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ABSTRACT
Objectives  This study aimed to develop a machine 
learning (ML) model to predict disengagement from HIV 
care, high viral load or death among people living with 
HIV (PLHIV) with the goal of enabling proactive support 
interventions in Tanzania. The algorithm addressed 
common challenges when applying ML to electronic 
medical record (EMR) data: (1) imbalanced outcome 
distribution; (2) heterogeneity across multisite EMR data 
and (3) evolving virological suppression thresholds.
Design  Observational study using a national EMR 
database.
Setting  Conducted in two regions in Tanzania, using data 
from the National HIV Care database.
Participants  The study included over 6 million HIV 
care visit records from 295 961 PLHIV in two regions in 
Tanzania’s National HIV Care database from January 2015 
to May 2023.
Results  Our ML model effectively identified PLHIV at 
increased risk of adverse outcomes. Key predictors 
included past disengagement from care, antiretroviral 
therapy (ART) status (which tracks a patient’s engagement 
with ART across visits), age and time on ART. The 
downsampling approach we implemented effectively 
managed imbalanced data to reduce prediction bias. 
Site-specific algorithms performed better compared with 
a universal approach, highlighting the importance of 
tailoring ML models to local contexts. A sensitivity analysis 
confirmed the model’s robustness to changes in viral load 
suppression thresholds.
Conclusions  ML models leveraging large-scale databases 
of patient data offer significant potential to identify PLHIV 
for interventions to enhance engagement in HIV care in 
resource-limited settings. Tailoring algorithms to local 
contexts and flexibility towards evolving clinical guidelines 
are essential for maximising their impact.

INTRODUCTION
The Joint United Nations Programme on 
HIV/AIDS (UNAIDS) has set forth ambi-
tious ‘95-95-95’ targets for 2030, aiming for 
95% of people living with HIV (PLHIV) to 
know their status, 95% of those diagnosed to 

receive antiretroviral therapy (ART) and 95% 
of those on ART to achieve suppressed viral 
loads.1 Central to these goals is lifelong effec-
tive ART use, which improves the length and 
quality of life among those living with HIV and 
reduces the risk of transmission.2 3 Despite 
significant progress in scaling up access to 
ART, disengagement from care and poor 
ART adherence remain persistent challenges 
in sub-Saharan Africa.4 5 Therefore, methods 
to further enhance engagement in HIV care 
would optimise the clinical benefits of ART 
and its public health preventive impact.

Efforts to improve engagement, such as 
enhanced adherence counselling in response 
to high viraemia,6 visit text reminders,7 finan-
cial incentives for clinic attendance,8 loca-
tion tracking,9 multimonth dispensing10 and 
differentiated care,11 have been implemented 
with mixed results regarding effectiveness, 
scalability and efficiency. For example, 
a recent randomised trial demonstrated 

STRENGTHS AND LIMITATIONS OF THIS STUDY
	⇒ Addressing large-scale electronic medical record 
(EMR) data challenges: We used a national EMR 
database to effectively identify at-risk HIV patients, 
managing issues like imbalanced outcome distribu-
tion, data heterogeneity and evolving clinic guide-
lines, showing the robustness and applicability of 
the machine learning model to other health areas.

	⇒ Participatory data science approach: Collaboration 
among clinicians, academics and policy-makers en-
sured the relevance and applicability of the findings 
for real-world use.

	⇒ Data quality and timeliness: The limitations include 
reliance on periodic data downloads (not real-time), 
all-cause mortality data (not HIV-specific) and inher-
ent EMR data issues (incompleteness and inaccu-
racies), which may affect model performance and 
applicability.
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that small, short-term financial incentives improved 
viral suppression 6 months after ART initiation by 13 
percentage points.8 Despite this benefit, 73% of the 
comparison group achieved viral suppression without 
the intervention, indicating the potential for greater 
impact through more targeted resource allocation. In 
the last decade, the increasing digitisation of medical 
records in sub-Saharan Africa has provided opportuni-
ties to use machine learning (ML) to enhance HIV care 
delivery,12 13 including predicting virological outcomes 
and future missed visits.14–16 ML methods are particu-
larly useful in this big data context due to their ability 
to handle complex, non-linear relationships and interac-
tions within the data as well as manage a large number 
of highly interactive combinations of predictors, which 
traditional regression models might miss.17 Building on 
this premise, a previous study revealed the capacity of ML 
methods to harness both digitised medical records and 
research study data, predicting the likelihood of patients 
disengaging from HIV care in limited-resource settings,18 
highlighting the need for further exploration of this 
innovative approach.

