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ABSTRACT OF THE DISSERTATION

Bayesian Nowcasting of Pathogen Transmission Dynamics

By
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A central task in statistical analyses of infectious disease surveillance data is nowcasting

transmission dynamics, understanding how transmissible a pathogen is in the present day.

One way to summarize transmissibility is through the effective reproduction number, the

average number of individuals an individual infected today would subsequently infect under

current conditions. When the effective reproduction number is above one, an outbreak is

expected to grow, the reverse is true when it is below one. Estimating the effective re-

production number from observed data is non-trivial, as epidemics are only ever partially

observed, and existing data streams are subject to ascertainment biases that must be taken

into account. Ideally, epidemics would be modeled as a partially observed stochastic process,

but in practice this is computationally prohibitive. In this dissertation, we develop statisti-

cal models for estimating the effective reproduction number from a variety of data sources

using a series of computationally tractable approximate models of epidemics. In particu-

lar, we develop models for estimating the effective reproduction number from case and test

data, from pathogen genome concentrations collected from wastewater in large populations,

and pathogen genome concentrations collected from wastewater in small populations. We

compare our methods against state-of-the-art methods in simulation studies, and apply our

methods to estimate the effective reproduction number of SARS-CoV-2 in California from

2020 to 2022.
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Chapter 1

Introduction

1.1 Surveillance Data

When modeling infectious disease epidemics, statisticians usually make use of what are re-

ferred to as surveillance data. Surveillance data are collected in an ongoing process by some

kind of institutional apparatus, often a public health department, as part of its mission to

track the spread of infectious diseases. We could contrast surveillance data with data col-

lected for a particular study to answer a particular scientific question of interest. Common

data sources include counts of cases, counts of new deaths, or counts of those currently hospi-

talized who have tested positive for a disease. Each data source provides information about

one particular aspect of the spread of infectious disease; for instance, case data might reflect

the number of new infections, while hospitalizations represent the number of individuals in

an advanced stage of infection.

A number of aspects of the data collection process can further distort data. Tests may not

be 100% accurate. Policies about who can test can change over time. Capacity to test can

change over time as well, as can the willingness of the population to test in the first place. A

1



more fundamental issue with surveillance data is that surveillance data are always a proxy

for unobserved events that are the actual events that dictate the course of the epidemic.

That is, the data that actually describe the course of an epidemic are the exact times at

which individuals became infectious, infected others, and recovered, and these quantities are

never fully observed.

More recently, pathogen genome concentrations collected from wastewater (often referred to

as wastewater data in this dissertation) have become widely available as a new source of

data. Individuals infected with a pathogen can shed copies of the pathogen through their

fecal matter. These individual copies are aggregated in the sewer system, and measures of

the concentration of pathogen genomes found in wastewater can be calculated [Hillary et al.,

2020, Polo et al., 2020]. The concentration, then, represents a noisy measurement of the

number of currently infectious or recently recovered individuals in the population. While

these data are also distorted by the dynamics of the sewer system and the measurement

process [Wade et al., 2022], it largely avoids the biases of case data, because there are no issues

with testing capacity or willingness to test. Incorporating wastewater data into statistical

models of infectious disease outbreaks has barely begun, this dissertation contributes to that

effort.

1.2 The Effective Reproduction Number

In an infectious disease epidemic, the effective reproduction number at time t (or the “in-

stantaneous effective reproduction number” [Gostic et al., 2020]) is the average number of

individuals a person infected at time t would subsequently infect, if the conditions of the

epidemic at time t remained the same. It is used as a measure of how “under control”

an epidemic is, if the effective reproduction number is above 1, the epidemic is expected

to continue to spread, while when it is below 1, the opposite is true. This parameter is

2



time-varying, and it is of interest both to estimate changes over time retrospectively, as well

as to estimate what the effective reproduction number is in the present, in the midst of an

on-going epidemic. This real-time estimation problem is often referred to as “nowcasting.”

The effective reproduction number is only one summary of the state of an epidemic, and

as an average obviously elides differences in individual transmission dynamics [Jewell and

Lewnard, 2022]. Nevertheless, it is a useful measure of transmission dynamics, and this

dissertation will be focused on developing models that estimate the effective reproduction

number.

1.3 Models of Infectious Disease Epidemics

Mathematical models of infectious disease epidemics begin with assumptions on individual

transmission dynamics, though the final models used for inference are often population level

models where the individuals in the population follow the assumed dynamics. In one kind

of model, individuals are assumed to be independent and identically distributed, leading to

branching process inspired models [Fraser, 2007, Cori et al., 2013]. In branching process

models, the number of newly infected individuals is assumed to be related to the product of

the effective reproduction number and a weighted sum of the previously infected individuals,

where the weights are chosen to reflect the infectiousness of individuals so that more recently

infected individuals are the most infectious. Branching process inspired models are by far

the most common type of models used when estimating the effective reproduction number.

Another approach is to assume that individuals interact with each other in the context

of a population, where some individuals are susceptible to infection, and others are not.

This set of assumptions leads to compartmental models, which are the traditional type of

model for modeling infectious disease epidemics [Andersson and Britton, 2012, Blackwood

and Childs, 2018, Allen, 2010]. In a compartmental model, the total number of individuals

3



who are currently susceptible, infectious, and recovered are tracked over time. The effective

reproduction number can also be derived from compartmental models.

There are deterministic and stochastic versions of both classes of models, and both versions

are used in practice [Cori et al., 2013, Bhatt et al., 2023, Fintzi, 2018, Bayer et al., 2024].

Deterministic models are computationally faster and less prone to implementation issues,

while stochastic models incorporate more of the uncertainty inherent in the epidemic process.

Deterministic models perform best in large population settings, while in a small population,

a stochastic model may be needed. This is mathematically justified by thinking of the

deterministic model as the limit of the stochastic model when the population size diverges

to infinity [Kurtz, 1971, Andersson and Britton, 2012].

1.4 Motivating Examples

1.4.1 SARS-CoV-2 Cases and Tests in Orange County, California

Chapters 3–5 of the dissertation will analyze data from the SARS-CoV-2 epidemic in Califor-

nia in populations of various sizes. In Chapter 3, we will estimate the effective reproduction

number from case and test data for the fifteen most populous counties in California. An

example from Orange County is shown in Figure 1.1.

4
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Figure 1.1: Cases (positive tests), total tests (positive and negative tests) and test positivity
(cases divide by total tests) for the SARS-CoV-2 epidemic in Orange County, CA from
August 2020 through January 2022. Data were collected at a daily time-scale and then
aggregated to a weekly level.

We can think of case data as being noisy realizations of the underlying number of newly

infectious individuals. The trouble is that reporting rates for cases can change for a variety

of reasons unrelated to changes in the number of new infections. For instance in December

of 2020, there is a marked decline in the number of new cases near that winter’s peak.

When we examine the total number of tests administered, however, it is clear that this dip

is a result of fewer tests being administered as compared to previous weeks, likely due to

the Christmas holiday. When we examine test positivity instead of cases alone, we see an

increase in test positivity that week. In Chapter 3, we develop a case-based method for

estimating the effective reproduction that incorporates total tests administered as a model

covariate based on a branching process inspired model of the epidemic. This work has been

published in Goldstein et al. [2024].
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1.4.2 SARS-CoV-2 Wastewater Data Collected in Los Angeles

County, California

Wastewater data were collected from the Joint Water Pollution Control (JWPCP) wastew-

ater treatment plan in Los Angeles County from July 2021 through February 2022. The

JWPCP plant serves 4.8 million residents spread throughout Los Angeles County. It is typ-

ical for multiple measurements of the concentration to be taken on a particular day, these

multiple measurements are often called replicates. While it is most common to report aver-

ages of replicates, we instead will work with the replicates directly. The data are visualized

in Figure 1.2.

2
3
4
5
6
7
8
9

10

20
21

−
07

−
01

20
21

−
08

−
01

20
21

−
09

−
01

20
21

−
10

−
01

20
21

−
11

−
01

20
21

−
12

−
01

20
22

−
01

−
01

20
22

−
02

−
01

20
22

−
03

−
01

Date

Lo
g 

G
en

om
e 

C
on

c.

LA Wastewater Jul 21 − Feb 22

0

100,000

200,000

300,000
20

21
−

07
−

01

20
21

−
08

−
01

20
21

−
09

−
01

20
21

−
10

−
01

20
21

−
11

−
01

20
21

−
12

−
01

20
22

−
01

−
01

20
22

−
02

−
01

20
22

−
03

−
01

Date

W
ee

kl
y 

C
as

es

LA Cases Jul 21 − Feb 22

Figure 1.2: Wastewater and case data for the SARS-CoV-2 epidemic in Los Angeles County.
Wastewater data were collected approximately every two days, with usually three measure-
ments taken per day, each dot represents a measurement, the line is the average of the
measurements. Cases were aggregated to a weekly time scale.

We can see that the wastewater data are quite noisy, there can be outliers and also great

variability amongst the replicates on a particular day. On the other hand, there are clear

patterns in the data, with the peaks in wastewater concentration aligning well with the peaks

in cases. In Chapter 4, we will develop a method to estimate the effective reproduction

number from wastewater data by modeling the wastewater data as noisy realizations of the

6



number of currently infectious and recently recovered individuals. We will abandon the

branching process model, which does not easily track the number of currently infectious

individuals, and instead adapt a deterministic compartmental model that performs well in

large populations.

1.4.3 SARS-CoV-2 Wastewater Data Collected at University of

California, Irvine

While wastewater data are often collected at large treatment plants such as the JWPCP

plant in Los Angeles, it can be collected at many different points of the sewer system, for

instance outside university dorms or long-term care facilities [Acer et al., 2022, Keck et al.,

2024]. This is potentially very useful, as we expect that epidemic transmission dynamics vary

across spatial locations. Wastewater data were collected at University of California, Irvine

between January 2022 and June 2022 at a variety of locations across campus corresponding

to different residential dormitories housing both graduates and undergraduates. The data

were again collected every few days, with usually three replicates available. Case data were

also available, reported at lower spatial granularity than the wastewater. These data are

displayed in Figure 1.3.
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Figure 1.3: Log concentrations of SARS-CoV-2 RNA and weekly reported new COVID-19
cases at UC Irvine for February 2022 through May 2022. For the log concentrations, the
dots are individual replicates, and the lines are the mean. The cases are reported at a lower
spatial resolution than the concentrations.

G1 and G2 are sub-communities within the larger G community, likewise E1 is a sub-

community of E. These sub-communities had around 1000 residents. With such small pop-

ulations, we are concerned about the suitability of a deterministic model of the epidemic.
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In Chapter 5, we develop a model that uses a stochastic model of the epidemic in order to

estimate the effective reproduction number from wastewater data.

1.5 Overview of the Dissertation

In Chapter 2, we review concepts in statistics and probability that drive the methodologies

developed in later chapters. In particular we review Bayesian inference, Markov jump pro-

cesses, various epidemic models, including branching and compartmental models, as well as

equivalents of the strong law of large numbers and the central limit theorem for Markov

jump processes.

In Chapter 3, we develop a branching process inspired method to estimate the effective

reproduction number from cases and tests. We develop a new model that incorporates the

number of diagnostic tests as a surveillance model covariate. Using simulated data and data

from the SARS-CoV-2 pandemic in California, we demonstrate that incorporating tests leads

to improved performance over the state-of-the-art.

In Chapter 4, we develop a compartmental model based method to estimate the effective

reproduction number from wastewater data. We propose a model where new infections arrive

according to a time-varying immigration rate that can be interpreted as an average number

of secondary infections produced by one infectious individual per unit time. This model

allows us to estimate the effective reproduction number from concentrations of pathogen

genomes while avoiding difficult to verify assumptions about the dynamics of the susceptible

population. As a byproduct of our primary goal, we also produce a new model for estimating

the effective reproduction number from case data using the same framework. We test this

modeling framework in an agent-based simulation study with a realistic data generating

mechanism that accounts for the time-varying dynamics of pathogen shedding. Finally, we
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apply our new model to estimating the effective reproduction number of SARS-CoV-2 in Los

Angeles, California, using pathogen RNA concentrations collected from a large wastewater

treatment facility.

In Chapter 5, we modify the model developed in Chapter 4 for small population settings.

In small populations, ideally we would estimate the effective reproduction number using a

Markov jump process (MJP) model of the spread of infectious disease, but in practice this is

computationally challenging. We propose a simplified MJP that tracks only latent and in-

fectious individuals. Taking advantage of the model’s simpler structure, we calculate closed

form solutions for the conditional first and second moments, and apply well known analogues

of the central limit theorem for MJPs to approximate transition densities as normal, making

Bayesian computation tractable. Using simulated pathogen RNA concentrations collected

from wastewater data, we demonstrate the advantages of our stochastic model against deter-

ministic counterparts for the purpose of estimating effective reproduction number dynamics.

We apply our new model to estimating the effective reproduction number of SARS-CoV-2

in several college campus dormitories at University of California, Irvine.

Chapter 6 concludes the dissertation with a summary and discussion of future directions.
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Chapter 2

Background

2.1 Bayesian Inference

There are both Bayesian and frequentist methods for estimating parameters driving infec-

tious disease epidemics, but this disseration will cover only Bayesian methods. Thus, we

begin with a brief overview of Bayesian inference.

In Bayesian inference we quantify the range of plausible values of parameters Θ given some

set of observed data Y through what is known as the posterior distribution. We treat the

parameters Θ as random, and require a prior distribution with density P (Θ) that describes

our beliefs about the plausible values of the parameters before having seen the observed

data. We also define a likelihood P (Y|Θ) that describes how the data Y are generated

given a fixed set of parameters Θ. Appealing to Bayes’ Rule, the density of the posterior

distribution is defined as

P (Θ|Y) =
P (Y|Θ)P (Θ)

P (Y)
(2.1)

11



where the denominator P (Y) can be rewritten as an integral P (Y) =
∫
P (Y|Θ)P (Θ)dΘ.

However, this integral is often analytically intractable. In this situation, we can make use

of the Markov chain Monte Carlo (MCMC) algorithm to approximate summaries of the

posterior distribution (such as the posterior mean or posterior 95% quantile) by constructing

a Markov chain whose stationary distribution is the posterior distribution of interest. At

each iteration of the algorithm, a proposed value Θ′ is sampled from a proposal distribution

q. The proposed value is then accepted with probability

p = min

{
1,
P (Θ′|Y)q(Θ|Θ′)
P (Θ|Y)q(Θ′|Θ)

}
,

which, using Equation 2.1, reduces to

p = min

{
1,
P (Y|Θ′)P (Θ′)q(Θ|Θ′)
P (Y|Θ)P (Θ)q(Θ′|Θ)

}
.

If the proposed state is rejected, the algorithm remains at its current state (see Chapter

11 in Gelman et al. [2014] for a thorough introduction to MCMC). Note that, to use this

algorithm, the likelihood P (Y|Θ) must be evaluated at each iteration, which will be a major

computational obstacle in our application area.

In Chapters 3–5 we will use the MCMC technique known as Hamiltonian Monte Carlo

(HMC) that proposes new states of the Markov Chain according to a series of physics-

based equations derived from Hamiltonian dynamics [Betancourt, 2017, Neal, 2011]. HMC

is known to perform well in high-dimensional settings where other MCMC methods often

fail. A key limitation of HMC is that it cannot be used with models with latent discrete

random variables, as it relies upon taking the gradient of the proportional posterior, which

only exists for continuous latent random variables.
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2.2 Markov Jump Processes

Epidemics are often modeled as Markov chains, in particular as continuous time Markov

chains. This is particularly useful in statistics, as it allows for data to be collected at

irregular intervals. This section provides a brief overview of continuous time Markov chains.

We say that X(t) is a continuous time Markov Chain, or Markov jump process (MJP) if for

t > 0 and s ≥ r ≥ 0

P (X(t+ s) = j|X(s) = i,X(r) = x(r)) = P (X(t+ s) = j|X(s) = i) ,

where X(t) has a state space that is either finite or countably infinite. Intuitively, given

the past history of the process, the distribution of the future depends solely on the most

recently known state. This is known as the Markovian property. An MJP is homogeneous

when pij(t) = P (X(t + s) = j|X(s) = i) does not depend on s. We define the matrix

P(t) = {pij(t)} to be the transition probability matrix. If the state space of X(t) is of finite

size S, then P(t) is an S × S matrix. By construction, P(0) = I.

It is often useful to characterize an MJP through its infinitesimal generator matrix. Define

λi = limh→0+
1−pii(h)

h
. Define λij = limh→0+

pij(h)

h
. Finally, let λii = −λi. The infinitesimal

generator matrix is Λ = {λij}.

An MJP is stable if λi < ∞ and conservative when λi =
∑

j ̸=i λij. We will only consider

stable and conservative MJPs. In this case, we can write

pii(t+ dt) = 1− λidt+ o(dt),

pij(t+ dt) = λijdt+ o(dt).

An important consequence of the Markovian property is that the waiting time to the next
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state in an MJP is exponentially distributed, where the individual waiting time to each type

of possible transition is distributed exponentially with rate λij.

Generator matrices are often quite sparse, and so for convenience we often describe a MJP

in terms of its infinitesimal transition probabilities or infinitesimal rates. For instance, in

a pure birth process, at an infinitesimal level there are only two possible transitions, either

the population size increases by 1, or it stays the same.

We state without proof the well-known Chapman-Kolmogorov equation that serves as an

important building block in describing the properties of MJPs.

P(t+ s) = P(t)P(s). (2.2)

Using Chapman-Komogorov, we can show that

P′(t) = lim
h→0+

P(t+ h)−P(t)

h
= lim

h→0+

P(t)(P(h)− I)

h
= P(t)Λ.

This is known as the Kolmogorov Forward-Equation. By switching the order of multiplica-

tion, we arrive at the Kolmogorov Backward-Equation: P′(t) = ΛP(t). In combination with

the initial condition P(0) = I, we can solve for P(t):

P(t) = exp (Λ) =
∞∑
n=0

Λntn

n!
.

For further reading on Markov jump processes, we refer readers to chapter 8 of Karlin [1966]

and chapter 6 of Ross [1985].
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2.3 Diffusion Processes

2.3.1 Brownian Motion

We provide a heuristic derivation of Brownian motion based on the limit of a symmetric

random walk drawing from Chapter 16 in Feller [1957] and Chapter 10 in Karlin [1966],

and leave more rigorous definitions to Chapter 1 of Oksendal [2013] and Chapter 3 of Fuchs

[2013]. Consider a series of independent Bernoulli random variables such that

P (Bi = 1) = P (Bi = −1) =
1

2
.

Let ∆B be a scalar constant representing the jump size of a random walk and ∆t be a time

step size. Now define the continuous process

W (t) = ∆B(B1 + · · ·+B⌊t/∆t⌋).

In other words, W (t) is a random walk process where in each time interval ∆t, the process

moves by length ∆B positively or negatively with equal probability. It makes the jumps up or

down by ∆B at times ∆t, 2∆t, 3∆t, . . . and stays constant in intervals [0,∆t), [∆t, 2∆t), . . .

By definition, E[W (t)] = 0 and Var(W (t)) = (∆B)2⌊ t
∆t
⌋. Now we let ∆B → 0 and ∆t→ 0

but require that ∆B√
∆t

= 1. Then the variance of W (t) becomes t.

In this case, the central limit theorem applies, and W (t) converges in distribution to N(0, t).

This is standard Brownian motion, it is characterized by the following properties:

1. W (0) = 0,

2. W (t) is continuous,
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3. W (t) has independent increments,

4. W (t+ s)−W (s) ∼ N(0, t).

2.3.2 Diffusion Processes

In Chapter 5, we will approximate an MJP with a diffusion process, a kind of continuous

valued stochastic process. Thus, we describe the construction of diffusion processes in the

following section.

Somewhat oversimplifying the matter, we can think of diffusion processes as solutions to

stochastic differential equations. A stochastic differential equation is an extension of a de-

terministic differential equation, and while the details of the definition are non-trivial, the

heuristic definition (taken from Chapter 3 of Oksendal [2013]) is relatively straightforward.

We want the solution to a system that looks like

dV

dt
= µ(V, t) + σ(V, t)× random noise.

Brownian motion is the best choice for characterizing the noise term, and it is easier to

conceptualize this in terms of a discrete version of the above equation:

V (tk+1)− V (tk) = µ(V (tk), tk)(tk+1 − tk) + σ(V (tk), tk)(W (tk+1)−W (tk)),

where, recall, W (tk+1) is standard Brownian motion. If we let (tk+1 − tk) go to 0, we arrive

at

dV (t) = µ(V (t), t)dt+ σ(V (t), t)dW (t).
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Integrating on both sides yields

V (t) = V (0) +

∫ t

0

µ(V (s), s)ds+

∫ t

0

σ(V (s), s)dW (s),

where the first integral is the usual Lebesgue integral, and the second integral is the stochastic

Itô integral. The solution to this equation is our diffusion process, its relevant characteristics

are that it is a real valued continuous time Markov process, and if σ(V, t) is not a function

of V then the transition densities of V will be Gaussian. Mathematically more rigorous

introductions are available in Chapter 3 of Oksendal [2013] and Chapter 3 of Fuchs [2013].

2.4 Mathematical Models of the Spread of Infectious

Disease

2.4.1 Agent-Based Models

Epidemics are composed of individuals interacting and infecting each other, thus it makes

sense to begin with individual level (or agent-based) models of the spread of infectious

disease [Andersson and Britton, 2012, Ball and Siri, 2019, Fintzi et al., 2017]. It is common

practice to describe the states of an infection, for simplicity we will discuss just three states:

susceptible (S), infectious (I), and recovered (R). Many extensions are possible, the most

common of which is the inclusion of a latent state (E), that describes when individuals

are infected but themselves not yet infectious. We will assume the population is of fixed

size N, and further that the population is homogeneously mixing (individuals are equally

likely to interact with any other member of the population). Let β/N be the per-capita

contact rate, and ν be the recovery rate. When an infected individual makes contact with a

susceptible person, the susceptible person becomes infectious. Because the time to recovery
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is exponentially distributed, the average time spent infectious is 1/ν.

We define a Markov chain X(t) which is a vector of length N , where the entries of X(t)

are the states of each individual in the population. Let I be the total number of infectious

individuals at time t. Then the infinitesimal transition rates between states X and X′ are

λXX′ =


β
N
I, if, for a single subject j Xj = S and X ′j = I

ν, if, for a single subject j Xj = I and X ′j = R.

2.4.2 Compartmental Models

This dissertation is concerned with the (far more common) situation where individual level

data is unavailable, in which case models of epidemics spreading through populations, rather

than amongst individuals, are more germane.

Happily, we can explicitly connect the individual-level SIR model, and the population level

SIR model, often called a compartmental model. The population level SIR model counts

the number of individuals in each state at time t, so it is a three dimensional MJP: G(t) =

{S(t), I(t), R(t)}. We can derive the rates for the population level model by recalling that

the minimum of a set of independent exponential random variables is itself an exponential

random variable with rate equal to the sum of the rates. More technical discussion connecting

the two versions of the models can be found in Fintzi [2018]. In the population level SIR,

we are interested in the next time any member of the population changes states, in other

words, the minimum of all of the possible changes in states. At time t, if we have S total

susceptible individuals and I total infectious individuals, then summing up the individual

18



rates yields

λGG′ =


β
N
IS, If G′ = {S(t)− 1, I(t) + 1, R(t)},

νI If G′ = {S(t), I(t)− 1, R(t) + 1}.

Figure 2.1 is a diagram of the population level SIR model.

(S − 1, I + 1, R)

(S, I, R)

(S, I − 1, R + 1)

(β/N)IS

νI

Figure 2.1: Diagram of the population-level SIR model. A population is divided into three
states, Susceptible (S), Infected (I) and Recovered (R). On an individual level, individuals
can move from S to I, and from I to R, but no other moves between states are possible. The
population-level model tracks the total number of individuals in each of the three states at
any given time. The states are often called compartments.

Compartmental models are the most commonly used epidemic models. There are many

introductions to the topic, including Allen [2010], Blackwood and Childs [2018], Keeling and

Rohani [2008], Andersson and Britton [2012] and Renshaw [2015] among others. Using the

rate parameters above, we can write the infinitesimal probabilities of the SIR model as

P (G(t+ dt) = (S − 1, I + 1, R) | G(t) = (S, I, R)) = βI(S/N)dt+ o(dt),

P (G(t+ dt) = (S, I − 1, R + 1) | G(t) = (S, I, R)) = νIdt+ o(dt),

P (G(t+ dt) = (S, I, R) | G(t) = (S, I, R)) = 1− (βI(S/N) + νI)dt+ o(dt).

Because the population size is fixed at N , the model can be fully expressed by any two of
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the compartments, and thus the cardinality of the state-space of the model |S| is of the

order N2. Calculating the matrix exponential of Λ becomes computationally intensive at

even relatively small population sizes, making this system difficult to work with in practice

[Rupp et al., 2024, Ho et al., 2018, Moler and Van Loan, 2003].

Often, practitioners use the deterministic version of the SIR model, where changes in the

system are described by a series of ordinary differential equations

dS

dt
= −β × I × S/N,

dI

dt
= β × I × S/N − ν × I,

dR

dt
= ν × I.

Note here that the compartments are now continuous, but S(t) + I(t) + R(t) = N for any

t, preserving the closed population. This system is non-linear, and does not have a closed

form solution, but can be numerically solved using common ODE numerical solvers. The

deterministic ODE system can be thought of as the limit of the MJP as the population size

(N) diverges to infinity, which we discuss in greater detail in Section 2.4.5.

Two important quantities in infectious disease models are the basic reproduction number and

the effective reproduction number. The basic reproduction number, R0, is the average num-

ber of individuals an infectious person would infect in a completely susceptible population.

For the SIR model, R0 = β/ν.

We provide some intuition about R0 for the deterministic SIR model based on Blackwood

and Childs [2018]. Consider the situation with one infected individual at time 0, with all

other individuals in the susceptible population. Then

dI

dt
|t=0 = β/N × (N − 1)× 1− ν × 1.
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We are interested in the situation when the derivative is greater than 0 or less than 0, i.e.

when the size of the infectious compartment will increase or decrease. We can write the

inequality dI
dt
|t=0 < 0 as

β/ν × (N − 1)/N < 1.

