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RESEARCH Open Access

Automated time activity classification based on
global positioning system (GPS) tracking data
Jun Wu1,2*, Chengsheng Jiang1, Douglas Houston3, Dean Baker4 and Ralph Delfino2

Abstract

Background: Air pollution epidemiological studies are increasingly using global positioning system (GPS) to collect
time-location data because they offer continuous tracking, high temporal resolution, and minimum reporting
burden for participants. However, substantial uncertainties in the processing and classifying of raw GPS data create
challenges for reliably characterizing time activity patterns. We developed and evaluated models to classify people’s
major time activity patterns from continuous GPS tracking data.

Methods: We developed and evaluated two automated models to classify major time activity patterns (i.e., indoor,
outdoor static, outdoor walking, and in-vehicle travel) based on GPS time activity data collected under free living
conditions for 47 participants (N = 131 person-days) from the Harbor Communities Time Location Study (HCTLS) in
2008 and supplemental GPS data collected from three UC-Irvine research staff (N = 21 person-days) in 2010. Time
activity patterns used for model development were manually classified by research staff using information from
participant GPS recordings, activity logs, and follow-up interviews. We evaluated two models: (a) a rule-based
model that developed user-defined rules based on time, speed, and spatial location, and (b) a random forest
decision tree model.

Results: Indoor, outdoor static, outdoor walking and in-vehicle travel activities accounted for 82.7%, 6.1%, 3.2% and
7.2% of manually-classified time activities in the HCTLS dataset, respectively. The rule-based model classified indoor
and in-vehicle travel periods reasonably well (Indoor: sensitivity > 91%, specificity > 80%, and precision > 96%; in-
vehicle travel: sensitivity > 71%, specificity > 99%, and precision > 88%), but the performance was moderate for
outdoor static and outdoor walking predictions. No striking differences in performance were observed between the
rule-based and the random forest models. The random forest model was fast and easy to execute, but was likely
less robust than the rule-based model under the condition of biased or poor quality training data.

Conclusions: Our models can successfully identify indoor and in-vehicle travel points from the raw GPS data, but
challenges remain in developing models to distinguish outdoor static points and walking. Accurate training data
are essential in developing reliable models in classifying time-activity patterns.

Background
Environmental air pollution has been associated with a
variety of adverse health outcomes, including respiratory
illness, cardiovascular diseases, pregnancy outcomes, and
morbidity [1-5]. The knowledge of where individuals
spend time is essential for human exposure assessment
of air pollution because air pollutant concentrations
may vary significantly by location. Studies have shown
that traffic-generated air pollutants such as ultrafine par-
ticles can be up to ten times higher inside a vehicle

compared to ambient outdoor concentrations because of
proximity to vehicle exhaust [6-8]. Outdoor walking and
cycling spaces often have lower concentrations of traf-
fic-related pollutants than in-vehicle spaces [9], but
often correspond with increased inhalation rates and
longer travel durations which could result in a higher
dose of air pollutant inhalation [10]. In addition, air pol-
lutant concentrations can be much higher indoors than
outdoors for pollutants with predominate indoor sources
(e.g. environmental tobacco smoke) and vice versa for
pollutants with predominate outdoor sources (e.g.
ozone) [11,12]. Accurate characterization of people’s
time-location patterns significantly reduce errors in
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exposure estimates in environmental epidemiological
studies in which personal exposure is not measured
directly and has to be estimated.
Time activity data have traditionally been collected by

recall telephone interviews or activity logs recorded by
study participants [13,14]. However, these methods are
limited by accuracy of recall, reliability, and compliance
[15]. Recently, new techniques have been used to collect
time-location data, such as the use of portable global
positioning system (GPS) devices to track people’s time-
location or commuting patterns with or without corre-
sponding participant diary information [15-22]. GPS-
based tracking presents an enormous opportunity for
improving our understanding of the space-time activities
of individuals and how they influence environmental
exposure and health outcomes. It offers many advan-
tages over traditional methods including near-continu-
ous location tracking, high temporal resolution, and
minimum reporting burden for participants [23]. How-
ever, barriers exist for extracting accurate time activity
patterns for human subjects from raw GPS data because
they are not consistently reliable due to errors caused
by satellite or receiver issues, atmospheric and iono-
spheric disturbances, multipath signal reflection, or sig-
nal loss or blocking [24]. The multipath problem occurs
mainly in urban areas where tall buildings and struc-
tures reflect satellite signals many times before they
reach a GPS device, leading to GPS coordinate errors
[25].
Since GPS datasets are usually very large (e.g., over

5,000 location coordinates per day at a 15-second inter-
val) and are associated with such uncertainties, validated
techniques are needed to automatically identify time
activities in major microenvironments, such as commut-
ing, indoor, and outdoor locations. The literature on
GPS data classification techniques largely comes from
the travel behavior and physical activity research fields.
A number of studies have developed methods to classify
travel activity using only GPS data or the combination
of GPS and accelerometer data [26-34]. However, most
of these studies collected data and developed models
solely for travel activities (e.g. mode of travel, route
choice, and distance traveled); some measurements were
even conducted at predefined routes or activity sche-
dules. Only a few studies have used GPS to track peo-
ple’s time-activity patterns in free living conditions. Cho
et al. [35] collected GPS and self-reported one-week
location diary data for 5 research staff (35 person-days
of data) for model development and calibration and 34
volunteers (136 person-days of data) for model valida-
tion. They successfully developed and validated an algo-
rithm to identify outdoor walking trips that lasted more
than 5 minutes in free-living conditions. The authors
reported difficulty in identifying walking trips with only

