the crystals

obtained by applying the jacket temperatures computed from the MOP becomes smaller

than the desired set-point if the seed crystals are large while the small seed crystals can

grow to a desired product size. In Fig. 5.14, the shape of the crystals produced from large

162



120 125 130 135 140 145 150
crystal height h

110
 (µm)

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz

ed
 p

op
ul

at
io

n

10 µm

20 µm

30 µm

40 µm

50 µm

60 µm

Figure 5.13: The normalized crystal size distribution obtained from the kMC simulations

for seed crystals with different heights, (10, 20, 30, 40, 50, 60) µm, in the direction of the

(110) face where the shapes of these crystal seeds are all cubical. For each run, the jacket

temperatures computed by solving the MOP are applied to the PFC, and these crystals

are collected throughout the PFC. The desired set-point values are h110 = 130 µm and

αset = 0.85 for the average crystal height in the direction of the (110) face and the crystal

shape, respectively.
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crystal seeds deviates more from a desired set-point value than that of crystals produced

from small crystal seeds. Larger crystal seeds grow slowly because they are already close

to the desired crystal size, and as a result the crystal shape does not change significantly

from the initial cubical shape. On the other hand, small crystals have to grow considerably

to reach the desired size, and as a result the solute concentration is dropped to a regime

where the production of crystals with a relatively low crystal aspect ratio is achieved. We

want to note that for a different crystal seed size a set of appropriate weighting factors, w1

and w2, would need to be found to properly drive crystal shape and size to desired set-point

values, respectively.

In conclusion, the proposed FFC scheme along with the optimal solution obtained by

solving the MOP can successfully drive the average size and shape of the crystal population

produced from the PFC to desired set-point values. Additionally, the effects of changes in

the inflow concentration that occur during the steady-state operation are suppressed by the

proposed FFC, and, owing to the absence of back-mixing in the PFC, the production of

crystals with a very narrow size distribution (i.e., low polydispersity) is achieved. Lastly,

the number of segments in the PFC can be easily extended if it is necessary for better

performance of the proposed FFC scheme.
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Figure 5.14: The normalized crystal shape distributions obtained from the kMC simulations

for seed crystals with different heights, (10, 20, 30, 40, 50, 60) µm, in the direction of the

(110) face where the shapes of these crystal seeds are all cubical. For each run, the jacket

temperatures computed by solving the MOP are applied to the PFC, and these crystals

are collected throughout the PFC. The desired set-point values are h110 = 130 µm and

αset = 0.85 for the average crystal height in the direction of the (110) face and the crystal

shape, respectively.
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5.7 Conclusions

In this work, we first modeled the plug flow crystallization process where crystals grow

from seeds through kMC simulations. In general, a continuous PFC is operated at a steady-

state, and thus the steady-state model is typically used to describe the spatial profile of the

important system variables; however, it cannot describe the transient behavior of the PFC.

To this end, a dynamic model was developed to describe the spatio-temporal evolution of

the number of crystals, the total crystal volume, the crystallizer temperature and the solute

concentration, and the average crystal shape at a transient state as well as at a steady-state.

Then, the method of moments was applied to the dynamic model to derive a reduced-order

moments model which was used in the MOP to compute a set of optimal crystallizer jacket

temperatures and a superficial flow velocity that minimize the sum of the squared deviations

of the average crystal shape and size throughout the PFC from the desired set-point values.

In particular, when the disturbance was introduced, a set of new optimal jacket temper-

atures for each crystallizer segment was computed by solving the MOP for a new inflow

solute concentration, and these were applied to the kMC simulation through the proposed

FFC scheme. As a result, the production of crystals with desired size and shape distri-

butions was achieved while ∼ 30% of the crystal products were off the desired set-point

values when the disturbance in the inflow solute concentration was not handled through the

proposed FFC scheme.
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5.8 Appendix

For the purpose of the derivation of the moment models (Section 5.8.1), the characteristic

curve (Section 5.8.2), and the steady-state model (Section 5.8.3), the volumetric growth

rate is assumed to be size-independent and is only a function of the supersaturation level,

that is Gvol(V,σ)≃ Gvol(σ).

5.8.1 Derivation of the moment models

To begin with the derivation, we multiply Eq. 5.8 by V j and integrate

∫ ∞

0
V j ∂n

∂ t
+ vz

∫ ∞

0

∂n
∂ z

V jdV +Gvol

∫ ∞

0

∂n
∂V

V jdV =
∫ ∞

0
Bseedδ (V −V0,z− z0)V jdV

By setting M j(z, t)=
∫ ∞

0 V jn(V,z, t)dV and switching the order of the integral and derivative

operators:

∂M j

∂ t
+ vz

∂M j

∂ z
+Gvol

[
nV j
∣∣∣V=∞

V=0
− j

∫ ∞

0
nV j−1dV

]
= BseedV j

0 δ (z− z0)

because n(V,z, t) goes to 0 as V goes to ∞, and n(V,z, t) = 0 when V = 0 since there is no

nucleation inside the crystallizer. Lastly, by rearranging the equation, we obtain:

∂M j

∂ t
=−vz

∂M j

∂ z
+ jGvol(σ)M j−1 +BseedV j

0 δ (z− z0) (5.13)

where the terms ∂M j
∂ z and BseedV j

0 δ (z− z0) are associated with crystal seeding, which acts

only at z = z0 (i.e., it acts like an impulse), and thus their orders of magnitude are much

higher than those of ∂ M j
∂ t dz and jGvol(σ)M j−1. Therefore, integrating Eq. 5.13 from z−0 to
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z+0 gives

0 =−vz

∫ z+0

z−0

∂M j

∂ z
dz+Bseed

∫ z+0

z−0
V j

0 δ (z− z0)dz

and as a result a boundary condition follows that

M j(z, t)
∣∣∣
z=z0

=
Bseed

vz
V j

0 (5.14)

Therefore, Eq. 5.13 can be written as follows:

∂M j

∂ t
=−vz

∂M j

∂ z
+ jGvol(σ)M j−1

with the boundary condition of Eq. 5.14.

5.8.2 The method of characteristics

The two characteristic ODEs are derived as follows: First of all, taking the derivative of

n(V,z) with respect to an arbitrary characteristic s gives

dn
ds

=

(
∂n
∂V

)
dV
ds

+

(
∂n
∂ z

)
dz
ds

(5.15)

But from Eq. 5.8, assuming that the growth rate is independent of size,

∂n
∂ t

=

(
∂n
∂V

)
Gvol +

(
∂n
∂ z

)
vz (5.16)

Comparing the coefficients in Eqs. 5.15 and 5.16 gives the equations for the characteristic

curve as follows:

dV
ds

= Gvol
dz
ds

= vz (5.17)
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and thus

dV
dz

=
Gvol

vz

which defines the characteristic curve in the V − z plane and allows calculation of the crys-

tal volume distribution at any location z in the plug flow crystallizer. We note that the

population distribution along a characteristic curve is constant letting dn/ds = 0 in Eqs.

5.15 and 5.16.

5.8.3 Balance equations at steady-state

The solute concentration C(z) at steady-state can be computed by substituting Eq. 5.11 into

Eq. 5.1, and it has the following form:

C(z) =Ci −
ρcGvolM0(0)

vz
z

In a similar way, Eq. 5.11 can be substituted into Eq. 5.6 and, since Tw, j is constant within

each crystallizer segment, the crystallizer temperature T (z) at steady-state can be obtained

as follows:

dT
dz

+BT (z) =−A+BTw,k (5.18)

where A = ρc∆HcGvolM0(0)
ρCpvz

and B =
U ja j
ρCpvz

. Since this is a first-order ordinary differential

equation, we can compute the solution T (z) by multiplying Eq. 5.18 by an integrating

factor eBz as follows:

eBz
(

dT
dz

+BT (z)
)
=
(
−A+BTw,k

)
eBz
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and integrating yields

∫
d
(
eBzT (z)

)
=
(
−A+BTw,k

)∫
eBzdz

and applying the boundary condition for T (z) at z = 0 gives

eBzT (z) =
(
−A+BTw,k

) 1
B

eBz
∣∣∣∣z
0
+T0

and it follows that

T (z) =
(

Tw,k −
A
B

)(
1− e−Bz)+T0e−Bz
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Chapter 6

Run-to-run-based model predictive

control of protein crystal shape in batch

crystallization

6.1 Introduction

In this chapter, a novel run-to-run-based model predictive controller (R2R-based MPC)

is developed for a batch crystallization process with process drift and inherent variations

in solubility and crystal growth rates. In order to achieve the production of crystals with

desired product qualities, a conventional model predictive control (MPC) system with nom-

inal process model parameters is initially applied to a batch protein crystallization process.

However, the mismatch between the process model and the actual process dynamic behav-
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ior, because of the process drift and variability, becomes severe as batch runs are repeated.

To deal with this problem of batch-to-batch variability, after each batch run is completed,

the post-batch crystal attribute measurements, including average crystal shape and size and

the number of crystals, are used to estimate off-line the extent to which the process model

(used in the MPC) parameters drifted from nominal values via a multivariable optimization

problem. Along with the adapted controller model parameters, the exponentially-weighted-

moving-average (EWMA) scheme is used to deal with the remaining offset in the crystal

shape values and thereby to compute a set of optimal jacket temperatures. Furthermore,

the crystal growth in the batch crystallization process is modeled through kinetic Monte

Carlo (kMC) simulations which are then used to demonstrate the ability of the proposed

R2R-based MPC scheme to suppress the inherent variations and process drift in solubility

and crystal growth rates. It is demonstrated that crystals with a desired shape distribution

are successfully produced after three batch runs through the use of the proposed R2R-based

MPC, while it takes twenty-four batch runs for the system with the EWMA-type constant

supersaturation control (CSC) to achieve the same objective.

6.2 Modeling of batch crystallization process

In this work, we focus on a batch protein crystallization process (cf. Fig. 6.1) for which the

detailed geometrical parameters are taken from [118] and are presented as follows: a three-

bladed propeller is used; both the inner diameter and the filling height of the crystallizer

are 0.12 m; the clearance height (i.e., the height from the bottom of the crystallizer to the
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Tj

Figure 6.1: Batch crystallizer configuration.

impeller) is 0.04 m; the diameter of the impeller is 0.06 m.

6.2.1 Crystal nucleation and growth

The nucleation rate B of lysozyme crystals nucleated at 4%(w/v) NaCl and pH=4.5 is taken

from [41] and is presented as follows:

B =


0.041σ +0.063 for σ ≥ 3.11

8.0×10−8 exp(4.725σ) for σ < 3.11

(6.1)

with units [cm−3 · sec−1]. For simulation and testing of the control performance of the

proposed R2R-based MPC control scheme, the degree of secondary nucleation induced by

the attrition process among crystals is disregarded. The supersaturation level σ is defined

as the logarithmic ratio between the solute concentration C and the solubility s (mg/mL) as
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Surface reaction Rate equation

Adsorption ra: K+
0 exp(σ)

Desorption rd(i): K+
0 exp

(
ϕ

kBT − i Epb
kBT

)
Migration rm(i): K+

0 exp
(

ϕ
kBT − i Epb

kBT +
Epb

2kBT

)
Table 6.1: Surface reaction rates

follows:

σ = ln(C/s) (6.2)

where the solubility s is calculated using the following second-order polynomial equation

which has been calibrated with experimental data from [13] at 4%(w/v) NaCl and pH=4.5:

s = 0.0109T 2 −0.1146T +1.1773 (6.3)

Please note that the temperature T in the crystallizer is in Celsius. The crystal growth is

modeled through the kMC simulation using the rate equations presented in Table 6.1, which

were originally developed by [32]

In order to capture the dependencies of the surface reactions (e.g., adsorption, desorp-

tion, and migration) on the surface micro-configuration, a number of modeling parameters

are considered including the adsorption coefficient K+
0 , the number of nearest neighbors i,

the average bonding energy per bond Epb, and the total binding energy ϕ when a molecule

is fully surrounded by neighbors (when i=4) [60]. In this work, extensive open-loop kMC

simulations were executed in order to find a set of physically meaningful Epb and ϕ val-

ues for the (110) and (101) faces such that the simulated growth rates are calibrated with
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the experimental data in literature. Interested readers may find more detailed information

regarding the development and execution of the kMC simulation for batch processes in [67]

6.2.2 Mass and energy balance equations

The mass balance equation for the amount of the protein solute C remaining in the contin-

uous phase is the following ordinary differential equation (ODE):

dC
dt

=− ρc

Vbatch

dVcrystal

dt
, C(0) =C0 (6.4)

where Vcrystal is the total volume of crystals in the crystallizer, C0 is the initial protein

solute concentration, ρc is the crystal density, and Vbatch is the volume of the batch crystal-

lizer. Similarly, the evolution of the temperature T in the crystallizer is computed using the

following ODE:

dT
dt

=− ρc∆Hc

ρCpVbatch

dVcrystal

dt
−

U jA j

ρCpVbatch

(
T −Tj

)
, T (0) = T0 (6.5)

where Tj is the crystallizer jacket temperature, T0 is the initial crystallizer temperature,

∆Hc is the enthalpy of crystallization, ρ is the density of the continuous phase, Cp is the

specific heat capacity, A j and U j are the surface area and the overall heat transfer coefficient

between the crystallizer wall and the jacket stream Tj, respectively, and the values for the

process parameters are presented in Table 6.2.
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ρc 1400 mg/cm3

∆Hc -4.5 kJ/kg

ρ(t) 1000 + C(t) mg/cm3

Cp 4.13 kJ/K ·kg

Vbatch 1 L

A j 0.25 m2

U j 1800 kJ/m2·h ·K

C0 42 mg/cm3

T0 17 ◦C

Table 6.2: Parameters for the batch crystallizer model.

6.2.3 Population balance equation

The population balance equation (PBE) that describes the evolution of the crystal volume

distribution for the batch crystallization process with crystal nucleation and growth is as

follows:

∂n(V, t)
∂ t

+
∂ (Gvol(V,σ)n(V, t))

∂V
= Bδ (V ) (6.6)

where B is the nucleation rate, δ (·) is the dirac delta function, and Gvol(V,σ) is the volumet-

ric crystal growth rate which will be precisely formulated in a following section. Addition-

ally, we assume that at time t = 0 seconds there are no crystals inside the batch crystallizer.

This PBE will be used for the design of a moment model in Section 6.2.5.
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6.2.4 Moment models

In order to deal with the complexity of directly utilizing Eq. 6.6 for the numerical computa-

tion of a crystal volume distribution in real-time, the method of moments is applied to Eq.

6.6 and moment models that describe the dominant dynamics including the evolution of

the number of crystals (i.e., zeroth moment M0) and the total volume of crystals (i.e., first

moment M1) of crystals in the batch process are obtained. Then, this moment model can

be used for the design of an MPC. The jth moment is defined as M j(t) =
∫ ∞

0 V jn(V, t)dV .

For the zeroth moment,

dM0

dt
= B, (6.7)

and for j ≥ 1, the jth moment equation has the following form:

dM j

dt
= jGvolM j−1 (6.8)

6.2.5 Prediction of crystal shape

Based on the assumption that the geometry of the HEW lysozyme crystals is a rectangular

prism [73], the volumetric crystal growth rate is formulated as follows:

Gvol = 2G110⟨h110⟩⟨h101⟩+G101⟨h110⟩2 (6.9)

where ⟨h110⟩ and ⟨h101⟩ are the average crystal heights in the directions of the (110) and

(101) faces which can be computed from the following equations:

d⟨h110⟩
dt

= G110 −
BVbatch⟨h110⟩

M0

d⟨h101⟩
dt

= G101 −
BVbatch⟨h101⟩

M0

(6.10)
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where G110 and G101 are the crystal growth rates in the directions of the (110) and (101)

faces. The following expressions are calibrated with the experimental data from [31] for

2.1 ≤ σ ≤ 4.1 and are used in the MPC in order to predict the dynamic behavior of the

crystal growth rates on each face:

G110 = 0.1843σ3 −1.1699σ2 +2.8885σ −2.5616

G101 = 0.1893σ3 −1.2264σ2 +2.9887σ −2.5348

(6.11)

6.3 R2R-based model predictive control

6.3.1 Model predictive control formulation

In this section, we initially propose a model predictive controller (MPC) which will be

used to compute a set of optimal jacket temperatures, and which will lead to the production

of crystals with a desired shape distribution at the end of the batch. The moment models

(cf. Eqs. 6.7 and 6.8) are derived from a population balance model and are used along

with the mass and energy balance equations to describe the dominant dynamic behavior of

the batch crystallization process. The growth rate equations are computed from open-loop

kMC simulations. The design parameters for the proposed R2R-based MPC are chosen

so that the proposed R2R-based MPC computes an optimal temperature profile which is

required for the production of crystals with a desired shape distribution. The objective

function (cf. Eq. 6.12a) is the sum of squared errors of the average crystal shape from a

desired set-point value throughout the prediction horizon. The jacket temperature is used
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as a manipulated input, and constraints on the temperature in the crystallizer and the rate of

change of the jacket temperature are imposed (cf. Eq. 6.12b). The average crystal height

on each face is updated according to Eq. 6.12g and the volumetric growth rate is computed

through Eq. 6.12h. The resulting MPC formulation is given by the following optimization

problem:

min
Tj,1,...,Tj,i,...,Tj,p

p

∑
i=1

(⟨α(ti)⟩−αset)
2 (6.12a)

s.t. 4◦C ≤ T ≤ 25◦C
∣∣∣∣Tj,i+1 −Tj,i

∆

∣∣∣∣≤ 2◦C/min (6.12b)

G110 = 0.1843σ3 −1.1699σ2 +2.8885σ −2.5616 (6.12c)

G101 = 0.1893σ3 −1.2264σ2 +2.9887σ −2.5348 (6.12d)

s = 0.0109T 2 −0.1146T +1.1773 (6.12e)

dM0

dt
= B,

dM1

dt
= GvolM0 (6.12f)

d⟨hk⟩
dt

= Gk −
BVbatch⟨hk⟩

M0
, k ∈ {110,101} (6.12g)

Gvol = 2G110⟨h101⟩⟨h110⟩+G101⟨h110⟩2 (6.12h)

dC
dt

=− ρc

Vbatch

dM1

dt
(6.12i)

dT
dt

=− ρc∆Hc

ρCpVbatch

dM1

dt
−

U jA j

ρCpVbatch

(
T −Tj,i

)
(6.12j)

⟨α(t)⟩ ≈ ⟨h110(t)⟩
⟨h101(t)⟩

, ⟨V (t)⟩= M1(t)
M0(t)

, σ = ln(C/s) (6.12k)

where p = 10 is the number of prediction steps, ∆=40 seconds is the sampling time, ti = t+

i∆ is the time of the ith prediction step, and Tj,i is the jacket temperature of the ith prediction

step. At every sampling time, a set of optimal jacket temperatures, (Tj,1,Tj,2, . . . ,Tj,p),
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is computed by solving Eq. 6.12 with new measurements (C and T ) received from the

crystallizer (i.e., kMC simulation) and the first value, Tj,1, is applied to the crystallizer

until the next sampling time.