Suppose (N − 1)/N is large enough to be close to 1, then we have

β/ν < 1,

as the quantity of interest. This is the quantity R0, and when R0 is larger than 1, we expect

to have an outbreak, when it is below 1 we do not expect to have an outbreak. For more

general deterministic models it can be defined using the next-generation matrix [Diekmann

et al., 2010].

In the stochastic case, for a homogeneously mixing population, R0 is defined using a branch-

ing process approximation where infectious individuals create new infectious individuals in

an independent and identically distributed fashion, which can be a good approximation in

the early stages of an outbreak when the number of infections is small and the number of

susceptibles is large [Andersson and Britton, 2012, Ball and Donnelly, 1995]. In the branch-

ing process, R0 is the expected number of infections created by one infectious person, and

governs the probability of an outbreak occurring.

The effective reproduction number Rt = R0×S(t)/N is the average number of individuals an

infectious person infected at time t would subsequently infect assuming that the susceptible

proportion remained the same as at time t. The effective reproduction number is simply a

modified basic reproduction number that corrects for the fact that the susceptible population

has been depleted. This makes it a useful quantity for describing the current conditions of

the outbreak.
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To highlight the difference between the stochastic and deterministic systems, consider a

setting where we begin the epidemic with one infectious individual and R0 is larger than 1.

This means that the average number of individuals the infectious person would infect in a

completely susceptible population is larger than 1. If we simulate a deterministic SIR with

R0 > 1 for long enough, then the number of infectious individuals will be greater than 1.

However, in a stochastic SIR model, it is possible for us to simulate an outbreak where no

other individuals are infected, simply by chance. In general, we think of the stochastic SIR

as being closer to how epidemic outbreaks actually evolve, but the deterministic system as

being a good enough approximation for large populations.

2.4.3 Motivation for Approximation

Suppose that each week a perfectly administered survey is sent to A people to find out who

in the population is currently infectious with some disease (a more realistic version of this

type of survey was administered in the United Kingdom during the SARS-CoV-2 pandemic

[Pouwels et al., 2021]). Suppose further that we think the disease in question is well modeled

with an SIR model G(t). Let Gi = G(ti), and likewise Ii = I(ti). We might model the data

Yi, collected at time ti, as a Binomial random variable, where

Yi|Ii ∼ Binomial(A, Ii/N).

That is, the probability that someone tested positive on the survey is equal to the proportion

of the population that is currently infectious. Conditional on the states G1, . . .GM , we will

assume the Y s are independent of each other. Suppose we have M such surveys. We are

interested in the posterior distribution P (β, ν|Y). Then,

P (β, ν|Y) ∝ P (Y|β, ν)P (β, ν).
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Unfortunately, the data are quite dependent on each other, so P (Y|β, ν) is not a simple

product of binomial likelihoods. Figure 2.2 visualizes the dependence structure of the model.

(S1, I1, R1) (S2, I2, R2) (S3, I3, R3)

Y1 Y2 Y3

Figure 2.2: Dependence structure of our hypothetical SIR model using Binomial prevalence
data. Conditioned on the state of the SIR model at each time point, the observed data Y
are independent of each other. The current state of the SIR model depends on the state of
the SIR model at the previous time point.

Instead

P (Y|β, ν) =
∑
GM

· · ·
∑
G0

P (Y|β, ν,G0, . . .GM)P (G0, . . . ,GM |β, ν).

When the state-space of G is large, this sum is computationally intractable, and in the case

of the SIR model, the state space is O(N2). For any reasonably sized human population, this

integral will be intractable. Taking advantage of the Markovian property and our assumed

data model, we could instead re-write the integral as

P (Y|β, ν) =
∑
GM

· · ·
∑
G0

M∏
i=1

P (Yi|Gi)P (Gi|Gi−1)P (G0).

In such a way, we could approximate this integral through data augmentation in an MCMC

algorithm, where we adjust our posterior of interest to be the posterior P (β, ν,G0, . . .GM |Y).

However, to do this, we would need to be able to evaluate the transition probabilities for

P (Gi|Gi−1) in the accept/reject step of our MCMC algorithm. These transition probabilities

do not exist in closed form for the SIR model, and while progress has been made on compu-

tational solutions [Ho et al., 2018, Rupp et al., 2024], the computations still take, at best,
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O(N2) time, and the computational costs remain formidable. There are a few approaches to

address this problem, but the one we will take in this dissertation is to choose an approxi-

mate process such that the transition probabilities P (Gi|Gi−1) become once again tractable.

What follows is a discussion of the approximate processes we will use in this dissertation.

2.4.4 Branching Process Models

One of the simplest approximate models we could use is a branching process model, where

we assume that infectious individuals create a random total number of new infections in

an independent and identically distributed (IID) manner unrestricted by a finite supply of

susceptible people to infect. As mentioned previously, this is a reasonable approximation

early in an epidemic [Andersson and Britton, 2012, Ball and Donnelly, 1995]. One can

then leverage properties of branching processes to derive useful equations describing the

expected total number of individuals who have been infected through this branching process,

called cumulative incidence, in terms of the past cumulative incidence. From the cumulative

incidence, one can derive an equation describing changes in the expected number of new

infections, or incidence, which naturally can be tied to common data sources such as the

observed number of new cases. This equation is often called the renewal equation. Define

Ji to be the new cases generated in (ti−1, ti], gu to be the discretized generation time pdf (in

the branching process this is the pdf of the distribution of the time between the birth of the

infectious individual and the time when it creates all of its offspring), and Rt the effective

reproduction number. The renewal equation is

Jt = Rt

t−1∑
u=0

Jt−ugu.

Intuitively, the renewal equation posits that the number of new infections is the product of

the effective reproduction number and a weighted sum of the previous new cases, where the
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weights are such that those at the peak of their infectiousness will contribute more to new

incidence.

In point of fact, the development of these methods in the real world is much the opposite of

what we have described. Fraser popularized the idea of using equations relating incidence

to past incidence without referencing any branching process connections formally [Fraser,

2007], which gained further popularity when the idea was incorporated into the widely used

EpiEstim package for estimating Rt [Cori et al., 2013]. More recently, Pakkanen et al. [2023]

provided a formal justification for this approach based on Crump-Mode-Jaegers processes

[Crump and Mode, 1968, 1969, Jagers, 1975], which we will summarise.

Let the first individual in the outbreak be infected at time τ ≥ 0, and behave according

to the triple {Lτ , χτ , Cτ}. The variable Lτ is a positive random variable describing how

long the individual is infectious with CDF G and pdf g. The variable χτ (u) is an indicator

variable that equals 1 if the individual has been infected by time τ . The variable Cτ is a

counting process that describes how many other infected individuals are generated by the

infectious individual. For simplicity, consider the case when

Cτ (u) =


0, u < Lτ ,

ξ(τ + Lτ ), u ≥ Lτ ,

where ξ(.) is some stochastic process taking integer values that is independent of Lτ . If ξ(.)

does not depend on time, this is then a classic Bellman-Harris process, whereas when it is

time dependent it is the time-varying Bellman-Harris process [Kimmel, 1983]. In this model,

all individuals infected by the first individual are infected simultaneously at time Lτ , and

Lτ is the generation time, the time between when the first individual was infected, and the

time they infected (generated) the next generation of infected individuals. The expectation

of ξ, E[ξ(t)] = R(t) is defined as the reproduction number, and is the branching process

25



• • •

•τ • •

•τ1 •
Figure 2.3: Visualization of a Bellman-Harris process. The first individual is infected at
time τ . They then produce all of their offspring (new infections) at time τ1. The times at
which offspring produce have a distribution, as does the number of offspring an individual
produces. If the distribution for the number of offspring is time-varying, then the average
number of offspring is the effective reproduction number. A key property of the branching
process is that, because the individuals are assumed to be IID, the process beginning at τ1
has the same distribution as the process beginning at τ .

equivalent of the effective reproduction number. Figure 2.3 visualizes the Bellman-Harris

process.

Let J be the set of infected individuals, then we are interested in the process

Z(t, τ) =
∑
i∈J

χτii (t− τi), t ≥ τ ≥ 0,

where τ denotes the time the first case was infected. Then Z(t, τ) describes the cumulative

number of individuals who have ever been infected during the epidemic, called the cumulative

incidence. Let f(t, τ) = E[Z(t, τ)], J ∗ index all infected individuals except for the first

individual, and k be the number of individuals infected by the first infected individual up

to time t. The key insight is that we can index
∑

i∈J ∗ χ
τi
i (t − τi) by the k offspring of the

original infected individual infected by time t so that

f(t, τ) = E [χτ (t− τ)] + E

 ∑
k:τik≤t

∑
i∈J ∗

k

χτii (t− τi)

 .
But because the individuals are all independent and identically distributed, we can think of
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each of these sums as a new branching process, exactly the same as the original but starting

at the infection time τik . Then, we can write

f(t, τ) = E[χτ (t− τ)] + E

 ∑
k:τik≤t

f(t, τik)

 .
We now re-index the sum in terms of ν and ∆Cτ (u) = Cτ (u)− limν→u− C

τ (ν) which is the

number of infected individuals created by the first infected individual at time u. If the τis are

different, this will always be a one, if the τi occur simultaneously, as in the Bellman-Harris

process, this will be equal to k. It is clear that

E

 ∑
k:τik≤t

f(t, τik)

 = E

 ∑
ν∈(τ,t]

f(t, ν)∆Cτ (ν − τ)


= E

 ∑
u∈(0,t−τ ]

f(t, u+ τ)∆Cτ (u)


= E

[∫ t−τ

0

f(t, u+ τ)dCτ (u)

]
.

Swapping the order of integration and expectations (allowable assuming some regularity

conditions) brings us to

f(t, τ) = E[χτ (t− τ)] +

∫ t−τ

0

f(t, u+ τ)dE[Cτ (u)].

Returning to our Bellman-Harris process, defining I{} to be the indicator function, and

recalling that Cτ and Lτ are independent, we have

E[Cτ ](u) = E[ξ(Lτ + τ)I{Lτ ≤ u}]

= E [E[ξ(Lτ + τ)|Lτ ]I{Lτ ≤ u}]

=

∫ u

0

R(v + τ)g(v)du.
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Then, the final result (for t ≥ τ) is

f(t, τ) = 1 +

∫ t−τ

0

f(t, u+ τ)R(u+ τ)g(u)du.

We define the expected incidence J(t, τ) as

J(t, τ) =
df(t, τ)

dt
.

By taking advantage of the recursive relationship we just defined, as well as the use of

Grönwall’s inequality to justify pushing R(t) outside of the integral, Pakkanen et al. [2023]

show that

J(t, τ) = δ(t− τ) +R(t)

∫ t−τ

0

J(t− u, τ)g(u)du,

which is essentially the continuous version of the Renewal Equation introduced by Fraser

[Fraser, 2007]. Interestingly, χ can be modified to create renewal equations for prevalence

instead of cumulative incidence. The counting process Cτ can also be made more complicated

to allow for infections to not occur all at once, although this makes defining the effective

reproduction number much less trivial [Pakkanen et al., 2023].

2.4.5 Deterministic and Diffusion Limits of MJPs

The branching process approach is appealing because it is simple (although that simplicity

can be deceptive, see the discussion by Svensson [2007] on generation times). Another

reasonable approach is to adopt an approximation that preserves some of the structure of

the original MJP. It is common practice to instead use a deterministic or diffusion version of

an MJP, for example we can approximate the stochastic SIR model with the deterministic

SIR Model. This turns out to be justified under what amounts to a strong law of large
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numbers for MJPs, where the value n that diverges to ∞ can be interpreted either as the

total size of the MJP when the population is closed (as in the simple SIR model), or as

the “typical initial size of the system” if the population has no finite limit [Barbour, 1974].

There is also a corresponding central limit theorem showing that the transition probabilities

of MJPs can be approximated with the normal distribution. In practice, if the counts in

the compartments being modeled are large enough, a deterministic or diffusion model is an

appropriate approximate model.

Rigorous proofs of these theorems go back to Kurtz [Kurtz, 1970, 1971], with Barbour

providing some useful clarifications in the case when the population is not necessarily finite

[Barbour, 1974]. More legible proofs can be found in Section 2 of Britton and Pardoux

[2019], while Chapter 5 of Andersson and Britton [2012] provides a less rigorous but still

insightful explanation. Another useful way to build intuition is by following the construction

of the linear noise approximation (LNA), which begins by showing how an MJP can be

approximated by a stochastic differential equation, and then further linearizing the stochastic

differential equation so that the process becomes Gaussian [Wallace et al., 2012]. We will

provide informal derivations of both results based on Andersson and Britton [2012].

ODE Approximations to MJPs

It is most useful to begin with a result from Poisson processes. Let X(t) be a Poisson process

with rate λ = 1. Then limn→∞ sups≤t|n−1X(ns)− s| converges to 0 almost surely. Note that

n−1X(ns) = n−1
n∑
i=1

(X(ti)−X(ti−1)) ,

where for all i, ti − ti−1 = s. Since Poisson processes have stationary and independent

increments, X(ti) −X(ti−1) ∼ Poisson(s) and are independent across i. The result follows

from the strong law of large numbers.
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We will use the same result in the case when s is itself a stochastic process, although proving

it is nontrivial and makes heavy use of the fact that X(t)− t is itself a martingale; interested

readers should consult Britton and Pardoux [2019].

Define a sequence of MJPs Un = {Un(t); t ≥ 0}, with a finite number of potential infinites-

imal jumps li and infinitesimal rates nh(n−1Un) so that

P (Un(t+ dt) = u+ li|Un(t)) = nhi
(
n−1Un

)
dt+ o(dt),

P (Un(t+ dt) = u|Un(t)) = 1−
∑
i

nhi
(
n−1Un

)
dt+ o(dt).

Set Un(0) to be non-random and suppose that as n → ∞, Un(0) → u0. Also assume h is

continuous and well behaved. We can rewrite Un in terms of independent Poisson processes

(Xi(t)) with rate λ = 1 by

Un(t) = Un(0) +
∑
i

liXi

(
n

∫ t

0

hi
(
n−1Un(s)

)
ds

)
.

One way to see the equivalence is to note that the probability of a jump l in the interval

(t, t + dt] (assuming that no other jump occurs so that Un(s) = Un(t) for the duration of

the interval) is nh (n−1Un) dt, i.e. the length of the corresponding interval in the Poisson

process, which is the same as in the original construction of Un.

From there we define X̂i(t) = Xi(t)− t, Ūn(t) = n−1Un(t), and F (u) =
∑

i lihi(u). Dividing

our equation by n we now have

Ūn(t) = Ūn(0) + n−1
∑
i

liX̂i

(
n

∫ t

0

hi
(
Ūn(s)ds

))
+

∫ t

0

F
(
Ūn(s)

)
ds.

Recalling our result on Poisson processes, the sum in the middle will tend to zero almost
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surely, and implies that Ūn(t) will converge to some function u(t) defined by

u(t) = u0 +

∫ t

0

F (u(s)) ds,

or, in differential equation form

du(t)

dt
= F (u(t)).

For the SIR model, n is the population size N , Un(t) = (S(t), I(t)) (by assumption R(t) =

N − S(t)− I(t)), h (Un(t)) = (β/NS(t)I(t), νI(t)). Then n−1Un(t) = (S(t)/N, I(t)/N) is a

process where the total population size is 1, and the rates for n−1Un(t) are h (n
−1Un(t)) =

(βS(t)I(t)/N2, γI(t)/N). It is clear that h (Un(t)) = nh (n1Un(t)). For the SIR model,

l = ((−1, 1), (0,−1)). Then the deterministic system is

u1(t)

dt
= −βu1(t)u2(t),

u2(t)

dt
= βu1(t)u2(t)− νu2(t).

Multiplying u by N returns us to the deterministic SIR system.

Stochastic Approximations

We state another property of Poisson processes without proof:
√
n (n−1X(nt)− t) =

√
nX̂(nt)

converges in distribution to standard Brownian motionW (t) as n→ ∞. This result will also

extend to the case when t is stochastic. Applying our techniques from the previous section,

we can write

Vn(t) =
√
n(Ūn(t)−u(t)) = Vn(0)+

∑
i

li
√
nX̂i

(
n

∫ t

0

hi
(
Ūn(s)

)
ds

)
+

∫ t

0

√
n(F

(
Ūn(s)

)
−F (u(s)))ds.
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We can Taylor expand F (Ūn(s)) around u(s) to write

√
n(F (Ūn(s))− F (u(s))) =

√
n∂F (u(s))(Ūn(s)− F (u(s))) +O(

√
n|F (Ūn(s))− F (u(s))|2)

=
√
n∂F (u(s))Vn(s) +O(|F (Ūn(s))− F (u(s))|)Vn(s),

where ∂F is the Jacobian of F . We know that Un(t) converges to u(t) almost surely, what

we have shown so far then implies that Vn(t) will converge to V(t) where

V(t) = v0 +
∑
i

liWi

(∫ t

0

hi(u(s))ds

)
+

∫ t

0

∂F (u(s))V(s)ds, (2.3)

which is indeed the case.

Recall that Wi is standard Brownian motion. Of critical importance is that the Brownian

motion will not depend on the diffusion process V(t), but instead only on the deterministic

process u(t). This ensures that the diffusion process V(t) has Gaussian transition densities.

Deriving the moments of these Gaussian transition densities is a non-trivial task, one ap-

proach is to use the LNA [Wallace et al., 2012]. Another approach is to instead approximate

(or derive exactly) the moments of the MJP, and use those moments as the moments of the

Gaussian density, as in the work of Isham [1991] and Buckingham-Jeffery et al. [2018].

2.5 Other Strategies

We have covered in some depth the approximation strategies used in Chapters 3–5, but there

are many other approaches to tackle the problem of inference for epidemic models.

In the time series SIR (TSIR), the infectious period is fixed at a single unit of time, the inci-

dence thus becomes the prevalence, and the process is now in discrete rather than continuous
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time [Finkenstädt and Grenfell, 2000, Wakefield et al., 2020]. This allows for modeling inci-

dence as a pure birth process with negative binomial transition probabilities.

Another approach is to instead use a linear birth-death process for the number of infectious

individuals, so that the infinitesimal rate of a new infectious individual is proportional only to

the number of currently infectious individuals, without regard to the number of susceptibles.

Cauchemez and Ferguson use the diffusion approximation, a Cox-Ingersoll-Ross process with

tractable transition densities [Cauchemez and Ferguson, 2008], and Stadler et. al used this

birth-death process to link models of viral evolution to transmission dynamics [Stadler et al.,

2013].

Other approaches attempt to make the MJP itself tractable. Returning to the agent-based

model, augmenting the posterior with the individual infection and recovery times creates a

tractable likelihood [Gibson and Renshaw, 1998, O’Neill and Roberts, 1999, Fintzi et al.,

2017]. A nice introduction is available in the lecture notes in Kypraios and O’Neill [2021].

Approximate Bayesian computation can instead be employed, where model parameters are

simulated from the prior, MJP trajectories are simulated, and finally observed data are

simulated from the MJP. Then, the parameters are accepted as samples from the approximate

posterior if the simulated data matches the observed data according to some metric based

on summary statistics [Neal, 2020].

The final approach we will mention is particle Markov chain Monte Carlo. This algorithm

relies on using sequential Monte Carlo to approximate the observed data likelihood by se-

quentially importance sampling values for the unobserved MJP trajectory [Andrieu et al.,

2010, King et al., 2016]. The technique is likewise quite computationally intensive, as the

sequential Monte Carlo algorithm must be run for each MCMC iteration. The lecture notes

in King et al. provide an excellent introduction to using sequential Monte Carlo for epidemic

models.
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Chapter 3

Incorporating Testing Volume into

Estimation of Effective Reproduction

Number Dynamics

3.1 Introduction

In an infectious disease epidemic, the effective reproduction number is the average number

of people a newly infected person will subsequently infect. When the effective reproduction

number is above one, an epidemic is out of control and will continue to grow, vice versa if it

is below one. This makes the effective reproduction number a useful summary of the state of

an epidemic which can provide guidance to policy makers. As such, estimates of the effective

reproduction number based on observed data can be an important part of any public health

response during an epidemic. Recent examples from the SARS-CoV-2 pandemic include work

by Mishra et al. [2020] in Scotland, as well as efforts by Swiss National Covid-19 Science

Task Force [2020].
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An early effort of using a likelihood based approach to estimate the effective reproduction

number is that of Wallinga and Teunis [2004], which is based on modeling transmission

trees. A recently popular class of estimators for the effective reproduction number (used

in both [Mishra et al., 2020] and [Swiss National Covid-19 Science Task Force, 2020]) is

inspired by stochastic branching process models, where infectious individuals infect a random

number of new individuals at random points in time. The most widely used model in this

class is available in the EpiEstim R package [Cori et al., 2013, Thompson et al., 2019],

which is based on ideas put forth by Fraser [2007]. EpiEstim assumes all new infections

(incidence) are observed, and uses a time series of observed cases as data. During the SARS-

CoV-2 pandemic, a number of methods in this class of estimators have been developed.

The methods of Parag [2021] and Capistrán et al. [2022] continue to assume incidence (or

incidence up to a constant) are observed, and focus on improving how changes in Rt are

modeled over time, while avoiding Markov chain Monte Carlo based methodologies. The

methods of Abbott et al. [2020], Huisman et al. [2022a], Scott et al. [2021], and Bhatt et al.

[2023] use more computationally intensive approaches that model observed data as functions

of latent incidence, either through explicit Bayesian models [Abbott et al., 2020, Scott et al.,

2021, Bhatt et al., 2023] or through a pipeline that first bootstraps latent incidence which

is then used as input into EpiEstim. The methods of Teh et al. [2022], Scott et al. [2021],

and Bhatt et al. [2023] also begin to tackle the problem of how to estimate Rt across spatial

locations. Many of these methods have not been scrutinized via extensive simulation studies

under model mis-specification, or in some cases, not probed at all, making it difficult to

understand the strengths and weaknesses of this class of methods.

This gap in knowledge is particularly relevant when it comes to applying such methods to ob-

served case counts of an infectious disease. As the SARS-CoV-2 pandemic has demonstrated,

observed cases of an infectious disease are often circuitously related to the true number of

new infections, due to constraints in testing supply, asymptomatic infections, testing eligi-

bility, and reporting delays. These factors can make estimating the effective reproduction
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number from cases quite difficult in real world situations. This is a widely recognized chal-

lenge; a recent survey of papers using EpiEstim found the most common challenge for users

was dealing with the quality of observed case data [Nash et al., 2022]. One sensible approach

to resolving this issue is to use other sources of data. For instance, Flaxman et al. [2020] used

a model similar to those available in epidemia to assess the effects of non-pharmaceutical

interventions by fitting a model to death counts rather than case counts, while Mishra et al.

[2020] incorporated data sources such as deaths and sero-prevalence data in addition to case

data. Turning to other data sources is an appealing strategy for retrospective analyses, but

during an ongoing epidemic it is often desirable to provide real time estimates of the effective

reproduction number, a task called now-casting. When now-casting, case data is one of the

earliest available data sources to indicate a change in the effective reproduction number. It

behooves us, then, to develop reasonable methods for using case data when estimating the

effective reproduction number, despite the difficulties involved.

Our study has two main contributions. First, we develop our own model for estimating

the effective reproduction number making different modeling choices than other available

methods. The most significant of these is that we incorporate the number of diagnostic

tests administered (both positive and negative) as a covariate in our model. Second, to

increase understanding of the broader class of branching process inspired methods, we con-

duct simulation studies comparing our new model to EpiEstim and a model constructed

using the epidemia package developed by Scott et al. [2021]. The latter approach builds on

the EpiEstim framework by allowing for more flexible and complex models that treat new

infections as unobserved variables, with various time series such as cases or deaths modeled

as noisy realizations of unobserved infections used as data [Scott et al., 2021, Bhatt et al.,

2023]. In particular, we explore scenarios with differing diagnostic test availability. We also

fit our model to real data from the SARS-CoV-2 pandemic in fifteen California counties.

Our results show that our new model outperforms existing methodologies under a variety of

different testing scenarios and provides novel insights when applied to real data, highlighting
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the utility of incorporating tests when using case data as well as distributional choices made

in the modeling process.

3.2 Methods

3.2.1 Available Data

Consider an outbreak observed for a total of T time intervals. We restrict ourselves to two

kinds of infectious disease outbreak data. The first is the time series of observed cases,

O = (O1, O2, O3, . . . , OT ), where Ou is the number of newly observed cases of an infectious

disease during time interval u. The second is the time series of diagnostic tests, M =

(M1,M2, . . . ,MT ), where Mu is the total number of diagnostic tests administered during

time interval u. For this chapter, we assume tests are perfectly accurate. We also do not

model the total number of tests performed, but rather model the number of positive tests

conditioned on the total number of tests. We assume that Ou is a noisy realization of recent

latent unobserved new infections (incidence); denoted by Iu during time interval u.

3.2.2 Modeling Incidence

We first differentiate between incidence during the observation period, when case data are

available, and incidence prior to the observation period. It is rare in practice to begin analysis

of an infectious disease epidemic at the exact start of the epidemic. We follow Scott et. al.

in modeling a number of unobserved incidence values (often called seeded incidence) drawn

from a hierarchical exponential model [Scott et al., 2021, Bhatt et al., 2023]. That is, for
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t = −n,−n− 1, . . . , 0,

λ ∼ Exponential(η),

It ∼ Exponential(λ).

We model latent incidence during the observation period as a latent gamma random variable:

It | I−n:t, Rt ∼ gamma

(
Rt

t−1∑
u=−n

gt−uIuν, ν

)
, t = 1, . . . , T,

where I−n:t is the set of all previous incidences between times −n and t, gt is the discretized

probability density function of the generation time (the time from an individual becoming

infected to infecting someone else) distribution for the interval t, and Rt is the effective

reproduction number at time interval t. Parameter ν, describing the proportional mean-

variance relationship of the above gamma distribution, receives its own prior:

log(ν) ∼ N(µν , σ
2
ν).

