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Data Availability and Function Extrapolation
Pablo León Villagrá Irina Preda Christopher G. Lucas

Informatics Forum, 10 Crichton Street, EH8 9AB,
Edinburgh, United Kingdom

Abstract

In function learning experiments, where participants learn
relationships from sequentially-presented examples, people
show a strong tacit expectation that most relationships are lin-
ear, and struggle to learn and extrapolate from non-linear rela-
tionships. In contrast, experiments with similar tasks where
data are presented simultaneously – typically using scatter
plots – have shown that human learners can discover and ex-
trapolate from complex non-linear trends. Do people have dif-
ferent expectations in these task types, or can the results be
attributed to effects of memory and data availability? In a di-
rect comparison of both paradigms, we found that differences
between task types can be attributed to data availability. We
show that a simple memory-limited Bayesian model is consis-
tent with human extrapolations for linear data for both high
and low data availability. However, our model underestimates
the participants’ ability to infer non-monotonic functions, es-
pecially when data is sparse. This suggest that people track
higher-order properties of functions when learning and gen-
eralizing. Keywords: function learning, function estimation,
resource rationality

Introduction
Many everyday situations require us to make predictions with
very limited information. Consider a situation in which you
are in a holiday flat and want to use the heater. You haven’t
used it before but you will have a general idea of how long it
will take to heat up. Furthermore, it is natural to assume the
relationship between setting and resulting changes in temper-
ature – the temperature should change in continuous fashion
and increase until it reaches the selected temperature. In addi-
tion, given few, seemingly unrelated bits of information, like
for example the state of other appliances, you can generalize
and update your beliefs.

Forming generalizations requires acquiring a representa-
tion of how known features relate to unknown targets and
contrasting this relation with potential alternatives. Humans
exhibit a remarkable ability to perform these generalizations
and much research in the cognitive sciences and artificial in-
telligence has centered on understanding or reproducing these
phenomena. One of the most prominent fields of generaliza-
tion research, categorization, has focused on situations where
the known characteristics are assumed features of some en-
tity and the target is the category of the entity (a categori-
cal label). Function learning takes a more general perspec-
tive on the generalization target and allows for continuous
values. Both categorization and function learning research
share fundamental questions about how humans acquire pro-
ductive representations of these relationships and what sort
of representations allow generalization. For instance, what
kind of relationships can humans learn and generalize from,
and how are extrapolations reflective of particular human bi-
ases? In function learning experiments, where experimental

participants learn relationships from sequentially-presented
points, people show a strong bias toward inferring linear func-
tions (Brehmer, 1976; DeLosh, Busemeyer, & McDaniel,
1997; Kalish, Lewandowsky, & Kruschke, 2004). They learn
linear relationships more quickly (Brehmer, 1974; Byun,
1995) and have difficulty making non-linear and especially
non-monotonic extrapolations (Brehmer et al., 1985; Byun,
1995; Bott & Heit, 2004; Kalish, 2013). This has led to the
development of models that attach a special representational
status to linear relationships (DeLosh et al., 1997; Kalish et
al., 2004), or assume that people have a strong inductive bias
favoring linearity (Brehmer et al., 1985). In contrast, when
data are presented simultaneously, usually as scatter plots
(which we will call function estimation tasks) human learn-
ers can discover and extrapolate from complex non-linear
trends (Wilson et al., 2015; Schulz et al., 2017; Lucas et al.,
2015; Little & Shiffrin, 2009). How do we reconcile these
experimental results?

One possibility is that people respond to these presenta-
tion modes in different ways, for reasons that may be percep-
tual, cognitively innate, or experience-dependent. An alterna-
tive possibility is that the same inductive biases and cognitive
processes support both function learning and function estima-
tion, and differences between these tasks can be attributed to
differences in their memory demands.

In function learning experiments participants have to main-
tain learned data in memory and update and evaluate the ap-
propriateness of a representation against alternatives, whereas
function estimation allows an effortless recall of the data. We
hypothesize that, due to these differences, many participants
in function learning tasks only maintain sparse representa-
tions of the data. Given that only a subset of the data is main-
tained, extrapolations will resemble inductive biases in the
absence of data. In contrast, having all data visually avail-
able, as in function estimation, allows to counteract inductive
biases and facilitates extrapolations resembling richer func-
tions.

