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A GENOME-WIDE LINKAGE AND ASSOCIATION SCAN 
REVEALS NOVEL LOCI FOR AUTISM

Lauren A. Weiss*, Dan E. Arking*, and The Gene Discovery Project of Johns Hopkins the 
Autism Consortium**

Summary

Although autism is a highly heritable neurodevelopmental disorder, attempts to identify specific 

susceptibility genes have thus far met with limited success 1. Genome-wide association studies 

(GWAS) using half a million or more markers, particularly those with very large sample sizes 

achieved through meta-analysis, have shown great success in mapping genes for other complex 

genetic traits (http://www.genome.gov/26525384). Consequently, we initiated a linkage and 

association mapping study using half a million genome-wide SNPs in a common set of 1,031 

multiplex autism families (1,553 affected offspring). We identified regions of suggestive and 

significant linkage on chromosomes 6q27 and 20p13, respectively. Initial analysis did not yield 

genome-wide significant associations; however, genotyping of top hits in additional families 

revealed a SNP on chromosome 5p15 (between SEMA5A and TAS2R1) that was significantly 

associated with autism (P = 2 × 10−7). We also demonstrated that expression of SEMA5A is 

reduced in brains from autistic patients, further implicating SEMA5A as an autism susceptibility 

gene. The linkage regions reported here provide targets for rare variation screening while the 

discovery of a single novel association demonstrates the action of common variants.

For a high-resolution genetic study of autism, we selected families with multiple affected 

individuals (multiplex) from the widely studied Autism Genetic Resource Exchange 

(AGRE) and US National Institute for Mental Health (NIMH) repositories (Supplementary 

Methods, Supplementary Table 1). Although the phenotypic heterogeneity in autism 
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spectrum disorders is extensive, in our primary screen we selected families in which at least 

one proband met ADI-R criteria for diagnosis of autism and included additional siblings in 

the same nuclear family affected with any autism spectrum disorder. We previously reported 

an early copy number analysis that revealed a significant role for microdeletion and 

duplication of 16p11.2 in ASD causation 2; here, we present extensive genome-wide linkage 

and association analyses performed with this high density of SNPs and identify independent 

and novel genome-wide significant results by both linkage and association analyses.

A PUBLIC AUTISM DATASET

We combined families and samples from two sources for the primary genetic association 

screen. The AGRE sample included nearly 3,000 individuals from over 780 multiplex 

autism families in the AGRE collection 3 genotyped at the Broad Institute on the Affymetrix 

5.0 platform, which includes over 500,000 SNPs. The NIMH sample included a total of 

1,233 individuals from 341 multiplex nuclear families (258 of which were independent of 

the AGRE sample) genotyped at the Johns Hopkins Center for Complex Disease Genomics 

on Affymetrix 5.0 and 500K platforms, including the same SNP markers as were genotyped 

in the AGRE sample.

Before merging, we carefully filtered each data set separately to ensure the highest possible 

genotype quality for analysis, since technical genotyping artifacts can create false positive 

findings. We therefore examined the distribution of χ2 values for the highest quality data, 

and used a series of quality control (QC) filters designed to identify a robust set of SNPs, 

including data completeness for each SNP, Mendelian errors per SNP and per family, and a 

careful evaluation of inflation of association statistics as a function of allele frequency and 

missing data (see Methods). As 324 individuals were genotyped at both centers, we 

performed a concordance check to validate our approach. After excluding one sample mix-

up, we obtained an overall genotype concordance between the two centers of 99.7% for 

samples typed on 500K at JHU and 5.0 at Broad and 99.9% for samples run on 5.0 arrays at 

both sites. The combined dataset, consisting of 1,031 nuclear families (856 with two 

parents) and a total of 1,553 affected offspring, was employed for genetic analyses 

(Supplementary Table 1). These data were publicly released in October, 2007 and are 

directly available from AGRE and NIMH.

For linkage analyses, the common AGRE/NIMH dataset was further merged with Illumina 

550K genotype data generated at the Children’s Hospital of Philadelphia (CHOP) and 

available from AGRE, adding ~300 nuclear families (1,499 samples). We used the extensive 

overlap of samples between the AGRE/NIMH and the CHOP datasets (2,282 samples) to 

select an extremely high quality set of SNPs for linkage analysis. Specifically, we only 

included SNPs genotyped in both datasets with >99.5% concordance and ≤1 Mendelian 

error.

LINKAGE ANALYSIS

Linkage analysis involving high densities of markers, where clusters of markers are in 

linkage disequilibrium (LD), can falsely inflate the evidence for genetic sharing among 

siblings when neither parent is genotyped 4. To alleviate these concerns, we analyzed a 
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pruned set of 16,311 highly polymorphic, high-quality autosomal SNPs which were filtered 

to remove any instances in which two nearby markers were correlated with r2>0.1, 

providing a marker density of ~0.25cM (see Methods). In this analysis of 878 families, four 

genomic regions showed LOD scores in excess of 2.0 and one region, 20p13, exceeded the 

formal genome-wide significance threshold of 3.6 5 (maximum LOD, 3.81; Figure 1a, 

Supplementary Table 2). Restricting analysis to only those families with both parents 

genotyped (784 families) showed that these results are not an artifact of missing parental 

data (Figure 1b). We further tested the stability of these results by varying the recombination 

map and halving the marker density by placing every other marker into two non-overlapping 

SNP sets (Methods Summary); all analyses showed consistent and strong linkage to the 

same regions (data not shown).

FAMILY-BASED ASSOCIATION ANALYSIS

We used the transmission disequilibrium test (TDT) across all SNPs passing quality control 

in the complete family dataset for association analyses since the TDT is not biased by 

population stratification. We estimated a threshold for genome-wide significance using both 

permutation (P < 2.5 × 10−7) and estimating the effective number of tests (P < 3.4 × 10−7) 

and use the more conservative, here (see Methods). No SNP met criteria for genome-wide 

significance at P < 2.5 × 10−7. However, we observed an excess of independent regions 

associated at P < 10−5 (6 observed vs. 1 expected) and P < 10−4 (30 observed vs. 15 

expected) despite the lack of overall statistical inflation (λ = 1.03, Supplementary Figure 1), 

suggesting that common variants in autism exist, but that our initial scan did not have 

sufficient statistical power to identify them definitively (Supplementary Figure 2, Table 1).