We assume gt to be known. Svensson and Champredon et al. [Svensson, 2007, Champredon

and Dushoff, 2015, Champredon et al., 2018] have highlighted that in a closed population,

the generation time distribution depends on population dynamics, i.e., it changes over time

depending on the number of susceptibles available, somewhat similarly to the effective repro-

duction number. This is not taken into account in our model (nor, to our knowledge, in any

model in this class of estimators). Instead we use the intrinsic generation time distribution

that assumes a fully susceptible population.
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Note that under this model,

E(It | I−n:t, , Rt) = Rt

t−1∑
u=−n

Iugt−u, (1)

Var(It | I−n:t, , Rt) = Rt

t−1∑
u=−n

Iugt−u/ν. (2)

The assumed mean relationship lies at the heart of branching process inspired methods for

estimating the effective reproduction number [Fraser, 2007]. Pakkanen et al. [2023] show that

Equation (1) is justified under a formulation of disease transmission modeled as a variation

on the Crump-Mode-Jagers branching process. Regardless of the underlying model, we think

it is beneficial to allow for incidence to change stochastically. To this end, we model incidence

as an auto-regressive gamma process while preserving the branching process inspired mean

model (1). By modeling incidence as a continuous random variable, we are able to use

Hamiltonian Monte Carlo to approximate the posterior distribution of our model parameters.

The mean-variance relationship of the gamma distribution is also somewhat convenient, as

it allows for over-dispersion in the variance of incidence through parameter ν.

To allow for the effective reproduction number to change over time, we model it as a random

walk on the log scale:

logR1 ∼ Normal(µr1, σ
2
r1),

logRt| logRt−1, I−n:t−1 ∼ Normal

(
logRt−1,

σ2

T − 1

)
, t = 2, . . . , T.

The prior distribution of σ, log(σ) ∼ N(µσ, σ
2
σ), is chosen to reflect beliefs about the total

amount of possible variation in the effective reproduction number over the course of the

observed period.
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3.2.3 Modeling Observed Cases

Depending on the context of an infectious disease, the relationship between observed cases

and incidence can be complex. One challenge relates to testing supply. The number of cases

observed is always a function of the number of diagnostic tests administered. In the context

of a novel infectious disease, testing supplies may change rapidly as new technologies are

developed, approved, and deployed. Thus, we model observed cases (Ot) conditioned on

previous and current incidence (It, I−n:t−1,) as a negative binomial random variable, where

the mean of the negative binomial random variable is a function of incidence (as in [Scott

et al., 2021, Bhatt et al., 2023, Abbott et al., 2020]), the number of tests administered, and

a detection parameter ρ, with over-dispersion parameter κ:

κ ∼ Truncated-Normal(µκ, σ
2
κ),

log ρ ∼ Normal(µρ, σρ),

Dt =
t∑

j=−n

Ijdt−j,

Ot | It, I−n:t, , ρ, κ,Mt ∼ Neg-Binom(ρ×Mt ×Dt, κ), t = 1, . . . T, (2)

where ρ×Mt ×Dt is the mean of the negative-binomial distribution. As defined above, Mt

is the total number of diagnostic tests administered during time interval t. As a result, the

detection rate for time t is ρ ×Mt, which allows the detection rate to change over time as

a function of the number of tests available. With a detection rate which depends on tests,

the model can discern between situations where cases increase because of increases in latent

incidence, as opposed to increases in the number of tests administered. The weights dt−j

are discretized weights of the delay period distribution, that is, the time from infection to

detection. Delays occur for a variety of reasons, based on when the difference between when

individuals are infected and when they test, as well as delays in reporting the results of the

test. In our study, we will use simulations and data where the only delay is caused by our
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assumption that cases represent individuals transitioning from the latent stage of infection

to the infectious stage. Thus, for this chapter, dt−j are discretized weights of the latent

period distribution. Note that we allow for cases observed at time t to come from incidence

observed at time t as well; this can be adjusted depending on how quickly a particular disease

spreads and at what granularity observations are recorded.

It is difficult to choose generic priors for κ and ρ, as they both depend in some way on

properties of the surveillance system used to collect data. We address this challenge in the

sections below.

3.2.4 Prior for Case Over-Dispersion

In our experience, some choices of the prior distribution for κ result in poor Markov chain

Monte Carlo (MCMC) convergence. To overcome this issue, we developed an approach

for choosing the prior distribution for κ inspired by Empirical Bayes methods. We fit a

Bayesian thin plate regression spline to the time series of cases, assuming a negative-binomial

distribution with the mean number of cases being a nonparametricaly estimated function of

time, then use the posterior estimate for the over-dispersion parameter to construct the

prior for our model [Wood, 2017]. We use brms (version 2.15.0) to fit the regression spline to

observed cases [Bürkner, 2017]. This method has drawbacks from a theoretical perspective,

because the spline-based model is fit to the same data that is then analyzed with our semi-

mechanistic model. For simulations, this is easily overcome by fitting the spline to a simulated

data set that is then not analyzed by our model, this is the approach we took for our

simulation study. For real data analysis, one solution is to fit a spline to data from an

outbreak occurring in a similar location to the one being analyzed. For this chapter, we

put aside theoretical concerns and fit a spline-based model to each real data set used in this

chapter to derive the prior for κ and then applied our model. We choose the parameters
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of the prior by minimizing a squared loss function, searching for prior parameters that

minimized the squared difference between the quantiles of the spline posterior, and the

empirical quantiles of the candidate prior distribution.

3.2.5 Prior for the Case Detection Rate

Choosing the prior for the case detection parameter ρ likewise requires some care, because

the meaning of ρ depends on the number of diagnostic tests in the data. We propose the

following procedure: first construct a plausible range for what proportion of incidence has

been observed. Then, using the the 50% quantile of tests in the observed test time series,

construct a prior for ρ that matches the prior for the overall mean case detection rate. In

practice, we can construct the prior for ρ using other quantiles as part of sensitivity analyses.

For simulations we use a ρ prior derived using the 50% quantile, for real data anlysis, we use

the 25% quantile which we found improved MCMC convergence.

3.2.6 Bayesian Inference

Let R = (R1, R2, . . . , RT ) denote the vector of effective reproduction numbers and I =

(I−n, . . . , IT ) the vector of latent incidence counts. We are interested in the posterior distri-

bution of our model parameters:

P (I,R, ρ, κ, ν, λ, σ | O) ∝ P (O | I, ρ, κ)P (I | R, ν, λ)P (R | σ)π(ρ, κ, ν, λ, σ).

Here P (O | I, ρ, κ) defines the emissions model, P (I | R, ν, λ) defines the latent case model,

P (R | σ) the random walk prior for the effective reproduction number and π(ρ, κ, ν, λ, σ)

the prior on all other model parameters.

We use Hamiltonian Monte Carlo, implemented in the R package rstan (version 2.21.2)
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to approximate the above posterior distribution [Stan Development Team, 2020]. For the

remainder of this chapter we will refer to our effective reproduction number estimation

method as Rt-estim-gamma.

3.2.7 State-of-the-Art Methods

EpiEstim models observed cases as incidence, and assumes that

It | I1, . . . , It−1, Rt ∼ Poisson

(
Rt

t−1∑
u=1

Iugt−u

)
.

To facilitate smooth estimates, the effective reproduction number is assumed to be fixed

for a given period of time, and then repeatedly estimated for all such periods in the data

set. We choose a period size of one week, and allow for an uncertain generation time, re-

fitting the model using different values for gt−u (see Cori et al. [2013] for details). The prior

on the effective reproduction number for each window is a gamma distribution with shape

parameter 1 and scale parameter 5.

Using R package epidemia (version 1.0.0) we created the Rt-estim-normal model. In this

model, latent incidence is an autoregressive normal random variable with variance equal to

the mean multiplied by an over-dispersion parameter so the mean-variance relationship is the

same as in our autoregressive gamma model. We model cases as a negative-binomial random

variable, using the latent period distribution as the delay distribution (though in epidemia it

is assumed cases cannot be generated from the current latent incidence). The case detection

prior is chosen to reflect a range of plausible values for case detection depending on the

simulation scenario and real data. For observed cases, we attempted to use a prior for

the over-dispersion parameter that had similar values to the prior used in our model for

the over-dispersion parameter of the negative binomial distribution, but found this led to

issues with MCMC convergence. As such, we use the default prior for the inverse of the
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over-dispersion parameter implemented in epidemia. All other priors used are default priors

from the epidemia package. For a full description of Rt-estim-normal, see the Appendix.

3.2.8 EpiEstim as an Autoregressive Generalized Linear Model

Under the basic EpiEstim modeling framework, the only value in Equation 1 that is random

is Rt. Consequently, EpiEstim can be mimicked via Poisson regression with an identity link

and no intercept. This raises the possibility of assessing the presence of over-dispersion in

case data using standard statistical methods. To be more explicit, we can rewrite Equation

1 in the style of a generalized linear model (GLM):

E[It | I−n:t, , Rt] = η = β1x1.

In this construction, β1 = Rt and x1 =
∑t−1

u=1 Iugt−u is the weighted sum of previous inci-

dence. After choosing an arbitrary number of previous incidences to include in x1, we can

construct x1 manually for every observed incidence at time t with the requisite number of ob-

served previous incidences. To estimate the effective reproduction number over time, we use

Poisson regression repeatedly on subsets of data, where each subset has observations equal

to the length of the smoothing period used in EpiEstim. For example, we can implement

Poisson regression on data sets with 4 observations, estimating a β1 which is fixed for those 4

observations. This is equivalent to using a period of 4 in EpiEstim. We assign the estimated

effective reproduction number to the last date among the 4 observations, and change the

settings of EpiEstim to match its estimates to the last observation as well. In addition to

mimicking EpiEstim with a Poisson GLM, we mimic EpiEstim using a quasi-Poisson GLM.

Using the quasi-Poisson’s estimated over-dispersion parameter, we can assess how well the

assumed mean variance relationship of the Poisson GLM matches the empirical variance seen

in the observed data. We implement both GLM versions of EpiEstim and compare to the
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simplest version of EpiEstim using a fixed generation time in order to motivate the use of

more complex models. All code and data needed to reproduce the results are available on

GitHub at https://github.com/igoldsteinh/improving_rt.
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Figure 3.1: Estimation of the effective reproduction number of SARS-CoV-2 in Orange
County, CA from Aug 2nd 2020 through January 15th 2022. The top row displays the ob-
served cases and total diagnostic tests administered for the period. The middle row displays
estimates of the effective reproduction number from EpiEstim, and from two GLM based
mimics of EpiEstim using Poisson, and Quasi-Poisson regression. Blue regions represent
95% credible or Wald confidence intervals, while black lines represent posterior median or
point estimates of the effective reproduction number. The final row displays the estimated
over-dispersion parameter from the Quasi-Poisson regression model. Grey vertical lines mark
the date maximum statewide cases were reported for the original winter 2020 wave, the sum-
mer 2021 wave, and the winter 2021 wave.
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3.3 Results

3.3.1 GLM EpiEstim Applied to the SARS-CoV-2 Outbreak in Or-

ange County, CA

To motivate the use of more complex models for estimating the effective reproduction num-

ber, we applied EpiEstim and our two GLM mimics of EpiEstim to case data from the

SARS-CoV-2 outbreak in Orange County, CA from May 17th 2020 to January 15th 2021.

We used a window size of 4 for EpiEstim and corresponding data sets with 4 observations for

the GLM mimics. Data and effective reproduction number estimates are displayed in Figure

3.1. The Poisson GLM closely tracks the effective reproduction number trajectory estimated

by EpiEstim. However, the Quasi-Poisson estimate of the effective reproduction number

has much wider confidence intervals than the Poisson GLM. This is because the estimated

over-dispersion parameter in the Quasi-Poisson model ranges from 1.01 to 26851.84. This

shows that the Poisson model for incidences may be inadequate, resulting in overconfidence

of Rt inference.

3.3.2 Simulation Protocol

Simulated data for this chapter were generated from a stochastic SEIR model in R (version

4.0.4) using the stemr package (version 0.2.0) [R Core Team, 2020, Fintzi et al., 2022]. SEIR

models generate an infectious disease outbreak at a population level, with the population

divided into four compartments: susceptible, exposed (infected but not yet infectious), infec-

tious, and removed (neither infectious nor susceptible). The changes in these compartments

are governed by rate parameters that depend on the populations in the compartments. In

our simulations, the mean latent period was 4 days, the mean infectious period was 7.5 days.

Daily case data were generated from transitions from the E to the I compartment on day

47



t, using a fixed number of tests and a negative binomial distribution. For all simulations, ρ

was set to be 9× 10−5 and κ was set to be 5.

The basic reproduction number R0 was given a fixed trajectory, leading to similar Rt trajec-

tories for each realization of the simulation. More details on the stochastic SEIR model used

for simulation are available in Appendix section A.1.1. Note that the SEIR models used for

the simulations do not match any of the models used for inference of the Rt trajectories. In

other words, all our simulation results are produced in the presence of model misspecification

— a desirable feature for a realistic simulation protocol.

We simulated three separate scenarios lasting 28 weeks, where all parameters were the same

except for the number of tests at each time step. In Scenario 1, weekly tests were drawn

from a normal distribution with parameters that remained constant over time. In Scenario

2, tests were held constant for the first six weeks of the simulation, then increased at varying

rates over the next eleven weeks of the simulation. Scenario 3 was similar to Scenario 2,

except that testing was held constant for the first eight weeks, and increased more quickly

than in Scenario 2. All simulations were done on a daily time scale, then aggregated into

weeks for analysis. The true effective reproduction number for a single week was taken to be

the true effective reproduction number of the third day of that week. In all simulations, the

first 11 weeks were not analyzed, leaving 17 weeks of data for analysis. For each scenario,

we generated 100 simulations. Realizations of all three simulations are displayed in Figure

3.2.
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Figure 3.2: Simulated epidemic data generated from an SEIR model. Cases are generated
using an emissions model that includes total diagnostic tests administered as a covariate.
Three different testing scenarios are considered, all with the same underlying R0 trajectory.
Included are underlying incidence and effective reproduction number trajectories. While
these may vary slightly across simulations, they will be very similar due to identical infectious
disease dynamics. In Scenario 1, tests are randomly sampled from a normal distribution. In
Scenarios 2 and 3, tests stay flat and then increase at varying rates. Simulated epidemics
start with 10 individuals and last for 28 weeks. The first 11 weeks are discarded, and are not
used when simulated data are analyzed by the three effective reproduction number estimation
methods.
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Table 3.1: Priors used by the Rt-estim-gamma method in the simulation study.

Parameter Simulation Prior Prior Median (95% Interval)

ν All Log-normal(-2, 0.7) 0.15 (0.03, 0.53)
σ All Log-normal(-0.66, 0.6) 0.52 (0.16, 1.68)
λ All Exponential(0.3) 2.31 (0.08, 12.26)

logR1 All Normal(0, 0.75) 0.01 (-1.49, 1.49)
ρ Scenario 1 Log-normal(-11.06, 0.3) 1.57E-5 (8.756E-6, 2.85E-5)
ρ Scenario 2 Log-normal(-11.43, 0.3) 1.09E-5 (5.96E-6, 1.96E-5)
ρ Scenario 3 Log-normal(-11.56, 0.3) 1.57E-5 (8.81E-6, 2.83E-5)
κ Scenario 1 Truncated-Normal(59, 60) 72.00 (5.00, 183.15)
κ Scenario 2 Truncated-Normal(33, 25) 35.65 (3.14, 83.23)
κ Scenario 3 Truncated-Normal(70, 80) 88.84 (6.00, 235.41)

3.3.3 Simulation Results

For each model fit using rstan, we sampled 2000 posterior draws, discarding the first half

as burn-in. Figure 3.3 visualizes the estimates for the effective reproduction number from

EpiEstim, Rt-estim-normal and Rt-estim-gamma for the three data sets visualized in Figure

3.2. We checked convergence diagnostics for Rt-estim-normal and Rt-estim-gamma for all

simulations and ensured adequate convergence of all models. More details are in the Ap-

pendix section A.1.4. Since EpiEstim does not provide estimates for the first time point in

the series, we report only time points for which all three methods have estimates.

Credible intervals for EpiEstim frequently miss the true Rt values (covering between 6 and

9 of the 16 true values), while credible intervals for Rt-estim-normal and Rt-estim-gamma

cover most true values across simulations. However, Rt-estim-gamma covers more true values

than Rt-estim-normal, with narrower credible intervals (ranging between 11 and 16 values

for Rt-estim-normal, and 16 values for every scenario for Rt-estim-gamma).

Figure 3.4 visualizes estimates of latent incidence from Rt-estim-normal and Rt-estim-gamma

for the three data sets visualized in Figure 3.2. Rt-estim-normal credible intervals rarely

cover the true incidence (covering from 0 to 5 to true values), while Rt-estim-gamma credible
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intervals generally do (covering 11 to 16 true values).

Posterior predictive distributions for cases for both Rt-estim-normal and Rt-estim-gamma

are displayed in Appendix Figure A.2 (the posterior predictive distribution for EpiEstim is

not readily available). For all three scenarios, for both models, 95% credible intervals from

the posterior predictive distributions cover all observed data points. Rt-estim-gamma had

generally narrower credible intervals than Rt-estim-normal.
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Figure 3.3: Rt estimation using three different methods for three simulated data sets under
different testing scenarios. True Rt trajectories are colored in red, black lines represent me-
dian estimates from the posterior distribution, blue shaded areas are 95% credible intervals.
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Because we are using a stochastic SEIR model to generate simulations, each simulation has a

different, though similar in shape, true effective reproduction number curve (despite having

the same true basic reproduction number curve). The range of true effective reproduction

number curves is visualized in Figure A.1. We report frequentist metrics in order to sum-

marise performance across a variety of different epidemic curves. Model performance on

simulated data sets for each of the three models is summarized in Figure 3.5. For each met-

ric, we summarize results in boxplots where solid lines represent medians, hinges are upper

and lower quartiles and whiskers are at most 1.5 times the inter-quartile range from the me-

dian. Envelope is a measure of coverage. For each simulation the envelope is the proportion

of time points for which a 95% credible interval from the posterior distribution captured the

true value of interest. Mean credible interval width (MCIW) is the mean of credible interval

widths across time points within a simulation. Absolute deviation is a measure of bias, and is

the mean of the absolute difference between the posterior median and the true value at each

time point. Finally, mean absolute sequential variation (MASV) measures how well each

method captured the variation in the effective reproduction number across time by comput-

ing the mean of the absolute difference between the posterior median at time point t and the

posterior median at time point t− 1. We compare this to the true mean absolute sequential

variation in each simulation. EpiEstim had the lowest envelope in all simulation scenarios.

Rt-estim-normal had high envelope in Scenario 1 but dropped to lower values in scenarios

with time-varying testing supply. Rt-estim-normal had the largest MCIW in all three sce-

narios, while Rt-estim-gamma had the smallest MCIW in all three scenarios. EpiEstim and

Rt-estim-normal had relatively similar values for absolute devaition, Rt-estim-gamma had

the smallest absolute deviation in all scenarios. Finally, EpiEstim had the largest MASV in

all scenarios, while Rt-estim-normal and Rt-estim-gamma had relatively comparable MASV.

For two of three scenarios, Rt-estim-gamma was closer to the true MASV than Rt-estim-

normal. We ran three additional experiments using the data sets from Scenario 3 to better

understand our model. All results are displayed in Appendix Figure A.4, with the results
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from Figure 3.5 included as a baseline comparison. In the first experiment, we halved each

parameter in the hypo-exponential distribution and refit the model to the data sets from Sce-

nario 3. This led to narrower credible intervals and lower envelope (see Appendix Figure A.4

for results). In the second experiment, we used a spline fit to the same data being analyzed

in order to choose a prior for κ. We found no meaningful difference in performance. In the

third experiment, we used a prior for ρ derived from the 25% quantile of tests, rather than

the 50% quantile, this again led to no meaningful difference in performance with regards

to estimating the effective reproduction number, though we expect it to change estimates

of incidence. Overall, we find that our Rt-estim-gamma model outperforms the EpiEstim

and Rt-estim-normal in all metrics, surprisingly even in Scenario 1, where the number of

diagnostics tests did not vary appreciably over time (Rt-estim-gamma and Rt-estim-normal

have similarly high envelope values in this case).

3.3.4 Estimating the Effective Reproduction Number of SARS-

CoV-2 in Fifteen California Counties

We analyzed SARS-CoV-2 reported case data from fifteen California counties representing

Northern California (Alameda, Sacramento, San Francisco, Santa Clara, Contra Costa),

Central California (Fresno, Merced, Monterey, Stanislaus, Tulare) and Southern California

(Los Angeles, Orange, Riverside, San Bernardino, San Diego). These counties represent

more than 75 percent of the population of California, and differ widely along demographic,

economic, and political characteristics. We analyzed data from August 2nd 2020 through

January 15th 2022. Data are publicly available from the California Open Data Portal [Cal-

ifornia Open Data Portal, 2023]. Positive cases are associated with the date of their test,

rather than the date they were reported.

To estimate the effective reproduction number of SARS-CoV-2 we must choose a generation
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time distribution to use in our models. Estimating intrinsic generation times from observed

data is non-trivial Park et al. [2021]. Early efforts from Ferretti et al. [2020] and Ganyani

et al. [2020] estimate the mean generation time to be between 5.5 and 5.2 days respectively.

A more recent estimate of the mean intrinsic generation interval for the original version

of SARS-CoV-2 estimated it to be 9.7 days [Sender et al., 2021], but the issue of optimal

generation time inference seems far from settled. An additional complication is that a number

of important variants of SARS-CoV-2 have spread over the course of the pandemic, and the

generation times for the variants may differ from that of the original viral strain. Hart et al.

[2022] found it is likely that the intrinsic mean generation time of the delta variant is shorter

than that of the alpha variant, likewise a preliminary study by Abbott et al. suggests the

intrinsic mean generation time of the omicron variant is shorter than that of the delta variant

[Abbott et al., 2022]. We find the methodology of Sender et al. somewhat persuasive, and

use their point estimate of the generation time (a log-normal distribution with mean 9.7

days) as the default generation time for the original SARS-CoV-2 strain and alpha variant

versions of SARS-CoV-2. We compare these default findings to results using the Ferretti et

al. point estimate distribution (a Weibull distribution with mean 5.5 days) in Appendix A.6.

We then created an alternative version of our model which allowed for changing the gener-

ation time distribution due to the delta and omicron variants. We changed the generation

time distribution starting in July 2021, reflecting our assumption that delta variant domi-

nated new cases by this point, and changed it again in December 2021, reflecting the same

assumption about the omicron variant. Hart estimates the median reduction in the mean

generation time for the delta variant is 15% as compared to alpha (we assumed alpha and

wild-type had the same generation time) [Hart et al., 2022], while Abbott estimates the me-

dian reduction in the mean generation time for omicron is 28% as compared to delta [Abbott

et al., 2022]. We created generation time distributions for these variants by minimizing a

squared loss function to search for parameters such that the new distributions had the ap-

propriate new mean generation time, while preserving the standard deviation of the original
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distribution (see Appendix for complete details). We tested whether this new model was

needed by calculating the Bayes factor of the two models using data from Alameda County

the bridgesampling package in R [Meng and Wong, 1996, Gronau et al., 2020], running

both models for 26,000 iterations with the first 1000 iterations discarded as burn in on 3

chains. The point estimates for the marginal likelihood had error of 7% for the constant

generation time model and 6% for the varying generation time model, with a reported Bayes

Factor of 1.58 in favor of the model with variant-specific generation times. Even accounting

for the margin of error, it is hard to conclude the varying generation time model was deci-

sively superior to the constant generation time model, so we used the constant generation

time model in this paper. Because we were testing a characteristic of the infectious disease

that should generalize across locations, and because of the computational cost involved, we

did not calculate Bayes factors for all fifteen counties.

Finally, we used the point estimate of the latent period distribution from Xin et al. [2022] as

the delay distribution in our model, with a mean latent period of 5.5 days using a gamma

distribution. For the alternative analysis using the Ferretti et al. distribution, we scaled this

distribution by 0.5 to halve the mean latent period.

We fit EpiEstim, Rt-estim-normal (using the priors from the simulations), and Rt-estim-

gamma (see Appendix for priors) to this data. The posterior summaries for the effective

reproduction number as calculated by EpiEstim are displayed in Figure A.5 and those cal-

culated by Rt-estim-gamma are displayed in Figure 3.6. Accompanying incidence posterior

distributions and case posterior predictive distributions for Rt-estim-gamma are displayed

in Figures A.6 and A.7 respectively. Visualizations of the priors and posteriors for non

time-varying parameters for Rt-estim-gamma fit to Los Angeles County data are displayed

in Figure A.14. After running into convergence issues with Rt-estim-normal, we reduced the

data set to August 2nd 2020 through November 6th 2021 and fit Rt-estim-normal to this

data set. The Rt-estim-normal results were generated using R version 4.2.2.
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Priors for Rt-estim-gamma were the same as in the simulations, except that the prior σ had

a mean of -0.61 (the range of plausible values was similar), and the priors for ρ and κ were

chosen for each county individually using the protocols described in the methods section.

We assumed the overall median proportion of observed incidence was 0.066. An example of

posterior predictive intervals from the thin plate spline used to choose the prior for κ and

from Rt-estim-gamma fit to SARS-CoV-2 case data from Alameda County, California, are

visualized in Figure A.3.

