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SOFTWARE

Simulation applications to support teaching 
and research in epidemiological dynamics
Wayne M Getz1,2,3*   , Richard Salter3,4 and Ludovica Luisa Vissat1 

Abstract 

Background:  An understanding of epidemiological dynamics, once confined to mathematical epidemiologists and 
applied mathematicians, can be disseminated to a non-mathematical community of health care professionals and 
applied biologists through simple-to-use simulation applications. We used Numerus Model Builder RAMP Ⓡ (Runtime 
Alterable Model Platform) technology, to construct deterministic and stochastic versions of compartmental SIR (Sus-
ceptible, Infectious, Recovered with immunity) models as simple-to-use, freely available, epidemic simulation applica-
tion programs.

Results:  We take the reader through simulations used to demonstrate the following concepts: 1) disease prevalence 
curves of unmitigated outbreaks have a single peak and result in epidemics that ‘burn’ through the population to 
become extinguished when the proportion of the susceptible population drops below a critical level; 2) if immunity 
in recovered individuals wanes sufficiently fast then the disease persists indefinitely as an endemic state, with possible 
dampening oscillations following the initial outbreak phase; 3) the steepness and initial peak of the prevalence curve 
are influenced by the basic reproductive value R0, which must exceed 1 for an epidemic to occur; 4) the probability 
that a single infectious individual in a closed population (i.e. no migration) gives rise to an epidemic increases with 
the value of R0>1; 5) behavior that adaptively decreases the contact rate among individuals with increasing preva-
lence has major effects on the prevalence curve including dramatic flattening of the prevalence curve along with the 
generation of multiple prevalence peaks; 6) the impacts of treatment are complicated to model because they effect 
multiple processes including transmission, recovery and mortality; 7) the impacts of vaccination policies, constrained 
by a fixed number of vaccination regimens and by the rate and timing of delivery, are crucially important to maximiz-
ing the ability of vaccination programs to reduce mortality.

Conclusion:  Our presentation makes transparent the key assumptions underlying SIR epidemic models. Our RAMP 
simulators are meant to augment rather than replace classroom material when teaching epidemiological dynamics. 
They are sufficiently versatile to be used by students to address a range of research questions for term papers and 
even dissertations.

Keywords:  SIR models, Public health education, Population modeling instruction, Compartmental models, Stochastic 
simulation
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Introduction
Motivation
The COVID-19 pandemic is a wake up call for us to be 
more prepared and vigilant regarding future pandem-
ics. We can do this by enhancing our understanding of 
epidemic dynamics and of the most effective mitigation 
strategies. Part of this preparedness is providing a more 
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sophisticated quantitative epidemiological training to 
students entering the healthcare and allied industries.

Many excellent text books are available for teaching 
epidemiological dynamics [1,2,3,4,5,6]. Some require 
only a beginners understanding of calculus and oth-
ers a more sophisticated facility with ordinary differ-
ential equations. The most mathematically demanding 
require that the students have some familiarity with 
stochastic dynamics. This leaves the mathematically 
unsophisticated epidemiology student out in the cold. 
These students can be brought back in and provided 
with a heuristic understanding of epidemiological 
dynamics through numerical simulation. Of particu-
lar importance in this regard is hands on experience 
with such simulations. The roadblock here is the pro-
gramming skills of students involved. The solution is to 
provide supportive software platforms where relative 
complex models can be implemented with minimal fuss 
and coding skills.

In this paper, we provide conceptual and simula-
tion support for an epidemiological dynamics instruc-
tion, expecting details on specific disease to be found in 
other prescribed material. We begin with a review of the 
basic concepts and assumptions implicit in epidemic SIR 
(S=susceptible, I=infectious, and R=Recovered disease 
classes) models. We then present an epidemic simulation 
platform that we built using Numerus Model Builder’s 
RAMP™ (Runtime Alterable Model Platform) technol-
ogy. Numerus RAMPs are directly downloadable from 
the web. Our SIRS RAMPs—we provide both determin-
istic and stochastic versions—though designed to help 
illustrate basic epidemiological concepts, may also be 
used to carry out simulations useful to healthcare profes-
sionals interest in exploring some aspects of pandemic 
management.

Our SIRS RAMPs also include treatment and vaccina-
tion classes, which allows us to discuss various aspects 
of treatment and vaccination strategies on epidemic 
dynamics. Although we discuss other extensions to SIR 
models that are needed to increase the utility of such 
models in formulating disease management policy we do 
not include this in the RAMPs described in this paper. 
We have developed other such RAMPs and web-based 
models for research purposes that include additional 
disease classes (e.g., individuals in latent, asymptomatic, 
symptomatic and recovery-with-some-immunity phases, 
or dead from the disease; [7] and multiple pathogen vari-
ants [8]). Future RAMPs developed for research purposes 
should include demographic structure (e.g., recruitment, 
births, non-disease deaths, age classes), spatial structure 
(e.g., meta populations with some mixing, migration) 
and, in the context of disease ecology systems, multiple 
hosts with cross species transmission.

Dynamic systems models in general, and epidemic 
models in particular, can be deterministic or stochastic, 
continuous or discrete-time, compartmental systems or 
individual-based formulations [9,10,11]. The simplest 
are deterministic (no random process are included) and 
compartmental (all individuals within the same disease 
class are identical and cannot be differentiated from one 
another in terms of when they entered this particular dis-
ease class). Most of the concept we are interested in can 
be demonstrated using this type of model. Deterministic 
formulations, however, are only suitable for modeling 
epidemic processes that have already taken hold in popu-
lations of tens of thousands to millions. By contrast, sto-
chastic models are needed to computing probabilities of 
pathogen invasion and the probabilities that an epidemic 
persists when the number of infectious individuals is a 
tiny fraction of the population [10]. Thus besides pro-
viding a deterministic SIR RAMP as the mainstay of our 
presentation, we also include a stochastic compartment 
SIR RAMP to illustrated concepts relating to epidemic 
emergence and extinction. Stochastic individual-based 
models are needed if we want to include processes relat-
ing to length of time an individual has spent within a 
particular disease state (=class), or relating to other indi-
vidual level phenomena. Such considerations, however, 
are beyond the scope of the material presented here.

Epidemic modeling concepts
Population models are idealizations of reality that include 
only those processes essential to addressing particu-
lar questions at hand [12,13]. They embody several key 
concepts and explicitly or implicitly include a number 
of assumptions that render the models a caricature of 
the real world. The following are a set of basic concepts 
and assumptions regarding the building of SIR epidemic 
models. The additional concepts that follow these include 
ways of making SIR models reflect population structures 
that may be critical to the utility of the model as a tool for 
enhancing understanding and identifying effective miti-
gating strategies for managing epidemics.

Primary concepts

Homogeneous population assumption All indi-
viduals are assumed to be identical with respect 
to the disease process (same contact, recovery, 
disease-induced mortality and immunity-waning 
rates, as well as the same levels of susceptibility and 
infectivity).
Well-mixed population assumption Any individ-
ual is assumed to be equally likely to make contact 
with any other individual in each time period (i.e., 
no household, healthcare, or spatial structures exist 
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within the population that would lead to different 
contact rates among different groups of individuals).
Disease class structure We assume that each indi-
vidual belongs to one of the following three disease 
classes or, equivalently, be in one of the following 
three disease states—susceptible (S), infectious (I), 
and recovered with immunity (R). We may also keep 
track of the number of individuals that have died 
from the disease (D) (which can be thought of as a 
fourth disease state; see Fig. 1), are currently being 
treated (T), or have in the past been vaccinated (V). 
Note that sometimes we use X or Y to represent an 
unnamed disease class: thus in our treatment X or Y 
may represent, S, I, R, V, T, or D.
Fundamental unit of time We need to decide on a 
fundamental unit to monitor the passing of time (t). 
It is most useful if this unit corresponds to the way 
epidemiological data are reported, primarily new 
cases, hospitalizations and deaths per unit time; e.g., 
daily, weekly, monthly, quarterly or some other unit 
of time. For fast disease, such as influenza and other 
respiratory infections, the most useful time unit is 
typically a day, while for ‘slower’ diseases, such as 
tuberculosis or HIV, weekly, monthly or quarterly 
units may be more useful.
Variable names versus variable values Our con-
vention is to use roman fonts to name the disease 
state and italic fonts to represent the variable keep-
ing track of the number of individuals (or density of 
individuals) in each disease state. Hence X is name 
of a state and X(t) is the number or density of indi-
viduals in this state at time, where X=S, I, R, D, T 
or V.
Flows among disease classes Compartmental 
models are formulated in terms of flows of indi-
viduals from one class to the next. In particular, in 
many cases the per capita flows per source class are 
assumed constant over time, though this does not 
hold for the per capita flow from S to I since this 
will depend on the proportion of individuals that are 

susceptible since immune individuals are assumed 
to be resistant of getting infected (but see waning 
immunity below). We use the symbol ρXY(t) to rep-
resent the per capita flow from disease class X to 
disease class Y at time t and vice versa when we are 
making generic statements about flow that are not 
disease class specific.
Lost immunity Individuals in disease class R may 
return to disease class S because their immunity has 
waned sufficiently to render them susceptible once 
again to infection (see Waning immunity below for 
more details).
Rates of change The change in the number of indi-
viduals in a particular disease state over a small time 
interval is given by the rate at which individuals 
enter this status minus the rate at which they leave 
this state over this interval of time.
Mathematical representation We use t to denote 
the current time and [t,t+1] to denote the up com-
ing interval of time. In a deterministic model, using 
dX
dt

 to represent the rate of change of the number 
of individuals in disease class X to all other disease 
classes, the dynamic equation for this class is given 
by 

Deterministic versus stochastic models If the 
large population is relatively large (e.g., millions) 
and the number of infectious individuals is at least 
a few hundred, then we model change determin-
istically in terms of the proportion of individuals 
that become infected over an interval of time. In 
smaller populations, or if we are interested in how 
the epidemic gets started, then we model change 
stochastically in terms of the probable number of 
individuals that become infected over an interval 
of time.

