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Abstract 

The high brightness of the bend magnets at the Advanced Light Source has been exploited to 

illuminate a Scanning Transmission X-ray Microscope (STXM). This is the first diffraction-

limited scanning x-ray microscope to operate with useful count rate on a synchrotron bend 

magnet source. A simple, dedicated beam line has been built covering the range of photon 

energy from 250 eV to 600 eV. Ease of use and operational availability are radically 

improved compared to previous installations using undulator beams. This facility provides 

radiation for C 1s, N 1s and O 1s near edge x-ray absorption spectro-microscopy with a 

spectral resolution up to about 1:5000 and with STXM count rates in excess of 1 MHz. 

1. Introduction  

A collaboration of scientists from North Carolina State University, Advanced Light Source, 

McMaster University, Dow Chemical Company and other institutions have built a dedicated 

scanning transmission x-ray microscope (STXM) for the study of the chemistry of 

heterogeneous polymeric materials by spatially resolved near edge x-ray absorption 

spectroscopy (NEXAFS). This new scanning zone-plate microscope has been installed and is 

illuminated by means of a new bend magnet beam line. In previous implementations of 

STXM (Kirz et al., 1992; McNulty et al., 1998; Kaulich et al., 1999) the source has been an 

undulator. Earlier attempts to perform STXMs on a bend magnet at a second generation light 

source (Kirz et al., 1985) were of limited success because of the very low count rate.  In order 
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to provide dedicated, full time operation for this polymer chemistry facility we have 

developed a bend magnet beam line at the Advanced Light Source which is highly optimized 

for STXM. The required illumination intensity and spectral resolution have been achieved and 

the performance for STXM has been shown to be competitive with the existing undulator 

lines. This paper describes the design and performance of the bend magnet beam line; a 

companion paper (Kilcoyne et al., 2001) will describe the microscope. 

2. Optical and Mechanical Design 

The STXM zone plate lens accepts only the coherent fraction of the illuminating beam when 

focusing at its diffraction limit. This coherent photon flux is inside a volume in transverse 

phase space of the order λ2, incident on the lens and travelling close to the optical axis. 

Photons outside the phase space acceptance are lost on slits and by overfilling the lens. This 

leads to a beam line design that is almost paraxial, with small optics and deep foci. The 

principles of the optical design have been described in an earlier publication (Warwick et al., 

1998). 

A spherical grating monochromator is adopted (Kirz et al., 1992; McNulty et al., 1998), 

dispersing in the horizontal plane and with geometry chosen for low dispersion. Operation is 

required from 250 eV (just below the C 1s NEXAFS range) to 600 eV (just above the O 1s 

NEXAFS range). C, N and O are the most important species in polymer chemistry. Figure 1 

shows the layout. 

The horizontal dispersion plane leads to an overfilled entrance slit, because the horizontal 

illumination phase-space exceeds the diffraction limit by a large factor. The entrance slit can 

be opened to collect more light at the expense of spectral resolution. The low dispersion 

design ensures that the grating defocus at the fixed exit slit is negligible over the operational 

range. 

A toroidal mirror forms a horizontal image of the source at 0.9 magnification on the entrance 

slit. The entrance slit (at 300 eV) is typically 60 µm wide in the horizontal direction, smaller 

than the image of the source. This slit width corresponds to a resolving power of about 2000. 

Higher resolution is available with smaller slits. The spherical grating forms a horizontal 

image of the entrance slit near the exit slit (which selects a specific value of photon energy). 

The exit slit is fixed in space. The grating rotation through the required energy range is only 

1.5 degrees (about a vertical axis). The grating focus coincides with the longitudinal position 

of the exit slit at two special values of the grating angle. Otherwise the grating is out of focus, 
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but this does not appreciably affect the spectral resolution. Figure 2 shows the small defocus 

contribution to the resolving power and the computed flux into the acceptance of the zone 

plate lens. The grating horizontal magnification depends on the grating angle, ranging from 

1.0 to 1.2. 

In the vertical direction the toroidal mirror makes an image of the source at the exit slit. The 

exit slit (at 300 eV) is typically a square aperture 20x20 µm and acts as a source to be de-

magnified by the zone plate lens. This aperture size diffracts to illuminate the lens with the 

full Airy disk, or in the language of Win (Winn et al., 2000) to an illumination parameter 

p=1.0. Contrast for the highest spatial frequencies in an object improves markedly for p=0.5, 

about half the aperture dimensions, with a corresponding reduction in flux. 