However, the secondary use of electronic medical 
record (EMR) data is not without challenges. A primary 
concern is the potentially limited reliability of predic-
tion models in real-world environments, due to the 
multifaceted, varied nature of patient data.19 Issues such 
as missing data, irregular visit dates and the heteroge-
neity of patient records can complicate model training 
and accuracy,20 21 which could theoretically lead to 
inaccuracies in patient care decisions, inappropriate 
treatments or resource misallocation. Furthermore, 
the literature seldom addresses the trade-offs between 
the development of multiple algorithms tailored to 
specific regional characteristics vs a ‘universal’ model 
for all contexts. Another emerging challenge is the 
dynamic nature of clinical and laboratory policies and 
recommendations. For example, within the context of 
HIV, the WHO recommends virological monitoring 
using a viral suppression threshold of 1000 copies/mL. 
However, increasingly, lower thresholds are being used 
at the programmatic level, such as 50 copies/mL.22 This 
requires data scientists to make decisions on how to 
select and define explanatory factors and outcomes in 
their algorithms against a backdrop of changing clinical 
and monitoring guidelines.

We aim to use ML with data from Tanzania’s National 
HIV Care and Treatment programme to identify PLHIV 
at increased risk of adverse outcomes, addressing key 
challenges such as managing imbalanced data, choosing 
between universal and site-specific algorithms, and 
adapting to changes in viral load thresholds for suppres-
sion. Our goal is to identify individuals accessing care at 
two health facilities in Tanzania who are at higher risk 
of HIV care disengagement, high viral load or death and 
enrol these individuals into a future intervention study 
aimed at improving retention and virological suppression 
outcomes, thereby offering a direct, tangible pathway 

towards proactive intervention to support lifelong engage-
ment in HIV care.

METHODS
Objectives
The primary objective of the study was to construct and 
validate an ML algorithm capable of generating individu-
alised risk scores for potential future care disengagement 
or other adverse outcomes among PLHIV using routine 
clinical and pharmaceutical data from Tanzania’s HIV 
Care and Treatment database. The algorithm aims to 
address common EMR data challenges, such as missing 
entries and imbalanced outcomes and provide healthcare 
providers with individualised risk assessments, potentially 
enhancing its applicability beyond the study population.

To achieve this, we developed statistical diagnostic 
tools to evaluate the performance of our ML model by 
addressing three key challenges. First, we addressed 
the challenge of imbalanced outcome distribution, a 
scenario where instances of poor clinical endpoints (ie, 
HIV care disengagement, high viral load or death) are 
rare, as failing to account for this imbalance could lead 
to biased predictions. Second, we examined the hetero-
geneity in the algorithm generated from multisite data 
to understand whether tailored, site-specific algorithms 
may have better performance than a single universal 
algorithm. Third, we evaluated the model’s sensitivity to 
changes in virological suppression thresholds, analysing 
how changing the WHO-recommended cut-off from 
1000 copies/mL to lower thresholds, such as 50 copies/
mL, impacts the accuracy of risk score and informs future 
model adjustments.

Study sample
Using data from the national EMR repository including 
digitised medical records manually entered postclinical 
visits and managed by the Tanzania Ministry of Health 
(MoH) and the National AIDS, STIs and Hepatitis 
Control Programme, the original database included over 
6 million records describing HIV primary care visits across 
Geita and Kagera regions in Lake Zone, Tanzania. This 
database, covering January 2015 to May 2023, described 
a cohort of 295,961 PLHIV and included 78 variables 
related to demographic profiles, clinical indicators and 
pharmaceutical records.