(1)

dX

dt
= (all flows into X at time t) − (all flows out of X at time t)

=
∑

all Y ≠ X

�YX(t)Y −

�

∑

all Y ≠X

�XY(t)

�

X

Fig. 1  A compartmental flow diagram of an SIRS+TV epidemic process (disease classes S, I and R, the three solid squares) with the addition of 
deaths (D, fuzzy square) and mitigation classes (V and T, two broken squares)
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How to think about stochasticity in relation to 
disease class size If with flip a fair coin many 
times, then as the number of times increase, so 
the certainty increases that half of the flips will be 
heads and half will be tails. If the number of flips 
is very large then we can ignore that fact these 
numbers will not be exactly 0.5 heads and 0.5 tails, 
because the approximation gets better as the num-
ber of flips increases. Thus when we formulate 
a deterministic model of an epidemic, we often 
remark that this model only applies for ‘large class 
sizes’ which means populations containing at least 
hundreds of thousands of individuals and hundreds 
of infectious individuals. In small populations, we 
have to account for the vagaries of probabilistic 
events by formulating a stochastic model. The fact 
that stochastic considerations are always important 
at the start or end of an epidemic, when the num-
ber of infectious individuals is just a few, implies 
that deterministic epidemic models cannot answer 
some critical questions about whether or not an 
epidemic will take off, or exactly when an epidemic 
may be extinguished. Stochastic models require 
drawing values from binomial and multinomial dis-
tributions, as will be detailed in “SIRS discrete and 
stochastic formulations” sections and 4.
Variable types The notion that the variables X=S, 
I, R, D, T and V represent integer values is not fully 
compatible with the formulation of a continuous 
time deterministic model: in these models disease 
class variables actually take on continuous rather 
than integer values. Variables in continuous time 
models are, thus, more properly thought of as rep-
resenting the density of individuals across undefined 
space of unlimited extent, which itself is a modeling 
idealization. In stochastic models, the values of the 
variables X are treated as integers.
Definition of the reproductive value/number of a dis-
ease The reproductive value of each infectious individ-
ual in a group of similar individuals is defined to be ‘the 
expected number of other individuals each of these 
infectious individuals will go on to infect before these 
infectious individuals either recover or die.’ This values 
is highly context dependent and will change dramati-
cally through the course of an epidemic.
Definition ofR-zero (R0) At the start of an outbreak 
of a new disease, when everyone except the first case 
(aka as ‘patient 0’ or the ‘index case’) is susceptible, 
the basic reproductive value is referred to as R-zero 
[14,15]. The disease has the potential to become an 
epidemic only if R0>1, otherwise the outbreak will 
fail or just peter out after the first few cases (aka a 
‘stuttering transmission chain’ [16]).

Definition ofR-effective If, initially R0>1, and an epi-
demic breaks out, then the average number of new 
cases that each individual infected at time t causes 
is called R-effective at time t (Reff(t)), which in the 
basic SIR model gets smaller with time, as the pro-
portion of susceptible (S) to immune (R) individuals 
decreases over time. This leads to a steady decrease 
in Reff(t), from an initial value Reff(t)=R0 to a time 
where Reff(t)=1. At this point, the incidence begins 
to decline and Reff(t)<1 continues to fall because as 
the ratio of susceptible to immune individuals is also 
declining and not longer able to sustain the epidemic.
Cessation of an epidemic An epidemic ceases when 
prevalence declines to 0, which in a deterministic 
model can only happen asymptotically as t→∞. In 
stochastic models this happens in a finite time.
Endemicity In populations where waning immunity 
causes individuals in R to become susceptible once 
more (i.e., transfer back to S over spending some 
time in R, as in the SIRS model), if this happens at a 
sufficiently rapid rate, then prevalence will not fall to 
0 and Reff(t) will not necessarily decline monotoni-
cally once below 1. Rather, Reff(t) will either not fall 
below 1 or bounce back to approach 1 after falling 
below 1 and prevalence will stabilize at a level corre-
sponding to a point where Reff(t)=1. If this happens, 
the disease is said to be endemic and the approach 
to endemicity may exhibit dampened oscillations in 
prevalence levels.
Per capita contact rate The SIRS model implicitly 
assumes that transmission can only occur through 
direct contact of individuals, though individuals do 
not necessarily need to have physical contact (e.g., 
short distance airborne transmission enhanced 
through sneezing, coughing, speaking). In the sim-
plest SIRS models, the per capita rate κ(t) at which 
individuals contact others is assumed to be con-
stant—i.e., κ(t)=κ0 for all t.
Contacts involving pathogen transmission Trans-
mission only occurs when a susceptible and infec-
tious individual contact one another. The per cap-
ita rate at which any individual in the population 
contacts an individual in the infectious class, is the 
contact rate κ(t) multiplied by the proportion I/N 
of infectious individuals in the population—i.e., 
κ(t)I/N. Thus the total rate of contact is the number 
of susceptible individuals S multiplied by the per 
capita rate, which thus is κ(t)(SI/N). Only a propor-
tion of these contacts will lead to actual transmis-
sion, as discussed next.
Risk of transmission Transmission is best thought of 
as the probability of a sufficiently high dose of patho-
gens being transferred from infectious individual to 
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a susceptible individual during an event that is char-
acterized as a contact to cause disease in the sus-
ceptible individual. Although transmission is highly 
complicated, depending on how close individuals are 
and for how long they make contact during a ‘contact 
event,’ these complexities are washed out through an 
averaging processes encapsulated in a ‘risk or force 
of infection’ parameter most often referred to as beta 
(represented by the Greek letter β). In an SIRS model 
the actual per capita rate of transmission is thus a 
concatenation of processes involving contact rates 
and probabilities of transmission per contact with an 
infectious individual (this computation is character-
ized more precisely in “SIRS discrete and stochastic 
formulations” section). Thus the transmission rate 
itself is represented by the product βκ(t)I(t)/N(t). In 
most SIRS models, contact rates are often folded into 
the value of β, thereby leading the disappearance of 
the parameter κ.
Frequency dependent transmission The per capita 
contact rate is a constant (i.e., independent of popu-
lation size) κ(t)=κ0, implying the per capita contact 
rate of any susceptible with an infectious individual 
is κ0I(t)/N(t), so the total transmission rate at time t 
is 

Mass action transmission If the per capita contact 
rate scales with population density N, as would be 
the case if individuals moved around at random 
making contact as they bump into one another in 
what is referred to as a ‘mass action process’, then we 
need to replace κ0 in Eq. 2 by κ0N to obtain 

	 This type of transmission process only applies to 
entities that have no autonomy over their movement 
as the move and bounce around when contacting 
one another.
Adaptive (behavior modified) contact In more 
sophisticated SIRS models, a behavioral response 
can be included by assuming that κ(t) depends, say, 
on the current prevalence I(t)/N(t). We refer to this 
as an adaptive contact rate because the rate adapts to 
the level of disease prevalence in the population so 
as to reduce transmission. In this case we replace the 
constant basic rate, with an expression that decreases 
in value with increasing levels of the prevalence I/N 
(see “Constant and adaptive contact rates” section 
for a formulation of one such function).

(2)

Total frequency-dependent transmission =
��0S(t)I(t)

N (t)

(3)
Mass action transmission =

��0N (t)S(t)I(t)

N (t)
= ��0S(t)I(t)

Waiting times and relationship to transition rates 
In SIRS models, if ρX Y is the rate at which individ-
uals in disease class X flow (aka transition) to dis-
ease class Y, then it can be shown (Table 1) that the 
expected time spent in disease class X (aka wait-
ing or residence time in disease class X) when the 
only path out of X is to disease class Y, is given in 
our notation (See Table  2) by T̄X = 1

ρXY
 . Naturally, 

waiting times are reduced when more then one pro-
cess exists for exiting disease class X, as discussed in 
Table 2.
Infectious period The infectious period is the wait-
ing time in infectious class I.
Latent period In some disease models a latent 
period is included in which it is assumed that an 
individual has been exposed to a pathogen and 
enters a class denoted by E = exposed or, in our for-
mulations by L = latent, before entering infectious 
class I once the latent period is over. (Such extended 
models are often referred to as SEIR models). The 
latent period is the waiting time in latent class L (or 
E in SEIR models). The addition of a latent period 
does nothing to alter the epidemic dynamics (e.g., 
does not influence Reff) other than to introduce 
a time-delay into the rate at which the epidemic 
breaks out.
Disease-induced mortality (virulence) In some 
SIRS models, individuals in infectious class I can 
either recover or die (i.e., the flow out of I is into both 
R and D, as indicated in Fig. 1)

Students may be introduced to some of these addi-
tional concepts, as appropriate to the material presented 
in instructional settings, although these concepts are not 
implemented in the deterministic (continuous time) or 
stochastic (discrete time) SIRS+DTV RAMPs considered 
here. Other current [8] and possible future SIRS-RAMPs 
will include some of these concepts.

Additional concepts

Disease classes beyond SIR Additional intrin-
sic disease classes (i.e., other than those associated 
with interventions) include, as already mentioned, 
infected but not yet infectious (L = latent, aka E = 
exposed), as well as infectious without symptoms (A 
= asymptomatic), or contacted (C) but not necessar-
ily on the way to becoming infectious (i.e., individuals 
in C may either go back to S or onto L) [7]. Class A is 
extremely important in masking the seriousness of an 
outbreak, as we have seen with the recent COVID-19 
pandemic [17,18]. Class C allows for considerations 
of the contact tracing and subsequent quarantining 
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of individuals who may or may not then go onto to 
become infectious [19,20].
Waning immunity Individuals are assumed to be 
immune for a time after recovering from infec-
tion (i.e., once no longer infectious). This immunity 
wanes over time with individuals becoming increas-
ingly susceptible over time. In SIRS models, how-
ever, the implicit assumption is that individuals in 
disease class R transfer back to disease class S at a 
constant rate, irrespective of how long any particu-
lar individual has spend in disease class R. In SIRS 
compartment models, the average time spent by 
any individual in disease class R, however, is the so-
called disease class R waiting time. In reality, it may 
take a higher dose of pathogen to infect individuals a 
second time.
Breakthrough infections These are defined to be 
infections in individuals that have been vaccinated 
[21], but this notion could equally well apply to indi-
viduals that have been previously infected. In com-
partmental models, flows from R and V back to S 
allow us to account for breakthrough infections at a 
very crude level because they do not take the subtle-
ties of waning immunity into account for individu-
als in R or V. A refined treatment requires an indi-
vidual-based or agent-based approach as described 
below (also see [8] for including of breakthrough 
infections in a multi-variant pathogen setting).
Demographic class structure Transmission and 
mortality rates may often be age dependent. For 

example, the global influenza pandemic of 1917-
1919 proved to be most virulent for young adults 
while the COVID-19 pandemic was most lethal for 
the elderly. When age-structure is added to a model 
then a ‘mixing matrix’ is needed to describe the rela-
tive frequencies with which individuals of different 
ages make contact with one another [22]. Other 
demographic classes may be job related, such as 
partition off healthcare workers [23] or teachers for 
special consideration.
Metapopulation structure The spatial homogeneity 
assumption implicit in SIRS models can be obviated 
by dividing a population into a number of sub-pop-
ulations, each of which is itself homogeneous, but a 
mixing/movement matrix is needed to describe how 
individuals in one sub-population contact or join 
individuals in another sub-population [24,25,26,27].
Epidemic versus demographic time scales The 
basic SIRS model does not include rates at which 
new individuals join a population (aka recruit-
ment), are born into a population or die from natu-
ral causes. If an epidemic occurs on a time table that 
is fast compared with the demographic processes of 
births, maturation of individuals (as in recruitment 
to a sexually active population in the context of 
sexually transmitted diseases) or deaths, then these 
demographic processes can be ignored [28]. In the 
case of ‘fast disease’ such as influenza in humans, the 
epidemic may often burn through the population in 
months, while births and deaths only lead to sig-