For the TDT associations with P < 10−4, we additionally utilized the cases that were 

excluded from the TDT due to missing parental data. We matched 90 independent and 

unrelated cases with 1,476 NIMH control samples genotyped on the Affymetrix 500K arrays 

6, and performed case-control association analysis (Supplementary Table 3), combining 

these results with the TDT data. Promisingly, we now observed 8 SNPs (in 7 independent 

regions) with association at P < 10−5(Table 1). Of note, comparing Caucasian with non-

Caucasian samples in the AGRE/NIMH dataset, we did not observe significant 

heterogeneity for top results.

Our strongest associations were at chromosome 4q13 (rs17088254, P = 8.5 × 10−6) between 

CENPC1, a centromere autoantigen, and EPHA5, an ephrin receptor potentially involved in 

neurodevelopment; at 5p15 (rs10513025, P = 1.7 × 10−6) in the EST DB512398, located 

between SEMA5A and TAS2R1; at 6p23 (rs7766973, P = 6.8 × 10−7) in JARID2, an ortholog 

of the mouse jumonji gene, encoding a nuclear protein essential for embryogenesis, 

especially neural tube formation; at 9p24 (rs4742409, P = 7.9 × 10−6) between PTPRD, a 

protein tyrosine phosphatase involved in neurite outgrowth, and JMJD2C, a jumonji-domain 

containing protein involved in tri-methyl specific demethylation; at 9q21 (rs952834, P = 7.8 

× 10−6) between ZCCHC6, a zinc finger and CCHC domain containing protein, and GAS1, 

growth arrest specific protein; at 10q21 (rs7923367, P = 3.4 × 10−6) in CTNNA3, alpha 3 

catenin, which may be involved in the formation of stretch-resistant cell-cell adhesion 

complexes; and two SNPs on 11p14 (rs12293188, P = 1.1 × 10−6; rs16910194, P = 3.7 × 
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10−6) in GAS2, a caspase-3 substrate that plays a role in regulating microfilament and cell 

shape changes during apoptosis and can modulate cell susceptibility to p53-dependent 

apoptosis by inhibiting calpain activity (Table 1).

REPLICATION STUDIES

To confirm whether any of these top results might indicate true susceptibility loci, we 

attempted to replicate these signals, as well as others with P < 10−4 in the initial TDT that 

met stringent genotyping quality criteria (Supplementary Table 3). We used several data 

sources to replicate the association results. First, we utilized additional autism family 

samples (318 trios collected by investigators of the Autism Consortium and in Montreal) 

with genome-wide Affymetrix 5.0/500K array data also genotyped at the Genetic Analysis 

Platform of the Broad Institute using the same conditions, QC, and analysis pipelines 

(Methods).

Second, independent Autism Genome Project (AGP) families, along with a set of Finnish 

families and a set of Iranian trios were used for replication of our top findings (n=1,755 

trios). Two Sequenom replication pools were designed, attempting to include as many of the 

regions associated at P < 10−4 as possible. The full set of SNPs considered and those 

successfully genotyped are shown in Supplementary Table 3, with linkage disequilibrium 

(r2) noted for SNPs selected as proxies for Affymetrix markers. One of the eight SNPs with 

P < 10−5 (rs10513025) that failed in this Sequenom assay was subsequently replaced in a 

subset of AGP samples with a TaqMan assay. This assay showed 99.89% concordance with 

Affymetrix genotypes in the overlapping AGRE-NIMH samples (2,797/2,800 concordant 

genotypes), with manual review of the Affymetrix genotype calls also confirming the 

marker to be of extremely high quality (Supplementary Figure 4). In the independent 

replication effort, only rs10513025 was associated with P < 0.01 (Table 1).

Combining the scan and replication data, only rs10513025 met criteria for genome-wide 

significance defined by LD and permutation analyses (P < 2.5 × 10−7). To increase coverage 

of this region and fill in missing genotypes and SNPs that failed quality control, we 

performed imputation analysis. rs10513026 was highly (but not perfectly) correlated to the 

replicated chromosome 5 SNP (rs10513025) and showed even stronger association than 

originally observed with rs10513025 (Supplementary Figure 3). These and several other 

promising SNPs were directly genotyped in the original scan samples and, in fact, showed 

higher levels of significance (Table 2). Direct genotyping confirmed that rs10513026 

showed stronger association than rs10513025 (P-value 4.5 × 10−6 vs. 9.8 × 10−6 in the re-

genotyped scan trios), increasing the significance of this observation further. Several other 

promising results from this analysis were genotyped in a subset of scan samples, and, of 

note, the top SNP in imputation analysis (rs10874241, imputation P = 9.8 × 10−7, OR = 

0.43) showed consistent results (OR = 0.4, P = 4 × 10−7) when directly genotyped 

(Supplementary Table 4).

rs10513025 and neighbors are on chromosome 5p15 in a region of LD containing several 

other ESTs and TAS2R1, a bitter taste receptor (Supplementary Figure 3). The SNPs are ~80 

kb upstream of semaphorin 5A (SEMA5A), a gene implicated in axonal guidance and known 
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to be down-regulated in lymphoblastoid cell lines of autism cases versus healthy controls 7. 

An independent study at Children’s Hospital Boston using whole blood (SWK, LK, ZK, 

manuscript in preparation) confirms this lower expression (P = 0.0034) of SEMA5A in 

autism cases versus controls. To more completely evaluate the role of this locus in autism 

pathogenesis, we evaluated the entirety of 5p15 for copy-number variation. Despite 

excellent probe coverage throughout the locus, no common or rare copy number variants 

were detected in the entire AGRE scan in the region of LD surrounding the associated SNPs 

and the entire SEMA5A locus including 250 kb up and downstream (see Methods).

