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Abstract. A simple lemma bounds s.d.(T )/ET for hitting times T in Markov
chains with a certain strong monotonicity property. We show how this lemma may
be applied to several increasing set-valued processes. Our main result concerns a
model of first passage percolation on a finite graph, where the traversal times of
edges are independent Exponentials with arbitrary rates. Consider the percolation
time X between two arbitrary vertices. We prove that s.d.(X)/EX is small if and
only if Ξ/EX is small, where Ξ is the maximal edge-traversal time in the percolation
path attaining X.

1. Introduction

For random variables T arising (loosely speaking) as optimal costs in some “ran-
dom environment” model, one might not be able to estimate ET explicitly, for one
of two reasons: it may involve a difficult optimization problem (exemplified by the
Euclidean TSP over random points (Steele, 1997), or the model may involve many
parameters (the case more relevant to this paper). In such cases the well-known
method of bounded differences (McDiarmid, 1989) often enables us to bound T−ET
explicitly, and this general topic of concentration inequalities has been developed in
many directions over the last generation. What we will call (recalling the weak law
of large numbers) a weak concentration inequality is just a result showing s.d.(T )/ET
is small. The starting point for this paper is a simple technique (section 1.1) for
proving weak concentration for hitting times T in Markov chains with a certain
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strong monotonicity property. At first sight one might doubt that this technique
could be more than very narrowly applicable, but its quick use in diverse other
contexts (sections 1.2 - 1.4; see also section 5(d)) should partly dispel such doubts.
Our main result concerns a more sophisticated analysis of a model of first passage
percolation on a finite graph, where the traversal times of edges are independent
Exponentials with arbitrary rates. We will describe that result and its background
in section 2, and prove it in the subsequent sections.

1.1. A monotonicity condition. The setting is a continuous-time Markov chain (Zt)
on a finite state space Σ, where we study the hitting time

T := inf{t : Zt ∈ Σ0} (1.1)

for a fixed subset Σ0 ⊂ Σ. Assume

h(S) := EST <∞ for each S ∈ Σ (1.2)

which holds under the natural “reachability” condition – that is, if it is possible to
reach Σ0 eventually from each initial state. Assume also a rather strong “mono-
tonicity” condition:

h(S′) ≤ h(S) whenever S → S′ is a possible transition. (1.3)

In a typical example, the state space Σ will be the space of all subsets S of a given
finite set V, and possible transitions will be of the form S → S ∪ {v}. A special
case of our simple lemma, which suffices for the quick applications in sections 1.2 -
1.4, is

Lemma 1.1. Under condition (1.3), for any initial state,

var T

ET
≤ max{h(S)− h(S′) : S → S′ a possible transition}.

In the “quick applications” below, the right side will be bounded using natural
couplings of the processes started from S and from S′. For more complicated
applications, Lemma 1.2 allows the possibility of occasional transitions for which
h(S)− h(S′) is not so small.

Lemma 1.2. In the setting of Lemma 1.1, for arbitrary δ, ε > 0,

var T

(ET )2
≤ δ + ε+

E
∫ T

0
11{qδ(Zu)≥ε}du

ET
.

where qδ(S) is defined at (1.9) below.

The proofs below involve only very standard martingale analysis. We are not
claiming any conceptual novelty in these results, but instead emphasize their appli-
cations later. A variant form of Lemma 1.2 is derived in Aldous (2016) Corollary
2.3.

Proof of Lemma 1.1: Expectation is relative to some fixed initial state S0. Note
that T = inf{t : h(Zt) = 0}, that t → h(Zt) is decreasing (by which we always
mean non-increasing), by (1.3), and so for any reachable state S we have h(S) ≤
h(S0) = ET , facts we use frequently without comment. Consider the martingale

Mt := E(T |Zt) = h(Zt∧T ) + t ∧ T . (1.4)
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The Doob-Meyer decomposition of M2
t into a martingale Qt and a predictable

process is clearly

M2
t −M2

0 = Qt +

∫ t

0

a(Zu) du

where

a(S) :=
∑
S′

q(S, S′) (h(S)− h(S′))2 (1.5)

where q(S, S′) are the transition rates. Taking expectation at t =∞ gives

var T = E
∫ T

0

a(Zu) du. (1.6)

On the other hand the martingale property (1.4) for E(T |Zt) corresponds to the
identity

b(S) :=
∑
S′

q(S, S′)(h(S)− h(S′)) = 1 while S ∩ Σ0 = ∅ (1.7)

and therefore

ET = E
∫ T

0

b(Zu) du. (1.8)

Setting

κ = max{h(S)− h(S′) : S → S′ a possible transition}
we clearly have a(S) ≤ κb(S); note this is where we use the monotonicity hypothesis
(1.3). The result now follows from (1.6,1.8). �

Proof of Lemma 1.2: We continue with the notation above. Fix δ > 0 and write,
for a possible transition S → S′,

h(S)− h(S′) ≤ δ ET + 11{h(S)−h(S′)>δET} ET.