Comparisons with Rt-estim-normal are displayed in figures A.8, A.9 and A.10. The Rt-

estim-gamma results were generated in R version 4.1.2, but all packages were the same as

those used to generate simulation results except for Rcpp which was version 1.0.8 rather than

version 1.0.7. Overall, Rt-estim-gamma estimates were smoother and more uncertain than

estimates from EpiEstim, but less smooth and uncertain than those produced by Rt-estim-

normal. This behavior is consistent with model performance in the simulation scenarios. Rt-

estim-gamma estimates tended to estimate less extreme magnitudes than Rt-estim-normal

estimates, and while the two models produced broadly similar estimates of the trajectory of

the effective reproduction number, they differed in some counties in significant ways. For

example, in San Diego county, the median estimate from Rt-estim-normal is always above 1

before January 2021, while the median estimate from Rt-estim-gamma is below 1 for parts of

this period. Additionally, in all counties the median estimate from Rt-estim-gamma crossed

below 1 before the median estimate for Rt-estim-normal in fall 2021. Rt-estim-normal and

Rt-estim-gamma produced different estimates of the latent incidence (Figure A.9), but both

produced 95% posterior predictive intervals for the observed cases which had good coverage

in all counties (Figure A.10).

The results using Rt-estim-gamma with a mean generation time of 5.5 days are displayed in

Figures A.11, A.12 and A.13. Using a shorter generation time led to generally smaller esti-

mates of the peak effective reproduction number with narrower credible intervals. However,
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the trajectories using either generation time were similar, and the estimated trajectories

agreed on when the median reproduction number was above or below one.

Median estimates for the effective reproduction number were larger during the summer 2021

wave than during the winter 2020 wave. The estimate of the reproduction number during

the winter 2021 wave was similar to that of summer 2021 wave except in a few counties

where it was larger, such as Los Angeles and Alameda counties. Trajectories were similar

across counties, but varied in timing and magnitude from county to county. For instance,

the peak reproduction number in the Winter 2020 wave was estimated to occur in the week

of November 1st in Sacramento County, and the week of November 22nd in Los Angeles

County.

3.4 Discussion

We presented a model for estimating the effective reproduction number using time series

of observed cases and diagnostic tests, as well as methods for choosing key priors for the

model. We tested the model on simulated data sets, showing it can successfully estimate

the true effective reproduction number when data are generated from a stochastic compart-

mental model. We also tested other models used for estimating the effective reproduction

number, demonstrating that when testing supply is relatively constant, a case observation

model that ignores testing is reasonable, but when testing supply changes rapidly, ignoring

testing leads to poor model performance. Using data from the SARS-CoV-2 epidemic in

California, we have shown how using a model fit to case observation data that incorporates

testing data leads to different conclusions about the trajectory and magnitude of the effective

reproduction number in real world epidemics.

We found that EpiEstim had poor performance across all simulation scenarios. In contrast,
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an assessment of EpiEstim by Gostic et. al found it had reasonable performance on simulated

data and recommended it over other existing methodologies (models available in epidemia

were not assessed in this chapter) [Gostic et al., 2020]. However, Gostic et. al. only tested

EpiEstim on simulated data sets where the true incidence was known. In our study, we tested

EpiEstim on data sets where cases were noisy realizations of unobserved incidence, a much

more realistic scenario for many diseases, such as SARS-CoV-2. The performance of our GLM

versions of EpiEstim on data from the SARS-CoV-2 epidemic in Orange County, CA provides

one reason for this poor performance. Modeling reported cases as a Poisson random variable

assumes a stringent mean-variance relationship that is likely to under-estimate uncertainty.

We do not recommend using EpiEstim to estimate the effective reproduction number when

there is reason to believe reported cases do not reflect true incidence.

When testing was relatively constant, the Rt-estim-normal model, which assumes latent

incidence but ignores tests, still performed well. Even in this scenario, the Rt-estim-gamma

model we developed for this chapter had smaller mean credible interval widths and smaller

absolute deviations. This suggests that our other modeling choices beyond including tests

as a covariate, such as the use of the gamma distribution to model latent incidence, and our

process for choosing the prior for the case over-dispersion parameter, had positive effects

on model performance. As the SARS-CoV-2 pandemic has unfolded, a number of modeling

groups have developed similar techniques for estimating the effective reproduction number.

We have demonstrated how modifying distributional assumptions and developing protocols

for choosing priors can have significant impact on model performance. We hope these findings

motivate the larger community of researchers focused on modeling the effective reproduction

number to revisit their work and establish best practices for this class of models.

In simulation scenarios where testing supply increased dramatically, we were still able to

successfully estimate the effective reproduction number using the Rt-estim-gamma model.

Our findings suggest incorporating testing data is a viable strategy for using case data, which

60



should improve the accuracy of efforts at now-casting the effective reproduction number.

It is worth noting that we avoided using a delay distribution in Rt-estim-gamma which

incorporated reporting delays, instead using data where cases and tests were tied to the date

of the test. This should not prevent the use of Rt-estim-gamma for up-to-date now-casting

even though counts of the most recent cases and tests will inevitably be under-counts, so long

as the proportion of positive to total tests is independent of reporting delays. We assumed

this was the case when applying Rt-estim-gamma to the SARS-CoV-2 data from California.

If this assumption proves not to be true, then approaches that do not use testing data and

incorporate more elaborate delay distributions, such as those of Abbott et al. [2020] and

Bhatt et al. [2023] are probably a better choice. Similarly, because our model relies on the

proportion of positive to total tests, rather than the raw counts of positive tests, it should

be robust to changes in types of tests available, so long as reported positive cases used the

same kinds of tests recorded in total diagnostic tests. This allows us to avoid any problems

that arise from the availability of rapid tests for SARS-CoV-2 during the omicron wave.
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Figure 3.6: Estimates of the effective reproduction number of SARS-CoV-2 from Rt-estim-
gamma applied to fifteen counties in California, USA from August 2nd 2020 through January
15th 2022. Blue shaded regions are 95% posterior credible intervals. Black lines are medians.
Grey vertical lines mark the date maximum statewide cases were reported for the original
winter 2020 wave, the summer 2021 wave, and the winter 2021 wave.

In a representative set of simulations, even when Rt-estim-normal posteriors captured the

effective reproduction number, its posterior estimates for latent incidence did not capture the

true latent incidence. To a lesser extent, the same was true of the Rt-estim-gamma model.
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We have not yet seen any discussion as to the accuracy of incidence estimation for this class

of models. Our findings suggest incidence estimates should not be trusted, as there are many

values for incidence that lead to the same observed cases and the same reproduction number

estimates. Estimates where a population size are taken into account, such as in Mishra et al.

[2020], may be more trustworthy, but we recommend running a simulation study first to

verify this.

One important limitation of our method is that we condition on the number of tests and

use them as a covariate, rather than modeling them jointly with cases. We would expect in

practice that the number of tests is also a function of past incidence (with cases rising, more

tests will be administered). In mathematical terms, a joint model of cases and tests could

be written as

P (O,M | I, ρ, κ) = P (O | M, I, ρ, κ)P (M | I, ρ, κ).

Our method only uses the first term of this product. This leaves our method open to

potential bias from model misspecification. In the simpler context of regression without

latent variables, this issue is sometimes called “feedback”, a thorough treatment of the topic

is available in Chapter 12 of Diggle et al. [2002]. While we think that in practice this will not

be a concern in situations where cases and tests increase and decrease together in response

to changes in incidence, the possibility does exist. For instance, suppose the testing policy

during the peak of an epidemic was that individuals with symptoms could not be tested,

as anyone with symptoms should simply assume they have been infected. Tests might still

increase in response to increased incidence from the wave, but cases could decline, because

no symptomatic people were testing. In such a scenario, we would expect our model to fail.

Modeling tests is a non-trivial problem, and implementing a joint model of cases and tests

is a promising future direction.
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In this paper, we used gamma densities to in order to model changes in latent incidence

stochastically. While our choice of a gamma distribution has some desirable benefits, namely

that it allows us to use HMC to generate posterior samples, and that it allows for overdisper-

sion in the variance, there is definitely room for improvement in modeling latent incidence.

Recent work by Penn et al. [2022] provides an interesting avenue for improvement, with

explicit calculations of the variance of the transition distributions of a time-varying general

branching process.

In the real data analysis, we used Rt-estim-gamma with a prior for the over-dispersion pa-

rameter derived from a spline fit to the same data as Rt-estim-gamma. This is a workaround

we developed to avoid computational problems related to using Hamiltonian Monte Carlo

when the prior for the over-dispersion parameter strongly conflicts with the data. Another

MCMC method, such as Zig-Zag sampling [Bierkens and Roberts, 2017, Corbella et al.,

2022b], may not have this issue, and so we could avoid this procedure. While not ideal, we

tested our model using this procedure for choosing the over-dispersion prior on simulated

data, and found no discernible loss in performance.

It is clear that more sophisticated representations of the generation time distribution which

could change according population dynamics could be incorporated into our model. While

this might lead to improved model performance, it is encouraging that in simulations, our

model performed well despite using a fixed generation time. It is equally encouraging that

our experiments on both simulated and real data showed our model was reasonably robust

to different generation time distributions.

One obvious area for improvement in this space is allowing the prior on case detection (ρ) to

change over time to better reflect changes in testing policy. For instance, at the start of the

SARS-CoV-2 pandemic, only symptomatic individuals could get tested in California, whereas

in Fall 2021, anyone was eligible to receive a test. Sherratt et al. [2021] also highlighted

how changes in testing eligibility may result in estimating spurious changes in the effective
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reproduction number. We have found case data alone is insufficient to make a time varying

detection parameter identifiable. Incorporating other sources of data that facilitate real-

time estimation, such as data from wastewater treatment facilities, may enable models with

time varying case detection parameters. Enabling effective reproduction number estimation

methods to incorporate multiple data streams seems like a fruitful area of future research.
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Chapter 4

Semiparametric Inference of Effective

Reproduction Number Dynamics

from Wastewater Pathogen

Surveillance Data

4.1 Introduction

For many pathogens, infected individuals will shed copies of the pathogen through fecal

matter over the course of their infection. Viral gene concentrations measured in wastewater

samples are a noisy aggregate of the concentrations of genomes generated by infected indi-

viduals connected to the wastewater system, and thus provide insight into the dynamics of

the spread of an infectious disease [Hillary et al., 2020, Polo et al., 2020]. One promising

use for pathogen genome concentrations as data is estimation of the effective reproduction

number. The effective reproduction number (Rt), the average number of individuals an in-
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fectious person at time t would subsequently infect, is a useful way of describing the state of

an infectious disease epidemic. When Rt is below 1, we expect the number of new infections

to decrease; the reverse is true when Rt is above 1. In this paper, we develop a new method

for estimating the effective reproduction number from pathogen genome concentrations col-

lected from wastewater, and as a bi-product, show how this method can be used to estimate

the effective reproduction number from case data as well.

Recently, a number of studies have evaluated SARS-CoV-2 (the causative agent of COVID-

19) RNA concentrations measured in wastewater as a potential data source, comparing them

to both prevalence counts, counts of reported cases, and case rates [Morvan et al., 2022, Acer

et al., 2022, Song et al., 2021, Zhan et al., 2022, Zulli et al., 2021]. Wade et al. [2022] provide a

useful introduction to the many sources of uncertainty in the pathogen genome concentration

data generation process.

From the perspective of inferential methods, pathogen genome concentrations are potentially

less biased data than counts of new cases, which can be biased by policies regarding testing

availability and the willingness of the population to test [Li et al., 2020]. To our knowledge,

there have been relatively few attempts to use pathogen genome concentrations collected from

wastewater (henceforth referred to as wastewater data) to estimate the effective reproduction

number. Huisman et al. [2022b] adapted their case based method [Huisman et al., 2022a]

and used SARS-CoV-2 wastewater data to create a synthetic time series of hypothetical

case data that is then analyzed with the widely used case-based method EpiEstim [Cori

et al., 2013]. While easy to use, the synthetic incidence is truncated on the assumption that

wastewater data observed in the present contains little information about the number of

newly infected individuals. As a consequence, the final estimate of the effective reproduction

number is truncated as well. Nourbakhsh et al. [2022] used a classic compartmental model

where RNA concentrations were modeled as noisy realizations of the number of currently

infectious and recently recovered individuals. While the model produces inference on a
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number of parameters beyond the effective reproduction number, it also requires a number

of parameters to be specified by users in order to produce inference, many of which are

difficult to verify in practice.

Taking inspiration from previous work on non-parametric modeling of the transmission rate

in compartmental models [Xu et al., 2016] and birth-death modeling in infectious disease

phylodynamics [Stadler et al., 2013], we introduce a simpler compartmental model with

only compartments needed to estimate the effective reproduction number and equip it with

a Bayesian nonparametric inference framework. This simpler model combined with our

Bayesian nonparametric framework lets us avoid some difficult-to-verify assumptions, while

still estimating the effective reproduction number from wastewater data.

In this paper, we first introduce the classic compartmental modeling framework, then our

new wastewater-based method for estimating the effective reproduction number. We test our

new model against compartmental models fit to case and wastewater data as well as a state-

of-the-art wastewater-based method on simulated data. Finally, we apply our new method

to estimate the effective reproduction number of SARS-CoV-2 in Los Angeles, California

using SARS-CoV-2 RNA concentrations collected from a large wastewater treatment plant.

4.2 Methods

4.2.1 Available Data

We will consider two types of surveillance data; concentrations of pathogen genomes mea-

sured in wastewater, and reported new cases, observed at times t1, . . . tT . It is common

practice to measure the concentration from the same sample of wastewater multiple times,

producing multiple measurements called replicates. In real world data sets, an average
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Table 4.1: Parameters of the SEIR model.

Parameter Interpretation
βt time-varying transmission rate
1/γ average time infected but not infectious (average length of the latent period)
1/ν average length of the infectious period
N total population size

of replicates is often reported. We will consider both raw concentrations and averages in

this chapter. We define X = (Xt1,1, . . . , Xt1,j, . . . , XtT ,j), where Xti,j is the jth replicate of

pathogen genomes collected from wastewater at time ti, with units of copies per milliliter.

We model Xti,j as a noisy representation of the unobserved number of currently infectious

and recently recovered individuals. LetO = (Ot1 , Ot2 , Ot3 , . . . , OtT ), where Otu is the number

of newly observed cases of an infectious disease during time interval (tu−1, tu]. We model

Otu as a noisy realization of the number of individuals transitioning from the latent stage of

infection to the infectious stage.

4.2.2 Standard Compartmental Models

An SEIR compartmental model describes a homogeneously mixing population moving through

infectious disease stages, referred to as compartments [Keeling and Rohani, 2008, pages 12-

52]. The compartments are S, susceptible individuals; E, infected but not yet infectious

individuals; I, currently infectious individuals; and R, no longer infectious either due to

recovery or death. In its deterministic form, the changes in the number of individuals in

these compartments are described using a system of ordinary differential equations (ODEs).

The behavior of the ODEs is described by a set of key parameters defined in Table 4.1. The

SEIR system of ODEs is:

dS

dt
= −βt×I×S/N,

dE

dt
= βt×I×S/N−γ×E, dI

dt
= γ×E−ν×I, dR

dt
= ν×I.
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We model βt as time-varying to account for changes in transmission due to, for example,

implementation of public health policies, changes in behavior, or the emergence of new

pathogen variants.

For the SEIR model, the time-varying basic reproduction number, R0,t, the average number

of individuals a person infected at time t would infect in a completely susceptible population,

and effective reproduction number, Rt, are defined as:

R0,t =
βt
ν
, Rt = R0,t ×

S(t)

N
. (1)

We will adapt this classic model for our purpose of estimating Rt from wastewater data.

4.2.3 The EIRR Model

The SEIR model assumes that the susceptible population only changes because of new

infections. In practice, the susceptible population can change over time due to vaccination

campaigns and the introduction of new disease variants that evade immunity from prior

infection. Modeling such dynamics is often difficult, especially in real time, when it may be

non-trivial to estimate the effect of immune evasion of a particular variant.

Taking inspiration from birth-death modeling in infectious disease phylodynamics [Stadler

et al., 2013], we define αt = βt × S/N and rewrite the equation for dE/dt so that: dE/dt =

αt×I−γ×E. The rate of new latent infections no longer depends on the S compartment. The

parameter αt can be interpreted as a time-varying average number of secondary infections

produced by one infectious individual per unit time (e.g., per day). Note, the effective

reproduction number is still recoverable, as Rt = βtS(t)/νN = αt/ν.

In addition, we split the R compartment in two. In the first compartment individuals are

recovered but still shedding pathogen genomes, in the second they are recovered and no
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longer shedding genomes. This choice is motivated by the characteristics of SARS-CoV-2,

for which it has been shown individuals shed detectable amounts of RNA in fecal matter

well after the likely end of their infectious period (see Appendix Section B.2.3 [Okita et al.,

2022, Zhang et al., 2021]). The final model, which we call the EIRR model, is described by

the following equations:

dE

dt
= αt×I−γ×E,

dI

dt
= γ×E−ν×I, dR1

dt
= ν×I−η×R1, dR2

dt
= η×R1. (4.1)

Here 1/η is loosely interpreted as the average time spent recovered but still shedding pathogen

RNA via fecal matter. We also include a redundant compartment C(t), where dC/dt =

γ × E. This counts cumulative transitions from the E to I compartments, and allows us

to keep track of the number of people who became infectious during time period (tu, tu−1]

as C(tu) − C(tu−1). For the sake of comparison, we will also implement the SEIRR model,

which is the SEIR model with two R compartments.

4.2.4 Wastewater Observation Model

We model the log of observed pathogen genome concentrations as realizations of a generalized

t-distribution: logXti,j ∼ Generalized t(log (λ× I(ti) + (1− λ)×R1(ti)) + log (ρ), τ 2, df).

Here I(ti) is the number of currently infectious individuals at time ti, R1(ti) is the number

of non-infectious but still shedding individuals at time ti. The parameter λ ∈ (0, 1) is a

normalized weight representing how much each individual contributes to the true underlying

pathogen genome concentrations while infectious (Appendix Section B.1.1 describes in detail

how we chose the prior for this parameter). Parameter ρ allows for flexibility in relating

counts of individuals to concentrations. Parameter τ accounts for variation from the mean,

and df is the parameter governing the degrees of freedom of the t-distribution. We chose to

use a t-distribution because wastewater data often has many outliers; a t-distribution with
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thicker tails should better fit the data as opposed to the normal distribution.

4.2.5 Complete EIRR-ww Model Structure

We describe the complete wastewater data model, which we call the EIRR-ww model, struc-

ture in the following section. We use a random walk prior for the time-varying effective repro-

duction number: R0 ∼ Log-Normal(µ0, σ0), σ ∼ Log-Normal(µrw, σrw), log (Rki)|Rki−1
, σ ∼

Normal(log (Rki−1
), σ). The times ki can be chosen flexibly, for this chapter, we choose

them so that Rt changes on a weekly basis. Let Θ̄ = (γ, ν, η, I(0), E(0), R1(0)) and R =

(Rk1 , . . . , RkM ) be the vector of effective reproduction number values. Let M(t, Θ̄,R) =

(E(t, Θ̄,R), I(t, Θ̄,R),R1(t, Θ̄,R),R2(t, Θ̄,R)) be the solution to the EIRR ODE system

described in Section 4.2.3. The target posterior distribution is:

P (R, Θ̄, ρ, λ, τ, df, σ | X) ∝ ︸ ︷︷ ︸
Concentration Model

P (X | M(t, Θ̄,R), ρ, λ, τ, df)︸ ︷︷ ︸
RW Prior

P (R | σ)P (Θ̄, ρ, λ, τ, df, σ).

We use the No-U-Turn Sampler, implemented in the Julia package Turing to approximate

this posterior distribution [Hoffman and Gelman, 2014, Ge et al., 2018]. We used non-

centered re-parameterizations for all model parameters except for df (which had a gamma

prior). Markov chain Monte Carlo chains were initialized using the Maximum A Poste-

rior (MAP) estimate of each parameter plus Gaussian noise (except for df which was only

initialized at the MAP).

4.2.6 The EIR Model

The EIRR model can be simplified when fitting to case data by using only a single R

compartment, creating the EIR model. It is described by the same equations as equation

4.1 but with only one R compartment equation. Cases are modeled as a noisy realization
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of the number of transitions from the E to the I compartment using a negative-binomial

likelihood. For cases observed in the interval (tu−1, tu]: Ou ∼ Negative-Binomial((C(tu) −

C(tu−1)) × ψ, ϕ) where C(tu) − C(tu−1) is the number of transitions from the E to the I

compartment in time interval (tu−1, tu], ψ is a detection rate parameter, and ϕ is an over-

dispersion parameter. Both ψ and ϕ have their own priors. The full structure of our case

model, the EIR-cases model, is otherwise very similar to the EIRR-ww model. The structures

of the corresponding SEIR-cases/SEIRR-ww models are likewise similar, though for SEIR-

cases/SEIRR-ww models the basic reproduction number is modeled as random walk, rather

than the effective reproduction number. We provide a more detailed description of the

SEIRR-ww model priors in Appendix Section B.1.3.

All code used to produce this paper is available at https://github.com/igoldsteinh/

ww_paper. A Julia package implementing the models used in this paper is available at

https://github.com/igoldsteinh/concRt.jl. An R package which provides a wrapper

for the Julia package is available at https://github.com/igoldsteinh/concRt.

4.3 Simulation

4.3.1 Simulation Protocols

We simulated a single realization from an agent-based stochastic SEIRR described in Ap-

pendix Sections B.1.1 and B.2.1. The population size was set to 100,000. The mean latent

period was 4 days, the mean infectious period was 7 days, and the mean time spent recov-

ered but still shedding pathogen genomes was 18 days. The simulation was started with

200 individuals in each of the E and I compartments, and run for a warm-up period of 77

days before creating data for the model to fit to. This was done so that there would be

individuals in all compartments for whom all transition times between compartments would
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be naturally available. The top left panel of Figure B.8 shows the prevalence in each com-

partment, the time 0 is the day before the first wastewater sample is collected. The basic

reproduction number R0,t was given a fixed trajectory. We calculated the true Rt at each

day using Equation 1. For the observation period, we chose to start with R0,t set to 0.9

with a rapid increase to 2.5, where it stayed for the duration of the simulation, mimicking

a scenario where a new and highly infectious variant is introduced into a population. All

priors used in the simulation are listed in Table B.2 (for the case models the priors for γ and

ν are transformed to be on a weekly scale). Note that the prior for λ was centered at 0.99,

with a 95% quantile range of 0.8 to 1.

Using this single realization from the stochastic SEIRR model, we simulated 100 data sets

of pathogen genome concentrations and 100 data sets of observed case data. All parameters

specified below were chosen to create data similar to observed data from the SARS-CoV-2

pandemic in Los Angeles, California ( see Appendix Section B.2.3 for more details). Daily

genome concentration data were generated using a generalized t-distribution as in the model

described in Section 4.2.4. However, the mean of the generalized t-distribution was the true

total genome concentration shed, generated using the method described in Appendix Section

B.1.1. We simulated ten replicates per day. Parameter ρ was set to be 0.011, τ was set to

be 0.5, and df was set to 2.99. Only data from every other day were used for analysis.

Cases were simulated at a daily time-scale and aggregated to a weekly time-scale. The case

detection rate ψ was set to 0.2, while ϕ was set to 57.55. We generated data for a total

of 19 weeks. While the case likelihood of our SEIR-cases and EIR-cases models is quite

similar to the data generating mechanism of the simulated data, the wastewater likelihood

of our SEIRR-ww and EIRR-ww models is a crude approximation of the data generating

mechanism of the simulated data. For all subsequent simulation scenarios except the final

one, we use the same 100 data sets while changing either the type of data used to fit the

model, or the model priors.

74



In the baseline simulation scenario, we fit the SEIR-cases, EIR-cases, SEIRR-ww and EIRR-

ww models to the data, using three replicates for the wastewater models and weekly cases

for the case models. In subsequent scenarios, we only fit the EIRR-ww model. Using the

same priors as in the baseline scenario, we fit the EIRR-ww model using one or ten replicates

instead of three replicates (1-rep and 10-rep) and also fit the model using the mean of three

replicates or the mean of ten replicates (3-mean and 10-mean respectively). We also conduct

sensitivity analyses where the priors for the inital E and I compartments are centered at 75%

or 133% of true values (Low Init and High Init respectively). We shift the prior for λ so that

it is centered around 0.8 (Low Prop) as opposed to the default 0.99. We fit the Huisman

method using the mean of three replicates as the input data. Details on choosing parameters

for the Huisman method are in Appendix Section B.1.6. In the final scenario (Stoch Rt), we

use the parameters, data, and priors of the baseline scenario, but for each data set simulate

a new epidemic, and thus a new Rt curve, for each simulation. An example realization of the

simulation is displayed in Figure B.8. All priors used in the baseline simulation are listed in

Table B.2.

4.3.2 Comparison with State-of-the-Art Methods

We compare the EIRR-ww model to the Huisman et al. [2022b] method. This method is

a variation on the well known EpiEstim method [Cori et al., 2013]. Pathogen concentra-

tions are modeled as a convolution of unobserved latent incidence (new infections) and the

individual shedding load profile describing how many gene copies individuals shed over the

course of their infection. Latent incidence is estimated using an EM algorithm, then the

estimated incidence is used as the input into EpiEstim. The pipeline is repeated multiple

times using a bootstrap method to produce final measures of uncertainty. Further details

are available in Appendix Section B.1.2.
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In contrast, the method of Nourbakhsh et al. [2022] uses a compartmental model similar to

ours, splitting both the I and R1 compartments into many smaller compartments in order

to better match the shedding dynamics of pathogen genomes in fecal matter. They also

directly model the impact of the sewer system itself on the final observed data. We decided

not to test the method of Nourbakhsh et al. [2022] in this chapter because the code for the

latter method is not readily available, and because the goal of their model was not limited

to inference of the effective reproduction number.

4.3.3 Simulation Results

Baseline Simulation

Posterior medians and credible intervals for models fit to the example simulation data are

displayed in Figure 4.1.

Posterior trajectories from all models generally mimic the trueRt curve, although the SEIRR-

ww model struggles to capture the exact trajectory. Models using genome concentrations

have wider credible intervals than models using case counts, reflecting higher variability of

wastewater data as compared to case data. Note that the random walk prior forces Rt to

change on a weekly scale, while the true values are reported on a daily scale, resulting in more

pronounced segmentation of posterior summaries. The SEIRR-ww model (top left of Figure

4.1) estimates sloping spikes because the SEIRR ODEs are solved at a daily time scale, since

the SEIR-cases model is solved at a weekly scale, it does not display the same behavior.