SEMA5A EXPRESSION IN AUTISTIC BRAINS

To directly test SEMA5A expression in brains from autistic patients, tissue samples from 20 

cases with a primary diagnosis of autism and 10 controls were obtained through the Autism 

Tissue Program and the Harvard Brain Bank. Samples were dissected from Brodmann area 

19 of the occipital lobe cortex, a region demonstrating differences between autism cases and 

controls in functional imaging studies, and subjected to quantitative PCR 8. SEMA5A 

expression, determined relative to MAP2 (neuron specific), was significantly lower in autism 

brains than controls after adjustment for the age at brain acquisition, post-mortem interval, 

and sex (P = 0.024, Figure 2).

CANDIDATE AND LINKAGE REGION ASSOCIATION

We also analyzed our data for association signals at candidate genes or regions with prior 

evidence of involvement in autism. Although there are few well-replicated associations of 

biological candidate genes, there are many rare genetic variants, diseases, and syndromes 

associated with autism. Most of these loci have not been systematically assessed to see 

whether common variation in the gene or region might contribute to autism. We assessed 

four categories of candidate loci: 1) genes with previous evidence for association with 

common variation, 2) genes implicated by rare variants leading to autism, 3) genes causing 

Mendelian diseases associated with autism, and 4) regions where microdeletion or 

microduplication syndromes are associated with autism. For each gene, we included all 

SNPs passing basic quality criteria within 2 kb of the transcript.

Overall, there were no compelling results in these sets (all P > 10−4), considering the 

number of SNPs tested, and only two regions met criteria for region-wide (only SNPs in that 

gene/region considered) or set-wide (e.g. all candidate regions in the set of common variant 

genes considered) significance by permutation-testing (Supplementary Table 5). MECP2 

(Rett syndrome) met criteria for region-wide association (P = 0.0071, 5 SNPs, 

Supplementary Table 5). Moreover, the Williams syndrome region was borderline for set-

wide significance (P = 0.051, Supplementary Table 5). One SNP in particular showed strong 

association (rs2267831, P = 0.00012, OR = 0.56) – as this was a rare SNP with 

undertransmission of the minor allele, we genotyped a subset of families and observed 

similar, slightly less significant distortion (OR=0.61). The SNP is located within 

GTF2IRD1, a transcription factor within the critical region for the Williams syndrome 

cognitive behavioral profile 9,10,11.
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There appears to be little overlap between the regions of strongest linkage and association in 

this study. A more detailed assessment of SNP and haplotype association in the most 

significant linkage regions did not yield common variation that could explain the evidence 

for linkage (Supplementary Table 6). This is an expected outcome if linkage signals arise 

from rare, high penetrance variation (for which the genotyping arrays do not offer an 

adequate proxy) while association is sensitive to common variation with lower penetrance 

(that cannot be detected by linkage). For example, a 0.3% variant that increases risk by 10-

fold would readily be picked up by this informative linkage scan, but would very likely not 

be assessed by the common SNPs on the Affymetrix 5.0 array; by contrast, the modest and 

protective impact of the 5% variant at the SEMA5A rs10513025 creates no detectable excess 

allele sharing among siblings but is strongly detected by association.

During review of this manuscript, another GWAS was published which identified significant 

association to SNPs on chromosome 5p14 12. While there was significant overlap between 

study samples, each of these scans contained a large set of unique families, so we sought to 

evaluate independent evidence of the top SNP (rs4307059) reported at 5p14. This SNP 

happens to be directly genotyped by both Affymetrix and Illumina platforms. We have a 

sizable number (n=796) of affected subjects with two parents genotyped (and of 

predominantly similar European background). However, we observed no support for 

association at this locus (T:U 354:335 in favor of the minor allele, a trend in the opposite 

direction as reported).

DISCUSSION

Autism genes have been difficult to identify, despite the high heritability of autism spectrum 

disorders. Up to 10% of autism cases may be due to rare sequence and gene dosage variants, 

for example, mutations in NRXN1, NLGN3/4X, SHANK3, and copy number variants at 

15q11–q13 and 16p11.2. A number of diseases of known etiology, including Rett syndrome, 

fragile X syndrome, neurofibromatosis type I, tuberous sclerosis, Potocki-Lupski syndrome, 

and Smith-Lemli-Opitz syndrome are also associated with autism 1,13. However, the 

remaining 90% of autism spectrum disorders, while highly familial, have unknown genetic 

etiology. A genome-wide linkage study using the Affymetrix 10K SNP array to genotype 

over 1,000 families found no genome-wide significant linkage signals, but documented 

suggestive linkage at 11p12–p13 and 15q23–q25 and reinforced a modest role for rare copy-

number variants 14.

Many complex diseases have recently had great success with GWAS approaches, but most 

identified modest effects with odds ratios less than 1.3 (http://www.genome.gov/26525384). 

Our association analysis has excellent statistical power (>80%) to find effects of relatively 

common alleles (0.01–0.25 in frequency) explaining 1% of the variance in autism at the 

genome-wide significant level. It is near-perfectly powered for alleles down to 1% at the 

replication cut-off P < 10−4, assuming additive background genetic variance of 0.8 and 

shared environmental variance of 0.05 with prevalence of 0.006. One of the advantages of a 

family-based association test is that we avoid false positive results generated by population 

stratification, and in addition, we have performed careful quality control to reduce the 

chances of being misled by technical artifacts. However, the SNP coverage of the 
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Affymetrix 5.0 chips is incomplete; in fact, a recent resequencing survey suggests that these 

arrays assay only 57% of variants with MAF > 5% at r2 = 0.8 15. We therefore cannot 

exclude untested variation of large effect in autism. The linkage analysis, assuming a fully 

informative marker in 800 sibpairs, should detect sibling allele sharing of at least 55.125% 

16.