6.3.2 Batch-to-batch parameter estimation

The uncertainty associated with the solubility is modeled by multiplying correction factors

(γs1, γs2, γs3) to the coefficients of the second-order polynomial equation (cf. Eq. 6.13c).

Similarly, the uncertainty in the crystal growth rate is reflected by multiplying the nominal

growth rate expressions by γ110, γ101 (cf. Eq. 6.13d).

In this work, a multivariable optimization problem (MOP) is proposed in order to es-

timate the system parameters using the post-batch measurements. The correction factors,

Γ=[γ110 γ101 γs1 γs2 γs3], are chosen as the decision variables in the MOP. The objective

function is the sum of squared errors of the predicted average values of the crystal size

and shape at the end of the batch process from the measurements. Additionally, real-time

measurements of (C, T ) throughout the batch run are imposed as constraints in Eq. 6.13f

to make sure that the predicted values are close to the measured ones, where εC and εT are

tolerances. Another constraint is imposed in Eq. 6.13g for the feasibility of the computed

decision variables in a practical sense. The post-batch measurements (⟨α⟩, ⟨V ⟩, M0) are

used in Eqs. 6.13a and 6.13e. Please note that X̂k is a predicted variable X for the kth

batch run and Xk represents a measured variable X after the kth batch run. The resulting
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optimization problem is as follows:

min
Γ

w1

(
⟨̂α(t f )⟩k −⟨α(t f )⟩k

)2
+w2

(
⟨̂V (t f )⟩k −⟨V (t f )⟩k

)2
(6.13a)

s.t. Eqs. 6.12c−6.12k (6.13b)

ŝ = 0.0109γs1T 2 −0.1146γs2T +1.1773γs3 (6.13c)

Ĝ110 = γ110G110, Ĝ101 = γ101G101 (6.13d)

M̂0(t f ) = M0(t f ) (6.13e)

|Ĉk(t)−C(t)| ≤ εC, |T̂k(t)−T (t)| ≤ εT (6.13f)

lΓ ≼ ΓT ≼ uΓ (6.13g)

Remark 6.1 It is important to note that although linearly-appearing parametric uncer-

tainties are considered in the present work, certain classes of nonlinearly-appearing para-

metric uncertainties can be expressed as suitable definitions of the nonlinear terms in which

the uncertain parameters appear with linear terms, and thus, they can be readily addressed

within the proposed framework. In general, the handling of nonlinearly-appearing para-

metric uncertainties may lead to the need to solve constrained, nonlinear optimization

problems, a task that can be handled with current optimization solvers, particularly given

the off-line nature of the parameter estimation calculations.

Remark 6.2 Typically, the post-batch measurements are conducted off-line and thus the

measurement noise is relatively small compared to that of real-time on-line measurements.

Therefore, it is assumed that the accuracy of the post-batch measurements used in this work

is acceptable.
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Figure 6.2: Closed-loop system under R2R-based MPC scheme.

6.3.3 Run-to-run control implementation algorithm

In general, there are many different ways that an R2R controller can be formulated, and

the control performance is mainly determined by the design of the observer where a simple

model may be an average of consecutive errors or may be as complicated as a Kalman filter.

For the batch crystallization process with changes in the process parameters, the param-

eter adaptive control (PAC) scheme can be used. However, if there are too many process

parameters to estimate, a large number of measurements may be required for sufficient

accuracy. Furthermore, by the time sufficient data has been obtained to estimate the pro-
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cess model parameters, they may have drifted significantly [88]. In this situation, using

PAC may further increase the offset. To deal with this issue, the following EWMA control

scheme is proposed along with Eq. 6.13 for the computation of controlled inputs in the

MPC as follows:

⟨̂α(t f )⟩k+1 = f
(
Γ̂k+1

)
+ êk+1 (6.14)

where ⟨̂α(t f )⟩k is the predicted average crystal shape at the end of the kth batch, f
(
Γ̂k
)

is

a nonlinear equation that consists of Eqs. 6.12c-6.12k and depends on the system param-

eters Γ̂k, and êk is the estimated model prediction error. A schematic representation of the

proposed R2R-based MPC structure is illustrated in Fig. 6.2.

1. During the kth batch run, the real-time measurements of Ck and Tk are available from

the batch crystallization process, and Γ̂k is used in the MPC to compute a set of

optimal jacket temperatures Tj which will drive the temperature T in the crystallizer

to a desired value.

2. At the end of the kth batch run, the post-batch measurements of the product qualities

such as average crystal size, shape, and number of crystals are measured and used to

re-compute Γ̂k+1 by solving the optimization problem, Eq. 6.13.

3. The model prediction error is updated recursively through a weighted average,

êk+1 = (1−λ ) êk +λ
(
⟨α(t f )⟩k − f

(
Γ̂k
))

4. During the k+1th batch run, the predicted average crystal shape ⟨̂α(t f )⟩k+1 is com-

puted through Eq. 6.14 and used in the MPC to compute a set of optimal Tj values
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and implement it in receding horizon fashion.

5. Increase k by 1 and repeat Step 1 to Step 5.

Remark 6.3 In general, the learning factor λ can be understood as a process gain in the

conventional P-controller in that a large λ would lead to fast convergence while a small λ

is preferred for the stability of the controlled output. Therefore, the tradeoff between fast

convergence and stability has to be evaluated by a trial and error procedure. Please note

that the nominal system parameters are used a priori for Γ̂0 and it is assumed that there is

no parametric model mismatch in the beginning (i.e., ê0 = 0).

Remark 6.4 The ideas of both an offset drift cancellation (ODC) scheme and of an adap-

tive parameter control (APC) scheme are used in the proposed R2R-based MPC to reduce

the offset while simultaneously achieving fast convergence. Therefore, the proposed R2R-

based MPC is able to deal with the parametric mismatch (i.e., inherent variation) of crystal

nucleation and growth rates as well as the process drift by adapting the process model pa-

rameters through the parameter estimation algorithm described above (cf. Eq. 6.13), which

cannot be done by a conventional MPC with a nominal process model (cf. Eq. 6.12). Be-

cause of the predictive ability of a model predictive controller, the proposed R2R-based

MPC is also able to predict the evolution of crystal shape with good accuracy during the

process when the measurements of the product qualities (e.g., size, shape, and number of

crystals) are not available, which will lead to an improvement in the control performance

and the production of crystals with a desired shape distribution.
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6.4 Simulation results

There are many factors, including the pH and the concentration of added electrolyte (e.g.,

NaCl), that affect the solubility of the protein solute in the system. A change in the solubil-

ity of the protein solute perturbs the crystallization process parameters from their nominal

values, which may lead to poor controller performance unless appropriate adjustments are

made to the nominal process model used in the MPC. In order to evaluate the control per-

formance of the proposed R2R-based MPC in the presence of variations in the solubility

of the protein solute, the pH value used in the kMC simulation (representing the batch

crystallization process) is perturbed to 4.5 from the nominal value 4.4, while the NaCl con-

centration remains constant at 4%. This causes a drop of roughly 50% in the solubility of

the protein solutes. Furthermore, the solubility drifts at a rate that causes it to change 5%

from its nominal value by the end of fifty batch runs, which is consistent with the drift rate

defined in [108] for a slowly drifting process.

Typically, an ODC controller is used to deal with the process drift and is robust with

respect to the process drift because of less aggressive control actions. On the other hand, a

PAC controller is preferred in order to achieve fast convergence if a correct process model

is assumed, but the control performance can be degraded if there are many process model

parameters to estimate compared to the number of measurements available. Therefore, the

choice of the R2R controller type depends on the processing goal.

In this work, both the ODC and PAC controllers are integrated with a conventional

MPC such that the MPC along with the PAC adapts the model parameters and at the same

185



0 5 10 15 20 25

batch number k

0.80

0.85

0.90

0.95

1.00

1.05

1.10

h 11
0 

/ h
10

1

solubility at t = 0

R2R-based MPC
conventional MPC
set-point

2.12

2.16

2.20

2.24

2.28

so
lu

bi
lit

y 
(m

g/
m

l)
Figure 6.3: The evolution of the average crystal shape at t = 20000 seconds obtained from

the kMC simulations from batch-to-batch under the conventional MPC and R2R-based

MPC with the desired set-point ⟨αset⟩= 0.85. Additionally, the profile of solubility, which

drifts from its nominal value, is plotted.
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Figure 6.4: The evolution of the average crystal shapes at t = 20000 seconds in each batch

run obtained from the kMC simulations from batch-to-batch under the EWMA-type CSC

and R2R-based MPC. The desired set-point is ⟨αset⟩ = 0.85. Additionally, the profile of

solubility, which drifts from its nominal value, is plotted.

time handles the remaining offset through an EWMA-type control scheme. In Fig. 6.3,

it is shown that the proposed R2R-based MPC with λ = 0.3 is able to achieve the pro-

duction of crystals with a desired crystal shape distribution after three batch runs (i.e., fast

convergence) while the control performance of a conventional MPC with nominal system

parameters (cf. Eq. 6.12) becomes progressively worse as runs are repeated owing to

process drift and variability.

For comparison purposes, the proposed R2R-based MPC scheme is compared with an

EWMA-type constant supersaturation control (CSC) strategy where its desired set-point

(i.e., supersaturation) for the kth batch run is updated as is described below:

187



0.80 0.85 0.90 0.95 1.00 1.05 1.10
crystal shape ( h

110
 / h

101
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

no
rm

al
iz

ed
 p

op
ul

at
io

n

conventional MPC Run 5
EWMA-type CSC Run 5

R2R-based MPC Run 5

Figure 6.5: The normalized crystal shape distributions at t = 20000 seconds in each batch

run obtained from the kMC simulations under the conventional MPC, EWMA-type CSC,

and R2R-based MPC. The desired set-point is ⟨αset⟩= 0.85.

1. The desired supersaturation level σset,k, which will be applied to the kth batch run, is

computed as follows:

σset,k = σset,k−1 +dk

where the correction factor dk has the following form:

dk = dk−1 +λ
(
⟨α(t f )⟩k−1 −αset

)
.

2. At the end of the kth batch run, the average crystal shape ⟨α(t f )⟩k is measured and is

fed back to the proposed R2R-based MPC.

3. Increase k by 1 and repeat Step 1 to Step 3.
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As is shown in Fig. 6.4, although both control schemes are able to produce crystals with

a desired shape distribution after multiple runs, the convergence of the EWMA-type CSC is

significantly slower than that of the proposed R2R-based MPC (twenty-four runs vs. three

runs to achieve the same performance). Furthermore, the crystal shape distribution ob-

tained by the proposed R2R-based MPC in Fig. 6.5 is closer to the desired set-point value,

αset = 0.85, than that of the EWMA-type CSC. The superiority of the control performance

of the proposed R2R-based MPC over the EWMA-type CSC and the conventional MPC

without R2R model adaptation is the result of the parameter estimation step implemented

in the proposed R2R-based MPC that effectively estimates the process model parameters

by solving Eq. 6.13 with the post-batch measurements received from the previous run. As

a result, the predicted solubility value approaches the actual solubility value as is shown

in Fig. 6.6 with an offset of approximately 2% between the two profiles. This remaining

offset caused by the process drift introduced to the current batch crystallization process is

properly handled by an EWMA scheme (i.e., Steps 3 and 4 in the proposed R2R-based

MPC), and thus in Fig. 6.7 the solubility at the end of each batch is successfully regulated

to a constant value.

Furthermore, a comparison between a conventional MPC with an ODC scheme and

with a PAC scheme is shown in Fig. 6.8. The conventional MPC with a PAC scheme

converges quickly (after three batch runs) but with a persistent offset, while a conventional

MPC with an ODC converges slowly but it eventually produces crystals with a desired

shape. Therefore, both the ODC and PAC schemes are needed to reduce the offset while
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Figure 6.6: The evolution of the predicted and true solubilities in the beginning of batch

runs from batch-to-batch under the R2R-based MPC. Please note that the discrepancy be-

tween the two profiles is about 2%.
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Figure 6.7: The evolution of the solubility at the end of batch runs from batch-to-batch

under the R2R-based MPC.
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Figure 6.8: The evolution of the average crystal shape at t = 20000 seconds obtained from

the kMC simulations from batch-to-batch under the conventional MPC with ODC and with

PAC, and under the R2R-based MPC. The desired set-point is αset = 0.85.

simultaneously achieving fast convergence.

In Figs. 6.9 and 6.10, the jacket temperature profiles for the process under the EWMA-

type CSC and the R2R-based MPC for different batch runs are presented. Please note

that the jacket temperature profiles reach the optimal condition relatively quickly in the

beginning and remain constant throughout the rest of the batch process. Moreover, the

temperature profile over one entire batch run is added as an inset to each figure.

In addition to the constant process drift rate (i.e., 0.1% drop in solubility per batch)

introduced in the simulations discussed above, a random process drift with an exponen-

tial distribution and a decaying process drift rate were also introduced in the solubility to
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Figure 6.9: The evolution of the jacket temperature (Tj) computed by solving the R2R-

based MPC with respect to time for t < 1000 seconds when the desired set-point is αset =

0.85. The inset shows the Tj profile from t = 0 to t = 20000 seconds.
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Figure 6.10: The evolution of the jacket temperature (Tj) with respect to time computed by

solving the EWMA-type CSC with respect to time for t < 1000 seconds when the desired

set-point is αset = 0.85. The inset shows the Tj profile from t = 0 to t = 20000 seconds.
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Figure 6.11: The evolution of the process drift rate from batch-to-batch. The type 1 process

drift rate decays, the type 2 process drift rate is constant, and the type 3 process drift rate

follows an exponential distribution.
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Figure 6.12: The evolution of the cumulative process drift from batch-to-batch, which

indicates how much the real system has drifted from the initial nominal system. The type

1 process drift rate follows a decaying curve; the type 2 process drift rate is constant; and

the type 3 process drift rate follows an exponential distribution.
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evaluate the robustness of the proposed R2R-based MPC with respect to different types of

process drift. As is presented in Figs. 6.11 and 6.12, the type 1 process drift rate is a decay-

ing process drift rate for which the process drift rate decreases as runs are repeated, which

is the most prevalent type of drift in the pharmaceutical/semiconductor industry [85]. The

type 2 process drift rate is constant, and the type 3 process drift rate (i.e., variation from

batch-to-batch) follows an exponential distribution. Please note that the means of the type

2 and type 3 process drifts are identical at a 0.1% drop in the solubility of the protein solute

per batch and the y-axis in Fig. 6.12 indicates the degree of drift of the solubility vari-

able from its nominal value by the end of each batch run. Thus, the value 1 on the y-axis

corresponds to the nominal value, and the value decreases as the system drifts from its

nominal value. Additionally, the cumulative process drifts are shown in Fig. 6.12, where

the decaying characteristic of the type 1 process drift is more evident.

As in Fig. 6.7, the parametric mismatches in the solubility induced by the different

types of process drifts are successfully handled by the proposed R2R-based MPC. It is

apparent from Fig. 6.13 that the control performance of the proposed R2R-based MPC in

response to the type 1 and type 3 process drifts is worse than its performance in response

to the type 2 process drift. In particular, the control performance for the system with the

type 3 process drift is worse than that for the system with the type 1 process drift because

solubility under the type 3 process drift rate changes more drastically, and is thus more

difficult to compensate quickly using the proposed R2R-based MPC. As presented in Fig.

6.14, for a high λ value, the proposed R2R-based MPC becomes vulnerable to the rapidly
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Figure 6.13: The evolution of the average crystal shape obtained from the kMC simulations

from batch-to-batch under the R2R-based MPC with the three different process drift types

described in Fig. 6.12. The type 1 process drift rate follows a decaying curve; the type

2 process drift rate is constant; and the type 3 process drift rate follows an exponential

distribution.

changing process drift introduced to the system by the type 3 process drift, while this effect

is relatively suppressed by using small λ values in the proposed R2R-based MPC. One

potential solution to this problem is to adapt the learning factor λ after each batch to deal

with the varying process drift rate.

Lastly, for the purpose of a test of the control performance when the controller does not

account for uncertainty in the nucleation rate, the nucleation rate in the kMC simulation

is dropped by 10% by multiplying Eq. 6.1 by 0.9. Since this uncertainty is not modeled

in the controller process model, the other parameters Γ=[γ110 γ101 γs1 γs2 γs3] have to be
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Figure 6.14: The evolution of the average crystal shape obtained from the kMC simulations

from batch-to-batch under the R2R-based MPC for λ = 0.1, 0.3 and 0.9 with the type 3

process drift described in Fig. 6.12.
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adjusted to compensate for the unmodeled uncertainty in the nucleation rate. Furthermore,

the equality constraint (cf. Eq. 6.13e) forces the proposed R2R-based MPC to produce

the same number of crystals as the previous batch run. As a result, it is shown in Fig.

6.15 that the controller model parameters are appropriately adjusted and thus the effect

of the unmodeled uncertainty on the control performance is mitigated such that crystals

are produced with a shape that is close to the desired set-point. However, the closed-loop

performance under such an unmodeled uncertainty is slightly degraded, exhibiting an offset

from the desired set-point. Such minor degradation is expected due to the nonlinear nature

of the unmodeled uncertainty in the nucleation rate, while the ODC scheme used in the

proposed R2R-based MPC is linear. To deal with this problem, a nonlinear ODC scheme

could be adopted in order to improve the robustness of the proposed R2R-based MPC with

respect to unmodeled uncertainties.

In this work, the closed-loop simulation results show that the average crystal shape

distribution is driven close to a desired value after three batch runs under the proposed

R2R-based MPC scheme, and hence varying the learning factor does not notably influence

the control performance as is shown in Fig. 6.16. Therefore, the proposed R2R-based MPC

is able to leverage smaller λ values (e.g., λ = 0.1) to reduce the effect of the measurement

noise without significantly sacrificing the convergence speed.

Remark 6.5 If the measurement noise is sufficiently high, an R2R controller may fail be-

cause the past measurements are not autocorrelated with those of the future runs [89, 57].

The best practice to deal with the measurement noise is to use a small learning factor λ in
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Figure 6.15: The evolution of the average crystal shape obtained from the kMC simulations

from batch-to-batch under the R2R-based MPC when there is an unmodeled uncertainty

in the nucleation rate and no uncertainty in the nucleation rate. The desired set-point is

αset = 0.85.
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Figure 6.16: The evolution of the average crystal shape obtained from the kMC simulations

from batch-to-batch under the R2R-based MPC with λ = 0.1 and λ = 0.3. The desired set-

point is αset = 0.85.
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an EWMA design at the cost of slower convergence. Additionally, a low-pass filter may be

used to reduce the effects of noise of the measurements (both real-time and post-batch) on

the operation of the batch crystallization process.

