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Javier R. Movellan and George Chadderdon
Departments of Cognitive Science and Computer Science
University of California, San Diego
La Jolla, CA 92093
movellan@cogsci.ucsd.edu and gchadder@netman.orincon.com

Abstract

This paper illustrates how the statistical structure of
natural signals may help understand cognitive phenom-
ena. We focus on a regularity found in audio visual
speech perception. Experiments by Massaro and col-
leagues consistently show that optic and acoustic speech
signals have separable influences on perception. From a
Bayesian point of view this regularity reflects a percep-
tual system that treats optic and acoustic speech as if
they were conditionally independent signals. In this pa-
per we perform a statistical analysis of a database of
audiovisual speech to check whether optic and acous-
tic speech signals are indeed conditionally independent.
If s0, the regularities found by Massaro and colleagues
could be seen as an optimal processing strategy of the
perceptual system. We analyze a small database of au-
dio visual speech using hidden Markov models, the most
successful models in automatic speech recognition. The
results suggest that acoustic and optic speech signals
are indeed conditionally independent and that therefore,
the separability found by Massaro and colleagues may
be explained in terms of optimal perceptual processing:
Independent processing of optic and acoustic speech re-
sults in no significant loss of information.

Introduction

This paper illustrates how the analysis of the statistical
structure of natural signals may provide a rational ba-
sis for understanding human cognition. This approach is
not new, and in our case it was inspired on David Marr’s
ideas about the importance of a functional level of anal-
ysis, John Anderson’s views on rational analysis, and
by David Field’s work relating early visual processing to
the statistics of natural images (Marr, 1982; Field, 1987;
Anderson, 1990). In this paper we analyze a regularity
found in a wide variety of experiments on audiovisual
speech perception.

Research on audiovisual speech perception shows that
visual signals modulate the perception of auditory sig-
nals. For example, McGurk and MacDonald (McGurk &
MacDonald, 1976), showed that when subjects hear “ba”
while seeing “ga”, they perceive “da”, a percept which
is jointly influenced by the optic and the acoustic speech
signals, Extensive research has been done to understand
how optic and acoustic speech signals combine into a
unified percept (Massaro & Cohen, 1983; Massaro, 1987;
Braida, 1991). For concreteness, consider the following
hypothetical experiment, which illustrates a common de-
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sign in this area of research. Subjects are repeatedly pre-
sented with 9 opto-acoustic speech signals obtained by
combining, in a fully factorial design, the acoustic artic-
ulations /ba/, /ga/, and /da/ with optic articulations of
the same alternatives. Subjects are then presented with
these signals and asked to report what they heard. The
responses are then organized into a stimulus-response
matrix in which each entry indicates the probability of a
particular perceptual response when the subject is pre-
sented with one of the 9 possible signal combinations.
Let {w;,ws, - -,wn}, represent the response alternatives,
£° the optic signal and £° the acoustic signals. Massaro
and colleagues (Massaro & Cohen, 1983; Massaro, 1987)
have repeatedly shown that in a wide variety of exper-
iments of this type, response probability ratios factor-
ize into independent components one controlled by the
acoustic signal and one by the optic signal.

pr(“iiéogu) = (Fﬂ(Eolui))( Fa(E".w.')) (1)
P*‘(“"ilso‘f“) FO(E"I“}') Fd(fas“"’j)

where p,(w;|€2€f) is the probability of subjects choos-

ing response alternative w; when presented with the optic

signal £° synchronized with the acoustic signal £%. The
term

Fo(€°, wi)
Fa(E”-“’i) ' (2)

is interpreted as the relative support of the optic signal
£° for the two response alternatives under consideration,

and the term Fu(é )
a anwi
FulE®,w;) ®)

is interpreted as the relative support of the acoustic
signal £° for the two response alternatives under consid-
eration.

The crucial aspect of this result is that response prob-
abilities ratios are separable into independent factors.
This type of factorization was first noticed by Morton
(Morton, 1969) and thus it is at times recognized as Mor-
ton’s law. Movellan and McClelland (Movellan & Mec-
Clelland, 1995 submitted for publication) showed that
Morton’s law is the signature of a perceptual system that
processes signals as if they were conditionally indepen-
dent. If the acoustic and optic speech signals were indeed
conditionally independent, Morton’s law would reflect an
optimal processing strategy of multimodal speech.
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To investigate this point, we analyze the statistical
structure of a small database of audio-visual speech sig-
nals. Our goal is to test whether naturally occurring
acoustic and visual speech signals are conditionally in-
dependent.