Outcome variables and candidate predictors
Aiming to guide the targeted implementation of proac-
tive interventions for PLHIV to improve retention in HIV 
care, reduce morbidity and mortality and prevent onward 
transmission, we developed an algorithm targeting three 
key outcomes: care disengagement (at least one instance 
of missing a scheduled clinical visit by 28 days or more); 
high viraemia, (viral load greater than 1000 copies/mL at 
least once in their clinical visit history) and death.

To ensure the practicality of the proposed ML algorithm, 
we employed a bidirectional, participatory approach for 
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predictor selection among 78 covariates, collaborating 
with local clinicians and MoH representatives included 
in the HIV care EMR dataset. This process is detailed 
comprehensively in online supplemental appendix 1. 
We selected 16 covariates as predictors, categorised as 
either ‘static’ or ‘dynamic’, based on their characteristics 
throughout the study period. Static predictors, such as 
sex and initial referral location, remained constant for 
an individual. Conversely, dynamic predictors, including 
weight, ART status and viral load, vary from one visit to 
another, offering real-time insights into the patient’s 
evolving status. For instance, ART status denotes an indi-
vidual’s current treatment status regarding ART, which 
may vary across different visits. During each visit, an indi-
vidual may either initiate, change, continue, or stop ART, 
or not have initiated ART yet.

To capture the time-varying trend of dynamic predic-
tors, we employed a regression approach to model their 
linear and quadratic changes over time, using derived 
quantities as predictors in our model and replacing the 
original dynamic variables. Consider the variable ART 
status as an example. Each individual might have multiple 
visit records, and the measurements of ART status can 
vary across these visits, making direct application of ART 
status to the algorithm challenging. To address this, we 
run a regression model with ART status as the depen-
dent variable and the visits as the independent variable. 
This allows us to derive surrogate quantities that can be 
directly used in the algorithm. Specifically, we model 
the relationship between ART status and visits with the 
following equation:

	﻿‍

ART = ART intercept + ART linear change ∗ visit

+ ART quadratic change ∗ visit2 ‍�

After running the regression, we use the derived quan-
tities—ART intercept, ART linear change and ART quad-
ratic change—as predictors in the algorithm. To enhance 
the identification of individuals at risk of loss to follow-up 
(LTFU), our model harnessed historical covariate infor-
mation to forecast patients’ future risk profiles, enabling 
more accurate and timely identification of individuals 
susceptible to potential LTFU.

ML algorithm development
We developed an ensemble decision trees algorithm with 
a downsampling strategy tailored to the unique challenges 
of the HIV care data.23 This algorithm outperforms tradi-
tional ML approaches in two key aspects:
1.	 We employed the ‘surrogate splits’ technique in deci-

sion tree construction to handle missing data. Here, a 
surrogate split variable is identified to closely approx-
imate the optimal split variable at nodes with missing 
values. This approach manages high levels of missing-
ness in the HIV care data, ensuring incomplete obser-
vations are included in training, thus increasing the 
prediction power.

2.	 Traditional ML algorithms often produce biased re-
sults due to significant outcome imbalances in HIV 

care data, particularly in predicting the minority class, 
which is often the primary interest. To mitigate this 
bias, we employed downsampling, drawing a bootstrap 
sample from the minority class and a subsample from 
the majority class with matching sizes and combining 
them to build the decision tree. This strategy ensured a 
more equitable representation of both classes in mod-
el training, improving the model’s ability to discern 
patterns associated with the minority class.

Moreover, to improve the accuracy and robustness, we 
used the ensemble decision tree model by conducting 
1000 replications of downsampling strategy to build 1000 
decision trees, aggregating their predictions for the final 
output. While downsampling can potentially lead to 
information loss from the majority class, our use of the 
ensemble approach mitigates this by drawing different 
subsamples in each iteration, effectively using the entire 
dataset’s information over multiple trees.

With this algorithm, we computed risk scores for each 
individual and identified those at high risk of disen-
gagement, high viraemia and death. By setting various 
risk thresholds, we can determine the proportion of the 
highest-risk individuals. To comprehensively assess model 
performance and guide the selection of practical risk 
thresholds, we split the data as shown in online supple-
mental appendix 2A, with the dataset from January 2018 
to December 2021 serving as the training sample, and 
January 2018 to May 2023 as the testing sample. Subse-
quently, we built and validated the future outcomes model 
based on past predictors, evaluating sensitivity, specificity, 
positive predictive value (PPV) and negative predictive 
value (NPV) across different thresholds.