EIRR-ww posterior estimates of the latent trajectories (including latent incidence) are dis-

played in Appendix Figure B.9. While posterior estimates mimic the shape of the latent

trajectories, they fail to capture the magnitude of the trajectories except at the beginning

and end of the simulation.
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Figure 4.1: Posterior summaries of Rt using four models fit to either wastewater or case data
generated from the same underlying infectious disease dynamics. True Rt trajectories are
colored in red, black lines represent posterior medians, blue shaded areas from dark to light
are 50, 80 and 95% credible intervals. Models in the top row use genome concentrations,
models in the bottom row use case counts. Models in the left column use the S compartment,
models in the right column do not.
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To assess performance across many simulated data sets, we examined frequentist properties

of our four models, summarized in Figure 4.2. Boxplot solid lines represent medians, hinges

are upper and lower quartiles and whiskers are at most 1.5 times larger than the upper and

lower quartiles. Envelope is a measure of coverage. For each simulation the envelope is the

proportion of time points for which an 80% credible interval from the posterior distribution

captured the true value of interest. Ideally it should be 0.8. We chose to use 80% credible

intervals as estimates of the 80% quantiles have less Monte Carlo Error than 95% quantiles, so

fewer data sets are needed to estimate them well. The corresponding 95% credible interval

results are displayed in Appendix Figure B.13. Mean credible interval width (MCIW) is

the mean of 80% credible interval widths across time points within a simulation. Absolute

deviation is a measure of bias, and is the mean of the absolute difference between the

posterior median and the true value at each time point. Finally, mean absolute sequential

variation (MASV) measures how well each method captures the variation in the effective

reproduction number across time by computing the mean of the absolute difference between

the posterior median at t and the posterior median at t − 1. We compare this to the true

mean absolute sequential variation in each simulation. The EIRR-ww model outperforms

the SEIRR-ww model in terms of bias, precision, and coverage. Both the SEIR-cases model

and the EIR-cases model outperform the EIRR-ww model in terms of bias and precision.

The EIR-cases model is slightly more biased and less precise than the SEIR-cases model.

Although the EIRR-ww model has less precision than case based models, this simulation

shows that models using wastewater data can be used to estimate the effective reproduction

number reasonably well.

Performance in Other Scenarios

Frequentist metrics comparing the baseline EIRR-ww fit (three replicates) to the EIRR-ww

fit to one and ten replicates, and to the EIRR-ww fit to mean of three replicates and mean
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Figure 4.2: Frequentist metrics for the EIRR-ww, SEIRR-ww, EIR-cases and SEIR-cases
models in the baseline scenario. Absolute deviation is the mean of the absolute value of
the difference between the median Rt at each time point and the true value. Envelope is a
measure of coverage, taking the average coverage of 80% intervals over the time series. MCIW
is the average mean credible interval width. Mean absolute standard deviation (MASV) is
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are at most 1.5 times the inter-quartile range from the median.
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of ten replicates, are displayed in Appendix Figure B.14. The EIRR-ww fit to one or ten

replicates performed modestly worse or better respectively than the EIRR-ww fit to three

replicates. The EIRR-ww fit to raw replicate concentrations performed slightly better than

the EIRR-ww fit to means of replicates.

We assessed the robustness of our model by changing the priors for the initial conditions, as

well as the prior for λ. Frequentist metrics comparing these alternate models to the baseline

model are displayed in Figure B.15. Changing these priors lead to only modest changes in

model performance.

We fit the method by Huisman et al. [2022b] to each of our data sets, using as the input

data the mean of three replicates. We then compared the Huisman et al. [2022b] method

to the EIRR-ww model fit to three replicates. Also, the Huisman et al. method does not

provide 80% credible intervals, so we compared metrics using 95% credible intervals. The

comparison is visualized in Figure B.16. In this simulation, the EIRR-ww model clearly

outperforms the Huisman model in terms of both bias and precision associated with the

effective reproduction number trajectory estimation. We found that the EIRR-ww model

performed similarly to the baseline scenario when fit to 100 data sets where each data set was

generated from a separate simulated epidemic and separate simulated Rt. The comparison

is visualized in Figure B.17. Summaries of MCMC diagnostics for all model fits are available

in Appendix Section B.2.8.
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4.4 The Effective Reproduction Number of SARS-CoV-

2 in Los Angeles, CA

4.4.1 Data

Wastewater data were collected from the Joint Water Pollution Control Plant (JWPCP),

one of the largest wastewater treatment plants in Los Angeles County. The plant serves 4.8

million people across Los Angeles County. The data, reported as viral gene copies per ml

of wastewater determined by quantitative PCR, were collected from the 24-hour composite

wastewater influent samples at irregular, but approximately two-day intervals, and usually

three replicates were reported for each sample [Song et al., 2021]. We excluded two days

(7/7/21 and 8/23/21) as outliers, as the reported concentrations dropped by at least two

orders of magnitude compared to the concentrations of the closest previous and subsequent

observed days. Cases during the same period in Los Angeles County are available from

the California Open Data Portal [California Open Data Portal, 2023]. The available data

from cases and wastewater are visualized in Figure 4.3. The cases are recorded for all of

Los Angeles County, not just the population served by the JWPCP plant. We re-scaled the

cases by a factor of 0.48 to partially account for this, as there are about 10 million people in

Los Angeles County in total. Priors for the EIRR-ww and EIR-cases model were the same

as those used in the simulation, except for the priors on the initial conditions and initial Rt

(see Appendix Section B.2.10). For the Huisman et al. [2022b] method, we used the same

shedding load profile calculated for the simulated data sets, but used the mean and and

standard deviation of the generation time distribution of SARS-CoV-2 calculated by Sender

et al. [2021].
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4.4.2 Results

The posterior estimate of Rt (from left to right) of the Huisman et al. [2022b] method,

the EIR-cases model and the EIRR-ww model are shown in Figure 4.4. For additional

comparisons, we used two branching process models, the Rt-estim-gamma model fit to cases

and total number of diagnostic tests (Chapter 3) and another model fit to cases using the

epidemia package [Bhatt et al., 2023, Scott et al., 2021]. For more details on these models,

see Appendix Section B.1.7. Posteriors from these models, along with the EIR-cases and

EIRR-ww models are shown in in Appendix Figure B.18.

While the EIRR-ww model provides different estimates than any of the case-based methods,

they mostly align, estimating one large increase in Rt above 1 tied with the arrival of the

Omicron variant in California in winter 2021. In contrast, the Huisman method estimates

several dramatic changes in Rt over short spans of time, most notably an increase from below

1 to above 2 at the start of October 2021. Overall, we think the EIRR-ww model provides

a better estimate of Rt than the Huisman method.

In addition, we calculate the case detection rate normalized by total diagnostic tests to

account for changes in the case detection rate due to changes in available diagnostic tests.

The posteriors are visualized in Figure B.19. Both normalized and un-normalized versions

of the estimated posterior case detection rate changed dramatically during the observation

period. More details are available in Appendix Section B.2.12.

4.5 Discussion

We have presented a modeling framework for using simplified compartmental models coupled

with Bayesian non-parametric priors to estimate the effective reproduction number. Using

this framework, we created the EIRR-ww model to estimate the effective reproduction num-
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ber using pathogen genome concentrations collected from wastewater samples. We tested

the EIRR-ww model by fitting it to data simulated from an agent-based stochastic SEIRR

model, and showed it could successfully estimate effective reproduction number dynamics.

We also used the EIRR-ww model to estimate the effective reproduction number for SARS-

CoV-2 in Los Angeles, California, showing it provides plausible estimates of the effective

reproduction number when used on real world data.

Our proposed models ignore the individual time-varying shedding dynamics of pathogen

genome concentrations. The SEIRR-ww model struggled to estimate the effective reproduc-

tion number on simulated data that accounted for the time-varying nature of the data. In

contrast, the EIRR-ww model had smaller bias and credible interval widths and was well

calibrated from a frequentist perspective. The gap in performance likely stems from the fact

that both models use mis-specified observation models and the EIRR-ww model’s lack of

an S compartment results in more flexibility for its estimates of the effective reproduction

number, and thus better performance overall. However, the EIRR-ww model was unable to

reconstruct the latent population compartments using only the linear relationship between

compartment counts and concentrations (Figure B.9).

Our method clearly outperformed the Huisman et al. [2022b] method on both simulated and

real data. We speculate the high levels of noise in both simulated and real data sets resulted

in overly jagged estimates from EpiEstim, a problem we demonstrate directly in Chapter 3.

Our method is an appealing alternative when the main goal is effective reproduction number

inference.

When compared to models fit to case data, the EIRR-ww model clearly had larger bias and

wider credible intervals, likely due to the high individual variation in genome concentrations

seen in empirical studies [Hoffmann and Alsing, 2023]. On the other hand, in real world

settings where the case detection ratio changes over time, models fit to wastewater data may

outperform models fit to case data that do not account for this. Using models fit to both
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cases and wastewater data simultaneously is a promising direction for future work.

The EIR-cases model had slightly larger bias and wider credible intervals than the SEIR-

cases model. However, this comparison was made without considering waning immunity. We

did not use the SEIR-cases model to estimate Rt for Los Angeles, CA, in part because we

think it is highly likely the rates of waning immunity changed dramatically when Omicron

became the dominant SARS-CoV-2 variant. This is a situation for which the EIR framework

is well suited. Even without wastewater data, we think the framework we describe in this

paper is a useful alternative to EpiEstim and related methods when estimating the effective

reproduction number.

We used both the EIRR-ww model as well as three other case based models to estimate

the effective reproduction number of SARS-CoV-2 in Los Angeles, CA. We emphasize that

all methods have their limitations, and none should be taken as ground truth. However,

the models agreed at many key points in time, including when Rt falls below one after

the summer 2021 wave, and the general timing of the winter 2021 wave. This agreement

suggests the EIRR-ww model estimates are not unreasonable when fit to real data. For a

fuller discussion of the points of disagreements between the models, see Appendix Section

B.3.1.

In this chapter we focused on replicates, rather than the commonly reported averages of repli-

cates and found that, when using simulated data, models using replicates performed modestly

better than models relying on average concentrations [Duvallet et al., 2022, Wastewater-

SCAN, 2023]. While the improvements in performance are not large, these improvements

are basically free, as the data are already being collected. We also found that using ten repli-

cates instead of three produced only modestly improved model performance. Depending on

the cost of producing replicates, increasing the number of replicates sampled may not be

worth pursuing.
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For SARS-CoV-2, most shedding occurs in the infectious period, raising the possibility our

model could be simplified to exclude the R1 compartment. This would simplify our closed

form solutions and speed computations, and is a promising modification of the model to

explore further. However, including multiple compartments may be necessary for other

pathogens with different shedding profiles. We chose not to incorporate covariates that can

control for changes in population size and conditions in the sewer system into our model.

For our particular application, the JWPCP plant is so large, and collects wastewater from

so many different smaller plants, that the population size and conditions are plausibly stable

across time. In addition, there remains some controversy over exactly which covariates would

be most useful to include [Maal-Bared et al., 2023]. Incorporating covariates which adjust

for these changes is an important next step.
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Chapter 5

The Signal is Not Flushed Away:

Inferring the Effective Reproduction

Number From Wastewater Data in

Small Populations

5.1 Introduction

Pathogen genome concentrations collected from wastewater (henceforth referred to as wastew-

ater data) provide information about the number of currently infected and recently covered

individuals in an infectious disease outbreak, and thus are a potential source of data when

modeling an epidemic [Hillary et al., 2020, Polo et al., 2020]. While there are many examples

of studies that correlate wastewater data with other data sources, such as Song et al. [2021],

there are relatively few instances of wastewater data being incorporated into epidemiological

statistical models ([Huisman et al., 2022b, Nourbakhsh et al., 2022, Morvan et al., 2022] and
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Chapter 4). To our knowledge, what studies do exist have largely focused on large popula-

tions, harvesting data from large wastewater treatment plants that collect wastewater from

hundreds of thousands of individuals. However, epidemiological modeling of small popula-

tions is also of interest, and while there has been interest in using wastewater data to study

infectious disease outbreaks in small populations, such as long term care facilities or college

dormitories [Keck et al., 2024, Acer et al., 2022], to our knowledge, there are no statistical

methodologies that address this challenge. In this paper, we provide a novel method for

estimating the effective reproduction number in small populations from wastewater data.

Ideally, we would model the spread of infectious diseases as a Markov Jump Process (MJP),

dividing a population into compartments representing susceptible, infectious and recovered

individuals, but in practice this is computationally challenging when the state space is large

and the process only partially observed [Ho et al., 2018, Rupp et al., 2024]. In large popula-

tions, deterministic approximations, such as using a model described by ordinary differential

equations (ODEs) can be used, but in small populations, these deterministic approximations

can be inadequate. Previous methods for estimating the effective reproduction number from

wastewater data have relied on these deterministic approximations, and thus may perform

poorly in small population settings (Chapter 4 and [Huisman et al., 2022b]).

Exact inference of MJPs for epidemics is usually accomplished either through Sequential

Monte Carlo or data augmentation [O’Neill and Roberts, 1999, King et al., 2016, Andrieu

et al., 2010]. Both approaches can be computationally intensive and prone to implementa-

tion issues in practice, and improving these methodologies remains an active area of research

[Corbella et al., 2022a, Morsomme and Xu, 2022]. It is also common practice to approximate

the MJP with the linear noise approximation, a local approximation to a stochastic differ-

ential equation whose solution is itself a diffusion process approximation of the MJP [Fintzi

et al., 2022, Golightly et al., 2023]. The key advantage of the linear noise approximation is

that it has Gaussian transition densities. Another approach, proposed by Isham [1991], is to
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start with the Gaussian transition densities (justified under central limit theorem style ar-

guments originating from Kurtz [Kurtz, 1971, Britton and Pardoux, 2019]), and then choose

approximate first and second moments of the MJP to use as the moments of the Gaussian

density [Isham, 1991, Buckingham-Jeffery et al., 2018].

For the specific task of inferring the effective reproduction number, it is quite common to

choose an approximate model that does not model the number of susceptible individuals

explicitly. The most common methods are based on a branching process approximation

to the MJP where individuals infect other individuals in an independent and identically

distributed manner, giving rise to the commonly used renewal equation relating the current

number of new cases to the previous counts of new cases ([Cori et al., 2013, Bhatt et al.,

2023] and Chapter 3). Avoiding modeling susceptibles simplifies the model significantly,

while still allowing for accurate inference of the effective reproduction number. Because these

branching process based models are based on incidence, it can be cumbersome to connect

them to data sources that are not explicitly realizations of incidence, such as wastewater

data. We previously developed a compartmental model that did not model susceptibles, but

our approach used a deterministic model which may not be appropriate for small populations

(Chapter 4).

We adapt our previous approach by first defining an MJP without a susceptible compartment.

This in turn greatly simplifies the use of either the LNA or the moment approximation

technique, as the infinitesimal transition rates are now linear. In this paper, we chose to use

the approach of Isham [1991], taking advantage of the simplified form of the MJP to calculate

the exact conditional first and second moments in closed form. Our approach allows us to

make use of state-of-the-art high dimensional Markov chain Monte Carlo methods that scale

well with population size while still accounting for the stochastic nature of infectious disease

transmission.

We compare our stochastic model to its deterministic counterpart under multiple simula-
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tion scenarios. We first vary the shape of the curve we are trying to infer, then change the

“stochasticity” of the underlying epidemic dynamics by varying the initial number of infected

individuals and the total population size. Finally, we apply our wastewater based methods to

estimate the effective reproduction number of SARS-CoV-2 in several college campus dormi-

tories and compare the results with state-of-the-art case-based methods, demonstrating the

qualitative differences between wastewater and case based methods, as well as the differences

between deterministic and stochastic methods in a small population setting.

5.2 Methods

5.2.1 Wastewater Data

It is common practice to measure the concentration from the same sample of wastewater

multiple times, producing multiple measurements called replicates. In real world data sets,

an average of replicates is often reported, but we will instead focus on the replicates, as

there are some advantages to using the raw data as opposed to an average (Chapter 4). We

define X = (Xt1,1, . . . , Xt1,j, . . . , XtT ,j), where Xti,j is the jth replicate of pathogen genomes

collected from wastewater at time ti, with units of copies per milliliter. We will model Xti,j

as a noisy realization of the unobserved number of currently infectious individuals.

5.2.2 Stochastic Compartmental Models

5.2.3 The SEIR Model

The SEIR model describes an infectious disease outbreak of a homogeneously mixing pop-

ulation, with the population divided into four compartments: susceptible, exposed (in-
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fected but not yet infectious), infectious, and removed. In its stochastic form, we repre-

sent the SEIR model as a four dimensional continuous time Markov jump process, G(t) =

(S(t), E(t), I(t), R(t)). It can be defined in terms of rate parameters such that

P (G(t+ dt) = (s− 1, e+ 1, i, r) | G(t) = (s, e, i, r)) = β × i× s/N × dt+ o(dt),

P (G(t+ dt) = (s, e− 1, i+ 1, r) | G(t) = (s, e, i, r)) = γ × e× dt+ o(dt),

P (G(t+ dt) = (s, e, i− 1, r + 1) | G(t) = (s, e, i, r)) = ν × i× dt+ o(dt)

P (G(t+ dt) = (s, e, i, r) | G(t) = (s, e, i, r)) = 1− (β × i× s/N + γ × e+ ν × i)dt+ o(dt).

Here γ is the inverse of the mean latent period, and ν is the inverse of the mean infectious

period. We describe the infectiousness of the disease through the rate parameter β. In prac-

tice, we will allow β to be time-varying, and denote it βt, to allow for changes in population

or pathogen characteristics such as public health policies or emergence of more transmissible

genetic variants. With this model, the time-varying basic reproduction number, R0,t, and

effective reproduction number, Rt, are defined as

R0,t =
βt
ν
,

Rt = R0,t ×
S(t)

N
.

5.2.4 The EI Model

We reduce the SEIR model to the EI model in order to avoid modeling changes in the S

compartment due to changing immunity profiles caused by vaccines or new immunity evading

variants. We represent the EI model as a two dimensional continuous time Markov jump
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process H(t) = (E(t), I(t)), defined with rates as:

P (H(t+ dt) = (e+ 1, i) | H(t) = (e, i)) = αt × i× dt+ o(dt),

P (H(t+ dt) = (e− 1, i+ 1) | H(t) = (e, i)) = γ × e× dt+ o(dt),

P (H(t+ dt) = (e, i− 1) | H(t) = (e, i)) = ν × i× dt+ o(dt)

P (H(t+ dt) = (e, i) | H(t) = (e, i)) = 1− (αt × i+ γ × e+ ν × i)dt+ o(dt).

Note that Rt is still recoverable by setting αt = βt × S(t)
N

, so that

Rt = R0,t ×
S(t)

N
=
αt
ν
.

Ideally, we would like to have the transition probabilities of H(t) in closed form, but this is

not analytically tractable. However, if we assume that αt is piece-wise constant, then for any

particular interval of time, the conditional moments of H(t) are available in closed form. We

will use the conditional moments to construct approximations to the transition probabilities

of H(t), following the techniques of Isham [1991].

5.2.5 Constructing a Partial Differential Equation of the Moment

Generating Function

Let pe,i = P (H(t) = (e, i)|H(l) = (x, y)) for l < t, we will omit indexing by x, y for notational

simplicity. Then the Kolmogorov Forward equation for H(t) is

dpe,i
dt

= αIpe−1,i + γ(E + 1)pe+1,i−1 + ν(I + 1)pe,i+1 − (αI + γE + νI)pe,i. (5.1)

From this differential equation with respect to time, we can construct a partial differential

equation of the moment generating function of H(t), by multiplying both sides of Equation
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5.1 by eθ1E+θ2I , where θ1, θ2 take values in a subset of the real line which includes 0, and

sum over all possible values of each of the four compartments. Let M(θ̄; t) be the Moment-

generating function of H(t). We produce the following partial differential equation:

dM(θ̄; t)

dt
=

(
αeθ1

d

dθ2
+ νe−θ2

d

dθ2
+ γe−θ1+θ2 +

d

dθ1
− α

d

dθ2
− ν

d

dθ2
− γ

d

dθ1

)
M(θ̄; t). (5.2)

By taking the partial derivative on both sides, and utilizing properties of moment generating

functions, we can create a system of linear ordinary differential equations for the conditional

moments of the EI model (see the Appendix Section C.1 for the series of ODEs). We

used Mathematica version 13.1 [Inc.] to generate closed form solutions of the conditional

expectations, variances, and covariance. Let µ̄ be the vector of conditional expectations,

and Σ be the matrix of conditional variances and covariances. We then use the derived

conditional moments to construct densities that approximate the transition probabilities of

the continuous time Markov jump process.

5.2.6 Log-Normal Approximation of the Transition Probabilities

We start with the known result that when the compartment counts are large enough, the

transition probability mass function converges to the normal density, that is, for l < t

H(t)|H(l) ∼ Normal(µ̄,Σ). (5.3)

In practice, we wish to rule out the possibility of negative compartment counts. To do this,

we instead use the transition density for the log compartment counts, and appeal to the

delta method to construct the density. That is:

logH(t)|H(l) ∼ Normal(log µ̄,∇ log µ̄Σ∇ log µ̄), (5.4)
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where ∇ log µ̄ is the Jacobian of log µ̄. We compare our Log-Normal approximate model

against the true MJP empirically via simulation in Appendix Section C.2.

We place additional explicit priors on the latent state space for computational reasons. First,

we require the compartment counts to be non-zero to avoid taking the log of 0. Second, we

require the compartment counts and the means of the compartment counts to sum to less

than 8 billion in order to avoid computations with infinity.

5.2.7 Observation Model

Recall that Xti,j is the jth replicate of the concentration observed at time ti. On the log

scale, we model Xti,j as a noisy realization of the number of currently infectious individuals,

where

logXti,j ∼ Normal(I(ti)× ρ, τ 2). (5.5)

Here ρ is a scaling factor, τ is a noise parameter, both receive priors.

Note that we are using a simpler model for pathogen concentrations than used in Chapter

4. We feel much of the benefit of using the t-distribution is lost when we have a stochastic

latent epidemic process, and that, while our chosen model may not be ideal, the simplicity

allows us to explore other aspects of the model well. Further discussion on this choice is in

Appendix Section C.3.

5.2.8 Complete Stochastic EI-ww Model Structure

We use a random walk prior for the time-varying effective reproduction number: R0 ∼

Log-Normal(µ0, σ0), σ ∼ Log-Normal(µrw, σrw), log (Rki)|Rki−1
, σ ∼ Normal(log (Rki−1

), σ).
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Let Θ̄ = (γ, ν, I(0), E(0)), R = (Rk1 , . . . , RkM ) be the vector of effective reproduction num-

ber values and H = (Hti , . . . ,HtI ) be the matrix of latent states from H(t). Note that we are

interested in the states of H that correspond to our observed data, but we will also augment

these states with additional states for any time at which αt changes. The target posterior

distribution is:

P (R,H, Θ̄, ρ, τ, σ | X) ∝ ︸ ︷︷ ︸
Concentration Model

P (X | H,R, Θ̄, ρ, τ)︸ ︷︷ ︸
LN EI

P (H | R, Θ̄)︸ ︷︷ ︸
RW Prior

P (R | σ)P (Θ̄, ρ, τ, σ).

We use the No-U-Turn Sampler, implemented in the Julia package Turing to approximate

this posterior distribution [Hoffman and Gelman, 2014, Ge et al., 2018]. We used non-

centered re-parameterizations for all model parameters. Markov chain Monte Carlo chains

were initialized using the Maximum A Posterior (MAP) estimate of each parameter with

added independent Gaussian noise.

5.2.9 Other Models

We compare our stochastic EI-ww model to its deterministic counterpart. In the determin-

istic model, the compartments are modeled with a set of ODEs as follows

dE

dt
= αI − γE

dI

dt
= γE − νI.

Let M(Θ̄, t) be the solution to the ODEs. Then the posterior of interest for the deterministic

EI-ww model is

P (R, Θ̄, ρ, τ, σ | X) ∝ P (X | M(Θ̄, t),R, Θ̄, ρ, τ)P (R | σ)P (Θ̄, ρ, τ, σ).

There is no additional term for the compartment counts, because they are now deterministic.
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In addition, when analyzing real data, we analyze case data with a model constructed us-

ing the Epidemia package Bhatt et al. [2023]. The model is an example of the common

branching process based methods for estimating Rt from cases, where the mean number of

new infections is equal to a weighted sum of the previous new infections multiplied by the

effective reproduction number. The full model is written in Appendix Section C.4, and more

thorough descriptions of this class of models can be found in Bhatt et al. [2023] and Chapter

3.

5.3 Simulations

5.3.1 Simulation Protocol

We simulated data from an agent-based stochastic SEIRR model that models each individ-

ual in a population, but is equivalent to a population level SEIRR model when aggregated

(Appendix Section C.5.1). The additional extra R compartment allows for recently recov-

ered individuals to shed pathogen RNA, a plausible characteristic of individuals infected

with SARS-CoV-2 (Appendix Section B.2.3). The rates governing time spent in each com-

partment were chosen to mimic SARS-CoV-2 (Appendix Section B.2.3). Wastewater con-

centrations were generated using the normal distribution as in Section 5.2.7, however the

mean of the distribution was the total genome concentration of the population, calculated

by aggregating the individual concentration shed each individual in the population, which

was allowed to vary over time to allow for the time-varying and individual heterogeneity of

pathogen shedding observed in real world studies of SARS-CoV-2 (Appendix Section B.2.3).

For the first three simulations, the population size was 1000 and we simulated epidemics

under three different R0 curves, one where R0,t changed from 0.9 to 2.5 in five weeks (Steep),

another where R0,t changed from 1 to 1.8 in seven weeks (Shallow), and finally one where
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R0,t stayed fixed at 1.4 (Fixed). Note that while R0,t was fixed, because Rt is a function

of the number of susceptibles S(t), each simulation for a particular scenario had a different

true Rt curve. We initialized ten individuals in the E and I compartments each, with the

remainder in the S compartment. For the Fixed R0,t scenario, we simulated an additional four

scenarios; one where the initial number of individuals in the E and I compartments was 5 or 20

individuals (Init5 and Init20 respectively), and finally two scenarios where the initial counts

were 10, but the total population size was 500 or 2000 (Total500 and Total2000 respectively).