Table 1  SIRS exponential transfers mean period
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nificant changes population numbers on the scale of 
decades. For slower diseases such HIV-AIDS, tuber-
culosis, or leprosy, the epidemic process may be in 
the same time scale as the demographic time scales 
as births an natural deaths, particular in species that 
have generation times measure in years rather than 
decades. Beyond epidemic and demographic time 
scales, longer evolutionary time scales may also be 
considered [29].
Multiple hosts In zoonotic diseases transmit-
ted from animal to human hosts, such as certain 
strains of influenza and cold viruses, it may be 
important to consider how the pathogen is trans-
mitted back and forth between human and animal 

populations [30,31]. This is certainly the case for 
avian influenza [32].
Multiple pathogen variants During the course of 
an epidemic the pathogen may evolve, as occurred 
in the recent COVID-19 pandemic. In this case, 
particularly if some variants are much more trans-
missible or lethal than others, models that incor-
porate multiple pathogen strains may be used to 
help manage strain proliferation [8].
Other modes of transmission SIRS models are 
applicable to directly transmitted diseases and are 
generally not applicable to pathogens that are trans-
mitted by a vector (e.g. tick or mosquito borne dis-
eases) when the pathogen in the vector population 

Table 2  SIRS exponential transfers mean period
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varies over time. In this case, the pathogen levels in 
both populations need to be modeled, as well as the 
rates of contacts between hosts and vectors and how 
these contacts may vary over time [30,33]. Beyond 
vector transmission there are various environmental 
modes of transmission including water borne [34] 
and soil borne diseases [35].
Agent-based models ABMs, also known in some 
contexts as IBMs (individual-based models) allow us 
to focus on the history of individuals [11,36]. Among 
other things, this means we can directly account for 
the time that each individual entered a particular dis-
ease state and make the exit from that state depend-
ent on how long the individual has been in that state. 
This individual level control obviates the exponential 
distribution of waiting times in diseases implicit in 
compartmental systems models (Table  1), although 
a somewhat cumbersome ‘boxcar’ extension to com-
partmental system models allows us to obtain wait-
ing-time distributions that have a humped-shaped 
distribution with the mode close to the mean (see 
Appendix B, Supplementary online file or SOF). 
Such hump-shaped distributions also arise in ABMs 
if the rate individuals leave a particular disease class 
increase with the time they have spent that class (see 
Appendix C, SOF).

Implementation
SIRS epidemic model formulation
Basic model
The continuous time, extended Kermack and McKen-
drik SIRS (S=susceptibles, I=infected & infectious, 
R=recovered) epidemic model [5,37] is foundational to 
the development of epidemiological systems modeling 
and theory [38]. It is most often formulated in terms 
of the variables S, I, and R (note we use the roman font 
mnemonics S, I, and R to refer to the names of the dis-
ease classes/compartments and italic fonts to the varia-
bles themselves). For the sake of completeness we include 
a disease class D to account for the dead, but define the 
number of individuals alive at time t to be 

In the context of differential equation models these var-
iables, strictly speaking, should be interpreted as popula-
tion density variables; though loosely speaking we think 
of them in terms of numbers in a closed (no births or 
natural deaths, no migration), homogeneous population 
(everyone is equally susceptible, infectious, and likely to 
make contact with any other individual). From the gen-
eral systems description given by Eq. 1, if the flow of indi-
viduals from disease classes/compartments S to I, I to R 

(4)N (t) = S(t)+ I(t)+ R(t), N (0) = N0

and R back to S, plus a flow of individuals from I to D 
(disease-induced mortality process) are respectively rep-
resented by the per capita flow rates ρSI, ρIR, ρRS, and ρID, 
(solid arrows in Fig. 1), then we obtain the deterministic 
continuous-time epidemic compartmental SIRS model 

We note the initial conditions included here reflect the 
start of an epidemic caused by a novel pathogen (and 
variables, though actually continuous, are interpreted in 
terms of numbers of individuals). Other initial conditions 
can be assumed when using Eq. 5 to simulate a popula-
tion that is already part way into an epidemic.

In practice, once the values or functional forms of the 
flows ρXY have been specified for X, Y = S, I and R, solu-
tions will be generated over the time interval [0,tfnl] using 
numerical simulation techniques.

Constant flow rates
In the simplest case, apart from the per capita susceptible 
flow rate ρSI, the flows are assumed to be constant and the 
transfer of individuals from one disease state to another 
follows an exponential process. The consequences of this 
assumption are discussed in Table 1.

Extra information. The assumption of a constant flow 
through X, resulting in an exponential exit rate for all 
members currently in X, is unrealistic. To see this, con-
sider any particular individual entering X at time t=0. 
The probability this individual leaves X during the inter-
val [t,t+1] is given by (recall Eq. 1.1 in Table 1) 

This probability has a maximum value of 1−eρ at t=0. 
If individuals spend several units of time in X, it is much 
more reasonable to assume that the probability they 
leave X in any particular unit of time is around the mean 
time T̄X = 1

ρ
 spent in X rather than the very first period 

of time. One can achieve this more reasonable depar-
ture behavior in a continuous-time differential equa-
tion model by dividing the disease class X into a say K>1 
sub-compartments and have an individual pass through 
each of these sub-compartments at a rate Kρ, result-
ing in so-called box car models (Appendix B, SOF). The 
exit process from a box-car model with K compartments 
is by an Erlang distribution with shape parameter K and 
scale parameter Kρ rather than and Exponential distribu-
tion with scale parameter ρ. In an Erlang distribution for 

(5)

SIRS+D cont.-time deterministic model
dS
dt

= ρRSR− ρSIS, S(0) = N0 − 1
dI
dt

= ρSIS − ρIRI − ρIDI , I(0) = 1
dR
dt

= ρIRI − ρRSR, R(0) = 0

D(t) =
t
0 ρIDI(t)dt

(6)
∫ t+1

t
f (t; ρ) = e−ρt − e−ρ(t+1)
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which K>1, an individual is most likely to leave during 
the period that surrounds the mean time that it spends 
in X, which is still T̄X = 1

ρ
 , rather than immediately on 

entering, as implied by Eq. 6 for the exponential case. The 
box car or Erlang model is described in more detail in 
Appendix B (SOF).

Disease transmission
The per capita flow rate ρSI from the susceptible to the 
infectious class is more complicated than the per cap-
ita flow rates between the other disease classes. This 
flow rate represents a disease transmission process that 
depends on susceptible and infectious individuals mak-
ing contact with one another. This contact process in the 
original Kermack-McKendrick model was assumed to 
be dependent on the product S(t)I(t) of the susceptible 
and infectious classes. This approach draws its inspira-
tion from the Law of Mass Action that pertains to chemi-
cal kinetics. The resulting incidence—the rate of new 
infections—then takes on the eponymous βSI transmis-
sion rate, where β is a parameter whose value reflects 
the joint effects of both an underlying contact rate and a 
‘probability of transmission’ per contact (inverted com-
mas are used because only in the stochastic model, as 
developed in “SIRS discrete and stochastic formulations” 
section, are probabilities made explicit; also see “The 
basic reproductive rate r-zero and probability of infec-
tion” section on how to derive the probability of trans-
mission per contact). A more appropriate approach to 
modeling disease transmissions, and hence the incidence 
rate, in humans (at all but the very lowest population 
densities found in rural areas) is to assume that: 1.) each 
individual in the population contacts others at a per cap-
ita rate κ; and 2.) only the proportion of contacts with 
infectious individuals—i.e., I(t)/N(t)—can lead to trans-
mission. Further, not every contact will lead to transmis-
sion, but will be scaled according to a force of infection 
parameter β. In this case, we typically represent trans-
mission by a per capita susceptible function that has the 
frequency dependent form [39] 

In this case, total incidence, which we denote by Δ+I(t) 
(Δ+, is used to denote change due to new additions to I, 
before accounting for the individuals that leave I), is now 
given the function 

(7)ρSI = κβ
I(t)

N (t)

(8)

Incidence: �+I(t) = ρSIS(t) = κβ
S(t)I(t)

N (t)

More elaborate incidence functions have been pro-
posed [40], particularly in the disease ecology literature 
[41]. Equation  7, however, is the one we will focus on 
throughout this exposition. Also, in most of the lit-
erature, the processes of contact, represented by the 
parameter κ and force of transmission per contact, rep-
resented by the parameter β, are not separated but are 
effectively rolled into a single constant βκ=κ×β, with 
no subscript used (equivalent to setting κ=1). In this 
case, the contact process itself is no longer transpar-
ent. We believe that the contact process should always 
be explicit as a reminder that transmission requires 
‘effective contacts’ to be made. Note that it does not 
make SIR models dynamically more complex when 
βκ is represented as the product of two constants: i.e., 
when βκ=κ×β. An effective contact is one that result in 
pathogen transmission. Contacts that do not result in 
transmission are part of more complex epidemic mod-
els that consider quarantining as a mitigation strategy 
[7] because not all quarantined individuals become 
infected.

Constant and adaptive contact rates
Most SIR models implicitly assume a constant contact 
rate 

Arguably, one of the most important modifications to 
the transmission rate and incidence expressions given by 
Eqs.  7 and 8 is to account for changes in contact rates 
once a pandemic has started. This behavior was seen 
with regards to the Ebola pandemic of 2015 [36], as 
well as COVID-19 pandemic [7]. One way to deal with 
this is to assume the contact rate adapts, by decreasing 
either as a function of incidence (Eq.  8) or the propor-
tion of individuals that are infectious (i.e., I(t)/N(t)). If 
we assume the latter, then a three parameter form for 
the contact rate κ(t), that depends on a basic contact rate 
κ0>0, an infectious proportion switching point Pκ∈(0,1), 
and an abruptness switching parameter σκ≥0 is given by 
the function [8]: 

The switching point parameter σκ may be set to 2 for 
gradual switching, 5 for relatively abrupt switching, or 20 
to approximate a step function around the infectious pro-
portion switching point Pκ.

(9)
Constant contact: �(t) = �0 for all t ∈ [0, tfnl]

(10)

Adaptive contact: κ(t) =
κ0

1+
(

I(t)
N (t) /Pκ

)σκ
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The basic reproductive rate r‑zero and probability of infection
The basic reproductive rate, R0, of a disease at the start of 
an epidemic in a population that has never been exposed to 
the pathogen causing the outbreak represents the number 
of expected new cases that the index case (aka patient zero) 
will cause. This number is represented by 

The product κβ can be used to obtain the incidence per 
susceptible over a short time interval Δt at the start of the 
epidemic (also interpreted as the probability of a susceptible 
becoming infected over [0,1]) by solving for the incidence 
over the period t∈[0,Δt], assuming I0=1. This number can 
be obtained by first solving the differential equation 

 Integrating the above equation for the condition I0=1 (to 
see how many susceptibles are infected by a single inec-
tious individual; and assuming both κ and β constant 
over this interval) implies that S(Δt)=e−κβΔtS0. Since the 
expected proportion of susceptibles that will become 
infected over [0,Δt] (i.e., those that leave class S for class 
I) is given by pinf = S(0)−S(�t)

S(0)  (also interpreted as the ini-
tial probability of infection), we obtain the expression 

Finally, we reiterate that most SIRS formulations do not 
explicitly identify a contact rate κ so that this parameter 
does not appear at all in these formulations and also that 
γ is used instead of ρIR (γ≡ρIR). In such cases, R0=β/γ and 
pinfect(0,Δt)=(1−e−βΔt). But, as previously mentioned, it is 
useful to explicitly include κ because it is needed to dis-
cuss adaptive contact and provide the structure needed 
to introduce quarantine rates in a sensible way.