Statistical diagnostic of the ML algorithm
Comparison with ensemble decision tree without downsampling
To evaluate the effectiveness of the downsampling 
strategy in handling imbalanced outcome distribution, 
we compared our algorithm with ensemble decision tree 
models with and without downsampling, focusing on the 
area under the curve (AUC) performance.

Comparison between site-specific training and all available data 
training
The HIV care data exhibited significant heterogeneity. To 
investigate the impact of this heterogeneity on the algo-
rithm, we compared a universal algorithm (Algorithm 
(a), trained on data from all 373 sites included in Tanza-
nia’s National HIV Care and Treatment database) with 
site-specific algorithms (algorithm (b), trained and tested 
on data at the combination of clinics A and B only). The 
decision to focus exclusively on clinics A and B was driven 
by the specific applied goals of this research: developing 
and implementing the ML algorithm in these two pilot 
sites to identify high-risk patients for a subsequent study 
of a supportive intervention (NCT05373095). Both algo-
rithms were evaluated using data at the combination of 
clinics A and B, following the training/testing split shown 
in online supplemental appendix 2A. This comparison 

https://dx.doi.org/10.1136/bmjopen-2024-088782
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aimed to examine how clinical site heterogeneity affects 
the algorithm’s ability to predict high-risk individuals, 
evaluated by AUC, sensitivity, specificity, PPV and NPV 
across different risk thresholds.

On development of algorithm (b), we observed that 
the predicted high-risk individuals were skewed towards a 
particular clinical site. Thus, we proposed a new measure 
of future prediction fairness (FPF), defined as:

	﻿‍

FPF = | The number of High risk individuals in Clinic A
The number of High risk individuals in Clinic A and Clinic B

− The number of High risk individuals in Clinic B
The number of High risk individuals in Clinic A and Clinic B | ‍�

For equitable treatment across sites, an ideal algo-
rithm should have a low FPF score. To further diagnose 
the potential disparity of the algorithm, we compared 
algorithm (b) with an alternative algorithm (algorithm 
(c)) that could achieve a low FPF. For evaluating FPF, 

we followed the training/testing data split procedure 
outlined in online supplemental appendix 2B.

In algorithm (c), we trained and applied the model 
on clinics A and B separately, which yielded two lists of 
risk scores for each facility. By setting different risk score 
thresholds for clinics A and B, we aimed to equalise the 
proportions of high-risk individuals among all individuals 
in both facilities. We evaluated both algorithms on AUC, 
sensitivity/specificity/PPV/NPV and FPF.

Sensitivity analysis with changing viral load threshold
We conducted a sensitivity analysis to assess the impact 
of changing thresholds for viral suppression on predicted 
high-risk individual profiles by modifying the viral load 
cut-off from the conventional WHO-recommended 1000 
copies/mL, as used in the primary algorithm, to a more 

Figure 1  Flow diagram of the analysis population of PLHIV from Geita and Kagera regions, Tanzania (2018–2023).
1Training sample time frame: 1 January 2018–31 December 2021.
2Testing sample time frame: 1 January 2018–10 May 2023. PLHIV, people living with HIV.

https://dx.doi.org/10.1136/bmjopen-2024-088782
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stringent measure of 50 copies/mL, in line with upcoming 
guideline changes in Tanzania and input from MoH part-
ners. This analysis was designed to observe shifts in patient 
classification as high-risk, potentially refining our under-
standing of the importance of viral load as a predictor 
and its correlation with the risk of adverse outcomes.

RESULTS
Descriptive data
The initial dataset contained records from 295 961 PLHIV, 
refined for algorithm use by focusing on completed and 
scheduled visits on or after 1 January 2018, resulting in 
visit information from 253 208 PLHIV across clinics A and 
B. Detailed data processing steps are illustrated in figure 1. 
Demographic and clinical information such as age, 
gender, referral location and ART status is summarised in 
table 1. The median age of PLHIV was approximately 35 
years, with clinic B’s cohort being slightly younger than 
clinic A. Typically, clinic A patients started ART 72 days 
postinitial visit while clinic B’s median start time was 46 
days.

