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Abstract

This paperexplicitly solvesa dynamicportfolio choiceproblemin which aninvesta allocates
his wealthbetweena risklessanda risky asset.The solution shawvs thatinsight gainedfrom
studyng staticportfolio choiceproblemsdo not necessarilycarry over to dynamicchoiceset-
tings For example,eventhoughtherisk premiumof the risky assetn the problempresented
hereis strictly positive, holdings of thatrisky assetmight increasewith risk aversion. More
surprishgly, a risk-averseinvestormight take a shortposition in therisky asset.The findings
suggesthatusingstockholdingsasa proxy for risk aversionmay be inappropriate Finally, |
shaw thatvolatility might not preventarisk averseinvesbr from holding aninfinite amountof

arisky assetcontraryto Harry Markowitz’s insightson the staticportfolio choice.



1 Intr odudion

Many studieshave beendoneon dynamicportfolio choiceproblemssincethe seminalwork of
Merton(1969,1971).However, with the exceptionof Kim andOmbeg (1996),mostsolutiors
to theseproblemsaremerelynumerical andthoseexplicit solutionsthatareavailablearestatic
in nature[for example,Merton (1969,1971)]. Therefore thesestudiesdo not provide much
insight into dynamicchoice.

The goal of this paperis twofold. First, | explicitly solve a problemof dynamicchoice
betweena risklessand risky asset. | study the comparatre staticsof the optimal portfolio
weightof therisky asset. Secondusingthe derived portfolio weight, | shav that qualiiative
differencesexist betweendynamicand static portfolio choice. For example,two well-knowvn
fundamentatheoremsprovide intuition on staticportfolio choice: Namely a risk averseagent
(thatis, investor)will hold a strictly positive amountof a risky assetand a more-risk-&erse
agentwill hold lessof arisky assetprovidedthatthe risk premiumis strictly positve. | shav
that,in thedynamicsetting,boththeoremsareviolated.

This paperusesthe framewnork developedby Merton (1969,1971). The agentchooseshe
proportian of his wealthto investbetweentwo assetsa risklessassetanda risky one. The
risklessassethasa constanteturn. Both the risky assetreturnandthe instantaneousariance

of the risky assetreturn follow diffusion processes.The risk premiumis a power function

1 Becausehereare only two assetdn the problem the portfdio weight of the risklessassetis known once
the portfolio weightof therisky assets known. Theefore,in the remairder of this paper| referto the portfolio

weightof therisky assetsthe“portfolio weight”.



of the volatility.? The agentrebalanceshis portfolio position continuousy to maximze his
utility which is a power function of end-of-periodwealth® The optimal portfolio weight is
derived explicitly asa function of the instananeousvolatility, the constantinterestrate, the
invegmenthorizon, the constantrelative risk aversioncoeficient, andthe parameter®f the
volatility process.

The optimal portfolio weightin generaldependson the volatility of the risky assetreturn;
therefore,the agentmusttime the volatility. The dependencef the portfolio weight on the
volatility is determinedy the instantaneoumarket price of risk (IMPR), which is the ratio of
the instantaneoussk premiumover the instantaneousariance. If the IMPR is increasingn
thevolatility, thereturnfor bearingtherisk is high athighvolatilities; thereforetheagentholds
morerisky assetsvhenthevolatility is high. Corverselyif theIMPR is decreasingn volatility,
thenthereturnfor bearingtherisk is low athigh volatilitiesandtheagentholdslessof therisky
assetwwhenthevolatility is low.

The optimal portfolio weightis a monotonc function of the invegmenthorizon. For ex-
ample,whenthe correlationbetweenthe instananeousSharperatio (ISR) (which is the ratio

of instanaineousisk premiumover the instananeousvolatility) andthe risky assetreturnis

2 Merton (1980) pointedout that the risk premium is crucial to portfolio choice andis difficult to estimate
empitically. He proposedthattherisk premium might deendon powers of volatility, with the power beingeither

0,1,or2.
3 Becausdhe interestrateis corstant,onecanalsogetexplicit solutionsfor the moregenerahyperbolicrisk

averse(HARA) utility.



negaive,* aconserative agentwill hold morerisky asset®ver alongerinvesmenthorizon,
whereasanaggressie agentwill hold fewer risky assets. Ontheotherhand,whentheinstan-
taneougorrelationbetweernthe ISR andtherisky assereturnis positive, a conserative agent
will hold fewer risky assetsvhereasanaggressie agentwill hold more.

Themoststriking featureof the optimal portfolio weightis its dependencenrisk aversion.
If theinstantaneousorrelationbetweerthel SR andtherisky asseteturnis negative, thegraph
of the portfolio weightasa functionof risk aversionmaydisplaya humpedshape—stantig from
negaive infinity atanon-zeraninimumrisk aversion,increasingo amaximumatafinite value
of risk aversion,andthendecreasingo zeroastherisk aversiontendsto infinity. In otherwords,
agentswvho arecloseto beingrisk-neutralwill shortaninfinite amountof risky assetswhereas
someotheragentswill shorta finite amount,andstill otherswill hold a positive amount.This
is sodespitethefactthattherisk premiumis strictly positive! Thisfindingis in directcontrast
with therisk aversiondependencef thestaticportfolio weight,whichis posiiveanddecreasing
for all levels of risk aversionif the risk premiumis positive. For all othercasesthe optimal
dynamt portfolio weight decreasesvith the risk aversiondependencehowever, the optimal
portfolio weightcanbeinfinitely large andpositive for anonzerominimumrisk aversion.

Although mary researches have studieddynamicportfolio choice since Mossn (1968),

Samuelsor{1969),andMerton (1969,1971),it seemghatfew have attemptedo understand

4In otherstudiesthetermsinstantaneas market price of risk (IMPR) andinstantaneasiSharpeaatio (ISR) are

_ ISR
Ve
5> Throughou thepaper| referto agerts with a constanrelative risk aversion(CRRA) largerthan1 as“conser

usedinterchangealy. In this pager, IMPR

vative’ agentsandthosewith a constanrelative risk aversionlessthanl but largerthan0 as“aggressve” agents.

Notethataggresive agentaareneverthelessisk averse.



the qualitatve differencedetweendynamicandstaticchoicethatarisefrom rebalancingOne
notableexceptionis the work of Kim and Ombeg (1996), who studiedthe dynamicchoice
problemin which the risk premiumis time-varying. However, Kim and Ombeg’s counter
intuitive resultsmight be attributed to the negaive risk premiumin their model. It is well
known that risk averseagentswill shortrisky assetsandthat the portfolio weight of a risky
assetncreasesvith risk aversionin staticchoiceproblemsf therisk premiumof therisky asset
is negative. But, in the stochast volatility modelstudied in this paper the risk premiumis
alwayspositve andtheshortrateis constantsothe counterintuitive resultcancomeonly from
theeffectsof dynamicrebalancing.