SIRS discrete and stochastic formulations
The discretized version of the SIRS model when disease-
induced deaths are not considered is given by the following 
set of t=0,1,...,tfnl when simulated over the interval [0,tfnl] 

where the proportions pXY are related to the rates ρXY 
by the equation (see Table 1 and cf. Eq. 12) 

(11)

R0 = contact rate × force of transmission per contact × infectious period

= � × � ×
1

�IR

=
��

�IR

dS

dt
= −��I0S, i.e., I(t) = I0 treated as constant for t ∈ [0,Δt]

(12)
Probability of infection per contact on [0,Δt]

pinfect(0,Δt) =
(

1 − e−��Δt
)

for small Δt

(13)

SIRS discrete-time model

S(t + 1) =
(

1 − pSI
)

S(t) + pRSR(t), S(0) = N0 − 1

I(t + 1) =
(

1 − pIR
)

I(t) + pSIS(t), I(0) = 1

R(t + 1) =
(

1 − pRS
)

R(t) + pIRI(t), R(0) = 0

(14)
pXY = 1− e−ρXY , X �= Y, and X, Y = S, I, and R

Thus, as required, pXY=0 when ρXY=0 and pXY→1 as 
ρXY→∞.

A discrete-time stochastic version of this model 
is obtained from Eq.  13 by assuming that the quanti-
ties pSI represent probabilities proportions. (Note: 
Continuous-time stochastic models require a level 
of mathematical treatment beyond the scope of this 
presentation; e.g, see [42]). In this case, the simulation 
takes the form of a discrete-time Monte Carlo process 
in which drawings from a binomial distribution are 
considered rather than computations of proportional 
change. Specifically, simulation involves the following 
drawings, using the following notation to denote such 
drawings (aka samplings):

We note that X̂p is the actual number of actual objects 
drawn or sampled from a total of X objects, where each 
object has the probability p of being selected (and hence 
1−p of not being selected).

Formally, our stochastic model is the following Monte 
Carlo simulation that begins with specified values for 
S(0), I(0), R(0) and D(0) and continues with successive 
samplings for t=1,2,...,tfnl: 

SIRS+D stochastic formulation
The discrete-time and stochastic models given by 
Eqs. 13 and 15 do not include disease-induced mortal-
ity (aka to mathematical epidemiologists as virulence). 
Thus they are only useful for considering the start or 
initial growth of epidemics or epidemics where dis-
ease-induced mortality is inconsequential. Including 
deaths requires consideration of competing rates/risk 
for individuals leaving particular disease classes. For 
example, when deaths are considered individuals leave 
class I to either recover (R) or die (D). In this case, a 
competing rates formulation (Table  2) is needed to 
simulate outcomes. In particular, in the SIRS+D con-
tinuous-time model (Eq.  5) the prevalence equation 
(I(t)) involves the competing rates of recovery (ρIR) and 
disease-induced mortality (ρID). Thus applying a com-
peting rates formula, we obtain (Table  2, Eq.  2.3 with 
Δt=1) 

X̂p ∼ ��������[X , p] with expected value pX and variancep(1 − p)X

(15)

SIRS stochastic model

ŜI(t) ∼ BINOMIAL[S(t), pSI]

ÎR(t) ∼ BINOMIAL[I(t), pIR]

R̂S(t) ∼ BINOMIAL[R(t), pRS]

S(t + 1) = S(t)− ŜI(t)+ R̂S(t), S(0) = N0 − 1

I(t + 1) = I(t)− ÎR(t)+ ŜI(t), I(0) = 1

R(t + 1) = R(t)− R̂S(t)+ ÎR(t), R(0) = 0
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Since individuals in the prevalence class I are now 
faced with two possibilities of where to go—i.e., 
recover or die—the stochastic version of the model 
requires that the binomial drawing be replaced with a 
multinomomial drawing that depends on the two 
probabilities pIR and pID. This requires that we use a 
multinomial function that, in general, for the case of 
n−1 leaving options with competing probabilities pi, 
i=1,...,n−1, and not to move at all with probability 
pn =

(

1−
∑n−1

i=1 pi

)

≥ 0 . We use the following con-
vention to specify the values obtained in one such 
multinomial sampling: 

Thus the model is now given by (cf. Eq 15) 

SIRS+DTV: including treatment and vaccination
We now add treatment (T), and vaccination (V) classes to 
our SIRS+D model and define 

For simplicity, we assume that individuals under 
treatment are no longer able to transmit pathogens to 
the population at large—i.e., they are essentially com-
pletely quarantined. In reality, however, the situation is 
much more complicated than this: the ability of indi-
viduals under treatment to transmit pathogens depends 
on how strict the quarantine procedures are. In addi-
tion, if we structure the population to include health-
care workers or members of the infected individuals 
household, then clearly these healthcare workers and 
household members are likely to be at some particular 

(16)

pIX =
ρIX

ρIR + ρID

(

1− e−(ρIR+ρID)
)

, X = R and D

(17)

�

X̂1, ..., X̂n−1

�

∼ �����������[X ;p1,⋯ , pn−1]

noting that X̂n = X −
n−1
∑

i=1

X̂i and recalling that pn =

�

1 −
n−1
∑

i=1

pi

�

≥ 0

(18)

SIRS+D stochastic model

ŜI(t) ∼ ��������[S(t), pSI]
(

ÎR(t), ÎD(t)
)

∼ �����������[I(t);pIR, pID]

R̂S(t) ∼ ��������[R(t), pRS]

S(t + 1) = S(t) − ŜI(t) + R̂S(t), S(0) = N0 − 1

I(t + 1) = I(t) − ÎR(t) − ÎD(t) + ŜI(t), I(0) = 1

R(t + 1) = R(t) − R̂S(t) + ÎR(t), R(0) = 0

D(t + 1) = D(t) + ÎD(t), D(0) = 0

(19)
N (t) = S(t) + I(t) + R(t) + T (t) + V (t) N (0) = N

0

risk of infection from individuals under treatment. 
Thus, moving beyond our simplifying assumption of 
individuals under treatment being effectively com-
pletely quarantined requires additional model structure 
and transmission parameters, which is not included in 
the model formulated here.

Deterministic formulation
The dynamic equations consist of the following system 
of 5 differential equations, augmented by the three inte-
grations that allow us to keep track of the accumulating 
deaths (D(t)), cases that are treated (Ttotal(t)), and individ-
uals that are fully vaccinated (Vtotal(t)) 

For simplicity, we will initially assume a constant 
treatment rate ρIT=ρtreat that is implemented from the 
onset of the epidemic being modeled. However, we will 
place a maximum Tmax on the number of individuals 
that can be in treatment at anyone time, due to a lim-
ited capacity of the healthcare system to take care of 
sick individuals. Thus, we have 

This intervention, however, will be available to the 
user to elaborate through a RAM (runtime alternative 
module) that is the hallmark of our RAMP (runtime 
alterable model platform) technology. Equation 21 will 
be the Default formulation while alternative 1 will be 
constant application of ρIT with not upper limit.

For the sake of completeness, we note that since the 
outflow from I now includes both flows to R, T, and D the 
expression for R0 in Eq. 11, while individuals in T and D 
are assumed not to transmit pathogen (note for disease, 
such as Ebola, pathogen is transmitted from individuals in 
D preparation of the corpses for burial [43]) now becomes 

(20)

SIRS+DTV deterministic cont.-time model
dS

dt
= �RSR + �VSV − (�SI + �SV)S, S(0) = S0

dI

dt
= �SIS − (�IR + �IT + �ID)I , I(0) = I0

dR

dt
= �IRI + �TRT − (�RS + �RV)R, R(0) = R0

dT

dt
= �ITI − (�TR + �TD)T , T (0) = T0

dV

dt
= �SVS + �RVR − �VSV , V (0) = V0

D(t) = ∫
t

0

(

�IDI(t) + �TDT (t)
)

dt

T total(t) = ∫
t

0
�ITI(t)dt

V total(t) = ∫
t

0

(

�SVS(t) + �RVR(t)
)

dt

(21)

Treatment intervention �IT(t) =

{

�treat when T (t) ≤ Tmax

0 otherwise

(22)Reproductive value(with quarantined treatment and disease-induce death)

R0 = κβ
ρIR+ρIT+ρID
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For simplicity, we will initially assume a constant 
vaccination rate v that is implemented from time tVon 
onwards. As with treatment, we will place an upper 
bound on the number of vaccination regimens that 
can be administered, where a vaccination regimen is 
defined to be a complete course that consists of one or 
more shots over a specified interval of time. Note, for 
simplicity, we assume that the full effect of the vacci-
nation starts at the time of administering the first shot 
in the prescribed regimen (at which time the individ-
ual is transferred to V from S, C, L, R, or Q, as the case 
may be). An individual that later transfers from R back 
to S may then receive a second regime in an ongoing 
vaccination rollout program. The vaccination rate v 
itself will be available to the user to elaborate through 
our Vacc RAM (runtime alternative module). Thus our 
default vaccination rollout program is defined by 

This function will be alternative 1 of the Vacc RAM 
of our RAMP.

Stochastic formulation
For each time step in the stochastic simulation 
(t=0,1,2,...,tfnl−1), we need to transform all the rates 
ρXY(t) (used in the continuous-time formulation) to 
probabilities pXY(t) using the rates to proportions trans-
formation Eq. 2.2 in Table 2. We then proceed at each 
time step to use these probabilities in the Monte Carlo 
drawings followed by computing next values using the 
updating equations, as specified below: 

(23)
Vaccination rollout

ρXV(t) =

{

v for tVon ≥ t and V total ≤ Vmax , X = S, C, L, R and Q
0 otherwise

(24)

SIRS+DTV stochastic model
(

ŜI(t), ŜV(t)
)

∼ MULTINOMIAL[S(t); pSI(t), pSV(t)]
(

ÎR(t), ÎT(t), ÎD(t)
)

∼ MULTINOMIAL[I(t); pIR(t), pIT(t), pID(t)]
(

R̂S(t), R̂V(t)
)

∼ MULTINOMIAL[R(t); pRS(t), pRV(t)]
(

T̂R(t), T̂D(t)
)

∼ MULTINOMIAL[T (t); pTR(t), pTD(t)]

V̂S(t) ∼ BINOMIAL[V (t), pVS(t)]

S(t + 1) = S(t)− ŜI(t)− ŜV(t)+ R̂S(t)+ V̂S(t), S(0) = N0 − 1

I(t + 1) = I(t)− ÎR(t)− ÎT(t)− ÎD(t)+ ŜI(t), I(0) = 1

R(t + 1) = R(t)− R̂S(t)− R̂V(t)+ ÎR(t)+ T̂R(t), R(0) = 0

T (t + 1) = T (t)− T̂R(t)− T̂D(t)+ ÎT(t), T (0) = 0

V (t + 1) = V (t)− V̂S(t)+ ŜV(t)+ R̂V(t), V (0) = 0

D(t + 1) = D(t)+ ÎD(t)+ T̂D(t), D(0) = 0

T total(t + 1) = T total(t)+ ÎT(t), T total(0) = 0

V total(t + 1) = V total(t)+ ŜV(t)+ R̂V(t), V total(0) = 0

Once the simulation is complete, we will have gen-
erated time series for all the disease class variables 
X(t), t=0,...,tfnl, X=S, I, R, T and V, as well as an inci-
dence time-series ŜI (t) and new deaths time-series 
�D(t) = ÎD(t)+ T̂D(t) over t=1,...,tfnl.

