
UC Irvine
ICS Technical Reports

Title
Set operations in semantic data models

Permalink
https://escholarship.org/uc/item/36t4w4d7

Authors
Rundensteiner, Elke A.
Bic, Lubomir

Publication Date
1989

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/36t4w4d7
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

~et Operations in Semantic Data Mod~ls

Elke A. Rundensteiner and Lubomir Bic - -- --
Department of Information and Computer Science

University of California, Irvine
June, 1989

Technical Report 89-22

Set Operations in Semantic Data Models

ELKE A. RUNDENSTEINER and LUBOMIR BIC

Department of Information and Computer Science

University of California, Irvine

June, 1989

Abstract

Class creation by set operations has largely been ignored in the literature. Precise
semantics of set operations on complex objects require a clear distinction between the dual
notions of a set and a type, both of which are present in a class. Our paper fills this gap
by presenting a framework for executing set-theoretic operations on the class construct.
The proposed set operations determine both the type description of the derived class as

well as its set membership. For the former, we develop inheritance rules for property
characteristics such as single- versus multi-valued and required versus optional. For the

later, we borrow the object identity concept from data modeling research. Our framework
allows for property inheritance among classes that are not necessarily is-a related.

Categories and Subject Descriptors: H.2.0 [Database Management]: General; H.2.1

[Database Management]: Conceptual Design - data models. H.2.3 [Database Man­
agement]: Languages - data description language;

Additional Key Words and Phrases: Set Operations, Property Inheritance, Class Deriva­
tion, Complex Objects, Semantic Data Models, Data Modeling.

Contents

1 INTRODUCTION

2 SET THEORY

3 TYPES VERSUS SETS

3.1 Entities and Classes ..

3. 2 Characteristics of Properties

3.3 Class Relationships

4 SET OPERATIONS IN CONCEPTUAL DATA MODELS

4.1 Introduction

4.2 Difference Operations .

4.3 Union Operations . . .

4.4 Intersection Operations .

4.5 Symmetric Difference Operations

4.6 Other Examples of Set-theoretic Operations

5 SET OPERATIONS AND CLASS RELATIONSHIPS

6 RELATED RESEARCH

7 CONCLUSIONS

1

2

3

5

5

7

8

11

11

15

18

21

23

25

26

30

32

1 INTRODUCTION

Current trends in database research have developed numerous conceptual data models

that attempt to capture real-world information in a natural and non-ambiguous manner.

Examples are object-oriented [6, 10] and semantic database systems [1, 8~ 12]. Common

to these data models is the concept of a class. Most models support a rich class definition

facility based on restricting inherited properties, that is, special forms of the specialization

and generalization abstractions (11, 7]. On the other hand, the potential of set operations

has largely been unexplored. The reason for that is that, while set operations on simple

elements are well understood, precise semantics for set operations on complex objects

have not yet been developed. Such definitions require a clear distinction between the

dual notion of a class, which represents a set and also provides a type description. This

distinction is usually blurred in the literature. Class derivation mechanisms commonly

supported, such as the specialization abstraction, are type-oriented; they perform some

operation on the type aspect of a class which then automatically implies a particular set

relationship between the original and the derived class. Set operations work in a contrary

manner. They perform some operation on the set-aspect of a class and the particular type

relationships are implied. Such implied types, however, are not always correct, as we will

show in this paper.

This paper presents a framework for executing set-theoretic operations on complex

objects. We consider the four most common set operations - union, intersection, difference,

and symmetric difference. Our approach is to extend set theory to the world of classes

while preserving as much as possible of the well-known set-theoretic semantics. The

specification of set operations on classes is based on our distinction between the set and

type aspect of classes. In other approaches, these are commonly combined and treated as

one relationship, the "is-a" relationship. Here, we first define the effect of a set operation

on the membership of the corresponding class. For this, we borrow the concept of object

identity from data modeling research. Second, the type description of the .resulting class

is specified. We design rules that describe how property characteristics are to be inherited

2

New sets can be formed from existing ones by the following operations: union, inter­

section, difference, and symmetric difference. In set theory, these operations determine

the exact membership of the newly created sets. Let Sl and S2 be any two sets. The.

difference of Sl with respect to S2 is defined as Sl - S2 = {sis E Sl and s tf. S2}. The

union of Sl and S2 is defined as Sl U S2 = {sis E S2 ors E S2 or both }. The symmetric

difference of Sl and S2 is defined as Sl L. S2 = {sis E S2 or s E S2 but not both }. The

intersection of Sl and S2 is defined as Sl n S2 = {sis E S2 ands E S2}.