Recently therehave beenseveral studieson portfolio choiceproblemsin which the risky
asseteturndisplaysstochastiosolatility, includingLiu (1998)andChaclo andViceira(1999).
Liu assumeghat the risk premiumis proporticnal to the varianceof the risky assetreturn
whereasChaclo andViceira (1999) assumehat the risk premiumis independenof the vari-
ance.ln thispaper| considea moregenerarisk premium.More important,neitherLiu (1998)
nor Chaclo andViceira(1999)studiesghedifferencef the dynamicandstaticchoiceswhich
is thefocusof this paper Longstaf (2000)studesthe effect of liquidity on portfolio choice.In
his papertherisky assetreturndisplaysstochast volatility andthe agenthaslogarithmic util-
ity. Liu, Longstaf, andPan(2000)studytheeffectsof jumpsin bothstockreturnandvolatility.
Finally, Ang andBekaert(1998)and DasandUppal (2000)study portfolio problemsthat can
beviewedasalternatve specification®f the stochastio/olatility.

Theremainderof this paperis organizedasfollows. In section2, | specifythe assetfprice

dynamcs and the utility function of the agent. In section3, | derive the optimal portfolio



weight, studyits comparatie statics,anddiscussits dependencen the volatility andthe in-
vestrrenthorizon. In section4, | review two importantpropertiesof staticportfolio choice. |
thenshaw thatstriking differencesexist betweendynamicportfolio choiceandstaticportfolio
choice. Section5 gives conclusionremarksandthe Appendix providesfurther detailson my

calculations.

2 Model

In this section| specifythe stochasti volatility modelandthe utility functionof theagent.

2.1 AssetPrice Dynamics
Theprice of therisky assesatisfieghefollowing equation:
148
dP, = P,(r+ \V, 2 )+ P\/V,dB,. (1)

To focuson stochastio/olatility, | assumehatthe shortrater is constanf Therisk premium
148
AV, ? , where)\ and s areboth constantshasCEV (constantelasticity of volatility or vari-

ance))’ Without lossof generality | assumehat\ > 0. This meanghatthe risk premiumis

6 Liu (199B) studiesa portfolio choiceprodem in which boththe shortrateandthe volatility of stockretums

arestochastic.
" Thereis animportant differencebetweenpredctability andstochastiovolatility mocels. In the caseof pre-

dictability mockls, the volatility is implicitly assumedo be constantwhile predctability specifiesthe risk pre-
mium. In stochastiosolatility modelsthefocusis oftenonvolatility, andtherisk premiumis oftenleft unspecified
whenmarketsarecompleteandtheresearchrsareinterestednly in derivative pricing. As Merton(1980) pointed

out, for portfdio choiceprodems, the risk premium plays a critical role andit is difficult to estimatethe risk



posiive, whichis economicallysensible The soluion alsoappliesfor A < 0. In this specifica-
tion of theassepricedynamcs,theinstantaneasimarket price of risk IMPR is AV % andthe
instananeousSharperatio ISR is AV'3. As| shaw laterin this paperthelMPR determineshe
volatility dependencef the portfolio weightwhereaghe ISR determinegherisk aversionand

horizondependence.

2.2 \Volatility Processand InstantaneousSharpe Ratio

| assumeaninstantaneosivarian ceprocess

ARV

Vi=X (2)

whereX; is asquare-rooprocess,
dX, = (k — KX,)dt + o\/X,dB} . (3)

Usinglto’s lemma,onecanshav thatthe assumptin for V; is equivalent to directly assumig

thatthevarianceprocess/; satisfieghefollowing equation:

dv, = %Wﬁ(m#-m&) dt+thgdBtV},67é0. (4)

Becausé/; is a deterministt function of a square-rooprocesswith the Iong-termmean%, Vi

is well-definedprovided % > 0. | assumehato > 0 for definiteness$. | assumehat the

premum. He proposesthreepossibleforms for the risk premium, A, ,\Vt%, and\V;, which are specialcasesof
my specification(s = —1, § = 0, and3 = 1 in equation(1) respectrdy ). Subseqantempiricd studieshave
yieldedcorflicting resultson the relationbetweenvolatility andrisk premium; somestudieshave found positive

relatiorships,somehave found negative relatiorships,while still othershave found norelationship
8 Thereis no loss of gererality because-o shoud leadto the sameprocessfor the risky assetandvolatility

whenonechangsB, to —B} andp to —p.



correlationbetweerthe Brownianmotionsd B; andd B} is aconstantaluep. Notethatthein-
stantaneousorrelationbetweenasseteturnshocks,/V;d B, andvarianc&shocks%vtl_ﬂ / *dBy
is sign(B)p: Theinstantaneousorrelationbetweenthe two shocksis p whens > 0 and—p
wheng < 0.

Usingequation(2), theinstantaneousSharperatio canbe expresseds
B 1
ISR = AV;? = A X2,

Therefore,up to a proportioral constant\?, the statevariable X is the squarednstanaineous
Sharperatio (SISR). As notedin Liu (1998),the indirectutility functionis determinecdby the
ISR (insteadof by theinstananeougisk premiumor the instantaneousolatility separately)l
amableto solve explicitly for theindirectutility function,andthusexplicitly for the portfolio
weightbecausef the simplespecificationof the SISRin equation(3). | shoutl point out that
thedynamicsof thevolatility processn equation4) arenotassimpleasthatof the SISR Note
thatthe instantaneousorrelationbetweenthe ISR or SISRandthe risky asseteturnis p and
doesnotdependon 3, unlike the instantaneousorrelationbetweerthe volatility andthe risky
asseteturn.

A couplecommens arein order: First, when3 = 1, the return dynamcs specifiedin
equationg1) and(2) is the sameasthatof the Hestonmodel(1993). Hestondid not explicitly
specifytherisk premiumof thestockreturnbecauséisprimaryinterestvasoptionpricing. The
risk premiumof theform AV, wasproposedy Bates(1997)andusedin Bakshi,Cao,andChen
(1997). This form of risk premiumwas motivatedby the capitalassefpricing model(CAPM)

andwasoriginally suggestedbr any stochast volatility model(andnotjustthe Hestonmodel)



by Merton (1980). The portfolio selectionin the Hestonmodelis studiedin Liu (1998).
Secondwheng = —1, thereturndynamicsspecifiedby equationg1) and(2) arethesame
asproposedy Chaclo andViceira(1999).For thosedynamicsthey studythe portfolio choice

problemwhenthe agenthasrecursve utility definedover intermedateconsumptio.

2.3 Utility of the Agent

Theagentsobjectveisto allocatehiswealthbetweerarisklessassetith constanteturnr and
therisky assetwith dynamcs specifiedin equationg1) and(2) to maximize his utility, which

is apower functionof end-of-periodvealth:

max Eo [W%_7] , (5)

¢4,0<t<T 11—~

whereW; is end-of-periodvealthof a self-financingrradingstratey ¢;:
AW, = W, (r + Aqstv#) dt + ¢i\/VidB,. (6)

Theutility over end-of-periodvealth(insteadof over intermediateconsumgion) is choserfor
threereasonsFirst, maximizirng end-of-periodvealthwhile controlling for risk is the objectve
of mary invesors,suchasfundmanagersSecond| wouldlik eto studytheeffectsof theinvest-
menthorizonon portfolio choice. Theconcepbf aninvestnenthorizonis blurredwhenthereis
intermedateconsumgbn. Third, andmostimportant,themainfocusof this paperis theeffects
of agents'risk aversionon portfolio choice.With power utility overintermediateconsumptia,

it is difficult to distinguishrisk aversionfrom elasticityof intertemporabubstitition.