RAMP implementation
Here we provide a brief description of the structure 
and operation of our four RAMPs, each of which is an 
HTML file the implements the reference models as a 
Numerus Model Builder RAMP application 

SIRS_Det.xml implements the continuous-time deter-
ministic model represented by Eq. 5, with ρID fixed at 0
SIRS_Sto.xml implements the discrete-time stochas-
tic model represented by Eq. 15

SIRS+DTV_Det.xml implements the continuous-
time deterministic model represented by Eq. 20
SIRS+DTV_Sto.xml implements the discrete-time 
stochastic model represented by Eq. 24

SIRS+DTV continuous-time deterministic and dis-
crete-time stochastic RAMPs, while the structure and 
operations of our simpler SIRS continuous-time deter-
ministic and discrete-time stochastic RAMPs are just a 
subset of descriptions of the more complicated RAMPs 
once elements relating to death (D), treatment (T) and 
vaccination (V) processes are removed. The RAMPs are 
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built with the Numerus Model Builder Designer (NMB 
Designer). Once built the NMB Designer is used to 
generate a RAMP as an HTML file with a user pro-
vided name. This file can then be read and implemented 
by using NMB Studio. This application is available for 
free at the Numerus Website (URL). The reader and the 
RAMP HTML files for the continuous-time determinis-
tic and discrete-time stochastic SIRS+DTV RAMPs are 
available at our Numerus Model Builder Website, where 
more information on using these RAMPs is available at 
the Numerus Website.

Deterministic RAMP dashboard
Once NMB Studio has been download from the 
Numerus Model Builder Website, installed, launched, 
and the Continuous-time deterministic SIRS+DTV 
RAMP HTML file has been read in, the dashboard 
depicted in Fig.  2 appears. It is used to load saved or 
reset parameter values for simulations, initiate runs, 
generate graphs, and save simulation results in the form 
of CSV files. We note that every object on the dash-
board (parameter sliders, RAM rollers, and graphs) has 
a string of three alphanumeric characters (which we 

Fig. 2  The dashboard of the SIRS+DTV continuous time RAMP is depicted here with graphical results of a run made over the interval [0,70] using 
the set of values appearing in the windows of the 13 sliders available for manipulating 13 parameters (also see Table 1) in the model. Note that 
in the Epidemic Curves (EPC) graph, the Dead_(D/N) button is in gray because this graph is switched off, though the total number of deaths are 
plotted (blue curve) in the Accumulated Totals (ACT) graph. Note that the left control roller for Kappa (KAP) is in green because the Constant 
mode (roller value 1) for this RAM has been selected rather than the Default (which would be in blue and the roller value would be 0), which is the 
Adaptive Contact mode expressed in Eq. 10 (also see Fig. 4)
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refer to as airport codes) associated with it that is used 
in scripts to control parameter values, select runtime 
alternative module (RAM) options, and select among 
graphing options. The various dashboard windows and 
their functions are:

Top ribbon (from left to right)
Run length window Type in the length of the run 
and then press ‘enter’ on your keyboard
S access window button (S On) This window pro-
vides the user for a place to load a script written in 
Ramp Programming Language (RPL) or to write a 
de Novo script to control and make the current run 
(see Fig. 4).
RAM access button (Op On) This will open the win-
dow that allows the user to access the different runt-
ime alternative modules (RAMs) where options are 
available to use alternative functional descriptions 
or enter a ’user-defined description’ of a key process 
in the model.
JavaScript window button (Op On) The user can 
open a window and either load in a script or write a 
JavaScript to control a run using the Airport codes 
to access variables and functions (See Fig. 7)
dt window This window only appears in the con-
tinuous time (and not in the stochastic) RAMP. It 
is size of the numerical integration interval used 
to solve the underlying system equations using a 
Runge-Kutta 4 algorithm.
Reset button Use to clear graphs and data from pre-
vious run.
Single step button Each time this button is pressed 
the simulation will progress by one time step.
Run button After pressing reset to clear previous 
run data, press this button to initiate a new run.
Run progress window In this window, the progress 
of the computation is monitored by counting down 
in time from the length of simulation to 0 (i.e., end 
of simulation).
Main window(from left to right and top to bottom)
Parameter slidersName (Airport Code, mathemati-
cal symbol) 

Baseline contact rate (KP0,κ0) This parameter in 
Eq. 10 is the contact rate at the start of the epidemic 
(i.e., κ(0)=κ0).

Contact rate scaling (KPS,Pκ) This parameter in 
Eq.  10 is the prevalence (proportion of infec-
tious individuals) at which the baseline contact 
rate is reduced by a half (i.e., κ(t)=κ0/2 when 
I(t)/N(t)=Pκ).
Transmission parameter (BET,β) This parameter, 
interpreted as the ‘force of infection’ appears in 

Eqs.  7 and 8, as seen in Eq.  12, when multiplied 
by the contact rate κ(t) essentially determines the 
probability of infection per contact.
Recovery rate (RIR,ρIR) This is the flow rate from 
the infectious to the immune disease class: it also 
is the inverse the infectious period (see Eq. 1.2 in 
Table 1).
Loss-of-immunity rate (RRS,ρIR≡ρIV) These are 
the rates at which individuals return from disease 
classes R and V (for simplicity assumed equal in 
our model) to become susceptible again in dis-
ease class S. Their inverse is the period immunity 
remains effective (see Eq. 1.2 in Table 1).
Disease induced death rate (RID,ρID) This param-
eter, referred to as the virulence parameter α by 
mathematical ecologists specifies the per capita 
prevalence rate at which infected individuals die 
over time.
Treat (TRT,ρtreat) This parameter is the rate at 
which infectious individuals are placed under 
treatment, provided the treatment capacity Tmax 
has not been exceeded (see Eq.  21 for details of 
how ρIT is defined in terms of ρtreat and Tmax). A 
key effect of treatment is to reduce the rate of con-
tact of infectious individuals in class T compared 
with those in class I. In our model, we assume that 
individuals in class T no longer transmit pathogens 
to susceptible individuals, although in more com-
plex models some transmission may occur, par-
ticularly to healthcare workers (but this is assumed 
to be negligible in our formulation).
Treatment capacity (TRC,Tmax) This parameter 
places a limit on how many individuals can be 
under treatment at any one time. When this level 
is reached, then new patients are limited by the 
rate at which individuals leave treatment because 
of death or recovery.
Treatment discharge rate (RTR,ρTR) This is the rate 
at which individuals under treatment are released 
to join the immune class R.
Death rate under treatment (RTD,ρTD) This is 
the rate at which individuals under treatment 
die from the disease. This rate may be greater or 
less than the disease-induced death rate for indi-
viduals in disease class I—the former when only 
the most severe cases are treated, and the latter 
when treatment is at least somewhat effective.
Vaccination onset time (VOT,tVon) This is the time 
that the vaccination rollout program begins on the 
interval [0,tfnl] (i.e., it may be the start of the simula-
tion or some way into the simulation).
Vaccination regimens available (VAM,Vmax) This 
parameter sets an upper limit to the total number 
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of vaccination regimens that can be administered 
(whether a regimen consists of one, two or more 
shots in a defined space of time, the number of reg-
imens rather than shots are counted)

Vaccination rate (VAR,v) This rate only applies for 
t ≥ tVon and as long as Vmax has not been reached.

RAMsCode name, Descriptive name (Airport code, 
mathematical symbol) in blue when default option is 
selected (roller value 0) and in green when an alter-
native value is selected (roller value 1 corresponds to 
constant values over the simulation interval, roller 
values > 1 will be user supplied options; text in red if 
the reset button needs to be toggled) 

Kappa, Adaptive Contact (KAP,κ(t)) The Default 
(roller 0) for this expression, as given by Eq.  10, 
involves the baseline contact rate κ0, the contact rate 
scaling constant Pκ and the transmission parameter 
β. Alternate roller 1, labeled Constant, is the constant 
value κ0.

Treat_Rate, Treatment Flow Rate (RIT,ρIT) The 
Default (roller 0) for this expression, as given by 
Eq.  21, involves the baseline treatment rate ρtreat 
and the treatment capacity parameter Tmax. Alter-
nate roller 1, labeled Constant, is the constant 
value ρtreat.
rSV, Vaccinate S (RSV,ρSV) The Default (roller 0) 
for this expression, as given by Eq. 23, involves the 
baseline treatment rate v, treatment onset time tVon 
and the treatment regimens available parameter 
Vmax. Alternate roller 1, labeled Constant, is the 
constant value v.

rRV, Vaccinate R (RRV,ρRV) The Default (roller 0) 
and alternative Constant (roller 0) as exactly the 
same as Vaccinate S. This option has been provided 
in case the user wants to vaccinate disease class R 
in a different manner to disease class S. This would 
require the classes R and S can be distinguished by 
the healthcare establishement.

GraphsName (Airport code) 

Epidemic curves (EPC) This graph allows the user to 
plot the proportion of individuals in disease classes 
S, I, R, and D over the chosen simulation interval or 
to select one of these four variables to create a com-
parative graph over multiple runs.

Accumulated totals (ACT) This graph allows the 
user to plot the accumulating number of deaths 
(D(t)), vaccinated (Vtotal(t)) and treated (Ttotal(t)) 
individuals as time progress, or to select one of 

these three variables to create a comparative graph 
over multiple runs.

Epidemic progress (EPP) This graph allows the user 
to plot the effective reproductive rate (Reff(t)) or 
prevalence (I(t), repeat of second graph in EPC) over 
time, or to select one of these two variables to create 
a comparative graph over multiple runs.

Stochastic SIRS+DTV RAMP dashboard
As with the Continuous-time SIRS+DTV RAMP, the lat-
est available version of the Stochastic SIRS+DTV RAMP 
can be downloaded at our Numerus Model Builder Web-
site where more information on using the RAMP is avail-
able. The dashboard of the Stochastic SIRS+DTV RAMP 
is the same as its continuous time counterpart, except the 
dt window is now replaced as follows: 

Seed window This window (center of top ribbon) 
anchors the sequence of pseudo random numbers 
used to in the simulation to a particular starting 
point: if this window is empty, then the starting point 
is random, otherwise it can be specified by a number 
ranging for 0 to 264−1.

There are also one additional slider in the stochastic 
dashboard 

Parameter slidersName (Airport Code, mathemati-
cal symbol) 

Popsize (PSZ,N0) This parameter is the initial pop-
ulation size N0 that appears in Eq.  24, where the 
initial number in disease class S is S(0)=N0−1.

The reason why population size does not appear in the 
Continuous-time SIRS+DTV RAMP is that the solution 
to continuous time model Eq. 20 is scale free relative to the 
size of N0 (i.e. every equation in this model can be divided 
by N0 to obtain a system of equations on the time course of 
the proportions S/N0, I/N0, R/N0, T/N0, and V/N0, so that 
the equations are now independent of our choice of N0, 
provided the initial conditions are set to the corresponding 
set of fractional values. On the other hand, the variance 
associated with demographic stochasticity depends on 
absolute values (viz., the variance associate with multino-
mial sampling is inversely proportional to the square root 
of population size), which implies that the behavior of the 
initial outbreak is nearly (i.e., provided S(t)/N(t) remains 
very close to 1) independent of population size provided 
the transmission is purely frequency dependent (i.e, does 
not have a density dependent component to it).