Using this to bound one term of the product (h(S)− h(S′))2 in the definition (1.5)
of a(S), and comparing with the definition (1.7) of b(S), we obtain

a(S) ≤ b(S) · δET
+

∑
S′: h(S)−h(S′)>δET

q(S, S′)(h(S)− h(S′)) · ET

While S ∩ Σ0 = ∅ we have b(S) = 1 and so

a(S)

ET
≤ δ + qδ(S)

where

qδ(S) :=
∑

S′: h(S)−h(S′)>δET

q(S, S′)(h(S)− h(S′)). (1.9)

Using (1.6)

var T

ET
≤ δET + E

∫ T

0

qδ(Zu)du. (1.10)

Because qδ(S) ≤ b(S) ≡ 1 we can fix ε > 0 and write qδ(Zu) ≤ ε+ 11{qδ(Zu)≥ε}, and
the result follows. �
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Discrete-time chains. Given a discrete-time Markov chain with transition probabili-
ties p(S, S′) there is a corresponding continuous-time Markov chain with transition
rates q(S, S′) = p(S, S′). The relation between the hitting times Tdisc and Tcont for
these two chains is (using Wald’s identity)

ETcont = ETdisc; var Tcont = var Tdisc + ETdisc. (1.11)

Via this continuization device our results may be applied to discrete-time chains.

1.2. A general Markovian growth process. For a straightforward application of
Lemma 1.1, we consider a general growth process (Zt) on the lattice Z2. The
states are finite vertex-sets S, the possible transitions are S → S ∪{v} where v is a
vertex adjacent to S. For each such transition, we assume the transition rates are
bounded above and below:

0 < c∗ ≤ q(S, S ∪ {v}) ≤ c∗ <∞. (1.12)

Initially Z0 = {0}, where 0 denotes the origin. The “monotonicity” condition we
impose is that these rates are increasing in S:

if v, v′ are adjacent to S then q(S, S ∪ {v}) ≤ q(S ∪ {v′}, S ∪ {v, v′}) . (1.13)

Note that we do not assume any kind of spatial homogeneity.

Proposition 1.3. Let A be an arbitrary non-empty subset of vertices Z2 \{0}, and
consider T := inf{t : Zt ∩A is non-empty.}. Under assumptions (1.12, 1.13),

var T ≤ ET/c∗.

Proof : First note ET < ∞, because (1.12) implies ET ≤ `/c∗, where ` is the
length of the shortest path from 0 to A. Condition (1.13) allows us to couple
versions (Z ′t, Z

′′
t ) of the process starting from states S′ ⊂ S′′, such that in the

coupled process we have Z ′t ⊆ Z ′′t for all t ≥ 0. In particular, h(S) := EST satisfies
condition (1.3). To deduce the result from Lemma 1.1 we need to show that, for
any given possible transition S0 → S0 ∪ {v0}, we have

h(S0) ≤ h(S0 ∪ {v0}) + 1/c∗. (1.14)

Now by running the process started at S0 until the first time T ∗ this process contains
v0, and then coupling the future of that process to the process started at S0∪{v0},
we have h(S0) ≤ ES0

T ∗ + h(S0 ∪ {v0}). And ES0
T ∗ ≤ 1/c∗ by (1.12), establishing

(1.14). �

1.3. A multigraph process. The process here arises in a broad “imperfectly observed
networks” program described in Aldous and Li (2016). We give two examples of
the application of Lemma 1.1 to this process.

Take a finite connected graph (V,E) with edge-weights w = (we), where we >
0 ∀e ∈ E. Define a multigraph-valued process as follows. Initially we have the
vertex-set V and no edges. For each vertex-pair e = (vy) ∈ E, edges vy appear at
the times of a Poisson (rate we) process, independent over e ∈ E. So at time t the
state of the process, Zt say, is a multigraph with Ne(t) ≥ 0 copies of edge e, where
(Ne(t), e ∈ E) are independent Poisson(twe) random variables.

We study how long until Zt has various connectivity properties. Specifically,
consider

• T spank = inf{t : Zt contains k edge-disjoint spanning trees}.
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• T triak = inf{t : Zt contains k edge-disjoint triangles}.
Here we regard the Ne(t) copies of e as disjoint edges. Remarkably, Lemma 1.1
enables us to give simple proofs of “weak concentration” bounds which do not
depend on the underlying weighted graph.

Proposition 1.4.
s.d.(T spank )

ET spank

≤ 1√
k
, k ≥ 1. (1.15)

If E contains at least one triangle then

s.d.(T triak )

ET triak

≤
(

e

e− 1

)1/2

k−1/6, k ≥ 1. (1.16)

Using the continuization device at (1.11) and Wald’s identity, the same bounds
(in fact, slightly better bounds) hold in the discrete-time model where edges e arrive
IID with probabilities proportional to we.

We conjecture that some similar result holds for

T ′k := inf{t : Zt is k-edge-connected}.

But proving this by our methods would require some structure theory (beyond
Menger’s theorem) for k-edge-connected graphs, and it is not clear whether relevant
theory is known.