3 Optimal Dynamic Strategy

Theoptimizationproblem(5) in the previoussectioncanbe solvedaswasdonein Liu (1998).
The problemis first reducedo a Hamilton-JacobBellman (HJB) partial differentialequation
by usingthe principle of optimality, following Merton (1969, 1971). The partial differential
equationis then solved by reducingit to an ordinary differential equation. This is possble
becaus®f the specificatiorof theassetlynamicsandutility functionin section2. Theoptimal

portfolio weightis givenin thefollowing theorem:

Theorem1 (Optimal Portfolio Weight) Theoptimd portfolio weightis givenby

A ! L=
o =V, v <1+ K — %Apo‘%—fCOﬁh(fT/?) Y ) )
_ A(K + & coth(£7/2)) (8)
v(K + €coth(¢7/2)) — (1 — 7)Apo

_ V%é 4 1 (L= 7)Apo (9)

L K — 2 \po +neot(nT/2) gl

61 A(K + ncot(nr/2))

= 2 O
Y S+ ncot(nr/2)) — (L—)Ap0” >

withT =T —t,& = \/K2 - 1‘77(21()\,00 + A202), andn = —i.

The proof of this theoremis in the Appendix. In equationg7) and(9), the first termis what
Merton called the “myopic component’and the secondterm is the “intertemporalhedging
componerit When~ > 1, the parametei is realfor all = > 0. Wheny < ymin =

1— L%
(K+Xpo)2+A202(1—p2

7, & is purelyimaginary In this case, K2 — 1*77(21()\/)0 +A%0?%) < 0
andn = —i£ is real. The above expressionsarevalid evenwhené or n arepurelyimagirary.

The portfolio weightis givenin both¢ andrn becausat leastoneof themis realandit is con-



venientto work with real variables.Note alsothat the optimal dynamicportfolio weightdoes

notdependcnthe Iong-runmean% of thevarianceprocess’.

3.1 Comparative Statics

| now turnto thedependencef the portfolio weighton the variousparametershatspecifythe
assetdynamics.Becausdghe myopiccomponentiepend®n the parameterin a simpleway, |
focusmainly ontheintertemporahedgingcomponent

First,asnotedearliet the portfolio weightdoesnotdependnthe parametek;, which spec-
ifies thelong-termmeanof the statevariable.Thisis fairly obvious: Thelong-termmeandoes
not characterizeéhe changesn the opportunty set,andthereforedoesnot affect the intertem-
poralhedgingcomponent.

The following proposition describeghe dependencef the magnitule of the intertempo-
ral hedgingcomponenibn the other parametersthe mean-rgersion K, the volatility of the

volatility o, the correlationp, andthe parameten thatdescribegherisk premiumAV =

Proposition1 (Comparative Statics) Themagnitucde of theintertempoal hedgingcomponent
is deceasingin K, increasingin o for v < 1, increasingin the magnitudeof p for v > 1, and

increasingin A when(1 — +)p > 0.

The proof of this proposiion is in the Appendix. Although propositon 1 is proved for the
variousrestrictions | believe it is alsotrue without thoserestriction The resultsareintuitive
but not easyto prove, evenwith explicit solution givenin equationg7-10). To the bestof my

knowledge no otherpaperin theliteratureprovidesproof of similar results.

10



Note that the intertemporalhedgingcomponentasthe samesignas (1 — v)p anddoes
not changesignsasa function of the investnent horizon. Thus, one needsto studyonly the
magnitideof theintertemporahedgingcomponentthe magniudeis largerwhenthe dynamic
hedgingeffectis larger.

Considerthe effect of K. BecauseK is the mean-rgerting parametepf the statevariable
[equation(3)], thelargerthevalueof K, thefasterX revertsbackto its mean% andthefaster
changesn the statevariablearedampedout, which shouldleadto a smallerhedgingeffect. In
fact,when K — +oo while keeping% fixed, X; is equalto its mean% andthe intertemporal
hedgingeffect is zero. Therefore,the magnitide of the intertemporahedgingcomponenis
decreasingn K. Notethatwhen K is negatie, the statevariable becomesexplosie (it is
no longerstationary). And the morenegative K is, the morevolatile the statevariableis and
the larger the dynamichedgingeffect will be, which leadsto a larger intertemporahedging
component

Ontheotherhand thestatevariableis morevolatilewheno islarge. Thereforethedynamic
hedgingeffect shoud be large andthe magnitide of the intertemporahedgingcomponenin-
creasesvith o.

The sign of the intertempaoal hedgingcomponentlependson the sign of the correlationp
(aswell asy). Whenthecorrelationis zero,therisky assetannotbeusedto hedgethechanges
in theopportunty setandtheintertemporahedgingcomponents zero.Becausanorechanges
in the opportuniy setcanbe hedgedwith a larger magnitude of correlation,the magnitule of
theintertemporahedgingcomponenwill belarger.

The larger the risk premiumparameter\, the larger the posiion of the risky assetin the

11



myopic componentandthereforethe larger posiion to be hedgedsothatthe magnitue of the

intertemmral hedgingcomponents increasingn .

3.2 Volatility Timing

Proposition2 (Volatility Timing) The optimal portfolio weightis deceasingin volatility if
IMPR is deceasingin volatility (5 < 1); andincreasingif IMPR is increasingin volatility
(8 > 1). Theratio of myopiccomponenandintertemmral hedgingcomponenis independent

of thevolatility.

Theproofis obvioususingTheoreml. Proposition2 impliesthatthe agenttimesthe volatility
aslongasg # 1. Theintuition is clear WhentheIMPR is increasingn volatiity (8 > 1), the
returnfor bearingrisk alsoincreasesvith volatility; therefore the agentwill hold morerisky
assetsvhenthevolatility is high. WhentheIMPR is decreasingn volatility (8 < 1), thereturn
for bearingrisk alsodecreasewith volatility; therefore the agentwill hold lessof risky asset
whenthe volatility is high. The constantratio of the myopic componento the intertemporal
hedgingcomponents dueto thespecificatiorof the CEV risk premiumandvarianceprocesses.
In generalthisfeatureof the constantatiois nottrue.

Proposition2 provides someperspectie on the so-calledflight-to-quality phenomenno,
whichrefersto investas moving capitalfrom stockmarketsto governnentbondmarketswhen
the stockmarkets are morevolatile thanusual. Accordingto propositon 2, invesbrs should
inved lessin the risky assetif the IMPR decreasesvith volatility, assumig everythirg else

(including the wealth of the agent)constant. On the otherhand,if the IMPR increasewith

12



volatility, invesbrsshoulddo the oppositeandinvestmorein therisky assewvhenthevolatility

is high.

