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4 Dynamic Average Consensus under Limited Control Authority

and Privacy Requirements∗

Solmaz S. Kia, Jorge Cortés, Sonia Mart́ınez

Department of Mechanical and Aerospace Engineering,

University of California San Diego, La Jolla, CA 92093, USA

Abstract

This paper introduces a novel continuous-time dynamic average consensus algorithm for

networks whose interaction is described by a strongly connected and weight-balanced directed

graph. The proposed distributed algorithm allows agents to track the average of their dynamic

inputs with some steady-state error whose size can be controlled using a design parameter.

This steady-state error vanishes for special classes of input signals. We analyze the asymptotic

correctness of the algorithm under time-varying interaction topologies and characterize the

requirements on the stepsize for discrete-time implementations. We show that our algorithm

naturally preserves the privacy of the local input of each agent. Building on this analysis, we

synthesize an extension of the algorithm that allows individual agents to control their own rate of

convergence towards agreement and handle saturation bounds on the driving command. Finally,

we show that the proposed extension additionally preserves the privacy of the transient response

of the agreement states and the final agreement value from internal and external adversaries.

Numerical examples illustrate the results.

Keywords: dynamic average consensus; time-varying input signals; directed graphs; rate of con-
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vergence; limited control authority; privacy preservation

1 Introduction

This paper studies the dynamic average consensus problem for a network of autonomous agents.

Given a set of time-varying signals, one per agent, this problem consists of designing a distributed

algorithm that allow agents to track the time-varying average of the signals using only information

from neighbors. Solutions to this problem are of interest in scenarios that require the fusion of

dynamic and evolving information collected by multiple agents. Examples include multi-robot coor-

dination [1], distributed spatial estimation [2, 3], sensor fusion [4, 5], feature-based map merging [6],

and distributed tracking [7]. We are particularly interested in algorithmic solutions that allow agents

to adjust the rate of convergence towards agreement, are able to handle constraints on actuation,

and preserve the privacy of the information available to them against adversaries.

Literature review.

Consensus problems have been intensively studied over the last years. The main body of work

focuses on the static case, where agents aim to reach consensus on a function depending on initial

static values, see e.g. [8, 9, 10, 11, 12] and references therein. In contrast, the literature on dynamic

consensus is not as rich. The initial work [13] proposes a dynamic average consensus algorithm that

under proper initialization is able to track, with zero steady-state error, the average of dynamic

inputs whose Laplace transfer functions have at most one pole at the origin and the rest of the poles

are in the left half-plane. In [4], the authors generalize the static consensus algorithm of [14] to track

the average of inputs with bounded derivatives which differ by a zero-mean Gaussian noise. The

algorithm acts as a low-pass filter that allows agents to track the average of dynamic inputs with

a non-zero steady-state error, which vanishes in the absence of noise. Using input-to-state stability

analysis, [15] proposes a proportional-integral algorithm to solve the dynamic consensus problem

which, from any initial condition, converges with non-zero steady-state error if the signals are slowly
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time-varying, and exactly if the signals are static. This algorithm is generalized in [16] to achieve

zero-error dynamic average consensus of a special class of time-varying input signals whose Laplace

transform is a rational function with no poles in the left-hand complex plane. The proposed algorithm

employs frequency-domain tools and exploits the properties of the inputs’ Laplace transforms. All

the algorithms mentioned above are designed in continuous time and work for networks with a fixed,

connected, and undirected graph topology. The results of [15] can be applied to networks with a

strongly connected and weight-balanced digraph topology provided each agent can communicate

with its out-neighbors and knows the weights of its incoming edges. Such requirement may be hard

to satisfy in scenarios where the topology is changing. The work [17] develops an alternative class

of discrete-time dynamic average consensus algorithms whose convergence analysis relies on input-

to-output stability properties in the presence of external disturbances. With a proper initialization

of the states, the proposed schemes can track, with a bounded steady-state error, the average

of the time-varying inputs whose nth-order difference is bounded. If the nth-order difference is

asymptotically zero, the estimates of the average converge to the true average asymptotically with

one timestep delay. Other classes of algorithms related to our work are leader-follower algorithms for

networks of mobile agents with integrator dynamics, e.g., see [18, 19], and robust average consensus

algorithms in the presence of additive input disturbances [20]. In the former scenario, agents reach

consensus by following the input signal of the leader agent(s), instead of converging to the average of

input signals across the network. In the latter case, the algorithm performance achieving consensus is

analyzed in the presence of dynamic external disturbances. A common limitation of the works cited

above is the lack of consideration of restrictions on the rate of convergence of individual agents,

bounded control authority, or privacy issues. Regarding the latter, the above algorithms require

agents to share their agreement state with their neighbors, and, in some cases, even their local

inputs. Therefore, if adversaries are able to listen to the exchanged messages, they could infer local

inputs, sensitive transient responses and final agreement states of the network.
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Statement of contributions.

We begin by providing a formal statement of the dynamic average consensus problem for a multi-

agent system, paying special attention to the rate of convergence, limits on control actuation, and the

preservation of privacy. Our starting point is the introduction of a continuous-time algorithm that

allows the group of agents communicating over a strongly connected and weight-balanced digraph

to track the average of their reference inputs with some steady-state error. We carefully characterize

the asymptotic convergence properties of the proposed strategy, including its rate of convergence, its

robustness against initialization errors, and its amenability to discrete-time implementations. We

also discuss how the algorithm performance (specifically, the steady-state error and the transient

response) can be tuned via two design parameters. For special classes of inputs, which include

static inputs and dynamic inputs which differ by a constant value, we show that the steady-state

error vanishes. We also establish the algorithm correctness under time-varying network topologies

that remain weight-balanced and are infinitely often jointly strongly connected. Our next step is

the introduction of an extension of the proposed dynamic average consensus algorithm to include a

local first-order filter at each agent. We show how this extension allows individual agents to tune

their rate of convergence towards agreement without affecting the rest of the network or changing

the ultimate tracking error bound. We also establish that, under limited control authority, this

extension has the same correctness guarantees as the original algorithm as long as the input signals

are bounded with a bounded relative growth. Several simulations illustrate our results. Our final

step is the characterization of the privacy-preservation properties of the proposed dynamic average

consensus algorithms. We consider adversaries who aim to retrieve information about the inputs,

their average, or the state trajectories. These adversaries might be inside (internal) or outside

(external) the network, do not interfere with the algorithm execution, and may have access to

different levels of information, such as knowledge of certain parts of the graph topology, the algorithm

design parameters, initial conditions, or the history of communication messages. We show how the

4



proposed algorithms naturally preserve the privacy of the input of each agent against any adversary.

Moreover, we establish that the extension that incorporates local first-order filters protects the

privacy of the agreement state trajectories against any adversary by adding a common signal to

the messages transmitted among neighbors. This strategy also preserves the privacy of the final

agreement value against external adversaries.

Organization.

Section 2 introduces basic notation, graph-theoretic concepts, and the model of time-varying net-

works. Section 3 formally introduces the dynamic consensus problems of interest. Section 4 presents

our dynamic average consensus algorithm, establishes its correctness, and analyzes its properties

regarding changing interaction topologies, discrete-time implementations, and rate of convergence.

Section 5 introduces a modified version which enables agents to opt for a slower rate of convergence

and solves the consensus problem in the presence of bounded control commands. Section 6 consid-

ers the privacy preservation properties of the proposed algorithms. Section 7 presents simulations

illustrating our results. Finally, Section 8 gathers our conclusions and ideas for future work.

2 Preliminaries

In this section, we introduce basic notation, concepts from graph theory used throughout the paper,

and our model for networks with time-varying interaction topologies.

2.1 Notational conventions

The vector 1n is the vector of n ones, 0n is the vector of n zeros, and In is the identity matrix

with dimension n × n. We denote by A⊤ the transpose of matrix A. For a square matrix A we

define Sym(A) = 1
2 (A +A⊤). We use Diag(A1, · · · ,AN ) to represent the block-diagonal matrix

constructed from matrices A1, . . . ,AN . We define Πn = In − 1
n
1n1

⊤
n . We denote the induced

two-norm of a real matrix A by ‖A‖, i.e., ‖A‖ = σmax(A), where σmax is the maximum singular
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value of A. The spectral radius of a square matrix A is represented by ρ(A). For a vector u,

we use ‖u‖ to denote the standard Euclidean norm, i.e., ‖u‖ =
√
u⊤u. For vectors u1, · · · ,uN ,

we let (u1, · · · ,uN) represent their aggregated vector. For a complex variable c, ℜ(c) indicates its

real part. For a scalar variable u, the saturation function with limit 0 < ū < ∞ is indicated by

satū(u), i.e., satū(u) = sign(u)min{|u|, ū}. We let δ1(ǫ) ∈ O(δ2(ǫ)) denote the fact that there exist

positive constants c and k such that |δ1(ǫ)| ≤ k|δ2(ǫ)|, ∀ |ǫ| < c. For network-related variables,

the local variables of each agent are distinguished by a superscript, e.g., ui(t) is the local dynamic

input of agent i. If pi ∈ R is a local variable at agent i, the aggregated pi’s are represented by

p = (p1, . . . , pN ) ∈ R
N . Our analysis involves linear systems of the form

ẋ(t) = Ax(t) +Bu(t), (1)

where states x(t) take values in the Euclidean space Rn, and inputs are measurable locally essentially

bounded maps u : [0,∞) → R
m. The zero-system associated to (1) is by definition the system with

no inputs, i.e., ẋ = Ax. We denote by ‖u‖ess, the (essential) supremum norm , i.e., ‖u‖ess =

sup{‖u(t)‖, t ≥ 0} <∞. The convergence rate of a stable linear system ẋ = Ax is

r = inf{χ > 0 | ∃κ > 0 such that ‖x(t)‖ ≤ κ‖x(0)‖ e−χt, t ≥ 0}. (2)

Here, x(t) is the solution of the system when it starts from any initial state x(0) ∈ R
n. This

definition implies that for a linear time-invariant dynamical system, the rate of convergence is the

least negative real part of the eigenvalues of the system matrix.

2.2 Graph theory

We briefly review some basic concepts from the graph, see e.g. [12]. A directed graph, or simply a

digraph, is a pair G = (V , E), where V = {1, . . . , N} is the node set and E ⊆ V × V is the edge set.