Design parameters of the ALS handbook give a source size in the central bend magnet: 

 

   σx = 115 µm (0.1% energy spread) 

   σy = 9 µm (1% emittance coupling) 

 

The bend magnet source emits x-rays that, in the range 250 eV to 600 eV, are within vertical 

angles of about +/-500 µrad. In the horizontal direction, of course, there is a uniform angular 

distribution through the deflection range of the bend magnet. 

In the vertical direction the illumination from this source (at 300 eV) overfills the coherent 

phase space several times. The beam line was designed to preserve the source vertical 

brightness so that this overfilling would occur on the exit slit and on the lens, easing the 

stringent alignment requirements. In practice the electron beam emittance and the emittance 

coupling of the ALS are smaller than the design value. As a result, the bend magnet source is 

close to diffraction limited in the vertical direction. However, the sagittal slope errors of the 

toroidal mirror are too large to preserve this higher brightness. 

A specific beam line design goal was to independently trade off spatial resolution and spectral 

resolution for increased flux. This has been achieved in the following way. 

In the horizontal direction the toroid accepts 1 mrad and the illumination overfills the 

coherent phase space by a factor of 65 (at 300 eV). The monochromator disperses in the 

horizontal plane so that some of the horizontal phase space selection can be made at the 

entrance slit. This scheme allows the transmitted coherent flux to be increased by opening up 

the entrance slit and diffracting other wavelengths (from slightly off the axis) into the phase 
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space acceptance of the microscope. Thus the flux can be increased at the expense of spectral 

resolution without changing the imaging properties of the microscope.  

The zone plate lens in the microscope is positioned downstream of the exit slit. For diffraction 

limited imaging the chosen de-magnification requires the exit slit aperture to be about three 

times smaller than the vertical and horizontal aperture illumination. This is true for a spectral 

bandwidth of 1:2000. The flux loss at this undersized, overfilled exit slit is recovered because 

the lens has been moved closer to de-magnify less and therefore collects a larger solid angle, 

so there is no penalty. However, the microscope can now accept almost an order of magnitude 

more photons when the exit slit is opened a factor of three in both directions. Thus the flux 

can be increased at the expense of spatial resolution without changing the spectral resolution. 

The monochromator mechanism is extremely simple, with one grating held in a 15 cm 

vacuum cube, rotating about flexural pivots outside the vacuum. There is a motorized sine-bar 

0.5 m long with a linear encoder at the end with 0.1 mm resolution. 

Steering over a small angular range is provided by means of two piezo actuators on the 

toroidal mirror. This is crucial. A slow servo loop is required to maintain beam line 

throughput by locking the mirror steering onto the entrance slit (horizontal) and the exit slit 

(vertical). 

The sagittal slope errors of the polished toroid turned out to be 12 mrad rms and are not 

negligible. They degrade the vertical brightness by a factor of about three, blurring the image 

on the exit slit in the vertical direction and reducing the transmitted coherent flux, but easing 

the alignment requirements. 

The spherical glass diffraction grating has laminar profile, with 300 lines/mm, a groove width 

of 1.8 mm and a groove depth 19 nm. The measured diffraction efficiency of this grating in 

first order has a maximum at 300eV with a value of 28%, in very close agreement with the 

design computations. 

3. Performance 

Figure 3 shows the measured flux through a small silicon nitride window into a phase space 

acceptance similar to that of the zone plate microscope. These measurements were made with 

a silicon detector, corrected for the energy dependent quantum efficiency (3.6 eV per ion/hole 

pair). Except for the effects of the silicon nitride window, the measurements can be compared 

directly to the computed flux shown in figure 2. The measured flux is reduced about a factor 

of 4 below the computed values by the vacuum window absorption and the effect of the 
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sagittal slope errors of the toroid. After further reductions due to zone plate window 

absorption, zone plate diffraction efficiency and photon counting detector efficiency, the 

microscope count rates are of the order of 1MHz under diffraction limited conditions. 

These flux measurements also illustrate the success we have had keeping the beam line clean 

during assembly. Since most of the work will be at the carbon K-edge we attached great 

importance to this. There are ‘Viton’ sealed gate valves in the line, but no other hydrocarbons. 

All components are carefully degreased, electro-polished if possible, and the components of 

the two optical assemblies are vacuum-baked at 320oC before assembly. Optics arrive clean 

from the vendors, they are merely rinsed with solvent. Absorption by the carbon layer on the 

two optical surfaces reduces the flux about 15% at 300 eV. We have found that beam lines 

which start as clean as this can stay clean for years. 