These last four scenarios were meant to test how the models performed under varying levels

of stochasticity. We would expect that smaller initial counts or total populations would have

more stochastic variation, while the opposite would be true for larger counts. Models were

fit to the first fourteen weeks of data. We used three replicates per day as data. For all

scenarios, we model Rt as changing on a weekly basis. For each scenario, we simulated 100

epidemics. MCMC algorithms were initially run 800 or 1000 iterations for the stochastic

and deterministic models respectively. If chains failed to pass basic convergence diagnostics,

the models were re-fit for longer iterations. Note that for some simulations, the stochastic

EI-ww model still failed basic convergence diagnostics: in particular four simulations for the

Shallow scenario, three simulations for the Fixed scenario, three simulations for the Init5

scenario and one simulation for the Total500 scenario. Thes simulations were excluded in

the final analysis, leaving ninety six, ninety seven, ninety seven and ninety nine simulations

for analysis respectively. An example simulation from the Shallow curve setting is shown in

Figure 5.1.
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Figure 5.1: Simulated epidemic and corresponding wastewater data for the Shallow Rt sce-
nario. The left panel displays the Rt, the middle panel shows the counts of individuals in
each stage of infection, and the right panel shows the wastewater data simulated from this
epidemic. In the third panel, the dots are replicates, while the black line represents the mean
of the three replicates.

5.3.2 Simulation Results

Example posterior medians and credible intervals from the deterministic and stochastic EI-

ww models for the Steep, Shallow, and Fixed scenarios are shown in Figure 5.2.
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Figure 5.2: Posterior summaries of Rt using the stochastic and deterministic EI-ww models
for the Steep, Shallow and Fixed Rt curves. The first column is the simulated data models
were fit to. The second column shows the posterior summaries for the deterministic EI-ww
model, the third column shows the posterior summaries of the stochastic EI-ww model. First
row is the Steep true Rt curve, second row is the Shallow true Rt curve, third row is the
Fixed true Rt curve. True Rt values are shown in orange, black lines are posterior medians,
blue shaded areas are credible intervals.

For the Steep true Rt curve, both models perform largely the same, although the stochastic
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EI-ww model is a little flatter than the deterministic model. For the Shallow and Fixed

curves, the deterministic EI-ww model is worse at covering the true shape of the Rt curve.

We summarise the performance of our models across all 100 data sets for each scenarios by

reporting some frequentist metrics, shown in Figure 5.3. For each simulation the envelope

is a measure of coverage, and is the proportion of time points for which an 80% credible

interval from the posterior distribution captured the true value of interest. Mean credible

interval width (MCIW) is the mean of 80% credible interval widths across time points within

a simulation. Absolute deviation is a measure of accuracy, and is the mean of the absolute

difference between the posterior median and the true value at each time point. Finally, mean

absolute sequential variation (MASV) measures the variation in the effective reproduction

number across time by computing the mean of the absolute difference between the posterior

median at t and the posterior median at t − 1. Each simulation has its own true MASV,

which is the difference between the true Rt at t and t − 1, we summarise the true MASV

with its own box-plot, ideally the box-plot of the model’s MASV would exactly match the

box-plot of the true MASV.
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Figure 5.3: Frequentist metrics for the deterministic and stochastic models in the Steep,
Shallow and Fixed curve scenarios. For the top row and bottom left plots, the x-axis describes
the model and scenario, for the bottom right plot (MASV), the x-axis includes extra values
for the true MASV for each simulation scenario. Absolute deviation is the mean of the
absolute value of the difference between the median Rt at each time point and the true
value. Envelope is a measure of coverage, taking the average coverage of 80% intervals over
the time series. MCIW is the average mean credible interval width. Mean absolute standard
deviation (MASV) is the difference between the current median point estimate for Rt and the
previous point estimate for Rt, we compare it against the true MASV for each simulation.
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In all three scenarios, the stochastic model is more accurate and more uncertain. For the

Steep scenario, the differences in coverage are marginal, for the Shallow scenario the stochas-

tic model is well calibrated, while the deterministic is not. For the Fixed scenario, the

stochastic model is slightly conservative, the deterministic model anti-conservative. Across

all scenarios, the stochastic model is less prone to sudden changes than the deterministic

model, although in the case of the Steep and Shallow curves, the deterministic model is closer

to the true MASV. The stochastic model performs reasonably well across all scenarios, while

the deterministic model is sometimes clearly worse.

We wanted to explore how stochasticity in the model affected the differences in performance

between the stochastic and deterministic EI-ww models. To this end, we kept the shape of

the Rt curve the same but changed the stochasticity of the epidemic by varying the total

number of individuals in the population, as well as the number of individuals starting in the

E and I compartments. These differences are summarised in Figure 5.4.
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Figure 5.4: Frequentist metrics for the deterministic and stochastic models with varying
initial and total populations for the Fixed scenario. For the top row and bottom left plots,
the x-axis describes the model and scenario, for the bottom right plot (MASV), the x-axis
includes extra values for the true MASV for each simulation scenario. All scenarios are
variations on the Fixed scenario with R0 = 1.4. Init5 and Init20 refer to the initial number
of individuals in the E and I compartments (5 and 20 respectively), Total500 and Total2000
refer to the total population size (500 and 2000 respectively). The original Fixed scenario
with 10 individuals in the E and I compartment and total population size 1000 is included
for reference. See Figure 5.3 for metric definitions.
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The stochastic EI-ww model is conservative in all scenarios, and the general behaviors we

saw in previous scenarios (more accuracy, more uncertainty) remain consistent. The deter-

ministic EI-ww model has noteably worse coverage than the stochastic EI-ww model when

the population is only 500 individuals, or when the initial number of individuals is 5 instead

of ten. In general, the stochastic model is more conservative and more accurate than the

deterministic model.

5.4 The Effective Reproduction Number in UC Irvine

Residential Communities

Surveillance data from the SARS-CoV-2 pandemic at the University of California, Irvine

were available between January 2022 and June 2022. About 860 wastewater samples were

collected from 13 different student housing communities on the University of California Irvine

campus from January 2022 to June 2022. These samples were analyzed for SARS-CoV-2 N2

and E genes and water quality parameters such as TSS, COD and ammonia. Usually three

replicates were collected per day, if any three was marked as failed, all three were discarded.

In addition, counts of new cases were also available. While wastewater data were available

at a sub-community level (e.g. individual buildings or spatial regions of a community), case

data were only available at the community level.

We chose to analyze three sub-communities with populations around 1000, the total size of

the G community is around 3000, the total size of the E community is around 1500. The G

community and the E community are spatially not close, both house undergraduate students.

While data from December and January were available, we chose not to analyze these data as

the campus was on winter break, and then delayed in person classes for the first few weeks of

the winter quarter, and so the campus residential population was not stable. We also expect
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that many reported cases were from individuals returning from travel and testing positive,

thus not representing local transmission events. We chose to not analyze data from June

2022 as there were no case data available for June. UCI had a policy of randomly testing

individuals in the population which was discontinued in mid-March of 2022. This change

in testing policy is accounted for in our case model by modeling the case detection rate as

dependent on an indicator variable that equals 0 before the change in policy, and 1 after the

change in policy.

We fit both the stochastic and deterministic EI-ww wastewater models, as well as the Epi-

demia case model to these data sets. The priors for the EI-ww model were the same as in

simulations, except for the initial conditions (Appendix Sections C.5.2 and C.7) and initial

Rt that was centered around the posterior median of Rt for Orange County, CA (where

UC Irvine is located) from a previous analysis using case and test data (Chapter 3). See

Appendix Section C.4 for the priors for Epidemia. The data are displayed in Figure 5.5, and

the posterior trajectories of Rt are summarised in Figure 5.6.
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Figure 5.5: Log concentrations of SARS-CoV-2 RNA and weekly reported new COVID-19
cases at UC Irvine for February 2022 through May 2022. For the log concentrations, the
dots are individual replicates, and the lines are the mean. The cases are reported at the
community level, while the concentrations are reported at the sub-community level. G1 and
G2 are sub-communities within the larger G community, while E1 is a sub-community of the
E community.

106



0

1

2

3

Feb Mar Apr May

R
t

Det−ww E1

0

1

2

3

Feb Mar Apr May

Stc−ww E1

0

1

2

3

Feb Mar Apr May

Credible Interval Width
50%
80%
95%

Epidemia−cases E

0

1

2

3

Feb Mar Apr May

R
t

Det−ww G1

0

1

2

3

Feb Mar Apr May

Stc−ww G1

0

1

2

3

Feb Mar Apr May

Epidemia−cases G

0

1

2

3

Feb Mar Apr May
Date

R
t

Det−ww G2

0

1

2

3

Feb Mar Apr May
Date

Stc−ww G2

0

1

2

3

Feb Mar Apr May
Date

Epidemia−cases G

Estimated Rt from Wastewater and Cases on University Campus

Figure 5.6: Posterior summaries of the effective reproduction number in college campus
communities estimated from wastewater data only (stochastic and deterministic models) or
case data only (Epidemia-cases). Black lines are posterior medians, blue shaded regions are
credible intervals. G1 and G2 are sub-populations of the G campus community, E1 is a
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The deterministic models show more dramatic changes in Rt than the stochastic models.

There is also clear variability in the estimated Rt between different communities and sub-
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communities, for example, we might reasonably conclude that G2 experienced an outbreak

between March and May, while it would be hard to conclude the same about G1. These differ-

ences are averaged over in our case-based estimate of the whole community. The wastewater

models seem to detect an increase in Rt before the case-based models do in G2 and E1. The

posterior medians of the wastewater models are above 1 weeks or months before the posterior

medians of the case-based models. The stochastic wastewater-based posterior estimates are

still uncertain enough that the 95% credible intervals are never above 1. Figure C.5 shows

the results of an alternative analysis using a different prior on the initial value of Rt. While

some of the specific conclusions change with the different prior, the overall behavior of our

three models is largely consistent with the original analysis.

5.5 Discussion

In this chapter we developed a model with a stochastic latent epidemic process and compared

it against the deterministic version in small population settings. Overall, we found the

performance of the two models varied based on the shape of the effective reproduction

number curve they were trying to estimate, as well as the size of the population experiencing

the epidemic. The stochastic EI-ww model was generally more accurate and more uncertain

than the deterministic EI-ww model, leading to overall better frequentist calibration. We

also used our models to estimate the effective reproduction number of SARS-CoV-2 at UC

Irvine, showing qualitatively different estimates between the stochastic and deterministic

versions, as well as differences between models using wastewater versus case data.

The stochastic EI-ww model performed generally better than the deterministic EI-ww model,

but, depending on the simulation setting, could be conservative. The wide range of enve-

lope values also speaks to highly variable (and in some cases quite poor) performance on

individual realizations of the different simulations. We speculate this wide variability in per-
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formance arises from the inherently noisy data, and the fact that our model is misspecified,

i.e. it does not take into account the time-varying dynamics of pathogen genome shedding

[Hoffmann and Alsing, 2023]. We expect this issue of misspecification to be more acute in

small populations, where a change in state for a single individual can lead to large varia-

tion in overall shedding. In terms of the noisiness of the data, obtaining narrower posterior

credible intervals may require using multiple data sources, models that make use of spatial

correlation to combine information, or models that are less mis-specified than our current

approach (or a combination of all three).

In our real data application, while estimates were often uncertain from wastewater data,

they were still qualitatively different than the estimates obtained from case data. The 95%

credible intervals from the stochastic EI-ww model always went below one throughout the

observation period, on the other hand, in the case of E1 and G2, the curve estimated from

wastewater data shows with reasonably high probability Rt was above 1 weeks before the case

model. These results suggest using wastewater data in small populations has the promise to

provide actionable insights not obtainable from using case data alone.

The deterministic EI-ww model provided similar results to the stochastic EI-ww model,

although it inferred stepper increases in Rt and occasionally had credible intervals above 1.

Given our experiments, we view the stochastic EI-ww model results as more conservative

and more accurate. Depending on the context, public health decision makers may prefer the

more conservative model that is less prone to overly dramatic inference.

In addition, our study demonstrates that epidemic dynamics vary based on community

and sub-communities. Studies at different levels of population aggregation reveal different

dynamics, which in turn require different actions from public health officials. Developing

methodologies that continue to improve performance at high spatial resolution seems like a

fruitful area of future research.
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In our model, we required that the compartment counts be non-zero. This limits our model

to situations where we plausibly believe the pathogen is circulating among a non-zero number

of individuals. Developing an alternative method that does not require this restriction is an

important adaptation of our approach to pursue.
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Chapter 6

Discussion and Future Directions

This dissertation describes new methodologies for estimating infectious disease transmission

dynamics using novel epidemic models and novel data sources.

In Chapter 3, we developed a method for estimating the effective reproduction number from

cases and tests, based on a branching process approximation of the epidemic. The model

explicitly allows for the reporting rate to be a function of the total number of tests admin-

istered, allowing it to change over time with testing capacity. We showed how this model

outperformed state-of-the art methods in simulations, and could be applied to estimate the

effective reproduction number of SARS-CoV-2 across the fifteen most populous counties in

California. To our knowledge, our approach is one of the first to incorporate total diagnostic

tests administered into inference of Rt as a data source. One place where our approach still

falls short is that our approach assumes the reporting rate only changes because of total

testing volume, where in reality it may change for other reasons such as policies regarding

testing access, as well as the population’s willingness to test. Modeling such changes over

time using case and test data alone is difficult. This challenge directly motivated the method

we developed in Chapter 4.
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In Chapter 4, we used a modified compartmental model to estimate the effective reproduction

number from pathogen genomes samples from wastewater. Our approach modeled wastewa-

ter data as realizations of the number of infectious and recently recovered individuals in the

population, and ignored the time-varying nature of pathogen shedding. We showed in simu-

lation studies that the model performed well despite this model misspecification, and applied

it to estimate the effective reproduction number of SARS-CoV-2 in Los Angeles, California.

We compared the estimated effective reproduction number with estimates from models using

case data, and showed that they agreed in many crucial places, but also disagreed at times,

highlighting the potential uses of wastewater data to provide novel insights into epidemic

outbreaks. We also showed how compartmental models could be adapted to exclude the

susceptible compartment, and connected with either case or wastewater data. This frame-

work has the potential to be used with many kinds of data. However, our method relied

on a deterministic compartmental model, which is not always suitable in small population

settings.

Chapter 5 adapted the method developed in Chapter 4 to estimate the effective reproduction

number to the small population setting. To do this, we developed a stochastic compartmen-

tal model with Gaussian transition densities and closed form conditional moments derived

from the Markov Jump Process representation of the compartmental model. We showed in

simulations how this stochastic model performs better than its deterministic counterpart,

though it is often conservative. We then applied both deterministic and stochastic mod-

els to SARS-CoV-2 wastewater surveillance data collected at several UC Irvine dormitories,

demonstrating qualitative differences between the two models, as well as case based estimates

of the effective reproduction number for the same setting.

There are a few obvious opportunities for future projects building on the work described

in this thesis. Perhaps most naturally, we have fit models to case and wastewater data

separately, but have not yet fit a model to both data sources jointly. It is likely a joint model
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would allow us to model the reporting rate as time-varying, addressing a major limitation of

our case model from Chapter 3. Also, since case data is less noisy than wastewater data, we

expect we would get tighter credible intervals than those produced by the models in Chapters

4 and 5. As a first step, the model would be a relatively straightforward combination of

the EIR and EIRR models described in Chapter 4, however, to account for problems in

changing case detection rates, the model would use a time-varying case detection parameter

ψt modeled using a random walk prior similar to the random walk prior used for the effective

reproduction number.

P (R, Θ̄, ρ, λ, τ, df, σ,ψ, σψ, ϕ, | X,O) ∝︸ ︷︷ ︸
Concentration Model

P (X | M(t, Θ̄,R), ρ, λ, τ, df)︸ ︷︷ ︸
Case Model

P (O | M(t, Θ̄,R),ψ, ϕ)

︸ ︷︷ ︸
RW Prior

P (R | σ)︸ ︷︷ ︸
RW Prior

P (ψ | σψ)P (Θ̄, ρ, λ, τ, df, σ, σψ, ϕ)

where ψ = {ψ1, . . . , ψT}. The case observation model from Chapter 3 could also be used

in this joint model. The idea here is that by using the wastewater data, the the time-

varying case detection rate will be identifiable, allowing the case data to usefully contribute

to effective reproduction number inference. Data integration is a non-trivial task with many

implementation challenges, but is certainly worth pursuing [Bayer et al., 2024].

We also repeatedly inferred the effective reproduction number in multiple spatial locations,

without modeling those spatial locations jointly. In reality of course, we expect that neigh-

boring counties, or neighboring dormitories, are spatially correlated. Teh et al. [2022] show

one way to explicitly model spatial correlation, by using a Gaussian process prior where

covariance depends on both spatial location and time, as well as explicitly allowing for in-

fectious individuals to infect individuals in different spatial locations based on commuting

data. In the compartmental modeling context, one can explicitly model infections across

spatial locations through the rate of new infections. Suppose we have two spatial locations

(areas 1 and 2), each with their own set of SEIR compartments and populations N1 and N2.
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The rate of new infections into the E compartment can be written as

‘

(
β1
N1

I1 +
β2
N2

I2

)
S1,

where the term β2
N2
I2S1 represents the portion of the rate of new infections in area 1 due to

the number of infectious individuals in area 2. Fintzi et al. [2022] implemented such a model

when analyzing the 2014 Ebola outbreak in three countries.

We have also used the random walk prior to model Rt through all three chapters. This

choice is made for expediency, but an important limitation of the random walk prior is that

it requires the standard deviation of the random walk to be constant across time. Allowing

this to vary, either through a more flexible stochastic process prior, such as a horseshoe

random walk prior, is a promising way to adapt the models described in this dissertation

[Faulkner and Minin, 2018, Abbott et al., 2020, Bouman et al., 2023].

In Chapters 4 and 5 we used simple models to describe the relationship between wastewater

data and the compartment counts. We know these models are incorrect, and they could be

adjusted to allow for more complexity (for example, Nourbakhsh et al. [2022] uses multiple

infectious compartments and has an explicit model of sewer dynamics), or by explicitly

defining a stochastic model that describes time-varying shedding, and deriving a relationship

between compartment counts and pathogen shedding from that model.

Finally, in Chapter 5, we only created a stochastic model for wastewater. The same could be

done for cases, although re-parametrization of the MJP is required in order to ensure that for

the diffusion approximation the total number of newly infected individuals never decreases.

To modify our model to be fit to case data, we re-parametrize in the manner of Fintzi

et al. [2022], so that the model now counts the cumulative transitions into compartments as

opposed to the counts in the compartments themselves. The original MJPH(t) = (E(t), I(t))

counts the number of infected but not infectious and currently infectious individuals. Let
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J(t) = (L(t),M(t), N(t))T be the cumulative number of transitions into the E comparment,

into the I compartment, and out of the I compartment respectively. Then

H(t) = H(0) +

−1 1 0

0 1 −1

J(t). (6.1)

We then use the same technique described in Chapter 5 to solve for the first and second

moments of J(t), conditioned on H(0) = (e0, i0). The resulting differential equations are

now inhomogeneous, but still linear, and their solutions are still available in closed form

(albeit a more complex one).

The rest of the model is the same as the case model used in Chapter 4. The difficulty with

implementing this model is simply that the closed form solution of the moments is more

complex than the previous model. It may be better to use a numerical solver instead.
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Appendix A

Additional Material for Chapter 3

A.1 Methods

A.1.1 SEIR model Used for Simulation

Here we describe in further detail the SEIR model used to simulate the data analyzed in this

chapter. The SEIR model describes an infectious disease outbreak of a homogeneously mix-

ing population, with the population divided into four compartments: susceptible, exposed

(infected but not yet infectious), infectious, and removed. The SEIR model is represented as

a four dimensional continuous time Markov jump process, G(t) = (S(t), E(t), I(t), R = (t)).

It can be defined in terms of rate parameters such that

P (G(t+ dt) = (s− 1, e+ 1, i, r) | G(t) = (s, e, i, r)) = βt × i× s/N × dt+ o(dt),

P (G(t+ dt) = (s, e− 1, i+ 1, r) | G(t) = (s, e, i, r)) = γ × e× dt+ o(dt),

P (G(t+ dt) = (s, e, i− 1, r + 1) | G(t) = (s, e, i, r)) = ν × i× dt+ o(dt).
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We use the well known Gillespie algorithm popularized in [Gillespie, 1977] to simulate from

this model, as implemented in the stemr R package [Fintzi et al., 2022]. Here γ is the inverse

of the mean latent period, and ν is the inverse of the mean infectious period. We describe the

infectiousness of the disease through the time-varying transmission rate parameter βt. With

this model, the time-varying basic reproduction number, R0,t, and effective reproduction

number, Rt, are defined as

R0,t =
βt
ν
,

Rt = R0,t ×
S(t)

N
.

By fixing the trajectory of R0,t, we fix the trajectory of both βt but not Rt, because the

susceptible population changes stochastically. To simulate case data, we track cumulative

incidence through a variable C(t), which counts the transitions from the E to the I state.

Cases are then generated at a daily time-scale using the negative binomial model described

in the methods section, changing the mean of the model so that, for day t:

Ot | G(t), γ, ν,β0:t, ρ, κ,Mt ∼ Neg-Binom(ρ×Mt × (C(t)− C(t− 1)), κ).
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A.1.2 True Rt Curves of Scenario 1
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Figure A.1: True Rt curves for Scenario 1. The trajectory of R0 is fixed, but because the
number of susceptibles changes stochastically, each individual realization of the simulation
has a slightly different Rt trajectory.
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Table A.1: Priors used by the Rt-estim-normal method in the simulation study.

Parameter Prior Prior Median (95% Interval)

σ Truncated-normal(0, 0.12) 0.067 (0.0033, 0.26)
λ Exponential(0.3) 2.31 (0.08, 12.26)

logR1 Normal(0, 0.22) 0.00 (-0.39 0.39)
ψ Normal(10, 22) 10 (6.11, 13.88)
α Normal(0.02, 0.052) 0.02 (-0.08, 0.12)
1
ϕ

Normal(10, 52) 10 (0.23, 19.88)

A.1.3 Rt-estim-normal Model and Parameters

Below is the explicit model structure for the Rt-estim-normal model.

λ ∼ exp(η) Hyperprior for unobserved incidence

It ∼ exp(λ) Prior on unobserved incidence for t= -n, -n-1, . . . 0

σ ∼ Truncated-Normal(µσ, σ
2
σ)

logR1 ∼ Normal(µr1, σ
2
r1) Prior on R1

logRt| logRt−1 ∼ Normal(logRt−1, σ) Random Walk prior on Rt

ψ ∼ Normal(µψ, σ
2
ψ) Prior on variance parameter for incidence

It|I−n, . . . , It−1 ∼ Normal(Rt

∑
s<t

Isgt−s, (Rt

∑
s<t

Isgt−s ∗ ψ)2) Model for incidence

α ∼ Normal(µα, σ
2
α) Prior on case detection rate

yt = αt
∑
s<t

Isdt−s Mean of observed data model

1

ϕ
∼ Normal(µϕ, σ

2
ϕ) Prior on dispersion parameter for observed data

Yt ∼ Neg-Binom(yt, ϕ) Observed data model

The same priors were used for all simulations. They are described in Table A.1.
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A.1.4 Assessing Model Convergence in Simulations

For Rt-estim-gamma, we assessed the minimum and maximum of the Rhat diagnostic, as

well as the minimum and maximum effective sample size for each parameter. We considered

maximum values of Rhat below 1.05 to indicate convergence, and considered effective sample

size above 100 to be adequate. There were two instances in our original run of all simulations

where the diagnostics were above these thresholds. For those specific simulations, we changed

the seeds used to change the initial values of the MCMC, which led to convergence.

A.1.5 Discretizing Distributions

The weights gt−s and dt−s used through the paper are discretized versions of continuous

probability distributions. The number of discretized values to create was usually set to be

the number of observed data points (occasionally with one additional value). For each value

u greater than 1, the discretized value was calculated as

gu = F (u+ 0.5)− F (u− 0.5), u = 2, . . .

where F (u) is the cumulative distribution function for the distribution being discretized. For

u = 1, in the case of the generation time distribution we used

g1 = F (1.5),

but for the latent distribution, we used

g0 = F (0.5)

g1 = F (1.5)− F (0.5)
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in order to have a discretized value corresponding to 0.

A.1.6 Using Rt-estim-gamma with Real Data

In practice, we have found it often necessary to provide reasonable initial values to start the

Hamiltonian-Monte Carlo algorithm when applying the Rt-estim-gamma model to real data.

Even so, running 4 chains, only three converged. We ran chains for 6000 iterations, discarding

half as burn-in, and kept results only when the maximum Rhat value was calculated to be less

than 1.05, with minimum bulk ESS and tail ESS above 100 as calculated using rstan. In all

counties, the tail and bulk ESS for the estimates for the effective reproduction number had

a minimum value of 1000. For the effective reproduction number, we first used EpiEstim

to estimate the effective reproduction number, then used the median estimate from the

posterior as the starting point for the effective reproduction number in Rt-estim-gamma.

For incidence, we used the median of the overall case detection rate prior times the observed

cases for the corresponding day. For all other model parameters, we used the mean of the

prior distribution as the starting point.

A.1.7 Creating Generation Time Distributions for Delta and Omi-

cron Variants

We created generation time distributions for these variants by searching for parameters such

that the new distributions had the appropriate new mean generation time, while preserving

the standard deviation of the original distribution. We used a squared error loss function

as a cost function, using the squared difference in a candidate distribution’s mean vs the

desired mean plus the squared difference in the candidate distribution’s standard deviation

vs the desired standard deviation. The estimates of the candidate distribution’s mean and

132



standard deviations were method of moment estimates from 100,000 samples generated in

R.