A set Sl is defined to be a subset of the set S2, written Sl ~ S2, if and only if every

element of Sl is also an element of S2. Formally, Sl ~ S2 iff (s E Sl ===? s E S2). The

subset operation is not a mechanism to create a new set out of a given one, instead it

only models a relationship between two sets. To actually create a subset, operators such

as the set difference, union, etc., must be used. It is of course also possible to explicitly

create a subset of a given set by selecting some of its elements and grouping them into a

new set. Figure 1 lists the subset relationships between initial sets and the sets resulting

from applying these set operators.

set operation resulting subset relationships
intersection (SI n S2 ~ Sl) and (SI n S2 ~ S2)
um on (SI ~ Sl u S2) and (S2 ~ SI u S2)
difference Sl - S2 ~ Sl
symmetric difference none

Figure 1: Inferred Subset relationships.

In the remainder of this paper, we discuss how these operations can be generalized

for dealing with classes and complex objects found in data modeling environments. In

particular, we will study whether in this new context the set operations preserve the subset

relationships as shown in figure 1.

4

whether a given property is required or optional. (More on this is presented later in this

section.) An example of the notation is given next.

Example 1 The class Person is defined by the following:

class Person with properties:

Name : String {identifying, required};

Age : 0: 100 {single-valued};

The following notation is used to refer to the properties of a class:

<class name> . <property name>.

We refer to the domain of a property by:

domain(<class name> . <property name>).

Given the previous example, we refer to the Name property of the class Person by Per­

son.Name and we refer to the domain of this property by domain(Person.Name). We use

the following predicate to test whether a property is defined for a class or not:

< class name > . < property name > ? .

For instance, in example 1 the predicate Person.Name? returns true because the Name

property is defined for the class Person whereas the predicate Person.Friend? returns

false.

We use the set-theoretic predicate 'e E C' to denote that the entity e is an instance-of

the class C. The predicate 'e E C' is solely based on the object identity of e (13]. An entity

may take on values for different sets of properties when viewed as member of different

classes. For instance, a person will exhibit different characteristics when viewed as a

spouse than as an employee. To refer to the properties of an entity as the participant in

a particular class we use the following notation:

<property name > (< entity reference > as < class name>).

For example, we assign the value $4,000 to the property Salary of the entity Jack in

class Employee by "Salary(Jack as Employee) := $4,000". The entity Jack does not have

6

have a value for its required properties, i.e., a value not equal 'unknown'. It may or may

not have a value for the optional ones, i.e., its value may be 'unknown'. Note that if a

property is not defined for a class, then the value of that property would be 'undefined',

meaning not applicable, instead of 'unknown'. This characteristic is redefinable, since

what may be a mandatory property for some classes may be optional for others.

The identifying characteristic corresponds to the concept of a key in relational database

theory. It is not as important in object-oriented data models since the underlying concept

of object identities allows entities to be identified independently of their values. It can

however still be used by human users who wish to maintain their own unique values as

entity references.

A property is defined to be either single- or multi-valued independent of the class for

which it is initially introduced. If a property p is single-valued then for any entity e of

class C, p(e as C) has to be an element of domain(C. p) or be unknown. If a property p

is multi-valued then for any entity e of class C, p(e as C) is a subset of domain(C. p) or

is unknown.

The following simplistic convention guarantees that the names of all properties are

unique throughout the entire schema: The name of a property is prefixed by the name

of the class for which it is initially defined. Consequently, if a property is inherited from

another class then its property name is prefixed by the name of the class in which it was

originally defined. For instance, if the Employee class and the Administrator class both

have a newly defined property called Salary, then the system refers to the Employee's

property as Employee.Salary and the Administrator's property as Administrator.Salary.

3.3 Class Relationships

Most existing systems ignore the set/type duality of the class construct and hence cannot

provide clean semantics for set operations on classes. In the following, we emphasize this

dual notion by studying the meaning of class relationships which in the literature are

generally referred to as subclass/superclass or "is-a" relationships. We disambiguate their

meaning by distinguishing between two types of relationships:

8

contrast to conventional set theory where elements of the sub- and superset always look

alike [13].