An edge from i to j, denoted by (i, j), means that agent j can send information to agent i. For

an edge (i, j) ∈ E , i is called an in-neighbor of j, and j is called an out-neighbor of i. A digraph

G′ = (V , E ′) is a spanning subgraph of a digraph G = (V , E) if E ′ ⊂ E . A graph is undirected if
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(i, j) ∈ E anytime (j, i) ∈ E . Given digraphs Gi = (V , Ei), i ∈ {1, . . . ,m}, defined on same node set,

the joint digraph of these digraphs is the union ∪n
i=1Gi = (V , E1 ∪ E2 ∪ · · · ∪ Em). A directed path is

an ordered sequence of vertices such that any ordered pair of vertices appearing consecutively is an

edge of the digraph. A directed tree is an acyclic digraph with the following property: there exists

a node, called the root, such that any other node of the digraph can be reached by one and only

one directed path starting at the root. A directed spanning tree of a digraph is a spanning subgraph

that is a directed tree. A digraph is called strongly connected if for every pair of vertices there is a

directed path between them.

A weighted digraph is a triplet G = (V , E ,A), where (V , E) is a digraph and A ∈ R
N×N is a weighted

adjacency matrix with the property that aij > 0 if (i, j) ∈ E and aij = 0, otherwise. We use Γ(A)

to denote a digraph induced by a given adjacency matrix A. A weighted digraph is undirected if

aij = aji for all i, j ∈ V . The weighted out-degree and weighted in-degree of a node i, are respectively,

din(i) =
∑N

j=1 aji and dout(i) =
∑N

j=1 aij . We let doutmax = max
i∈{1,...,N}

dout(i) denote the maximum

weighted out-degree. A digraph is weight-balanced if at each node i ∈ V , the weighted out-degree

and weighted in-degree coincide (although they might be different across different nodes). The out-

degree matrix D
out is the diagonal matrix with entries D

out
ii = dout(i), for all i ∈ V . The (out-)

Laplacian matrix is L = D
out − A. Note that L1N = 0. A weighted digraph G is weight-balanced if

and only if 1T
NL = 0. Based on the structure of L, at least one of the eigenvalues of L is zero and the

rest of them have nonnegative real parts. We denote the eigenvalues of L by λi, i ∈ {1, . . . , N}, where

λ1 = 0 and ℜ(λi) ≤ ℜ(λj), for i < j. For a strongly connected digraph, zero is a simple eigenvalue

of L. We denote the eigenvalues of Sym(L) by λ̂i, i ∈ {1, . . . , N}. For a strongly connected and

weight-balanced digraph, zero is a simple eigenvalue of Sym(L). For such a digraph, we order the

eigenvalues of Sym(L) as λ̂1 = 0 < λ̂2 ≤ λ̂3 ≤ · · · ≤ λ̂N .
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2.3 Time-varying interactions via switched systems

Here, we introduce our model of networks with fixed number of agents but time-varying interaction

topologies. Let (V , E(t),A(t)) be a time-varying digraph, where the nonzero entries of the adjacency

matrix are uniformly lower and upper bounded, i.e., aij(t) ∈ [a, ā], where 0 < a ≤ ā, if (j, i) ∈ E(t),

and aij = 0 otherwise. Our model of time-varying networks is then G(t) = Γ(Aσ(t)), t ≥ 0,

with σ : [0,∞) → P = {1, . . . ,m} a piecewise constant signal belonging to some switching set S.

Here, m can be infinity. In our developments later, we provide precise specifications for S. By

piecewise constant, we mean a signal that only has a finite number of discontinuities in any finite

time interval and that is constant between consecutive discontinuities (no chattering). Without

loss of generality, we assume that switching signals are continuous from the right. The uniform

stability of switched linear systems with time-dependent switching signals (where uniformity refers

to the multiple solutions that can be obtained as the switching signal ranges over a switching set)

is characterized by the following result.

Lemma 2.1 (Asymptotic stability of switched linear systems implies exponential stability [21]): For

linear switched systems with trajectory-independent switching, uniform asymptotic stability is equiv-

alent to exponential stability.

We end this section by introducing the following notations. Given a time-varying digraph, we denote

by ∪t2
t1
G(t) the joint digraph in the time interval [t1, t2) where t1 < t2 < +∞. We say a time-varying

graph G(t) is jointly strongly connected over the time-interval [t1, t2) if ∪t2
t1
G(t) is strongly connected.

The time instants at which the switching signal σ is discontinuous are called switching times and

are denoted by t0, t1, t2, · · · , where t0 = 0. We use Lσ to represent the out-Laplacian of the digraph

Γ(Aσ).
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3 Problem statement

We consider a network of N agents with single-integrator dynamics given by

ẋi = ci, i ∈ {1, . . . , N}, (3)

where xi ∈ R is the agreement state and ci ∈ R is the driving command of agent i. The network

interaction topology is modeled by a weighted digraph G. Agent i ∈ {1, . . . , N} has access to a

time-varying input signal ui : [0,∞) → R. The problem we are interested in solving is the following.

Problem 1 (Dynamic average consensus): Let G be strongly connected and weight-balanced. De-

sign a distributed algorithm such that each agent’s state xi(t) asymptotically tracks the average

1
N

∑N

j=1 u
j(t) of the inputs. �

This problem finds numerous applications in networks of multiple agents that have access to partial

and evolving information, and aim to combine it in a dynamic fashion. Examples are numerous

and include data fusion, spatial estimation, and localization and mapping, to name a few. The

algorithm design amounts to specifying a suitable driving command ci for each agent i ∈ {1, . . . , N}.

By distributed, we mean that agent i only interacts with its out-neighbors. In addition, we also

consider variations of the problem above that are intended to satisfy some practical issues that arise

in using the consensus algorithm in applications where the agent state corresponds to a physical

quantity such as position or velocity in motion coordination of autonomous mobile agents. In such

applications, a genuine concern is whether the command ci dictated by the consensus algorithm

can be implemented given the physical limitation of the actuation systems. This motivates us to

formulate the following variation of Problem 1.

Problem 2 (Dynamic average consensus with controllable rate of convergence): Solve Problem 1

such that each agent converges at its own desired rate of convergence. �

By giving a freedom to choose their desired rate of convergence, we allow agents with limited control

authority to opt for a slow rate of convergence. We can also use the control over the individual rate
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of convergence of agents in scheduling different time of arrivals. This can benefit applications such

as payload delivery or aerial surveillance. Although reducing the rate of convergence helps with

cases where control authority is limited, there is no guarantee that control bounds, if present, would

be satisfied. This motivates us to formulate the next problem.

Problem 3 (Dynamic average consensus with limited control authority): Solve Problem 1 under

bounded driving commands, i.e., ẋi = satc̄i(c
i) for all i ∈ {1, . . . , N}. �

Finally, we consider the problem of dynamic average consensus with privacy preservation in the

presence of adversaries. Our motivation to study such properties stems from the fact that privacy

guarantees on a distributed algorithm facilitate the agent participation in the completion of coop-

erative tasks. In an average consensus problem, the privacy concern of agents can be local (e.g.,

some or all of the agents do not want to reveal their local inputs to the outside world) or global

(e.g., all agents do not want to reveal their agreement value to agents outside network). We consider

adversaries inside or outside the network that do not interfere with the algorithm implementation

but seek to steal information about the inputs, agreement value, or the agreement state trajectories

of the individual agents. The information these adversaries can access includes the time history of

intra network communication messages, partial or full knowledge about the communication topology,

and the algorithm design parameters, and/or its initial conditions.

Problem 4 (Dynamic average consensus with privacy preservation): Solve Problems 1-3 such that

the following privacy requirements are satisfied

(a) the local inputs of the agents should not be revealed or be reconstructible by any adversary;

(b) the agreement value should not be revealed to or be reconstructible by external adversaries;

(c) the agreement state should not be revealed to or be reconstructible by any adversary. �

For vector-valued inputs, one can apply the solution of Problems 1-4 in each dimension.
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4 Dynamic average consensus

In this section, we introduce a distributed dynamic average consensus algorithm that solves Prob-

lem 1 with a steady-state error for arbitrary time-varying input signals. We show that the size of this

error can be controlled using a design parameter and that, for special classes of inputs, the steady-

state error is zero. We also analyze the asymptotic correctness of the algorithm under time-varying

interaction topologies and characterize the requirements on the stepsize for discrete-time implemen-

tations.

4.1 Fixed interaction topology

Here, we assume that the interaction topology of the network is fixed. We propose the following

distributed algorithm as our solution for Problem 1

ẋi = u̇i − α(xi − ui)− β

N∑

j=1

Lijx
j − vi, (4a)

v̇i = αβ
N∑

j=1

Lijx
j , (4b)

where for i ∈ {1, . . . , N}, xi, vi ∈ R are variables associated with agent i. Also, L is the Laplacian of

the digraph G modeling the interaction topology. This algorithm uses the last two terms of (4a) as

a proportional integral feedback to impose agreement among neighboring agents while these agents,

because of the first two terms of (4a), are moving towards their respective input signal. Under

suitable conditions on the communication topology, explained below, this scheme results in each

agents eventually following the average of all the inputs across the network. The constants α, β ∈ R

are design parameters that can be used to tune the algorithm performance. In the following, we

study the convergence and stability properties by using the equivalent compact form below

ẏ = −αy − βLy −w, (5a)

ẇ = αβLy −ΠN(ü + αu̇). (5b)
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where

yi = xi − 1

N

N∑

j=1

uj, i ∈ {1, . . . , N}, (6a)

w = v − v̄, v̄ = ΠN (u̇+ αu). (6b)

Recall from Section 3 that xi is the agreement state of agent i. Thus, with the change of variables (6a)

we are transferring the desired equilibrium of the system, in agreement state, to zero. We start our

study by analyzing the stability and convergence properties of the zero-system of (5), i.e.,



ẏ

ẇ


 = A



y

w


 , where A =



−αIN − βL −IN

αβL 0


 . (7)

In the following, we show that the dynamical system (7), over a strongly connected and weight-

balanced digraph, is stable and convergent.

Lemma 4.1 (Asymptotic convergence of (7)): Let G be strongly connected and weight-balanced.

For any α, β > 0, the trajectory of (7) over G starting from any initial condition y(0),w(0) ∈ R
N

satisfies,

yi(t) → −α
−1

N

N∑

j=1

wj(0), wi(t) → 1

N

N∑

j=1

wj(0), as t→ ∞, ∀i ∈ {1, . . . , N}, (8)

exponentially fast with a rate of convergence upper bounded by min{α, βℜ(λ2)}.