Proof of (1.15): First note that because (V,E) is finite and connected, it contains
a spanning tree with minimum edge-weight w∗ > 0, implying ET span1 ≤ (|V| −
1)/w∗ <∞ and then ET spank ≤ kET span1 <∞. (A similar argument shows ET triak <
∞ under the assumption of (1.16).) We will apply Lemma 1.1. Here the states S
are multigraphs over V, and h(S) is the expectation, starting at S, of the time until
the process contains k edge-disjoint spanning trees. What are the possible values
of h(S) − h(S ∪ {e}), where S ∪ {e} denotes the result of adding an extra copy of
e to the multigraph S?

Consider the “min-cut” over proper subsets S ⊂ V

γ := min
S
w(S, Sc)

where w(S, Sc) =
∑
v∈S,y∈Sc wvy. Because a spanning tree must have at least one

edge across the min-cut,

ET spank ≥ k/γ. (1.17)

On the other hand we claim

h(S)− h(S ∪ {e}) ≤ 1/γ. (1.18)

To prove this, take the natural coupling (Zt, Z
+
t ) of the processes started from S

and from S ∪ {e}, and run the coupled process until Z+
t contains k edge-disjoint

spanning trees. At this time, the process Zt either contains k edge-disjoint spanning
trees, or else contains k − 1 spanning trees plus two trees (regard as edge-sets t1

and t2) such that t1 ∪ t2 ∪{e} is a spanning tree. So the extra time we need to run
(Zt) is at most the time until some arriving edge links t1 and t2, which has mean
at most 1/γ. This establishes (1.18), and then Lemma 1.1 establishes (1.15). �

Proof of (1.16): The key ingredient is a coupling construction which will establish
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Lemma 1.5.
ET tria1

ET triak

≤ a(k) := inf
0<q<1

q

1− (1− q3)k
.

Granted Lemma 1.5, we start by repeating the format of the previous proof. To
bound h(S′) − h(S) for a possible transition (one added edge) S → S′, we take
the natural coupling of the processes started from S and S′, run until the latter
contains k edge-disjoint triangles. At that time the former process contains k − 1
edge-disjoint triangles, so the mean extra time until it contains k edge-disjoint
triangles is bounded (crudely) by ET tria1 . Then Lemma 1.1 says

var T triak

ET triak

≤ ET tria1 .

Combining with Lemma 1.5,

s.d.(T triak )

ET triak

≤
√
a(k).

Because 1 − x ≤ e−x we have q
1−(1−q3)k

≤ q
1−exp(−q3k) , so taking q = k−1/3 gives

the stated bound. �

Proof of Lemma 1.5: Recall (Ne(t), 0 ≤ t) is the rate-we Poisson counting process
for occurrence of copies of edge e. Consider the following coupling construction,
done independently for different e. Fix 0 < q < 1. Delete edge copies with proba-

bility 1− q, and write (Ñe(t), 0 ≤ t) for the process of retained edges; then rescale

time by setting N∗e (t) = Ñe(t/q). So (Ne(·), N∗e (·)) is a coupling of two dependent
rate-we Poisson processes. It is enough to show, writing T for T tria,

ET ∗1
ETk

≤ q

1− (1− q3)k
. (1.19)

where T ∗1 refers to the (N∗e (·), e ∈ E) process. Now T ∗1 /q is the time of appearance

of the first triangle in the (Ñe(·), e ∈ E) process, and so T ∗1 /q ≤ T̃ where the latter
is defined by

T̃ = Tk on the event A = “at least one of the k triangles seen at Tk
in the N∗(·) process is retained in the Ñ(·) process”;

T̃ = Tk + Y otherwise, where Y is the subsequent time until a

triangle appears in the Ñ(·) process, if all edges are deleted at time
Tk.

But EY = ET1/q = ET ∗1 /q, so

ET ∗1 /q ≤ ET̃ = ETk + P(Ac)EY
≤ ETk + (1− q3)kET ∗1 /q

which rearranges to inequality (1.19). �

1.4. Coverage processes. The topic of coverage processes is centered upon spatial or
combinatorial variants of the coupon collector’s problem; see the monograph Hall
(1988) and scattered examples in Aldous (1989). Classical theory concerns low-
parameter models for which the cover time Tn of a “size n” model can be shown
to have a limit distribution after scaling: (Tn − an)/bn →d ξ for explicit an, bn.
In many settings, Lemma 1.1 can be used to give a weak concentration result for
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models with much less regular structure. Here is a very simple example, whose
one-line proof is left to the reader.

Proposition 1.6. Let G be an arbitrary n-vertex graph, and let (Vi, i ≥ 1) be IID
uniform random vertices. Let T be the smallest t such that every vertex is contained
in, or adjacent to, the set {Vi, 1 ≤ i ≤ t}. Then var T ≤ n ET .

For a sequence (Gn) of sparse graphs, ETn will be of order n log n, so the bound
says that s.d.(Tn)/ET = O(1/

√
log n).