The subtype/supertype relationship is concerned with the type description of classes

and consequently with the state of all elements that participate in them. The subtype

relationships between two classes is based on their type descriptions.

Definition 2 The following type relationships can exist between two classes Cl and Cf!:

1. Cl is a subtype of C2, denoted by Cl j C2, as defined by Cl j C2 := (i p) (

C2.p?=true ===} Cl.p?==true) and (domain(Cl.p) ~ domain(C2.p)).

2. Cl is a strict subtype of C2, denoted by Cl -< C2, as defined by Cl -< C2,

{::=::::} (Cl j C2 and ((3 p) (C2.p?=true and Cl.p?=true and (domain(Cl.p) C

domain(C2.p))) or ((3 p) (Cl.p?=true and NOT(C2.p?=true))))).

3. Cl being type equivalent to C2, denoted by Cl =t C2, is defined by Cl =t C2

{::=::::} (Clj C2 and C2j Cl).

4. Cl is type inequivalent (type incompatible) with C2, denoted by Cl -=tt C2, which

is defined by Cl-=tt C2 ¢=:::> (NOT(Cl j C2) and NOT(C2 j Cl)).

If Cl has more properties or more restricted domains than C2, then Cl is a strict subtype

of C2 (#2). If two classes Cl and C2 have identical properties and domains, then they

are equivalent types (#3). If there is no type relationship between two classes, i.e., Cl j

C2 and Cl t C2 are both false, then we use the symbol Cl =l C2 to denote their type

. incompatibility (#4).

A subtype has all properties of its supertype and optionally some additional ones.

Hence, a subtype has either more or the same number of properties than its supertype. The

domain of the subtype properties may be equal or contained in those of the corresponding

properties of the supertype. For instance, the class Banned-Ships is a subtype of the Ships

class and both have the same properties with the same domains. The type relation does not

make any assumptions about the corresponding class memberships. Hence, theoretically,

10

on the properties defined for the original classes. The latter has no correspondence in

conventional set theory, where a set is completely described by enumerating its members.

Consequently, there is nothing in set theory to dictate the treatment of the type description

of the resulting class. Other data models (7, 17] have made certain (arbitrary) choices in

this regard without giving a convincing argument to support their choice. The often raised

point that an entity has a certain property and hence this property has to be reflected in

the type description of the class it belongs to is not well founded. First, properties can

be optional and, second, when viewed as member of a class the entity may grant access

to only some of its properties as described in Section 3.

Determinating the type description of classes derived by set operations is related to

the issue of property inheritance. The difference being that the inheritance of properties

usually takes place between two classes while set operations always deal with three classes.

In other words, set operations are similar to the problem of multiple inheritance. However,

the literature assumes that the inheritance of properties takes place between classes which

stand in an is-a relationship to one another; this is not necessarily the case for clas'ses

derived by set operations. As will be illustrated in Section 5, the latter assumption

appears to be the reason for the limited type of set operations found in the literature.

Below, we address the property inheritance problem by determining what characteristics

properties of a derived class should have - once inherited. This leads to the development

of general rules for property inheritance.

The following two definitions are given to simplify the remainder of this section. They

are based on the naming convention given in Section 3.2, which guarantees the uniqueness

of property values: If two classes define the same single-valued property, then an entity

that appears in both cannot have two distinct values for it. The property value is either

unknown in one of them or the two values are identical.

Definition 4 Let p be a property. Let e be a member of Cl and/or C2. Then the operation

COMBINE is defined as follows.

If p is a single-valued property we have

12

' ' ' ' ' '

result clas

Persons

salary (r)

' ' ' ' '
set operation

Figure 2: Template of a Derived Class.

membership of the derived class for each set operation. The examples are given to show

the usefulness of the proposed procedures for the propagation of characteristics.

Example 2 Figure 2 depicts the classes Employees and Students. Both classes are sub­

classes (by is-a relationship) of the Person class, which is depicted by solid dark arrows.

The class Employees has two required properties, the inherited property Name and the

newly defined property Salary. The class Students has two required and one optional

property, namely, the inherited property Name, and the newly defined properties Grade

and Advisor. The class containing the question mark represents .the result of performing a

set operation on the classes Employees and Students. Subsequent examples will instantiate

the generic set operation to one of the possible four choices and show the corresponding

result class.