Proposition 4.1 Consider the following change of variables where r = 1√
N
1N and R is such that

r⊤R = 0 and R⊤R = IN−1,



p

q


 = T1T2



y

w


 , T1 =



IN 0

αIN IN


 , T2 =



T⊤
3 0

0 T⊤
3


 , T3 =

[
r R

]
. (9)

We partition the new variables as p = (p1,p2:N) and q = (q1, q2:N ), where p1, q1 ∈ R and p2:N , q2:N ∈

12



R
N−1. Using (9) the dynamics (7) can be stated in the following equivalent form



ṗ1

q̇1


 = Ã



p1

q1


 , Ã =



0 −1

0 −α


 , (10a)



ṗ2:N

q̇2:N


 = A



p2:N

q2:N


 , A =



−βR⊤

LR −IN−1

0 −αIN−1


 . (10b)

The eigenvalues of Ã are 0 and −α. The eigenvalues of the matrix A are −α, with multiplicity

N − 1, and −βλi, with i ∈ {2, . . . , N}. Recall that λi’s are eigenvalues of L. For a strongly

connected digraph, λ1 = 0 and the rest of the eigenvalues have positive real parts. Therefore, for

α, β > 0, the dynamical system (10), and equivalently (7), is a stable linear system.

The null-space of the system matrix A is spanned by (1N ,−α1N ), the eigenvector associated with

zero eigenvalue. Therefore, (7) converges exponentially fast to the set

{(y,w) |y = µ1N , w = −µα1N , µ ∈ R}. (11)

Left multiplying both sides of (7) by Diag(0N
⊤,1N

⊤) and invoking the weight-balanced property of

the digraph, we obtain
∑N

i=1 ẇ
i = 0, and therefore,

N∑

i=1

wi(t) =

N∑

i=1

wi(0), ∀ t ≥ 0. (12)

The combination of (11) and (12) yields that, from any initial condition y(0),w(0) ∈ R
N , the

trajectory of the dynamical system (7) satisfies (8), exponentially fast. Based on (2), the rate of

convergence is min{α, βℜ(λ2)}.

The next result further probes into the properties of the dynamical system (7) by upper bounding

the difference between the state yi of agent i at any time t and the equilibrium value. This bound

is instrumental later in the characterization of the steady-state error of (4).

Lemma 4.2 (Upper bound on trajectories of (7)): Under the assumptions of Lemma 4.1, the fol-

lowing bound holds for each i ∈ {1, . . . , N},
∣∣∣∣∣∣
yi(t) +

α−1

N

N∑

j=1

wj(0)

∣∣∣∣∣∣
≤

∥∥∥y(t) + α−1rr⊤w(0)
∥∥∥ ≤ s(t),
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where

s(t) = (e−αt +e−βλ̂2t)
∥∥∥y(0)

∥∥∥+ α−1 e−αt
∥∥∥w(0)

∥∥∥

+






(βλ̂2 − α)−1(e−αt − e−βλ̂2t)
(
α
∥∥∥y(0)

∥∥∥+
∥∥∥w(0)

∥∥∥
)
, if α 6= βλ̂2,

t e−βλ̂2t
(
α
∥∥∥y(0)

∥∥∥+
∥∥∥w(0)

∥∥∥
)
, if α = βλ̂2.

(13)

Proposition 4.2 The solution of the state equation (10) from any initial condition y(0),w(0) ∈ R
N

is (p1(t), q1(t),p2:N (t), q2:N (t)) = Ω(t)(p1(0), q1(0),p2:N (0), q2:N (0)), where

Ω(t) =




1 α−1(e−αt −1) 0 0

0 e−αt 0 0

0 0 Φ(t, 0) −
∫ t

0 Φ(t, τ) e−ατ dτ

0 0 0 e−αt IN−1




, (14)

and Φ(t, τ) = e−βR⊤
LR(t−τ). Now, from [22, Fact 11.15.7, item xvii], we deduce

∥∥∥Φ(t, τ)
∥∥∥ =

∥∥∥ e−βR⊤
LR(t−τ)

∥∥∥ ≤ e−βλ̂2(t−τ), (15)

and hence
∥∥∥
∫ t

0

Φ(t, τ) e−ατ dτ
∥∥∥ ≤

∫ t

0

e−βλ̂2(t−τ) e−ατ dτ. (16)

Now, using the change of variables (9), one has

y(t) = S11y(0) + S12w(0), (17)

where

S11 = e−αt rr⊤ +RΦ(t, 0)R⊤ − αR(

∫ t

0

Φ(t, τ) e−ατ dτ)R⊤, (18a)

S12 = (−α−1 + α−1 e−αt)rr⊤ −R(

∫ t

0

Φ(t, τ) e−ατ dτ)R⊤. (18b)

The result now follows from using (15) and (16) to bound the expression (17).

Next, using the results guaranteed by Lemma 4.2 we study the convergence and stability properties

of our proposed dynamic average consensus algorithm (4). We start by establishing an upper bound

on its tracking error for any given initial condition.
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Theorem 4.1 (Upper bound on the tracking error of (4)): Let G be strongly connected and weight-

balanced. Each agent has a piecewise continuously differentiable input ui(t). For α, β > 0, the

trajectory of the algorithm (4) over G starting from any initial condition x(0),v(0) ∈ R
N satisfies,

for all i ∈ {1, . . . , N},
∣∣∣∣∣∣
xi(t)− 1

N

N∑

j=1

uj(t) +
α−1

N

N∑

j=1

vj(0)

∣∣∣∣∣∣
≤s(t) +

∫ t

0

e−βλ̂2(t−τ)
∥∥∥ΠN u̇(τ)

∥∥∥dτ+ (19)






(βλ̂2 − α)−1(e−αt − e−βλ̂2t)
∥∥∥u̇(0)

∥∥∥, if α 6= βλ̂2,

t e−βλ̂2t
∥∥∥u̇(0)

∥∥∥, if α = βλ̂2,

where s(t) is defined in (13), and y and w are defined in (6).

Proposition 4.3 Using the change of the variables (9) we can represent (5), an equivalent repre-

sentation of (4), in the following equivalent form where Ã and A are defined in (10),


ṗ1

q̇1


 = Ã



p1

q1


 , (20a)



ṗ2:N

q̇2:N


 = A



p2:N

q2:N


−




0

R⊤


 (ü + αu̇), (20b)

For any given initial conditions, the solution of the state equation (20) is



p1(t)

q1(t)

p2:N(t)

q2:N (t)




=Ω(t)




p1(0)

q1(0)

p2:N (0)

q2:N (0)




−




0

0

∫ t

0 Φ(t, τ) e−ατ dτ (q2:N (0)+R⊤u̇(0))−
∫ t

0 Φ(t, τ)R⊤u̇(τ)dτ

−R⊤u̇(0) +R⊤u̇(t)




,

where Ω(t) is defined in (14). Recalling the change of variables (9), we have

y(t) = S11y(0) + S12w(0)−R

∫ t

0

Φ(t, τ) e−ατ dτ R⊤u̇(0) +R

∫ t

0

Φ(t, τ)R⊤u̇(τ)dτ, (21)

where S11 and S12 are defined in (18). Note that (6b) implies that
∑N

i=1 w
i(0) =

∑N
i=1 v

i(0).

Notice also that R⊤ = R⊤ΠN , and
∥∥∥R

∥∥∥ =
∥∥∥R⊤

∥∥∥ = σmax(R) = 1. Then, by recalling (15), it is

straightforward to show that (19) is satisfied.
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The next result shows that, for input signals whose orthogonal projection into the agreement space

are essentially bounded, the algorithm (4) solves Problem 1 with a bounded steady-state error.

Corollary 4.1 (The algorithm (4) solves Problem 1): Let G be strongly connected and weight-

balanced. Assume that the derivatives of the inputs of the network satisfy ‖ΠN u̇‖ess = γ <∞. Then,

for any α, β > 0 the algorithm (4) over G initialized at xi(0), vi(0) ∈ R such that
∑N

i=1 v
i(0) = 0

solves Problem 1 with an upper-bounded steady-state error. Specifically,

lim
t→∞

sup

∣∣∣∣∣∣
xi(t)− 1

N

N∑

j=1

uj(t)

∣∣∣∣∣∣
≤ (βλ̂2)

−1γ, i ∈ {1, . . . , N}. (22)

Proposition 4.4 In Theorem 4.1, for a strongly connected and weight-balanced digraph, we showed

that the trajectories of the algorithm (4), for any xi(0), vi(0) ∈ R, i ∈ {1, . . . , N}, satisfy the

bound (19). Then, we can easily deduce (22) from (19) using

∫ t

0

e−βλ̂2(t−τ)
∥∥∥ΠN u̇(τ)

∥∥∥dτ ≤ (βλ̂2)
−1(1− e−βλ̂2t)γ.

Remark 4.1 (Effect of faulty initial conditions): The condition
∑N

i=1 v
i(0) = 0 of Corollary 4.1

can be easily satisfied if each agent starts at vi(0) = 0. This is a mild requirement because vi is

an internal state for agent i, and therefore it is not affected by imperfect communication errors.

Additionally, for large networks, if we assume that the initialization error is zero-mean Gaussian

noise, we can expect
∑N

i=1 v
i(0) = 0. �

Remark 4.2 (Tuning the performance of (4) via design parameters): Corollary 4.1 shows that to

reduce the nonzero steady-state error, one can either increase the graph connectivity (larger λ̂2) or

use a larger value of β. The parameter α can also be exploited to regulate the algorithm perfor-

mance. According to the bound (19) the rate of convergence of the transient behavior is governed by

min{α, βλ̂2}. If one is forced to use large βλ̂2 to reduce the steady-state error, then α can fulfill the

role of regulating the rate of convergence of the algorithm. �

Remark 4.3 (Comparison with input requirements of the solutions in the literature): In order to

guarantee bounded steady-state tracking error, the solution we offer for Problem 1 through Corol-
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lary 4.1 only requires that the projection of the network’s aggregated input derivative vector into the

agreement space is bounded. This is more general than the requirements in the literature, which

generally ask for bounded input and/or bounded derivatives (e.g., [4, 15, 17]). �

In the following, we identify conditions involving the inputs and their derivatives under which the

algorithm (4) solves Problem 1 with zero steady-state error.