GPS information in free living conditions because peo-
ple often walk very slowly or briskly and make short
stops. Unfortunately, the application of the techniques
used in these studies in air pollution epidemiological
research is limited because people’s exposure to air pol-
lution is significantly influenced by activity patterns
across multiple indoor, outdoor, and transportation
microenvironments. Few studies have evaluated techni-
ques to classify people’s continuous time-activity pat-
terns across both travel and non-travel periods based on
GPS location data for subjects in free living conditions.
To our knowledge, only one study by Adams et al. [36]
developed an apportion algorithm for time-location pat-
terns across indoor, outdoor and travel microenviron-
ments based on data from a monitoring system that
measured personal air pollution exposure, temperature,
and real-time GPS locations. However, this study only
tested the algorithm for a single person for four days
with known home and workplace locations. In addition,
their use of temperature to distinguish indoor from out-
door locations in the winter of Colorado may not be
applicable to other regions or seasons when indoor and
outdoor temperature does not vary as much.
The purpose of this study was to address a major gap

in the literature on air pollution epidemiology - the lack
of reliable automated classification techniques to post-
process multi-day GPS location tracking data for free
living human subjects. We developed and evaluated two
automated models that classify GPS tracking data into
four major time-activity categories (i.e. indoor, outdoor
static, outdoor walking, and in-vehicle travel) that are
important in determining people’s exposure to traffic-
related and other air pollutants [6-12].

Method
GPS and Roadway Data
We developed our classification models based on 131
person-days of GPS time activity data collected for 47
participants in the Harbor Communities Time Location
Study (HCTLS). Participants were 21-65 years old and
were tracked for 3 days from February 19 to June 13,
2008 in the Wilmington area of the City of Los Angeles
and the western portion of the City of Long Beach, Cali-
fornia [37]. Data were available for 3 days for 37 partici-
pants and 2 days for 10 participants. Participants were
asked to carry a portable GlobalSat DG-100 GPS device
(approximately 227 g) with them during waking hours
on the observation days. Concurrently, the participants
recorded in an activity log each time they changed loca-
tion by recording the time, checking whether they were
indoors (home, work, school, other), outdoors (walking,
biking, other), or in-vehicle (auto, van, or truck, transit,
or other), and noting location details. After the logs and
the GPS data were retrieved, participant GPS data were
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reviewed over highly resolved and geographically recti-
fied Digital Ortho Quarter Quads (DOQQ) aerial photo-
graphy data from the United States Geological Survey
using geographical information system (GIS) techniques
in ArcGIS software (ESRI, Redlands, CA). Based on the
participant logs and DOQQ imagery, prompts were gen-
erated for follow-up interviews regarding discrepancies,
unclear patterns, and suspected unreported activities.
Follow-up interviews were administered 2-5 weeks after
the monitored days because of the time required for
post-processing GPS data and logistics. Based on feed-
back from these interviews, the GPS data were finalized
and coded into major location categories (e.g., indoor/
outdoor at home, school, restaurants, etc.) and travel
mode (e.g., biking, walking, automobile, bus, train).
Unfortunately these manually-classified data at times do
not precisely differentiate indoor vs. near-building out-
door points due to the positional error of GPS data [24].
In instances when it was not possible to consistently dis-
tinguish near-building outdoor locations (e.g., patio and
sidewalk) from indoor locations, participants were
assumed to be indoors unless GPS locations were con-
sistently separated from a building for at least 2-5 min-
utes, in which case they were classified as outdoor.
Most (92.1%) of the HCTLS data were collected at a

15-second interval, while 4.0%, 0.1% and 3.8% of the
data were collected at 1-second, 2 to 14 seconds, and >
15-second intervals, respectively. Since the recording
intervals may occasionally shift even with a fixed interval
setting in the GPS device, we decided to exclude only
those points with no time stamp and data from one par-
ticipant who had the majority of the data in 1-second
interval. Data with speed higher than 200 kilometers per
hour (km/h) (0.002% of all the data) were corrected to
zero speed because they were determined through map-
ping and follow-up interviews to be erroneous GPS
locations which appeared far from the participant loca-
tion and were caused by GPS device error or blocked
satellite signals.
In addition to the HCTLS data, we collected 21 per-

son-days of supplemental GPS time activity data for
three UC-Irvine staff volunteers during December 6-13,
2010. The volunteers were asked to carry with them a
GPS device (BT-Q1000XT from QSTARZ; approxi-
mately 65 g; recording at a 15-second interval) and to
record on a paper diary the following information: the
start and end time for their major time activity patterns,
mode of travel (outdoor walking or biking, in-vehicle
travel by passenger car, bus, or train), and type of loca-
tion including indoor or outdoor (home, work, school
or education, other residence, park and recreational
area, food-consumption related location, retailer store,
short stops for gas-filling etc.). The BT-Q1000XT was
used in this task mainly because it had longer battery

life (48 hours) than the DG-100 model used in the
HCTLS (17 hours) [24]. Consistent with the manually-
classified HCTLS data, these supplemental GPS data
were manually classified based on the diary data, GIS
verification, and verification by interview. The three staff
volunteers were thoroughly instructed on how and
when to record the diary logs and all of them were
actively involved in the time activity research and
knowledgeable of the study aims and possible mistakes
that may be encountered by human participants.
There were two major differences between the HCTLS