A.2 Results

A.2.1 Posterior Predictive Distribution for Three Scenarios
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Figure A.2: Posterior predictive distributions for reported cases using two differentRt estima-
tion methods for three simulated data sets under different testing scenarios. True incidence
trajectories are colored in red, black lines represent median estimates from the posterior
distribution, blue shaded ares are 95% credible intervals.

133



A.2.2 Example Negative-Binomial Spline Posterior Predictive
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Figure A.3: Posterior predictive plots of cases of SARS-CoV-2 in Alameda County, CA from
August 20th 2020 through January 9th 2022. The left plot shows the posterior predictive
distribution for a negative binomial spline, while the right plot shows the posterior predictive
from the Rt-estim-gamma model. Black lines represent medians, blue bands 95% credible
intervals, and dots are observed cases.
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A.2.3 Secondary Simulation Frequentist Metrics
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Figure A.4: Frequentist metrics for Rt-estim-gamma applied to simulated epidemics from
Scenario 3 with alternative model parameters. Default refers to the Scenario 3 results re-
ported in the main text. Kappa refers to the choosing the priors for the overdispersion
parameter of the case observation model by using a spline on the actual data being ana-
lyzed. Wrong gen refers to using a generation time distribution with rate parameters twice
as large as the correct rate parameters. Alt rho refers to using a prior for ρ based on the 25%
quantile of tests, rather than the 50% quantile used in the main analysis. The dashed lines
in the bottom row represent the true absolute standard deviation. Middle lines are medians
across 100 simulations, hinges are upper and lower quartiles, whiskers are at most 1.5 times
the interquartile range from the median.
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A.2.4 Using EpiEstim to Estimate the Effective Reproduction Num-

ber in CA
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Figure A.5: Estimates of the effective reproduction number in fifteen counties of California
from August 2nd 2020 through January 9th 2022 using EpiEstim. Black lines represent
medians, blue bars are 95% credible intervals.
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A.2.5 Incidence Posterior and Case Posterior Predictive Plots

from Rt-estim-gamma for Fifteen California Counties
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Figure A.6: Estimates of incidence of SARS-CoV-2 from Rt-estim-gamma applied to fifteen
counties in California, USA from August 2nd 2020 through January 15th 2022. Blue shaded
regions are 95% posterior credible intervals. Black lines are medians. Grey vertical lines
mark the maximum statewide cases reported for the original winter 2020 wave, the delta-
variant wave, and the omicron-variant wave.
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Figure A.7: Posterior predictive estimates of reported cases of SARS-CoV-2 from Rt-estim-
gamma applied to fifteen counties in California, USA from August 2nd 2020 through January
15th 2022. Blue shaded regions are 95% posterior credible intervals. Black lines are medians.
Grey vertical lines mark the maximum statewide cases reported for the original winter 2020
wave, the delta-variant wave, and the omicron-variant wave. Red dots are observed case
counts.
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A.2.6 Comparing Rt-estim-normal and Rt-estim-gamma Applied

to Fifteen California Counties
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Figure A.8: Estimates of the effective reproduction number of SARS-CoV-2 from Rt-estim-
gamma and Rt-estim-normal applied to fifteen counties in California, USA from August
2nd 2020 through November 6th 2021. Blue and brown shaded regions are 95% posterior
credible intervals. Black and dotted lines are medians. Grey vertical lines mark the maximum
statewide cases reported for the original winter 2020 wave and the delta-variant wave. Blue
shading and black lines come from estimates using Rt-estim-normal as opposed to brown
shading with dotted lines, which denote estimates using Rt-estim-gamma.
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Figure A.9: Estimates of incidence of SARS-CoV-2 from Rt-estim-gamma and Rt-estim-
normal applied to fifteen counties in California, USA from August 2nd 2020 through Novem-
ber 6th 2021. Blue and brown shaded regions are 95% posterior credible intervals. Black and
dotted lines are medians. Grey vertical lines mark the maximum statewide cases reported
for the original winter 2020 wave and the delta-variant wave. Blue shading and black lines
come from estimates using Rt-estim-normal as opposed to brown shading with dotted lines,
which denote estimates using Rt-estim-gamma.
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Figure A.10: Estimates of observed cases of SARS-CoV-2 from Rt-estim-gamma and Rt-
estim-normal applied to fifteen counties in California, USA from August 2nd 2020 through
November 6th 2021. Blue and brown shaded regions are 95% posterior predictive intervals
intervals. Black and dotted lines are medians. Grey vertical lines mark the maximum
statewide cases reported for the original winter 2020 wave and the delta-variant wave. Blue
shading and black lines come from estimates using Rt-estim-normal as opposed to brown
shading with dotted lines, which denote estimates using Rt-estim-gamma. Yellow dots are
observed cases
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A.2.7 Comparing Rt-estim-gamma Applied to Fifteen California

Counties Using a Mean Generation Time of 5.5 Days vs 9.7

Days
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Figure A.11: Estimates of the effective reproduction number of SARS-CoV-2 from Rt-estim-
gamma applied to fifteen counties in California, USA from August 2nd 2020 through January
15th 2022. Blue and brown shaded regions are 95% posterior credible intervals. Black and
dotted lines are medians. Grey vertical lines mark the maximum statewide cases reported
for the original winter 2020 wave, the delta-variant wave, and the omicron-variant wave.
Blue shading and dotted lines come from estimates using mean generation time of 5.5 days
as opposed to brown shading with dotted lines, which denote estimates using 9.7 days.
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Figure A.12: Estimates of incidence of SARS-CoV-2 from Rt-estim-gamma applied to fif-
teen counties in California, USA from August 2nd 2020 through January 15th 2022. Blue
and brown shaded regions are 95% posterior credible intervals. Black and dotted lines are
medians. Grey vertical lines mark the maximum statewide cases reported for the original
winter 2020 wave, the delta-variant wave, and the omicron-variant wave. Blue shading and
dotted lines come from estimates using mean generation time of 5.5 days as opposed to
brown shading with dotted lines, which denote estimates using 9.7 days.
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Figure A.13: Posterior predictive estimates of reported cases of SARS-CoV-2 from Rt-estim-
gamma applied to fifteen counties in California, USA from August 2nd 2020 through January
15th 2022. Blue and brown shaded regions are 95% posterior credible intervals, grey repre-
sents overlap between the two estimates. Grey vertical lines mark the maximum statewide
cases reported for the original winter 2020 wave, the delta-variant wave, and the omicron-
variant wave. Yellow dots are observed case counts. Blue shading come from estimates using
mean generation time of 5.5 days as opposed to brown shading which denote estimates using
9.7 days.
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A.2.8 Prior and Posterior of Fixed Parameters

seed_incid sigma

kappa nu rho

0 250000050000007500000 0 2 4 6

4 8 12 16 0.0 0.5 1.0 1.5 2.0 2.5 2e−07 4e−07 6e−07

Posterior

Prior

Posterior

Prior

Value

Ty
pe

Type

Posterior
Prior

Fixed Parameter Prior and Posteriors for Los Angeles, CA

Figure A.14: Priors and posteriors for fixed parameters from Rt-estim-gamma fit to Los
Angeles, CA data using the Sender generation time. The seed incid refers to the first unob-
served incidence used by the model.

147



Appendix B

Additional Material for Chapter 4

B.1 Methods

B.1.1 Choosing a λ Prior for SARS-CoV-2 Using a Stochastic

SEIRR

The parameter λ controls how much pathogen genomic concentrations are attributed to

the total number of infectious individuals, versus the total number of recently recovered

individuals. Previous studies on the timing and magnitude of shedding SARS-CoV-2 RNA

have necessarily been concerned with the shedding dynamics of individuals [Benefield et al.,

2020, Miura et al., 2021, Hoffmann and Alsing, 2023]. However, our model is concerned with

the shedding dynamics of populations. We wanted to create a prior for λ that incorporates

what we know about shedding dynamics for SARS-CoV-2, but needed a way to translate that

information into an appropriate prior for population level shedding dynamics. Furthermore,

our model assumes the relationship between compartment counts and gene concentrations

is linear, we wanted to make sure our process for constructing the prior for λ incorporated
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this linearity assumption. Thus, we used a simulation study using an individual-level engine

that could incorporate our prior individual level information combined with linear regression

models in order to elicit an appropriate prior for λ. We simulated 1000 epidemics from an

agent-based stochastic SEIRR model (the stochastic equivalent to an SEIR model with two

R compartments, see Web Section A.2.1), where the times of each individual’s transitions

between different model states were recorded. The population was 1000, R0 was set to 2,

there were 5 initially infectious agents, and all other agents were susceptible. For individual

i in the I or R1 state infected at time ti, the concentration of pathogen genomes associated

with their shedding at time l was modeled as a random variable Zi(ti, l), where

Zi(ti, l) ∼ 10Normal(µi(l−ti),1.09)

and the value of µi(l− ti) was calculated using the consensus shedding load profile of SARS-

CoV-2 pathogen RNA generated in [Nourbakhsh et al., 2022] by synthesizing previous studies

[Benefield et al., 2020, Miura et al., 2021, Hoffmann and Alsing, 2023].

The value 1.09 is the average variation in genome concentrations on the log base 10 scale

amongst individuals over the course of an infection. We calculated this global average vari-

ation in concentrations by averaging over the empirical standard deviations of SARS-CoV-2

RNA shed by individuals 6 to 22 days after symptom onset, using the data available from

[Hoffmann and Alsing, 2023], which uses data collected by Wölfel et al. [2020], Han et al.

[2020], and Lui et al. [2020]. The population level concentration of genomes at time l was

the sum of all the individual genome concentrations in the I and R1 states at time l divided

by the total population size.

To account for uncertainty in the parameters governing how long individuals spend in the I

and R1 compartments, for each simulation, γ, ν and η were chosen from the priors we used

when fitting the EIRR model to SARS-CoV-2 data (Table A2).
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Then, for each simulation, we fit a linear model (constrained to positive coefficients using a

method described in [Friedman et al., 2010]):

E[Total genome concentration] = β1 × Prevalence in I + β2 × Prevalence in R1

and calculated λ = β1/(β1 + β2). Finally, we constructed a logit-normal prior for λ that

matches the 95% quantiles of these 1000 λ values by minimizing the squared error of the

logit-normal prior quantiles and the 95% quantiles from our 1000 λ values using the Nelder-

Mead algorithm implemented in the optim function in R [R Core Team, 2020]. Further

details of the simulation protocol are available in Web Sections A.2.1, A.2.2, and A.2.3.

B.1.2 Details of the Huisman Method

We compare the EIRR-ww model to the Huisman et al. [2022b] method. This method

is a variation on the well known EpiEstim method [Cori et al., 2013]. Pathogen genome

concentrations are modeled as a function of incidence (newly infected individuals) counts

via a convolution equation:

Ci =M
∑
j

wi−jIj. (B.1)

Here Ci is the concentration at time i, Ij is the number of new infections in the period

(j − 1, j], and wi−j is a weight derived from discretizing the assumed individual shedding

load profile describing how many pathogen genomes an infected individual sheds over time.

M is a constant value translating counts of individuals to counts of pathogens, the Huisman

method assumes M is the lowest observed concentration in the data set. A time series of

incidence is constructed via a deconvolution algorithm, and then used as the inputs into

EpiEstim. EpiEstim is a method inspired by branching process approximations of the
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spread of infectious disease where infectious individuals generate new infectious individuals

in a Crump-Mode-Jager process [Fraser, 2007, Cori et al., 2013, Pakkanen et al., 2023].

The core concept is to model current incidence as a function of previous incidence and the

effective reproduction number through the so-called Renewal Equation:

E(It | I1:t, Rt) = Rt

t−1∑
u=1

Iugt−u. (B.2)

Here gt−u are values from the discretized generation time distribution, the distribution of

the time between one person becoming infected, and subsequently infecting someone else.

EpiEstim models incidence conditioned on previous incidence and the effective reproduction

number as a Poisson random variable, and holds Rt constant for a window of time, creating

a smooth estimate by repeatedly re-estimating Rt for all such windows in the time series.

Huisman et al. [2022b] repeats this pipeline multiple times via a bootstrap method to generate

uncertain estimates of the effective reproduction number.

B.1.3 Priors for Models with the S Compartment

We will assume the basic reproduction number is constant in a time interval (ki, ki+1], defining

it as R0,ki =
βki
ν
. Let M be the total number of time intervals of interest. Let R0 =

(R0,0, R0,k1 , . . . , R0,kM ), be the vector of basic reproduction numbers. We use a random walk

prior so that

R0,0 ∼ Log-Normal(µ0,0, σ0,0),

σ ∼ Log-Normal(µrw, σrw),

log (R0,ki+1
)| log (R0,ki), σ ∼ Normal(log (R0,ki), σrw).
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For this chapter, we assume the basic reproduction number changes on a weekly basis, but

it could change according to other time scales. Our model also requires initial conditions in

order to solve the system of ODEs. Let N be the population size (assumed to be known).

Let P be the population not in the R2 compartment at the time the model is fit. For

simulations, this value is also known, in real world settings, we assume N = P , that is, the

difference between the two is negligible in large populations. In the case of the SEIRR-ww

model, the initial conditions are calculated as:

S(0) = P ∗ S SEIR1,

I(0) = (P − S(0)) ∗ I EIR1,

R1(0) = (P − S(0)− I(0)) ∗R1 ER1,

E(0) = (P − S(0)− I(0)−R1(0)),

R2(0) = 1,

where we define S SEIR1 as the proportion of the population in the S compartment at time

0, I EIR1 as the proportion of those in the E, I, or R1 compartments in the I compartment

and R1 ER1 as the proportion of those in the E or R1 compartments in the R1 compartment.

We use logit-normal priors for the proportions. We use a similar technique when using the

SEIR-cases model, with one less parameter as there is only one R compartment.

B.1.4 Closed Form Solutions of the EIR/EIRR Models

The systems of ordinary differential equations for the EIR/EIRR models are linear, and thus

can be solved in closed form. We used Mathematica Version (13.1) to calculate the closed

form solution.
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B.1.5 Closed Form Solution for the EIRR Model

Define the EIRR model as:

dE

dt
= αt ∗ I − γE

dI

dt
= γE − νI

dR1

dt
= νI − ηR1

dR2

dt
= ηR1

Let V be

V =



−γ αt 0 0

γ −ν 0 0

0 ν −η 0

0 0 η 0


.

The matrix exponential of V for a fixed αt is reported on the next page. For initial conditions

M(t0), the solution to the system of ODEs is

eV (t−t0)M(t0).
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B.1.6 Choosing Parameters for the Huisman Method when Fit-

ting to Simulated Data

To choose a shedding load profile, we first re-fit a spline to the points from the Nourbakhsh

et al. [2022] profile raised to the tenth power, with an additional value of 0 at time 0. We

then generated predictions from the spline from 0 to 29 evenly spaced by 0.1, and used these

as true values from the shedding load profile. We then used the Nelder-Mead algorithm

to search for shape and scale parameters of the gamma distribution that minimized the

squared loss of the proposed grid point values versus our generated true values, and used

these parameters as the shape and scale of the shedding load profile for the Huisman model.

In an SEIR model, the intrinsic generation time distribution is the sum of the latent and

infectious periods [Svensson, 2007, Champredon and Dushoff, 2015, Champredon et al., 2018],

which is a hypo-exponential distribution. EpiEstim is normally used assuming the generation

time distribution is a gamma distribution. We used a gamma distribution with mean and

standard deviation equal to the true intrinsic generation time distribution.

B.1.7 Branching Process Inspired Models

For additional comparisons of our estimates of SARS-CoV-2 in Los Angeles, CA, we use two

branching process inspired models that, unlike compartmental models, only model latent in-

cidence. The Huisman et al. [2022b] method uses one example of this class of methods, but

there are many others. The method relies on the so-called renewal equation that calculates

current incidence as a product of a weighted sum of previous incidence and the effective

reproduction number. Let It be the incidence at time t, Rt be the effective reproduction

number at time t, and g(t) be the probability density function of the generation time distri-

bution (the time between an individual becoming infected and infecting another individual;

under the compartmental model framework this is usually taken to be equivalent to the sum

155



of the latent period and the infectious period [Svensson, 2007, Champredon and Dushoff,

2015, Champredon et al., 2018]). Then the classic renewal equation is:

E[It|I1, . . . , It−1] = Rt

t−1∑
s=1

Isg(t− s).

The epidemia package can be used to create different branching process inspired models to

estimate the effective reproduction number using different observation models and models

for latent incidence [Scott et al., 2021]. For the model we used in this chapter, we modeled

observed cases using a negative binomial distribution, modeled the effective reproduction

number as a Gaussian random walk, and modeled unobserved incidence as an auto-regressive

normal random variable with variance equal to the mean multiplied by an over-dispersion
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parameter. The explicit model is listed below:

τ ∼ exp(λ)–Hyperprior for unobserved incidence,

Iν ∼ exp(τ)–Prior on unobserved incidence ν days before observation,

Iν+1, . . . , I0 = Iν–Unobserved incidence,

σ ∼ Truncated-Normal(0, 0.12)–Prior on variance of random walk

logR0 ∼ Normal(log 2, 0.22)–Prior on R0,

logRt| logRt−1 ∼ Normal(logRt−1, σ)–Random walk prior on Rt,

ψ ∼ Normal(10, 2)–Prior on variance parameter for incidence,

It|Iν , . . . , It−1 ∼ Normal(Rt

∑
s<t

Isgt−s, ψ)–Model for incidence,

α ∼ Normal(0.13, 0.72)–Prior on case detection rate,

yt = αt
∑
s<t

Isπt−s–Mean of observed data model,

ϕ ∼ P (ϕ)–Prior on dispersion parameter for observed data,

Yt ∼ Neg-Binom(yt, ϕ)–Observed data model.

Here πt are the values of the probability density function for the delay distribution, the

time between an individual being infected and being observed. We also used the Rt-estim-

gamma model, which is similar to the model above, but uses total diagnostic tests as a model

covariate in the observation model. This allows the rate of detection to change over time as

a function of available tests, avoiding the situation, for example, where an increase in cases

due to test availability is mistaken for an increase in cases due to increased incidence. Full

details are available in [Goldstein et al., 2024].
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B.2 Results

B.2.1 Simulating an Agent-Based Stochastic SEIRR Model

An agent-based stochastic SEIRR model is a continuous time Markov jump process on the

cartesian state-space {S,E, I, R1, R2}N . When represented as a vector G(t), each entry of

G(t) records the state of one of the N individuals, i.e. if the ith entry of G(t)i, G(t)i is

S, then the ith individual is susceptible at time t. Let I(t) be the number of infectious

individuals at time t. The Markov jump process can be defined in terms of its transition

rates from state G to state G′ so that

λGG′ =



βt/N × I(t) if Gj = S and G′j = E,

γ if Gj = E and G′j = I,

ν if Gj = I and G′j = R1,

η if Gj = R1 and G′j = R2,

0 otherwise.

The well known Gillespie algorithm popularized in [Gillespie, 1977] can be used to simulate

from this model, but it is quite slow. We employ a variation of the Gillespie algorithm in

order to simulate individuals and their individual state transition times. In essence, as an

individual enters the simulation (via infection) all future transition times for that individual

are simulated at once. Then, the next event is simply the most recent transition time amongst

all individuals still in the simulation. In psuedocode, the basic algorithm is
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Algorithm 1 Individual Gillespie Algorithm
i← initial I

e← initial E

r1← 0

s← N − i− e

ti ← Initial infectious times

tr1 ← Initial recover times

tr2 ← Initial stop shedding times

t← max ti

while i > 0 |r1 > 0 do

if s > 0& i > 0 then

ne ← t+ Exp(β × s× i)

else if s = 0 | i = 0 then

ne ← inf

end if

ni ← min ti

nr1 ← min tr1

nr2 ← min tr2

nt ← minne, ni, nr1, nr2

t← nt

if nt = ne then

s← s− 1

e← e+ 1

x ∼ Exp(γ)

y ∼ Exp(ν)

z ∼ Exp(η)

ti ← append(ti, t+ x)

tr1 ← append(tr1, t+ x+ y)

tr2 ← append(tr2, t+ x+ y + z)

else if nt = ni then

e← e− 1

i← i+ 1

ti ← remove(ti, ni)

else if nt = nr1 then

i← i− 1

r1← r1 + 1

tr1 ← remove(tr1, nr1)

else if nt = nr2 then

r1← r1− 1

tr2 ← remove(tr2, nr2)

end if

end while
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We omit the various pieces of code that ensure that all of the individual transition times are

recorded and associated with the correct individuals. It is easy to adapt this algorithm to

allow for a changing β at known change point times. We simply add an additional check,

where the next event can be any of the nearest future transition times, or the nearest future

change point time. We use this adapted version when we simulate data to test the EIRR-

ww model. In order to calculate individual genome concentrations, we use the consensus

shedding profile for SARS-CoV-2 RNA created by Nourbakhsh et al. [2022]. We manually

recorded the values displayed in the figure, and then used a thin plate regression spline (using

the R package fields [Douglas Nychka et al., 2021]) to create a continuous curve. The spline

fit and manually recorded values are displayed in Figure B.1.
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Figure B.1: Thin plate spline fit to manually recorded values from the consensus shedding
load profile developed by Nourbakhsh et al. (2022). Red dots are the manually recorded
values. Black line is the spline fit.

To calculate the mean log genome concentration shed by an individual at time time l, we

first checked to see if they were in the I or R1 compartments at time l, then predicted mean

log genome concentration using the fitted spline and the difference between l and the time

they became infectious.
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B.2.2 Comparing Simulation Engines

We compare our variation on the Gillespie algorithm to both a traditional Agent based

model (Agent) and a compartmental model (Compartment) simulated using the traditional

Gillespie algorithm. We set the population to be 100, set R0 to 1.5 and initialized with 5

infectious individuals and all other individuals in the susceptible population. We simulated

10000 simulations from each of the three engines, and plotted the mean and quantiles of the

counts in each of the compartments in the first 100 days. For the agent and variation models,

we also plotted the log concentrations on each of the first 100 days. We see no evidence the

three engines are not equivalent.
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Figure B.2: Counts in the S compartment across three simulation engines. Blue bars are
quantiles, black lines are means.

162



Agent Compartment Variation

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0.0

2.5

5.0

7.5

10.0

Time

C
om

pa
rt

m
en

t C
ou

nt
s

Quantiles
50%
80%
95%

E Compartment

Figure B.3: Counts in the E compartment across three simulation engines. Blue bars are
quantiles, black lines are means.
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Figure B.4: Counts in the I compartment across three simulation engines. Blue bars are
quantiles, black lines are means.
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Figure B.5: Counts in the R1 compartment across three simulation engines. Blue bars are
quantiles, black lines are means.
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Figure B.6: Simulated log concentrations across two simulation engines. Blue bars are
quantiles, black lines are means.

B.2.3 Simulation Parameters

For choosing the prior for λ, the population was 1000, R0 was set to 2, and the parameters

for γ, ν and η were drawn from the priors in Table B.2. Five individuals were initially in

the I compartment, the other individuals were in the S compartment.

The parameters used for the simulation producing observed data used in the simulation

studies described in the main text are displayed below. The population size was 100000,

the model was initialized with 200 individuals in the E compartment and 200 in the I

compartment, all others were in the S compartment. The basic reproduction number was

set to 1.75 for five weeks, 0.7 for four weeks, and then increased from 0.7 to 0.9 for two weeks

before following the trajectory chosen for the observed data period.
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Parameter Interpretation Value

1/γ Mean latent period duration 4
1/ν Mean infectious period duration 7
1/η Mean duration when recovered but still shedding RNA 18
ρ scales concentrations of RNA into observed concentrations 0.011
τ describes the noisiness of observed gene data 0.5

Table B.1: Simulation parameters used in the simulation study. Durations are measured in
days.

The estimate for 1/γ was calculated by averaging the mean latent period calculated by

Xin et al. [2022] with the mean time to detecting virus that could be cultured found in

[Killingley et al., 2022]. We took culturable virus to be a proxy for infectiousness. The

mean time from infectiousness to symptom onset was 1.37, calculated again as an average

from the previous two studies (1.4 days from [Xin et al., 2022] versus 1.33 from [Killingley

et al., 2022]). Mean infectious period was calculated using the mean period of detecting

virus that could be cultured found in [Killingley et al., 2022]. Many studies have calculated

the time from symptom onset to the end of RNA shedding in fecal matter; we averaged the

estimates from [Okita et al., 2022] and [Zhang et al., 2021]. Because these two literature

reviews shared studies, we dis-aggregated their estimates into individual study estimates,

counting each study only once in our final average. We used mean shedding estimates from

each study reported by Okita et al. [2022]. Zhang et al. [2021] did not include estimates of

the mean for each study in their review, if estimates of the mean duration were available

from the original paper, they were used, if they were not, the paper was not included in the

final average. We also examined the literature review by Walsh et al. [2020], but found no

new studies with more than two samples not in the previous two reviews. We decided to

exclude studies with fewer than three samples. The final average duration from symptom

onset to the end of RNA shedding in fecal matter was 22.99 days. We calculated 1/η (the

mean duration of shedding after recovery) as

1/η = 22.99 + 1.33− 1/ν = 17.86.
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Note we are assuming shedding begins at the start of the infectious period. Note that

all of the parameters are based on studies of the original Wuhan lineage of SARS-CoV-2.

To calculate a plausible τ (standard deviation from true genetic concentration), we used

the JWPCP data, and fit a Bayesian thin plate regression generalized student t-distribution

spline to the data. We used the mean of the posterior estimate of τ for the τ in our simulation.

The value of df was chosen as the mean of the posterior estimate from the thin plate spline

model. The value for ρ (scaling factor for the mean of the generalized t-distribution) was

chosen arbitrarily so that the mean total genome concentrations produced by the simulation

would be roughly similar to the means seen in the JWPCP data. The value for ϕ (the negative

binomial over-dispersion parameter) was chosen by fitting a negative-binomial spline to Los

Angeles case data, and using the mean from the posterior estimate for ϕ. The value for ψ

(mean case detection rate) we chose based on our study of the spread of SARS-CoV-2 in

Orange County, CA, the neighboring county to Los Angeles. [Bayer et al., 2024]. In that

study, we estimated a weekly case detection rate, and at the end of the study period we

estimated between 1 in 5 and 1 in 7 new infections were being detected. We chose to use 0.2

(1 in 5 cases being detected) for our simulation study.
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Table B.2: Priors used by all models in the baseline simulation scenario.