6.5 Conclusions

In this work, we considered the design of a novel R2R-based MPC for a batch crystalliza-

tion process with significant process drift and inherent variations in solubility and crystal

growth rates. In order to achieve the production of crystals with a desired crystal shape

distribution, a conventional MPC with nominal process model parameters (cf. Eq. 6.12)

was initially applied to the process. However, due to the process drift, the mismatch be-

tween the controller model and the process dynamic behavior became severe as batch runs

were repeated. To deal with this problem, an R2R-based MPC was proposed that, after

each batch run, received post-batch measurements, including measurements of the aver-

age crystal shape and size and the number of crystals, and used these to estimate off-line

the process model parameters as they drifted from their nominal values via a multivariable

optimization problem. Along with the adapted model parameters, an EWMA scheme was

used to deal with the remaining offset in the model and thereby to compute via MPC a set

of optimal jacket temperatures in real-time that drives the process to a desired condition.

Furthermore, the crystal growth in the batch crystallization process was modeled through

kMC simulations which were then used to demonstrate the ability of the proposed con-

trol scheme to suppress the inherent variation and process drift in solubility and crystal
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growth rates. Through the proposed approach, the production of crystals with a desired

shape distribution was successfully achieved after three batch runs through the use of R2R-

based MPC while it took twenty-four batch runs for the system with the EWMA-type CSC

strategy to produce crystals with the desired shape distribution.
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Chapter 7

A method for handling batch-to-batch

parametric drift using moving horizon

estimation: application to run-to-run

MPC of batch crystallization

7.1 Introduction

This chapter focuses on developing a run-to-run (R2R) model parameter estimation scheme

based on moving horizon estimation (MHE) concepts for the modeling of batch-to-batch

process model parameter variation using a polynomial regression scheme. Subsequently,

the batch process model parameters computed via the proposed R2R model parameter es-
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timation scheme are used in a model predictive controller (MPC) within each batch to

compute a set of optimal jacket temperatures for the production of crystals with a desired

shape distribution in a batch crystallization process. The ability of the proposed method to

suppress the inherent variation in the solubility caused by batch-to-batch parametric drift

and to handle the noise in post-batch measurements is demonstrated by applying the pro-

posed parameter estimation and control method to a kinetic Monte Carlo (kMC) simulation

model of a batch crystallization process used to produce hen egg white (HEW) lysozyme

crystals. Furthermore, the performance of the proposed R2R model parameter estimation

scheme is evaluated with respect to the different orders of polynomials and different mov-

ing horizon lengths in order to calculate the best parameter estimates. The average crystal

shape distribution of crystals produced from the closed-loop simulation of the batch crys-

tallizer under the MPC with the proposed R2R model parameter estimation scheme is much

closer to a desired set-point value compared to that of the double exponentially-weighted-

moving-average-based MPC (dEWMA-based MPC) and that of MPC based on the nominal

process model.

7.2 Modeling of batch crystallization process

To present and evaluate the proposed technique for process model parameter estimation,

we will focus on a batch crystallization process used to produce HEW lysozyme crystals.
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7.2.1 Crystal nucleation

At 4%(w/v) NaCl and pH=4.5, the lysozyme crystals are nucleated according to the fol-

lowing rate expressions [41]:

B =


0.041σ +0.063 for σ ≥ 3.11

8.0×10−8 exp(4.725σ) for σ < 3.11

(7.1)

where B is the nucleation rate with units [cm−3 · sec−1], and the supersaturation level σ is

defined as follows:

σ = ln(C/s) (7.2)

where C is the solute concentration and s (mg/mL) is the solubility, which is calculated

using the following third-order polynomial equation taken from [13]:

s(T ) = 2.88×10−4T 3 −1.65×10−3T 2 +4.62×10−2T +6.01×10−1 (7.3)

where the temperature in the crystallizer, T , is in degrees Celsius.

7.2.2 Crystal growth

The crystal growth is modeled through the kMC simulation using the following rate equa-

tions, which are adopted from [32]. The adsorption rate, ra, is independent of each lattice

site and is defined as follows:

ra = K+
0 exp(σ) (7.4)

where K+
0 is the adsorption coefficient. On the other hand, the desorption and migration

rates depend on the surface micro-configuration (i.e., the number of particles that surround
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Face Epb/kB ϕ/kB

(110) 1077.26 K 227.10 K

(101) 800.66 K 241.65 K

Table 7.1: Parameters for the (110) and (101) faces at 42 mg/mL NaCl and pH= 4.5 at

T = 18◦C. Additionally, K+
o = 0.211 seconds−1.

the particle of interest). Thus, the desorption rate for a lattice site with i nearest neighbors,

rd(i), is given by:

rd(i) = K+
0 exp

(
ϕ

kBT
− i

Epb

kBT

)
(7.5)

where Epb is the average bonding energy per bond and ϕ is the total binding energy when

chemical bonds of a molecule are fully occupied by nearest neighbors (i.e., i = 4). In

order to account for the fact that the migration rate is higher than the desorption rate, the

migration rate, rm(i), is defined by multiplying Eq. 7.5 by an additional term and is shown

below:

rm(i) = K+
0 exp

(
ϕ

kBT
− i

Epb

kBT
+

Epb

2kBT

)
(7.6)

The crystal growth rates obtained from the kMC simulations are calibrated with the ex-

perimental data from [32] by manipulating a set of Epb and ϕ values for the (110) and

(101) faces through extensive open-loop kMC simulations. The parameters for the kMC

simulation are listed in Table 7.1.
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7.2.3 Mass and energy balance equations

The mass and energy balance equations used to calculate the amount of the protein solute

remaining in the continuous phase, C, and the temperature in the crystallizer, T , are given

by the following ordinary differential equations:

dC
dt

=− ρc

Vbatch

dVcrystal

dt
, C(0) =C0 (7.7)

dT
dt

=− ρc∆Hc

ρCpVbatch

dVcrystal

dt
−

U jA j

ρCpVbatch

(
T −Tj

)
, T (0) = T0 (7.8)

where Vcrystal is the total volume of crystals in the crystallizer, C0 = 42 mg/cm3 is the initial

protein solute concentration, ρc = 1400 mg/cm3 is the crystal density, Vbatch = 1 L is the

volume of the batch crystallizer, T0 = 17 ◦C is the initial crystallizer temperature, ∆Hc =

−4.5 kJ/kg is the enthalpy of crystallization, ρ(t) = 1000+C(t) mg/cm3 is the density of

the continuous phase, Cp = 4.13 kJ/K kg is the specific heat capacity, and A j = 0.25 m2 is

the surface area and U j = 1800 kJ/m2 h K is the overall heat transfer coefficients between

the jacket stream Tj and the crystallizer wall.

7.2.4 Moment models

Due to the complexity of a population balance equation (PBE), it cannot be directly used

for the computation of the crystal volume distribution in real-time. Motivated by this,

a moments model is used to describe the evolution of the number and the total volume of

crystals in the batch crystallization process in the process model and is used in the controller
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with the form:

dM0

dt
= B (7.9)

dM1

dt
= GvolM0 (7.10)

where M j(t) =
∫ ∞

0 V jn(V, t)dV is the jth moment for j = 0, 1, n(V, t) is the number of

crystals with volume V at time t, and Gvol is the volumetric crystal growth rate, which is

formulated as follows:

Gvol = 2G110⟨h110⟩⟨h101⟩+G101⟨h110⟩2 (7.11)

where the crystal growth rates in the directions of the (110) and (101) faces, G110 and G101,

can be obtained through the following expressions:

G110 = 0.1843σ3 −1.1699σ2 +2.8885σ −2.5616

G101 = 0.1893σ3 −1.2264σ2 +2.9887σ −2.5348

(7.12)

which are calibrated with experimental data from [31]. Similarly, the average crystal

heights, ⟨h110⟩ and ⟨h101⟩, are calculated by using the following ordinary differential equa-

tions:
d⟨h110⟩

dt
= G110 −

BVbatch⟨h110⟩
M0

d⟨h101⟩
dt

= G101 −
BVbatch⟨h101⟩

M0

(7.13)

and thereby the average crystal shape, ⟨α⟩, and size, ⟨V ⟩, can be computed as follows:

⟨α⟩ ≈ ⟨h110⟩
⟨h101⟩

⟨V ⟩= M1

M0
(7.14)

A more detailed description regarding the derivation of the moment model that accounts

for the dynamic evolution of the crystal volume distribution for the batch crystallization

process can be found in [72].
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7.3 MPC with R2R model parameter estimation

7.3.1 MPC formulation

In Section 7.3.1, a model predictive controller (MPC) is presented for in-batch control.

Specifically, the dominant dynamic behavior of the evolution of the crystal shape distribu-

tion in the batch crystallization process is modeled through the process model (cf. Eqs.

7.1–7.3 and 7.7–7.14), which is used to compute a set of optimal jacket temperatures that

minimizes the sum of the squared deviations of the average crystal shape from a set-point

value over the entire prediction horizon. Constraints on the rate of change of the jacket

temperature (i.e., manipulated input) and the temperature in the crystallizer are imposed.

The resulting MPC formulation is given by the following optimization problem:

min
Tj,1,...,Tj,i,...,Tj,p

p

∑
i=1

(⟨α(ti)⟩−αset)
2 (7.15a)

s.t. Eqs. 7.1−7.3 and 7.7−7.14 (7.15b)

4◦C ≤ T ≤ 25◦C
∣∣∣∣Tj,i+1 −Tj,i

∆

∣∣∣∣≤ 2◦C/min (7.15c)

where p = 10 is the length of the prediction horizon, T is the crystallizer temperature,

∆ = 40 is the sampling time, αset is the desired average crystal shape (i.e., set-point),

ti = t + i∆ is the time at the ith prediction step, Tj,i is the jacket temperature, and ⟨α(ti)⟩ is

the average crystal shape at the ith prediction step, respectively. At every sampling time,

the real-time measurements for the solute concentration in the continuous phase and the

temperature in the crystallizer are used to compute a set of optimal jacket temperatures,
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(Tj,1,Tj,2, . . . ,Tj,p), by solving Eq. 7.15 where the first value, Tj,1, is applied to the crystal-

lizer over the next sampling time.

7.3.2 MPC with R2R model parameter estimation scheme

For the batch crystallization process with changes in the process model parameters ow-

ing to process drift, an R2R model parameter estimation scheme based on MHE concepts

is proposed and used along with post-batch measurements from multiple batch runs in a

moving horizon fashion to estimate parameters of the batch crystallization model (cf. Eqs.

7.1–7.3 and 7.7–7.14). Then, the updated process model parameters are used in the MPC

for the computation of control inputs applied to a batch crystallization process.

R2R model parameter estimation scheme based on MHE concepts

There are many different formulations for an R2R parameter estimation scheme and the

design of the observer significantly affects the estimator performance. In this work, an

optimization-based parameter estimation scheme is proposed in order to estimate the pro-

cess model parameters using several sets of post-batch measurements. Specifically, the

uncertainty in the solubility of the protein solute is accounted for by multiplying the nom-

inal third-order polynomial equation for solubility, Eq. 7.3, by a correction factor γs. The

uncertainty associated with the crystal growth rates in the directions of the (110) and (101)

faces is taken into account by multiplying the nominal growth rate expressions for the (110)

and (101) faces by the parameters γ110 and γ101, respectively. Furthermore, to account for
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the offset between the predicted and measured values for the average crystal shape and size,

a set of correction factors (γα and γV ), is introduced directly into the objective function.

Specifically, the optimization problem for the proposed R2R model parameter estima-

tion scheme based on MHE concepts after the nth batch run is formulated as follows:

min
Q1,...,Qp

n

∑
k=n−m+1

wα

(
⟨̂α(t f )⟩k + γα(k)−⟨α(t f )⟩k

)2
+wV

(
⟨̂V (t f )⟩k + γV (k)−⟨V (t f )⟩k

)2

(7.16a)

s.t. Eqs. 7.1−7.3 and 7.7−7.14 (7.16b)

ŝ(k) = γs(k)s(k) (7.16c)

Ĝ110(k) = γ110(k)G110(k), Ĝ101(k) = γ101(k)G101(k) (7.16d)

γx(k) =
p

∑
r=1

q(x,r) [γx(k−1)]r ∀ γx ∈ [γ110 γ101 γs γα γV ] (7.16e)

where s is the solubility, and G110 and G101 are the crystal growth rates in the directions

of the (110) and (101) faces. Please note that X̂k is a predicted variable X for the kth

batch run and Xk represents a measured variable X after the kth batch run. Furthermore, the

correction factors are initially Γ(0) =[1 1 1 0 0], which are the nominal values for the batch

crystallization process. More details about correction factors are presented below.

Referring to Eq. 7.16, we note that Eq. 7.16e is used in order to approximate the batch-

to-batch parametric drift from the k−m+1th to kth batch runs with a pth order polynomial

through the manipulation of the decision variables, Q1 = [q(110,1) q(101,1) q(s,1) q(α,1) q(V,1)],

· · · , Qp = [q(110,p) q(101,p) q(s,p) q(α ,p) q(V,p)] in a moving horizon fashion. For example,

the pth order polynomial for the solubility correction factor γs(k) can be written in the form
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γs(k) = ∑p
r=1 q(s,r) [γs(k−1)]r. Then, the batch-to-batch dynamics of the process drift are

estimated using Eq. 7.16e to predict a set of correction factors for the k+ 1th batch run,

Γ(k+ 1) = [γ110(k+ 1) γ101(k+ 1) γs(k+ 1) γα(k+ 1) γV (k+ 1)]. The objective function

(cf. Eq. 7.16a) consists of the sum of squared errors between the predicted average crystal

size and shape, ⟨̂α(t f )⟩ and ⟨̂V (t f )⟩, and the measured ones, ⟨α(t f )⟩ and ⟨V (t f )⟩, which are

obtained at the end of the batch crystallization process from the k−m+1th to kth batch runs

where m is the moving horizon length. In the beginning of the batch-to-batch estimation,

the number of post-batch measurements is allowed to grow until it reaches the length of the

horizon (i.e., until the batch number becomes equal to m).

We note that the sensitivity of the proposed R2R model parameter estimation scheme

based on MHE concepts to the different orders of polynomials and different moving horizon

lengths is further discussed in Section 7.4 below.

Remark 7.1 While the sign and magnitude of the rate of the process drift change from

batch-to-batch, if the overall batch-to-batch dynamics of the process drift can be described

by a smooth function, Eq. 7.16e in the proposed R2R model parameter estimation scheme

should be able to model such a drift, which should lead to good parameter estimates for

the next batch run. Furthermore, the idea of the proposed R2R model parameter estimation

scheme based on MHE concepts is related to that of least squares estimation in that the

relationship between the independent variables and the dependent variables is modelled

through a pth order polynomial and is used to find the best fit polynomial of multiple data

points. Other nonlinear functions besides polynomials can be also used if necessary.
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Remark 7.2 A short horizon length allows the proposed model parameter estimation scheme

to follow fast batch-to-batch dynamics of the process drift while a longer horizon length

(i.e., post-batch measurements from multiple batch runs) is able to better deal with the

noise in the process and post-batch measurements.

MPC with R2R model parameter estimation scheme: implementation algorithm

An MPC with the proposed R2R model parameter estimation scheme is implemented for a

batch crystallization process for the computation of the control inputs as follows:

1. At the end of the kth batch run, the post-batch measurements of the product qualities

such as the number of crystals and the average size and shape of the crystals are

measured.

2. Then, the real-time measurements of the solute concentration in the continuous phase

and the temperature in the crystallizer ([Ck−m+1(t),Tk−m+1(t)] , . . . , [Ck(t),Tk(t)] ∀

t ∈
[
0, t f

]
) over the last m measurements (i.e., moving horizon length) are used to

compute Q1, · · · , Qp that minimize the cost function, Eq. 7.16a. Please note that t f

is the final time for one batch run.

3. The one-step-ahead correction factors for the k+ 1th batch run, Γ̂k+1, are predicted

through the use of Q1, · · · , Qp obtained from Step 2. Then, the process model param-

eters are updated through Γ̂k+1 and they are used in the model employed in the MPC

to compute a set of optimal jacket temperatures Tj which will drive the temperature
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Figure 7.1: Model predictive control with R2R model parameter estimation.

T in the crystallizer to a desired value.

4. Increase k by 1 and repeat Step 1 to Step 4.

We note that the real-time measurements of the solute concentration and the temperature in

the crystallizer are assumed to be available at each sampling time. A schematic represen-

tation of the MPC with the proposed R2R model parameter estimation scheme is shown in

Fig. 7.1.
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7.4 Application of MPC with R2R model parameter esti-

mation to batch crystallization

One of the reasons that control of the size and shape distributions of crystals produced

from a batch process may be difficult is because even minor contamination in the feedstock

container (e.g., variations in the pH or elevated electrolyte concentration levels) may lead

to a significant drift of key process parameters from batch-to-batch. Furthermore, minor

contamination in the feedstock container cannot be identified immediately, and thus, its

undesired effect on the product quality continues throughout succeeding batch runs until

the feedstock container is replaced. To tackle this problem, we initially use the proposed

R2R model parameter estimation scheme based on MHE concepts where a polynomial

regression scheme is applied in a moving horizon fashion to approximate the batch-to-

batch dynamics of the drift and adjust the MPC model parameters at the beginning of each

batch. Then, the MPC with the updated process model parameters is used to compute

the optimal jacket temperature by suppressing the effect of the process drift in the next

batch. In the proposed estimation scheme, we note that only post-batch measurements are

used for the parameter estimation scheme. Furthermore, process noise (approximately 2%

of the nominal value) due to the stochastic nature of the crystal growth mechanisms and

measurement noise (approximately 8% of the nominal value) are modeled through the kMC

simulation. In order to simulate the operation of each batch run, a single kMC simulation

is executed and used for the analysis per batch run.
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Figure 7.2: The evolution of the cumulative process drift with an exponentially decaying

rate from batch-to-batch. Please note that the y-axis shows how much the batch system

is perturbed from a nominal batch system (nominal batch system corresponds to a y-axis

value equal to 1).
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The controller performance of the MPC with the proposed R2R model parameter es-

timation scheme is initially evaluated in response to a process drift with an exponentially

decaying process drift rate whose rate decays from 1 (i.e., nominal system) to 0.95 over ten

batch runs (see, e.g., Fig. 7.2). Additionally, a more complicated process drift whose rate

fluctuates is considered in order to evaluate the robustness of the MPC with the proposed

R2R model parameter estimation scheme for a more realistic environment for the opera-

tion of the batch crystallization process (see, e.g., Fig. 7.3). For comparison purposes,

the dEWMA-based MPC that captures the changes in the rate of the process drift and then

adjusts the outputs to MPC, and the MPC that uses the nominal process model are also

applied to the batch crystallization process model. To evaluate the controller performance,

the mean squared error (MSE) of the offset (⟨α(t f )⟩i−αset) between the measured average

crystal shape after the ith batch run and the set-point value is introduced as follows:

MSE =

n

∑
i=1

(
⟨α(t f )⟩i −αset

)2

n
(7.17)

where n is the total number of batch runs.