data and the supplemental UCI data. First, we obtained
better diary logs in the supplemental dataset than the
HCTLS study (particularly for the indoor vs. outdoor
differentiation) because of more thorough and careful
documentation of short-term events. The HCTLS only
classified outdoor points as those that were consistently
outdoors for at least 2-5 minutes based on map overlays
in GIS software while the supplemental dataset recorded
outdoor points at a much higher accuracy of less than 1
minute. In addition, slight differences were observed
between the DG-100 used in the HCTLS and the BT-
Q1000x used in supplemental data collection; BT-
Q1000x had a shorter acquisition time at cold start in
an indoor environment, lower rate of data loss, but
slightly poorer performance in spatial accuracy [24].
All GPS data were converted to the Universal Trans-

verse Mercator projection (North American Datum
NAD 83 and Zone 11 N). In addition to the above GPS
data, we obtained roadway data for the study region
from the ESRI StreetMap™ North America 9.3 http://
www.esri.com. This dataset was bundled with ArcGIS
software products and included 2003 TeleAtlas® street
data rather than the less-accurate TIGER 2000-based
street data [38].

Model Development and Time-Activity Classifications
We developed a rule-based model and a decision-tree
based model to classify time-location patterns. The two
types of models were chosen because the rule-based
method best utilizes the user’s understanding of spatial
patterns in the data (time, speed, and spatial relation-
ships of the GPS points) while the decision-tree method
requires minimal user-input and has been shown to out-
perform the other approaches [32].
We focused on four time-activity patterns (i.e. indoor,

outdoor static, outdoor walking, and in-vehicle travel)
because of their importance in determining air pollution
exposures and the availability of data. The in-vehicle tra-
vel here refers to travels in passenger vehicles only.
Although other time-activity patterns such as biking and
travel by bus and subways may also be associated with
high levels of exposure to traffic-related air pollutants
[39-41], our data contained very limited data on these
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activities and were not examined in our models. No
HCTLS participants traveled in an underground train;
only 10 and 3 subjects reported bus travel and biking
for a total of approximately 8 and 5 hours, respectively.
No subway, bus, or biking activity was reported in the
supplemental UCI data.
We did not distinguish indoor static vs. indoor moving

conditions because the positional accuracy of GPS data
was limited during indoor periods due to obstructed
satellite signals from building structures. Our previous
research indicates that the positional errors of the GPS
devices can be large in typical indoor locations and can
be in the range of 0-300 meters for DG-100 depending
on the building materials (e.g., wood frame vs. concrete/
steel) and surrounding structures [24]. Significant GPS
signal loss was also observed indoors in concrete struc-
tures or structures surrounded by high buildings [24].
Therefore, we decided not to track participants’ moving
patterns in an indoor environment. Instead, we asked the
study participants (≥21 years old) to place the GPS device
on a static location (e.g., counter or desk) nearby while
they were indoors at home, school, or work locations;
thus most of our indoor data were static points.

Rule-Based Classification
We developed the rule-based model using two open
source software programs: R (version 2.10.1; R Founda-
tion for Statistical Computing, Vienna, Austria) and
PostgreSQL (version 8.4; PostgreSQL Global Develop-
ment Group). The rule-based algorithm used three
major features of the GPS data (i.e., time, speed, and
spatial location) to classify GPS data to four major time
activity categories: indoor, outdoor static, outdoor walk-
ing, and in-vehicle travel (Figure 1). The rules were

developed based on logic and the summary statistics of
the HCTLS data. For example, the model assumes that
in-vehicle travel occurs on roadways and at higher aver-
age speeds than outdoor walking and outdoor static
conditions. Most of the threshold values were obtained
from the summary statistics of each time-activity cate-
gory in the HCTLS data.
First, we identified static clusters and moving periods

based on continuity criteria in space and time. If all the
points in a minimum of one minute had speed lower
than 3 km/h, these points were treated as a static cluster
(Figure 2). We further implemented a line detection
process to identify the presence of linear alignment of
sequential points which could indicate periods of move-
ment within a static cluster. Starting from the first and
last points of a cluster in time sequence, we selected
three sequential points (moving forward in time from
the first point and backward in time from the last point)
to test if three consecutive points formed a linear seg-
ment. The distance difference was calculated by sub-
tracting (a) the distance from the first sequential point
and the third sequential point from (b) the sum of the
distance between the first sequential point and the sec-
ond sequential point and the distance between the sec-
ond sequential point and the third sequential point. If
the distance difference was no more than 1 m, we
assumed that the three points formed a line and
excluded them from the static cluster. This line detec-
tion process proceeded through the sequence of points
in each cluster until it detected three continuous points
that did not form a line.
The second step in our rule-based classification was to

identify sequential points which represent periods of

Raw GPS 
data

Identify
static clusters 

(Figure 2) 

Identify
periods of 
movement 
(Figure 3)

Cleaned
GPS data Differentiate 

indoor from 
outdoor static 

points (Figure 5) 

Differentiate 
outdoor walking 
from in-vehicle 
travel (Figure 4) 

Indoor

Outdoor
static

Outdoor
walking

In-vehicle
travel

Figure 1 Overall flow chart.

Identify points 
as static cluster 

All points in 1 minute 
have speed < 3 km/h 

Line detection test – eliminate 
potential periods of linear 
movement at the start or end 
(in time) of the static cluster.  