3.3 Investnment Horizon

When assetreturnsdisplay stochastiovolatility, the optimal portfolio weight dependson the
invegmenthorizon,contraryto the casewhenasseteturnsaredistributed independenthyover

time.

Definition 1 (Aggressve, Logarithmic, and Consewvative Agents) An aggressiveagentis a
risk averse agentwith constantrelativerisk aveisiony smallerthan1; a logarithmic agentis
arisk averseagentwith constantrelativerisk aversiony equalto 1; a conservativeagentis a

risk averseagentwith constantrelativerisk aversiony greaterthanl;

The portfolio choice of conserative agentsis very different from that of aggressie agents
becauseheir utility functionsarequalitatvely different,asshavnin figure 1.

Thehorizondependencef the portfolio weightis summarizedy thefollowing propositian.

Proposition 3 (Horizon Dependence)

For conservativeagents(y > 1), the optimal portfolio weightis smaler than the myopic
componentind is deceasingas a function of the investmentorizonif p > 0; the optimd
portfolio weightis greaterthanthe myopiccomponenandis increasingif p < 0.

For aggressiveagents(0 < v < 1), theoptimalportfolio weightis greaterthanthe myopic
componenandis increasingasa functionof theinvestmenhorizonif p > 0 andalwaysgoesto
infinity whenry is closeto 0; theoptimalportfdio weightis smallerthanthe myopiccomponent

13
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Thisfigure charaterizesthe utility fundion of variousagents.Theutility funcion of anaggressie agen (y < 1)
is bourdedfrom below by zeroandunbounded from above; the utility functionof a logarithmic agent(y = 1) is

unbounced from belov andabove; the utility function of a conserative agent(y > 1) is untounded from below

andbourdedfrom above by zero.

Figurel: Utility Functionsof VariousAgents
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andis decmeasingif p < 0 andcouldgo to posiive infinity at a finite horizonif ~y is closeto 0
and2Kp+ Ao > 0.
In all casestheeffect(thatis, themagnitude)ofintertempoal hedgingdemands increasing

with theinvestmenhorizan.

Usingtheoreml the proofis straightforvardandis given in the Appendix.It is notanaccident
that the parameter3 hasno influenceon the investment horizon dependencef the optimal
portfolio weight. Thedependencentheinvestnenthorizonis determinedy theintertemporal
hedgingcomponentandthusby theindirectutility function,whichin turnis determinedy the
ISR or SISR,whosedynamics|[as specifiedin equation(3)] doesnot dependon 5. Figures2
and3 graphthecasef (8 =1,p < 0) and(5 = 1, p > 0), respectiely.

To understangropositon 3 intuitively, considerthe caseof p < 0. In this casethe ISR
andthe risky assetreturn are negatively correlated. Therefore,a low returnis likely to be
accompaniedby a high ISR, thatis, a betterfuturerisk-returntrade-of, asif the returnsof the
risky asselremean-rgerting.

For a conserative agent,the utility functionis boundedfrom above by zeroandis un-
boundedfrom belav, asshavn in figure 1. Thereforethe agentsuffers hugelossesin utility
from large lossesn returnsbut doesnot have large gainsin utility from large gainsin returns,
andthe agentwill focuson avoiding lossesor will preferan assetwith an mean-rgertingre-
turn. As pointedout earlier in thecasep < 0, alow returnis likely to be accompaniedy a
betterrisk-returntrade-of, sothattheagents lesslikely to incurlossesn holdingsof therisky
assetf p < 0 thanif p = 0. Thereforethe agentwill hold morerisky assetsf p < 0 than
if p = 0. Sincethe portfolio weightwhenp = 0 is the myopic portfolio weight, this means

15



Horizon Dependence, p<0
0.15 T

0.14

0.13

_ y>1
min<y<0

— —y<y §

min

0.12

o
[N
[N

portfolio weight
o
[R=Y

0.09

0.08

0.07

0.06

| | |
0 5 10 15 20 25 30
horizon

0.05

This graph summaizesthe possibleinvestmenthorizon depelenceof the optimal portfolio weightwheng = 1
andthe correlationcoeficient p < 0. For a consevative agent(y > 1), the portfolio weightincreasesnondoni-
cally to afinite value;for anaggessve aget (y < 1) with v > ymin, theportfolio weigh decreasesonotamically

to afinite value; for anaggessve agent(y < 1) with v < ymin, the pottfolio weightdecreasesondonically and

reacles—oc atafinite horizon

Figure2: The OptimalPortfolio Weightasa Functionof Investmen#orizon
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Horizon Dependence, p>0

0.18 T T T
v
0.16 i
0.14 | P -
0.12 ﬂﬂlﬂ~~’#ﬂ n
= i —
[=) -
¥o)
=
o 0.1fF _
8
o]
%
0.08 n
JRN— y> 1
- ymin <y<o0
0.06 | — = V= Vain i
0.04 n
002 | | | |
0 4 5 6 7 8 10

horizon
This graph summaizesthe possibleinvestmenthotizon depeidenceof the optimal portfolio weightwheng = 1
andthe correlationcoeficient p > 0. For aconseretive agent(y > 1), the portfolio weightdecreaesmondoni-
cally to afinite value;for anaggessve agent(y < 1) with v > vymin, theportfdio weight increasesnonotamically

to afinite value;for anaggressie agent(y < 1) with v < vymin, the portfolio weightincreasesnondonically and

reacles+oc atafinite horizon

Figure3: The OptimalPortfolio Weightasa Functionof Investmen#orizon
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thatthedynamicportfolio weightwill belargerthanthemyopicportfolio weight. Furthermore,
thelongerthe horizon,the biggerthe effect. Therefore the portfolio weightfor a conserative
agentincreasesvith theinvestnenthorizon.

For an aggressie agenton the otherhand,the utility functionis boundedirom belov by
zeroandis unboundedrom above, asshawn in figure 1. Thereforethe agentdoesnot suffer
hugelossedn utility from largelossesn returnsbut doesenjoy largegainsin utility from large
gainsin returns;thus,anaggressie agentwill focusmoreon gainsor will preferanassetwith
momentumin its return.Becausea high returnis lesslik ely to beaccompaniethy a betterrisk-
returntrade-of in thecasep < 0, therisky asseis lesslikely to compile large gainsif p < 0
thanif p = 0. Therefore the conserative agentwill hold lessof therisky asseif p < 0 than
if p = 0. Hencethedynamicassewill be smallerthanthe myogc componentFurthermore,
thelongerthe horizon,the biggerthe effect. Therefore the portfolio weightfor anaggressie
agentdecreasewith theinvedmenthorizon.

Finally, for alogarithmic agentthe utility is unboundedrom belon aswell asfrom above
andthe agentis indifferentbetweenp < 0 andp = 0; therefore for a logarthmic agent,the
dynamt portfolio weightis equalto themyopiccomponent.