2. The FPP model

As in section 1.3 we start with a finite connected graph (V,E) with edge-weights
w = (we), where we > 0 ∀e ∈ E, but the model here is different. To the edges
e ∈ E attach independent Exponential(rate we) random variables ξe. For each pair
of vertices (v′, v′′) there is a random variable X(v′, v′′) which can be viewed in two
equivalent ways:

viewing ξe as the length of edge e, then X(v′, v′′) is the length of the shortest
route from v to v′;

viewing ξe as the time to traverse edge e, then X(v′, v′′) is the “first passage
percolation” time from v to v′.

Taking the latter view, we call this the FPP model, and call X(v′, v′′) the FPP time
and ξe the traversal time. This type of model and many generalizations have been
studied extensively in several settings, in particular

• FPP with general IID weights on Zd (Kesten, 2003; Auffinger et al., 2015)
• FPP on classical random graph (Erdős-Rényi or configuration) models

(Bhamidi et al., 2010, 2011)
• and a much broader “epidemics and rumors on complex networks” literature

(Draief and Massoulié, 2010; Peng, 2016).

However, this literature invariably starts by assuming some specific graph model;
there are very few “general results” which relate properties of the FPP model to
properties of a general underlying graph. As an analogy, another structure that
can be associated with a weighted finite graph is a finite reversible Markov chain;
the established theory surrounding mixing times of Markov chains (Aldous and
Fill, 2002; Levin et al., 2009; Montenegro and Tetali, 2006) does contain “general
results” relating properties of the chain to properties of the underlying graph.

This article makes a modest start by studying the “weak concentration” prop-
erty: when it is true that X(v′, v′′) is close to its expectation? We can reformulate
the FPP model as a set-valued process (see section 2.1(a) for details) and then
Lemma 1.1 immediately implies the following result.

Proposition 2.1. var X(v′, v′′) ≤ EX(v′, v′′)/w∗ for w∗ := min{we : e ∈ E}.

Bounds of this type are classical on Zd (Kesten, 1993).
Proposition 2.1 implies that on any unweighted graph (we = 1 for all edges e),

the spread of X = X(v′, v′′) is at most order
√
EX. For many specific graphs,

stronger concentration results are known. For Z2 there is extensive literature (see
Chatterjee (2013) for a recent overview) on the longstanding conjecture that the
spread is order (EX)1/3. For the complete graph (e.g. Aldous, 2013, sec. 7.3) and
for sparse random graphs on n vertices (Bhamidi et al., 2010) the spread of X/EX
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is typically of order 1/ log n. For nilpotent Cayley graphs it is known the spread is
sublinear (Benjamini and Tessera, 2015).

In contrast, in this paper we study the completely general case where the edge-
weights we may vary widely over the different edges e ∈ E. Here is our main result
(conjectured in Aldous, 2013, sec. 7.4). Given a pair (v′, v′′), there is a random path
π(v′, v′′) that attains the FPP time X(v′, v′′). Define Ξ(v′, v′′) := max{ξe : e ∈
π(v′, v′′)} as the maximum edge-traversal time in this minimal-time path. Recall
the “L0 norm”

||V ||0 := inf{δ : P(|V | > δ) ≤ δ}.

Theorem 2.2. There exist functions ψ+ and ψ− : (0, 1]→ (0,∞) such that ψ+(δ) ↓
0 as δ ↓ 0, and ψ−(δ) > 0 for all δ > 0, and such that, for all finite connected edge-
weighted graphs and all vertex pairs (v′, v′′),

ψ−

(∣∣∣∣∣∣∣∣ Ξ(v′, v′′)

EX(v′, v′′)

∣∣∣∣∣∣∣∣
0

)
≤ s.d.(X(v′, v′′))

EX(v′, v′′)
≤ ψ+

(∣∣∣∣∣∣∣∣ Ξ(v′, v′′)

EX(v′, v′′)

∣∣∣∣∣∣∣∣
0

)
.

In words, X/EX has small spread if and only if Ξ/EX is small. Intuition for this
result comes from the “almost disconnected” case where the path π(v′, v′′) must
contain a specific “bridge” edge e with small we; if 1/we is not o(EX) then the
contribution to X from the traversal time ξe is enough to show that X cannot have
weakly concentrated distribution.

The proof of the upper bound starts from our “more general” inequality, Lemma
1.2. See section 3 for an outline.