Lemma 4.3 (Conditions on inputs for zero steady-state error of (4)): Let G be strongly connected

and weight-balanced. Assume there exists α > 0 such that, for all i ∈ {1, . . . , N}, one of the following

conditions are satisfied

(a) u̇i(t) + αui(t) converges to a common function l(t) as t→ ∞;

(b) üi(t) + αu̇i(t) converges to a common function l(t) as t→ ∞.

Then, the algorithm (4) over G with the given α, and xi(0), vi(0) ∈ R such that
∑N

i=1 v
i(0) = 0, for

any β > 0, makes xi(t) → 1
N

∑N

j=1 u
j(t) as t→ ∞, for all i ∈ {1, . . . , N}.

Proposition 4.5 Using the change of variables (6a) we can represent (4) in the following equivalent

compact form

ẏ = −αy − βLy − v +ΠN (u̇+ αu), (23a)

v̇ = αβLy. (23b)

When condition (a) holds we have ΠN(u̇+αu) → 0, as t→ ∞. Then, (23) is a linear system with a

vanishing input ΠN (u̇+αu). Therefore, it converges to the equilibrium of its zero-system. In light of

Lemma 4.1, we conclude that yi(t) → −α−1

N

∑N

j=1 v
j(0) asymptotically for all i ∈ {1, . . . , N}. How-

ever, due to initialization requirement we have
∑N

i=1 v
i(0) = 0. As a result xi(t) → 1

N

∑N

j=1 u
j(t)

globally asymptotically for i ∈ {1, . . . , N}.

When condition (b) holds we have ΠN (ü + αu̇) → 0, as t → ∞. Recall (5) the equivalent rep-

resentation of (4). It is a linear system with a vanishing input ΠN (u̇ + αu). Then, using a
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similar argument used for (23) above, we can show that in (5) yi(t) → −α−1

N

∑N
j=1 w

j(0) asymp-

totically for all i ∈ {1, . . . , N}. Using (6b), we can show
∑N

i=1 w
i(0) =

∑N

i=1 v
i(0). As a result

xi(t) → 1
N

∑N

j=1 u
j(t) globally asymptotically for i ∈ {1, . . . , N}.

Remark 4.4 (Inputs that satisfy the conditions of Lemma 4.3): The classes of inputs in Lemma 4.3

depend on the parameter α which must be known by each agent in order to obtain zero steady-state

error. There are classes of inputs that satisfy the conditions regardless of the value of α, such as

static inputs and dynamic inputs which differ from one another by static values. For these classes

of inputs, ΠN (ü+ αu̇) = 0, and the convergence is exponential with rate min{α, βℜ(λ2)}. �

4.2 Time-varying interaction topologies

In this section, we analyze the stability and convergence properties of the dynamic average consensus

algorithm (4) over networks with changing interaction topology. Changes can be due to unreliable

transmission, limited communication/sensing range, or obstacles. Let (V , E(t),A(t)) be a time-

varying digraph, where the nonzero entries of the adjacency matrix are uniformly lower and upper

bounded (i.e., aij(t) ∈ [a, ā], where 0 < a ≤ ā, if (j, i) ∈ E(t), and aij = 0 otherwise). Intuitively

one can expect that consensus in switching networks will occur if there is occasional enough flow of

information from every node in the network to every other node. Then, according to Section 2.3, in

order to describe our switching network model, we start by specifying the set of admissible switching

signals.

Definition 1 (Admissible switching set Sadmis): An admissible switching set Sadmis is a set of piece-

wise constant switching signals σ : [0,∞) → P with some dwell time tL (i.e., tk+1 − tk > tL > 0,

for all k = 0, 1, . . . ) such that

• the induced digraph Γ(Aσ(t)) is weight-balanced for t ≥ t0;

• the number of contiguous, nonempty, uniformly bounded time-intervals [tij , tij+1 ), j = 1, 2, . . . ,

starting at ti1 = t0, with the property that ∪tij+1

tij
Γ(Aσ(t)) is a jointly strongly connected digraph
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goes to infinity as t→ ∞. �

Our model of network with switching topology is then Γ(Aσ), with σ ∈ Sadmis. The algorithm (4),

after applying the change of variables (6), is represented in compact form as follows



ẏ

ẇ


 = Aσ(t)



y

w


−




0

ΠN (ü+ αu̇)


 , Aσ(t) =



−αIN − βLσ(t) −IN

αβLσ(t) 0.


 . (24)

Similarly to our analysis of the algorithm over fixed interaction topologies, we start by examining

the zero-system of (24), i.e., 

ẏ

ẇ


 = Aσ(t)



y

w


 . (25)

The following result analyzes the convergence and stability properties of the switched dynamical

system (25) when the switching signal σ ∈ Sadmis.

Lemma 4.4 (Asymptotic convergence of (25)): Let σ ∈ Sadmis and consider G(t) = Γ(Aσ(t)) for

t ≥ 0. Then, for any α, β > 0, the trajectory of the algorithm (25) starting from any initial condition

y(0),w(0) ∈ R
N satisfies (8), exponentially fast.

Proposition 4.6 Using the change of the variables (9), we can represent (25) in the equivalent

form (10) in which A and L are replaced by Aσ(t) and Lσ(t), respectively. We can write ṗ as follows

ṗ = −T⊤
3 LσT3p− q. (26)

We can look at this dynamical equation as a linear system with input q which vanishes exponentially

fast (notice that q̇ = −αq). Next, we examine the stability of zero-system of (26). Under the state

transformation η = T3p, this zero-system can be represented in the following equivalent form

η̇ = −Lση. (27)

According to [9, Theorem 2.33], when the switching signal σ is such that the number of contiguous,

nonempty, uniformly bounded time-intervals [tij , tij+1), j = 1, 2, . . . , starting at ti1 = t0, with the
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property that ∪tij+1

tij
Γ(Aσ(t)) has a spanning tree, then (27) asymptotically achieves consensus. Invok-

ing this result, we can conclude that for σ ∈ Sadmis, the trajectories of (27) converge asymptotically

to 1
N

∑N

j=1 ηj(0) where ηi(0) is the ith element of η(0). For zero-system of (26), this is equivalent

to p1(t) → p1(0) and p2:N (t) → 0 uniformly asymptotically for all σ ∈ Sadmis. The switching signal

σ ∈ Sadmis is a trajectory-independent (it is time-dependent) switching signal. Then, Lemma 2.1

implies that the convergence of the zero system of (26) is indeed globally uniformly exponentially fast.

Using input-to-state stability results (see [23, 24]), then we can conclude that in (26), p1(t) → p1(0)

and p2:N (t) → 0 as t→ ∞ uniformly globally exponentially. Recall the change of variable (9), then

it is easy to show that for (25) we also have (8).

Obtaining an explicit value for the rate of convergence of (25) for all possible σ ∈ Sadmis is

not straightforward. However, we can show that the rate of convergence is upper bounded by

max
p∈P

(ℜ(λp2)), where λp2 is the eigenvalue of Lp with smallest nonzero real part. The following result

relates the upper bound on the difference between the state yi(t) of agent i at any time t and the

final agreement value to the rate of convergence of (8).

Lemma 4.5 (Upper bound on trajectories of (25)): Under the assumptions of Lemma 4.4, the fol-

lowing bound holds for each i ∈ {1, · · · , N},
∣∣∣∣∣y

i(t) +
α−1

N

N∑

i=1

wi(0)

∣∣∣∣∣ ≤
∥∥∥yT(t) + α−1rr⊤wT(0)

∥∥∥ ≤ ŝ(t), (28)

where ŝ(t) is the same as s(t) in (13) only λ̂2 is replaced by λ̂σ > 0 where λ̂σ satisfies

∥∥∥ e−βR⊤
Lσ(t)R(t−t0)

∥∥∥ ≤ κ e−βλ̂σ(t−t0), ∀t ≥ t0 ≥ 0, (29)

for some finite 0 < κ.

Proposition 4.7 We follow the same steps of the proof of Lemma 4.2. The only difference is that

the norm bound (15) of the transition matrix of ṗ2:N state equation has to be modified, as explained

below. We showed in the proof of Lemma 4.5 that when σ ∈ Sadmis for all t ≥ t0, the zero-system
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of (26) is exponentially stable. Therefore, there exist positive λ̂σ and κ such that

∥∥∥Φ(t, t0) = e−βR⊤
Lσ(t)R(t−t0)

∥∥∥ ≤ κ e−βλ̂σ(t−t0), ∀t ≥ t0 ≥ 0.

As a result, in the case of switched dynamical systems, in (16) λ̂2 is replaced by λ̂σ. Then, from (17)

we can deduce the bound (28).

In light of Lemma 4.5, the extension of the results on the stability analysis and ultimate convergence

error bound of the algorithm (4) over fixed interaction topologies to switching networks whose

switching signal σ ∈ Sadmis is straightforward. For such switching networks, Theorem 4.1 and

Corollary 4.1 are valid, with the only change of replacing βλ̂2 by βλ̂σ , cf. (29), in the statement.

Because of Lemma 4.4, the proof that Lemma 4.3 applies to switched networks with σ ∈ Sadmis is

straightforward. For the sake of brevity the detailed statements and proofs are omitted.

4.3 Discrete-time implementation over fixed interaction topologies

Here, we study a discrete-time algorithm that solves Problem 1 with non-zero steady-state error.

In doing so, we are motivated by the aim of understanding the differences and connections between

continuous- and discrete-time systems for multi-agent systems and by practical considerations re-

garding algorithm implementability. Given a stepsize δ > 0, for i ∈ {1, . . . , N}, consider

zi(k + 1) = zi(k)− δαzi(k)− δβ
N∑

j=1

Lij(z
j(k) + uj(k)) − δvi(k), (30a)

vi(k + 1) = vi(k) + δαβ

N∑

j=1

Lij(z
j(k) + uj(k)), (30b)

xi(k) = zi(k) + ui(k). (30c)

Using (30c) to obtain zi(k) = xi(k)− ui(k), and substituting this in (30a) and (30b), we obtain

xi(k + 1) = xi(k)− δα(xi(k)− ui(k))− δβ

N∑

j=1

Lijx
j(k)− δvi(k) + ∆ui(k), (31a)

vi(k + 1) = vi(k) + δαβ
N∑

j=1

Lijx
j(k), (31b)
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where ∆ui(k) = ui(k + 1) − ui(k). Notice that the discrete-time algorithm (30) is an equivalent

iterative form of (4) obtained by Euler discretization with stepsize δ. When δ → 0, we can expect

that the stability and convergence properties of (30) are similar to that of (4), i.e., xi tracks the

average of the network inputs in its O(β−1) neighborhood, provided the network topology is strongly

connected and weight-balanced digraph. Notice that the structure (30) allows us to circumvent

discretizing the derivative of the input signals and, as a result, avoid the one-step delayed tracking

reported in [17]. Next, note that ui is never communicated directly.