14

The second characteristic determines whether a property is identifying or not. The

following simple rule is sufficient to describe the propagation of this characteristic from

the base classes to the derived class.

Rule 1 Let P 1 and P2 be sets of identifying properties for Cl and C2, respectively. If C

is a class resulting from the difference of C 1 relative to C2 as defined by definitions 6 and

7 then P 1 will be identifying for C if inherited.

The previous rule is self-explanatory. The result class will contain only entities from the

class C 1. Hence if a set of properties P 1 is sufficient to distinguish between all entities of

Cl then it will also be sufficient to distinguish between the ones of a subset of Cl, i.e.,

the difference class. Next we address the third characteristic which determines whether a

property is required or non-required for a class.

Cl C2 Cl - C2
optional - optional
required - required
- optional -
- required -
optional required optional
required optional required
optional optional optional
required required required

Figure 3: Inheritance of Property Characteristics for a derived Difference class.

Rule 2 The table in figure 3 lists the propagation rules for the inheritance of the re­

quired/ optional characteristics of a class derived by a difference operation.

The table is to be read as follows. The symbol "required" refers to a required property,

"optional" refers to a not required (but existing) property, and "-" means that the partic­

ular property is not defined for that class. The third column gives the characteristic of the

inherited property in the derived class Cl _: C2 or Cl ...:.. C2, based on the characteristics

of the corresponding property in Cl and C2 (first and second column). The difference

16

4.3 Union Operations

Next, we distinguish three types of union operations. The type descriptions of first two

are derived automatically by the system, whereas the third one is determined by the ·user.

Definition 8 Let P be Cl V C2. The first union operation of Cl and C2, denoted by Cl

0 C2, is called the collecting union. It is de.fined by

Cl 0 C2 :== { eie E C2 ore E C2 or both }

with (V p E P) ((Cl 0 C2).p? :== true)

and (V e E C10C2) (V p E P) (p(e as C10C2) :== COMBINE(p(e as Cl),p(e as

C2)).

Definition 9 The second type of union operation of Cl and C2, denoted by Cl U C2, is

called the extracting union. The extracting union is de.fined as in the previous definition

except for replacing P with P :== Cl A C2.

Definition 10 The user-specified union operation of Cl and C2, denoted by Cl 0 C2, ·ls

defined by specifying a collection of properties Q with Q ~ Cl V C2. The definition of Cl

0 C2 is equivalent to the one in Definition 8 with Q substituted for the symbol P.

Note here that 0 contains the other two union operations as special cases, since the

user could choose the properties in the two cases as automatically derived by the system

for 0 or U.

Next, we study the general rules for property inheritance. As described in section 3.2,

the data model distinguishes between single- and multi-valued properties. This character­

istic does not change when a property is inherited. Consequently, the rule of inheritance

for this characteristic is trivial.

The second type of characteristic is whether a property is identifying or not. The

following rule describes the propagation of this characteristic from the base classes to the

derived class.

18

property and hence they can only be asserted as optional. Next, an example is given to

demonstrate this inheritance mechanism.

Employees
and Students

' ' ' ' '
union

el: (name= Elke, grade= B]

e2: (name = Frank, grade = A,

salary = 3000]

salary (o)

grade {o)

advisor (o)

Figure 6: derived class created by union

Example 4 The union operation Cl 0 C2 defined in definition 8 has been applied to the

situation in figure 2; the result is shown in figure 6. The new class consists of all those

elements which were members of either the Employees or the Students class. Properties

that were required for both classes can still be required for the resulting class, e.g., the

inherited property Name. However, properties that were required for only one of these two

classes can no longer be required. They can at best be optional in the new class. This is

so since, for example, the person el does not have a value for the Salary property, even

though the Salary property is required for the Employee class. The optional attributes must

stay optional.

20

Rule 5 Let P 1 and P2 be sets of identifying properties for Cl and C2, respectively. If C

is a class resulting from any of the three just defined intersection operations of Cl and C2

then P 1 or P2 will be identifying for C if inherited.

Again, the rule is self-explanatory. The result class will be a subset of both Cl and

C2. Thus, if P 1 is sufficient to distinguish between the entities of Cl then it is sufficient

to uniquely identify them when they appear in a subset of Cl, i.e., the derived class. The

same is true for P2.