Remove linear 
segments from 
static clusters 

Figure 2 Identify static clusters.
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movement using the following criteria (Figure 3): 1)
points with speed above 15 km/h; 2) a maximum of five
sequential points bounded by two moving points identi-
fied by step 1; 3) a minimum of six continuous points
with speed above 2.5 km/h; 4) points within 10 m of a
roadway but more than 25 m of the center of any static
clusters; and 5) all other untagged points with speed
more than 10 km/h. Adjacent moving periods were con-
solidated into one if there was a single untagged point
with at least two continuous moving points before and
after this point or there were n (n≥2) continuous
untagged points with a minimum of n continuous mov-
ing points before and after them.
We further refined the moving classification by differ-

entiating walking from in-vehicle travel periods using
speed as a key parameter (Figure 4). A moving period
was identified as in-vehicle travel if the second highest
speed of the moving period was above 10 km/h and the
median speed was above 5 km/h. We used a number of
criteria to distinguish outdoor from indoor periods,
including duration and time span of a static cluster, dis-
tance between a static cluster and a participant’s home
location, speed, the geographic range of the points in
the cluster, and distance among critical points in the
cluster (i.e. start, end, and middle point in time
sequence) (Figure 5). The criteria were developed by
analyzing the statistics of the manually-classified GPS
data. For instance, we observed that indoor points
occurred more often in static clusters that lasted longer
(Additional file 1, Table S1), were closer to home, scat-
tered somewhat more diversely (indicated as higher
speed or wider geographic range of points), and showed

no apparent line pattern between sequential points. A
home static cluster was roughly detected by checking
whether the cluster included 12:00 AM or lasted for
more than 24 hours, assuming that the participants

Classify the 
points as moving

5 sequential points bounded by two 
moving points with speed > 15 km/h

Point with 
speed > 15 km/h 

Points within 10 
m of a roadway 
but  25 m from 
the center of any 
static cluster 

6 sequential points 
with speed >2.5 km/h

All un-tagged points 
with speed > 10 km/h

Identify moving 
periods 

Classify the 
points as moving

Check continuity in 
time for moving points 

A single untagged point bounded by 
2 continuous moving points at each 

end OR n (n 2) sequential untagged 
points bounded by  n continuous 
moving points at each end 

Consolidate adjacent 
moving periods 

Figure 3 Identify periods of movement.

Moving period 

The 2nd highest speed 
>10 km/h and the 
median speed > 5 km/h

Classify the points 
as in-vehicle travel 

Classify the 
remaining points as 

outdoor walking 

Figure 4 Differentiate outdoor walking from in-vehicle travel.

YesNo
Does the static cluster last >1 hour?b

Is the cluster close to homed?
Distance between the center of the 
cluster and home location < 50 m?f

Are there significant scattering?
The 2nd lowest speed of all the 
points in the cluster > 0.1 km/h?g

Is the range of points wide?
Maximum range in either X or 
Y coordinate >30 m?h

Does the cluster 
last < 5 minutes?c

Yes

No

Yes

No

No

Yes

Yes

Outdoor

Is an individual point in the 
cluster close to homed?
Distance between the point 
and home location <10 m?e

Yes
No

No

Indoor

Does the static cluster include 
12:00 AM or last >2 hour?a

YesNo Indoor

Figure 5 Differentiate indoor from outdoor static points. aWe
found that 99.5% of outdoor static clusters lasted less than 2 hours.
bAbout 2% (number) of outdoor static clusters (accounted for 21%
of the total outdoor static time) lasted 1-2 hours. cWe found 77% of
all the outdoor static clusters that satisfied the upper level rules (the
rules above this criterion) lasted less than 5 minutes. dA home
location was detected if the cluster included 12:00 AM or lasted for
more than 24 hours assuming that the participants were at their
home under such conditions. eThe spatial accuracy was 10 m for
the GPS device without Wide Area Augmentation System. Thus the
GPS points within 10 m of home are more likely indoor points. f We
used 50 m as an approximate size of an apartment. gThe 2nd
lowest speed of all the outdoor static cluster was 0 and 5%
(number) of the indoor static cluster (accounted for approximately
15% of the total indoor time) was more than 0.1 km/h. hAbout 64%
of the indoor clusters satisfied this rule with only 2 of 13 outdoor
clusters being misclassified.
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were at their home under such conditions. We did not
attempt to classify other types of locations (e.g. work,
school, shopping) because without additional data we
have to make many assumptions on the patterns of
these activities, which may introduce a lot of
uncertainties.

Random Forest Classification
As an alternative to the rule-based algorithm, we applied
a machine learning model, random forest [42], to clas-
sify the GPS data into different time activity categories.
Here, a forest refers to a constellation of many decision
tree models. Because a forest consists of many trees, it
is more stable and less prone to prediction errors as a
result of data perturbations [42]. Random forest is con-
sidered one of the most accurate general-purpose learn-
ing techniques available [43] and has been already
widely used in bioinformatics [44,45]. Random forest
creates multiple classification and regression (CART)
trees, each trained on a bootstrap sample of the original
training data and searches across a randomly selected
subset of input variables to determine the split. Each
tree in the forest gives or “votes” for a classification (e.g.
time activity category). The forest chooses the classifica-
tion having the most votes over all the trees in the
forest.
In this study, we used an R interface in Waikato