7.4.1 dEWMA-based model predictive control

For the sake of comparison, a double-exponentially-weighted-moving-average (dEWMA)

scheme, which is known for its ability to capture the batch-to-batch dynamics of the process

drift [11, 117, 19, 125], is integrated with the MPC and its closed-loop performance is

presented along with that of the MPC with the proposed R2R model parameter estimation
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Figure 7.3: The evolution of the cumulative process drift where its rate changes from batch-

to-batch. Please note that the y-axis shows how much the batch system is perturbed from a

nominal batch system (nominal batch system corresponds to a y-axis value equal to 1).
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scheme. In the dEWMA scheme, the predicted average crystal shape for the kth batch run

can be written as follows:

⟨̃α(t f )⟩k = ⟨̂α(t f )⟩k + êk +∆êk (7.18)

where ⟨̃α(t f )⟩k is the predicted average crystal shape at the end of the kth batch, ⟨̂α(t f )⟩k

is the predicted average crystal shape using only the nominal process model that consists

of Eqs. 7.1–7.3 and 7.7–7.14, êk is the estimated model prediction error, and ∆êk is used

to compensate for the error in the parameter estimation caused by the change in the rate

of the process drift. For a dEWMA-based MPC, the process model used in MPC (cf.

Eqs. 7.1–7.3 and (7.7)–(7.14)) is not directly adjusted but its offset from the actual process

model is approximated by êk+∆êk. The following control scheme is implemented for the

computation of inputs in the proposed dEWMA-based MPC as follows:

1. At the end of the kth batch run, post-batch measurements of the product variables

such as the average crystal size and shape are obtained.

2. Then, the average crystal shape measured from Step 1, ⟨α(t f )⟩k, is used to compute

the estimated model prediction error, êk, and the estimated change in the rate of the

process drift, ∆êk, through the following equations:

êk+1 = w1

[
⟨α(t f )⟩k −⟨̂α(t f )⟩k

]
+(1−w1)êk (7.19a)

∆êk+1 = w2

[
⟨α(t f )⟩k −⟨̂α(t f )⟩k − êk

]
+(1−w2)∆êk (7.19b)

where 0 < w1 ≤ 1 and 0 < w2 ≤ 1 are the learning factors.
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3. Then, the predicted average crystal shape for the k+ 1th batch run, ⟨̃α(t f )⟩k+1, that

accounts for the change in the rate of the process drift is obtained from

⟨̃α(t f )⟩k+1 = ⟨̂α(t f )⟩k+1 + êk+1 +∆êk+1 (7.20)

and is used in the process model employed in the MPC to compute a set of optimal

jacket temperatures Tj which will drive the temperature T in the crystallizer to a

desired value.

4. Increase k by 1 and repeat Step 1 to Step 5.

Please note that the first equation, Eq. 7.19a, is used to estimate the offset in the aver-

age crystal shape (i.e., output) and the second equation, Eq. 7.19b, is used to capture an

additional offset in the average crystal shape due to the change in the rate of the process

drift.

7.4.2 Exponentially decaying process drift

When the process drift decays with an exponential rate (Fig. 7.2), the closed-loop per-

formance of the MPC with the nominal process model becomes progressively worse (Fig.

7.4) as runs are repeated due to the increasing mismatch between the process model and

the actual batch crystallization process. In Fig. 7.4, it is also shown that the dEWMA-

based MPC is able to produce crystals closer to the desired shape distribution compared

to the MPC with the nominal process model, however, its convergence speed is so slow

that there still remains an offset from the desired crystal shape. On the other hand, the
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Figure 7.4: The evolution of the average crystal shape at t = 20000 seconds obtained from

the kMC simulations from batch-to-batch under the MPC with the nominal process model,

the dEWMA-based MPC with (w1,w2)=(0.5,0.5), and the proposed MPC with R2R model

parameter estimation, with the desired set-point αset = 0.88.
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Control Schemes MSE

MPC with R2R model parameter estimation 1.14×10−5

dEWMA-based MPC 8.17×10−5

MPC with no parameter estimation 5.51×10−4

Table 7.2: Comparison of the MSE values between the MPC with R2R model parameter es-

timation, the dEWMA-based MPC, and the MPC with no parameter estimation in response

to the process drift with an exponentially decaying rate.

crystal shape distribution obtained by the MPC with the proposed R2R model parameter

estimation scheme (Fig. 7.4) converges quickly (after five batch runs) and approaches the

desired set-point value much more closely than those of the MPC with the nominal pro-

cess model and the dEWMA-based MPC, because the exponentially decaying process drift

can be better captured by the proposed R2R model parameter estimation scheme based on

MHE. Specifically, the change in the solubility induced by the process drift introduced to

the batch crystallization process is properly predicted by the proposed R2R model param-

eter estimation scheme as is shown in Fig. 7.5. Lastly, we summarize the performances of

the MPC with the proposed R2R model parameter estimation, the dEWMA-based MPC,

and the MPC with no parameter estimation in response to the process drift described in Fig.

7.2 by comparing their MSE values for the average crystal shape in Table 7.2.
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Figure 7.5: The evolution of the predicted and true solubilities at the beginning of batch

runs. The predicted solubility is calculated using the proposed R2R model parameter esti-

mation scheme. Please note that the average discrepancy between the two profiles from run

3 to run 10 (i.e., after the estimation scheme is applied to the batch system) is about 0.2%.
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7.4.3 Sensitivity to different drift types and tuning parameters

In this section, we consider the more complicated drift from Fig. 7.3. As is shown in

Fig. 7.3, the rate of this process drift changes more rapidly from batch-to-batch (e.g., the

system drifts from 1 to 0.9 over the first four batch runs) compared to the process drift with

an exponentially decaying rate (see, e.g., Fig. 7.2), and five inflection points (i.e., a point of

a curve at which a change in the direction of the curvature occurs) are introduced in order

to model a significant fluctuation in the rate of the process drift.

For a given polynomial order, although a longer horizon length provides better attenu-

ation of random fluctuations, it may not be able to effectively capture fast batch-to-batch

drift dynamics, therefore, an optimal horizon length should be chosen to balance the trade-

off between noise handling and capturing fast drift dynamics. A comparative study using

different moving horizon lengths for the proposed R2R model parameter estimation scheme

is carried out. A 3rd order polynomial is chosen for Eq. 7.16e for the comparison because

it is the lowest order polynomial to effectively describe a curve with a pair of inflection

points. Specifically, it is shown in Fig. 7.6 that the closed-loop performance initially im-

proves as the horizon length is increased (from m= 4 to m= 5) due to the better handling of

noise in the post-batch measurements, but then decreases with further increases of the hori-

zon length (from m = 5 to m = 7) because the fast batch-to-batch dynamics of the process

drift (e.g., drastic batch-to-batch fluctuations) are not captured with m = 7. Therefore, the

closed-loop simulation under the MPC with the proposed R2R model parameter estimation

scheme with m = 7 leads to the production of more off-spec crystals while crystals whose

225



0 5 10 15 20

batch number k

0.75

0.80

0.85

0.90

0.95

<
 α

 >

set-point

predicted solubility (m=4)

(a) moving horizon length m=4

0 5 10 15 20

batch number k

0.75

0.80

0.85

0.90

0.95

<
 α

 >

set-point

predicted solubility (m=5)

(b) moving horizon length m=5

0 5 10 15 20

batch number k

0.75

0.80

0.85

0.90

0.95

<
 α

 >

set-point

predicted solubility (m=7)

(c) moving horizon length m=7

Figure 7.6: The evolution of the average crystal shape obtained from the kMC simulations

from batch-to-batch under the MPC with the proposed R2R model parameter estimation

for the process drift described in Fig. 7.3. Different moving horizon lengths (m=4, 5, and

7) are used in order to estimate the batch-to-batch dynamics of the process drift.
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(b) moving horizon length m=5
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Figure 7.7: The evolution of the predicted and true solubilities at the beginning of batch

runs. The predicted solubility is calculated using the proposed R2R model parameter es-

timation scheme. Different moving horizon lengths (m=4, 5, and 7) are used in order to

estimate the batch-to-batch dynamics of the process drift.
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shapes are closer to a desired set-point value are produced under the MPC with m = 5.

Additionally, it is presented in Fig. 7.7 that the solubility at the beginning of each batch

predicted by the proposed R2R model parameter estimation scheme with a horizon length

of 5 is much closer to the true value than those with the moving horizon lengths of 4 and 7

for the given 3rd order polynomial.

For a given horizon length, the performance of the parameter estimation increases as the

order of the polynomials of Eq. 7.16e is increased due to additional degrees of freedom,

but the performance then decreases as the order is further increased since a higher order

polynomial overfits the process and measurement noise. For a horizon length of m = 5,

which is found to be optimal from the previous analysis, the performance of the proposed

R2R model parameter estimation scheme is tested with respect to different functions for Eq.

7.16e such as 2nd, 3rd, and 4th order polynomials. It is shown in Fig. 7.8 that the average

crystal shape produced from a batch process under the MPC with the proposed R2R model

parameter estimation scheme with a 3rd order polynomial is closer to a desired set-point

value compared to those of the MPC’s with 2nd and 4th order polynomials. Additionally,

it is presented in Fig. 7.9 that for a given horizon length, the solubility predicted by the

proposed R2R model parameter estimation scheme based on MHE concepts with a 3rd or-

der polynomial is much closer to the true value than that predicted by the proposed method

with 2nd and 4th order polynomials. Therefore, we can conclude that a horizon length of

m = 5 and a 3rd order polynomial is optimal for this process. We note that the proposed

R2R model parameter estimation scheme is not applied to the batch crystallization process
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Figure 7.8: The evolution of the average crystal shape obtained from the kMC simulations

from batch-to-batch under the MPC with the proposed R2R model parameter estimation

for the process drift described in Fig. 7.3. Different orders of polynomial expressions are

used in order to estimate the batch-to-batch dynamics of the process drift.
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(b) 3nd order polynomial approximation
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Figure 7.9: The evolution of the predicted and true solubilities at the beginning of batch

runs. The predicted solubility is calculated using the proposed R2R model parameter esti-

mation scheme. Different orders of polynomial expressions are used to estimate the batch-

to-batch dynamics of the process drift.
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until the 2nd batch run because at least two post-batch measurements are required to apply

the polynomial regression scheme for the prediction of the batch-to-batch dynamics of the

process drift. Additionally, it is possible that, if the value of a parameter that is drifting in a

particular batch is significantly off from the dominant trend in the batch-to-batch dynamics

of a process drift, it cannot be easily modeled by a function. For example, the 11th batch

run in Figs. 7.7 and 7.9 cannot be appropriately modeled by any polynomial, which re-

sults in poor controller performance by the MPC with the proposed R2R model parameter

estimation scheme at that batch run as is shown in Fig. 7.10.

The controller performance of the MPC with the proposed R2R model parameter esti-

mation scheme is also compared with those of the dEWMA-based MPC and the MPC with

the nominal process model. In Fig. 7.10, it is evident that the MPC with the nominal pro-

cess model is not able to handle the process drift described in Fig. 7.3, and as a result it may

lead to the production of crystals with an undesired shape distribution. Furthermore, the

production of crystals whose shapes are relatively closer to a desired set-point is achieved

under the dEWMA-based MPC, which demonstrates that this scheme is more suitable than

the MPC with the nominal process model for process drifts of a random nature. We com-

pare the performances of the MPC with the proposed R2R model parameter estimation, of

the dEWMA-based MPC, and of the MPC with the nominal process model in response to

the process drift described in Fig. 7.3 using their MSE values of the average crystal shape

in Table 7.3.

Since each batch has its own average crystal shape at the end of the process, there is
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Control Schemes MSE

MPC with R2R model parameter estimation 3.62×10−4

dEWMA-based MPC 4.45×10−4

MPC with no parameter estimation 1.25×10−3

Table 7.3: Comparison of the MSE values between the MPC with R2R model parameter es-

timation, the dEWMA-based MPC, and the MPC with no parameter estimation in response

to the process drift described in Fig. 7.3.
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Figure 7.10: The evolution of the average crystal shape obtained from the kMC simulations

from batch-to-batch under the MPC with the proposed R2R model parameter estimation

scheme, the dEWMA-based MPC with (w1,w2)=(0.5,0.5), and the MPC with no parameter

estimation, for the process drift described in Fig. 7.3.
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a distribution for the average crystal shapes from all the batches (from 1st to 20th batch

runs). In this work, we define this batch-wise crystal shape distribution as follows: a

good batch-wise crystal shape distribution should have small batch-to-batch variations and

its average should be close to the set-point value, while a poor batch-wise crystal shape

distribution has large batch-to-batch variations and its average is offset from the set-point

value. In order to compare the batch-wise crystal shape distributions obtained from the

closed-loop simulations under different control schemes, a quantile plot is presented in

Fig. 7.11 where the batch-wise crystal shape distribution obtained under the MPC with

the proposed R2R model parameter estimation scheme is found to be better than those of

the MPC with the nominal process model and the dEWMA-based MPC. Furthermore, the

quantile plot indicates that the average of the points obtained under the proposed MPC with

the R2R model parameter estimation scheme is very close to the desired set-point value,

αset = 0.88. Therefore, the process drift described in Fig. 7.3 was properly modeled by

the proposed R2R model parameter estimation scheme based on MHE concepts with a 3rd

order polynomial for the moving horizon length of 5.

Remark 7.3 The implementation of the proposed R2R model parameter estimation scheme

based on MHE concepts can guarantee the better performance compared to the MPC with

the nominal process model for a given moving horizon length when an appropriate func-

tion is chosen for the modeling of the batch-to-batch dynamics of the process drift. Once

the batch-to-batch dynamics of the process drift are modeled well using a function, the

proposed scheme becomes robust with respect to a rapidly changing process drift, while
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Figure 7.11: The quantile plot for the distributions of the average crystal shapes obtained

from the kMC simulations from batch-to-batch under the MPC with the proposed R2R

model parameter estimation scheme, the dEWMA-based MPC with (w1,w2)=(0.5,0.5), and

the MPC with no parameter estimation, for the process drift described in Fig. 7.3. Please

note that the dotted lines represent standard normal distributions for each data set and the

x-axis indicates the standard deviations.

234



the dEWMA scheme may suffer from convergence issues given the difficulty in choosing the

learning factors, w1 and w2.

7.5 Conclusions

In this work, we proposed an R2R model parameter estimation scheme based on a mov-

ing horizon approach in order to model batch-to-batch parametric drift using a polynomial

regression scheme. Then, the batch process model parameters computed by the proposed

parameter estimation scheme were used in an MPC within each batch to compute a set of

optimal jacket temperatures for the production of crystals with a desired shape distribution.

The ability of the proposed parameter estimation scheme to suppress the inherent variation

in the solubility incurred by batch-to-batch drift and to deal with the noise in real-time

and post-batch measurements was demonstrated by applying the MPC with the proposed

estimation scheme to a kMC simulation of a batch crystallization process used to produce

HEW lysozyme crystals. The performance of the proposed R2R model parameter estima-

tion scheme was evaluated with respect to the use of different orders of polynomials and

different moving horizon lengths. Lastly, the performance of the MPC with the proposed

R2R model parameter estimation scheme was favorably compared with those of the MPC

based on the nominal process model and the dEWMA-based MPC.
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Chapter 8

Detection and isolation of batch-to-batch

parametric drift in crystallization using

in-batch and post-batch measurements

8.1 Introduction

This chapter focuses on the development of a parametric drift detection and isolation

(PDDI) method for the handling of batch-to-batch parametric drift in a batch crystalliza-

tion process used to produce HEW lysozyme crystals. The batch crystallization process is

controlled by an in-batch model predictive control (MPC) system and is subject to batch-

to-batch parametric drift in the solubility, growth rates, continuous-phase mass and en-

ergy balance parameters, and nucleation rate. The proposed PDDI scheme consists of two
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parts: the preparatory stage before batch-to-batch operation and the post-batch stage dur-

ing batch-to-batch operation. The goal of the preparatory stage is to compute the threshold

values and signatures for individual parametric drift using simulations and batch process

common cause variance described by noise. During batch-to-batch operation, the proposed

PDDI system monitors closed-loop process residuals, which are computed by taking the

difference between the time profiles of the states obtained through in-batch and post-batch

measurements from the time profiles of the states obtained from the drift-free simulation

with noise. While the measurements of the protein solute concentration and the temperature

in the crystallizer are available in real-time, post-batch measurements are usually available

for the quality of the crystal products (e.g., number of crystals, average crystal size and

shape) and the PDDI method accounts for this key characteristic. Then, the residuals are

compared with signatures obtained in the preparatory stage for each parametric drift for

isolation of a parametric drift. The PDDI system estimates the magnitude of the paramet-

ric drift and updates the parameters of the batch process model used in the in-batch MPC

system to compute a set of jacket temperatures for the production of crystals with a desired

shape distribution in the next batch. The performance of the MPC with the proposed PDDI

scheme is demonstrated by applying it to a multiscale simulation of a batch crystallization

process with parametric drifts in the solubility and crystal growth rates. The closed-loop

system simulations demonstrate that a parametric-drift handling scheme that integrates the

in-batch MPC with the proposed PDDI system produces crystals with a crystal shape distri-

bution which is closer, compared to that produced under the MPC with the nominal process
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model, to a desired set-point value.

8.2 Batch crystallization model

We focus on a batch crystallization process used to produce HEW lysozyme crystals in

order to demonstrate the proposed technique for parametric drift detection and isolation.

8.2.1 Crystal nucleation

The nucleation rate, B(σ), of lysozyme crystals is given below [41]:

B(σ) =


0.041σ +0.063 for σ ≥ 3.11

8.0×10−8 exp(4.725σ) for σ < 3.11

(8.1)

with units [cm−3 · sec−1], and the supersaturation level σ is computed through the logarith-

mic ratio between the solute concentration in the continuous phase C and the solubility s as

follows:

σ = ln(C/s) (8.2)

where the solubility is calculated using the following equation [13]:

s(T ) = 2.88×10−4T 3 −1.65×10−3T 2 +4.62×10−2T +6.01×10−1 (8.3)

and T is the temperature in the crystallizer in degrees Celsius.
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8.2.2 Crystal growth

The growth rate equations of Table 8.1 are adopted from [32] and used to model the crystal

growth through the kMC simulation.