Our linkage analysis revealed two novel regions of linkage, 6q27 (LOD = 2.94) and 20p13 

(LOD = 3.81), with the latter formally exceeding the threshold for genome-wide 

significance. There is some overlap between the more modest signals (LOD > 2 on chr15 

and chr17) and previously reported suggestive signals, but little overlap with the most 

promising regions of common SNP association. This suggests that the regions of the genome 

showing linkage may harbor rare variation, potentially with allelic heterogeneity across 

families, which would require re-sequencing to uncover, as has been demonstrated for the 

7q35 region17,18,19. Interestingly, several of these regions overlap with rare syndromes or 

genetic events known to be strong risk factors for autism. For example, an autism case with 

a translocation disrupting 15q25 has been reported, while the 17p region overlaps the Smith 

Magenis and Potocki-Lupski Syndrome region.

The initial TDT analysis of this large multiplex autism dataset, did not reveal any 

associations meeting criteria for genome-wide significance, suggesting that there are not 

many common loci of moderate to large effect size even in a highly heritable disorder like 

autism. Nevertheless, replication data in our study identified a novel locus with genome-

wide significant evidence for association to autism. In addition, several other SNPs in the 

region show similarly strong association (rs10513026, rs16883317). We ascertained a large 

replication sample from independent family studies with a replication at P = 0.0061 and 

meta-analysis showed this association (P = 2.12 × 10−7) to meet criteria for genome-wide 

association in our experiment. This region on chromosome 5 harbors the gene encoding the 

bitter taste receptor, TAS2R1, and several uncharacterized ESTs and is adjacent to SEMA5A, 

a member of the semaphorin axonal guidance protein family, which has shown down-

regulated expression in transformed B lymphocytes from autism samples15. We have 

further extended this finding by directly demonstrating lowered SEMA5A gene expression in 

autism brain tissue. This is an attractive candidate gene given that its protein is a 

bifunctional guidance molecule, which is both attractive and inhibitory for developing 

neurons. Interestingly, the SEMA5A receptor is plexin B3, which also signals through the 

tyrosine kinase MET, a previously reported autism susceptibility gene20,21.

Finally, we investigated whether different classes of genes or regions -- loci previously 

implicated by functional or positional candidate gene association studies, rare variants 

implicated in autism, Mendelian disorder genes with association to autism, or regions of 

copy number variation associated with autism -- showed association with common alleles 

included in our marker set. Although there were several nominally significant associations, 

only the Williams syndrome region (one SNP in GTF2IRD1) was borderline statistically 

significant (P = 0.051), after correcting for the microdeletion/duplication syndrome regions 

tested. In the category of Mendelian disorders associated with autism, MECP2, the gene for 

Rett syndrome, showed region-wise statistical significance. These results raise the 

possibility that Rett and Williams syndrome genes may contribute more generally to autism 
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spectrum disorders. Although the genes in which common variation has been reported to be 

associated with autism do not show evidence for association, this cannot be interpreted as 

failure to replicate previous results in all cases, because much of the variation reported as 

associated is not captured on the Affymetrix platform (e.g. length polymorphisms, 

microsatellites, untagged SNPs such as the promoter variant at MET21). Instead, despite a 

high density of markers, our results suggest that we did not identify additional common 

variation with evidence for association. Overall however, our results imply that these 

postulated candidate regions, mostly based on rare events known to cause autism, are not 

among the regions with common alleles having the strongest risk effects for autism.

Interestingly, both our linkage and association analyses, from the primary and replication 

analyses, suggest that low frequency (<0.05) minor alleles may be common in autism. 

Intriguingly, the linkage studies reveal low frequency susceptibility alleles whereas the 

association analyses have uncovered rare alleles with odds ratios less than 0.6 (the common 

alleles in the population associated with increased risk for autism). This can occur when the 

ancestral allele, that was previously neutral or beneficial, now has detrimental effects 

revealed by an evolutionarily recent environment, or when a pleiotropic function of the 

allele is selectively advantageous, or when this variation is hitchhiking on a shared 

haplotype with a distinct beneficial allele 22. However, it is worth noting that our study 

design of ascertaining multiplex families is not well-powered to identify loci under this 

genetic model of common major alleles associated with autism susceptibility.

In summary, we report genome-wide significant linkage as well as an association of 

common genetic variation with autism. Our results will require follow-up to identify the 

functional variation in the linkage and association regions that we report here and to probe 

the functions of the relatively unstudied transcripts implicated. These results could provide 

completely novel insight into the biology and pathogenesis of a common 

neurodevelopmental disorder.

METHODS SUMMARY

SAMPLES AND GENOTYPING

Our primary samples are from the AGRE and NIMH Repositories. Replication with 

Affymetrix technology included NIMH controls, families collected by members of the 

Autism Consortium, and families ascertained from Montreal. Replication with Sequenom 

technology included the Autism Genome Project, Finnish, and Iranian subsets of Autism 

Consortium investigator-collected families. Details of the ascertainment for each sample 

collection, genotyping, and quality control processes can be found in Methods.

LINKAGE AND ASSOCIATION ANALYSIS

The linkage analysis was conducted with a pruned autosomal SNP set [see Methods for 

details of marker selection] and chromosome X set (670 SNPs) using the cluster option in 

MERLIN/MINX (r2 < 0.1) 23, yielding 16,581 independent markers. We performed 

confirmatory analysis on non-overlapping datasets by selecting alternate SNPs.
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Association analysis was performed in PLINK24. The basic association test was a 

transmission disequilibrium test (TDT), and the extra cases vs. controls analysis was 

performed by allelic association, after excluding cases that were not well-matched to the 

controls, based on multi-dimensional scaling (λ < 1.1). Combining the TDT and case-control 

tests was performed using expected and observed allele counts by the formula: Zmeta = 

(ΣEXP − ΣOBS)/√ΣVAR. Meta-analysis of AGRE/NIMH and replication data was 

performed using the statistic (ZAGRE/NIMH+Zreplication)/√2. Gene-set analysis was performed 

in PLINK using the set-based TDT. Imputation-based association was performed in PLINK 

with the proxy-tdt command, using the HapMap CEU parent samples as the reference panel 

and information score >0.8. Haplotype analysis in the linkage regions was performed using 

5-SNP sliding windows, as implemented in PLINK hap-tdt. See Methods section for details 

of determination of genome-wide significance thresholds.