Here are somespecialcasesn which § = 1. At a shorthorizon(r — 0), the portfolio

weightis givenby

¢:i<1—17-pa <1—1) )\). (11)
gl 2 gl

In particular whenr = 0, onegets¢ = % which is the myopiccomponentFor v > vy, the

paramete€ in equation(7) is realfor all - andthe portfolio weightis finite for all horizons.For
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alonghorizon(r = oc), theportfolio weightis givenby

K - \/K2+ (1— %) (2Kp+oX)oA

o+ (12)

1
¢ = -

po

For v < vmin, the parameteg in equation(7) is imaginaryandn in equation(9) is real. The
function cot(n7/2) in equation(9) variesmonobnically from +oco to —oco whenr changes
from O to 27 /n; therefore the denominatoin equation(10) approache® whenr — Ty, =
% arctan (—ﬁ) .2 In this casetheportfolio weightreachesnfinity atfinite 7, andthe
agentwill take aninfinite position(shortif p < 0 orlongif p > 0) in therisky asset.

When g = 1, therisk premium\V; is proportioral to the varianceV;, andthe resultin
proposiion 3 reduceso the resultof Liu (1998). When = —1, therisk premium\V; is
independentf thevarianceV;, andtheresultin propositon 3 is similar to theresultof Chaclo

andViceira (1999). The portfolio behaior is qualitatively differentin the two papershecause

thelSRIis increasingwith variancein Liu whereast is decreasingn Chaclo andViceira.

4 Portfolio Choiceand Risk Aversion

In this section,| shawv thatthe dependencef thedynamc portfolio weightis qualitatively dif-

ferentfrom that of static portfolio weights. | first statetwo fundamentakheoremson static

® The inverse tangentfunction arctan(z) is definedto be valued betweer) and; this is differentfrom the
standad definition whichis valuedbetween- 7 and % andis denotedasatan(x) in matlab Therelationbetween
arctan(x) definedhereandatan(z) is arctan(z) = atan(z) + 70(—=x), wheref(z) = 1if z > 0 andf(z) = 0

if x <0.
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choice;thenl shav thatdynamicchoiceviolatesboththeoremsFinally, | aguethattheviola-

tion is the consequencef rebalancing.

4.1 Static Portfolio Choiceand Risk Aversion

Two fundamentaktheoremsprovide basicintuitions on static choice. | refer to themasthe

“participationtheorem”andthe“calibrationtheorem” respectrely.

Theorem 2 (Participation Theorem) If therisk premiumE[r.| of an assets posiive , thena

risk-avesseagentwill hold a posiive amountof theasset.

Thetheoremandthe proof aregiven in HuangandLitzenbeger (1988). The proofis simgde.
Supposé[r,] > 0. Themamginal utility at¢ = 0is E[U'(r; + ¢re)rel|p=0 = U'(r7)E[re] > 0.
Thisimpliesthat¢* > 0 becausehe utility functionU is concae in wealthandthereforethe
expectedutility functionis concae in ¢.

Accordingto the participationtheoremagentsshoutl alwaystake advantageof the excess
returnsof risky assets. As appliedto the U.S. stock markets, this theoremimplies that all
invegors shouldhold a posiive amountof stockbecausehe equity risk premiumis posiive.
Thefactthatasignificantproportion of theU.S. populaton doesnothold stocksis theso-called
non-participatn puzzle, which is being actively studiedin the literature[seefor example,

Mankiw andZeldes(1991),HeatonandLucas(1997),andBarsakandCuoco(1998)].

Theorem 3 (Calibration Theorem) If therisk premiumE]r.] of an assets positive the opti-

mal portfolio weightdecreaseswith therisk aversionof the agent.
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The calibrationtheoremis a variationof Arrow’s theoremon insurancepremia. The proof is
givenin the Appendix. The theoremis very intuitive: It impliesthata lessrisk-averseagent
holdsmorerisky assetsThistheoremhasboththeoreticalswell aspracticalimportanceThe
optimal portfolio weightaswell asmary othereconomicvariablessuchasthe pricing kernel
in the consumpbn-basedassetpricing model,dependson the risk aversiony of agents.But
therisk aversionof agentss not easilymeasuredOnecommonmethodto calibratery, which
is usedin academicstudiesaswell asin practice,is to infer it from the agents’stockportfolio
weight. The calibrationtheoremprovidesthetheoreticafoundationfor this method.

Both theparticipation andthe calibrationtheoremsgrovide basicintuition for expectedutil-
ity theoryasa theoryof risk andhave economidmportance.However, | shav thatboththeo-
remsareviolatedin dynamicchoicemodels.

| shouldemphasizéhatboththeoremgequirethattherisk premiumis positve. If therisk
premiumis negative, thenall risk averseagentswill shorttherisky assetandholdingsof the

risky asseincreasewith risk aversion.

4.2 Dynamic Portfolio Choiceand Risk Aversion

Thedependencef thedynamicportfolio weightonrisk aversionis summarizedn thefollowing

propostion.

Proposition4 (Risk Aversion Dependerce)
Theoptimd portfolio weightdecreasesn v and(if 7 > 0) alwaysreades+oo atanon-zeo

risk aversionwhenthe correlationp > 0.
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The optimd portfolio weightdeceasesn v and reathes+oo at zeo risk aversion when
the correlationp < 0 and2Kp + Ao < 0; the graph of the portfdio weightas a function of
risk aversiondisplaysa humpshape(if = > 0), starting from —oo at a non-zeo risk aversion,
increasingfor smally, anddecreasingfor large v, whenthecorrelationp < 0 and2K p+ Ao >

0. Theportfolio weightis non-monotoit in v in thelastcase

Theproofis given in theappendix.Figures4 and5 graphthe portfolio weightasa function of
risk aversionfor g = 1. Notethe humpshapeof the solid line in figure 5, which demonstrates
theviolation of the participationandcalibrationtheorems.

The participation and calibrationtheoremsare violatedwhenp < 0 and2Kp + Ao > 0.
To understandvhy this might happenagainconsiderthe caseof p < 0. Becausahe myopic
componentis the portfolio weight of a staticproblem,it decreasesvith risk aversion,which
is theresultof the calibrationtheorem.However, the effect of increasingisk aversionon the
intertemmral hedgingcomponenfthe secondermin equation(7) or (8)] is notclear Onthe
onehand,the smalkr myopic amountimpliesa smalker amountto be hedgedandthereforea
smallerintertemporahedgingcomponenton the otherhand,a moreconserative agentvalues
moregreatlythe mean-reersioneffect of therisky assetwhich will leadto alargerintertem-
poral hedgingcomponent.f the latter effectis big enoughthe portfolio weightwill increase
with risk aversionandarisk-averseagentmaywantto shorttherisky assetwith a positve risk
premium

The reasonthat an aggressie agentmay shortthe risky assetcan alsobe understoodas
follows. Becausean aggressie agentprefersmomentim returnsbut the return of the risky
assetis mean-rgertingwith p < 0, the aggressie agentcan createmomentim returnsfrom
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Risk Aversion, p>0
1.4 \ \ \
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portfolio weight
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relative risk aversion coefficient

This graphshaws thatthe optimal portfolio weightis alwaysdecreaingin risk aversionwheng = 1 andp > 0.