There is presently a significant amount (perhaps 20%) of light at twice the selected energy, 

diffracted from the grating in second order. This higher energy component shows up (at 530 

eV) as an O2 absorption dip at the 265 eV setting of the monochromator. Note, the silicon 

detector emphasizes this component by a factor of two because these photons have twice the 

energy. This second order light can be removed by an N2 gas filter which has not yet been 

installed. The windowless differentially-pumped filter has four small apertures through which 

the useful beam must be threaded without loss. Third order light above 800 eV is suppressed 

by the nickel optical coatings on both optical surfaces. The oxygen absorption in the beam 

line is from oxidation of the nickel.  

Figure 4 shows the illumination profile at the approximate location of the zone plate. Both the 

horizontal and vertical sizes are less than expected by about 25%. This may be due to an 

inaccurate deflection angle off the toroidal mirror. However, the zone plate is filled with light 

and there is no penalty. 

Figure 5 shows gas phase absorption spectra made as resolution tests with narrow slits. These 

spectra are from CO (C 1s), N2 (N 1s) and O2 (O 1s). The key to achieving high resolution 

was to adjust the included angle at the grating by moving the exit slit sideways several 

centimeters, to the point where the defocus effects are minimized.10 cm of CO at 20 mTorr 

was measured at 287 eV and the spectra fitted with Gaussian width  = 57 meV, Lorentzian 

width = 95 meV.10 cm of air at 50 mTorr was measured at 401 eV and the spectra fitted with 

Gaussian width = 75 meV, Lorentzian width = 110 meV. 

The maximum resolving power of the beam line is higher than 5000. 
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4. Spatial resolution 

The development of a new scanning microscope for x-ray imaging and NEXAFS spectro-

microscopy is nearing completion at this beam line. Figure 6 shows a test pattern image. This 

is a pattern of transparent lines drawn in an opaque gold coating deposited on a silicon nitride 

window. The line to space ratio is 1:1 and the transparent lines are 40 nm apart. An 

interferometer servo loop is active, locking the position of the stage, during scanning, to give 

the correct momentary relationship between the transverse position of the sample and the 

zone plate lens. This scheme is effective against thermal drifts, low frequency vibrations and 

dynamic image distortion. The zone plate used for this image had 40 nm outermost zone 

width. Detailed analysis of these and similar images or other test patterns indicate the spatial 

resolution is close to the theoretical diffraction limited resolution of the zone plate. We hope 

to get better spatial resolution in the future with better zone plates. More analysis of the 

microscope performance will be given in a separate paper (Kilcoyne et al., 2001). 

5. Conclusions 

This project has provided a dedicated spectro-microscopy capability with reliable and 

reproducible illumination. The illumination flux and the spectral resolution are perfectly 

adequate for all scanning transmission x-ray microscopy measurements. The success of this 

project represents a new approach at the ALS in which high brightness experiments are 

installed on simple dedicated bend magnet lines. Enormous gains in productivity are expected 

from experimental facilities illuminated in this way, with experimenters free of the need to 

operate a complicated beam line and free of the constraints of shared use, which would 

involve retuning the beamline. 
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Figure 1 

Beam line layout (plan view). 
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Figure 2 

Computational results showing: 

a) resolving power contribution due to grating defocus and b) flux transmitted into diffraction 

limited phase space after the exit slit aperture. 
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Figure 3 

Measured flux transmitted into the diffraction limited phase space through a 100 nm thick 

Si3N4 window after the exit slit aperture. The flux is measured with entrance and exit slits 

changing as 1/E (60x20x20 µm at 300 eV). This keeps the spectral resolution approximately 

constant at about R = 2000 and keeps the exit slit aperture size matched to the diffraction limit 

of the fixed zone plate lens. 
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Figure 4 

Horizontal and vertical beam size near the zone plate position (60cm downstream from the 

exit slits) measured with a 50 µm pinhole at 395 eV. 
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Figure 5 

Gas phase absorption measurements as tests of spectral resolution. 

a) vibrationally resolved C 1s→π* transition in CO, b) vibrationally resolved  N 1s→π* 

transition  in N2 and c) Rydberg fine structure in O2. 
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Figure 6 

X-ray image of a test pattern with 40 nm lines, spaced 40 nm apart. An average of the line 

profiles across the lines is shown on a normalized intensity scale. The zone plate and test 

pattern have been prepared by Erik Anderson and Bruce Harteneck et al. (CXRO, LBNL) 