Experiment
We set up an experiment to contrast extrapolations in function
learning and function estimation. To distinguish the contribu-
tion of presentation from memory requirements imposed by
the experiment, we introduced a new experimental condition
that shared presentational-, but not memory-related character-
istics with function estimation. In this new condition data was
presented as scatter plots, but data points disappeared from
display immediately after submission. Since the condition
exhibits similar characteristics to classical function learning
tasks we predicted that extrapolations should more closely re-
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semble function learning conditions, as participants will have
to rely on recollection of the presented data for their extrap-
olations. We will refer to the scatter plot condition present-
ing the full data as Scatter+ and the new condition as Scatter-

throughout this paper. We will refer to the traditional function
learning conditions as Bar.

Participants
We recruited 322 participants via Amazon’s Mechanical Turk
service. Participants received 0.4$ for participation and took
an average of 8 minutes to complete the experiment. Partici-
pants were randomly assigned to one of the 9 conditions {flin,
fx2 , fcos } × {Scatter+, Scatter-, Bar }, as described below.

Material
The data presented in the experiment was generated by one of
three functions: linear (flin), quadratic (fx2 ) or periodic (fcos).
These functions and their parametrization were designed such
as to allow for informative error patterns resulting from hu-
man inductive biases. Since previous research reported strong
biases for linear functions with 0 intercept and 1

1 slope (we
will refer to this function as f (x) = x), we selected a shal-
lower positive slope. The quadratic function was relatively
flat in the training block to test if participants would revert
to linearity or choose non-linear alternatives. Finally, a peri-
odic function, was used to evaluate if participants were able
to extrapolate in non-monotonic fashion. To allow space for
extrapolation beyond the function ranges we normalized the
data to span (0,1) in both x,y and then rescaled and centered
such as to span 1

2 of the y-axis. For the full set of materials
after transformation, see Figure 1a.

Procedure
Participants were instructed that they would be presented with
data and that given their understanding of the relationship
in the data they had to predict new values. Then partic-
ipants proceeded to a block of training trials (the training
block), which provided participants with feedback about the
true function.

Training Block In the Scatter+ and Scatter- conditions the
current test value (x) was marked with a red line spanning the
whole vertical range. Participants were prompted to select a
y value by clicking on the line. Once selected, the input value
was highlighted with a blue point. Selected points could be
updated by reselecting a y value. The selected values were
submitted by pressing the space key. In the Bar condition
current x values were presented as the width of a bar on the
left of the screen and participants selected values by select-
ing the height of a bar on the right. As in the Scatter+ and
Scatter- conditions, participants could readjust these values.
In all conditions x values were presented sequentially in as-
cending order. If the selected y value was within the error
margin (±0.05 of the true y), the true value was shown for
600ms in red. Afterwards, a message indicated that the choice
was correct and the remaining number of trials was shown. If

the selected value was not inside the margin the message in-
dicated an unsuccessful submission. Then the selected value
was removed and participants had to resubmit. After erro-
neous submissions the true y was displayed as a red bar (Bar)
or a red dot (Scatter+, Scatter-). Participants had to resubmit
values until a admissible y was chosen. Participants received
40 points in total during the training block.

Linear Quadratic Periodic

(a) Three functions generated the underlying data: flin = 0.7x+0.2,
fx2 = 0.7x2 +0.18, fcos =−0.3cos(5πx)+0.5 (after normalization
and rescaling).

Scatter-Bar Scatter+
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(b) Procedure for Bar, Scatter- and Scatter+ conditions.

Figure 1: Participants were randomly assigned to one of the 9
experimental conditions. All participants performed a train-
ing block consisting of 40 value pairs with feedback followed
by a test block of 40 extrapolations without feedback.

Test Block The test block followed the same procedure as
the training block, but no feedback was provided. After sub-
mitting 40 values in the test block, participants concluded the
experiment by submitting an optional short survey. For the
full procedure see Figure 1b.

Results
Functions and Presentation Form
Consistent with previous findings, mean absolute error
(MAE) in the test block was largest for fcos, MAE = 0.24,
SD = 0.1, n = 108. Errors for fx2 and flin were small, with flin
exhibiting the smallest error, MAEx2 = 0.14, SDx2 = 0.09, nx2

= 106, MAElin(x) = 0.11, SDlin(x) = 0.1, nlin(x) = 108.
The errors in the presentation conditions were compatible

with our hypothesis, with Scatter+ lowest, MAE = 0.1, SD
= 0.1, n = 106 and Scatter- and Bar at similar, higher levels,
MAEBar = 0.19, SDBar = 0.12, nBar = 110, MAEScatter- = 0.19,
SDScatter- = 0.11, nScatter- = 106. For all errors in the subgroups
of function and presentation conditions see Figure 2.