Next, we explore the bounds on the stepsize δ such that (30) is convergent and tracks the input

average. The proof of the results is presented in Appendix A. We start by studying the stability

and convergence properties of the zero-system.

Lemma 4.6 (Convergence analysis and stepsize characterization of the zero-system of (31)): Let

G be strongly connected and weight-balanced. For α, β > 0, the trajectory of the zero-system of

discrete-time algorithm (31) over G starting from any initial condition x(0),v(0) ∈ R
N satisfies

xi(k) → −α
−1

N

N∑

i=1

vi(0), vi(k) → 1

N

N∑

j=1

vj(0), ∀i ∈ {1, . . . , N},

asymptotically, as k → ∞, provided δ ∈ (0,min{α−1, β−1(doutmax)
−1}). �

The following result establishes an upper bound on the solutions of the algorithm (30) for any given

initial conditions. In the following, we let Φ(k, j) = (IN−1 − δβR⊤
LR)k−j .

Theorem 4.2 (Upper bound on the tracking error of (31)): Let G be strongly connected and weight-

balanced. Each agent has an input ui(k). For α, β > 0, the trajectory of the algorithm (30) over G
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starting from any initial condition z(0),v(0) ∈ R
N satisfies,

∣∣∣∣∣∣
xi(k)− 1

N

N∑

j=1

uj(k) +
1

N
δ

k−1∑

j=0

(1 − δα)j
N∑

j=1

vj(0)

∣∣∣∣∣∣
≤

∥∥∥y(t) + δ

k−1∑

j=0

(1 − δα)jrr⊤w(0)
∥∥∥ ≤

∣∣∣∣∣∣
(1 − αδ

k−1∑

j=0

(1− δα)j)

∣∣∣∣∣∣

∥∥∥y(0)
∥∥∥+

∥∥∥Φ(k, 0)
∥∥∥
∥∥∥y(0)

∥∥∥+ α
∥∥∥(

k−1∑

j=0

Φ(k − 1, j)(1− δα)j)
∥∥∥
∥∥∥y(0)

∥∥∥+

∥∥∥(
k−1∑

j=0

Φ(k − 1, j)(1− δα)j)
∥∥∥
∥∥∥w(0)

∥∥∥+
∥∥∥

k−1∑

j=0

Φ(k − 1, j)(1− δα)j
∥∥∥
∥∥∥∆u(0)

∥∥∥+

∥∥∥R
k−1∑

j=0

Φ(k − 1, j)R⊤∆u(j)
∥∥∥, (32)

for all i ∈ {1, . . . , N}, where y is defined in (6a) and w is

w = v − v, v = ΠN(∆u(k) + δαu(k)). (33)

�

Next, we show that for networks with strongly connected and weight-balanced digraph topolo-

gies, the discrete-time algorithm (30) solves Problem 1 with a nonzero steady-state error, provided

δ ∈ (0,min{α−1, β−1(dout
max)

−1}), the algorithm is initialized properly and the essential norm of the

projection of the input difference vector into the agreement space is bounded.

Corollary 4.2 (The algorithm (30) solves Problem 1): Let G be strongly connected and weight-

balanced. Assume that the differences of the inputs of the network satisfy ‖ΠN∆u‖ess = γ <

∞. Then, for any α, β > 0, the algorithm (30) over G initialized at zi(0), vi(0) ∈ R such that

∑N

i=1 v
i(0) = 0 solves Problem 1 (in the output xi) with an upper-bounded steady-state error provided

δ ∈ (0,min{α−1, β−1(doutmax)
−1}), specifically

lim
k→∞

∣∣∣∣∣∣
xi(k)− 1

N

N∑

j=1

uj(k)

∣∣∣∣∣∣
≤ (δβλ̂2)

−1γ, i ∈ {1, . . . , N}.

�

One can make similar comments to those of Remark 4.2 regarding the tuning of the performance

of (30) via the design parameters α and β. In the following, we identify conditions, involving inputs

and their differences, under which the algorithm (30) solves Problem 1 with zero steady-state error.
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Lemma 4.7 (Conditions on inputs for zero steady-state error of (30)): Let G be strongly connected

and weight-balanced. Assume there exists δ ∈ (0,min{α−1, β−1(doutmax)
−1}) and α > 0 such that for

all i ∈ {1, . . . , N}, one of the following conditions are satisfied

(a) ∆ui(k) + δαui(k) converges to a common dynamics l(k);

(b) ∆ui(k + 1)−∆ui(k) + δα∆ui(k) converges to a common dynamics l(k).

Then, the algorithm (30) over G with the given δ and α, zi(0), vi(0) ∈ R such that
∑N

i=1 v
i(0) = 0,

for any β > 0, makes xi(k) → 1
N

∑N

j=1 u
j(k), as k → ∞, for all i ∈ {1, . . . , N}. �

5 Dynamic average consensus with controllable rate of con-

vergence and limited control authority

In this section, we address the dynamic average consensus Problems 2 and 3. As discussed in

Section 3, the goal in setting up these problems is to come up with an algorithm which is more

suitable for applications where the agreement state xi in (3) corresponds to some physical variable

such as position of a robotic system. In such networked systems, agents might have limited control

authority and can not implement the high-rate commands dictated by the consensus algorithm.

Although the rate of convergence of the algorithm can be controlled by the choice of α and β, these

variables are centralized variables and the effect is universal across the network. One can expect

that a more efficient consensus algorithm is one that allows agents with limited power to move at

their own pace. To this end, we make a modification to the structure of the consensus algorithm (4),
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żi = u̇i − α(zi − ui)− β
N∑

j=1

Lijz
j − vi, (34a)

v̇i = αβ

N∑

j=1

Lijz
j, (34b)

ẋi = −θi(t)(xi − zi) + u̇i − α(zi − ui)− β
N∑

j=1

Lijz
j − vi, (34c)

where θi : [0,∞) → R is a time-varying gain which is bounded from below and above, i.e., at all

t ≥ 0 we have 0 < θi ≤ θi(t) ≤ θ̄i, for i ∈ {1, . . . , N}. As we show below, agents that wish to

slow down their rate of convergence use this gain to adjust it. Note the cascading structure of the

algorithm. As such, the stability properties of (34a)-(34b) (information phase) are independent

of (34c) and are as characterized in Section 4. The information phase allows agents to obtain the

average with a convergence rate that is common across the network. The dynamics (34c) (motion

phase) allows each agent i ∈ {1, . . . , N} to tweak its convergence rate by adjusting the gain θi. We

start our analysis by examining the rate of convergence of the algorithm (34) and establishing an

upper bound on its tracking error.

Lemma 5.1 (The algorithm (34) solves Problem 2): Let G be strongly connected and weight-balanced.

For inputs whose derivatives satisfy ‖ΠN u̇‖ess = γ < ∞, for any α, β > 0 the algorithm (34)

initialized at xi(0), vi(0) ∈ R such that
∑N

i=1 v
i(0) = 0, then we have the same ultimate tracking

error bound of (22). The rate of decay of the transient response is min{θi, α, βλ̂2} for each agent

i ∈ {1, . . . , N}.

Proposition 5.1 Consider the information phase (34a)-(34b). From Theorem 4.1 and Corol-

lary 4.1, it follows that zi − 1
N

∑N
j=1 u

j(t) has the ultimate bound

lim
t→∞

sup

∣∣∣∣∣∣
zi(t)− 1

N

N∑

j=1

uj(t)

∣∣∣∣∣∣
≤ (βλ̂2)

−1γ, (35)

and converges to this neighborhood of the input average with a rate of min{α, βλ̂2}. Next, consider
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the motion phase (34c), which can be written as

ẋi = −θi(t)(xi − zi) + żi, i ∈ {1, . . . , N}, ∀t ≥ 0.

With the change of variables di = xi − zi, i ∈ {1, . . . , N}, this can be equivalently written as

ḋi = −θi(t)di, i ∈ {1, . . . , N}, ∀t ≥ 0. (36)

Using the Lyapunov function V i = 1
2 (d

i)2, it is not difficult to show that, for 0 < θi ≤ θi(t) ≤ θ̄i, (36)

is an exponentially stable system which satisfies the following bound

∣∣xi(t)− zi(t)
∣∣ =

∣∣di(t)
∣∣ ≤

∣∣xi(0)− zi(0)
∣∣ e−θit, i ∈ {1, . . . , N}, ∀t ≥ 0.

Therefore,
∣∣∣∣∣∣
xi(t)− 1

N

N∑

j=1

uj(t)

∣∣∣∣∣∣
≤

∣∣xi(0)− zi(0)
∣∣ e−θit +

∣∣∣∣∣∣
zi(t)− 1

N

N∑

j=1

uj(t)

∣∣∣∣∣∣
, i ∈ {1, . . . , N}, ∀t ≥ 0.

Then, we conclude that (22) is satisfied. The rate of convergence of agent i is min{θi, α, βλ̂2}.

As before, the design parameters α and β can be used to tune the overall rate of convergence.

Agents who wish to move at a slower pace can use the motion phase with θi ≤ min{α, βλ̂2} to

accomplish their goal. The time-varying nature of θi allows for agents to accelerate and decelerate

the convergence as desired. Notice that the ultimate error bound guaranteed by algorithm (34) is

the same as the one for algorithm (4). Therefore, the local first-order filter (34c) adjusts the rate of

convergence without having any adverse effect on the error bound.

Remark 5.1 (Discrete-time implementation and switching networks): The results above can be ex-

tended to switching networks and discrete-time settings. For brevity this extension is omitted. In the

discrete-time implementation, it is straightforward to show that for convergence we should require

δ ∈ (0,min{ ¯̄θ−1, α−1, β−1(doutmax)
−1}), where ¯̄θ = max

i∈{1,...,N}
{θ̄i}. �

Next, we consider the case when saturation is present in the driving command. The following result

states that, under suitable conditions, the algorithm (34) is a solution for Problem 3 with the same

error bounds as if no saturation was present.
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Lemma 5.2 (The algorithm (34) solves Problem 3): Let G be strongly connected and weight-balanced.