Parameter Model Prior Prior Median (95% Interval) Truth

γ All Log-normal(log(1/4), 0.2) 0.25 (0.17, 0.37) 0.25
ν All Log-normal(log(1/7), 0.2) 0.14 (0.10, 0.21) 0.14
σrw All Log-normal(log(0.1), 0.2) 0.1 (0.07, 0.15) NA
η SEIRR-ww/EIRR-ww Log-normal(log(1/18), 0.2 ) 0.06 (0.04 0.08) 0.06
R0,0 SEIRR-ww/SEIR-cases Log-Normal(log(0.88), 0.1) 0.88 (0.72, 1.07) 0.9
λ SEIRR-ww/EIRR-ww Logit-normal(5.69, 2.18) 0.997 (0.81, 1) NA
τ SEIRR-ww/EIRR-ww Log-normal(0, 1) 1.00 (0.14, 7.10) 0.5
df SEIRR-ww/EIRR-ww Gamma(10,2) 19.33 (9.59, 34.17) 2.99
ρ SEIRR-ww/EIRR-ww Log-normal(0, 1) 1.00 (0.14, 7.10) NA
R0 EIRR-ww/EIR-cases Log-Normal(log(0.88, 0.1) 0.88 (0.72, 1.07) 0.80
ψ SEIR-cases/EIR-cases Logit-Normal(-1.39, 0.4) 0.20 (0.10, 0.35) 0.2
ϕ SEIR-cases/EIR-cases Log-Normal(4.22, 0.29) 68.03 (38.54, 120.11) 57.55

S SEIR1 SEIRR-ww Logit-Normal(3.47, 0.05) 0.97 (0.967, 0.972) 0.97
I EIR1 SEIRR-ww Logit-Normal(-1.548302, 0.05) 0.18 (0.16, 0.19) 0.18
R1 ER1 SEIRR-ww Logit-Normal(2.22, 0.05) 0.90 (0.89, 0.91) 0.90
S EI SEIR-cases Logit-Normal(4.83, 0.05) 0.992 ( 0.991, 0.993) 0.992
I EI SEIR-cases Logit-Normal(0.78, 0.05) 0.68 (0.66, 0.71) 0.68
E(0) EIRR-ww/EIR-cases Normal(225, 0.05) 225.00 (224.90, 225.01) 225
I(0) EIRR-ww/EIR-cases Normal(489, 0.05) 489.00 (448.90, 489.01) 489
R1(0) EIRR-ww Normal(2075, 0.05) 2075.00 (2074.90, 2075.01) 2075

Figure B.7 displays the prior quantiles of the random walk prior on Rt for the baseline

simulation scenario for the EIRR-ww model.
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Figure B.7: EIRR-ww prior summaries for the time-varying effective reproduction number.
Blue bars are prior credible intervals, black lines are medians, true values are shown in red.
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B.2.4 Realization of the Simulation
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Figure B.8: An example of simulated epidemic data generated from a single realization of
a stochastic SEIRR model. Top left panel shows the simulated epidemic, time 0 is the day
before the first wastewater sample/case is observed. Top right panel shows the true effective
reproduction number trajectory. Bottom row shows simulated wastewater and case data on
the log scale.
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B.2.5 Computational Considerations

The systems of ordinary differential equations for the EIR/EIRR models are linear, and

thus can be solved in closed form. We conducted informal tests on a Macbook Air M2

(2022) to compare performance of using the EIRR-ww model with the closed form solu-

tion we derived vs the Tsit5 solver [Tsitouras, 2011] implemented in the Julia package

DifferentialEquations [Rackauckas and Nie, 2017]. First, we compared the EIRR-ww

model fit to one realization of the baseline simulation scenario using the closed form solution

versus the EIRR-ww model using the ODE solver. Next, we created a new data set using

the same dynamics as the baseline scenario, but where wastewater data was sampled every

twelve hours, so that the solution to the ODE system had to be solved every half-day as

opposed to every day. The results of these experiments are displayed in Table B.3.

Setting Closed Form Time Numerical Solver Time

Fitting to day data 855 seconds 872 seconds
Fitting to half-day data 3567 seconds 4260 seconds

Table B.3: Comparing performance of closed form solution to ODE system versus an ODE
solver.

Although the computational benefit of using the closed form ODE solution is not substantial,

not having to solve ODEs numerically has other advantages. Using an ODE solver inside

an MCMC algorithm is a non-trivial undertaking, as tuning parameters controlling the

tolerances for solver errors must be specified by the users [Timonen et al., 2022]. Using

the closed form solution, our informal testing suggests our computation times are at least as

good as the ODE solver, and regardless of computation time, our method is more robust as

it does not require properly specifying error tolerance tuning parameters.
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B.2.6 EIRR-ww model Performance in Scenario 1
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Figure B.9: EIRR-ww posterior summaries for latent unobserved compartments and inci-
dence. Posterior is from the model fit shown in Figure 2. Blue bars are credible intervals,
black lines are medians, true values are shown in red.
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Figure B.10: EIRR-ww prior and posterior summaries for fixed model parameters. Posterior
summaries are from the model fit shown in Figure 2. Blue densities are the prior, red
densities are the posterior, dotted lines indicate true values (when relevant).
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Figure B.11: EIRR-ww posterior predictive of Log genome concentrations. Posterior pre-
dictive summaries are from the model fit shown in Figure 2. Blue bars represent credible
intervals, black lines medians, and red dots are observed data.

B.2.7 Model Performance Using Finer Random Walk Grid

We used a grid size of 7 days in our analyses, but finer grids are possible. Figure B.12 shows

a recreation of Figure 1 in the main text using a finer grid size, the end result is smoother

posterior estimates, and while there are some differences in inference between the two model

fits, they are largely the same. We chose a 7 day grid as it performs well in simulation,

reduces computational burdens, and is more resistant to spurious changes caused by high

variation in wastewater data.
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Figure B.12: Posterior summaries of Rt using two models fit to wastewater data using a
random walk grid size of 3 days. This is a recreation of Figure 1 in the main text using a
grid size of 3 days for the random walk prior, as opposed to 7 days.

B.2.8 MCMC Diagnostics

We used the posterior package to calculate R̂, ESS bulk and ESS Tail for all parameters for

our models in order to assess convergence of MCMC chains Vehtari et al. [2021]. We display

the minimum and maximum across all simulations for each of our models and scenarios. We

concluded the model had converged if R̂ was below 1.05 and the ESS were both above 100. If

this was not the case, we re-ran the model for an increased number of iterations (increasing

from 500 iterations per chain to 1000 iterations per chain).
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Scenario Max Rhat Min Rhat Max ESS Bulk Min ESS Bulk Max ESS Tail Min ESS Tail
EIR-cases 1.03 1.00 7748.92 514.43 4124.70 163.18

EIR-cases LA 1.02 1.00 1213.06 259.83 1060.19 337.05
EIRR-ww (1) 1.03 1.00 4452.76 649.23 2036.34 228.85

EIRR-ww (10 mean) 1.03 1.00 2969.81 300.12 2057.70 114.07
EIRR-ww (10) 1.03 1.00 2176.22 502.38 1133.52 234.43

EIRR-ww (3 mean) 1.03 1.00 5071.60 406.84 2053.79 109.91
EIRR-ww (3) 1.03 1.00 3631.31 528.05 2149.23 226.18

EIRR-ww High Init 1.03 1.00 3342.74 622.39 2042.90 290.15
EIRR-ww LA 1.02 1.00 2249.27 842.62 1129.10 375.09

EIRR-ww Low Init 1.03 1.00 4467.27 425.32 2151.38 126.54
EIRR-ww Low Prop 1.03 1.00 2717.95 436.85 1132.62 100.07
EIRR-ww Stoch Rt 1.03 1.00 3000.00 538.30 1135.72 217.10

SEIR-cases 1.03 1.00 4145.55 414.77 2059.80 167.21
SEIRR-ww 1.03 1.00 4582.79 463.60 2101.94 142.96
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B.2.9 Additional Simulation Results
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Figure B.13: Frequentist metrics for all models using 95% CI as opposed to 80% CI as in the
main text. The ideal Envelope is now 0.95. See Figure 3 in the main text for descriptions of
the metrics.
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Figure B.14: Frequentist metrics for performance of the EIRR-ww model using different
kinds of wastewater data. The baseline scenario 3-reps uses three replicates, 1-rep uses one
replicate, 10-reps uses ten replicates, 3-mean uses the mean of three replicates, 10-mean uses
the mean of ten replicates. See Figure 3 for descriptions of the metrics.
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Figure B.15: Frequentist metrics for performance of the EIRR-ww model using mis-specified
priors. See Figure 3 in the main text for descriptions of the metrics.

Note that for the Huisman method, because the method relies on generating a synthetic se-

ries of cases, the method truncates the inferred Rt values in order to only infer Rt for times

for which the method believes there are enough pathogen genome concentrations available

to correctly generate synthetic cases. Also, EpiEstim does not estimate the effective repro-
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duction number for early points in the time-series. When comparing the Huisman method

to the baseline EIRR-ww model, we restrict the comparison to only be on time points for

which both models produced inference.
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Figure B.16: Frequentist metrics for performance of the EIRR-ww model compared to the
Huisman et al. (2022) method. See Figure 3 in the main text for descriptions of the metrics.
For one simulation, the deviation of the Huisman model was 600, this was removed from the
graph to facilitate visualization.
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Figure B.17: Frequentistic metrics for performance of the EIRR-ww model on 100 simulations
where Rt is also simulated. In the baseline scenario, Rt is fixed for all simulations, we compare
to the case where R0 is fixed, but Rt varies. See Figure 3 in the main text for descriptions
of the metrics.
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B.2.10 Calculating Initial Conditions for Los Angeles, CA

We used the case data to create a rough guess for the initial conditions for our EIRR-ww and

EIR-cases models. We assumed the total number of individuals in Los Angeles County in

the E and I compartments was equal to the last 11 days before the start of the observation

period (the sum of the average latent period and average infectious period) of reported cases

multiplied by 5 (i.e. an under-reporting rate of 0.2). We then split this total so that two

thirds went to the I compartment and one third went to the E compartment. We then

took the 18 days (the average duration in the R1 compartment) before the last 11 days,

multiplied the total cases by 5 and assumed that this was the number of individuals in the

R1 compartment. Los Angeles County has about 10 million people total, so we multiplied

these counts by 0.48 for the final compartmnet counts, as the JWPCP plant serves 4.8 million

people. For the initial effective reproduction number, we chose a prior centered around 2,

this was based on previous estimates of the effective reproduction number during this time

using case data [Goldstein et al., 2024]. The final priors are displayed in the table below.

Table B.4: EIRR-ww/EIR-cases Priors for Los Angeles, CA.

Parameter Prior Prior Median (95% Interval)

E(0) Normal(2995, 0.05) 2995.00 (2994.90, 2995.10)
I(0) Normal(5990, 0.05) 5990.00 (5998.90, 5990.10)
R1(0) Normal(11055, 0.05) 11055.00 (11054.90, 11055.10)
R0 Log-Normal(log(2), 0.1) 2 (1.64, 2.43)

182



B.2.11 Additional Estimates of Rt for SARS-CoV-2 in Los Ange-

les, CA
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Figure B.18: Posterior estimates of the effective reproduction number for the SARS-CoV-2
epidemic in Los Angeles, CA. Blue bars from dark to light represent 50, 80, and 95% credible
intervals. Black lines represent posterior medians. EIRR-ww model is fit to wastewater data.
EIR-cases and epidemia are fit to cases alone. Rt-estim-gamma is fit to cases and uses total
diagnostic tests as a covariate.
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B.2.12 Estimates of the Case Detection Rate for SARS-CoV-2 in

Los Angeles, CA

We can use the the posterior samples of C(tu) (the cumulative incidence at time tu) produced

by the EIRR-ww model to estimate the case detection rate, i.e., the proportion of new

infections that are observed as reported cases. For each posterior sample, we calculate a

sample of the case detection rate as

κu = Ou/(C(tu − C(tu−1),

where Ou is the number of new cases observed in the time period (tu−1, tu]. Note that κu is

a function of the total diagnostic tests administered during the time period, thus, it is also

interesting to look at the case detection rate normalized by the number of diagnostic tests.

We call this normalized case detection rate rho, defined as

ϵu = κu/Du,

where Du is the total number of diagnostic tests (both positive and negative) administered

in the time period (tu−1, tu]. Posterior estimates of the case detection rate and normalized

case detection rate of SARS-CoV-2 from Los Angeles, CA are shown in the figure below.

184



0.00

0.25

0.50

0.75
20

21
−

07
−

01

20
21

−
08

−
01

20
21

−
09

−
01

20
21

−
10

−
01

20
21

−
11

−
01

20
21

−
12

−
01

20
22

−
01

−
01

20
22

−
02

−
01

20
22

−
03

−
01

Date

C
as

e 
D

et
ec

tio
n 

R
at

e
EIRR Posterior Detection Rate

0.0000000

0.0000005

0.0000010

0.0000015

0.0000020

20
21

−
07

−
01

20
21

−
08

−
01

20
21

−
09

−
01

20
21

−
10

−
01

20
21

−
11

−
01

20
21

−
12

−
01

20
22

−
01

−
01

20
22

−
02

−
01

20
22

−
03

−
01

Date

N
or

am
liz

ed
 C

D
R

Credible Interval Width

50%

80%

95%

EIRR Posterior Normalized CDR

Figure B.19: Posterior summaries of the case detection rate and case detection rate normal-
ized by total diagnostic tests for SARS-CoV-2 in Los Angeles, CA. Posterior summaries of
the number of new infections taken from wastewater, and the observed weekly case counts,
are used to create posterior summaries of the case detection rate.

B.3 Discussion

B.3.1 Discussion of Disagreements Between Case and Wastewater

Models

An interesting point of disagreement is in the period from October 2021 to November 2021,

when all three case models have a posterior median around one by the middle of October.

In contrast, the EIRR-ww posterior median is well below one. One explanation for the dis-

crepancy is that the case detection rate may have changed in October 2021. To explore this

possibility, we estimated the case detection rate using posterior estimates of the incidence

from the EIRR-ww model (Figure B.19), which indeed show a sharp increase in the case

detection rate (both the raw rate and the rate normalized by the total diagnostic tests)

in October. These estimates should be viewed skeptically, as we found that in simulation,

the EIRR-ww estimates for incidence were not particularly accurate (Figure B.9). Still, we

would expect the EIRR-ww model to perform worst at peaks, when the linearity assumption
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Figure B.20: Time series of patients hospitalized with SARS-CoV-2 for Los Angeles County,
CA.
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is particularly violated (the same counts of individuals shed different amounts of genomes if

they are recently infected versus near the end of infectiousness, leading to different concen-

trations), so the change shown in our model estimates may still be real. When we examined

the time series of hospitalizations from SARS-CoV-2 during this time period (Figure B.20),

a much more reliable data source than cases, it showed no sign of an increase in transmission

rate in October (which we would expect to see reflected in an increase in hospitalizations

in late October/early November). The other major point of disagreement is in July 2021,

when the EIRR-ww model estimates Rt to be stable around 2 until August, while every case

model estimates a steady decline in Rt. Here again the change in case detection rate may be

to blame, but the hospitalizations are a little harder to interpret. The flatter hospitalization

curve in August of 2021 may indicate the EIRR-ww model is correct, on the other hand, if

Rt was indeed still at 2 on August 1st, we might expect a peak of hospitalizations even later

than mid-August. We are inclined to think the case models are more correct in this case.
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Appendix C

Additional Material for Chapter 5

C.1 EI Moment ODEs

Recall H(t) = {E(t), I(t)} is a Markov Jump Process where E(t) is the number of infected

but not yet infectious individuals at time t, and I(t) is the number of infectious individuals

at time t. To simplify notation, we write E[E] = E[E(t)|E(0) = e0, I(0) = i0]. Then, the

changes in the conditional first and second moments of H(t) are described by the following

ordinary differential equations:

dE[E]

dt
= αE[I]− γE[E],

dE[I]

dt
= γE[E]− νE[I],

d[E2]

dt
= αE[I] + γE[E] + 2αE[EI]− 2γE[E2],

dE[I2]

dt
= νE[I]− 2νE[I2] + γE[E] + 2γE[EI],

dE[EI]

dt
= αE[I2]− νE[EI]− γE[E] + γE[E2]− γE[EI].
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Using the definition of variance and covariance, we arrive at ODEs for the conditional vari-

ance and covariance as well:

dVar(E)

dt
= αE[I]− 2γVar(E) + γE[E] + 2αCov(E, I),

dVar(I)

dt
= νE[I]− 2νVar(I) + γE[E] + 2γCov(E, I),

dCov(E, I)

dt
= αVar(I) + γVar(E)− γE[E]− (ν + γ)Cov(E, I).

C.2 Simulation Comparison of MJP vs Log-Normal

To visualize the difference between our Log-Normal process and the true Markov jump

process, we simulated 1000 data sets from each model using a fixed value of Rt = 1.5 with

10, 20, and 30 individuals starting in the E and I compartments. We simulated from the

MJP using the classic Gillespie algorithm [Gillespie, 1977]. Marginal quantiles of the counts

in each compartment at times 1 through 30 are displayed in Figure C.1.
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Figure C.1: Empirical marginal quantiles of the counts in the E and I compartments for
the original MJP EI model and the LN approximate model simulated from 1000 data sets.
The lines are medians, the ends of the shaded regions are the 2.5% and 97.5% quantiles.
Each panel shows the distribution with a different number of individuals in the E and I
compartments at the start of the simulation, all other parameters in the models are identical.
As the number of individuals increases, the two distributions look more similar.

As we would expect, as the initial number of individuals in the simulation increases, the

distributions of the MJP and Log-Normal approximate model look increasingly similar [Bar-

bour, 1974].
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C.3 Obvservation Models using t-Distribution versus

Normal Distribution

As stated in the main text, we chose to use a simpler observation model than the one used

in Chapter 4. The t-distribution has fatter tails than the normal distribution, however

the stochastic model has a latent stochastic epidemic process, which should accommodate

additional levels of noise as well. Additionally, we expect that in the small populations, the

wastewater data may actually be less prone to outliers than in large populations, simply

because the data is collected much closer to the source in small population settings. That

is, we expect less degradation and transformation due to time spent in the sewer system,

simply because the journey from toilet to sampler is shorter in a small population setting.

As additional evidence that the normal distribution is adequate, we include the posterior

predictive summaries of our models fit to real world data, which show no signs that the

model is unable to simulate real data (Figure C.4). There is much room to explore this topic

in future efforts.

C.4 Epidemia-cases

The Epidemia-cases model relies on the so-called renewal equation which is described in

detail in Chapter 3.

The epidemia package can be used to create different branching process inspired models to

estimate the effective reproduction number using different observation models and models

for latent incidence [Bhatt et al., 2023]. For the model we used in this chapter, we modeled

observed cases using a negative binomial distribution, modeled the effective reproduction

number as a Gaussian random walk, and modeled unobserved incidence as an auto-regressive
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normal random variable with variance equal to the mean multiplied by an over-dispersion

parameter. In additional, we modeled the case detection rate as a change point model with

a baseline value plus an indicator function with a covariate, reflecting the change in UCI

testing policy that occurred in March 2022. The explicit model is listed below:

τ ∼ exp(λ)–Hyperprior for unobserved incidence,

Iν ∼ exp(τ)–Prior on unobserved incidence ν days before observation,

Iν+1, . . . , I0 = Iν–Unobserved incidence,

σ ∼ Truncated-Normal(0, 0.15)–Prior on variance of random walk

logR0 ∼ Normal(log 0.5, 0.1)–Prior on R0,

logRt| logRt−1 ∼ Normal(logRt−1, σ)–Random walk prior on Rt,

ψ ∼ Normal(10, 2)–Prior on variance parameter for incidence,

It|Iν , . . . , It−1, Rt ∼ Normal(Rt

∑
s<t

Isgt−s, ψ)–Model for incidence,

logitα = β0 + β1Policy Change–Case detection rate model,

β0 ∼ Normal(−1.1, 0.2)–Baseline case detection rate,

β1 ∼ Normal(0, 0.5)–Difference in case detection post policy change,

yt = α
∑
s<t

Isπt−s–Mean of observed data model,

ϕ ∼ P (ϕ)–Prior on dispersion parameter for observed data,

Yt ∼ Neg-Binom(yt, ϕ)–Observed data model.

Here πt are the values of the probability density function for the delay distribution, the time

between an individual being infected and being observed.
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C.5 Simulation Protocol

C.5.1 Simulation Engine

We used the same simulation engine and parameters described in Appendix Section B.2.1 and

B.2.3. The only difference was that the population was set to be 1000, with 10 individuals

starting in the E and I compartments. In addition, we simulated the times at which the initial

individuals became infectious or became infected so that the individuals were all shedding

different pathogen genome concenetrations at the start of the simulation. We simulated these

additional times from the corresponding distributions of the SEIRR, so the time individuals

became infectious were simulated from an exponential distribution with parameter ν. We

then set the time becoming infectious as a negative value, so it happened before the start of

the simulation at time 0. These times were simulated after the epidemic itself was simulated,

so they did not affect the dynamics of the simulation itself, only the concentration of RNA

being shed.

C.5.2 Simulation Priors

The priors used in the steep simulation scenario are listed

Table C.1: Priors used by all models in the steep simulation scenario.

Parameter Model Prior Prior Median (95% Interval) Truth

γ All Log-normal(log(1/4), 0.2) 0.25 (0.17, 0.37) 0.25
ν All Log-normal(log(1/7), 0.2) 0.14 (0.10, 0.21) 0.14
σrw All Log-normal(log(0.15), 0.2) 0.1 (0.10, 0.22) NA
τ All Log-normal(0, 1) 1.00 (0.14, 7.10) 0.5
ρ All Log-normal(0, 1) 1.00 (0.14, 7.10) NA
R0 All Log-Normal(log(0.8), 0.1) 0.8 (0.66, 0.97) 0.80
E(0) All Log-Normal(log(10), 0.05) 10 (9.07, 11.03) 10
I(0) All Log-Normal(log(10), 0.05) 10 (9.07, 11.03) 10

For the shallow scenario, we centered the prior on 0.9 rather than 0.8, for the fixed scenarios,
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we centered the prior at 1.3, but the standard deviation parameter remained the same.

Similarly, the priors on initial compartment accounts were shifted to 5 or 20 for the initial5

and initial20 scenarios. Otherwise, priors remained the same across scenarios.

C.6 Priors and Posteriors of Fixed Parameters

We provide a visualization of the priors and posteriors of the fixed parameters in the stochas-

tic EI-ww model for the model fit to the Fixed scenario visualized in Figure 5.2. We also

show the prior and posterior of τ in particular, as the scale is hard to see in the original

figure.
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Figure C.2: Stochastic EI-ww prior and posterior densities for fixed model parameters.
Posterior summaries are from the model fit to the Fixed Scenario data shown in Figure B.9.
Blue densities are the prior, red densities are the posterior, dotted lines indicate true values
(when relevant).
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Figure C.3: Stochastic EI-ww prior and posterior densities for fixed model parameters for
the parameter τ . The figure is a transformation of the bottom right panel of Figure C.2.

C.7 Calculating Initial Conditions for Real Data

We used case data to create a rough guess for the initial conditions for our stochastic and

deterministic EI-ww models. We assumed the total number of individuals in the E and I

compartments was equal to the last 11 days before the start of the observation period (the

sum of the average latent period and average infectious period) of reported cases multiplied

by 4 (i.e., a case detection rate of 0.25). We then split this total so that two thirds are

allocated to the I compartment and one third went to the E compartment. These case

data were available at the community level, we then split the calculate counts proportionally

by the proportion of the community living in each sub-community. For the initial effective

reproduction number, we chose a prior centered around 0.5, this was based on previous

estimates of the effective reproduction number during this time using case data (Chapter 4,

Goldstein [2024]). The final priors are displayed in the table below.
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Table C.2: EI-ww priors for UC Irvine.

Parameter Place Prior Prior Median (95% Interval)

E(0) E1 Log-Normal(log(5), 0.05) 5 (4.53, 5.52)
I(0) E1 Log-Normal(log(9), 0.05) 9 (3.63, 4.41)
E(0) G1 Log-Normal(log(6), 0.05) 6 (5.44, 6.62)
I(0) G1 Log-Normal(log(10), 0.05) 10 (9.07, 11.03)
E(0) G2 Log-Normal(log(7), 0.05) 7 (6.35, 7.72)
I(0) G2 Log-Normal(log(12), 0.05) 12 (10.88, 13.24)
R0 Log-Normal(log(0.5), 0.1) 0.5 (0.41, 0.61)

C.8 Posterior Predictive Real Data Analysis

C.9 Sensitivity Real Data Analysis

In the main analysis we used an initial Rt derived from previous case-based estimates of Rt

for the entirety of Orange County, CA. It is plausible this county-wide Rt did not accurately

reflect the situation at UC Irvine at the start of the modeling period. To understand how

our choice of prior affected our analysis, we re-analyzed the data using an alternative prior

centered around 1 instead of 0.5 (R0 ∼ Log-Normal(0, 0.1)). Figure C.5 displays the results

of this re-analysis.
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communities estimated from wastewater data and case data using a prior on the initial Rt

centered at 1 rather than 0.5. Black lines are medians, blue shaded regions are credible
intervals.

Many of the patterns we observed in the main analysis are still present. The wastewater

model results are quite different from case model results. The deterministic EI-ww model is a

little less certain than in the main analysis, but still more certain overall than the stochastic
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EI-ww model. In the case of the E community, the stochastic model now has 95% credible

interval above 1 for a brief time period, while the case model never has 95% credible intervals

above 1.
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