Data Availability and Presentation
To assess the effect of data availability (DA, a binary vari-
able denoting if the condition was Scatter+, or either Scatter-
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Figure 2: In all presentation conditions participants exhibited
the lowest errors for linear, followed by quadratic and peri-
odic functions. Boxplots display first, second (median) and
third quartiles. Whiskers show the ±1.5 interquartile range
(IQR). Each point represents the MAE of one participant.

or Bar) and function (flin, fx2 , fcos) on errors, while con-
trolling for the effect of presentation (Scatter denoting if
the presentation condition was either Scatter+ or Scatter-, or
Bar), we fitted a generalized linear model (GLM): YMAE ∼
β0 +β f ∗ (βScatter +βDA). The GLM was specified as a Gaus-
sian with identity link function and allowed for interactions
between Scatter and function as well as DA and function.

Table 1: Results of the GLM model assessing if function type
(flin, fx2 , fcos), presentation (Scatter), or data availability (DA)
were predictive of MAE in the test block. The fcos condition
had a significant positive effect on MAE. In addition, having
all data available (DA, corresponding to condition Scatter+)
had a significant, small negative effect.

β SE z P > |z| 95%CI
β0 0.13 0.02 8.78 p < 0.001 0.1,0.16
fcos(x) 0.15 0.02 7.28 p < 0.001 0.11,0.2
fx2 0.02 0.02 0.75 0.45 −0.03,0.06
Scatter β < 0.01 0.02 0.22 0.82 −0.04,0.05
DA −0.08 0.02 −3.75 p < 0.001 −0.13,−0.04
Scatter fcos(x) −0.03 0.03 −1.02 0.3 −0.01,0.03
Scatter fx2 0.02 0.03 0.75 0.46 −0.04,0.08
DA fcos(x) −0.01 0.03 −0.24 0.8 −0.07,0.05
DA. fx2 β < 0.01 0.03 0.04 0.97 −0.06,0.06

In concordance with previous findings, fcos had a signifi-
cant positive effect on error. As expected by our hypothesis,
data availability (DA) had a significant small effect on error,
but presentation (Scatter) was not significant. No other main
effect and none of the interaction terms had a significant ef-
fect. For the full GLM results, see Table 1. For all extrapola-
tions performed by the participants, see Figure 3.

Learning a Function or Minimizing Error
The results are consistent with our hypothesis that differences
in errors are attributable to differences in data availability.
However, a stronger test of our hypothesis lies in the patterns
of extrapolations that people make. Do these patterns differ
systematically between presentation conditions, or are differ-

ences explainable in terms of condition-independent biases?
In the final section we will explore how differences in avail-
ability, imposed by our experimental design reflect in the par-
ticipants extrapolations. To analyze these extrapolations we
compared human extrapolations to two Bayesian models, one
exhibiting low available data and one considering all avail-
able data.

Modeling Function Extrapolations
The computational problem faced in extrapolation tasks con-
sists in determining new values yn+1 for test values xn+1, con-
ditional on previously learned xn,yn and a prior belief p( f )
over possible functions. We will adopt a Gaussian process
perspective on regression, an approach that has been applied
successfully in previous function learning research (Lucas et
al., 2015; Schulz et al., 2017).

A Gaussian process specifies a distribution over functions
f (x)∼GP(µ,k), where µ(x)=E[ f (x)] and k is the covariance
kernel k(x,x′) = cov( f (x), f (x′)). The kernel specifies how
much values of x′ depend on the other values x and specifies
a similarity measure over x. We assume that two sets of priors
can capture participant extrapolations in our study — a prior
over kernel types describing the space of possible functions
fi ∼ F , and a prior for individual kernel parameters θ fi .

Human Function Priors
To specify a plausible prior over functions F we closely fol-
lowed Lucas et al. (2015). We used the same prior prob-
abilities for functions F , favoring f (x) = x (Linear+) over
negative linear functions (Linear−), and linear functions over
other monotonic functions (RBF , the radial basis function
kernel). Since our experiment included periodic data that we
did not want to exclude a priori, we added a periodic ker-
nel (Periodic) with good coverage over the range of x,y. We
chose a low prior weight for the periodic to account for the
difficulty in learning non-monotonic functions (Bott & Heit,
2004; Kalish, 2013). For a full list of parameter priors θ, see
Table 2, for samples of the prior functions, see Figure 4.