METHODS

PRIMARY STUDY SAMPLES

All samples used in this study arose from investigations approved by the individual and 

respective Institutional Review Boards in the USA and at international sites where relevant. 

Informed consent was obtained for all adult study participants; for children under age 18, 

both the consent of the parents or guardians and the assent of the child were obtained.

AGRE samples—The Autism Genetic Resource Exchange (AGRE) curates a collection of 

DNA and phenotypic data from multiplex families with autism spectrum disorder (ASD) 

available for genetic research 3. We genotyped individuals from 801 families, selecting 

those with at least one child meeting criteria for autism by the Autism Diagnostic Interview-

Revised (ADI-R) 25, while the second affected child had an AGRE classification of autism, 

broad spectrum (patterns of impairment along the spectrum of pervasive developmental 

disorders, including PDD-NOS and Asperger syndrome) or Not Quite Autism (NQA, 

individuals who are no more than one point away from meeting autism criteria on any or all 

of the social, communication, and/or behavior domains and meet criteria for “age of onset”; 

or, individuals who meet criteria on all domains, but do not meet criteria for the “age of 

onset”). We excluded probands with widely discrepant classifications of affection status via 

the ADI-R and ADOS that could not be reconciled. We also excluded families with known 

chromosomal abnormalities (where karyotyping was available), and those with 

inconsistencies in genetic data (generating excess Mendelian segregation errors or showing 

genotyping failure on a test panel of 24 SNPs used to check gender and sample identity with 

the full array data). The self-reported race/ethnicity of these samples is 69% white, 12% 

Hispanic/Latino, 10% unknown, 5% mixed, 2.5% each Asian and African American, less 

than 1% Native Hawaiian/Pacific Islander and American Indian/Native Alaskan.

NIMH samples—The NIMH Autism Genetics Initiative maintains a collection of DNA 

from multiplex and simplex families with ASD. We genotyped individuals from 341 nuclear 

families, 258 of which were independent of the AGRE dataset, with at least one child 

meeting criteria for autism by the ADI-R, and a second child considered affected using the 

same criteria as described for the AGRE dataset above. Similar exclusion criteria were used, 
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including known chromosomal abnormalities and excess non-Mendelian inheritance. The 

self-reported race/ethnicity of these samples is 83% white, 4% Hispanic, 2% unknown, 7% 

mixed, 3% Asian, and 1% African American.

Merged dataset for primary screening—We utilized the Birdseed algorithm for 

genotype calling at both genotyping centers26,27. As 324 individuals were genotyped at 

both centers, we performed a concordance check. One sample showed substantial 

differences between the two centers, but no excess of Mendelian errors, indicating that a 

sample mix-up occurred in which each center genotyped a different sibling that was 

identified as the same sample. Excluding this sample, overall genotype concordance 

between the two centers was 99.72%.

Before merging data, we examined the distribution of chi-square values and used a series of 

quality control (QC) filters designed to identify a robust set of SNPs. We discovered that 

filtering AGRE genotypes to 98% completeness and less than 10 MEs was sufficient to 

remove SNPs that artificially inflated the chi-square distribution for SNPs with MAF (minor 

allele frequency) > 0.05. For MAF < 0.05, we observed much greater inflation (λ = 1.17), 

due entirely to a strong excess of SNPs with under-transmission of the minor allele (OR < 

1). While the same filters yielded high-quality results for SNPs with over-transmission of 

the minor allele (λ = 1.04), we found that much stricter filtering was required for rarer SNPs 

with OR<1 (missing data < .005). This is not unexpected based on a well-documented bias 

in the TDT: if missing data are preferentially biased against heterozygotes or rare 

homozygotes, significant, artificial over-transmission of the common allele is expected 

28,29. To achieve comparable quality for the NIMH dataset, we filtered on 96% 

completeness and fewer than 4 MEs. Our final QQ plot for the combined dataset is shown in 

Supplementary Figure 1 and has a λ ~ 1.03, less than that observed in the Wellcome Trust 

Case Control Consortium paper for five of the seven phenotypes studied 30. The combined 

data set, consisting of 1,031 families (856 with two parents) and a total of 1,553 affected 

offspring, was employed for association testing.

For linkage analyses, the combined AGRE/NIMH dataset was further merged with Illumina 

550K genotype data generated at the Children’s Hospital of Philadelphia (CHOP) and 

available from AGRE, adding ~300 nuclear families (1,499 samples). We used the extensive 

overlap of samples between the AGRE/NIMH and the CHOP datasets (2,282 samples) to 

select an extremely high quality set of SNPs for linkage analysis. Specifically, we required 

SNPs to be on both the Affymetrix 500K/5.0 and Illumina 550K platforms, with >99.5% 

concordance across platforms. We further restricted SNPs to MAF > 0.2, < 1% missing data, 

Hardy Weinberg P> 0.01, and no more than 1 ME. This left ~36,000 SNPs of outstanding 

quality. For autosomal SNPs, we further pruned using PLINK to remove SNPs with r2 > 0.1, 

yielding 16,311 SNPs.

REPLICATION SAMPLES

NIMH control samples—Controls obtained from the NIMH Genetics Repository were 

genotyped on the Affymetrix 500K platform at the Broad Institute Genetic Analysis 
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Platform for another study 6. Of these, 1,494 matched well with our sample, and were used 

as controls to compare with the cases and parents in our study.