Rule 6 Figure 7 gives the inheritance rules for the required/ optional characteristic of

properties defined for an intersection class.

Cl C2 Cl n C2
optional - optional
required - required
optional optional optional
required optional required
required required required

Figure 7: Property Inheritance of derived Intersection class.

To summarize, a property can be required for the result class if and only if it is defined

for both base classes and if it is required for at least one of them. In all other cases, the

property can only be asserted to be optional. The following example uses the previous

definition for property inheritance.

Example 5 In figure 8 the intersection operation Cl n C2 of definition 12 has been ap­

plied to the situation in figure 2. The new class consists of all Persons who are Employees

and Students at the same time. Properties that were required for either of the two classes

are also required for the resulting class, i.e., the inherited properties Name, Salary and

Grade. This is a sensible rule since all members of the intersection class will be guaranteed

to take on values for these properties. The optional attribute Advisor can still be optional.

22

Definition 15 Let P be Cl A C2. The symmetric difference of Cl and C2, Cl 6. C21 is

called extracting. It is defined by

Cl 6 c2· := { eje E Cl ore E C2 but not both }

with (i p E P) ((Cl 6 C2).p? := true)

and (i e E Cl 6 C2) (rl p E P)

((e E Cl ===? p(e as Cl 6 C2) := p(e as Cl)) and

(e E C2 ===? p(e as Cl 6 C2) := p(e as C2))).

In the previous definition, the properties in P are defined for both Cl and C2 and hence

do not have to be tested.

Definition 16 The user-specified symmetric difference operation of Cl and C2,

denoted by Cl 6 C2, is defined by specifying a collection of properties Q with Q ~ Cl V

C2. The definition of Cl 6 C2 is equivalent to the one in Definition 14 with the symbol

P replaced by Q.

For the same reasons mentioned earlier, the user-specified symmetric difference oper­

ation contains the other two automatic symmetric difference operations as special cases.

As described in section 3.2, the single- and multi-valued property characteristic is fixed

throughout the data model. Therefore, when a property is inherited it simply keeps its

characteristic.

The second type of characteristic is whether a property is· identifying or not. The

following rule is sufficient to describe the propagation of this characteristic from the base

classes to the derived class.

Rule 7 Let P 1 and P2 be sets of identifying properties for Cl and C2, respectively. If C

is a class resulting from a symmetric difference of Cl and C2, then P 1 together with P2

will be identifying for C if both are inherited by C.

The rule of inheritance described in the previous rule can be justified by an argument

similar to the one given for the union operation (rule 5).

24

Either Student
or Employee
but not both

' ' ' ' '
/

/

synunmetric

difference

el: [name= Elke

grade= BJ

e3: [name = Monica

salary = 4000)

salary (o)

grade (o)

advisor {o)

Figure 10: Derived class created by the Symmetric Difference operation.

The corresponding union operation, Employees 0 Students, results in a class with the

same type description and the content { el: {Name = Elke}; e2: {Name = Frank}; e3:

[Name = Monica} } .

Example 8 Assume the database designer is interested in Students who are employeed

but still are good students. In this case, the user may not be interested in details of

their employment status but to estimate how good a student is, the Grade property would

be relevant. Hence, the user-specified operation Employees n Students is the appropriate

choice for creating the desired class. The chosen type specification is "Name" and "Grade".

Then, the derived class has the content { e2: {Name = Frank, Grade = A} } .

5 SET OPERATIONS AND CLASS RELATION­
SHIPS

In this section we investigate what combinations of subset and subtype relationships

could occur within a well-defined data model. This analysis shows the consequences of

performing a set operation: both, sets and types of the new and old classes obey certain

26

Pl P2

easel:

~
Q is indicated

by shading.

Pl P2 Pl P2

case2: ®l) or ~
Pl P2 Pl P2

case3: ® or @
Pl P2 Pl P2

case4: cu cases: ~
Figure 11: Five cases of type descriptions Q.

an asterisk indicates cases that contradict the requirements of an "is-a" relationship. In

other words, each such row models a situation that could not appear in a database built

by applying only specialization and generalization operations. Oour framework, on the

other hand, allows for the inheritance of properties between classes which are not "is-a"

related. We know of no other data model that has this capability.