Figure4: The Optimal Portfolio Weightasa Functionof Risk Aversion
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1.2

Risk Aversion, p<0

2Kp+Ao>0

2Kp+Ao<0

0.8

portfolio weight

0.2 —— ]

0 ! ! ! ! ! ! ! ! !
0 1 2 3 4 5 6 7 8 9 10

relative risk aversion coefficient

This gragh summaizesthe possiblerisk aversiondepenénceof the optimd portfolio weightwhens = 1 and
p < 0 andwhenthe investmat horizan 7 is finite but non-zero. The solid line shavs thatthe optimal portfolio
weightis increasingor low risk aversionvy if the dynamichedgirg effect is large (2K p + Ao > 0); thedashed-
dottedline shavs thatthe optimal portfolio weigltt is alwaysdecreasingf the dynamic hedgng effed is small

(2Kp+ Ao <0).

Figure5: The Optimal Portfolio Weightasa Functionof Risk Aversion
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mean-rgerting returns. Note thatwhenthe investnent horizonis shortthe dynamicportfolio
choiceproblemreducedo astaticportfolio choiceproblem.Thus,accordingo theparticipatian
theoremthe aggressie agentwill hold a posiive amountof therisky assein thefuturewhen
the investnent horizon becomesshort. By shortirg the risky assetsnow and holding them
later, the agenteffectively createsa tradingstrategy with momentun returns(which is whatan
aggressie agentprefers)from anassewith mean-rgerting returns!

Anotherinterestingfeatureof dynamicchoiceis thata risk averseagentcanhold an infi-
nite amountof therisky asset.l believe thatthis is a norm of dynamicchoiceratherthanan
exception In staticchoiceproblems a risk-averseagentwill hold a finite amountof a risky
assetThisis exactly Harry Markowitz’sinsighton staticportfolio choice:Eventhougha stock
might have higherreturnthanT-bills, the stockis risky andbecaus®f this risk-returntrade-of
anrisk-averseinvesbr will hold a finite amountof stock. However, in the dynamicsetting,the
ability to exploit returnsintertemporallygivesagentsan extra dimensionof opporturity. Fur
thermore theremay not be a counterbalancingprce for suchexploits andthe agentmay hold
aninfinite amountof therisky assetwhenthe opportuiity is goodenough.

Onequestiorstill remains:How doesdynamicchoiceevadetheparticipatonandcalibration
theoremsof static choice? After all, the dynamc choice problemsare usually reducedto a
staticproblemby the principle of optimality. The key is thatthe distribution of the risky asset
in the reducedstatic choice problemis differentfrom the true distribution, and the reduced
distribution dependsn risk aversion. It is this dependencéhatinvalidatesthe assumpon of

thetwo theorems.
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The violation of the participationtheoremmeansthat invesbrs may not always want to
inved in the stockmarket andthis may helpto explain market non-participatio. Becausethe
risk aversionof an economicagentis arguably difficult to measurestock holdings are often
usedas a proxy for risk aversion. But the violation of the calibrationtheoremamplies that
stockholdingsmaynotbeagoodproxy. My resultssuggesthatoneshouldusestockholdings
with shortinvestnenthorizonsinsteadof long investnenthorizons,becausen the limit of the
shortinvegmenthorizondynamicportfolio choiceproblemsreduceto static portfolio choice
problemsfor which the calibrationtheoremholds.

Kim andOmbeg (1996)alsofind thata risk averseagentmay shorta risky assetandthe
portfolio weightof the risky assetmayincreasewith risk aversion.However, therisk premium
in their paperandin otherrecentpaperson dynamicchoiceproblemswith predictability[Bren-
nan,Schwartz,andLagnado(1997); Barberis(1999); Brennanand Xia (1999); Campbelland
Viceira(1996)]is anAR(1) randomprocessandthuscanbenegative. As pointedoutearlier an
agentwill shortarisky assetandhis holdingsof risky assetsnayincreasewith risk aversionif
therisk premiumis negaive. So, it is atleastnotconclusve from thesestudieghattheviolation
of the two theoremsds the resultof dynamc rebalancingOn the otherhand,therisk premium
consideredn this paper)\V# [equation(1)], is alwayspositive, sothattheviolation canonly
be the resultof dynamicchoice. Thus, fundamentalifferencesexist betweendynamicand

staticportfolio choice.
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5 Conclusion

This papemrovidesoneof thefew explicitly solveddynamicportfolio choiceproblems| study
dynamt portfolio choicebetweena risklessanda risky asset.The optimal portfolio weightis
derivedin closedform for the risky assetwhosereturndisplys stochastiovolatility. Various
resultson comparatre staticsare proved; in all casesthe magnitudeof the dynamichedging
effect increaseswith changesn parameterghat leadto a more volatile opportunity set. To
the bestof my knowledge,no otherpapersgive proof of similar results. The magnitudeof the
optimal portfolio weightincreasesvith theinvestnenthorizon.

The optimal portfolio weight decreasesvith volatility, a phenomenorcalled “flight-to-
quality’ whenappliedto stock markets, if the IMPR decreasesvith volatility. However, the
optimal portfolio weight might increaseswith volatility, if the IMPR increaseswith volatility.
Therefore,it is importantto investgate empirically for the U.S. stockmarket whetherIMPR
decreasewith volatility.

| shav that a risk-averseagentmay shorta risky assetwith a positive risk premiumand
a more risk averseagentmay hold more of risky assets. Both resultsgo againstthe basic
intuitions on static portfolio choiceand are a consequencef agentsrebalancingoptimally.
Oneimplicationof theseresultsis thatstockholdingsover shorthorizons(insteadof overlong
horizons)shouldbe usedasa proxy for risk aversion.

In staticportfolio choiceproblemsthevolatility of risky asseteturnsprevent agentfrom
taking aninfinite positionin risky assetsyhich is the insight of Harry Markowitz. However,

in a dynamc setting,the opportuniy to exploit the intertemporakelationof assetreturnscan
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besogreatthatvolatility alonemightnotbethecounterbalancinfprceto preventarisk averse
agentfrom holding an infinite amountof risky assets.The optimal dynamicportfolio weight
often becomesnfinite whenthe investnent horizonis long enough. In practiceonedoesnot
obsere invesbrswith aninfinite position on stocks. Presumablythis may dueto transaction

costsamongmary otherreasons.
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6 Appendix

6.1 Proofof Theorem1

Theprice processanbe expressedn termsof the statevariable X;:

1 1
Bt

1
dP, = P(r+\X” ?)4+ PX/”dB,. (13)
ThewealthprocesdV, satisfieghefollowing equation:

1
th = Wt(T + ¢t)‘Xt )dt + Wt¢tXt2'6 dBt

Thederivedutility functionis theutility of theagentwhentheoptimal allocationg; is followed

w?W}

1—y

ﬂW%ﬂE&[

TheHJB equationmpliesthat.J satisfieghefollowing equation,

|-

. 1 1 1
md?,X J+ §W2¢2XEJWW + W[T + ¢)\Xﬁ+ ]JW

1,1 1

1=y
J(T,W,X):W , (14)

1—y

whereJ, Jy, and Jx denotethe derivativesof .J with respecto ¢, W, and X, respectiely.