Theorem 2.2 is unsatisfactory in that the conditions are not directly on the edge-
weights w = (we). By analogy with the bounds (Montenegro and Tetali, 2006, sec.
3.2) for Markov chain mixing times in terms of the spectral profile, it seems likely
that Proposition 2.1 can be extended to give more widely applicable upper bounds
on spread in terms of extremal flow rates w(S, Sc) =

∑
v∈S,y∈Sc wvy. However we

do not have any conjecture for two-sided bounds analogous to Theorem 2.2.
A particular case of FPP in our setting – edge-weights we varying widely over the

different edges – is studied in detail in recent work of Chatterjee and Dey (2013).
In their model V = Zd with wxy = ||y − x||−α+o(1). Results and conjectures
from that paper are consistent with our Theorem 2.2, which says that properties
X(0, nz)/EX(0, nz) →p 1 and Ξ(0, nz)/EX(0, nz) →p 1 must either both hold or
both fail. They identify several qualitatively different regimes. In their linear growth
regime (α > 2d + 1) they show EX(0, nz)/n converges to a nonzero constant and
show that both properties hold. In their super-linear growth regime (α ∈ (2d, 2d+1))
they show X(0, nz) = nα−2d+o(1); here their analysis suggests both properties fail.
For α ∈ (d, 2d) they show X(0, nz) grows as a power of log n, and their arguments
suggest both properties hold. The qualitative behavior and proof techniques in
Chatterjee and Dey (2013) are different in these different regimes, whereas our
Theorem 2.2 is a single result covering all regimes, albeit a less explicit result.

2.1. Some preliminaries. (a) We will view the FPP process started at v′ as a
process (Zt) taking values in the (finite) space of subsets S ⊆ V of vertices, that is
as

Zt := {v : X(v′, v) ≤ t}. (2.1)
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The assumption of Exponential distributions implies that (Zt) is the continuous-
time Markov chain with Z0 = {v′} and transition rates

S → S ∪ {y} : rate w(S, y) :=
∑
s∈S

wsy (y 6∈ S).

So we are in the setting of Lemmas 1.1 and 1.2. Given a target vertex v′′ the FPP
time X(v′, v′′) is a stopping time T of the form (1.1), and the function h(S) at (1.2)
is just the function

h(S) := Emin
v∈S

X(v, v′′).

For a possible transition S → S ∪ {y}, by considering the first time y is reached in
the process started from S we have h(S) ≤ 1

w(S,y) + h(S ∪ {y}) and so

h(S)− h(S ∪ {y}) ≤ 1
w(S,y) ≤

1
w∗

for w∗ := min{we : e ∈ E}. Now Lemma 1.1 does indeed imply Proposition 2.1,
as stated earlier.

(b) FPP times such as X(v′, v′′) are examples of distributions Y > 0 with the
submultiplicative property

P(Y > y1 + y2) ≤ P(Y > y1) P(Y > y2); y1, y2 > 0.

This holds because, if the percolation process has not reached v′′ before time y1, we
can restart it at v′ and use monotonicity. We will need the general bound provided
by the following straightforward lemma. See Aldous (2016) for a simple proof with

γ(u) =
√

24u.

Lemma 2.3. There exists an increasing function γ(u) > 0 with γ(u) ↓ 0 as u ↓ 0
such that, for every submultiplicative Y and every event A,

EY 11A
EY

≤ γ(P(A)).

Note it follows that

P (Y ≥ y) ≥ γ−1
(

EY 11{Y≥y}
EY

)
(2.2)

for the (increasing) inverse function γ−1(u) which also satisfies γ−1(u) ↓ 0 as u ↓ 0.

(c) We will need an elementary stochastic calculus lemma.

Lemma 2.4. Let T1 be a stopping time with (random) intensity ηt – that is, P(t <
T1 < t + dt|F t) = ηt dt on {T1 > t}. Let ζ be another stopping time such that
ηt ≥ c on {ζ > t}, for constant c > 0. Then

P(T1 ≤ ζ ∧ t0) ≥ (1− e−ct0)P(ζ > t0).

Proof : Applying the optional sampling theorem to the martingale exp(
∫ t

0
ηs ds) ·

11{T1>t} and the stopping time ζ ∧ t0 shows

E[exp(
∫ ζ∧t0

0
ηs ds) · 11{T1>ζ∧t0}] = 1.

Now

exp(
∫ ζ∧t0

0
ηs ds) ≥ exp(c (ζ ∧ t0)) ≥ 1 + (ect0 − 1)11{ζ>t0}

and so

P(T1 > ζ ∧ t0) + (ect0 − 1)P(T1 > ζ ∧ t0, ζ > t0) ≤ 1.
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That is,

P(T1 ≤ ζ ∧ t0) ≥ (ect0 − 1)P(T1 > ζ ∧ t0, ζ > t0)

≥ (ect0 − 1)(P(ζ > t0)− P(T1 ≤ ζ ∧ t0))

which rearranges to the stated inequality. �

3. Proof of upper bound in Theorem 2.2

Fix v′ and as above view the FPP process started at v′ as the continuous-time
Markov chain (Zt) at (2.1) on the space of subsets of V. Fix a target v′′ 6= v′ and
in the following write S for an arbitrary subset of vertices containing v′. Write

h(S) := Emin
v∈S

X(v, v′′)

for the mean percolation time from S to v′′, so h(S) = 0 iff v′′ ∈ S. So

T := X(v′, v′′) = inf{t : h(Zt) = 0}
is a stopping time for (Zt). Note that t→ h(Zt) is decreasing and h(S) ≤ ET .