Description of universal algorithm
In the initial algorithm, we employed data from all 373 
facilities included in the HIV care database to train a 
universal algorithm. Following the split procedure shown 
in online supplemental appendix 2A, our training sample 
comprised 137 848 PLHIV from 2018 to 2021 across all 
sites. The testing sample included 6769 patients from 
January 2022 to May 2023 across clinic A and clinic B. In 
the assessment across all sites, the universal algorithm’s 
efficacy varied by risk threshold, with an AUC of 0.583 
(95% CI, 0.564 to 0.602) (figure 2A). At a 10% threshold 
defining the risk group, the universal algorithm demon-
strated a sensitivity of 0.19 and a specificity of 0.91 (online 
supplemental appendix 3A).

Identification of key risk factors
Among all 16 predictors, the most important predictors 
associated with the composite outcome (disengagement, 
high viraemia or death) included past disengagement 
(static), ART status (dynamic), mean age during past visits 
(static), mean time on ART during past visits (static). The 
importance of these variables is detailed in figure 3.

Table 1  Dataset description; characteristics of PLHIV at their first visits since January 2018 from Geita and Kagera regions, 
Tanzania

Clinic A Clinic B All sites (n=373)

Static variables N=9471 patients N=10 982 patients N=253 208 patients

Age in years (median, IQR) 36.3 (17.1) 35.0 (15.7) 35.6 (16.4)

Sex (%)

 � Male 3253 (34.3%) 3606 (32.8%) 96 691 (38.2%)

 � Female 6218 (65.7%) 7376 (67.2%) 156 517 (61.8%)

Time from HIV diagnosis to ART start, days (median, IQR) 724 (2086) 464 (1171) 392 (1053)

Time on ART, days (median, IQR) 757 (1887) 512 (1191) 464 (1086)

High viral load* (mean, SD) 0.6% (3.5%) 0.5% (2.5%) 0.5% (2.6%)

Disengagement† (mean, SD) 6.0% (11.3%) 9.1% (11.6%) 7.3% (14.6%)

Dynamic variables N=165 353 visits N=177 482 visits N=4 255 537 visits

ART status‡ (%)

 � Not started ART 25 (0.02%) 27 (0.02%) 193 (0.005%)

 � Start ART 6768 (4.1%) 6416 (3.6%) 170 296 (4.0%)

 � Continue ART 151 959 (91.9%) 163 316 (92.0%) 3 909 752 (91.9%)

 � Change ART 6563 (4.0%) 7694 (4.3%) 174 427 (4.1%)

 � Restart ART 31 (0.02%) 4 (0.002%) 341 (0.008%)

 � Stop ART 5 (0.003%) 4 (0.002%) 381 (0.009%)

 � Missing values 2 (0.001%) 21 (0.01%) 147 (0.003%)

Not started ART: Entries where ART has not been initiated. Start ART: Entries documenting the initiation of ART. Continue ART: Entries where 
patients continue with their ART without changes. Change ART: Entries reflecting a switch in ART regimen/plan. Restart ART: Entries for 
patients resuming ART after a previous discontinuation. Stop ART: Entries documenting the stop of ART. Missing values: Entries where the 
ART status is not recorded or is unknown.
*High viral load: percentage of instances where patients recorded a high viral load among all their visits.
†Disengagement: the proportion of instances in which patients were recorded as disengaged from ART among all their visits.
‡ART status: the percentage distribution of recorded ART statuses, reflecting changes or continuities in ART.
ART, antiretroviral therapy; PLHIV, people living with HIV.

https://dx.doi.org/10.1136/bmjopen-2024-088782
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Statistical diagnostic results for the ML algorithm
Imbalanced outcomes
In examining the impact of the downsampling strategy, 
we found that the algorithm without downsampling failed 
to provide useful prediction, predicting all individuals 
in the test sample with equal risk scores. Thus, all indi-
viduals in the test sample have equal probabilities being 
predicted as high risk, regardless of the risk threshold 
selection. This results in an AUC equal to 0.5 for both 
universal and site-combined (clinics A and B) models. 
Conversely, the algorithm that employed the downsam-
pling strategy enhanced the algorithm performance with 
an AUC equal to 0.583 (95% CI 0.564 to 0.602) for the 
universal algorithm and an AUC of 0.642 (95% CI 0.622 
to 0.662) for the algorithm using data at the combination 
of clinic A and clinic B only, effectively reducing bias in 
predictions.