Surface reaction Rate equation

Adsorption ra: K+
0 exp(σ)

Desorption rd(i): K+
0 exp

(
ϕ

kBT − i Epb
kBT

)
Migration rm(i): K+

0 exp
(

ϕ
kBT − i Epb

kBT +
Epb

2kBT

)
Table 8.1: Surface reactions where K+

0 is the adsorption coefficient, ϕ is the total binding

energy of a fully occupied lattice, i is the number of nearest neighbors, and Epb is the

average bonding energy per bond.

Please note that the desorption and migration rates depend on the surface micro-configuration

(i.e., they take into account the number of nearest neighbors i). The crystal growth rates

obtained from the kMC simulations are calibrated with the experimental data from [31] by

manipulating K+
0 and the values of Epb and ϕ for the (110) and (101) faces through exten-

sive open-loop kMC simulations. The parameters used for the kMC simulation are listed

in Table 8.2. The reader may refer to [93] for more details regarding the execution of the

kMC simulation.
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Face Epb/kB ϕ/kB

(110) 1077.26 K 227.10 K

(101) 800.66 K 241.65 K

Table 8.2: Parameters for the (110) and (101) faces at 4%(w/v) NaCl and pH= 4.5 at

T = 18◦C. Additionally, K+
o = 0.211 seconds−1.

8.2.3 Mass and energy balance equations

The following mass and energy balance equations [101] are employed in this work to com-

pute the evolution of the solute concentration and temperature in the crystallizer with time:

dC
dt

=− ρc

Vbatch

dVcrystal

dt
, C(0) = 48 mg/cm3 (8.4)

dT
dt

=− ρc∆Hc

ρCpVbatch

dVcrystal

dt
−

U jA j

ρCpVbatch

(
T −Tj

)
, T (0) = 17◦C (8.5)

where Vcrystal is the total volume of crystals in the crystallizer and Tj is the jacket temper-

ature (i.e., manipulated input). The process parameter values are shown in Table 8.3. The

enthalpy of crystallization is taken from [110] and the specific heat capacity of the solution

is assumed to be identical to that of water since the concentration of the protein solute in

the solution is small in comparison to that of water.

8.2.4 Population balance equation

The evolution of the crystal volume distribution for the batch crystallization process with

nucleation and crystal growth is described by the following population balance equation
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ρc crystal density 1400 mg/cm3

∆Hc enthalpy of crystallization −4.5 kJ/kg

ρ(t) density of the continuous phase 1000 + C(t) mg/cm3

Cp specific heat capacity 4.13 kJ/K kg

Vbatch volume of the crystallizer 1 L

A j contact area of the crystallizer wall and jacket 0.25 m2

U j overall heat transfer coefficient 1800 kJ/m2 h K

Table 8.3: Parameters for the batch crystallizer model.

(PBE) [55]:

∂n(V, t)
∂ t

+
∂ (Gvol(V,σ)n(V, t))

∂V
= Bδ (V ) (8.6)

where n(V, t) is the number of crystals of volume V at time t, δ (·) is the dirac delta function,

and Gvol(V,σ) is the volumetric crystal growth rate which will be formulated with greater

detail in the following section. Eq. 8.6 accounts for the fact that crystals are nucleated with

an infinitesimal size. The dirac function in the population balance equation captures the

effect of nucleation rate, and will be used in the boundary condition and to simulate the

nucleation process.

8.2.5 Moments model

By applying the method of moments to the PBE of Eq. 8.6, a moments model that describes

the zeroth and first moments of the crystal volume distribution in the batch crystallizer can
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be derived using standard techniques and has the following form [101]:

dM0

dt
= B (8.7)

dM1

dt
= GvolM0 (8.8)

where M j(t) =
∫ ∞

0 V jn(V, t)dV is the jth moment for j = 0, 1, and Gvol is formulated as

follows:

Gvol = 2G110⟨h110⟩⟨h101⟩+G101⟨h110⟩2 (8.9)

where G110 and G101 are the crystal growth rates in the direction of the (110) and (101)

faces, respectively. The following polynomial expressions for the growth rates G110 and

G101 are obtained from open-loop simulations of the multiscale model used to model the

batch crystallization process:

G110 = 0.1843σ3 −1.1699σ2 +2.8885σ −2.5616 (8.10)

and

G101 = 0.1893σ3 −1.2264σ2 +2.9887σ −2.5348 (8.11)

Lastly, the dynamic evolution of the average crystal heights, ⟨h110⟩ and ⟨h101⟩, is formu-

lated as follows:
d⟨h110⟩

dt
= G110 −

BVbatch⟨h110⟩
M0

d⟨h101⟩
dt

= G101 −
BVbatch⟨h101⟩

M0

(8.12)

Thus, the average crystal shape, ⟨α⟩, and size, ⟨V ⟩, can be computed as follows:

⟨α⟩ ≈ ⟨h110⟩
⟨h101⟩

⟨V ⟩= M1

M0
(8.13)

The reader may refer to [72] for a more detailed derivation of the moments model.
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8.3 Parametric drift detection and isolation system design

8.3.1 In-batch MPC

We initially design an in-batch model predictive controller (MPC) for the drift-free batch

crystallization process used for the production of HEW lysozyme crystals. First, the dom-

inant dynamic behavior of the evolution of the crystal shape distribution in the batch crys-

tallization process is modeled through the process model (cf. Eqs. 8.1–8.13), which is used

to compute a set of optimal jacket temperatures that minimizes the squared deviation of

the average crystal shape from a target value over the entire prediction horizon. There are

constraints imposed on the rate of change of the jacket temperature and on the magnitude

of the temperature in the crystallizer. The resulting optimization problem for the proposed

in-batch MPC is formulated as follows:

min
Tj,1,...,Tj,p

p

∑
i=1

(⟨α(ti)⟩−αset)
2 (8.14a)

s.t. Eqs. 8.1−8.13 (8.14b)

4◦C ≤ T ≤ 25◦C
∣∣∣∣Tj,i+1 −Tj,i

∆

∣∣∣∣≤ 2◦C/min (8.14c)

ti = t + i∆ (8.14d)

where the length of the prediction horizon is p = 10, the sampling time is ∆ = 40 seconds,

and Tj,i is the jacket temperature at the ith prediction step ti. The in-situ measurements

of C and T are available at every sampling instant. Then, the optimization problem of

Eq. 8.14 is solved to compute a set of optimal jacket temperatures, (Tj,1, . . . ,Tj,10), and
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the first value, Tj,1, is applied to the crystallizer until the next sampling instant. Note that

since we impose explicit constraints on the magnitude of the crystallizer temperature, there

is no need to impose explicit constraints on the magnitude of the jacket temperature (i.e.,

manipulated input) as it is implicitly constrained by the crystallizer temperature constraint.

The simulations were carried out on the Hoffman2 cluster at UCLA and the optimization

problems were solved using the open source interior point optimizer, IPOPT.

8.3.2 Parametric drift detection and isolation

We consider batch-to-batch parametric drift in a batch crystallization process, particularly

in the parameters of the mass and energy balance equations, the nucleation and crystal

growth rate expressions, and the solubility expression. These batch-to-batch parametric

drifts can be detected and isolated by observing the evolution of measured outputs of the

closed-loop system through in-batch (e.g., C, T ) and post-batch (e.g., ⟨α⟩, M0, ⟨h110⟩,

⟨h101⟩) measurement techniques. This consideration requires that each parametric drift is

the one influencing a certain subset of the process outputs (i.e., each parametric drift has a

unique parametric drift signature).

As described in Fig. 8.1, we first design and employ a PDDI scheme in order to detect

a parametric drift in real-time over the course of a batch run via in-batch measurements

and to further detect the drift at the end of a batch run via post-batch measurements. The

information generated by the nominal batch crystallizer model initialized at the same state

as the actual batch process, provides an estimate of the parametric drift-free batch process
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Figure 8.1: Structure integrating parametric-drift detection and isolation scheme with in-

batch MPC.
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variables and allows detection of the parametric drifts by comparing the nominal behav-

ior with the actual process behavior (i.e., in-batch and post-batch process measurements).

Specifically, the PDDI residual for each variable can be defined as:

rx(t) = |x̄(t)− x(t)| for x ∈ {C,T}

rx(t f ) = |x̄(t f )− x(t f )| for x ∈ {⟨α⟩,M0,⟨h110⟩,⟨h101⟩}
(8.15)

where x̄ is the predicted evolution for the variable x, which is obtained from the nominal

process model (cf. Eqs. 8.1–8.13) with noise for the same initial state and input trajectory

that is applied to the actual batch process. The residuals rT and rC are calculated at every

sampling instant using in-batch measurements while the residuals r⟨α⟩, rM0 , r⟨h110⟩, and

r⟨h101⟩ are evaluated once using the above procedure at the end of the batch run because

only post-batch measurements are available for those variables.

When there is a parametric drift in one of the process parameters from batch-to-batch,

process residuals affected directly by the parametric drift will deviate from zero. Further-

more, it is assumed that the parametric drifts of interest will be sufficiently large so that

their effects will not be masked by process or measurement noise. Therefore, the thresh-

olds with respect to which the residuals will be compared should account for the effects of

process and measurement noise. If no parametric drift occurs, the measurements are close

to the nominal behavior (depending on the process and measurement noise levels) obtained

via post-batch closed-loop kMC simulations using the input profile applied to the process

at the last batch run. However, due to process and sensor measurement noise, the residuals

rx(t) will be nonzero. This necessitates the use of parametric drift detection thresholds so
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that a parametric drift in the variable x is declared only when a residual exceeds a specific

threshold value, rx,max that accounts explicitly for the effect of process and measurement

noise. Below, we describe the PDDI scheme in detail.

Specifically, the proposed PDDI scheme consists of two parts: the preparatory stage

before batch-to-batch operation and the post-batch stage during batch-to-batch operation.

The goal of the preparatory stage is to compute the threshold values and signatures for each

parametric drift as follows:

1. In the preparatory stage, we simulate batch runs under MPC with the nominal process

model. The noise (common cause variance) which is obtained from historical data

and sensor information is added to the process model used to simulate the batch

crystallization process but not added to the batch process model used in the MPC.

Then, these runs are used along with the same type of simulations for batch runs

under MPC but without noise to compute residuals and calculate the threshold value

for each variable x, rx,max, based on the maximum deviation (absolute value) of the

time profiles of the residuals with and without noise from zero (difference between

the time profiles of the variables from these two distinct sets of simulations).

2. We also calculate signatures for each drift in the preparatory stage. We simulate

batch runs under MPC with the nominal process model. Again, the noise is added to

the process model used to simulate batch crystallization but not added to the process

model used in the MPC. Furthermore, we add a parametric drift to each of the five

variables separately (i.e, therefore we need at least as many separate simulations as
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the number of drifts considered). Then, we compute the residuals for each variable

by calculating the difference between the time profiles of the states obtained using

this simulation with parametric drifts and the time profiles of the variables obtained

from the simulation with noise but no drift in the process model. The residual of C

or of T that exceeds its threshold first is recorded, and the signature of this specific

drift is calculated.

Note that if two or more parametric drifts are defined by the same signature, they cannot

be isolated on the basis of the parametric drift signature. This problem will be addressed

via another set of simulations discussed below. The post-batch stage of the proposed PDDI

scheme during batch-to-batch operation is described as follows:

1. At the end of each batch run, we compute the residuals by calculating the differences

between the time profiles of the states obtained through in-batch and post-batch mea-

surements from the time profiles of the states obtained from the drift-free simulation

with noise using the input trajectory applied to the process during the last batch.

Then, we compare the residuals (calculated post-batch) with signatures obtained in

the preparatory stage for each parametric drift.

2. After we narrow down the overall set of drift candidates to a few parametric drift can-

didates, we run optimization problems with the remaining drift candidates to match

simulated drift behavior with the in-batch experimental output post-batch measure-

ments in order to isolate the parametric drift and to estimate the magnitude of the

parametric drift. Details of this step are give in Section 8.3.3 below.
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3. Then, the parameters of the batch process model used in the MPC for the next batch

are updated to account for the presence of drift.

Isolation of the parametric drift as can be accomplished using the proposed PDDI

scheme allows for the design of a model predictive controller that can handle the para-

metric drift in its formulation by updating its model before each batch, and as a result, the

PDDI scheme can enhance the controller performance by minimizing the production of

crystals with undesired characteristics attributed to the parametric drift.

Also, it is important to point out the difference between the proposed PDDI scheme and

the MHE formulation employed in [71] for computing parameter updates for the model

used in the MPC in the next batch run. If the detection and isolation of the parametric drift

is possible, then the only model parameters that are updated are those which are directly

affected by the drift, and as a result, the accuracy of the model used in the MPC in the next

batch is superior to the one of the model that uses a generic update for all of its parameters.

8.3.3 Parametric drift estimation

After a parametric drift has been detected and isolated, the PDDI system will estimate

the magnitude of the parametric drift (i.e., how much the batch process is perturbed from

nominal batch behavior). If two or more parametric drifts are defined by the same signature,

isolation between them is not possible on the basis of the parametric drift signature and thus

we have to find one drift that better matches the in-batch and the post-batch measurements

by running the following optimization problem with candidates which have been selected
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from the set of all possible drift candidates.

Specifically, a least squares optimization problem is solved to estimate the magnitude

of the particular parametric drift (one at a time) utilizing the in-batch and post-batch mea-

surements (e.g., C, T , ⟨α⟩, M0, ⟨h110⟩, ⟨h101⟩) and the control inputs (e.g., Tj) applied in

the last batch run. In the optimization problem of Eq. 8.16 below, parametric drifts asso-

ciated with the nucleation rate, the crystal growth rates in the directions of the (110) and

(101) faces, the parameters of the solubility equation, and the parameters of the mass and

energy balance equations are taken into account by multiplying the nominal expressions

by the correction parameters γnu, γ110, γ101, γs, γC and γT , respectively. Furthermore, the

objective function (cf. Eq. 8.16a) consists of a sum of squared errors between the predicted

average crystal size and shape, ⟨̂α(t f )⟩ and ⟨̂V (t f )⟩, and the measured ones, ⟨α⟩measured and

⟨V ⟩measured. The resulting optimization problem is formulated as follows:

min
Γ

wα

(
⟨̂α(t f )⟩−⟨α⟩measured

)2
+wV

(
⟨̂V (t f )⟩−⟨V ⟩measured

)2
(8.16a)

s.t. Eqs. 8.1−8.14 (8.16b)

ŝ(t) = γss(t), B̂(σ) = γnuB(σ) (8.16c)

Ĝ110(t) = γ110G110(t), Ĝ101(t) = γ101G101(t) (8.16d)

T̂ (t) = γT T (t), Ĉ(t) = γCC(t) (8.16e)

Γ = [γ110, γ101, γT , γC, γnu, γs] (8.16f)

Assuming that we have already isolated a parametric drift, we can use only one correction

factor (cf. PDDI with γx) and set the other correction factors equal to one. For example,
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if a parametric drift in the solubility equation has been isolated, the correction parameters

in Γ become γ110 = γ101 = γT = γC = γnu = 1 and γs = d where d is the magnitude of the

parametric drift for the solubility equation. Therefore, solving the optimization problem

of Eq. 8.16 is reduced to finding the value of the magnitude d. If two or more parametric

drifts are defined by the same signature, we have to run them one by one as described above

until we find one that best matches the in-batch and post-batch measurements. Once the

parametric drift is isolated and its magnitude d is estimated, the PDDI system will send the

parametric drift information to the in-batch MPC to update its model, which will be used

for the computation of the optimal jacket temperature in the next batch run. This control

scheme is essentially a parametric drift tolerant control (PDTC) systems. A schematic

representation of the PDTC scheme is shown in Fig. 8.1.

Using the PDTC scheme, the parameters in the process model used in the MPC in the

next batch are updated based on the parametric drift detection and isolation via the proposed

PDDI scheme. The proposed scheme can be applied to handle parametric drifts in the other

parameters as well. However, the performance of the proposed PDDI scheme is dependent

on the specific crystallization system, and in some cases, the parametric drift may be such

that it is not possible to achieve good parametric drift detection and isolation.

While the number of decision variables in the optimization problems of Eq. 8.14 (MPC)

and Eq. 8.16 (post-batch parameter estimation) are finite owing to the sample-and-hold

implementation of the control actions (jacket temperature) to the crystallizer and the esti-

mation of a finite number of parameter values, respectively, the crystallizer dynamics are
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continuous, and therefore, they are modeled by differential equations. Of course, these

differential equations are integrated numerically with a much smaller integration time step

than the sampling time during the solution of the MPC optimization problem at each sam-

pling time that leads to the calculation of the control actions.

More specifically, the optimization problem of Eq. 8.14 was solved to local optimality

using the open-source interior point optimizer IPOPT, and the optimization problem of Eq.

8.16 was also solved to local optimality using the MATLAB function fmincon at the end of

the batch process. While it takes negligible time for the former problem to be solved (much

less than the sampling time period), it takes about 5-10 seconds for the latter.

8.4 Application of MPC with PDDI to batch protein crys-

tallization

8.4.1 Process and measurement noise

Measurement and process noise is added to the process model used to simulate the batch

crystallization process. Specifically, the measurement noise is introduced to the C(t) and

T (t) measurements as follows:

C(t) = C̄(t)+wC(t), T (t) = T̄ (t)+wT (t) (8.17)

where C̄(t) and T̄ (t) are the average solute concentration in the continuous phase and the

crystallizer temperature, and wC(t) and wT (t) are both Gaussian white noise with zero mean
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and standard deviations of 2% of C̄(t) and T̄ (t), respectively. Furthermore, the process

noise is introduced to the nucleation rate and the growth rates in the directions of the (110)

and (101) faces as follows:

B(σ) = B̄(σ)+wB(σ), G110(t) = Ḡ110(t)+wG110(t), G101(t) = Ḡ110(t)+wG110(t)

(8.18)

where B̄(σ), Ḡ110(t), and Ḡ101(t) are the nominal nucleation rate and the growth rates

in the directions of the (110) and (101) faces, and wB(σ), wG110(t), and wG101(t) are also

Gaussian white noise variables with zero mean and standard deviations of 2% of B̄(σ),

Ḡ110(t), and Ḡ101(t), respectively.

8.4.2 Drift-free operation and parametric drifts

In Section 8.3.1, an in-batch MPC is designed for the drift-free batch crystallization pro-

cess. The performance of the in-batch MPC is demonstrated by applying it to a drift-free

closed-loop simulation with noise under nominal (i.e., no drifting) operation conditions

where Fig. 8.2 shows the trajectory of the real-time in-batch measurements of T (t) and

C(t) and Table 8.4 shows the post-batch measurements of ⟨α(t)⟩, M0(t), ⟨h110(t)⟩, and

⟨h101(t)⟩ at t = 18 hours.