Montreal samples—Subjects diagnosed with autism spectrum disorders with both of their 

parents were recruited from clinics specializing in the diagnosis of Pervasive Developmental 

Disorders (PDD), readaptation centers, and specialized schools in the Montreal and Quebec 

City regions, Canada, as described 31. Subjects with ASD were diagnosed by child 

psychiatrists and psychologists expert in the evaluation of ASD. Evaluation based on the 

Diagnostic and Statistical Manual of Mental Disorders (DSM) criteria included the use of 

the Autism Diagnostic Interview-Revised (ADI-R)25 and the Autism Diagnostic 

Observation Schedule (ADOS)32. As an additional screening tool for the diagnosis of ASD, 

the Autism Screening Questionnaire, which is derived from the ADI-R, was completed 33. 

Furthermore, all proband medical charts were reviewed by a child psychiatrist expert in 

PDD to confirm their diagnosis and exclude subjects with any co-morbid disorders. 

Exclusion criteria were: (1) an estimated mental age < 18 months, (2) a diagnosis of Rett 

syndrome or Childhood Disintegrative Disorder and (3) evidence of any psychiatric and 

neurological conditions including: birth anoxia, rubella during pregnancy, fragile X 

syndrome, encephalitis, phenylketonuria, tuberous sclerosis, Tourette and West syndromes. 

Subjects with these conditions were excluded based on parental interview and chart review. 

However, participants with a co-occurring diagnosis of semantic-pragmatic disorder (due to 

its large overlap with PDD), attention deficit hyperactivity disorder (seen in a large number 

of patients with ASD during development), and idiopathic epilepsy (related to the core 

syndrome of ASD) were eligible for the study.

Santangelo EDSP family samples—Families were ascertained for having one or more 

autistic children and at least one non-autistic child aged 16 or older for an extremely 

discordant sib-pair linkage study. Recruitment took place in Massachusetts and surrounding 

states through contacts with parent support and patient advocacy groups, brochures, 

newsletters, and the study web site. Parents were interviewed about their children, and non-

autistic children were interviewed about themselves. An informant/caregiver, usually the 

proband’s mother, was interviewed using the Autism Diagnostic Instrument-Revised (ADI-

R) to confirm the diagnosis of autism at age 4–5 years25,34. Families were included if the 

affected children met Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV) 

criteria for autistic disorder and their non-autistic siblings (aged 16 and older) did not 

display any of the broader autism phenotype traits, which were assessed with the (M-PAS-

R), the Pragmatic Language Scale (PLS), and the Friendship Interview 35,36. Probands 

were excluded if they had medical conditions associated with autism such as fragile X 

syndrome or gross CNS injury, or if they were under four years of age, due to the possible 

uncertainty in diagnosis at younger ages. Twenty-nine families met eligibility criteria for the 

study and comprised the final sample for analysis.

High Functioning Autism family samples—Families were included if their affected 

child had been previously diagnosed with Autism or Asperger syndrome, had a level of 

intellectual functioning above the range of mental retardation (i.e., Full Scale, Verbal, and 

Performance IQ > 70), chronological age between 6 and 21 years, and an absence of 
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significant medical or neurological disorders (including fragile X syndrome and tuberous 

sclerosis). Families were ascertained and recruited through the Acute Residential Treatment 

(ART) programs and outpatient child and adolescent services at McLean Hospital, as well as 

through associated hospitals and clinics. Brochures and a website were also utilized. Thirty-

three families (133 participants) were enrolled in the study. Participation was voluntary.

MGH-Finnish collaborative samples—Altogether 58 individuals with a diagnosis of 

High Functioning Autism (HFA) or Asperger’s Syndrome (AS) were recruited in Finland. 

Fifty-two children and adolescents aged 8 to 15 years were identified from patient-records at 

the Oulu University Hospital in 2003. These children and adolescents have been evaluated 

for HFA/AS at the Oulu University Hospital. In addition, six children (3 boys, 3 girls) 11 

years of age were recruited from an epidemiological study conducted in 2001 37.

All participants had full scale IQ scores greater than or equal to 80 measured with the 

Wechsler Intelligence Scale for Children—Third Revision 38. Furthermore, none of the 

children subjects were diagnosed with other developmental disorders (e.g., dysphasia, 

fragile X syndrome). Clinical diagnoses of HFA/AS were confirmed by administering the 

Autism Diagnostic Interview-Revised 25 and the Autism Diagnostic Observation Schedule 

32. Of the 58 participants with HFA/AS, 35 met the diagnostic criteria for AS and 21 met 

the diagnostic criteria for HFA according to ICD-10 diagnostic criteria 39. Two participants 

met diagnostic criteria for PDD-NOS; these participants were excluded due to their 

manifesting different and less severe symptoms than our sample of children with HFA or 

AS.

Children’s Hospital Boston samples—Probands with a documented history of clinical 

diagnosis of ASD were recruited at Children’s Hospital Boston. To participate, they had to 

be over 24 months of age and have at least one biological parent or an affected sibling 

available. Subjects were excluded if they had an underlying metabolic disorder or any 

chronic systemic disease, an acquired developmental disability (e.g. birth asphyxia, trauma-

related injury, meningitis, etc.), or cerebral palsy. All participants provided informed 

consent and a phenotyping battery was performed including the Autism Diagnostic 

Observation Schedule (ADOS), the Autism Diagnostic Interview- Revised (ADI-R) and 

other measures to assess cognitive status. 75% of subjects with a clinical diagnosis met strict 

research criteria for ASD on both ADI-R and ADOS. In addition, a complete family and 

medical history was obtained.