Environment for Knowledge Analysis (WEKA) 3.6 soft-
ware, a popular machine learning workbench developed
by researchers in University of Waikatoi [46,47]. We
examined the following types of variables: acceleration
rate, speed, distance difference, and distance ratio.
Acceleration was calculated as the change in speed
between a given point and the previous sequential point.
The distance difference was calculated for any three
sequential points as we described above for the rule-
based model. The distance ratio was calculated for a ser-
ies of sequential points as the ratio between (a) distance
between the first sequential point and the last sequential
point in the series and (b) the sum of the distance for
all line segments formed by sequential points in the ser-
ies. Speed, distance difference, and distance ratio vari-
ables were calculated under various averaging time
intervals ranging from 2 to 60 minutes and centered at
each GPS point. Speed and distance difference were
expressed as minimum, median, and maximum values.
Standard deviation was also calculated for distance dif-
ference. Final variables were selected by checking the
variable importance index (a measure of the relative
importance of the variables) generated from the model
diagnostics and the correlations among the variables.
We first selected 20 most important variables that were
not highly correlated with each other (r < 0.75). Then
we run the model again with these variables and

selected the most important variables with the p-value
of the z-score < 0.001 for all the variables. Sensitivity
tests were conducted for the maximum depth of a tree
and the number of trees. Two separate models were
developed based on the HCTLS data (hereafter HCTLS
random forest model) and the supplemental UCI data
(hereafter UCI random forest model). For both models,
we randomly selected a subset of indoor points (N =
30,000 for the HCTLS data and N = 5,000 for the UCI
data) in addition to all outdoor static, outdoor walking,
and in-vehicle travel points in the original datasets as
training data.

Model Evaluation
Time activity classifications of GPS data based on model
predictions were compared to those from manually-clas-
sified data for both the HCTLS and the supplemental
datasets. There is no “gold-standard” against which to
compare the classification of GPS-derived time activity
data. In this study we used the manually-classified time
activity classifications as the basis of model evaluation
because these time activity codes were developed based
on extensive quality assurance checks that involved
careful inspection of real-time GPS locations in GIS
using map overlays, comparison with participant activity
logs, and clarifications from follow-up interviews with
participants and staff. We examined the sensitivity (the
ability of the model to identify specific cases), specificity
(the ability of the model to identify non-cases), and pre-
cision (the proportion of predicted cases that are cor-
rectly real cases) of model prediction for each time
activity category. Both the rule-based and the random
forest models were evaluated against the HCTLS data
and the supplemental UCI data. The two random forest
models were evaluated using a repeated 10-fold cross
validation method that has been recommended for
model selection [48,49]. More specifically, the dataset
was randomly split into 10 mutually exclusive subsets of
equal size. The random forest model was trained on 9
subsets and validated on the remaining 1 subset of data;
the procedure was repeated for 10 times. The reported
validation results were the averages from the 10-folds
testing. We further evaluated the capability of the ran-
dom forest models in predicting new data by applying
the HCTLS model to the UCI data and the UCI model
to the HCTLS data.

Results
We obtained 406,261 GPS data points from the HCTLS
data after exclusion of points with no time stamp (N =
609) and data from one participant who had most of
GPS recordings (N = 16,887) at a one-second interval.
Indoor, outdoor static, outdoor walking and in-vehicle
travel accounted for 83.4%, 6.1%, 3.3% and 7.2% of the
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data, respectively, based on manually-classified time
activity classifications. Based on the HCTLS data, the
median duration of periods in each time activity cate-
gory was 41, 2, 5, and 9 minutes for indoor, outdoor
static, outdoor walking, and in-vehicle travel, respec-
tively (Additional file 1, Table S1). The maximum dura-
tion of the indoor clusters was 2.2 days (confirmed
through our follow-up interview).
Table 1 shows classification results from the rule-

based model. The rule-based model classified indoor
and in-vehicle travel points reasonably well for the
HCTLS data (Indoor: sensitivity = 84%, specificity =
82%, and precision = 96%; in-vehicle travel: sensitivity =
72%, specificity = 99%, and precision = 89%). We
observed moderate performance of the model on out-
door static and outdoor walking predictions for the
HCTLS data although the precision was very low for the
outdoor static predictions (17.6%). For the supplemental
UCI data, the model performed better for indoor, out-
door static, and in-vehicle travel predictions, but worse
for outdoor walking predictions. For both datasets, out-
door static was the largest category of misclassifications
for indoor, outdoor walking, and in-vehicle travel points,
while most of the misclassification of outdoor static
points was in the indoor category.
Table 2 shows classification results from the random

forest models with ten trees with a maximum depth of
three for each tree. Based on variable importance index
and correlation analysis, we selected the following five

variables in the final models (by ranking of the variable
importance index): maximum speed in 4 minutes, maxi-
mum speed in 60 minutes, median speed in 30 minutes,
maximum distance difference in 6 minutes, and maxi-
mum distance difference in 30 minutes. Since the num-
ber of predictor variables was small and little difference
was found in the results of 10, 15, and 20 trees (unpub-
lished data), we decided to report 10-tree model results
in this paper. Sensitivity tests showed that the maximum
depth of trees significantly influenced the model perfor-
mance, particularly for the 10-fold cross validation
results (Additional file 1, Table S2). No restrictions on
the depth of the trees generated superb cross validation
results with precision, specificity, and precision mea-
sures all above 88% in the two random forest models
(Additional file 1, Table S2). However, when the models
were applied to predict new data (e.g. HCTLS model to
predict UCI data and vice versa), the performance of the
models degraded remarkably (Additional file 1, Table
S2), likely due to model over-fit when the trees grow
large. Therefore, we reported the results using a maxi-
mum depth of three for each tree.
From the 10-fold cross validation results, we found

similar performance of the random forest models com-
pared to the rule-based model except somewhat
degraded performance of the HCTLS model for indoor
predictions and better performance of the UCI model
for outdoor static and outdoor walking predictions. For
new data prediction, the HCTLS model performed