Outline of proof. Step 1 is to translate Lemma 1.2 into our FPP setting; this
shows it is enough to prove that in all transitions S → S ∪ {y} the decrements
h(S)−h(S∪{y}) are o(ET ); so suppose not, that is suppose some are Ω(ET ). Step
2 shows that in some such transitions, the used edge vy will (with non-vanishing
probability) have traversal time ξvy also of order Ω(ET ). Step 3 shows that some
such edges will (with non-vanishing probability) be in the minimal path.

Details of proof. Step 1. Substituting 2δ for δ, Lemma 1.2 says that for arbitrary
δ, ε > 0

var T

(ET )2
≤ 2δ + ε+

E
∫ T

0
11{qδ(Zu)≥ε}du

ET
(3.1)

where
qδ(S) :=

∑
y: h(S)−h(S∪{y})>2δET

w(S, y)(h(S)− h(S ∪ {y})).

Informally, as stated in the outline of proof, this shows it will suffice to prove
that in transitions S → S ∪ {y} the decrements h(S)− h(S ∪ {y}) are o(ET ).

Step 2. Now fix 0 < u1 < u2.

Lemma 3.1. Condition on Zt0 = S0. The event

during [t0, t0 + u2] the process (Zt0+u) makes a transition S →
S ∪ {y} such that h(S) − h(S ∪ {y}) > δET and using an edge vy
for which ξvy > u1

has probability at least (1− u2

δET )+
(

1− exp(−(u2−u1)qδ(S0)
2ET )

)
.

Proof : Define
ζ = inf{t > t0 : h(Zt) ≤ h(S0)− δET}

so that, because t→ h(Zt) is decreasing,

h(S0)− h(Zt0+u) ≤ δET on {ζ > t0 + u}. (3.2)

Define
q∗(S) :=

∑
y: h(S)−h(S∪{y})>δET

w(S0, y)(h(S)− h(S ∪ {y})).
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Note this is the definition of qδ(S) modified by changing the constraint “> 2δET”
to “> δET” and changing w(S, y) to w(S0, y). Observe the relation, for Zt0+u ⊇ S0,

h(Zt0+u)− h(Zt0+u ∪ {y}) ≥ h(Zt0+u)− h(S0 ∪ {y})
= [h(S0)− h(S0 ∪ {y})]−[h(S0)− h(Zt0+u)]. (3.3)

For y satisfying the constraint

h(S0)− h(S0 ∪ {y}) > 2δET

in the definition of qδ(S0), and on the event {ζ > t0 +u}, inequalities (3.2,3.3) show
that y satisfies the constraint in the definition of q∗(Zt0+u), and also show that

h(Zt0+u)− h(Zt0+u ∪ {y}) ≥ 1
2 [h(S0)− h(S0 ∪ {y})],

implying that

q∗(Zt0+u) ≥ 1
2qδ(S0) on {ζ > t0 + u}. (3.4)

For S ⊇ S0 we have, from the definition of q∗(S), a crude bound

q∗(S) ≤ (ET )
∑

y: h(S)−h(S∪{y})>δET

w(S0, y)

and applying this to the left side of (3.4) gives∑
y: h(Zt0+u)−h(Zt0+u∪{y})>δET

w(S0, y) ≥ qδ(S0)

2ET
on {ζ > t0 + u}.

Over the time interval [t0 + u1, t0 + u2] the left side is the intensity of an event
which implies the event (D, say) in Lemma 3.1 (in particular, an edge vy is used
with v ∈ S0 = Zt0 , and so its “age” ξvy must be at least u1). We are now in the
setting of Lemma 2.4, which shows that

P(D) ≥ P(ζ > t0 + u2)
(

1− exp(−(u2−u1)q(S0)
2ET )

)
.

By the martingale property (1.4) of h(Zt) + t and Markov’s inequality

P(ζ ≤ t0 + u2) = P(h(Zt0+u2
) ≤ h(S0)− δET ) ≤ u2

δET (3.5)

establishing the bound stated in Lemma 3.1. �

Step 3.

Lemma 3.2. Conditional on the process (Zu) making at time t0 a transition S →
S∪{y} using an edge vy, the probability that edge vy is in the minimal path π(v′, v′′)

is at least γ−1(h(S)−h(S∪{y})
ET ), for the inverse function γ−1(·) > 0 at (2.2).

Proof : Condition as stated. So after the transition we have

T − t0 = min(A,B)

where B = X(y, v′′) and A = minv∈S X
∗(v, v′′) where X∗ denotes the minimum

over paths not using y. The probability in question equals P(B < A); note that A
and B are typically dependent, and that A has a continuous distribution.

It is easy to check that the solution to the problem

given the (continuous) distribution of A > 0, construct a r.v. B′ >
0 to minimize P(B′ < A) subject to the constraint that EA −
Emin(A,B′) takes a given value
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is to take B′ = A11{A≤a0} for a0 chosen to satisfy the constraint. So in our setting,

P(B < A) ≥ P(A > a0)

for a0 chosen to satisfy

EA11{A>a0} = EA− Emin(A,B) = h(S)− h(S ∪ {y}).
Because A has the submultiplicative property, Lemma 2.3 shows that

P(A > a0) ≥ γ−1
(
h(S)−h(S∪{y})

EA

)
.