At a formal level, conditional independence is defined
as follows,

P(§°€ lw;) = p(€°|w;)P(E" |wj) (4)
indicating that the likelihood of each perceptual al-
ternative wj, is separable. Intuitively, conditional inde-
pendence tells us that if we analyze signals belonging to
a perceptual category w;, we will find that the acous-
tic and optic signals within that group are statistically
independent. From a Bayesian point of view the likeli-
hood is the only source of data-driven information about
the perceptual alternatives and thus, conditional inde-
pendence allows separable processing of the optic and
acoustic signals.

Due to the large dimensionality of the opto-acoustic
signals we analyze their statistical structure in an indi-
rect manner, by modeling the speech signal using hidden
Markov models (HMM), the most successful models for
automatic speech recognition. We train HMMs to recog-
nize audiovisual speech. Some of these models are con-
strained to assume conditional independence some are
not. The constrained models are a restricted version of
the unconstrained models. We then optimize the en-
tire family of constrained and unconstrained models. If
the audio and visual speech signals are conditionally in-
dependent, the best constrained model should perform
about as well as the best unconstrained model. Other-
wise, the best unconstrained models should outperform
the best constrained models.

Database

We used Tulipsl, a database compiled by Movellan
(Movellan, 1995) and consisting of 9 male and 3 female
undergraduate students from the Cognitive Science De-
partment at the University of California, San Diego. For
each of these, two samples were taken for each of the
digits "one” through "four”. Thus, the total database
consists of 96 digit utterances. The audio sampling rate
is 11.1 kHz, and each sample has an 8-bit representa-
tion. Each frame in the video track of a movie is an
8-bit grey-scale, 100x75 pixel image, and each movie is
sampled at a visual frame rate of 30 frames per second.
The subjects were asked to center and align their lips in
the camera during the sampling.

Signal processing.

Our signal processing philosophy is to preserve, as much
as possible, the information in the original frames. Each
frame from the video track is symmetrized along the ver-
tical axis, and a temporal difference frame is then ob-
tained by subtracting the previous symmetrized frame
from the current symmetrized frame. The symmetrized
and differential symmetrized frames are then low-pass
filtered and soft-thresholded (Movellan, 1995), and the
left side of the former and the right side of the latter
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Figure 1: Visual Preprocessing: 1) Raw Image. 2) Sym-
metrized Image. 3) Difference Image. 4) Final Compos-
ite.

are combined to form the final feature frame. Each of
these final frames has 300 dimensions (20x15 pixels). No
hard feature detection procedures are used to avoid loss
of potentially important information. The approach is
illustrated in Figure 1.

LPC/cepstral analysis is used for the auditory front-
end. This is a fairly standard technique which param-
eterizes an estimate of the human vocal tract’s transfer
function. First, the auditory signal is passed through
a first-order emphasizer to spectrally flatten it. Then
the signal is separated into non-overlapping frames at
30 frames per second. This is done so that there are
an equal number of visual and auditory feature vec-
tors for each utterance, and these will be in synch with
each other. On each frame we perform the standard
LPC/cepstral analysis. Each 30 msec auditory frame
is characterized by 26 features: 12 cepstral coefficients,
12 delta-cepstrals, 1 log-power, and 1 delta-log-power.
Each of the 26 features is encoded with 8-bit accuracy.
The cepstral coefficients are a compact representation of
the local power spectrum of the speech signal. The local
phase spectrum is lost in this representation. However,
loosing local phase does not affect the intelligibility of
the acoustic signal.

Statistical modeling of the speech signal.

We model the speech signal using hidden Markov models
(HMMs), one per word category, independently trained
on signals from the corresponding word categories (see
Figure 2). The HMMs were continuous density left-to-
right models with a fixed number of states. The proba-
bility distribution generated by a state is modeled as a
mixture of multivariate Gaussian distributions. A diago-
nal covariance matrix is used, with the variances of each
Gaussian in a particular state tied together. The num-
ber of states and number of Gaussian mixtures per state
were systematically varied to find the best combination
of states and mixtures.