Substititing the first ordercondition

W Jww

¢t =

1 1 l
X w7t ()\ + apa nJW)

0X

into theabove equationpneobtains

.1
J—=-X

2
1
oxX ) +T‘WJw+ EO'QXJXX + (k‘—KX)JX =0.
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GuessinghatthevaluefunctionJ hastheform

1—
JW, X, 1) = X grtetyrateyx)
? 7 1 _ ,}/ 7

theabove partialdifferentialequatiorreducedo

: 1— 1—
e+ dX + WVX O\ + yopd(t)? + T7r + %JQXdQ + (k- KX)d=0.

Thefunctionsc(t) andd(t) satisfythefollowing ordinarydifferentialequation(ODE):

]__
¢+ kd+—1

r =0,

. 1— 2 1—
d + <—K+ 77A0p>d+%(1+(7—1)(1—p2))d2+—7A2:0,

o(T) = d(T)=0.

Solvingtheabore ODE produceghefollowing:

¢ = 2k I ( 256(54-1?)7/2 . 1=~
107\ (K = (1= 7)/7200) + ) (exp (r) = 1) +2¢
2 (exp (€7) —
d = — ( p(§~) 1) _ ) (15)
((K = (1=)/72p0) +) (exp (€7) — 1) +2¢

Witht =T —+t,6 = —12‘73)\2, and

= VK= (=)Ao + 2P +2(1 = 7)) o = [ K2~ L= Lk + 320),

SeelLiu (1998)for furthercalculationdetails. The optimalweight¢* is given by

= Vt—%+§ (%)\—i—pod(t)) . (16)



Note that the function ¢(¢) is not usedin ¢*. When~y > 1, the parametek is real andit is
easyto verify thatthe functionsc(t) andd(t) arewell definedover [0,7]. Wheny < 1, it is
possble thaté will beimaginary In thiscase((t) is still realbut becomesinbounedfor finite
t <T.When(K — (1—7)/vApo)? < =26(p*+ (1 — p?))o?, & = in is purelyimaginary and

thereforey is real. In this case pnecaneasilyshow that

2
d = — 0. 17
K — 1’T"V)\pa + ncot(nt/2) an

Onestill needdo verify thatthe above solution of the HIB equationis the optimal solutian

to theoriginal problem.For v < 1, onecanusethe positivity of J(W;) to shav that
t 1
Mt = J(Wo, X(), O) + / was¢sX52ﬂ dBS + J)(O'\/ XsdB;)
0

is a supermartinga&. We canthenusethe methodof Duffie [(1996),p. 200], to establishthat
J(Wy, Vo, 0) is the upperboundfor utility of all admissble tradingstrateyies. For v > 1, the
previous methoddoesnot apply andthe proof of J (W, V4, 0) beingthe upperboundmight be
muchmoreinvolved.

Giventhat J(W,, Vo, 0) is the upperbound,andthe additioral technicalconditionthaten-
sureghatJ (W}, V4, t) isamartingaé,onecanthenprovethate; istheoptimalportfolio weight,

following Duffie [(1996),p. 200].

6.2 Proofof Theorem3

Theproofis avariationof the proof of Arrow’s theoremon insurancgremia.Supposéhatthe

utility functionU is more concae thanthe utility function V' andboth areincreasing.There

34



thenexistsa concae functionG, suchthatU = G(V). Supposehe optimal portfolio weight
for V' is ¢*, andtherisk premiumis positve, sothat¢* > 0. ThenE[V'(r; + ¢*r)r.] = 0.

Therefore:

E[U(ry + ¢"re)re] = E[G'(ry + ¢"re)V'(ry + ¢"re)re]
=E[(G'(r; + ¢"re) = G'(ry))V'(ry + ¢"re)re]
=E[(G'(ry + ¢"re) = G'(rp))V'(rs + ¢"re)rel re20)]
+E[(G'(rg + ¢*re) = G'(rp))V' (15 + ¢"re)Telir, <0}]
> E[(G'(ry) = G'(rp))V'(ry + ¢"re)relir>0)]

+E[(G'(rf) — G'(ry))V'(ry + ¢*re)Telfro<0y] = 0.

Thisimpliesthatthe optimal portfolio weightfor U is smallerthan¢*.
For the caseof CRRA preferenced, explicitly show thatthe derivative of the optimalport-
folio weightwith respecto the relative risk aversioncoeficient y is negative. The first order

conditonfor ¢* is
E((ry + ¢*re) "re] = 0.

Takingthederivative with respecto v of theabove equationpnegets

0¢* _ E[(ry + ¢"re) "reln(ry + ¢7re)]
oy YE[(rf + ¢*re) 7112
E[(rf + ¢*re) TreIn(1 + qﬁ*:—;)]
T B[ + e
cov((ry + ¢*re) 're, In(1 + qﬁ*:—;))

VE[(ry + ¢rre) 771

)

wherel usethefirst ordercondition for the secondandthird equality Becausén(r + ¢*r.) is
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strictly increasingf ¢* > 0, it follows that

E[(ry + ¢'re) reIn(1 + qs*:—;)]

* — *7"6 * — *7‘8
= E[(Tf + (]5 7“@) 7’/‘6 111(1 + (b E)l{rezo}} + E[(T’f —+ (}5 7'6) 77“6 111(1 —+ (}5 E)l{,g«)}]

> E[(rf + ¢*re) Tre(In 1)1{T520}] + E[(Tf + ¢*re) re(In 1)1{Te<0}] =0.

Therefore 52~ < 0. Notethat,if ¢* < 0, In(r; + ¢*r,) is strictly decreasingnd % > 0.

6.3 Proof of Proposition 1

Let v denotethe intertemporahedgingcomponenty, = pod. Using equation(15), one can

shaw thatthefunctionu satisfieghefollowing equation:

l—v
% poA? = 0. (18)

1 —
@+ (—K+ 77Aap)u+2“—p(7+(1—7)p2))u2+

Differentiatirg equation(18) with respectto K, one obtainsthe following equationfor the

derivative ug of u with respecto K:

1 —
U + (—K+ 77/\0,0) ug + (14 (y—1)(1 = p*)) vug —u =0,
which canbesolvedto give
T T T
up = —elt hds/ e~ Js hvyds < 0,
t

with thefunction s definedby

h = (—K+ 1;7)\01)) +(14+(-1)(1-p"))u.
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Becausehefunctionu doesnotchangesignsasafunctionof ¢, theabove equationmpliesthat
u is decreasingn K if v > 0 andu is increasingn K if v < 0. In otherwords,the magniude
of u is alwaysdecreasingn K.