Every run of the stochastic RAMP for a given set of 
parameter values will be slightly different, unless these 
runs are made with the same value inserted in the Seed 
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slot in the middle of the top ribbon of the stochastic 
SIRS RAMP (Fig. 3). To make sure that the same seed 
is used at the start of a new run, the Restart RNG on 
Reset square below the seed window can be checked. 
To answer many questions, it is often likely to be more 
useful to make multiple runs and provide statistics 
related to quantities of interest, than to make and pre-
sent a single run. This idea will be further developed 
in the “Stochastic SIRS dynamics” section. In terms 
of visual interest, repeated runs can be compared by 
selecting the Comparison mode slot above each graph, 
and making sure that all by one of the graphs that 
can be plotted with each graph (see lists below each 
graph in Fig. 2, which can be selected or deselected by 
clicking on the appropriate small circular button. In 
the two graphs in Fig.  3A. the proportion of immune 

individuals and number of infectious individuals are 
plotted for 10 comparative runs for set of values indi-
cated in the slider windows and in Table  3 when not 
available for slider selection.

Operation of runtime alternative modules (RAMs)
The four RAMs all operate in the same manner. The 
Default modes (value 0 on roller selectors and text in 
blue) for the Adaptive Contact, Treatment Flow Rate, 
Vaccinate S and Vaccinate R modules are respec-
tively coded by Eqs.  10, 21, 23 and, again, 23. Along 
with these a Constant alternative mode (value 1 on 
the roller selectors and text in green, though text is in 
red when still to be included by pressing the reset but-
ton on the top ribbon of the Dashboard) is available 
for each of these. Information on these alternatives 

Fig. 3  Ten comparative runs of the stochastic SIRS RAMP using the parameters values depicted by the sliders (or fixed according to values listed 
in Table 1). In panel A. the population size is 1000, in panel B. it is 10,000, while in panel C. a vertically magnified version of prevalences for the 
three runs that failed to take off in panel A (Runs 6, 7 and 9; such runs are expected, as discussed in the Results Section in the context of Eq. 25) are 
plotted on their own
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is provided in the window opened by toggling the Op 
On button, second from the left on top ribbon of the 
dashboard (Fig. 2). This window (Fig. 4A.) allows the 
user to select the RAM of interest (bottom left hand 
list). Once selected (in Fig.  4A., for say the Adaptive 
Contact RAM, the Default Kappa option is shown) 
the window provides an option to select the Default 
RAM (left text inner window contains general infor-
mation; the right top text inner window contains 
specific information pertaining to the particular alter-
native selected; and the bottom right inner window 
contains the coded expression that will be used). Panel 
B, Fig.  4B.) depicts selection of alternative 1 for the 
Kappa RAM along with the its specific information 
inner window and coding inner window. Next to the 
buttons to select the alternatives 0 and 1 is a “+” but-
ton (bottom of panel B, Fig.  4) that users can be use 
to add as many alternatives numbered 2, 3,... etc., as 
desired.

Scripting windows
Two types of scripting windows are available. The S 
On and JS On buttons (first and third buttons on top 
ribbon in Fig. 2) can be used to write or load in scripts 
respectively written in RPL (RAMP Programming 
Language; Fig.  5) or JavaScript. These scripts enable 
the user to control individual runs either by changing 
parameter values and RAM settings, or make multi-
ple runs (Fig.  4) and plot these using the comparative 
window facility (Fig. 6). Accessing the window in which 

this script can be entered or loaded from a saved file is 
described in Fig. 4’s legend, as is accessing the window 
containing a list of the RPL commands that can be used 
to write such scripts.

Help file and airport codes
When the Help menu of a RAMP is selected, informa-
tion about the RAMP will appear together with a list 
of all the objects in the RAMP that can be referred 
to using airport codes (Fig.  7). In the parameter list 
on the left of Fig. 7), any parameter that has not been 
turned into a slider will have is Fixed Value listed in 
red. In our two SIRS RAMPs, though not in the our 
two SIRS+DTV RAMPs, the value of β (Airport code: 
BET) has been fixed 0.3 because only the product of 
κβ is relevant in determining the disease transmission 
rate ρSI for a particular prevalence level I(t)/N(t) (Eq. 7). 
The value of this product is thus manipulated using the 
κ0 slider, because κ0 scales the value of κ at time t, as 
expressed in Eq. 10.

Saving the data from each run
A file location can be set up for the automated saving of 
CSV files (see Fig. 8 for details), which is particularly use-
ful when the RAMP is used to make a series of runs, each 
differing in some sense (e.g., but changing a slider value 
and then rerunning the RAMP). The user can select what 
values should be saved using the CSV Settings... window. 
As indicated in Fig. 8, each file is saved with its own date 

Table 3  Parameter values and ranges used in illustrative simulations

∗  In the continuous-time model the actual value of this parameter has no influence on the dynamics and so all numbers are relative to its value, which can be used 
to normalize results to proportions or percentages. In the stochastic model, the actual value affects the level of variability as discussed in “Stochastic sIRS+DTV rAMP 
dashboard” and “Stochastic SIRS dynamics” sections

Parameter Symbol Value/Range Comment

Time unit t daily

Nominal pop size ∗ N0 105−107 see Eq. 19

Simulation interval [0,tfnl] varies as specified in text

Baseline contact rate κ0 0.2-8 per day see Eq. 10

Transmission parameter β 0.3 see Eq. 7

Infectious period 1

ρIR
4 days median time in I

Period of immunity 1

ρRS
=

1

ρVS
10- ∞ days mean residence time in R & V

Disease-induced mort. ρID 0-0.01 per day aka ‘virulence’

Behavioral switch I(t)
N(t)

= Pκ
0.001- ∞ ∞≡ no behavior (Eq. 10)

Switch abruptness σκ 4 see Eq. 10

Treatment rate ρIT 0-0.1 per day starts from day 1

Treatment capacity Tmax 0-10,000 per day see Eq. 21

Vaccination rate ρSV=v 0-0.01 per day starts at ‘Vacc. on’

Vacc. on tVon day 0 to 180 see Eq. 23

Vaccination capacity Vmax 100,000 in total see Eq. 23
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stamp. Each CSV file is automatically headed with the set 
of parameter values and RAMP selections that were used 
to generate the data in the file.

Using RAMPs within the r statistical and data analysis 
platform
The exposition here applies to the use of Numerus 
Model Builder RAMPs as virtual packages in the 
implementation of R on the RStudio platform. The 
following steps should be followed to accomplish the 
match up between RStudio and NMB Studio (the 
Numerus Model Builder RAMP player) to implement 
the desired analyses. 

1	 Launch the RAMP to be used as an RStudio “virtual 
package” and either load the required parameter and 
RAM settings or choose these using the dashboard 
(Fig. 2).

2	 Download the latest version of the nmbR package 
from the Numerus Studio site

3	 Launch NMB Studio and install the package using 
the command

	 install.packages(~.../nmbR.tar.gz~, repos = NULL, 
type = ~source~) adding the appropriate directory.

4	 Create the R code necessary to run the desired analy-
sis, using the functions offered by the package, such 
as nmbR$iterate_r used in ex1 in Fig. 9

5	 Here is a list of the different functions defined in the 
package, while the user can define any other desired 

Fig. 4  When the Op On button (second button from the left on the top strip of an SIRS+DTV RAMP, as depicted in Fig. 2, is selected the window 
depicted here opens (panel A.). At the bottom left hand side we see that we have four RAMs (runtime alterable modules) options pertaining to the 
formulations of the functions Kappa (κ(t)), rIT (ρIT), rSV (ρSV) and rRV (ρRV). We also see that the Kappa RAM has been selected. The Default option 
(number 0) of this RAM is the adaptive form given by Eq. 10 (it appears in the window on the left of panel A., with some specific details pertaining 
to this mode provided in the window on the right of panel A.). Inset B. shows the alternate form (number 1) for κ(t), which is simply setting it equal 
to the constant κ0. The user may insert an additional alternate form for this RAM by selecting the ‘plus’ button, bottom middle of panel B., and then 
adding the desired from in the Code window on the left-hand side

Fig. 5  Here we depict three panels or windows associated with the scripting utilities of our RAMPs. Panel A (black bordered panel): When the S 
On button (first button from the left on the top strip of a RAMP, as depicted in Fig. 2) is selected this window opens. In the bottom left corner of this 
window is a Command Reference button (covered here by panel C), when pressed, opens panel B. Panel B (blue bordered panel): RPL Reference 
window, containing a list of commands that can be used to automate multiple runs or make changes to component values or modes during runs. 
The second column of text in the Script window (panel A.) contains 17 lines of instructions (saved as MultiPrevScript.txt, as seen in the top right 
hand window slot of the S On window) that codes the RAMP to make six repeated runs of the model, where in each of the runs the value of KP0 (κ0) 
is increased in value from 0.5, starting with the value specified in the model and described further in Fig. 6. Panel C (orange bordered panel): When 
the JS On button (third button from the left on the top strip of the RAMP, as depicted in Fig. 2) is selected this window opens. Here we see the 
JavaScript equivalent of the RPL script given in panel A

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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function using R code. For more information about 
the package functions, use the command ?nmbR in 
the RStudio console. 

nmbR$dispatch: to send a command string for pro-
cessing by a running RAMP

nmbR$iterate_r: to iterate multiple runs, collecting 
in a list of per-run R data frames
nmbR$iterate_v: to iterate multiple runs, collect-
ing in a list of per-variable R data frames
nmbR$frame: to retrieve the values generated in a 
RAMP simulation into an R data frame

nmbR$graph: to graph one or more time series from 
a RAMP simulation

Results: illustration of concepts
In this section, core epidemiological concepts and the 
efficacy of mitigating measures (treatment/isolation 
and vaccination) are illustrated through simulations, 
using parameter values and ranges of values listed 
in Table  3. These parameters are somewhat typical of 
a directly transmitted respiratory pathogen, such as 
COVID-19, but simplified by not including latent or 

Fig. 6  The script depicted in Fig. 5 is used to run the deterministic SIRS+DTV RAMP 6 times using the parameters values depicted by the sliders (or 
fixed according to values listed in Table 1). The KP0 (top left-hand) slider in this figure shows a value of 4.5, which implies the 6 runs ranged from a 
start value of 2.0 to 4.5 in increments of 0.5. Note that each of the three graphs available on the dashboard has only one its several possible options 
selected (available options can be seen below the graphs in Fig. 2) and the small rectangular comparison window above each graph has been 
selected to ensure that graphs generated during each of the 6 runs remain plotted once all runs are complete. The c Clear button above each graph 
allows earlier graphs to be erased when desired
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asymptomatic disease classes [7,18], spatial structure 
[44], or age-class [22,45] and other population struc-
ture effects [9].

In the six subsections that follow here, we present 
illustrative examples that each culminate in a take 
home message—i.e., six in total. We also provide num-
bered simulation exercises in Appendix A (SOF), were 
each exercise is numbered to link it to the material pre-
sented in each of the 6 subsections of this section.