Note that under drift-free operating conditions, the production of crystals with a shape

distribution which is very close to a desired set-point value, αset = 0.89, is achieved. The

parametric drifts considered in this work and their magnitudes are given in Table 8.5.

Specifically, the expressions for B, G110, G101, and S are multiplied by the values cor-
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Figure 8.2: Profiles of the protein solute concentration and of the crystallizer temperature

with time during batch crystallization under nominal (drift-free) operating conditions, for

the growth rate ratio set-point values αset = 0.89.
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⟨α⟩ M0 ⟨h110⟩ ⟨h101⟩

0.895 384000 174 µm 185 µm

Table 8.4: Post-batch measurements for the batch crystallization process under drift-free

closed-loop operation at t = 18 hours.

Types % change from nominal value

ρc in mass balance, Eq. 8.4 −10%

U j in energy balance, Eq. 8.5 −10%

G110 rate, Eq. 8.10 −30%

G101 rate, Eq. 8.11 −23%

Nucleation rate, Eq. 8.1 +40%

Solubility, Eq. 8.3 +10%

Table 8.5: Magnitude of parametric drift for each variable

responding to the % change presented in Table 8.5 (e.g., multiply Eq. 8.10 by 0.7 in order

to model the parametric drift described in Table 8.5 for G110).

8.4.3 Preparatory stage of PDDI

In the preparatory stage, we simulate batch runs using the process model with noise under

the MPC with the nominal process model. Then, these runs are used along with the same

type of simulations for batch runs but without noise to get the threshold values which are

mainly attributed to the effect of the noise in the process model. Specifically, the maximum
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value of each variable throughout the batch run is chosen as the threshold value for each

variable, rx,max, and they are presented as follows:

rC,max = 1.4 mg/cm3

rT,max = 1.1 ◦C

r⟨α⟩,max = 0.021

rM0,max = 64000

r⟨h110⟩,max = r⟨h101⟩,max = 10 µm

(8.19)

Signatures for each parametric drift are also determined based on these threshold values.

First, in-batch measurements are used for detection and isolation of parametric drifts at the

end of a batch run. Specifically, a parametric drift is detected if rx(tx)> rx,max for x∈{C,T}

where tx is the first time rx of the variable x exceeds the threshold value rx,max. Depending

on whether the residual for C or T exceeds its threshold first, the process signature for a

parametric drift in the variable x, W x,in = [WC;WT ], is built as follows:

tC > tT → [WC;WT ] = [1;0] (8.20a)

tC < tT → [WC;WT ] = [0;1] (8.20b)

As a result, the possible candidates for parametric drifts can be divided into two subgroups

based on their in-batch process signatures, W x,in, as follows:

WC,in =W S,in =W Nu,in = [1;0]

W T,in =W G110,in =W G101,in = [0;1]

(8.21)

If tC = tT , the in-batch measurements are not able to be used for the isolation of para-

metric drifts. Then, the post-batch measurements (e.g., ⟨α⟩, M0, ⟨h110⟩, ⟨h101⟩) are used
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to compute the post-batch signature for a parametric drift in the variable x, W x,post =

[W⟨α⟩,WM0 ,W⟨h110⟩,W⟨h101⟩], as described below:

rx > rx,max → Wx = 1 (8.22a)

rx ≤ rx,max → Wx = 0 (8.22b)

for x ∈ {⟨α⟩,M0,⟨h110⟩,⟨h101⟩}. Note that it does not matter which residual exceeds its

threshold value first because all residuals exceed their thresholds at t = 18 hours. For ex-

ample, if we simulate a batch run with a parametric drift in the solubility curve and observe

that rx > rx,max for ⟨α⟩, ⟨h110⟩, and ⟨h101⟩ only, we obtain the post-batch process signature

for the parametric drift in the solubility curve, W S,post = [1;0;1;1]. In this work, however,

all residuals exceed their thresholds and thus all signatures are identical as follows:

WC,post =W S,post =W Nu,post =W T,post =W G110,post =W G101,post = [1;1;1;1] (8.23)

Therefore, it is not possible to further isolate parametric drifts based on the post-batch mea-

surements (i.e., the post-batch measurements do not provide any information for isolation

of parametric drifts). Instead, once we have selected two subgroups using the in-batch

measurements (cf. Eq. 8.21), we will run simulations for the remaining drift candidates

one by one to find the one that best matches the in-batch and post-batch measurements.

8.4.4 Post-batch stage of PDDI

In the post-batch stage of the proposed PDDI, we compute the residuals by calculating the

difference between the time profiles of the states obtained through in-batch and post-batch
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measurements from the time profiles of the states obtained from the drift-free simulation

with noise used in the preparatory stage above. Then, we compare the residuals with sig-

natures obtained in the preparatory stage for each parametric drift, and an optimization

problem is solved to isolate the parametric drift and to estimate the magnitude of the para-

metric drift. Next, the batch process model used in the MPC for the next batch is updated.

Parametric drift in solubility

In the first scenario considered in this work, there is a parametric drift in the solubility equa-

tion, which results in crystals that do not meet the desired product quality. Specifically, a

parametric drift, such as a change in the pH level of a feedstock container, is introduced at

the beginning of the batch run such that the solubility is increased by 10% for a given tem-

perature level. As a result, the set of optimal jacket temperatures computed by the in-batch

MPC using the nominal process model will not drive the temperature in the crystallizer to a

desired value because of the mismatch between the actual batch process and the solubility

model used in the in-batch MPC.

Types r⟨α⟩ rM0 r⟨h110⟩ r⟨h101⟩

no PDTC 0.17 128000 40.1 µm 34.8 µm

Table 8.6: Residuals based on the post-batch measurements obtained at t = 18 hours for

the batch crystallization process with a parametric drift in the solubility equation.

We now look at how the PDDI system responds to the same parametric drift in the solu-
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Figure 8.3: Residual profiles of the protein solute concentration, rc, and of the crystallizer

temperature, rT , with time during batch crystallization in response to a parametric drift in

the solubility equation, Eq. 8.3, under the MPC scheme with the nominal process model,

for the growth rate ratio set-point value αset = 0.89.
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bility equation. During batch-to-batch operations, the PDDI system performs two actions.

First, it computes the residuals rC and rT at the end of each batch using in-batch mea-

surements of those variables. If the residuals exceed their thresholds, a parametric drift is

detected and isolated by comparing its in-batch process signature with the parametric drift

signatures presented in Eq. 8.21. Specifically, the detection of a parametric drift is most

evident in Fig. 8.3 and Table 8.6 where the residuals rc(t) and rT (t) exceed their thresh-

olds at t = 15.2 and t = 16 hours while r⟨α⟩(t), rM0(t), r⟨h110⟩(t), and r⟨h101⟩(t) exceed their

threshold values at t = 18 hours. The resulting in-batch process signature, [1;0], coincides

with the signatures for parametric drifts in the solubility curve, mass balance parameters,

and nucleation rate (cf. Eq. 8.21). Since in this work the post-batch measurements do not

provide any information for isolation of the parametric drift, the second action of the PDDI

scheme is to find the one that best matches the in-batch and post-batch measurements.

Assuming only one parametric drift occurs in a single batch run, the magnitude of each

parametric drift is computed by solving Eq. 8.16 for γs, γC, and γnu separately. As a result,

the correction parameter for the solubility equation is successfully computed providing the

best match with the prespecified parametric drift, which is γs = +10%. This information

is used to update the model of the MPC system to deal with the persistent parametric drift

in the solubility that would have an effect on the product quality in the next batch run. The

performance of the successful model parameter updating at the next batch run can be seen

in Fig. 8.4 and Table 8.7 where the residuals obtained by the multiscale simulations under

the PDTC scheme remain far below their threshold values.
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Figure 8.4: Residual profiles of the protein solute concentration, rc, and of the crystallizer

temperature, rT , with time during batch crystallization in response to a parametric drift in

the solubility equation, Eq. 8.3, under the PDTC scheme with γs, for the growth rate ratio

set-point value αset = 0.89.
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Figure 8.5: Comparison of the residual profiles of the protein solute concentration, rc, and

of the crystallizer temperature, rT , with time during batch crystallization in response to a

parametric drift in the solubility equation, Eq. 8.3, under the PDTC scheme with γs and

the PDTC scheme with Γ (i.e., Γ = [γ110, γ101, γT , γC, γnu, γs]), for the growth rate ratio

set-point value αset = 0.89.
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Types r⟨α⟩ rM0 r⟨h110⟩ r⟨h101⟩

PDTC with γs 0.0047 32000 1.95 µm 1.72 µm

PDTC with Γ 0.019 92000 12.1 µm 8.51 µm

Table 8.7: Comparison of the residuals based on the post-batch measurements for the

batch crystallization process with a parametric drift in the solubility equation under PDTC

scheme with γs and PDTC scheme with Γ at t = 18 hours.

For the purpose of testing the closed-loop performance if additional correction factors

are used, the control performance of the PDTC with γs is compared with that of the PDTC

with Γ where all six correction factors are used to compensate for the parametric drift in

the solubility equation. In Fig. 8.5 and Table 8.7, the residuals obtained under the PDTC

with γs are smaller than those under the PDTC with Γ indicating that the former scheme

estimates the effect of the process drift in the solubility better than the latter scheme. It is

also apparent in Fig. 8.6 that the crystal shape distribution obtained at t = 18 hours under

the PDTC with γs is more narrow and closer to the set-point value than that under the PDTC

with Γ.

Parametric drifts in G110 and G101 growth rates

In this scenario, we look at simultaneous parametric drifts in the growth rates in the direc-

tions of the (110) and (101) faces by multiplying the expressions for G110 and G101 (cf.

Eqs. 8.10 and 8.11) by 0.7 and 0.77, respectively. This is a very typical parametric drift in

the crystallization process because the presence of impurities will drop the overall crystal
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Figure 8.6: The normalized crystal shape distribution obtained from the kMC simulations

under the PDTC scheme with γs is compared with that of the PDTC scheme with Γ (i.e.,

Γ = [γ110, γ101, γT , γC, γnu, γs]) for the batch crystallization process with a parametric drift

in the solubility equation, Eq. 8.3. The desired set-point value for the average crystal shape

is αset = 0.89.
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growth rates inhibiting the attachment of molecules of interest to the crystal surface. Fur-

thermore, an impurity may favor one face over another which could cause the growth rate

of one face to drop more than the growth rate of the other face. When there is no PDTC

implemented, we see in Fig. 8.7 that the values of the rC(t) and rT (t) increase progres-

sively because of the parametric drifts in the G110 and G101 equations and eventually they

exceed their thresholds at t = 17.7 and t = 15.2 hours, respectively. As a result, the in-batch

process signature of [0;1] is obtained, indicating that there is a chance of a parametric drift

in the mass balance parameters and growth rates in the directions of the (110) and (101)

faces. The presence of a parametric drift is also apparent in Table 8.8 because the residuals

r⟨α⟩(t), r⟨h110⟩(t), and r⟨h101⟩(t) have exceeded their thresholds at t = 18 hours.

Types r⟨α⟩ rM0 r⟨h110⟩ r⟨h101⟩

no PDTC 0.088 96000 21.1 µm 16.6 µm

Table 8.8: Residuals based on the post-batch measurements obtained at t = 18 hours for

the batch crystallization process with parametric drifts in the growth rates in the direction

of the (110) and (101) faces.

Then, we solve Eq. 8.16 to determine which of the remaining three candidates best

matches the in-batch and post-batch measurements and its magnitude. Specifically, we

used both γ110 and γ101 at the same time because it is very common in practice that growth

rates in the directions of more than one face are affected by, for example, impurities. Then,

the proposed PDTC scheme is applied to the next batch run to deal with the persistent para-

metric drifts in the G110 and G101 equations. The control performance is shown in Fig. 8.8
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Figure 8.7: Residual profiles of the protein solute concentration, rc, and of the crystallizer

temperature, rT , with time during batch crystallization in response to parametric drifts in

the crystal growth rates in the directionss of the (110) and (101) faces, Eqs. 8.10 and 8.11,

under the MPC scheme with the nominal process model, for the growth rate ratio set-point

value αset = 0.89.
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Figure 8.8: Comparison of the residual profiles of the protein solute concentration, rc, and

of the crystallizer temperature, rT , with time during batch crystallization in response to

parametric drifts in the growth rates in the directions of the (110) and (101) faces, Eqs.

8.10 and 8.11, under the PDTC scheme with γ110 and γ101, for the growth rate ratio set-

point value αset = 0.89.
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and Table 8.9, which show that under the PDTC scheme, all residuals stay far below their

threshold values. The improvement in performance resulting from the parameter estimation

is noticeable when the residuals in Tables 8.8 and 8.9 are compared.

As in the previous case, a comparative study between the PDTC with γ110 and γ101 and

the PDTC with Γ is made and shown in Fig. 8.10 and Table 8.9, where the former control

scheme outperforms the latter in handling the effect of the parametric drifts in the G110 and

G101 parameters. This may be because the PDTC with Γ may have degenerate solutions

due to its limited access to the crystal product quality. As a result, it is shown in Fig. 8.9

that crystals produced under the PDTC with γ110 and γ101 are much closer to the desired

crystal shape set-point value than those produced under the PDTC with Γ.

Types r⟨α⟩ rM0 r⟨h110⟩ r⟨h101⟩

PDTC with γ110, γ101 0.0088 32000 2.21 µm 2.65 µm

PDTC with Γ 0.028 40800 6.28 µm 9.45 µm

Table 8.9: Comparison of the residuals based on the post-batch measurements for the batch

crystallization process with a parametric drift in the growth rates in the directions of the

(110) and (101) faces under the PDTC scheme with γ110 and γ101 and the PDTC scheme

with Γ at t = 18 hours.

Due to the persistent parametric drift and the nature of the batch crystallization process,

it is often the case that the original set-point value becomes physically inaccessible though

the MPC continues to attempt to regulate the system as closely as possible to the original

set-point value. For example, if G101 is increased by 15% (i.e., the growth rate curve for
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Figure 8.9: The normalized crystal shape distribution obtained from the kMC simulations

under the PDTC scheme with γ110 and γ101 is compared with that of the PDTC scheme with

Γ (i.e., Γ= [γ110, γ101, γT , γC, γnu, γs]) for the batch crystallization process with parametric

drifts in the growth rates in the directions of the (110) and (101) faces, Eqs. 8.10 and 8.11.

The desired set-point value for the average crystal shape is αset = 0.89.
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Figure 8.10: Comparison of the residual profiles of the protein solute concentration, rc,

and of the crystallizer temperature, rT , with time during batch crystallization in response

to parametric drifts in the growth rates in the directions of the (110) and (101) faces, Eqs.

8.10 and 8.11, under the PDTC scheme with γ110 and γ101 and the PDTC scheme with Γ

(i.e., Γ = [γ110, γ101, γT , γC, γnu, γs]), for the growth rate ratio set-point value, αset = 0.89.
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Figure 8.11: The solid and dashed lines show the growth rates obtained from the kMC

model in the directions of the (110) and (101) faces, respectively, which are calibrated with

the experimental data at 4% NaCl and pH= 4.6 taken from [31]. The arrow indicates the

curve for the growth rate in the direction of the (101) face when it is increased by 15%.
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Figure 8.12: Comparison of the profiles of the protein solute concentration and of the

crystallizer temperature with time during batch crystallization in response to a parametric

drift in the growth rate in the direction of the (101) face, Eq. 8.11, under the PDTC scheme

with γ101 for the growth rate ratio set-point value αset = 0.89.
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Figure 8.13: The normalized crystal shape distribution obtained from the kMC simulations

under the PDTC scheme with γ101 for the batch crystallization process with a parametric

drift in the growth rate in the direction of the (101) face, Eq. 8.11. The desired set-point

value for the average crystal shape is αset = 0.89.

the G101 has shifted in the direction of the arrow in Fig. 8.11), the optimal supersaturation

level required to achieve the set-point value, αset = 0.89, is also increased, resulting in

more rapid crystal growth and as a result more significant depletion in the protein solute

concentration. As shown in Fig. 8.12, the concentration may drop to a level which cannot

be increased by additionally lowering the jacket temperature because of the constraint on

the temperature of the crystallizer (cf. Eq. 8.14c). Therefore, crystals are produced with an

undesirably low aspect ratio, as shown in Fig. 8.13.

The proposed PDDI scheme can be applicable to other batch crystallization systems
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provided that both in-batch and post-batch measurements are available. More measure-

ments would enhance the performance of the proposed PDDI scheme. Furthermore, in the

case in which a first principles model is not available for MPC design, the proposed PDDI

scheme can be coupled with a model used in MPC that is derived from process data (i.e., a

data-based model) using system identification techniques.

8.5 Conclusions

In this work, a PDDI scheme that consists of a preparatory stage before batch-to-batch oper-

ation and a post-batch stage during batch-to-batch operation was proposed for the detection

and isolation of batch-to-batch parametric drifts in a batch crystallization process. In the

preparatory stage, the threshold values and signatures for each parametric drift were com-

puted without process measurements. Then, during batch-to-batch operation, this scheme

computed residuals by evaluating the absolute value of the difference between the process

variables obtained from the drift-free simulation with noise from the process variables ob-

tained through post-batch process measurements (e.g., number of crystals, average crystal

size and shape) as well as in-batch process measurements (e.g., protein solute concentra-

tion, temperature in the crystallizer). The residuals were compared with thresholds and

signatures obtained in the preparatory stage for the detection and isolation of a parametric

drift. Subsequently, the magnitude of the batch-to-batch parametric drift was estimated

by the PDDI system and it was used to update the parameters of the batch process model

which was used in the in-batch MPC to compute a set of optimal jacket temperatures for
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the production of crystals with a desired shape distribution in the next batch. Using closed-

loop simulations, the batch-to-batch process model parameter variations in the solubility

and crystal growth rates were properly handled by the proposed PDTC scheme. Further-

more, the performance of the proposed PDTC scheme was evaluated with respect to the

number of correction parameters used to estimate various parametric drifts.
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Chapter 9

Multiscale, multidomain modeling and

parallel computation: application to

crystal shape evolution in crystallization

9.1 Introduction

The modeling of multiscale systems has made fundamental understanding and quantita-

tive prediction possible for processes with complex behavior and product characteristics,

and it has tremendous potential to significantly contribute to the chemical, pharmaceutical

and microelectronics industries [81, 61, 124, 25]. Motivated by the advances in high-

performance computing power, an increasing interest in multiscale, multidomain modeling

has been triggered. Moreover, chemical engineers, among other scientists and engineers,
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have potential to impact the field of multiscale process modeling due to our unique disci-

pline ranging from molecular modeling to large-scale chemical process modeling.