Table 1 Time activity classification using the rule-based modela

Indoor
(modeled)

Outdoor
static

(modeled)

Outdoor
walking

(modeled)

In-vehicle
travel

(modeled)

Sensitivityb Specificityc Precisiond

Model evaluation against
the HCTLS data

Indoor
(coded)

284830 9840 1002 1362 84.1% 81.9% 95.9%

Outdoor
static (coded)

51991 12901 2336 5994 51.7% 84.2% 17.6%

Outdoor
walking
(coded)

1102 1145 9096 827 68.4% 99.2% 74.7%

In-vehicle
travel (coded)

778 1073 857 21127 72.1% 99.3% 88.6%

Model evaluation against
the supplemental UCI data

Indoor
(coded)

103930 5430 134 144 94.8% 82.6% 98.2%

Outdoor
static (coded)

1558 2298 169 214 54.2% 94.4% 26.0%

Outdoor
walking
(coded)

284 764 646 193 34.2% 99.6% 57.4%

In-vehicle
travel (coded)

114 336 176 4512 87.8% 99.5% 89.1%

aThe rule-based model was developed based on logic and the summary statistics of manually-classified time activity classifications of HCTLS data.
bSensitivity was calculated as true positive estimation/(true positive estimation + false negative estimation).
cSpecificity was calculated as true negative estimation/(true negative estimation + false positive estimation).
dPrecision was calculated as true positive estimation/(true positive estimation + false positive estimation).
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Table 2 Time activity classification using the random forest modelsa

Indoor
(modeled)

Outdoor
static

(modeled)

Outdoor
walking

(modeled)

In-vehicle
travel

(modeled)

Sensitivityb Specificityc Precisiond

HCTLS
random
forest modele

10-fold cross
validationf

Indoor
(coded)

21959 6177 1604 260 73.2% 81.8% 64.1%

Outdoor
static
(coded)

9777 9749 3596 1830 39.1% 81.7% 42.3%

Outdoor
walking
(coded)

1052 1820 9931 477 74.8% 92.9% 62.5%

In-vehicle
travel
(coded)

1475 5307 750 21762 74.3% 96.2% 89.4%

Evaluation against the
full UCI dataset

Indoor
(coded)

82874 26278 170 314 75.6% 91.6% 98.9%

Outdoor
static
(coded)

850 3137 35 214 74.1% 76.2% 10.1%

Outdoor
walking
(coded)

101 993 555 244 29.3% 99.8% 67.7%

In-vehicle
travel
(coded)

0 515 60 4562 88.8% 99.3% 85.5%

UCI random
forest
modelg

10-fold cross
validationf

Indoor
(coded)

3978 860 120 42 79.6% 99.0% 97.3%

Outdoor
static
(coded)

109 3285 471 371 77.5% 90.2% 73.6%

Outdoor
walking
(coded)

0 170 1313 410 69.4% 94.4% 62.1%

In-vehicle
travel
(coded)

0 146 210 4781 93.1% 92.6% 85.3%

Evaluation against the
full the full HCTLS
dataset

Indoor
(coded)

153216 54796 128829 1894 45.2% 92.8% 96.9%

Outdoor
static
(coded)

3519 6590 13015 1828 26.4% 84.5% 10.0%

Outdoor
walking
(coded)

320 725 11840 395 89.2% 63.0% 7.5%

In-vehicle
travel
(coded)

999 3464 3550 21281 72.6% 98.9% 83.8%

aThe results reported here came from random forest models with 10 trees and a maximum depth of 3 for each tree.
bSensitivity was calculated as true positive estimation/(true positive estimation + false negative estimation).
cSpecificity was calculated as true negative estimation/(true negative estimation + false positive estimation).
dPrecision was calculated as true positive estimation/(true positive estimation + false positive estimation).
eThe model was developed based on all outdoor static, outdoor walking, in-vehicle travel and randomly selected 30,000 indoor points
fThe reported validation results were the averages from repeated 10-fold cross validation.
gThe model was developed based on all outdoor static, outdoor walking, in-vehicle travel and randomly selected 5,000 indoor points from the supplemental UCI
data.
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similarly as the rule-based model in predicting UCI data.
However, the UCI model performed worse than the
rule-based model in predicting HCTLS data, likely
because of the very small and non-representative train-
ing dataset for the development of the UCI model. Simi-
lar to the rule-based model, we found that the HCTLS
model most frequently misclassified indoor, outdoor
walking, and in-vehicle travel to outdoor static while
outdoor static to indoor category. The misclassification
pattern was different for the UCI model, again likely
due to the small and non-representative training data.