Suppose the driving command at each agent i ∈ {1, . . . , N} is bounded by c̄i > 0, i.e., ẋi = satc̄i(c
i).

Assume for every agent i ∈ {1, . . . , N}, the following holds: (a) the input signal at each agent is such

that 1
N

∑N

j=1 u
j is bounded, the input derivatives satisfy ‖ΠN u̇‖ess = γ <∞, and ‖u̇i‖ess = µi <∞;

(b) c̄i > µi + γ. Then, for any α, β > 0, and constant θi > 0, the algorithm (34) starting from any

xi(0), vi(0) ∈ R such that
∑N

i=1 v
i(0) = 0 satisfies that the ultimate tracking error bound (22).

Proposition 5.2 Following the proof of Lemma 5.1, for the information phase (34a) and (34b),

we have (35). To complete the proof, we will show that under the given conditions for the input

signals, despite the saturation, xi → zi asymptotically for all i ∈ {1, . . . , N}. Under the saturation

constraint, (34c) takes the form ẋi = − satc̄i(θ
i(xi−zi)+ ż), for i ∈ {1, . . . , N}. The rest of the proof

relays on Proposition B.3. According to this result, we need to show that a) zi is a bounded signal;

b) |żi(t)| < c̄i for all t > t⋆ where t⋆ is some finite time. For any given finite initial conditions and

input signals with bounded average the requirement (a) is satisfied due to convergence guarantees of

(34a)-(34b). In the following, we show that the requirement (b) is also satisfied due to the given

assumptions. With change of variables (6b) and y = z − 1
N

∑N
j=1 u

j1N , we can represent (34a) as

ż = −αy − βLy −w + 1
N

∑N

j=1 u̇
j1N . Therefore,

lim
t→∞

∣∣żi(t)
∣∣ ≤ lim

t→∞

∣∣∣∣∣∣
−αyi(t)−wi(t) +

1

N

N∑

j=1

u̇j(t)

∣∣∣∣∣∣
+ lim

t→∞

∥∥∥βLy(t)
∥∥∥ i ∈ {1, . . . , N}.

Using the results and the variables introduced in the proof of Theorem 4.1, we can show that

−αy −w +
1

N

N∑

j=1

u̇j1N = −
[
αS11 + S21 αS12 + S22

]


y(0)

w(0)


− e−αt RR⊤u̇(0) + u̇(t),

where S11 and S12 are given in (18), and we have

S21 = −αRΦ(t, 0) + α2R(

∫ t

0

Φ(t, τ) e−ατ dτ)R⊤ + αRR⊤ e−αt,

S22 = rr⊤ + αR(

∫ t

0

Φ(t, τ) e−ατ dτ)R⊤ +RR⊤ e−αt . (37)
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Recall that Φ(t, τ) = e−βR⊤
LR(t−τ), then,

∥∥∥βLR
∫ t

0

Φ(t, τ)R⊤u̇(τ)dτ
∥∥∥ =

∥∥∥βRR⊤
LR

∫ t

0

Φ(t, τ)R⊤u̇(τ)dτ
∥∥∥ =

∥∥∥R e−βR⊤
LRt

∫ t

0

βR⊤
LR eβR

⊤
LRτ R⊤ΠN u̇(τ)dτ

∥∥∥ ≤
∥∥∥R e−βR⊤

LRt

∫ t

0

βR⊤
LR eβR

⊤
LRτ dτ‖ΠN u̇‖ess

∥∥∥ =

∥∥∥R e−βR⊤
LRt(eβR

⊤
LRt −IN )‖ΠN u̇‖ess

∥∥∥ ≤ ‖ΠN u̇‖ess + e−βλ̂2t ‖ΠN u̇‖ess

Recall (21). In light of the relations above we can show that

lim
t→∞

∣∣żi(t)
∣∣ ≤ µi + γ, i ∈ {1, . . . , N}.

Therefore, there exists a finite time t⋆ such that |żi(t)| < c̄i for all t > t⋆ and i ∈ {1, . . . , N}.

6 Dynamic average consensus with privacy preservation

Here, we study the dynamic average consensus problem with privacy preservation. We consider

adversaries that do not interfere with the implementation of the algorithm but are interested in

retrieving information about the inputs, their average, or the agreement state trajectories of the

individual agents. These adversaries might be internal, i.e., part of the network, or external. Internal

adversaries have access at no cost to certain information that external adversaries do not. More

specifically, an internal adversary has knowledge of the parameters α, β of the algorithm (4), its

corresponding row in the Laplacian matrix, and the agreement state of its out-neighbors. We also

assume that the agent is aware of whether the algorithm is initialized with v(0) = 0. We refer

to the extreme case when an internal adversary knows the whole Laplacian matrix and the initial

conditions of its out-neighbors as a privileged internal adversary. Regarding external adversaries,

we assume they have access to the time history of all the communication messages. We refer to the

extreme case when an external adversary has additionally knowledge of the parameters α, β, the

Laplacian matrix, and the initial conditions as a privileged external adversary.
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The next result characterizes the privacy-preservation properties of the dynamic average consensus

algorithm (4) against adversaries. Specifically, we show that this algorithm satisfies Problem 4(a).

Lemma 6.1 (The algorithm (4) preserves the privacy of the local inputs against adversaries): Let

G be strongly connected and weight-balanced. The executions of the algorithm (4) over G with α,

β > 0, initialized at xi(0), vi(0) ∈ R such that
∑N

i=1 v
i(0) = 0, satisfy

(a) an external (respectively internal) adversary cannot reconstruct the input of any (respectively

another) agent;

(b) a privileged adversary cannot reconstruct the input of agent i ∈ {1, . . . , N} as long as there

exists t̄ > 0 such that u̇i(t) 6= 0 for t ∈ [0, t̄).

Proposition 6.1 First, we investigate the validity of claim (a). Using the results in the proof of

Theorem 4.1 and recalling the change of variables (6), the solution of the algorithm (4) for given

initial conditions xi(0), vi(0) ∈ R, for i ∈ {1, . . . , N} can be written as follows



x(t)

v(t)


 =



S11 S12

S21 S22






x(0) + ( 1

N

∑N

j=1 u
j(0))1N

v(0) +ΠN (u̇(0) + αu(0))


+



( 1
N

∑N

j=1 u
j(t))1N

ΠN (u̇(t) + αu(t))


+ (38)




−R
∫ t

0 Φ(t, τ) e−ατ dτ R⊤u̇(0) +R
∫ t

0 Φ(t, τ)R⊤u̇(τ)dτ

αR
∫ t

0
Φ(t, τ) e−ατ dτ R⊤u̇(0)− αR

∫ t

0
Φ(t, τ)R⊤u̇(τ)dτ + e−αt RR⊤u̇(0)−RR⊤u̇(t)


 ,

where S11 and S12 are given in (18), and S21 and S22 are given in (37). For an external adversary

that only has knowledge of the time history of x, the number of unknowns in (38) (i.e., u(0), u(t),

u̇(t), v(t), for ∀t ≥ 0, α, β and L), regardless of the initial condition requirement
∑N

i=1 v
i(0) = 0,

is larger than the number of equations. This is true even if the inputs are static. Thus, the claim

(a) for external adversaries follows. Regarding the claim (a) for internal adversaries, we consider

the extreme case where the adversarial agent, say j, is the in-neighbor of every other agent in the

network, and therefore knows the time history of the aggregated vector x. Now consider (4b) for all

i ∈ V \ {j}. Recall that agent j does not know Lik, k ∈ V, of all agent i ∈ V \ {j}. Therefore, even
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if it knows the initial condition vi(0), it cannot obtain vi(t), t > 0. Next consider (4a), and again

assume an extreme case that the adversarial agent j can numerically reconstruct ẋi with an acceptable

precision and the inputs are static. Despite these assumptions, because ui and
∑N

k=1 Likx
k, ∀t ≥ 0 of

all agent i ∈ V \ {j} are unknown to agent j, regardless of value of vi, this agent cannot reconstruct

ui from (4b). This concludes validity of the claim (a) for internal agents.

Next, we examine claim (b) considering both the internal and external adversary case at the same

time. For an internal adversary, assume the extreme case when it is the in-neighbor of every other

agent in the network. As a result, it knows the time history of the aggregated vector x. At any given

τ > 0, using its knowledge of x(t) over t ∈ [0, τ ] and the information on the initial conditions and

the parameters of the algorithm, a privileged internal or external adversary can reconstruct vi(t),

i ∈ {1, . . . , N}, for all t ∈ [0, τ ] by integrating (4b). The adversary can also use its knowledge of

x(t) over t ∈ [0, τ ] to construct numerically ẋ(t) over the same period of time. Then, the adversary

using (4a), knows the right-hand side of the following equation

u̇i + αui = −ẋi − αxi − β
N∑

j=1

Lijx
j − vi, ∀i ∈ {1, . . . , N}. (39)

Because there exists t̄ > 0 such that u̇i(t) 6= 0 for t ∈ [0, t̄), (39) is an ordinary differential equation

(ODE) with variable ui. The adversary does not know the initial condition ui(0), hence, it cannot

obtain the unique solution of the ODE, i.e., the dynamic input ui. This validates claim (b).