More specifically, kinetic Monte Carlo (kMC) modeling has received growing attention

for dynamic simulations of microscopic/mesoscopic process behavior. The basic principle

of kMC is that in order to efficiently simulate a dynamical system with a variety of different

rates of processes (e.g., adsorption, migration, and desorption of molecules on a surface

in crystal growth), at each step in the simulation, the next process is determined based

on a probability proportional to the rate for that process, and after an event is executed,

the rates for all processes are updated. The time of the next event is determined by the

overall rate for the microscopic surface processes and a suitably defined random number.

The standard kMC algorithm is a serial algorithm in a sense that one event can occur at

each time step. For many problems of practical interest, however, one needs to simulate

systems with larger temporal and spatial scales than the ones that can be simulated using

a serial algorithm and available computing power. For these problems, motivated by the

recent efforts to develop parallel computation frameworks for the simulation of multiscale

process models [6, 39, 5, 18, 97, 49, 47, 114, 84, 4], it would be desirable to develop

efficient parallel kMC algorithms so that many processors can be used simultaneously in

order to accomplish realistic computations over extended temporal and spatial scales.

One of the most frequent uses of parallel architectures is to simply perform independent

simulations of a model under different conditions on different processors. Additionally, for

very large problems, parallel architectures can be used to improve the speed of the sim-
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ulation dramatically by decomposing the system into different components/domains and

assigning each component/domain to a different processor. When we design a parallel pro-

gram, it is important to compare the relative order of magnitudes of the communication

time and the computation time. For example, if the size of the individual tasks to be ex-

ecuted is too small, the time used to communicate information between processors may

not be small compared to the time needed by each processor for computation. In such a

case, the performance may actually worsen as processors are added. On the other hand,

for microscopic systems with long range molecular interactions, most of the computational

effort goes into the calculation of energy changes, and then the communication overhead is

much less of a problem and is minimal relative to the computation time.

Recently, there has been a great deal of work on the development of rigorous asyn-

chronous parallel algorithms for equilibrium MC simulation (eMC) [105, 94, 95, 75].

However, there has been surprisingly little work completed on parallel algorithms for

kMC simulation. This is because the interval between successive events in kMC algo-

rithms depends on the surface micro-configuration (for example, in evolution of surface

micro-configuration in this film growth and crystal growth), and thus, it requires additional

bookkeeping to keep track of the rates (probabilities for each event to be selected). In

particular, for systems such as crystallization and thin film deposition, surface processes

play a key role, and thus, the possible rates or probabilities for events can vary by several

orders of magnitude. Several contributions have been made to the development of mul-

tiscale models used to simulate the deposition of thin films for a variety of applications
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[74, 50, 99, 106, 102], while the development of efficient parallel algorithms for kMC

simulations remains a challenging problem.

Motivated by this, in a previous work [27], we explored a hybrid kMC algorithm orig-

inally developed for the growth of silicon films by [121]. To improve computation effi-

ciency, the surface migration was computed separately from the other microscopic pro-

cesses on the thin film surface. The choice to deal with the surface migration separately is

made in an effort to improve computation efficiency. More specifically, due to the high fre-

quency of surface migration events relative to other surface processes, a brute force kMC

algorithm would spend more than 99% of computation time on migration alone. The simu-

lation of the surface migration process is decoupled from the standard kMC implementation

and separately executed using a one-dimensional lattice random walk process [27]. As a

result, significant computation time savings were achieved with a very small compromise

of the accuracy of the results.

In this work, we have attempted to directly deal with the problem of reducing compu-

tational requirements without compromising the accuracy of established chemical models

via a parallelized kMC. We show that choosing an appropriate decomposition strategy is

the key to reducing communication among processors and it is ideally suited for parallel

implementation without compromising precision. Specifically, the message passing inter-

face (MPI) settings that use the information passing between the cores are selected and

are used following a “manager-worker” scheme: there is a processor (i.e., manager) that is

responsible for partitioning a problem (e.g., kMC model to simulate batch crystallization
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system) into partitions (e.g., crystal growth of a group of crystals) and allocating the parti-

tions to processors (i.e., workers). Workers are responsible for solving assigned partitions,

and when a worker completes the simulation of a partition, it notifies the manager. Then,

the manager allocates the worker a new task.

9.2 Parallelized computations

9.2.1 Motivation

There are three reasons why one might want to use parallelized computation. Firstly, one

may want to speed up simulations by using multiple processors. More specifically, paral-

lelization can reduce the simulation time required for the simulation of a large system that

can be done on a single processor. Secondly, one might want to do many simulations at

different conditions in order to, for example, find good model parameters by testing pa-

rameters over a large range of different parameter values. We can also reduce the noise

in a stochastic method such as kMC simulations by running a simulation multiple times.

The process of creating a parallel program from a serial one consists of three steps: 1)

decomposition of the original serial computation problem into small tasks, 2) assignment

of tasks to processors, and 3) orchestration of the communication among processors and

synchronization at each time step [28]. Below we discuss these three tasks, as they pertain

to parallelized simulation of multiscale models.
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9.2.2 Decomposition

Decomposition concerns how to break up or divide a computation problem into a collection

of tasks that may be executed concurrently. This does not simply imply a straightforward

division of a computation problem into a number of tasks equal to the number of avail-

able computers. In some cases, the number of tasks can vary dynamically as the program

executes, which is known as an irregular decomposition problem [28]. The main objec-

tive in decomposition is to expose enough concurrency to keep all processors busy at all

times, yet not decompose so much that the overhead of managing the task’s decomposition

through communication between processors becomes substantial compared to the compu-

tation time. In parallel computations, the theoretical maximum speedup using multiple

processors can be computed via Amdahl’s Law [28]. More specifically, if P is the fraction

of an original serial program that can be parallelized, and 1−P is the fraction of a program

that cannot be parallelized (thus, remain serial), then the maximum speedup that can be

achieved via parallelization using N processors can be computed as follows:

S(N) =
1

(1−P)+ P
N

(9.1)

where S is the maximum speedup. If some portions of a program’s execution do not have

as much concurrency as the number of processors used, then some processors will have to

be idle for those portions and speedup will be suboptimal.

Initially, the parallel computations may be slower than the serial ones, because of com-

munication and synchronization overheads that are not incurred by the sequential program.
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After the parallel program overcomes this overhead, it provides improved performance as

the number of processors increases. Eventually, there is a tail-off region where perfor-

mance does not substantially increase as the number of processors increases. This region

occurs because the number of available tasks obtained after the decomposition step can

be bounded. Eventually, adding computers does not improve computational performance,

because there is not sufficient work to keep all processors busy. Therefore, decomposi-

tion should provide a number of tasks considerably greater than the number of processors

available.

There are many decomposition techniques. For example, domain decomposition is

used to divide up the data of a program and operate on the parts concurrently (e.g., matrix

calculations, inner product calculations) while functional decomposition refers to dividing

up the function (e.g., computing the integral of a function f (x) on the closed interval [a,b]).

Furthermore, irregular problem decomposition refers to decomposition in the case that the

program structure evolves dynamically as the program executes and cannot be determined a

priori (e.g., flow dynamics, particle flow simulations). The size of the tasks in the irregular

decomposition problem may vary widely, and thus, a method of load balancing must be

employed to keep computers busy. More detailed discussion on the load balancing scheme

will be covered in the following section in the context of parallelized computation of a

multiscale model of a batch crystallization process.
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9.2.3 Assignment

Assignment refers to the mechanism by which tasks will be distributed among processors.

The primary goal of the assignment is to balance the workload among processors to reduce

communication between processors and the overhead of managing the assignment. Specif-

ically, the workload to be balanced includes computation (i.e., task execution), input/output

data access, and communication between processors. The simplest assignment strategy is

to divide the total task number by the number of cores available; thus, consecutive parti-

tions are packed into the same processor (i.e., packed allocation). The other widely used

strategy is to use a modulus function such as the group number modulus is equal to the

number of processors available (i.e., round-robin allocation).

In particular, there are several load balancing strategies to deal with irregular problems

where the size of each task changes dynamically. Specifically, bin packing is a technique

used in cases where the time required to run a task is proportional to the length of the task

where the task size grows with time. The goal is to keep the computation load at each

processor balanced.

The manager-worker scheme is a centralized scheme that involves a manager processor

and a collection of worker processors. The manager processor is responsible for assigning

tasks decomposed from an original problem to worker processors. The worker processors

are responsible for processing tasks and are generally independent processors. When a

worker processor completes the assigned task, it notifies the manager and the manager

allocates it a new task.
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Specifically, there are two kinds of manager-worker schemes: synchronous and asyn-

chronous. For the synchronous scheme, before initiating their following task executions,

all processors wait until they have received all of the data computed by other processors

at the previous task execution step. On the other hand, for the asynchronous scheme, all

of the processors perform their computations without waiting for the data computed by

other processors (i.e., they do not account for the progression of the other processors). In

general, the synchronous manager-worker scheme is suitable for small homogeneous clus-

ters with fast communication whereas the asynchronous manager-worker scheme provides

better performance on large-size heterogeneous clusters. Also, when the processors have

significantly different performance from each other, the speed of a synchronous manager-

worker scheme is limited by the slowest processors. In this case, the asynchronous scheme

achieves better performance than the synchronous one.

9.2.4 Orchestration

To execute their assigned tasks, processors need mechanisms to name and access data and

to communicate and synchronize with other processors. Orchestration uses available mech-

anisms to accomplish these goals correctly and efficiently. The major goal in orchestration

is to reduce the cost of the communication and synchronization (i.e., the overheads of par-

allelism management) by preserving locality of data and scheduling tasks so that those on

which many other tasks depend on will be located at a position which is easily accessible

by many other processors.
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The message passing interface (MPI) is one of the most widely used techniques to deal

with communication and synchronization between processors in order to solve chemical

engineering problems on parallel processors. For example, suppose that a reaction occurs

in a batch process, and due to imperfect mixing, the spatial concentration distribution is not

uniform throughout the batch system. Next, we can consider that each core runs a kMC

code for a time step of a parallel computer to compute the amount of reactant consumed

by a reaction in a particular spatial domain of the continuous phase. Then, each core sends

these values to the manager core via an MPI data manager, and the manager core adds up

these values to compute the total amount of solute depletion over the entire spatial domain

in the continuous phase. Lastly, the manager core sends back updated values to each core

(i.e., each spatial domain). This sequence is repeated until the specified length of time

has been completed. The output files store all the simulation results that belong to the

individual kMC.

9.3 Multiscale batch crystallization process model and par-

allelization

In a crystallization process, there is large disparity of time and length scales of phenomena

occurring in the continuous phase and on the crystal surface. For example, the solution

density is not constant when the volume containing the medium of the continuous phase

keeps shrinking. In this case, it is not valid to assume that the crystal surface is a contin-
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uum, and furthermore, it is computationally impossible to model the whole system from a

molecular point of view.

Motivated by this, we present an integrated multiscale modeling and parallel com-

putation framework for crystallization processes that elucidates the relationship between

molecular-level processes like crystal nucleation, growth, and aggregation and macroscopically-

observable process behavior and allows computing optimal design and operation condi-

tions. The multiscale framework encompasses: a) eMC modeling for computing solid-

liquid phase diagrams and determining initial crystallization conditions that favor crystal

nucleation, b) kMC modeling for simulating crystal growth and aggregation and predict-

ing the evolution of crystal shape distribution, and c) integrated multiscale computation si-

multaneously linking molecular-level models (e.g., kMC simulation) and continuous-phase

macroscopic equations (e.g., mass and energy balance equations), covering the entire batch

crystallization system. Specifically, Fig. 9.1 schematically illustrates information is ex-

changed between models used to describe the molecular, microscopic, and macroscopic

levels.

9.3.1 Molecular model

In a previous work, we applied the eMC method for the modeling of crystallization sys-

tems at molecular level to calculate suitable phase diagrams. Here we briefly review this

approach to demonstrate how the molecular level results are used in the multiscale model

of the crystallization process. There are many types of Monte Carlo moves such as particle
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Figure 9.1: Schematic representation of multiscale modeling for batch crystallization pro-

cess.

displacement, volume changes, and particle switching. Additionally, periodic boundary

conditions are used to approximate the infinite dimensional system with a model with a fi-

nite number of lattice sites. Then, the probability that the system transitions from a current

state m to another state n, αm→n, is computed following the standard Metropolis algorithm

as follows:

αm→n = min
{

1,exp
(
−En −Em

kBT

)}
(9.2)

where En and Em are the energies of the system in states n and m, respectively, kB is the

Boltzmann constant, and T is the temperature in Kelvin. To compute the energy of the

system, we develop a model to compute the interactions between the particles. A Lennard-

Jones type potential is used as follows:

U = 4ε
[(σ

r

)a
−
(σ

r

)b
]

(9.3)
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the batch.

where U is the potential energy between two particles, σ is the radius of the particles, r

is the distance between the particles, ε is the depth of the potential well, and a and b are

model parameters to be determined. Please note that En and Em in Eq. 9.2 are the sum of

U in Eq. 9.3 over all possible pairwise combinations of particles. Then, we measure some

properties (e.g., solubility) of the material through experiments, where the measurement is

available for a small region, and use them to determine the model parameters in Eq. 9.3 that

provide a good agreement between simulated and experimental data. We use Eq. 9.3 with

the known parameters to calculate the phase diagram (e.g., see Fig. 9.2 which is taken from

[96]) to predict the conditions under which a nucleation process is favored and to determine

suitable initial nucleation and growth conditions to initialize batch crystallization.
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9.3.2 Microscopic model

The solid-on-solid model, which is one of the most widely used techniques to simulate

crystal growth accounting for crystal surface microstructure, is employed in this work to

model the growth of lysozyme crystals as a specific example. Each event of our kMC

simulation is chosen randomly based on the rates of the three surface microscopic phenom-

ena. Please note that the following description of the surface kinetics for the present model

follows closely that of [60] which is based on [32]

The adsorption rate is independent of crystal surface micro-configuration and is defined

as

ra = K+
0 exp

(
∆µ
kBT

)
, (9.4)

where K+
0 is the attachment coefficient, kB is the Boltzmann constant, T is the temperature

in Kelvin, and ∆µ = kBT ln(C/s), where C is the protein solute concentration and s is its

solubility and ∆µ is the crystal growth driving force. It is noted that ra ∝ C.

The desorption rate of a surface particle depends on its local environment. Thus, the

desorption rate of a lattice site with i nearest neighbors is given by

rd (i) = K−
0 exp

(
−i

Epb

kBT

)
= K+

0 exp
(

ϕ
kBT

− i
Epb

kBT

)
, (9.5)

where K−
0 is the desorption coefficient, i is the number of bonds, ϕ is the binding energy

per molecule of a fully occupied lattice, and Epb is the average binding energy per bond.

The second equality in Eq. 9.5 holds true because of the relationship between K−
0 and K+

0 ,

which can be found in [66] Specifically, surface particles with less nearest neighbors have
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a higher desorption rate. The migration rate is defined similar to the desorption rate in [60]

as shown below

rm (i) = K+
0 exp

(
ϕ

kBT
− i

Epb

kBT
+

Epb

2kBT

)
. (9.6)

The migration rate is the desorption rate multiplied by the extra exponential term exp
(

Epb
2kBT

)
to account for the fact that the migration rate is higher than the desorption rate.

In this work, simulations with hundreds of different Epb and ϕ values were performed

in parallel until satisfactory agreement was achieved between the growth rate computed by

the kMC simulation and the experimental growth rates obtained from the literature [32].

From this, we determined a set of model parameters as follows: Epb/kB = 1077.26 K and

ϕ/kB = 227.10 K for the (110) crystal face, and Epb/kB = 800.66 K and ϕ/kB = 241.65 K

for the (101) crystal face, and K+
0 = 0.211 s−1.

9.3.3 Macroscopic model

The following mass and energy balance equations are employed to compute the dynamic

evolution of the protein solute concentration and temperature in the batch crystallization

process with time:

dC
dt

=− ρc

Vbatch

dVcrystal

dt
, C(0) = 48 mg/mL (9.7)

dT
dt

=− ρc∆Hc

ρCpVbatch

dVcrystal

dt
−

U jA j

ρCpVbatch

(
T −Tj

)
, T (0) = 15◦C (9.8)
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ρc crystal density 1400 mg/cm3

∆Hc enthalpy of crystallization -4.5 kJ/kg

ρ(t) density of the continuous phase 1000 + C(t) mg/cm3

Cp specific heat capacity 4.13 kJ/K ·kg

Vbatch volume of the crystallizer 1 L

A j contact area of the crystallizer wall and jacket 0.25 m2

U j overall heat transfer coefficient 1800 kJ/m2·h ·K

Table 9.1: Parameters for the batch crystallization process model.

where Vcrystal is the total volume of crystals growing in the crystallizer, and Tj is the jacket

temperature (i.e., manipulated input). The process parameter values are shown in Table

9.1.

In the scale-up of a crystallization process, agitation is required in order to maintain

the crystal phase in suspension. The resulting shear force induces aggregation processes

which have a significant impact on the quality of crystal products as they decrease the total

number of crystals and increase the average particle size. Motivated by these considera-

tions, aggregation is taken into consideration in the modeling of large-scale crystallization

processes.

More specifically, we assume that the continuous phase is sufficiently dilute that only

binary aggregation between two particles is possible. Furthermore, according to the Kol-

mogorov length analysis [65], shear forces are the major contribution to the aggregation

of crystals considered in this work. The corresponding kernel (cf. Eq. 9.9) can be used
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to calculate the number of aggregation events taking place during the sampling time ∆ in

terms of the aggregation kernel β
(
Vi,Vj

)
, the batch crystallizer volume Vbatch, the collision

efficiency α
(
Vi,Vj

)
, and the concentrations of particles of volumes Vi and Vj as follows:

Ni j = α
(
Vi,Vj

)
β
(
Vi,Vj

)
mim jVbatch∆ 1 ≤ i, j ≤Ctotal (9.9)

where mi is the number concentration (i.e., the number of particles of volume Vi per unit

volume). The number Ctotal indicates the number of classes, and ∆ = 0.5 seconds (i.e., the

collision probability is computed every 0.5 seconds). The rate of formation of aggregates

of volume Vk from the collision of particles of volumes Vi and V j is 1
2 ∑Vi+V j=Vk

Ni j where

the summation considers all the different combinations of aggregation which result in Vk as

follows:

Vi +Vj =Vk

Within the simulation, it is assumed that the shape of the crystal resulting from aggrega-

tion is identical to that of the larger crystal participating in the aggregation event. The

reader may refer to [67] for more extensive simulation studies regarding the influence of

aggregation on the shape distribution of crystals obtained at the end of the batch process.