Discussion
We developed, evaluated, and compared two models to
classify time-location patterns based solely on the pub-
licly-available roadway data and raw GPS data (three-
dimensional location data and the corresponding time
stamps) from participants under free living conditions.
To our knowledge, this is one of the first studies that
developed models to systematically classify human time
activity patterns for travel and non-travel activities
based on raw GPS tracking data for use in air pollution
epidemiological studies. Three major strengths of the
study include the use of extensive manually-classified
time-activity data from human participants under free
living conditions for model development, the compari-
son of two models in classifying time activity patterns,
and additional model validation using supplemental data
which were carefully collected and coded. The reason-
ably good performance of the models indicates feasibility
of using these models to reliably batch-process GPS
tracking data from free living human subjects.
Air pollution epidemiological studies are increasingly

using GPS to track time activity patterns of human sub-
jects. However, few studies have used the GPS-derived
time activity information extensively in exposure assess-
ment and epidemiological analysis; rather, most prior
studies rely on questionnaire-reported time activity pat-
terns in the analysis. Lack of reliable methods to mine
raw GPS data may be one of the major reasons for the
limited and crude classification of these data. For
instance, a Canadian study assigned all GPS points
within 350 m of a residence as home and 400 m of a
work place as work, and did not differentiate indoor
from outdoor environments [50]; such an approach
could lead to substantial exposure misclassification. A
growing body of transportation and physical activity lit-
erature has begun to provide insights into methods for
automating the classification of GPS to identify different
travel modes during periods of travel [26-34]. However,
since our focus is to develop and evaluate procedures to
classify GPS data for travel and non-travel periods given
the paucity of applicable methods in the air pollution
epidemiological literature, we do not provide a

comprehensive overview of the transportation and phy-
sical activity literature.
Overall we found no striking differences in the perfor-

mance of the rule-based model and the random forest
models. Both models have advantages and disadvan-
tages. The rule-based model features high flexibility and
easy-to-interpret results, but the effort involved in the
model development is substantial and may require a lot
of additional data and resources. The random forest
model is easy to use and requires minimum user inter-
ference, but it faces a potential over-fitting problem if
not properly trained and difficulty in results interpreta-
tion. In terms of computational time, random forest was
faster than the rule-based model (e.g. it took approxi-
mately one hour for the rule-based model to predict the
HCTLS data while < 30 seconds for the random forest
to build the model for the same dataset on a 64-bit
computer with 16 GB of memory and a 2.93 GB Intel®

Core™ i7 Quad Core Processor). However, since ran-
dom forest model is purely data driven, it may be more
severely affected by biased or unrepresentative training
data than the rule-based model. In fact, we observed
poor model performance when the UCI random forest
model was applied to predict the HCTLS data. With
high quality training data, random forest model should
be a good choice to quickly identify important predictor
variables, develop exploratory models, or even final
model based on its performance.
For the rule-based model, we observed similar model

performance for indoor and outdoor static predictions
between the HCTLS data and the supplemental UCI
data. We observed improved model performance for in-
vehicle travel and degraded performance for outdoor
walking predictions in the UCI data. The inferior model
performance for outdoor walking in the UCI data may
be because over 85% of the limited outdoor walking
data (a total of approximately 8 hours) came from one
of the staff during his one-day tour to the Sea World
theme park in San Diego. It is difficult to distinguish
walking from the other activities since the tour was
associated with brisk walking, frequent short stops, slow
walking speed, and potentially high uncertainties in the
coding of this type of activity. As expected, most of his
walking points were misclassified by the rule-based
model as outdoor static (Table 1). Even though most of
the thresholds for classification rules were developed
based on the HCTLS data, we observed better results
from the rule-based model for the other type of time-
activity patterns (i.e. indoor, outdoor static, and in-vehi-
cle travel) for the supplemental UCI data, indicating the
importance of accurate diary data (in this case more
accurate indoor and in-vehicle travel coding in the UCI
data) for model development, training, and validation.
We did not test whether the performance of the rule-
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based model would be improved if we refined classifica-
tion rules using statistics from the UCI data because
these data were limited to only three subjects who were
indoors 87% of the time and had non-representative
outdoor walking data. In addition, model performance
may also be influenced by the different GPS devices
used in the two dataset; however, we cannot determine
this impact based on available data. We suggest avoiding
the use of different GPS devices where a single time
activity model is to be used for all of the GPS data.
We found that misclassifying between indoor and out-

door static points was one of the most severe problems
in both the rule-based and the random forest models. In
Southern California, the majority of residential homes
are wood structures that do not block satellite signals
appreciably. In addition, for outdoor locations adjacent
to buildings structures, GPS signals may be reflected by
the buildings and result in positional error [24]. Because
of the above reasons, the quality of the GPS data did
not differ much between indoor and outdoor microen-
vironments, which makes it difficult to differentiate the
two under static conditions. Although we included the
scatter patterns of the static clusters to differentiate
indoor vs. outdoor static conditions (Figure 5), these
measures did not do well as shown in our results. Out-
door walking and in-vehicle travel were also frequently
misclassified as outdoor static under low speed condi-
tions (e.g., start or end of the trip near a static cluster).
For in-vehicle travel, approximately 80% of the points
that were wrongly classified as outdoor static points
occurred when the participants stayed in the car without
moving (e.g., waiting to pick up someone) or the car
moved very slowly approaching or leaving a parking lot
(results not shown). The models usually classified vehi-
cle idling longer than two minutes or vehicle moving at
very low speed as outdoor static, whereas participants
usually reported such conditions as in-vehicle travel.
One the other hand, we found that approximately 75%
of the outdoor static points that were wrongly classified
as in-vehicle travels lasted less than two minutes, indi-
cating that this type of misclassification came from
either coding errors (e.g., participants and research staff
may have difficulty correctly reporting/coding the start
or end of an in-vehicle travel period compared to an
outdoor static period) or modeling errors (e.g., the mod-
els were incapable of reliably classifying time activity
categories near the start or end of an activity).
Three major limitations exist in this study. First, the

manually-classified time activity classifications of the
HCTLS and UCI data were not error free despite the
extensive measures we have taken to minimize errors
and enhance the accuracy of the coding (e.g., GPS track-
ing was combined with a paper diary and in-person
interview). Participants in the HCTLS tended to not