Because γ−1(·) is increasing and EA ≤ ET , we have established the lemma. �

Step 4. We now combine the ingredients above. Define U1 = inf{t ≥ 0 : qδ(Zt) ≥
ε} and inductively

Uj+1 = inf{t ≥ Uj + u2 : qδ(Zt) ≥ ε}.
Setting U0 = 0, the times Ui are such that the sets [Ui−1, Ui] ∩ {u : qδ(Zu) ≥ ε}
have Lebesgue measure u2. So a sufficient condition to that ensure Uj < ∞ is the
condition that {u : qδ(Zu) ≥ ε} ∩ [0, T ] has Lebesgue measure at least ju2, that is

ju2 ≤
∫ T

0

11{qδ(Zu)≥ε}du. (3.6)

Condition on Uj = t0, ZUj = S0 and apply Lemmas 3.1 and 3.2. We deduce that,
with probability at least

(1− u2

δET )
(

1− exp(−(u2−u1)ε
2ET )

)
γ−1(δ)

the minimal path π(v′, v′′) contains an edge vy with ξvy ≥ u1 and such that y is first
reached during (Uj , Uj+1]. The latter property ensures these edges are distinct as j
varies (but note the corresponding ξvy are dependent). Summing over j, applying
(3.6) and taking expectation, we find that

N(u1) := |{e ∈ π(v′, v′′) : ξe ≥ u1}|
satisfies

EN(u1) ≥ (1− u2

δET )+
(

1− exp(−(u2−u1)ε
2ET )

)
γ−1(δ) 1

u2
E
∫ T

0

11{qδ(Zu)≥ε}du. (3.7)

Writing Ξ = Ξ(v′, v′′), the event {N(u1) ≥ 1} is the event {Ξ ≥ u1}. Also
u1N(u1) ≤ T , so we can write N(u1) ≤ T

u1
11{Ξ≥u1} and then

EN(u1) ≤ ET
u1

ET11{Ξ≥u1}
ET ≤ ET

u1
γ(P(Ξ > u1)),

the final inequality by Lemma 2.3. Combining with (3.7) and rearranging gives a
bound for the final term of (3.1):

E
∫ T

0
11{qδ(Zu)≥ε}du

ET
≤ u2 γ(P(Ξ > u1))

u1(1− u2

δET )+
(

1− exp(−(u2−u1)ε
2ET )

)
γ−1(δ)

.

This becomes a little easier to understand when we set u1 = uET and u2 = 2u1;
then (3.1) becomes

var T

(ET )2
≤ 2δ + ε+

2 γ(P( Ξ
ET > u))

(1− 2u
δ )+

(
1− exp(−uε2 )

)
γ−1(δ)

. (3.8)
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We could manipulate this into a complicated expression for an upper bound function
ψ+(·) in Theorem 2.2. But it is simpler to observe that existence of some upper
bound function is equivalent to the following limit assertion: for weighted graphs
w(n) and FPP times T (n) = X(n)(v(n)′, v(n)′′)

if
Ξ(n)(v(n)′, v(n)′′)

ET (n)
→p 0 then

var T (n)

(ET (n))2
→ 0.

And this is immediate from (3.8).

4. Proof of lower bound in Theorem 2.2

We described this lower bound assertion in Aldous (2013) sec. 7.4 as “intuitively
clear (and not hard to prove)”. The intuition is that, given a typical realization of
the process where X = X(v′, v′′) has some value X0, and some value Ξ0 attained
by some ξe, there are other realizations for which this ξe ranges over the interval
[0,Ξ0], for which therefore the value of X ranges over [X0 − Ξ0, X0], so the order
of s.d.(X) should be at least the order of Ξ. Formalizing this intuition is not quite
trivial. The proof below is rather crude – likely there is a more elegant argument
giving a better bound.

Fix a pair (v′, v′′) and write X = X(v′, v′′) and Ξ = Ξ(v′, v′′). So X is a function
of the traversal times (ξe). If we couple (ξe, e ∈ E) with a copy (ξ′e, e ∈ E) of (ξe),
then by an elementary inequality

var X ≥ 1
4E(X ′ −X)2. (4.1)

We will use the following coupling. Fix 0 < a < b and write E(λ; a, b) for the
distribution of an Exponential(λ) random variable conditioned to lie in [a, b]. Define
(ξ′e, ξe) to be independent as e varies, with

if ξe /∈ [a, b] then ξ′e = ξe
if ξe ∈ [a, b] then ξ′e is conditionally independent of ξe with conditional distribu-

tion E(we; a, b).
Consider the set Dab of edges e in the minimal path π = π(v′, v′′) for which
ξe ∈ [a, b]. By considering the same path in the coupled copy,

X ′ −X ≤
∑
e∈π

(ξ′e − ξe) =
∑
e∈Dab

(ξ′e − ξe). (4.2)

To analyze this expression we will use the following lemma. For k ≥ 1 and s > 0
define

Fk(s) := E

(
max(0, s−

k∑
i=1

Ui)

)2

(4.3)

where the Ui are independent Uniform(0, 1).