9.3.4 Parallel computation of multiscale model

The simulation of the crystal growth process for crystals formed via nucleation is executed

in parallel by using MPI through which we are able to divide the crystals between multiple

cores by achieving the distribution of the computational cost and memory requirements.
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More detailed discussion on the step-by-step parallelization of the crystallization process

multiscale model that incorporates nucleation, crystal growth, and aggregation processes

will be discussed below.

Decomposition

We can decompose the nucleation and crystal growth processes in a batch crystallization

system into collections of tasks where each task is the crystal growth of a nucleated crystal.

Furthermore, the time required to run one batch simulation can be further reduced by intro-

ducing a new variable Nrp to indicate the number of crystals represented by a single crystal

that is actually running on a core. If Nrp = 1000, a single crystal running in the simulation

will now represent 1000 actual crystals. Thus, we are only required to run 10 crystals in

the simulation to represent 10000 crystals, and as a result, we compromise the computation

time saving with the accuracy of the simulation results.

Assignment

More specifically, as soon as a crystal is nucleated, it will be assigned to one of the avail-

able cores, and it will grow to a larger crystal via the kMC simulation. Since crystals are

continuously nucleated until the end of the batch process (i.e., at some point in time, the

number of crystals growing in the crystallizer will exceed the number of cores), additional

crystals need to be assigned to each core throughout the kMC simulation, which makes this

an irregular problem where the total size of tasks assigned to each core grows with time.
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core crystal number crystal number

worker 1 1 n+1

worker 2 2 n+2

...
...

...

worker n n 2n

Table 9.2: The order that nucleated crystals are assigned to each core, assuming that there

are 2n crystals.

More specifically, nucleated crystals are assigned following the order described in Table

9.2 (i.e., crystal number modules is equal to the number of cores available). We note that

this is a number-based allocation assuming that all cores have identical processor speed and

memory.

The probability that an aggregation event takes place between two crystals with vol-

umes Vi and Vj during a time period can be calculated via Eq. 9.9. Next, the aggregation

event is executed when a random number generated in the interval [0,1) is less than the

collision probability. If an aggregation event occurs, we pick a crystal from each class i

and j, respectively, and the smaller crystal between those two crystals will be removed

from the kMC simulation while its volume will be added to that of the larger one, making

it an aggregate where its volume is equal to the total volume of the two crystals before the

aggregation event. This process applies to all possible pairwise combinations of crystal

volumes over the course of the entire batch crystallization simulation.
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Orchestration

Fig. 9.3 illustrates schematically how the information passing between the cores is man-

aged with the MPI settings in order to link the macroscopic model (i.e., mass and energy

balance equations for the continuous phase) to the microscopic model (i.e., kMC model).

The coupled simulation follows the “manager-worker” MPI computational scheme: there

is a core (i.e., manager) that is responsible for collecting the change in the total volume of

crystals assigned to each core (i.e., worker) at each time step required for parallel process-

ing, which corresponds to the amount of solute transported from the continuous phase to

the crystal surface. Then, the manager core computes the change in the total volume of the

crystals in the crystallizer at each time step and computes the protein solute concentration

C and the temperature T for the continuous phase in the crystallizer using mass and en-

ergy balance equations. The updated C and T will be sent back to the worker cores, and

those values at each core will remain identical until they are updated again after a time

step. Then, the crystals assigned to each core will grow with an updated condition via kMC

simulations.

In the parallel computation, we only consider synchronous iterations and synchronous

communication (SISC). At each time step, all processors wait until they have received all

of the data computed by the other processors at the previous task execution step, before

beginning their following computations. The design of SISC parallelized code is quite

straightforward using the MPI setting. Please note that the SISC penalizes algorithms on

systems with a slow and heterogeneous cluster.
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Figure 9.3: Manager-worker parallel computation scheme for multiscale model of batch

crystallization process.

296



Pseudo-code

Algorithm 1 Parallel computation of the multiscale batch crystallization process model
for i = 1 → n do

if i == 1 then ◃ Manager core

1. assign nucleated crystals over ∆t to each core according to Table 9.2

2. compute ∆Vtotal(t) = ∑n
i=1 ∆Vi(t)

3. update C(t) and T (t) through Eqs. 9.7–9.8

4. compute the total number of collisions between crystals via Eq. 9.9

else ◃ Worker core

1. have crystals assigned to each core grow via Eqs. 9.4–9.6

2. compute ∆Vi(t) and send it to the manager core

end if

end for

Please note that ∆Vtotal(t) is the change in the total volume of crystals in the crystallizer

from t−∆t to t seconds, and ∆Vi(t) is the change in the total volume of crystals particularly

assigned to the core i from t −∆t to t seconds. The readers may refer to [68, 72, 73] for the

use of the parallelization scheme in different applications including the plug flow crystal-

lizer and the continuous stirred tank crystallizer with a fines trap and a product classification

unit.
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9.3.5 Results

In this work, the Hoffman2 cluster, which consists of 1200 nodes with a total of 13,340

cores and over 50 TB of memory, is used along with MPI settings for all of the simulations.

The memory on each node varies from 8 to 128 GB, and there are many types of CPUs

including Intel and AMD, with 8, 12, 16-core, respectively. Due to the variety of the CPU

types, if a small number of cores (e.g., 1, 2, 4, or 8 cores) are requested to the Hoffman2

cluster for the simulation of the multiscale model of the batch crystallization process, it

is possible to get one bad CPU that consists of many bad cores, which will result in poor

parallelization performance. To circumvent this issue, among the many CPU types in the

Hoffman2 cluster, the Intel-E5530 with 8 cores is specifically requested and used for the

construction of the plots and tables presented in this section.

It is presented in Table 9.3 that the simulation times required to complete a batch sim-

ulation decrease as the number of cores is increased. Also, Fig. 9.4 shows that as the

number of cores is doubled, the speedup achieved in comparison to the theoretical maxi-

mum speedup (i.e., the theoretical maximum speedup should be n times when n processors

are used) decreases, because of overhead costs generated by communication taking place

between multiple cores. Overall, it is clear that the batch crystallization process greatly

benefits from the use of MPI for the kMC simulations. Furthermore, we have compared

the concentration and temperature profiles obtained from the kMC simulations with dif-

ferent numbers of cores, and it is verified in Figs. 9.5 and 9.6 that the concentration and

temperature profiles obtained from the kMC simulations with ncores = 1 and ncores = 64 are
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Figure 9.5: Profile of the protein solute concentration with time obtained under the open-

loop operation of the batch crystallization process multiscale model for one core and sixty-

four cores.

identical. Therefore, we can conclude that the computation time saving is achieved by the

parallelized computations while the accuracy of the simulation results is maintained.

In the parallel computations, we might observe a super-linear speedup behavior (i.e.,

speedup is greater than n times when n processors are used), as is shown in Fig. 9.7. In

general, the super-linear speedup in low-level computations is caused by the cache effect

due to the different memory hierarchies of a modern computer [28]. More specifically, with

the larger accumulated cache size, more simulation tasks can fit into caches, and thus, the

memory access time required to reach the higher level (e.g., RAM) for additional memory

can be reduced significantly, which results in extra speedup on top of that which is achieved

by parallelizing the serial computations.
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Figure 9.6: Profile of the crystallizer temperature with time obtained under the open-loop

operation of the batch crystallization process multiscale model for one core and sixty-four

cores.
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ncores time (h) speedup (times) theoretical speedup (times)

1 34.97 1.00 1

2 17.63 1.98 2

4 8.98 3.89 4

8 4.71 7.44 8

16 2.47 14.18 16

32 1.38 25.28 32

64 0.92 38.15 64

Table 9.3: The time required to run a batch simulation and the speedup achieved by using

different numbers of cores. Please note that ncores is the number of cores and the speedup

is defined as t1
tn

, where t1 is the time the process takes on one core and tn is the time the

process takes on n cores.
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Figure 9.7: The speedup achieved by the parallel computation of the batch crystallization

process multiscale model under open-loop operation with the number of cores used for the

kMC simulation; super-linear speedup vs. ideal speedup are compared.
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In particular, when we do not have access to a sufficient number of identical CPUs, we

can still improve the computational efficiency of the parallelized computations by intro-

ducing a new variable Nrp (please refer to Section 9.3.4 for the definition of Nrp). Table

9.4 shows that we can significantly reduce the simulation time required to run one batch

simulation by increasing Nrp. However, it is shown in Fig. 9.8 that the speedup achieved

by increasing ncores decreases as Nrp is increased. This is because increasing Nrp may un-

necessarily simplify the sequential problem such that it is not significantly beneficial to

further parallelize the kMC simulation. Furthermore, it is shown in Figs. 9.9 and 9.10

that as Nrp is increased (i.e., each crystal represents more crystals; less crystals are used to

run the same batch crystallization process, and thus, error may follow), the concentration

and the temperature profiles obtained from the parallelized kMC simulation progressively

deviate from those profiles obtained from the kMC simulation with Nrp = 1. By introduc-

ing Nrp, therefore, we may compromise the accuracy of the simulation results to decrease

computation time.

Increasing the stirrer speed induces the aggregation process, which requires transferring

crystals from one core to another in parallel computations to model the aggregation of

two crystals. Thus, additional overhead costs associated with transferring crystals will be

incurred, and as a result, the speedup curve shifts downward as more aggregates are formed,

which is shown in Fig. 9.11.

Furthermore, the proposed parallelization scheme has been applied to the simulation

of the closed-loop system. Specifically, an in-batch model predictive controller with the
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Nrp time (h)

1 34.97

10 4.41

50 1.87

100 0.557

500 0.236

Table 9.4: The time required to finish the batch crystallization process under open-loop

operation by varying Nrp for ncores = 64.
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Figure 9.8: The speedup achieved by the parallel computation of the batch crystallization

process multiscale model under the open-loop operation with the number of cores used for

the kMC simulation for different Nrp values.
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Figure 9.9: Profile of the protein solute concentration with time obtained under the open-

loop operation of the batch crystallization process multiscale model for different Nrp values.

The inset shows the C profile from t = 11800 to t = 12400 seconds and C = 32.0 to C = 34.0

mg/mL.
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Figure 9.10: Profile of the crystallizer temperature with time obtained under the open-loop

operation of the batch crystallization process multiscale model for different Nrp values.

The inset shows the T profile from t = 11000 to t = 11300 seconds and T = 15.120 to

T = 15.132 ◦C.
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Figure 9.11: The speedup achieved by the parallel computation of the batch crystallization

process multiscale model under open-loop operation with the number of cores used for the

kMC simulation under conditions where aggregates are formed.
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formulation described in [70] is implemented for the batch crystallization process for the

production of crystals with a desired crystal shape distribution at the end of the batch pro-

cess. It is shown in Fig. 9.12 that the computation time can be reduced by the parallel

computation of the closed-loop batch crystallization process multiscale model; however,

the speedup achieved by the parallel computation depends on the desired set-point value

for the crystal shape distribution. For example, the optimal supersaturation level to pro-

duce crystals with the higher set-point value, αset = 1.05, favors the nucleation and crystal

growth processes, and thus, the computation time is significantly reduced by parallelizing

the kMC simulation. On the other hand, for the lower set-point value, αset = 0.85, the

optimal supersaturation level is low and the nucleation and crystal growth processes are

less favored, in which case the speedup achieved via the parallel computations is not as

significant as it is for αset = 1.05.

9.4 Conclusions

In this work, a parallelized multiscale, multidomain modeling scheme was proposed to

directly reduce the computation time and memory requirements without compromising

the accuracy of the simulation results. The parallelized multiscale modeling strategy that

consists of the three steps of decomposition, assignment, and orchestration was applied to a

batch crystallization process multiscale model. Firstly, we decomposed the nucleation and

crystal growth processes in the batch crystallization system into a collection of tasks where

each task represents the crystal growth of a nucleated crystal. Secondly, tasks were assigned
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Figure 9.12: The speedup achieved by the parallel computation of the batch crystallization

process multiscale model under closed-loop operation with the number of cores used for

the kMC simulation under different set-point values: αset = 1.05 and αset = 0.85.
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to processors according to a modulus function (i.e., round-robin allocation). Thirdly, a

manager-worker MPI computation scheme was used to link the macroscopic model (e.g.,

mass and energy balance equations for the continuous phase) to the microscopic models

(e.g., kinetic Monte Carlo model). Using the proposed parallel computation scheme, a

significant decrease in the time required to run the batch crystallization process multiscale

model under both open-loop and closed-loop operations was achieved as the number of

cores was increased. In particular, the performance of the parallel computation scheme

applied to the closed-loop system was dependent on the desired crystal shape. Furthermore,

we extended the use of the parallel computation scheme to the crystallization system with

a high stirrer speed in which case many crystal aggregates were formed and evaluated the

effect of aggregation on the parallelization.
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Chapter 10

Conclusions

This dissertation focused on the development of a multiscale modeling and simulation

framework for crystallization processes that described the relationship between molecular-

level processes like crystal nucleation, growth and aggregation and macroscopically-observable

process behavior, and allowed computing optimal design and operation conditions. A prac-

tical framework which used multiscale modeling in order to model, simulate, and control

crystallization processes was proposed. Furthermore, this dissertation addressed model

predictive controller designs that utilized the insight and results from the multiscale mod-

eling work and real-time measurements of solute concentration and temperature to ma-

nipulate crystallizer conditions that led to the production of crystals with desired size and

shape distributions. In order to deal with batch-to-batch parametric drift, a run-to-run-

based model parameter estimation scheme was presented to update the predictive controller

model parameters after each batch and led to the consistent production of crystals of desired
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shape at the end of each batch.

In Chapter 2, the modeling of a batch crystallization process used to produce tetragonal

hen egg white lysozyme crystals via kinetic Monte Carlo (kMC) simulation was presented.

The kMC simulation simulated the batch protein crystallization via adsorption, desorption,

and migration mechanisms on the (110) and (101) faces. In order to describe the nucleation

occurring at different times in the batch simulations, the nucleation rate expression was ex-

tracted from experimental results [41]. Mass and energy balances were also used to model

the depletion in the protein solute concentration and the drop in the crystallizer tempera-

ture by crystallization. Finally, an MPC, which used the mass and energy balances, was

designed to produce crystals with a desired morphology by regulating the crystal growth

conditions in the crystallizer through the manipulation of the jacket temperature which was

in accordance with standard batch crystallization practice.

In Chapter 3, the modeling of aggregation of protein crystals along with crystal nucle-

ation and growth to investigate the influence of stirring on the size and morphology of crys-

tal aggregates was presented. Then, along with nonlinear algebraic equations that described

the dependence of crystal growth rates on temperature and protein solute concentration, and

the energy and mass balance models that described the changes of the temperature in the

crystallizer and the solute concentration in the continuous phase, the moment model was

employed to design a model predictive controller (MPC). The proposed model predictive

control scheme was used to regulate the average shape of crystal aggregates to a desired

set-point value with a low polydispersity.
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In Chapter 4, the modeling of the nucleation and crystal growth in a continuous crys-

tallization process with a fines trap through kinetic Monte Carlo (kMC) simulation was

presented. The fines trap was modeled through a classification function which used a se-

lection curve for fines dissolution in the continuous crystallizer. In addition to the solute

depletion and the temperature change in the continuous phase resulting from crystalliza-

tion, the interplay of inflow/outflow in the continuous crystallizer was included in the mass

and energy balance equations. To deal with a real-time implementation issue of a controller

based on PBM, moment models were developed to describe the dominant dynamic behav-

ior of the continuous crystallization along with a fines trap. Subsequently, the three leading

moments were used along with the balance equations in order to design a model predictive

controller.

In Chapter 5, the modeling and control of a continuous PFC used to produce tetrago-

nal HEW lysozyme crystals was developed. Also, an optimization-based control scheme

was proposed to produce crystals with desired size and shape distributions in the pres-

ence of feed disturbances. Initially, we modeled a continuous plug flow crystallizer with

five segments for the production of lysozyme crystals through kinetic Monte Carlo (kMC)

simulation methods following the procedure described in [66] using the rate equations orig-

inally developed by [32]. A seeding strategy was used to decouple the nucleation from the

crystal growth processes [78, 33, 9, 36]. Specifically, the crystallizer jacket temperatures

at each segment and the superficial flow velocity were chosen as the decision variables in

the optimization problem. Subsequently, the dynamic model developed in Section 5.2 was

314



used for the design of an FFC strategy for the production of crystals with desired size and

shape distributions that suppressed the undesired effects caused by disturbances [45].

In Chapter 6, a batch process for the crystallization of lysozyme crystals with uncer-

tainties in the crystal growth rates in the directions of the (110) and (101) faces as well

as in the solubility was considered. In order to achieve the production of crystals with a

desired shape distribution, the optimal jacket temperature profile was computed by a con-

ventional MPC using a nominal reduced-order moment model and was applied to the first

batch. After the first run, the post-batch measurements were used to solve a multivariable

optimization problem (MOP) off-line for the identification of the process model parame-

ters used in the MPC for the crystal growth rates and solubility. Along with the adapted

process model parameters, the exponentially-weighted-moving-average (EWMA) scheme

was used to deal with the remaining offset in the crystal shape values and thereby to com-

pute a set of new optimal jacket temperatures. As a result, the production of crystals with a

desired shape distribution was achieved by properly suppressing the inherent variation and

process drift in the crystal growth rates and solubility.

In Chapter 7, a run-to-run model parameter estimation scheme based on moving hori-

zon estimation concepts was presented in order to model the batch-to-batch dynamics of

the process drift and to compute improved estimates of process model parameters, utiliz-

ing post-batch measurements from multiple batch runs. The MHE approach was employed

because it provided improved parameter estimation and greater robustness to poor guesses

for initial states because of its ability to incorporate physical constraints into the optimiza-
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tion problem used for parameter estimation. More specifically, the variation of the process

model parameters from batch-to-batch was estimated by solving an R2R model parameter

estimation scheme incorporating the post-batch measurements from multiple batch runs.

Furthermore, the batch-to-batch parametric drift was modeled using a nonlinear function

and was used to update the parameters of the model predictive controller (MPC) to suppress

the undesired effect of the process drift in the next batch run.

In Chapter 8, an attempt to further refine the approach proposed in Chapter 7 was pre-

sented by relaxing the requirement of the in-batch and post-batch process measurements

over multiple batch runs and developing a PDDI scheme for the detection and isolation of

the parametric drift. Specifically, a PDDI scheme was proposed to detect and isolate para-

metric drifts introduced to a batch crystallization process. Then, a parametric drift-tolerant

control scheme (PDTC) was proposed that used the PDDI scheme to improve the model of

the in-batch model predictive controller (MPC) to achieve the production of crystals with a

desired shape distribution.

Finally, in Chapter 9, a general parallel computation framework suitable for multiscale

models was presented. Then, the proposed parallel computation scheme was applied to a

multiscale model, which was used to describe a batch crystallization process, and a series

of results that demonstrate the computational efficiency and accuracy of the approach were

presented.
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