record short stops or trips such as walking to an adja-
cent school to pick up a child from school or walking to
a nearby corner store [37]. Although follow-up inter-
views were used to clarify these discrepancies and to
finalize the classifications of these missing periods, these
data may not reliably capture the precise time of transi-
tions between indoor and outdoor spaces particularly
when participants lingered near a building entrance dur-
ing the transition. Furthermore, even the most compli-
ant participants (including our research staff) may have
difficulty correctly documenting the start and end time
of an activity because it takes time and effort to record
such information on a time activity log and this could
interfere with ongoing activities.
The second limitation is that we collected data for 47

participants living in southern Los Angeles County and
three staff volunteers living in Irvine, Orange County.
Although the participants traveled throughout the
region, , we did not target data collection for residents
of areas with a more challenging built environment for
GPS data collection, such as downtown Los Angeles
where there are many tall and high-density buildings
which our previous research indicates could result in
more GPS signal loss and positional error [24]. Com-
plete loss of satellite signals indoors, however, may not
be a drawback because it can help determine whether
people are indoors or outdoors. Future work is needed
to refine the models so that they can classify time activ-
ity patterns in a wide range of built environments.
The third limitation of the study is that our GPS-

based time-activity patterns were not comprehensive
enough for us to explore more refined time-activity pat-
terns. For example, we had little GPS data for other
modes of travel (e.g., bus, biking, and train). Future stu-
dies should develop more refined classifications based
on a combination of over-sampling of these travel
modes and using related supplemental GIS data (e.g.,
trails and bus and train routes). In addition, we did not
look at the impact of different GPS recording intervals
on the model performance since the data were very lim-
ited for the other time intervals. Only one subject had
1-second interval data (sometimes two seconds due to
recording fluctuation); the fluctuation in GPS recordings
at other intervals accounted for only about 3.9% of the
data. We believe the rule-based model can be easily
adjusted to accommodate different recording intervals.
Future work should consider if the performance of the

models can be further improved by including supple-
mental measurement data, GPS diagnostic parameters,
and detailed points-of-interest (POI) information. Add-
ing data from a physical activity sensor (pedometer or
actigraph) may provide improved discrimination across
the indoor and outdoor environments. Certain GPS
devices output diagnostic information such as the
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number of satellites used in the determination of loca-
tions, the number of satellites in view, and the dilution
of precision which can influence satellite signal quality
and positional accuracy. Our previous work has shown
that horizontal dilution of precision was a good measure
of spatial accuracy of the GPS data and may be helpful
in distinguishing indoor vs. outdoor points [24]. Other
studies have shown the number of satellites used in the
location determination and the number of satellites in
view can be used to improve classifications of GPS data
[51]. However, our GPS data did not contain such infor-
mation. Commercial POI data provide information on
building and facility type (e.g. school, shopping, restau-
rant, hospital, and park) and are available from a num-
ber of companies (e.g., Garmin) with the main
application being in GPS-based tracking and mapping
software. Such POI data can help refine models to better
classify different microenvironments (e.g. residence,
school, restaurant) and time activity patterns (e.g. travel
mode) and improve exposure assessment of air pollu-
tants [27].
As we discussed above, this study was limited by input

data quality (e.g. error in manually-classified time activ-
ity classifications) and quantity (e.g. lack of GPS diag-
nostic and physical activity data). Despite the
limitations, our models showed promising results in
identifying time-location patterns in air pollution health
studies where exposure levels vary remarkably by loca-
tion (e.g. indoor, outdoor, and in-transit). With technol-
ogy advances, the data quality and quantity will be
improved significantly in the future research. For
instance, some GPS devices (e.g. VGPS-900 from
Visiontac™) can voice tag POI, which can improve the
manually-classified time activity classifications. In addi-
tion, certain physical activity monitors (e.g. GT3X+
activity monitor from ActiGraph™) records both activity
level and ambient light - an intriguing parameter for
distinguishing indoor vs. outdoor environment. In addi-
tion to the ease of use and the minimal learning curve,
the random forest model is capable of handling a large
number (hundreds to thousands) of variables, which
makes it a suitable modeling tool in future studies that
may collect many types of measurement data in high
temporal resolutions (e.g. GPS, actigraph, and electro-
cardiogram data). With appropriate data, the model can
be easily adapted to classify both time-location and phy-
sical activity levels, which will advance the understand-
ing of potential interactions between air pollution
exposure and physical activity levels on health out-
comes. In addition to air pollution epidemiology, the
model can also be applied in other public health fields,
such as physical activity and obesity research. More
effort is needed to modify and validate the rule-based
model before it can incorporate or classify other types

of data. But the rule-based model can be a good choice
if the researchers have a good understanding of the data
and if the decision tree approach cannot capture certain
patterns in the data.

Conclusions
We successfully developed and evaluated two models to
identify indoor and in-vehicle travel periods from raw
GPS data under free living conditions. The rule-based
model classified indoor and in-vehicle travel points rea-
sonably well, but the performance was moderate for
outdoor static and outdoor walking predictions. No
striking differences were observed between the rule-
based and the random forest models. The random forest
model was fast and easy to execute, but was likely less
robust than the rule-based model when the quality of
the training data was poor.

Additional material

Additional file 1: Supplementary Material, Tables S1 and S2.
Statistics of the duration of static clusters and periods of movement in
each time activity category and results of sensitivity tests of maximum
depth in the 10-tree random forest models.
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