This table shows clearly why the union definition of row 4 was chosen over the one in

row 3 in the literature. Similarly, it shows why the intersection definition of row 10 was

chosen over the one in row 11 in the literature. The reason is that rows 4 and 10 result in

"is-a" relationships whereas the others don't. No violation of the "is-a" relationship can

occur in the fourth block of figure 12 since no type relationships hold. The complexity

and diversity of the resulting relationships may partly be the reason for the lack of "user­

specified" set operations in the literature.

28

Class relationships resulting from set operations (as shown in figure 12) are comparable

with those in set theory. This· comparison shows that the subset relationships between base

classes and the classes derived by set operations are identical to those that hold between

base sets and derived sets in set theory. In other words, the semantics of set operations

have been preserved. Moreover, the type description associated with the resulting classes

does not have any effect on the resulting set relationships. These results are presented

graphically in figure 13. The dotted lines in figure 13 indicate the derivation of the

~
' ' ' '"'-

\
\

Figure 13: Set relationships of derived classes

new classes from Cl and C2. The set operation symbols, like U, are used as generic

operators, representing all types of the corresponding operations proposed in this paper.

Subset relationships are denoted by solid dark directed arcs with the arrow pointing to

the superset.

We wish to emphasize that the use of set operations for class creation results in class

relationships that would not exist in a database schema build solely by specialization and

generalization abstractions.

6 RELATED RESEARCH

Some data models, in particular, most object-oriented models, define only type-oriented

class operations. We use the term type-oriented to mean that these operations are applied

30

7 CONCLUSIONS

The contributions of this paper are summarized below. First, the paper presents sound

definitions for set operations on the class construct. We show that the semantics of set the­

ory are preserved by these definitions since the resulting set relationships between classes

correspond to those of set operations in set theory. A class derivation mechanism would

not be well-defined without the specification of the exact treatment of characteristics of

inherited properties (especially, when inherited from more than one class) . Consequently,

we develop rules that regulate the inheritance of properties and their associated character­

istics. These rules take care of required versus optional, identifying versus non-identifying,

and single- versus multi-valued properties.

In summary, this paper provides the designer of a data model with a framework of set

operations which allows him to make an explicit and educated choice among them.

We distinguish between is-a, subset, and subtype relationships. Our analysis of class

relationships resulting from applying set operations sheds some light on the implicit as­

sumptions concerning 'is-a' relationships in the literature. Specifically, it is usually taken

for granted that an is-a relationship must exist between base classes and a derived class.

This assumption is unjustified since, for instance, the symmetric difference operation can

never result in a "is-a" relationship (as shown in figure 12). This problem has been

avoided in other approaches by simply ignoring the existence of that set operation. As

far as we know, the symmetric difference operation has never been utilized as a class

derivation mechanism. Our approach, which allows for the symmetric difference opera­

tion, results in a data model where property inheritance proceeds along not necessarily

'is-a' related class relationships.

Due to the generality of our approach, results of this paper apply to any conceptual

data model which supports the class construct. We have ignored behavioral abstractions

(methods) associated with classes of object-oriented systems [6, 10], since their inclusion

would not aid the understanding of the presented concepts. We believe, .however, that

much of this work can be extended to also include the behavioral aspect of classes.

32

[12] J. Peckham, and F. Maryanski, Semantic Data Models, ACM Computing Surveys,

vol. 20, no. 3, Sept. 1988, 153-189.

[13] E. A. Rundensteiner, L. Bic, J. Gilbert, and M. Yin, Set-Related Restrictions for

Semantic Groupings, Uni. of Cal, Irvine, Technical Report No. 89-07, Jan. 1989.

[14] E. A. Rundensteiner, and L. Bic, Aggregates in Possibilistic Databases, VLDB '89,

Amsterdam, Aug. 1989.

[15] D. W. Shipman, The Functional Data Model and the. Data Language DAPLEX,

ACM Trans. on Database Systems, vol. 6, issue 1, Mar. 1981, 140-173.

[16] J. M. Smith, and D.C.P. Smith. Database Abstractions: Aggregation and General­

ization, ACM Trans. on Database Systems, vol. 2, no. 2, June 1977, 105-133.

[17] Y. W. S. Su, Modeling Integrated Manufacturing Data with SAM*, IEEE Computer

19, l, 1986, 34-49.

34