Homozygosity Mapping Collaborative for Autism (HMCA) samples—Families 

with cousin marriages and children affected by autism spectrum disorder (ASD) with or 

without mental retardation (MR) were recruited by multiple collaborators in the HMCA. The 

patients from Istanbul were evaluated by a child psychiatrist (Nahit M. Mukaddes) trained in 

the Autism Diagnostic Observation Schedule (ADOS) and Autism Diagnostic Interview - 

Revised (ADI-R), and who made diagnoses according to DSM-IV-TR criteria and the 

Childhood Autism Rating Scale (CARS). Patients from Kuwait were enrolled from the 

Kuwait Centre for Autism by Samira Al-Saad. In Jeddah, Saudi Arabia, patients were 

evaluated by both a developmental pediatrician (Soher Balkhy) and a pediatric neurologist 

(Generoso Gascon) and diagnoses were based on DSM-IV-TR criteria. In Lahore, Pakistan, 
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a neurologist (Asif Hashmi) with training in the ADOS and ADI-R diagnosed patients using 

DSM-IV-TR criteria. In most settings, patients were enrolled from tertiary clinical centers 

and these patients had standard of care neuromedical assessments, including physical 

examination, medical and neurological history, fragile X testing, and other genetic and 

metabolic testing when indicated. MRI was obtained for patients in whom a brain 

malformation was suspected or seizures were present. In addition, IQ scores (usually from 

the Stanford-Binet) and adaptive behavior measures were obtained from the patients’ 

existing medical records. Secondary assessments were conducted on the most informative 

pedigrees by the Boston clinical team in collaboration with local multi-disciplinary teams. 

Clinical members of the Boston team included: developmental psychologists (Janice Ware, 

Elaine LeClaire, Robert M. Joseph), pediatric neurologists (Ganesh H. Mochida, Anna 

Poduri), a clinical geneticist (Wen-Han Tan), and a neuropsychiatrist (Eric M. Morrow). The 

secondary assessment battery was designed to obtain a comprehensive description of current 

and historical autism symptomatology, cognitive and adaptive functioning, and neurological 

and physical morphological status in the patient and pedigree. The secondary assessment 

included: neurologic examination; genetic dysmorphology examination; the CARS; the 

Social Communication Questionnaire (SCQ) administered with probing on par with the 

ADI-R by ADI-R reliable examiners; the ADOS (usually Module 1); the Vineland Adaptive 

Behavior Scales, Second Edition (VABS-II); Kaufman Brief Intelligence Test, Second 

Edition (KBIT-II). ADOS assessments were videotaped and dysmorphology findings were 

photographed for archival purposes.

AGP samples—Individuals typically received at least two of three evaluations for autism 

symptoms: ADI-R, ADOS and clinical evaluation. Of the 1,679 affected individuals from 

1,443 families, 966 met criterion for autism on the ADI-R and ADOS and most of these also 

had a clinical evaluation of autism; 160 affected individuals met criteria for autism on one of 

the two diagnostic instruments (ADI-R, ADOS) but were missing information on the other 

instrument; and, 553 individuals met criteria for spectrum disorder on one or both 

instruments. Affected individuals were recruited from both simplex and multiplex families, 

71% of this sample being from multiplex families. The majority of the families were of 

European ancestry (83%).

Finnish autism family samples—Families were recruited through university and 

central hospitals. Detailed clinical and medical examinations were performed by 

experienced child neurologists as described elsewhere40. Diagnoses were based on ICD-10 

39 and DSM-IV 41 diagnostic nomenclatures. Families with known associated medical 

conditions or chromosomal abnormalities were excluded from the study. A total of 106 

families included 400 individuals for whom genotype data was available. Of these, 111 had 

a diagnosis of infantile autism and 13 a diagnosis of Asperger syndrome. All families were 

Finnish, except for one family where the father was Turkish.

Iranian Trio samples—Eligible participants in this study were Iranian families with at 

least one child affected with ASD, including cases of autistic disorder, Asperger syndrome 

and pervasive developmental disorder-not otherwise specified (PDD-NOS). Eighty families 

(282 individuals) from Iran were ascertained and assessed. This sample was ascertained by 
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screening and diagnostic testing of over 90,000 preschool children from Tehran in 2004. 

Diagnoses of children were made according to DSM-IV criteria via the ADI-R and the 

ADOS. Patients with abnormal karyotypes and dysmorphic features were excluded. Most of 

the families were father-mother-child trios but some had more than one affected child. All 

affected biological siblings were assessed with the same diagnostic tools. We have 

ascertained and assessed 80 families (282 individuals) from Iran.

AFFYMETRIX GENOTYPING

The AGRE samples were genotyped on Affymetrix 5.0 chips at the Genetic Analysis 

Platform of the Broad Institute, using standard protocols. The 5.0 chip was designed to 

genotype nearly 500,000 SNPs across the genome in order to enable genome-wide 

association studies 26,27. The NIMH controls were genotyped at the Broad Institute using 

the Affymetrix 500K Sty and Nsp chips, using a similar protocol 6. The Autism Consortium 

and Montreal replication samples were also genotyped at the Broad Institute under the same 

conditions. The NIMH autism samples were genotyped at the Johns Hopkins Center for 

Complex Disease on the Affymetrix 500K (Nsp and Sty) and 5.0 platforms using similar 

standard protocols.

Genotype calling for the 5.0 arrays was performed by Birdseed 26,27 and for the 500K 

arrays was performed by BRLMM. As basic QC filters for the data generated at the Broad 

Institute, we required that genotyping was >95% complete for each individual, and that each 

family had fewer than 10,000 Mendelian inheritance errors across the genome. We also 

required that each SNP had >95% genotyping, fewer than 15 Mendelian errors, Hardy-

Weinberg Equilibrium P > 10−10, and minor allele frequency greater than 1%. For the 

AGRE sample, this left 2,883 high quality individuals genotyped for 399,147 SNPs with 

99.6% average call rate. The basic filters for the data generated at Johns Hopkins were 

individual call rates > 95% for 5.0 arrays and > 90% for 500K arrays data, fewer than 5,000 

Mendelian errors per family. Only monomorphic SNPs and those with greater than 50% 

missing data were dropped, for 498,216 SNPs. Our combined dataset had nearly 365,000 

SNPs passing QC.