Deterministic SIR epidemiological dynamics
In our first simulation, we demonstrate the basic fea-
tures of an SIR (and, equivalently, an SEIR) epidemic 
process. The actual set of parameter values is not impor-
tant provided they are selected to ensure that R0>1. 
Beyond this, different sets of parameters will result in 
epidemics that have the same primary features of an 
outbreak curve: a rise, a peak prevalence, followed by a 
collapse to zero prevalence with a proportion of suscep-
tibles escaping infection. The only difference is 1.) how 

long it takes the epidemic to rise to its peak and collapse 
to almost zero (in idealized deterministic models the 
approach to zero is asymptotic; in stochastic models it 
reaches 0 in a finite time—see “Stochastic SIRS dynam-
ics” section for more details), 2.) the peak prevalence 
value itself, and 3.) the value of the proportion of indi-
viduals that escape infection.

For example, consider setting κ0=2 in the non-adap-
tive case (Eq.  9), β=0.3, ρIR=1/4=0.25, and ρID=0.05 
(Table  3). In this case, it follows from Eq.  22 that 
R0 =

0.3×2
0.25+0.01 = 2.353 . Since R0>1, we expect an out-

break to occur. As we see left most graph in Fig. 10, the 
curve Reff (blue curve) starts out at Reff(0)=R0=2.353. 
Despite R0 being almost 2 and half times larger than 
needed for an epidemic to occur, it takes time to make a 
visible impact in our plots, taking off around t=26 (see 
prevalence curve in red, in the left graph).

As the prevalence rises steeply after this take off, Reff 
begins a concomitantly steep decline (blue curve, left 
graph), reaching a value of 1 around t=40. At this same 

Fig. 7  When the Help menu of RAMPs is selected information about the RAMP is provided. Here we see the information provided about the 
stochastic SIRS+DTV RAMP. This information includes the airport codes for the parameters, variables, and graphs, as well as descriptions associated 
with the sliders, which can also be accessed by mousing over the relevant sliders on the Dashboard
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Fig. 8  A. (black bordered panel) Each run can be saved at a user selected location that is set up using the pull down CSV menu on the top 
left-hand corner of the dashboard window (also see Fig. 2). B. (blue bordered panel) Once the CSV Settings option is selected a window opens that 
allows that user to select which disease states and computed time-series should be included in the CSV file which will be saved at the specified 
directory (example given here in the window at the bottom of the CSV Selection window. C. (orange bordered panel) Files saved in user specified 
directory are given a time and data stamp so that all files that are saved have a different name

Fig. 9  A partial capture of the RStudio window that is set up to run the iterate_r function of nmbR package. This package allows R code to utilize 
the RAMP currently running within NMB Studio as a ‘virtual’ R package
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time, the prevalence curve (red, left graph) hits is maxi-
mum value of just under 25% and then rapidly declines to 
low levels around t=60. Although deterministic models, 
as mentioned above, predict an asymptotic approach to 
0 over infinite time, the last case will most likely disap-
pear between 65-110 days (as discussed in “Stochastic 
SIRS dynamics” section), provided all of individuals in 
the R class (close to 90%, green curve right graph) remain 
fully immune (i.e., do not transition back to class S, as 
discussed in “Deterministic SIRS endemic dynamics” 
section).

Of notable importance is that not all individuals suc-
cumb to infection: at time t=100 days, the proportion 
of susceptibles is 0.124 (red curve, upper panel). The 
epidemic, though has run out of steam because most of 
the contacts between remaining infectious individuals 
I and others are with individuals from R who we have 
assumed cannot become reinfected, rather than from 
S. Further, at this time Reff(t) = R0 ×

S(t)
N (t) is much less 

than 1. In fact Reff(70)≈0.3. It is important to note that 
the epidemic does not shut down when Reff(100)=1 
around t=40 because it still has considerable 

Fig. 10  A view of the continuous-time deterministic SIRS RAMP dashboard after simulation of a basic set of epidemic SIR curves for the parameter 
values shown in the sliders, with an infectious period of 4 days, as listed in Table 1. Note the contact scaling value KappaS (aka behavioral switch, Pκ 
in Table 1) is moot because the Kappa Adaptive Contact RAM (green text in middle of panel) has been set to be Constant (roller setting is 1), while 
the setting for its Default mode would be 0 (also see Fig. 4). In this case peak prevalence is reached around 40 days, the herd immunity level is around 
90% and the asymptotic susceptibility level S∞ is around 10%



Page 24 of 32Getz et al. BMC Medical Education          (2022) 22:632 

momentum driving it down due to the prevalence at 
this point exceeding 20%.

Take Home Message 1.
An SIR epidemic after rising to a peak falls to approach 
zero prevalence as the herd immunity level is approach, 
while the proportion of susceptible individuals approaches 
a non-zero value. Thus, once the epidemic has passed not 
all individuals will have succumbed to the disease.

Deterministic SIRS endemic dynamics
In an SIR model, individuals remain permanently in R 
and thus remain immune for the rest of their lives. This 
corresponds reasonably well to the case of immunity to 
measles [46]. If we take the effects of waning immunity 
into account by allowing individuals to transfer back to S, 

then we obtain an SIRS model. The mean rate of return 
from R to S can be obtained from empirical observations 
on the rates of reinfection of previously infected indi-
viduals as a function of time since last infection. When 
this rate is positive, the epidemic is not extinguished but 
reaches some endemic state that depends on this rate. 
The level of prevalence that the population finally set-
tles into is inversely related to the mean period of time it 
takes for individuals in R to return to S (Fig. 11A.).

Take Home Message 2.
Levels of endemicity of a pathogen do not depend on 
R0, but on a given set of parameters that are inversely 
related to the waning period (i,e, mean residence time 
in R before returning to S).

Fig. 11  The level of immunity (R(t)/N, left graph) and prevalence (I(t)/N, right graph) are plotted over 720 days for a set of comparative simulations 
of the deterministic continuous-time SIRS RAMP to illustrate the phenomena of endemicity as a function of waning immunity. Plots 1-6 represent 
loss-of-immunity rates of ρRS=0, 0.001, 0.002, 0.005, 0.01, and 0.03 respectively for individuals in class R. These corresponds to mean waiting (or 
residence) times in R (before returning to S) of ∞, 1000, 500, 200, 100, and 33.3 days respectively. Note that the value of the contact scaling rate 
KappaS =0.100 is moot because the Kappa adaptive contact RAM (Green roller below sliders) has been selected to be the constant value κ0=2 (see 
Fig. 4 for more details)
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Adaptive contact rates in the sIRS model
The trajectories depicted in Figs.  10 and 11 correspond 
to the case where the behavioral response is absent. An 
adaptive behavioral response can be implemented by set-
ting the value Pκ in Eq. 10 to some finite positive value. 
For example Pκ=0.1 implies that the basic contact rate κ0 
is reduced by half (i.e., to κ0/2) when prevalence is 10%. 
In Fig. 12B, we depict changes in the incidence curve for 
the basic set of parameter values in Table 3 for the SIRS 
model with mean recovery residence time is equal to 33.3 
days rather than ∞ (note: the disease induced mortality 
rate in this case is 0).

Take Home Message 3.
Adaptive social distancing can do much to dampen the 
peak response in a rising epidemic, but does little to help 
extinguish the epidemic or set the ultimate endemic 
levels.

Stochastic SIRS dynamics
Stochastic SIRS models of epidemics in large populations 
(e.g. tens of thousands or more) behave very much like 
deterministic SIRS models, except at the start and end of 
an epidemic when infectious class sizes are small (single 
digits). The properties of stochastic SIR dynamics have 
reported in considerable detail in text books and review 
papers [42,47,48,49,50], but here we will only focus on 
the most salient differences between stochastic and 
deterministic SIRS models (Fig. 13).

Arguably the most important insight obtained from a 
stochastic model is that even when R0>1, the introduc-
tion of an infectious individuals into a naïve population 
(i.e., with respect to the pathogen causing that disease 
or any related pathogens that may confer some cross-
immunity in the population with respect to the pathogen 
causing the disease) does not automatically imply an out-
break of the associated disease will occur. In particular, 

Fig. 12  The level of immunity (R(t)/N, left graph) and prevalence (I(t)/N, right graph) are plotted over 1450 days for a set of comparative simulations 
of the deterministic continuous-time SIRS RAMP to illustrate the effect of adaptive behavior as a function of disease prevalence. Plots 1-6 represent 
scaling parameter values of KappaS (i.e., Pκ in Eq. 10) respectively equal to 0.1, 0.033, 0.01, and 0.001 Note that the Kappa adaptive contact RAM 
roller is now blue because the default 0 option applies, as discussed in Fig. 4
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it has been shown under certain assumptions, which we 
will refer to as the DH assumptions (see [1] for details of 
these assumptions), that the probability poutbreak is related 
to R0 by the equation 

As an exercise, users of the Stochastic SIRS RAMP 
are asked to investigate how good an approximation 
Eq. 25 is for a SIRS epidemic modeled by Eq. 15.

A second important insight obtained from a sto-
chastic model is that despite stochastic SIRS models 
predicting that all epidemics will ultimately become 
extinguished, endemic solutions persist for extended 
periods of time creating a so-called quasi-stationary 
distribution that depicts the distribution of prevalence 
values over time, given that the outbreak has past an 
initial epidemic burn in phase whose deterministic 
counterpart is the initial peak that we see in Fig.  11A 
before the equilibrium endemic level sets in [44,48,49].

Take Home Message 4.
The value (1−1/R0) provides an estimate of the probability 
that an epidemic will start when an infectious individual 
is introduced into a naïve population, although under the 
assumptions of our model it underestimates the probability 

(25)poutbreakDH assumptions =

(

1−
1

R0

)

of an outbreak by roughly 10% when R0 is in the 3-6 range 
(to verify this, see the solution to Exercise 4.1 presented in 
Appendix A (SOF) of the supplementary online material).

Treatment
From a modeling point of treatment introduces consid-
erable complexity into the model that may require addi-
tional structure to comprehensively evaluate its effects. 
For example, only overtly symptomatic cases are likely to 
be treated, and type of treatment will depend on severity 
of infection. In addition, we may ask: 1.) Does the intro-
duction of treatment reduce mortality of cases in I that are 
not treated, because these are the milder cases? 2.) Does 
treatment reduce transmissibility overall due to possible 
isolation during treatment of the severer cases in I? 3.) 
How does treatment impact that mortality rate of those 
removed to class T (treated class)? And, 4.) Should the 
population be structured into a class of healthcare workers 
that are involved caring for individuals in class T, because 
these workers are now at risk of infection from individuals 
in T while the general population is not (e.g., see [23]). All 
this suggests that the most appropriate way to extend SIRS 
models to include a T class will be disease specific.