Universal versus site-specific algorithms
The data split for training and testing of Algorithm (b), as 
detailed in figure 1 and online supplemental figure S2A, 
included 12 690 PLHIV for training and 6769 PLHIV for 
testing, from both clinics A and B. Algorithm (b) demon-
strated better performance with an AUC of 0.642 (95% 
CI 0.622 to 0.662), compared with 0.583 (95% CI 0.564 

to 0.602) for the algorithm (a) (figure 2A,B). Moreover, 
algorithm (b) showed enhanced sensitivity and PPV. For 
example, at the top 15% risk threshold, the PPV of the 
algorithm increased from 18.9% to 22.4% and the sensi-
tivity increased from 23.6% to 28.0% compared with algo-
rithm (a).

Further comparison between algorithms (b) and (c) 
involved evaluating AUC, sensitivity, specificity, PPV, 
NPV and FPF under various risk thresholds (figure  2). 
We found the sensitivity and PPV showed consistent 
improvement for the algorithm (c) (online supplemental 
appendix 3C) compared with the algorithm (b) (online 
supplemental appendix 3B). For example, at the top 10% 
risk threshold, PPV increased from 22.9% to 27.3% and 
the sensitivity increased from 19.0% to 21.6%, with AUC 
of 0.657 (95% CI 0.637 to 0.678) improving on algorithm 
(b).

Regarding FPF, we followed a different data split proce-
dure as shown in online supplemental appendix 2B, 
including 3384 PLHIV from Clinic A and 2926 PLHIV 
from clinic B in a training sample to predict future high-
risk individuals. We found that algorithm (b) skewed 
high-risk predictions towards patients from clinic A. For 
the top 7% risk scores, 882 out of 886 individuals flagged 

Figure 2  Comparative ROC curves for universal and site-specific algorithms: The universal algorithm (yellow) is evaluated 
using data from 137 848 patients across 373 sites in Geita and Kagera, Tanzania (2018–2021) and applied to 6679 patients 
(2018–2023.5) with a viral load threshold of 1000 copies/mL. The algorithm (blue) is assessed on 12 690 patients (2018–2021) 
and tested on 6769 patients (2018–2023.5) at clinic A and clinic B, using the same viral load threshold. The algorithm (green) is 
trained on 5883 clinic A patients (2018–2021) and applied to 3384 clinic A patients (2018–2023.5) and trained on 6214 clinic B 
patients (2018–2021) and applied to 2926 clinic B patients (2018–2023) separately, using the same viral load threshold. ROC, 
receiver operating characteristic.
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as high risk were from clinic A, resulting in an FPF of 
0.991. High-risk predictions by algorithm (c) were more 
balanced, with 414 individuals from clinic A and 419 indi-
viduals from clinic B, with an FPF of 0.006. Thus algo-
rithm (c) demonstrated an ability to enhance equity and 
the representativeness of the high-risk patient individuals 
generated by the algorithm in clinics A and B.

Changing viral load threshold
After adjusting the viral load cut-off in our algorithm 
from 1000 to 50 copies/mL, we observed consistent iden-
tification of high-risk individuals. Specifically, within the 
top 7% highest risk category, 82% of the same patients 
were classified as high risk, even with the stricter viral 
suppression definition. This indicated a strong correla-
tion between risk scores and patient profiles, demon-
strating the robustness of the algorithm across different 
viral load thresholds.

DISCUSSION
Our work applying ML models to digitised HIV care and 
treatment data from PLHIV in Tanzania demonstrates the 
technology’s potential to enhance patient care through 
predictive insights, despite facing challenges common to 
EMR data like data quality and the need for custom algo-
rithms suited to diverse healthcare environments. This 
research offers insights into addressing these challenges 
while leveraging the significant opportunities ML and 
EMR data present for advancing HIV healthcare in low-
middle resource settings.