Remark 6.1 (Privacy preservation of static inputs against privileged adversaries): To protect local

static inputs from privileged adversaries, agents can add a static or time-varying value to their

inputs at the beginning for some short period of time (so that the requirement of Lemma 6.1(b) is

satisfied) and then remove it. This modification does not affect the final convergence properties of

the algorithm (4). �

In general, the algorithm (4) does not satisfy the requirements (b) and (c) of Problem 4. Here, we
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propose a slight extension of (34) that overcomes this shortcoming. For each i ∈ {1, . . . , N}, let

żi = u̇i − α(zi − ui)− β
N∑

j=1

Lij z̃
j − vi, (40a)

v̇i = αβ

N∑

j=1

Lij z̃
j, (40b)

ẋi = −θi(t)(xi − zi) + u̇i − α(zi − ui)− β
N∑

j=1

Lij z̃
j − vi, (40c)

z̃i = zi + ψ(t), (40d)

where ψ : [0,∞) → R is a common dynamic signal which is known to all agents. Also, θi : [0,∞) → R

such that θi ≤ θi(t) ≤ θ̄i for all t ≥ 0 is a local signal only known to agent i. The role of the signal

ψ is to conceal the final agreement value from the external adversaries to satisfy the item (b) in

Problem 4. Note that, because
∑N

j=1 Lij = 0, the signal ψ has no effect on the algorithm execution,

and therefore, the executions of algorithms (40) and (34) are the same. Consequently, Lemma 5.1

is valid for (40) as well. As agents communicate z̃i instead of zi, and the signal ψ is unknown to

the external adversaries, recovering the steady-state solution of the algorithm is impossible for such

adversaries. The agreement state equation of any agent i in (40c) is a local equation, with all the

components set by that agent. Therefore, xi(0) and θi can easily be concealed from other agents,

making it impossible for adversaries to reconstruct the trajectories of xi. This allows us to satisfy

the item (c) in Problem 4. The following result shows that the algorithm (40) is privacy preserving

and solves Problem 4. Its proof is a consequence of the above discussion and Lemmas 5.1 and 6.1,

and is omitted for brevity.

Lemma 6.2 (The algorithm (40) solves Problem 4): Under the hypotheses of Lemma 5.1, the ulti-

mate tracking error bound (22) is valid for all trajectories t 7→ xi(t) of the algorithm (40). Further-

more,

(a) an external (respectively internal) adversary cannot reconstruct the input of any (respectively

another) agent;
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Figure 1: Weight-balanced digraphs used in simulation (all edge weights are equal to 1).

(b) a privileged adversary cannot reconstruct the input of agent i ∈ {1, . . . , N} as long as there

exists t̄ > 0 such that u̇i(t) 6= 0 for t ∈ [0, t̄);

(c) external adversaries cannot obtain the final agreement value of the network as long as ψ is

unknown to them;

(d) an adversary cannot reconstruct the trajectory t 7→ xi(t) of agent i ∈ {1, . . . , N} as long as

xi(0) or θi is unknown to it.

7 Simulations

Here, we evaluate the performance of the proposed dynamic average consensus algorithms in a

number of scenarios. Fig. 1 shows the weight-balanced digraphs employed in the simulation.

7.1 Networks with time-varying interaction topologies

Consider a group of 6 agents whose communication topology is time-varying. We consider the

following cases for the input signals
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Figure 2: Simulation results for Case 1 and Case 2 of the numerical example of Section 7.1: Solid

thick blue line (colored thin lines) is the input average (resp. agreement state of agents).

Case 1:





u1(t) = 5 sin t+ 1
t+2 + 3,

u2(t) = 5 sin t+ 1
(t+2)2 + 4,

u3(t) = 5 sin t+ 1
(t+2)3 + 5,

u4(t) = 5 sin t+ 10 e−t +4,

u5(t) = 5 sin t+ atan t− 1.5,

u6(t) = 5 sin t− tanh t+ 1.

Case 2:





u1(t) = 0.55 sin(0.8t),

u2(t) = 0.5 sin(0.7t) + 0.5 cos(0.6t),

u3(t) = 0.1t,

u4(t) = atan(0.5t),

u5(t) = 0.1 cos(2t),

u6(t) = 0.5 sin(0.5t).

In Case 1, the communication topology iteratively changes, in alphabetical order, every two seconds

among the digraphs in Fig. 1(b)-(e). In Case 2, the communication topology changes, in alpha-

betical order, every two seconds among the digraphs in Fig. 1(a)-(e). After t = 10 seconds, the

communication topology is fixed at the digraph in Fig. 1(a). Figure 2 shows the simulation results

generated by implementing the algorithm (4) with the following parameters: in Case 1, α = β = 1

and in Case 2, α = 3 and β = 10.

These examples show that, as long as the switching signal belongs to Sadmis, the agreement state

xi stays bounded. In Case 1, because the input signals converge to a common function, the version

of Lemma 4.3 for switching networks implies that the algorithm (4) converges to the average with

zero steady-state error. However, in Case 2, we only can guarantee tracking with bounded steady-

state error. During the times that the network is only weight-balanced, the error grows but still
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stays bounded. One can expect that each connected group converges to their respective input

average. During these periods of time, there is no way for separate components to have knowledge

of the other groups’ inputs. However, once the network is strongly connected and weight-balanced,

then (4) resumes its tracking of the input average across all network, as expected.

7.2 Dynamic inputs offset by a static value

Consider a process described by a fixed value plus a sine wave whose frequency and phase are

changing randomly over time. A group of 6 agents with the communication topology shown in

Fig. 1(a) monitors this process by taking synchronous samples, each according to

ui(m) = 2 + sin(ω(m)t(m) + φ(m)) + bi, m = 0, 1, . . . .

Because of the unknown fixed bias bi of each agent, after each sampling, every agent wants to

obtain the average of the measurements across the network before the next sampling time. Here,

ω ∼ N(0, 0.25), φ ∼ N(0, (π/2)2), with N(., .) indicating a Gaussian distribution. The data is

sampled at 0.5 Hertz, i.e., ∆t = 2 seconds. The bias at each agent is b1 = −0.55, b2 = 1, b3 = 0.6,

b4 = −0.9, b5 = −0.6, and b6 = 0.4. Between sampling times m and m+1, the input ui(k) is fixed at

ui(m). Figure 3 shows the result of the simulation using the discrete-time consensus algorithm (30)

with α = β = 1. The communication bandwidth is 2 Hertz, i.e., δ = 0.5 seconds. The application

of (30) results in perfect tracking after some time as forecasted by Lemma 4.7. Notice that here as

it is impossible for the agents to know ui(−1), the use of the algorithm in [17], which requires the

agents to initialize their agreement states at ui(−1), results in tracking with a steady-state error.

7.3 Limited control authority

We use the following numerical example to demonstrate the performance of the algorithms (4)

and (34) when the driving command is bounded. Consider a group of 6 agents whose communication
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Figure 3: Simulation results for the numerical example of Section 7.2; The solid lines: the agreement

states of (30); ×: sampling points at m∆t; ◦: the average at m∆t; +: the average at kδ.

topology is given in Fig. 1(a). The input signals are as follows

u1(t) = u(t) (4 cos(0.5t) + 10), u2(t) = u(t)(4 tanh(t− 5) + 4 tanh(t− 25) + 5),

u3(t) = u(t)(4 sin(0.5t+ 1) + 8), u4(t) = u(t)(4 atan(0.5t− 5)− 6),

u5(t) = u(t)(sin(2t)− 5), u6(t) = u(t)(4 cos(0.5t) + 7),

where u(t) =
∑∞

i=0((−1)iH(t−10 i)), in whichH is the step function, H(t) = 0 if t < 0, andH(t) = 1

if t ≥ 0. For both algorithms (4) and (34) we use α = 10 and β = 15. In the algorithm (34) we set

θi = 1 and we use the saturation bound c̄i = 15 for all i ∈ {1, . . . , 6}. Figure 4 shows the results of

the simulation for these two algorithms. Using high values for β we can reduce the tracking error,

however, this results in larger driving commands. As a result, both algorithms violate the saturation

bound. However, because the requirements of Lemma 5.2 are satisfied in this example, as shown in

Fig. 4(b), the ultimate tracking behavior of the agreement states of the algorithm (34) despite the

saturation resembles the response of the algorithm (4) in the absence of saturation bounds. There

is not such guarantees for the algorithm (4) (see Fig. 4(a)).

35



0 10 20 30
−10

0

10

x
i

t

(a) Dynamic average consensus algorithm (4)

0 10 20 30
−10

0

10

x
i

t

(b) Dynamic average consensus algorithm (34)

Figure 4: Simulation results for the numerical example of Section 7.3: Solid blue line (black dashed

lines) is the input average (resp. agreement state of agents).

8 Conclusions

This paper has addressed the multi-agent dynamic average consensus problem over strongly con-

nected and weight-balanced digraphs. We have proposed a distributed algorithm that makes indi-

vidual agents track the average of the dynamic inputs across the network with a steady-state error.

We have characterized how this error and the rate of convergence depend on the design parameters

of the proposed algorithm, and identified special cases of inputs for which the steady-state error is

zero. Our algorithm enjoys the same convergence properties in scenarios with time-varying topolo-

gies and is amenable to discrete-time implementations. We have also considered extensions of the

algorithm design that can handle limited control authority and privacy preservation requirements

against internal and external adversaries. Numerous avenues of research appear open for future

work, including the study of discrete-time implementations with the features considered here (time-

varying topologies, limited control authority, and with privacy preservation features), the design of

provably-correct algorithms that do not require a priori weight-balanced interaction topologies, and

the application to distributed estimation and map-merging scenarios.
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A Proof of the results of Section 4.3

Here, we provide the proof of the results presented in Section 4.3.

Proposition A.1 (Proof of Lemma 4.6): We can represent the zero-system of the discrete-time al-

gorithm (31) in the following compact form



x(k + 1)

v(k + 1)


 = Pδ



x(k)

v(k)


 , Pδ = I2N + δA. (41)

where A is given in (7). Then,



x(k)

v(k)


 = P k

δ



x(0)

v(0)


 .

In the proof of Lemma 4.1 we showed that the eigenvalues of A are −α with multiplicity of N and

−βλi for i ∈ {1, . . . , N}. Then, the eigenvalues of Pδ are 1−δα with multiplicity of N and 1−δβλi,

where i ∈ {1, . . . , N}. Note that the eigenvalues of IN − δβL are 1 − δβλi. Invoking [8, Lemma
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3], for a strongly connected and weight-balanced digraph, when δ ∈ (0,min{α−1, β−1(doutmax)
−1}), the

eigenvalues 1 − δβλi, i = 2, . . . , N , are strictly inside the unit circle in the complex plane. Note

that for i = 1, 1 − δβλi = 1. Therefore, we conclude that when δ ∈ (0,min{α−1, β−1(doutmax)
−1}),

for a strongly connected and weight-balanced digraph Pδ has an eigenvalue equal to 1 and the rest

of the eigenvalues are located inside the unit circle. Therefore, Pδ is a semi-convergent matrix, i.e.,

limk→∞ P k
δ exists. Therefore



x(k + 1)

v(k + 1)


−



x(k)

v(k)


 → 0, as k → ∞.