In terms of general analyses that can be undertaken 
when introducing treatment in the very simple manner 
depicted in Fig. 1 and expressed mathematically in Eq. 20, 
we can look at: 1.) the effect that introducing T has on 

Fig. 13  A. A histogram of the duration of outbreaks of an SIRS stochastic process obtained from 1000 simulations of the stochastic SIRS RAMP 
depicted in Fig. 3 embedded in an RStudio computational environment. This histogram clearly indicates a set of minor outbreak (301 simulations) 
and major outbreaks (699 simulations), where the former constitute a set of stuttering transmission chains that are extirpated before they can 
engage their possible exponential grow phase [56]. B. A plot of the mean and spread (± 1 standard deviation) of the prevalence over the 699 runs 
that constitute the major outbreak component of the 1000 simulations
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reducing transmission in a homogeneous population 
because of its isolating components, and 2.) reductions 
to mortality through both treatment and the possible 
introduction of novel treatments partway through the 
pandemic.

The first case can be explored, for example, by reduc-
ing the transmission rate of individuals in T com-
pared with those in I. The second can be explored, 
for example, by assuming a relatively low disease-
induced background mortality rate for all individu-
als left in I (perhaps even zero) and assuming that the 
disease-induced mortality rate of individuals in T is 

a decreasing (possibly step-wise) function of time as 
healthcare workers learn to deal with the new disease 
and pharmaceutical aids and methods of care improve 
steadily throughout the pandemic.

In Fig.  14 we compared two different scenarios that 
emphasize two aspects of treatment. To what extent is 
the capacity of the healthcare infrastructure going to be 
challenged by the peak number of individuals in treat-
ment under the assumed treatment levels, and what 
are the expected number of individuals that will die 
from the disease over a specified period of time (in our 
cases 1000 days) under assumptions of how treatment 

Fig. 14  The per capita accumulating deaths (D(t)), the accumulating number of treatments (Ttotal(t)) and the prevalence (I(t)/N(t)), are plotted for 
two different constant treatment (i.e., ρIT RAM roller is set to 1) scenarios, with constant contact rate (κ0=2; Adaptive contact RAM set to 1) and no 
vaccination. In treatments 1 (blue curves) versus 2 (red curves) we have the treatment rates are ρIT=0.1 versus 0.02 (10% versus 2%). The parameters 
used in treatment scenario 2 are shown in the sliders here. In scenario 1, we assumed that the disease induced mortality rate is the same for 
individuals, whether they remain in I or move T, which implicitly assumes that treatment is taking the more severe cases and reducing the mortality 
of these case to same background rate of 0.5% for those untreated. In scenario 2, we assumed that treatment is more effective than in treatment 1, 
reducing the mortality rate of those under treatment to 0.1%
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will impact the mortality rate of those not in treat-
ment, taking into account that those in treatment are 
the more severe cases anyway. The effect of scenario 
2 compared with that of 1 is to reduce the peak num-
ber of individuals under treatment by around than 50% 
though due to different assumptions about the death 
rate under treatment leads to similar numbers of dead 
under both scenarios.

Take Home Message 5.
The incorporation of treatment into an SIRS models has 
several critical aspects to it that may require alteration of 
the SIRS+DTV model to assess the effects involved.

Vaccination
Vaccination rollout programs are limited by the willing-
ness of the population to participate, the healthcare facil-
ities available to vaccinate individuals at a particular rate, 
and the number of regimes that will be available over the 
rollout implementation period. A recent exposition by 
an ISPOR (International Society for Pharmacoeconom-
ics and Outcomes Research) task force recommended 
that economic analyses undertaken to implement new 
vaccination programs should consider the following four 
components [51]: “ 1.) uptake rate in the target popula-
tion; 2.) vaccination program’s impact on disease cases 
in the population over time using a dynamic transmis-
sion epidemiologic model; 3.) vaccination program 

Fig. 15  The prevalence (I), number of individuals currently immune through vaccination (V), and the number that have died are plotted for the 
two contrasting cases. In Vaccination Scenario 1 (blue curves) versus 2 (red curves) we have vaccination rates ρSV=ρRV=0.003 (0.3% of individuals in 
these classes are vaccination each day) starting on day 100 for scenario 1 versus day 250 for scenario 2. Vaccinations are continued until one million 
regimens (whether done with a single or double shot is not relevant) have been delivered. Since the red curve initially obscures the blue curve, 
both scenarios are the same until day 100 (i.e., the initial red peak prevalence applies to both)



Page 29 of 32Getz et al. BMC Medical Education          (2022) 22:632 	

implementation and operating costs; 4.) and the changes 
in costs and health outcomes of the target disease(s).”

The RAMPs that describe here are meant to help 
implement component 2. of the above recommenda-
tion. By way of illustration of this component—ignoring 
components 1, 3 and 4 which would need to be brought 
into a more complete analysis at some point— we com-
pare two vaccination programs: one starting on day 100 
and another at 250 days, where both are constrained 
by a program rollout rate of vaccination 0.3% of all not 
currently or previously infected individuals per day (i.e. 
ρSV=ρRV=0.003), with a maximum of one million regi-
mens (irrespective of the number of shots associated 
with each regimen) available for the analysis.

The results of simulating the above two scenarios are 
illustrate in Fig.  15. The primary difference in the two 
scenarios is that the earlier start to the program helps 
suppress the second prevalence peak that occurs over 
days 200-300, and postponing it to a lesser peak over 
days 300-400. The early start does lead to a reduced pro-
portion of deaths over days 200-700, but ultimately the 
advantages of the earlier start are nullified due to the ear-
lier start program running out of vaccination regimens 
more than 100 days ahead of the later starting scenario.

Take Home Message 6.
Vaccination policies with limited regimens available over 
some fixed planning period may need to consider trade 
offs between peak patient loads that may stretch health-
care resources and mortality rates over the periods in 
question.

Discussion
Some of the most challenging global issues of our time—
climate change, habitat and diversity loss, emerging dis-
eases, and food security—cannot be mitigated effectively 
without an adequate understanding of how dynamical 
systems unfold in space and time. Notions of how best 
to describe the systems involved and measure their vari-
ables and rates of change are central to uncovering the 
spatiotemporal characteristics of these systems. Con-
cepts needed to understand these characteristics include: 
the impact of time constants on exponential growth; how 
interacting variables, adaptive behavior and time delays 
may induced oscillatory patterns; and, the probabilities 
of invasion, persistence, and extinction of salient species 
as a function of various rates and process descriptions. 
Uncovering these characteristics requires some level of 
mathematical sophistication (e.g., mastery of the funda-
mentals of calculus) and dynamical systems modeling.

In the context of emerging disease and associated epi-
demiological processes, public health policy decisions 
often need to be made by health policy professionals, 

politicians, and civil servants. Many of these individuals 
do not have the appropriate mathematical training and 
modeling experience to undertake the kinds of quantita-
tive analyses needed to make the soundest health policy 
decisions. Given how consequential these decisions may 
be with regard to the health of individuals and the eco-
nomic well being of society, it is important that tools 
be developed to assist those involved in formulating or 
implementing health policy to understand the basic con-
cepts involved. This is where simulation modeling tools 
come to the fore as instructional aids in teaching these 
concepts to individuals who lack the mathematical skills 
to build and analyze epidemiological models themselves.

In an effort to identify software applications that are 
similar to or may compete with the applications pro-
vided along with this paper, we conducted a Google 
search using the search phrase “simulation tools for 
teaching epidemiological modeling.” This search, con-
ducted on June 17, 2020, produced over 21 million hits. 
The first 50 hits included the following relevant links 
(in order of appearance): 1.) a link to the EpiModel site, 
which provides an R package for simulating and analyz-
ing mathematical models of infectious disease dynamics; 
2.) a link to the site Materials for Teaching the SIR and 
SEIR Epidemic Models (supported by the Mathematics 
Department at the University of Nebraska, Lincoln) that 
provides four downloadable modules: an SIR and an SEIR 
model implementation using either an Excel workbook 
template or a suite of R/Matlab programs; 3.) a link to 
FRED Web (Framework for Reconstructing Epidemio-
logical Dynamics), which is a deeply formulated agent-
based modeling system developed by the Pitt Public 
Health Dynamics Laboratory, and thus is not at all suit-
able as an introduction to SIR modeling; 4.) a link to Curb 
the Epidemic!, a hands on website designed to introduce 
9th grade students to epidemic concepts and very simple 
agent-based simulation on a cellular array; 5.) a link to 
the QUBES Bioquest Project website Materials for Teach-
ing the SIR Epidemic Model that provides a spreadsheet 
application for exploring the behavior of the standard SIR 
epidemic model; 6.) a link to the VENSIM site Corona-
virus and Epidemic Modeling, which provides access to 
6 vensim programs (in the form of name.mdl files) that 
need a version of the VENSIM software program to run. 
The remaining 44 hits referenced publications and talks, 
several referring to our own work and presentations, 
rather than sites providing implementable tools for simu-
lating SEIR epidemics.

In short, in terms of tools to aid instruction in epide-
miological dynamics, only a few groups have developed 
course notes and scripts to run SIR and moderately 
extended SIR models; and only then using either spread-
sheets (e.g., [52]) R, MATLAB or other proprietary 
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software platforms (e.g., Mathematics Department at 
the University of Nebraska, Lincoln). These tools are not 
stand alone applications programs of the type we present 
here, and require that students have a basic familiarity 
with the software coding platforms in question. Some 
educationally-oriented, web-based SIR modeling appli-
cations exist [53], as well as stand-alone applications 
programs [10], but their utility is limited by the relative 
simplicity of the models (e.g., they do not include treat-
ment or vaccination options, and ignore the importance 
of adaptive contact behavior) and they do not have the 
flexibility of our RAMP technology to alter functional 
descriptions without needing to alter the underlying pro-
gram codes.

Use of our RAMPs requires no coding or mathemati-
cal modeling skills, unless the user wants to write very 
simple scripts using our BPL or JAVA, or wants to use 
our RAMPs in conjunction with RStudio. It is impor-
tant, though, that students are exposed to the primary 
assumptions underlying the construction of SIR models 
and their first line of extensions, as we provide in “Pri-
mary concepts” subsection. These assumptions pro-
vide insights into the limitation of the models and the 
actual complexity of the processes involved. The key to 
modeling is to capture the essential process involved 
and to understand the next level of processes that are 
being ignored by the models. This understanding facili-
tates assessment of the adequacy of the models as tools 
for making predictions and designing interventions 
[13,54,55].

Conclusion
The RAMPs and RAMP player (NMB Studio) 
described in this paper, downloadable at the Numerus 
Model Builder Website, provide a set of tools that 
mathematically unsophisticated students can use to 
come to grips with the most important dynamically 
systems concepts associated with the outbreak of com-
municable diseases of epidemic and even pandemic 
proportions. The installation of these RAMPs on laptop 
and desktop computers is as easy as clicking a button 
to locate the download site and install the application. 
All the information needed to run the RAMPs is pro-
vided with the RAMP itself in the form of information 
in windows, with more substantial details contained in 
this paper and its supplementary information files. In 
closing we stress that our RAMPs and associated docu-
ments are meant to augment existing course material 
rather than replace such material, because the history, 
etiological and other important information associ-
ated with specific diseases (COVID, influenza, ebola, 
measles, tuberculosis, HIV, etc.), classes and types of 

disease (respiratory, hemorrhagic, bacterial, fungal, 
etc.) and modes of transmission (airborne, waterborne, 
vectored, soilborne, bodily fluid exchange, etc.) are not 
covered in this paper.
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