With the priors F and θ we can express the task faced by
our participants in general terms:

p(yn+1|xn+1xn,yn, f ) =
∫

f
p(yn+1|xn+1,y, f )p( f |x,y)d f

(1)
Given appropriate priors and Equation 1 a variety of human

inductive biases can be accounted for, from strong biases for
f (x) = x, to results in iterated learning experiments (Lucas et
al., 2015).

However, this model assumes that all previously encoun-
tered data, x,y, are equally available and inform posterior in-
ference. In some function learning experiments, where par-
ticipants repeat training until they achieve a very low error
rate, these assumptions may be appropriate. In other con-
texts, including many sequential function learning problems
in the natural world, it is less plausible.
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Figure 3: All participant extrapolations (gray lines) in the 9 experimental conditions. Submissions within the admissible error
for the training block are displayed on the left-hand side of the dotted vertical line. Extrapolations for the test block are
displayed on the right-hand side. Function conditions are presented by column, presentation conditions by row. As background
color the posterior densities of the models described in the model section, darker colors correspond to higher posterior density.
According to our hypothesis, participants in the Scatter+ condition kept a full representation of the training data available,
corresponding to the full model (top row). In the two bottom rows the model density is conditional on only the last 5 training
points, corresponding to our sparse model.

Modeling Data Availability
We contrasted the predictions of a model trained on the full
dataset (the 40 training points) with a model that had only
a sparse set of data available. As a first approximation of
the effect of data availability we assumed that only the last

k = 5 points in the training block were available in the Bar
and Scatter- conditions. While the amount of data underlying
participants’ extrapolations might differ systematically, our
analysis is not particularly sensitive to the size of the subset.
In general, larger subsets will emphasize the training data,
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Figure 4: Four samples for each of the functions constituting
F . F consisted of a linear kernel biased towards f (x) = x, a
negative linear, a quadratic, a periodic and a RBF kernel. All
kernels had additional intercept terms. The distribution over
functions F was chosen to closely match Lucas et al. (2015)
and was proportional to 8,1,0.1,0.01,0.01.

Table 2: Priors used to specify the two models. All models
had a fixed noise variance of 0.0025, that matched the admis-
sible error in the test set. The lengthscale of the RBF kernel
was θl , while θπ specified the period of the periodic kernel.
The curvature of the quadratic kernel was specified by θc.

σ2 Intercept Slope θc θl θπ

Linear+ Exp( 1
6 ) N(0, 1

2 ) N(1, 1
10 ) – – –

Linear− Exp( 1
6 ) N(1, 1

2 ) N(-1, 1
10 ) – – –

Quadratic Exp( 1
6 ) N( 1

2 ,1) N(0,1) N(0,2) – –
Periodic Exp( 1

6 ) N( 1
2 ,1) – – N(1, 1

4 ) N( 1
2 ,

1
4 )

RBF Exp( 1
6 ) N( 1

2 ,1) – – N(1, 1
4 ) –

while smaller sets will result in posteriors emphasizing prior
inductive biases, since the likelihood of the data plays a di-
minished role. For the posterior probability for functions for
both models see Figure 5.

We compared both models in terms of their ability to ac-
count for characteristic biases in human function learning as
well as differences between the extrapolations for Scatter- and
Bar and Scatter-. To evaluate our models, we classified partic-
ipants’ extrapolations in the test block as either belonging to
full or sparse experimental conditions according to the like-
lihood of the models (trained on the training block). Then
we contrasted this classification with the true experimental
condition. For confusion matrices for this classification pro-
cedure see Figure 6. For examples of the classified extrapola-
tions see Figure 7.

Model Results
Both sparse and full models captured the strong inductive bi-
ases for positive linear functions. Furthermore, our sparse
model predicted the strong inductive bias for f (x) = x in
Scatter- and Bar conditions, aligning well with the partici-
pants’ data (see Figure 3).

For fx2 both full and sparse models reflected the strong
prior for positive linearity. As a result the full model did not
capture the extrapolations of participants in Scatter+. While
the model extrapolated in linear fashion from the available
data, participants performed steeper, quadratic-like extrapo-
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Figure 5: The inferred posterior function probability for each
function condition for both sparse (5 points) and full (40)
models. The full model assigned high probability to the
true underlying function for linear and periodic data. For
quadratic data it favored linear functions, reflecting the prior
and the seemingly linear training data. The sparse model gen-
erally reflected the prior.
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Figure 6: We contrasted our classification with the true ex-
perimental conditions. Our classification captured the effect
of data availability for flin. However, it exhibited systematic
misclassification for fx2 and fcos. In fx2 we were able to clas-
sify participants as belonging to Scatter- or Bar, but failed to
recognize Scatter+. In fcos our procedure misclassified partic-
ipants in the sparse conditions, but captured extrapolations in
the Scatter+ condition.