Then,



x(k + 1)

v(k + 1)


−



x(k)

v(k)


 = Pδ



x(k)

v(k)


−



x(k)

v(k)


 = δA



x(k)

v(k)


 → 0, as k → ∞.

As a result,

lim
k→∞






x(k)

v(k)





 = µ




1N

−α1N


 , µ ∈ R. (42)

For a weight-balanced digraph, left multiplying the state equation of v by 1⊤, we obtain
∑N

i=1 v
i(k+

1) =
∑N

i=1 v
i(k). Consequently,

∑N
i=1 v

i(k) =
∑N

i=1 v
i(0), ∀ k. Invoking (42), then at k = ∞ we

have −Nµα =
∑N

i=1 v
i(0). As a result, µ = −α−1

N

∑N

i=1 v
i(0).

Proposition A.2 (Proof of Theorem 4.2): Consider the change of variables introduced in (6a), (33)

and (9). Then (31), the equivalent representation of (30), can be expressed in the following equivalent

form



p1(k + 1)

q1(k + 1)


 = P̃ δ



p1(k)

q1(k)


 ,



p2:N(k + 1)

q2:N (k + 1)


 = P δ



p2:N (k)

q2:N (k)


−




0

R⊤


 (∆u(k + 1)−∆u(k) + δα∆u(k)),
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where P̃ δ = I2 + δÃ and P δ = IN−2 + δA, with Ã and A are defined in (10). For any given initial

conditions, the solution of this difference equation is

p1(k) =p1(0)− δ

k−1∑

j=0

(1− δα)jq1(0),

q1(k) =(1− δα)kq1(0),

p2:N (k) =Φ(k, 0)p2:N(0)−
k−1∑

j=0

Φ(k − 1, j)(1− δα)j(q2:N (0) +R⊤∆u(0))+

k−1∑

j=0

Φ(k − 1, j)R⊤∆u(j),

q2:N (k) =(1− δα)k(q2:N (0) +R⊤∆u(0))−R⊤∆u(k).

Recalling the change of variables (9), we have

y(k) =D11y(0) +D12w(0)−R

k−1∑

j=0

Φ(k − 1, j)(1− δα)jR⊤∆u(0) +R

k−1∑

j=0

Φ(k − 1, j)R⊤∆u(j),

where

D11 = (1 − αδ

k−1∑

j=0

(1− δα)j)rr⊤ +RΦ(k, 0)R⊤ − αR(

k−1∑

j=0

Φ(k − 1, j)(1− δα)j)R⊤,

D12 = −δ
k−1∑

j=0

(1 − δα)jrr⊤ −R(

k−1∑

j=0

Φ(k − 1, j)(1− δα)j)R⊤.

Because 1N
⊤ΠN = 0, from (33) we can deduce

∑N

i=1 w
i(0) =

∑N

i=1 v
i(0). Then, it is straightforward

to obtain (32).

Proposition A.3 (Proof of Corollary 4.2): We showed in Theorem 4.2 that, for any given stepsize,

the bound (32) on the output xi of algorithm (30) holds. In the following, for the stepsizes satisfying

δ ∈ (0,min{α−1, β−1(doutmax)
−1}), we find the limiting value of the terms of this bound when k → ∞.

Notice that 0 < δ < α−1, then 0 < (1−αδ) < 1. As a result, when k → ∞ we have
∑k−1

j=0 (1−δα)j =

(δα)−1, leading to (1−αδ
∑k−1

j=0 (1− δα)j) → 0 as k → ∞. Recall Φ(k, j) = (IN−1 − δβR⊤
LR)k−j .

Because 0 < δ < β−1(doutmax)
−1, the spectral radius of Φ(1, 0) is less than one, therefore Φ(k, 0) → 0

and
∑k−1

j=0 Φ(k − 1, j) = (δβR⊤
LR)−1 as k → ∞ (see [22, Fact 10.3.1.xiii]). Also, there exists
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ω ∈ (0, 1) such that ρ(Φ(1, 0)) < ω < 1. Then ∃µ > 0 such that
∥∥∥Φ(k − 1, j)

∥∥∥ ≤ µωk−1−j for

0 < j ≤ k − 1, [25, pp. 26]. As a result, we have

∥∥∥
k−1∑

j=0

Φ(k − 1, j)(1− δα)j
∥∥∥ ≤ µ

k−1∑

j=0

ωk−1−j(1− δα)j .

Notice that

k−1∑

j=0

ωk−1−j(1− δα)j = ωk−1
k−1∑

j=0

(
1− δα

ω
)j = (1 − δα)k−1

k−1∑

j=0

(
ω

1− δα
)j .

Then, as k → ∞ we have

∥∥∥
k−1∑

j=0

Φ(k − 1, j)(1−δα)j
∥∥∥≤µ

k−1∑

j=0

ωk−1−j(1−δα)j=






µωk−1(1− 1−δα
ω

)→0, ω>1−δα,

µ(k−1)ωk−1→0, ω=1−δα,

µ(1−δα)k−1(1 − ω
1−δα)→0, ω<1−δα.

Invoking [22, Fact 8.18.12], we have

∥∥∥(R⊤
LR)−1

∥∥∥ = σmax((R
⊤
LR)−1) ≤ σmax((R

⊤ Sym(L)R)−1) = λ̂−1
2 .

Also, notice that ∀k ≥ 0, we have
∥∥∥R⊤∆u(k)

∥∥∥ =
∥∥∥R⊤ΠN∆u(k)

∥∥∥ ≤
∥∥∥R⊤

∥∥∥
∥∥∥ΠN∆u(k)

∥∥∥ ≤ γ. Using

the limiting values above, we can conclude that

∥∥∥
k−1∑

j=0

Φ(k − 1, j)R⊤∆u(j)
∥∥∥ ≤ γ

∥∥∥
k−1∑

j=0

Φ(k − 1, j)
∥∥∥ = γ

∥∥∥(δβR⊤
LR)−1

∥∥∥ ≤ γ/(δβλ̂2).

This completes the proof.

Proposition A.4 (Proof of Lemma 4.7): Using the change of variable (6a), the algorithm (30) can

be stated as follows (compact form)



y(k + 1)

v(k + 1)


 = Pδ



y(k)

v(k)


+



ΠN (∆u(k) + αδu(k))

0


 , (43)

where Pδ is defined in (41). When condition (a) holds we have ΠN (∆u(k) + δαu(k)) → 0, as

k → ∞. Then (43) is a linear system with a vanishing input ΠN (∆u(k) + δαu(k)). Therefore, it
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converges to the equilibrium of its zero-system. Notice that the system matrices of (43) and (31)

are the same. Therefore, when δ ∈ (0,min{α−1, β−1(doutmax)
−1}), we can use result of Lemma 4.6 to

conclude that yi(k) → −α−1

N

∑N
i=1 v

i(0), for i ∈ {1, . . . , N}. Because
∑N

i=1 v
i(0) = 0, then we have

xi(t) → 1
N

∑N

j=1 u
j(k) globally asymptotically for i ∈ {1, . . . , N}. Next, notice that using the change

of variables (6a) and (33) another equivalent representation of (30) can be stated as follows



y(k + 1)

w(k + 1)


 = Pδ



y(k)

w(k)


−




0

ΠN(∆u(k + 1)−∆u(k) + δα∆u(k))


 , (44)

where Pδ again is defined in (41). When condition (b) holds we have ΠN (∆u(k) + δαu(k)) →

0 as k → ∞. Then, (44) is a linear system with a vanishing input ΠN(∆u(k + 1) − ∆u(k) +

δα∆u(k)). Then, using a similar argument used for (43) above, we can show that in (44) yi(k) →

−α−1

N

∑N

i=1 w
i(0) as k → ∞ for i ∈ {1, . . . , N}. Using (33), we can show

∑N

i=1 w
i(0) =

∑N

i=1 v
i(0).

As a result xi(k) → 1
N

∑N

j=1 u
j(k) globally asymptotically for i ∈ {1, . . . , N}.

B Supporting material for the proof of Lemma 5.2

The following results are used in the proof of Lemma 5.2.

Proposition B.1 Consider the following system where x,w, β ∈ R, β > 0 and w is a piece-wise

continuous time-varying signal

ẏ = −β satc̄(y − w) − βw. (45)

Assume that ||w||ess < c̄. Then, for any initial condition y(0) ∈ R, y(t) → 0 asymptotically.

Proposition B.2 Consider the candidate Lyapunov function V = 1
2β y

2 with derivative V̇ = −y satc̄(y−

w) − yw along the trajectories of (45). To prove that V̇ is negative definite, first note that because

||w||ess < c̄, we have that if y − w > c̄ then y > c̄+ w > 0 and if y − w < −c̄ then y < −c̄+ w < 0.
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As a result,

V̇ =






−y(c̄+ w) ≤ −(c̄− ||w||ess)|y| < 0, if y − w > c̄,

−y2 < 0, if |y − w| ≤ c̄,

−y(−c̄+ w) ≤ −(c̄− ||w||ess)|y| < 0, if y − w < −c̄.

All the conditions of the Lyapunov stability analysis for non-autonomous systems [26, Theorem 4.9]

are satisfied globally. Therefore, y(t) → 0 globally asymptotically as t→ ∞.

Proposition B.3 Consider the following system where x, u ∈ R and u is a piece-wise continuous

time-varying signal,

ẋ = − satc̄(β(x − u)− u̇), (46)

Assume u and its derivative u̇ are both essentially bounded signals, and there is some finite t⋆ > 0

such that for all t ≥ t⋆, |u̇(t)| < c̄. Then, for any initial condition x(0) ∈ R we have x(t) → u(t)

asymptotically.

Proposition B.4 Given that (46) is ISS, c.f. [27], and since βu+ u̇ is bounded, for any finite initial

condition x(0), there is a finite µ(x(0)) > 0 such that we have |x| < µ(x(0)) for all t ≥ 0. Under

the change of variables y = β(x − u), equation (46) can be written in the following equivalent form

ẏ = −β satc̄(y − u̇)− βu̇. (47)

Since the solutions of (46) are all bounded and because both u and x are bounded signals, starting

from any initial condition, we have the guarantee that the solutions of (47)) are also bounded. Since

the input u̇ to the system (47) satisfies the conditions of Proposition B.1 after some finite time t⋆,

we can conclude that y(t) → 0, or equivalently x(t) → u(t), globally asymptotically.
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