After each model is trained on exemplars from its cor-
responding word category, classification of an unknown
observation proceeds by calculating, for each model, the
log-likelihood of the model given the observation. Then
the classification corresponding to the model with the
highest log-likelihood is chosen as the winner.



Winner-Takes-All
Response Function

Bank of HMMs

Figure 2: The signal is modeled with a bank of HMMs.

We use two types of models, which we will refer to as
constrained and unconstrained. The constrained mod-
els implement the assumption of conditional indepen-
dence. Each constrained model consist of two indepen-
dent sub-models, one auditory and one visual. These are
trained on their respective data sets, and during test-
ing, the combined response is obtained by adding the
log-likelihood of the auditory and visual models given
the observations. This operation enforces the assump-
tion of conditional independence. Classification proceeds
by picking the model with the highest combined log-
likelihood.

The unconstrained models are trained on the com-
bined opto-acoustic signal. These models are more gen-
eral than the unconstrained models. If the signals are
conditionally independent these models should learn to
combine their outputs additively thus performing as well
as the previous models. However, if the signals are not
conditionally independent these models should perform
better.

Results

We tested the two types of models with a variety
of signal-to-noise ratios (SNR) in the acoustic signal.
Training was done with clean auditory samples, and test-
ing with a variable (SNR). No noise was added to the im-
ages either for training or testing. The jack-knife method
was used for obtaining each generalization performance
estimate. Training was done leaving out the utterances
of one of the 12 subjects, and testing was done on the
utterances of the excluded subject. This was repeated
12 times, leaving out a different subject each time. Jack-
knife estimates are based on the average generalization
obtained with these 12 samples.

For each of the two types of models (constrained
and unconstrained), we systematically tested 45 dif-
ferent architectures by varying the number of states
(2,3,4,5,6) and the number of Gaussians per state
(2,3,4,5,6,7,8,9,10). We chose the best 2 constrained and
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Acoustic Signal to Noise Ratio
Model 0dB[6dB [12dB [ I8 dB | Clean
nconstrained | 94.2 | 95.2 | 94.5 93.9 95.5
Constrained 92 95.2 | 96.4 98.7 98
Auditory Only | 75.4 | 84.6 89.1 92.6 92.3
Visual Only 89.4 | 89.4 89.4 89.4 89.4

Table 1: Performance at different signal to noise ratios.

the best 2 unconstrained architectures.

Table 1 shows the performance of the best constrained
and unconstrained models. For completeness we also
show the performance of the best Auditory-only and the
best Visual-only models. In most cases the constrained
architecture performs marginally better than the uncon-
strained architecture. Thus, assuming conditional inde-
pendence does not result in loss of information,

Conclusions

The results of this exploratory study suggest that the op-
tic and acoustic speech signals are indeed conditionally
independent. Thus, the emergence of Morton’s law in
audiovisual speech perception experiments, may reflect
an optimal functional organization of the perceptual sys-
tem.

We need to be cautious about these results since our
analysis has important limitations: 1) Our work is based
on a small database and it is unclear whether it would
generalize to other databases. 2) Since our database is
small, it is possible that the potential bias introduced by
the assumption of conditional independence may be com-
pensated by the fact that it allows a significant reduction
in the number of training parameters. 3) We model the
speech signal using HMMs and it is possible, that differ-
ent approaches would have produced different results. 4)
Different results may perhaps be obtained using differ-
ent signal processing strategies (e.g. feature detectors,
Gabor filters ...) 5) Our results do not clarify at which
level independence holds. It is possible that the indepen-
dence obtained when conditioning on words is due to the
existence of lower level independence (e.g. when condi-
tioning over sub-word units). Our results can only be
used as evidence that independence holds at some level
but we cannot specify where this level is located.

We are currently working to overcome these limita-
tions but we believe this exploratory work illustrates how
current techniques on artificial pattern recognition may
be used to analyze the structure of natural signals and
to establish a statistical approach to human cognition.
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