lations (see Figure 3). The sparse model was more predictive
of the participants extrapolations in Scatter- conditions, ex-
trapolating in steep linear fashion. For fcos the sparse model
did not capture the participants extrapolations well (see Fig-
ure 6). While the model did favor positive linearity and
extrapolated accordingly, many participants exhibited non-
monotonic, high variance extrapolations (see Figure 3). In
contrast, the full model captured the highly periodic extrapo-
lations in the Scatter+ condition and closely resembled human
extrapolations.

Discussion
We hypothesized that differences between function learning
and function estimation experiments can be attributed to par-
ticipants having direct access to all data points in the latter.
More precisely, we sought to test the idea that the same in-
ductive biases are at work in both settings, but that the re-
duced access to data in function learning designs causes these
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Figure 7: Five extrapolations with the highest categorization
scores in each function condition. We categorized partici-
pants’ extrapolations by contrasting the likelihood of our full
and sparse models.

biases to play a stronger role in shaping participants’ extrap-
olations. As we anticipated, participants’ behavior in both
Scatter- and Bar was almost indistinguishable, demonstrat-
ing the same qualitative patterns, which were clearly different
from those in the Scatter+ conditions.

However, we found mixed support for the more detailed
hypotheses reflected in our Bayesian model. Behavior in all
linear function conditions was as we predicted, with partici-
pants in Scatter- and Bar conditions tending to extrapolate ac-
cording to the f (x) = x function that past research has shown
in favored a priori, rather than the true function.

In the quadratic conditions, our model captured partici-
pants’ behavior in the Scatter-, but not in Scatter- and Bar
conditions, where participants were more likely than the
model to infer a non-linear relationship. There are many pos-
sible explanations, one of which is that our simplistic assump-
tions about participants’ memory failed to capture the loss of
precision in the locations of points.

Perhaps the most interesting deviation between the model’s
predictions and participants’ judgments is in the fcos condi-
tions. Contra the model’s predictions – as well as our ex-
pectations – individual participants were quick to infer non-
monotonic functions even in the Scatter- and Bar conditions.
This also admits several explanations, but one intriguing pos-
sibility is that people are better at tracking high-level, quali-
tative properties of functional relationships than the details of
those relationships’ parameterizations.

If higher-level properties allow for non-monotonic extrap-
olations, how do humans acquire these representations and in
which situations do they prove beneficial? One could make an
argument for cognitive economy – coarse-grained represen-
tations and extrapolations might serve a learner’s goals well
enough, while maintaining detailed task-specific representa-
tions is an intractable or sub-optimal policy for a resource-
limited agent. We are currently exploring the relevance of
resource-efficient non-parametric models to human behavior
in these tasks, where representational complexity scales with
an agent’s goals and the complexity of the task (for a re-
lated result in categorization, see Fischer and Holt (2017)).
Adding a computational-level perspective to these questions

allows us to characterize these interrelations more precisely
and can highlight general similarities between fields like cat-
egorization and function learning (Lucas et al., 2015; Jäkel,
Schölkopf, & Wichmann, 2008).

References
Bott, L., & Heit, E. (2004). Nonmonotonic extrapolation

in function learning. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 30(1), 38.

Brehmer, B. (1974). Hypotheses about relations between
scaled variables in the learning of probabilistic inference
tasks. Organizational Behavior and Human Performance,
11(1), 1–27.

Brehmer, B. (1976). Learning complex rules in probabilis-
tic inference tasks. Scandinavian Journal of Psychology,
17(1), 309–312.

Brehmer, B., Alm, H., & Warg, L.-E. (1985). Learning and
hypothesis testing in probabilistic inference tasks. Scandi-
navian journal of psychology, 26(1), 305–313.

Byun, E. (1995). Interaction between prior knowledge and
type of nonlinear relationship on function learning (Un-
published doctoral dissertation). Purdue University.

DeLosh, E. L., Busemeyer, J. R., & McDaniel, M. A. (1997).
Extrapolation: The sine qua non for abstraction in function
learning. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 23(4), 968.

Fischer, H., & Holt, D. V. (2017). When high working mem-
ory capacity is and is not beneficial for predicting nonlinear
processes. Memory & cognition, 45(3), 404–412.
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