In our study, downsampling addressed the issue of imbal-
anced outcomes, a common challenge when dealing with 
rate outcomes in healthcare data. By balancing the data, 
downsampling enhanced our ML model’s capacity to 
accurately identify at-risk individuals, thereby informing 
more targeted interventions within HIV care. While our 
focus was on improving the prediction of patient disen-
gagement and high viraemia, the efficacy of this approach 
underscores its potential applicability across various 
clinical datasets beyond HIV care and can enhance the 
prediction of infrequent but important outcomes.

An important finding of our study is that given hetero-
geneity across clinical sites, a one-size-fits-all ML algo-
rithm was suboptimal. This finding is broadly applicable 
across many health domains and healthcare settings, 
especially when resources are limited. This heteroge-
neity drove us to use a tailored dataset and algorithm for 
the two health facilities, which revealed an imbalance in 
high-risk patient identification, emphasising the need 
for site-specific model adjustments. The importance of 
incorporating site-specific details into our ML models 
has become evident, underscoring that understanding 
and integrating these local nuances is crucial for the 
predictive accuracy and utility of such models in health-
care. Acknowledging and addressing this heterogeneity 
can lead to a more effective allocation of resources and 
tailored interventions.24

Earlier studies in low-income and lower-middle-income 
countries have shown that poor adherence to ART is 
mainly associated with factors such as sex, age, concurrent 

Figure 3  Variable importance in algorithms predicting outcomes for PLHIV. This figure illustrates the variable importance 
distribution in the prediction of patient outcomes using three different algorithms, based on HIV care data from PLHIV in the 
Geita and Kagera regions of Tanzania, spanning from 2018 to 2023. PLHIV, people living with HIV.
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medications and care accessed at public healthcare facil-
ities.25 Our algorithm identified past disengagement, 
ART status, age and time on ART as significant predic-
tors at both clinics. This information may be important 
for improving organisational decision-making.26 Notably, 
while viral load testing is beneficial and viral load value is 
a critical metric on an individual level, previous studies 
and our model have not identified it as a paramount 
predictor at the model level.27 Our sensitivity analysis that 
assessed a viral load threshold at a more stringent cut 
point showed that 82% of the patients remained classi-
fied as high risk. This stability suggests that while the viral 
load is a critical component of the risk model, the holistic 
patient profile, which encompasses a multitude of clinical 
and demographic variables, predominantly drives the risk 
predictions.

Our study’s key strength is the use of a national EMR 
database, demonstrating the power of ML models to 
pinpoint patients most at risk of HIV care disengagement 
in resource-limited settings. Despite inherent challenges 
with large-scale EMR data, the insights gleaned are invalu-
able, and applicable beyond HIV care into border areas 
such as maternal and children’s health. Furthermore, our 
participatory data science approach, involving collabo-
ration among clinicians, academics and policy-makers, 
significantly enriches our research and highlights the 
importance of engaging stakeholders in practical ML 
applications.28

One notable limitation of this study is the reliance on 
periodic downloads of the HIV care database rather than 
real-time data access, potentially introducing challenges 
in future applications due to data lag. In addition, the 
HIV care database recorded all-cause mortality instead 
of cause-specific mortality, limiting the information avail-
able on HIV-related deaths. Furthermore, the reliability 
of EMR data presents inherent limitations. Although we 
incorporated methods to address data missingness, as 
with any EMR data, incompleteness or inaccuracies in the 
data may affect the performance of ML models.

Conclusion
This study demonstrated the significant potential of our 
ML model to identify PLHIV at increased risk of adverse 
outcomes, successfully navigating issues of imbalanced 
outcomes, heterogeneity across clinical sites and evolving 
clinical guidelines. By deploying the algorithm using 
digitised health record data, healthcare providers can 
improve the targeting and implementation of interven-
tions and ultimately advancements towards UNAIDS’ 
2030 targets. Our research not only illuminates pathways 
for enhancing engagement and retention in HIV care but 
also serves as a testament to the power of innovative data 
science in public health strategies in resource-limited 
settings.
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