Lemma 4.1. Let (Vi, 1 ≤ i ≤ k) be independent E(λi; a, b), for arbitrary (λi). Then
for arbitrary vi ∈ [a, b],

E

(
max

(
0,

k∑
i=1

vi −
k∑
i=1

Vi

) )2

≥ (b− a)2Fk

(
k∑
i=1

vi−a
b−a

)
. (4.4)

Proof : The distributions E(λi; a, b) are stochastically decreasing with λi, so the left
side is minimized in the λi → 0 limit, which is the uniform distribution on [a, b];
the limit value is obtained from (4.3) by scaling. �
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We can now combine inequalities (4.2) and (4.4) to deduce that, on the event
{|Dab| = k} for k ≥ 1,

E((X −X ′)2|ξe, e ∈ E) ≥ (b− a)2Fk

( ∑
e∈Dab

ξe−a
b−a

)
.

So

E(X −X ′)2 ≥ (b− a)2
∑
k≥1

E

[
11{|Dab|=k} Fk

( ∑
e∈Dab

ξe−a
b−a

) ]
. (4.5)

We need to lower bound the right side. The issue is that, if we is large then ξe − a
may be small. We handle this issue by considering two different values of a. Note
that the functions Fk(s) are decreasing in k and increasing in s. Fix a1 < a2 < b,
so that for 1 ≤ k ≤ K

Fk

 ∑
e∈Da1b

ξe−a1

b−a1

 ≥ FK

 ∑
e∈Da1b

ξe−a1

b−a1

 (decreasing in k)

≥ FK

 ∑
e∈Da2b

ξe−a1

b−a1

 (Da2b ⊆ Da1b)

≥ FK

(
|Da2b| a2−a1

b−a1

)
(increasing in s)

≥ FK

(
a2−a1

b−a1

)
11{|Da2b

|≥1} (increasing in s).

Applying (4.5) with a = a1 and restricting the sum to 1 ≤ k ≤ K,

E(X −X ′)2 ≥ (b− a1)2 FK

(
a2−a1

b−a1

)
P(|Da1b| ≤ K, |Da2b| ≥ 1). (4.6)

Because a1|Da1b| ≤ X, Markov’s inequality tells us P(|Da1b| ≥ K) ≤ 1
a1K

EX. Also

the event {|Da2b| ≥ 1} contains the event {a2 ≤ Ξ ≤ b}, so

P(|Da1b| ≤ K, |Da2b| ≥ 1) ≥ P(Ξ ≥ a2)− P(Ξ ≥ b)− 1
a1K

EX.

Because Ξ ≤ X we have P(Ξ ≥ b) ≤ EX/b, and combining with (4.6) and (4.1) we
conclude

var X ≥ 1
4 (b− a1)2 FK

(
a2−a1

b−a1

) (
P(Ξ ≥ a2)− ( 1

b + 1
a1K

)EX
)+

.

This holds for arbitrary 0 < a1 < a2 < b and K ≥ 1. We now take 1 > δ > 0 and
choose

a2 = δEX; a1 = a2/2; b = 3EX/δ

and find

var X

(EX)2
≥ 1

4 ( 3
δ −

δ
2 )2 FK

(
δ2

6−δ2

) (
P( Ξ

EX ≥ δ)− ( δ3 + 2
δK )

)+
.

So finally choosing K = K(δ) ≥ 6δ−2, we see that the lower bound in Theorem 2.2
holds for

ψ−(δ) :=
√

1
4 ( 3
δ −

δ
2 )2 FK( δ2

6−δ2 ) δ
3 .
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5. Final remarks

(a). The key point of results such as Proposition 1.4 and Theorem 2.2 is that
the bounds do not depend on the size n of the graph – any simple use of the method
of bounded differences in these models would give bounds that did depend on n.

(b). A somewhat different general approach to proving weak concentration for
general coverage processes, assuming IID random subsets, was given in Aldous
(1991), and used to prove weak concentration for Markov chain cover times. The
latter result does not seem to follow easily from the methods in this paper.

(c). Theorem 2.2 went beyond Proposition 2.1 by using Lemma 1.2 instead of the
simpler Lemma 1.1, and so one can imagine analogous improvements of the kind of
results in sections 1.2 - 1.4.

(d). There is an analog of our FPP result for bond percolation. Let edges e become
“open” at the independent random Exponential times ξe of rates we. Using Lemma
1.2, it is proved in Aldous (2016) that (under minimal assumptions) the time at
which a giant open component starts to emerge is weakly concentrated around its
mean.

(e). Presumably some analog of Theorem 2.2 remains true when the Exponential
assumption is relaxed to some much weaker “shape of distribution” assumption,
but we have not investigated that setting.
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