Differentiatingequation(18) with respecto o, oneobtainsthe following equationfor the
derivative u,, of u with respecto o:

. 1-— 1 1—
ug+mw+—;1Mm+§;a+%7—na—p%ﬁﬁ+——1

= V=0,

which canbewritten as

1— A\ 2
ua+hua+lu2+—p<u+—) =0.
2p Y o

Theabove equationcanbe expresseds

T 2
uG’ = eftT h’ds/ e_ fsT hdv luZ + ]__—,Yp (u _|_ é) ,
t 2p gl gl

fory < 1,u, > 0if p > 0; andu, > 0if p < 0. Thereforethe magniudeof thefunctionu
(theintertemporahedgingcomponent)s increasingn o.
Differentiatingequation(18) with respecto p, oneobtainsthe following equationdor the

derwvative u, of v with respecto p:

. 1- o 1—
U, + hu, + 77Aau+ 5 <—% + (1 —fy)) u® + 2727)\20 =0,

or

2
. Yo o A
up+hup—2—p2u2+§(1—7) (;—i—u) =0.

Therefore,

o T T T A 2
u, = §eft hds/t e~ Js hdv (—%tﬂ—i— (1—7) (; —i—u) ) i
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Fromthis equationpneconcludeshatfor v > 1, u, < 0. Becauseu hasthe opposie signasp
for v > 1, u, > 0 impliesthatthe magnitwle of », andthusthe magnitule of theintertemporal
hedgingcomponentis increasingn the magnitude of p.

Differentiatingequation(18) with respecto A, one obtainsthe following equationfor the

derivative u,, of u with respecto \:

1-— 1-—
7a,ouik 27
~y

Uy + huy + Apo =0,

SO

T
uy = Lo 70P e hds/ e~ Ji hdv (u + é) ds.
Y t Y

Noting thatu > 0 if p(1 — ) > 0, this equationimplies that « is increasingin A when

p(1 —~) > 0 orwhenu > 0.

6.4 Proof of Proposition 3

When(¢ is real, the propositon is obvious by usingequation(7). Wheny < i, 7 is realand

the proposition canbereadily provedby usingequation(9).

6.5 Proof of Proposition4

Usingtheequation(8), | definefunctiong:

g1 MK + & coth(é7/2))
(K + Ecoth(é7/2)) — (1 —7)Apo
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First considerp > 0. Let A = 2Kp + Ao, a = K/VA)o, andb = 2. Then¢ =

/ _1 —_ 1 i __ ¢ — i
VAL a2 +1 5 andy = e Lettingz = T andv = v AloT, oneobtains

K + & coth(é1/2)
V(K + £ coth(§7/2)) — (1 —7)Apo
(a + zcoth(zv/2))(1 + (a® — 2?)) _(a+ )0+ a? — 2%)
a + zcoth(zv/2) — b(a® — 22) h ’

whereh = a + zcoth(zv/2) — b(a® — 2%) and f = zcoth(zr/2). Thefollowing, then,is

straighforward:

dg _ (f'A+a® =2+ (a+f)(=22)h— (f +2b2)(a+ f)(1 +a® — 2?)
0z K2
—f'(a® — 2%)%b — f'ba® — 2z(a + f)* — 2azb — fzb — 2b(f — f'2)

= Iz <0. (19

Now, considerthecasep < 0 and2Kp + Ao < 0. It is easyto verify that¢* is decreasingn ~

when~ > 1 by usingequation(7):

o %é 1 (1 —7)Apo
4 =V ,Y<1+K_1_T7)\p0+f(30th(f7'/2) v ) =

Notethat
98 _ (2Kp+ Ao)ro
oy 28

and¢ coth(£7/2) is increasingn & andthereforedecreasingn . Hence

<0

1
’Kfl—;'l)\pa%f coth(€7/2)

is increasingin v (noting that A\po < 0). BecauselfT’Y is decreasingn v andis negaive
when~ > 1, it follows thatthe termin parenthesem the above equationis decreasingn +.
Because% andthetermin parentheseare both positve anddecreasingn -, their productis
alsodecreasingwhichimpliesthat¢* is decreasingn ~.

Now considerthecaseof v < 1, p < 0, and2Kp + Ao < 0. Thefunctiong canbewritten
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as

_ K + £ coth(é1/2)
! 7 YK +Ecoth(er/2) - (1-1)hpo (21)
1+ z coth(zu/2) B 1+ f

v(1+zcoth(zp/2)) +(1—v)C  ~(1+f-C)+C

wherez = £, andC = =32, and f(z) = z coth(zy/2). Thedervative of g with respecto z

K

is givenby:
9 O+ f-0)+C) =1+ )0+ 1+ f~C)n)
oz’ = (YA +f-C)+0)?

'+ O) -+ N0+ f-C)v f(C+CO) -1+ )0+ f-C)

B (Y(1+f-C)+C) h I+ f-C)+0) '
Notethat

v=+/1+ (/- 1)C2 - C/p?)
and
_ 1 -1
Ve t= %?0(2 - C/pZ)a

therefore,

f((—C+C) =1+ /)A+f-C)y fl(@2=1)(C + ;f—pé) +(1+H)A+f-C)2
(1+/—-C)+C) N (I+f—-0C)+C) '

Forz > 1,thenf/(z2—1)(C+£4) = f’(C(m2—1)+(z2_g) > 0 (notingthat f'(z) > 0 Vz).

C
2—p—2 2—

Becausef (z) > z, it followsthat(1 + f(z))(1 + f(z) = C)2z > (1 +z)(1 +z — C)2z > 0.

| usedthefactthatz > zmin = \/(C — 1)2 + (1/p — 1)C? sothatz > C — 1.

Now considerr,;, < z < 0. Becausd — z?> — C(2 — C/p?) for all z > i, it follows

that f'(z? — 1)(C + ;i‘gl) > 0. Notethat f'(z) > 1, we know that f'(z — 1)(C + £=L) >

2

(# = 1(C + 3==2)-

T
2—
p
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Thereforepneobtains

fla* = 1)(C2 - %) +2 = 1)+ (1+ )1+ f - C)22(2 - %)

> (2 = 1)(C(2— %) +22 -1+ (1 +2)(1+z—-C)2x(2— %)
=(1-2*)°-(1-2%)C(2- %) +2z((1+2)* - (1+2)0)(2 - %)
(-2 %)(1 +2%)(22 - O)

— (21— + (- %)(235 —0))

:(1+x)2(2—2x—}—x2—1+(2—%)(233_0))

=(1+2)?Q01-2)+(2- %m) > 0.

Whenp < 0 and2Kp + Ao > 0, onecaneasilyshaw thatthe portfolio weightalsoreaches
—oo when+ is smallenough,aslong as+ > 0. Therefore,the portfolio weight cannotbe

decreasingn ~y for ary strictly positve 7.
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