SEQUENOM GENOTYPING

SNPs were assayed using Sequenom technology for the AGP samples at three centers, 

namely Gulbenkian, Mt. Sinai, and Oxford: DNA from 1,629 families representing 

numerous recruiting sites was genotyped for 54 SNPs. SNPs with >3% missing data, namely 

rs4690464, rs10513025, and rs17088296, were excluded from analysis. The next step in our 

quality control process was to remove families with ≥4 Mendelian errors, out of 51 

remaining loci, under the assumption that this indicated pedigree errors. Data from 110 

families were removed due to Mendelian errors. Thereafter, SNPs were removed if they 

showed excessive Mendelian errors (>16) in the remaining families. Using this criterion, 

two more SNPs, rs155437 and rs1925058, were removed from analysis. It was apparent that 

DNA quality varied by study site and could be responsible for concomitant genotype quality 

differences. Therefore, we also evaluated rate of missing genotypes per locus and study site. 

Our analyses showed that DNA from a few population samples showed excess missingness 

for two SNPs, rs4742408 and rs7869239, relative to the remaining population samples. 
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Specifically three population samples showed more than 7% missing genotypes for 

rs4742408 and rs7869239 whereas the remaining population samples had about 1% or less 

missing genotypes. Therefore, for these loci we deleted genotypes only from the samples 

showing excess missingness. As a final quality control step, we then evaluated missing 

genotypes for the remaining loci. If more than five loci were missing genotypes, the 

individual’s data was removed from analysis. By this criterion 76 additional families became 

uninformative for family-based association analysis, leaving 1,443 families for association 

analysis. The Finnish autism samples were genotyped in the Peltonen lab, and the Iranian 

trios were genotyped at the Broad Institute using very similar protocols. All samples were 

genotyped using aliquots from the same pooled primers and probes.

COPY NUMBER ANALYSIS

Because of previous reports of two large (>1 Mb), independent de novo deletions spanning 

this locus 42, we assessed the region surrounding rs10513025 and the entire SEMA5A locus 

for copy number variation that could either explain or provide independent evidence of the 

importance of this region to autism using Birdsuite 26 to analyze all Affymetrix 5.0 samples. 

Birdsuite genotypes previously annotated common copy number polymorphisms 27 and in 

parallel searches for novel copy number variants using an HMM. Probe coverage in the 

region was good, with no 50kb window having fewer than 10 probes and an average spacing 

between probes of 2.5 kb, allowing very good sensitivity for CNVs greater than 25kb. We 

found no deletions or duplications near this SNP, nor any overlapping the gene SEMA5A. 

The closest copy number variants upstream and downstream of this SNP appeared to be a 

rare (~2–3% frequency, previously annotated CNP) 40kb deletion from 288 kb from the 3′ 

end of SEMA5A, and a rare (~1% frequency, novel) 20kb deletion 356 kb upstream of the 5′ 

end of SEMA5A. Each of these appeared to be segregating polymorphisms, but fall far 

outside of the boundaries of SEMA5A and TAS2R1 and far beyond the linkage 

disequilibrium block containing rs10513025.

EXPRESSION ANALYSIS

Fresh-frozen brain tissue samples dissected from the cortex (Brodmann area 19) were 

obtained through the Autism Tissue Program (www.atpportal.org) from the Harvard Brain 

Bank and the NICHD Brain and Tissue Bank at the University of Maryland from 20 samples 

with a primary diagnosis of autism, and 10 controls. Total RNA was extracted using TRIzol 

reagent (Invitrogen, Carlsbad, CA) according to the manufacturer’s protocol. 

Complementary DNA (cDNA) was generated from 8μg of total RNA using the Superscript 

III First-Strand Synthesis kit (Invitrogen). cDNA was diluted 1:5 in 10mM Tris and 1μL of 

diluted cDNA was used per 10μL PCR reaction. Quantitative real-time PCR was performed 

on a Lightcycler 480 (Roche Applied Science, Indianapolis, IN) using 2X Taqman Gene 

Expression Master Mix and probes obtained from Applied Biosystems (ABI, Foster City, 

CA): SEMA5A (Hs01549381_m1), MAP2 (Hs01103234_g1), TBP (Hs00920497_m1), 

GAPDH (4333764F). For multiplex reactions, 0.5μL FAM-labeled SEMA5A probe and 

0.5μL VIC-labeled MAP2 probe were used per 10μL reaction. The amount of SEMA5A 

relative to MAP2 was determined for each case using the ΔΔCt method 43. Comparison of 

SEMA5A to TBP and GAPDH yielded similar results. Logistic regression was performed on 
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autism status, adjusting for age at death, post-mortem interval, sex, and SEMA5A expression, 

with a 1-sided P-value reported for the association of lower SEMA5A expression with autism 

status.

DETERMINATION OF SIGNIFICANCE

To determine an appropriate experimental threshold for genome-wide significance, 

permutation was performed on this dataset by gene-dropping, and genome-wide significance 

was estimated by taking the lowest P-value from each of 1000 permuted datasets and using 

the 50th as a threshold for P < 0.05 experiment-wide significance (P<2.5 × 10−7). To 

calculate an estimate of the effective number of tests (Teff), we used the following 

algorithm:

1. Start with the most 5′ SNP on a chromosome (SNPi,j),where i=chromosome, and 

j=SNP position, and calculate pairwise LD with all downstream SNPs within 1 Mb 

(r2[SNP1,1 × SNP1,n])

2. For SNP1,1, Teff(1,1)=1-max(r2[SNP1,1 × SNP1,n])

3.

For chromosome i, , where m=the total number of SNPs on a 

chromosome

4.

Since this algorithm only accounts for pair-wise LD, it provides a conservative estimate of 

the number of effective tests.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Genome-wide Linkage Results.

The genome-wide linkage results are shown in 1a, with the orange line indicating LOD 3. 

The four chromosomes with LOD > 2 are shown in 1b. The black and blue lines indicate 

results from families with both parents genotyped and all families, respectively. The green 

line indicates information content. The red circle indicates the position of the centromere.

Weiss et al. Page 23

Nature. Author manuscript; available in PMC 2010 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
SEMA5A Expression in Autism Brains

SEMA5A gene expression is shown relative to MAP2. Yellow diamonds indicate individual 

expression levels for each sample; error bars indicate standard error (SE).
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