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Abstract

District  cooling systems are widely used  in  urban residential  communities  in  China.  Most  district

cooling systems are oversized; this leads to wasted investment and low operational efficiency and thus

energy wastage. The accurate prediction of district cooling loads that supports rightsizing cooling plant

equipment remains a challenge. This study developed a new stochastic modeling method that includes

(1)  six  prototype house models  representing a  majority  of  apartments  in  the  district,  (2)  occupant

behavior models in residential buildings reflecting the temporal and spatial diversity and complexity

based on a large-scale residential survey in China, and (3) a stochastic sampling process to represent all

apartments and occupants in the district. The stochastic method was employed in a case study using the

DeST simulation engine to simulate the cooling loads of a real residential district in Wuhan, China. The

simulation results agree well  with the actual  measurement  data based on five performance metrics

representing  the  aggregated  cooling  loads,  the  peak  cooling  loads  as  well  as  the  spatial  load

distribution,  and the load profiles.  Two currently used simulation methods were  also employed to

simulate  the  district  cooling  loads.  The  simulation  results  showed  that  oversimplified  occupant

behavior assumptions lead to significant overestimations of the peak cooling load and total district

cooling loads. Future work will aim to simplify the workflow and data requirements of the stochastic

method to enable its practical application as well as explore its application in predicting district heating

loads and in commercial or mixed-use districts.

Keywords: stochastic modeling, occupant behavior, residential district, DeST, cooling load, building

performance simulation
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1. Introduction

Energy  consumption  in  residential  buildings  accounts  for  a  large  proportion  of  the  total  energy

consumption around the world. In 2006, the U.S. residential sector accounted for more than 20% of the

total U.S. primary energy consumption  [1]. In the northern part of the European Union, residential

buildings account for 30% of the total final energy consumption [2]. In China, it is estimated that the

existing building stocks will account for about 35% of the total energy consumption in 2020, with

heating, ventilation, and air-conditioning (HVAC) systems accounting for 65% of the residential energy

consumption [3]. Therefore, energy consumption reduction in residential buildings has been attracting

increasing attention and new technologies have been developed and implemented.

District heating and cooling (DHC) systems have become increasingly popular in recent years in China

and other countries [4–6]. A DHC system can simultaneously provide heating and/or cooling to many

buildings usually in a campus or urban district. Therefore, it must use larger capacity equipment with

higher efficiency than decentralized smaller capacity equipment (e.g., split-type air-conditioners) as

well as community-scale renewable energy sources (e.g., underground water)  [6,7]. To exploit DHC

systems, high efficiency and low energy consumption must be accomplished. To this end, the thermal

load demand of building users in a district must be accurately understood. 

Two conventional methods are used to estimate the building thermal loads in a district. The first one is

the  so-called  full-time full-space  (FTFS)  method,  which  considers  climate  conditions  as  the  most

important factor influencing the loads and gives lesser importance to internal heat gains in buildings. In

the simulation of thermal loads, the FTFS method assumes that the internal heat gains remain constant

and do not change with time or space and the air-conditioning is always on in every room in every

building. The FTFS method is still used in the present design standard of China and is widely used in

the  HVAC  system  design  [8].  With  the  development  of  dynamic  simulation  tools  for  energy

consumption in residential building and the awareness of occupant behaviors in buildings, more and

more researchers have realized that the inputs of occupant behaviors significantly influence building

performance and more realistic inputs of occupant-related schedules (i.e., occupancy schedules and

appliance use schedules) should be used to simulate building thermal loads; otherwise, the predicted

results could significantly deviate from the actual measurement [9]. The second conventional method is

the  Fixed  Schedules  method,  which  uses  predefined  time schedules  for  occupancy and  appliances

based on the building type and climate zones that are derived from investigations of real buildings.

Several researchers have performed investigations to determine input schedules for simulating building

energy.  Based  on  a  questionnaire  survey,  Zhang  [10] summarized  a  group  of  fixed  schedules  for

occupancy,  lighting,  and  equipment  among  other  factors  for  office  buildings  and  applied  these

schedules to determine the building energy consumption indicators for China’s standard for energy

consumption in non-residential buildings. Jian [11] and Xia [12] performed measurements in residential

buildings  and  presented  typical  household  schedules  for  estimating  the  thermal  performance  of

residential buildings. They recommended that typical uniform schedules should be simple and limited

to  one  or  a  few  sets  of  schedules  for  practical  engineering  purposes.  In  addition,  Chow[13] and

Gang[14] considered  different  schedules  of  serveral  building  types  (e.g.,  office,  school,  hotel)  for

cooling load prediction in their studies, and analyzed the system performance based on predicted loads.

In contrast to a single house or residential building, a district has tens or hundreds of households with
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varying thermal demands. Thus, their load profiles present significant spatial and temporal diversity.

Weissmann et al. [5] used load profiles of two buildings to show the load diversity and its impact on the

central supply peak load. Fonseca and Schlueter [15] emphasized the importance of understanding the

characteristics  of  spatial  and  temporal  load  diversity  of  district  systems for  equipment  sizing  and

control strategy application. Moreover, Brounen et al.  [16] investigated 305,001 dwellings in 2008–

2009 and found a wide variation in household consumption. Therefore, a method is needed to represent

the load diversity in districts.

Previous  studies  have  analyzed load  diversity  mainly based  on  the  building type,  orientation,  and

envelope performance [5,15,17]. However, occupant behavior could be another key influencing factor

in the load diversity among buildings. Gilani et al. [18] and Hoes et al. [19] examined the importance

of  occupant  behavior  models  in  simulation-aided  design  and  code compliance  in  Canada  and  the

Netherlands. Sun et al.  [20] concluded that energy-saving occupant behaviors could achieve overall

energy savings as high as 22.9% for individual behaviors and up to 41.0% for integrated behaviors.

Ruan et al.  [21] pointed out that the age of occupants should be considered in residential community

planning as the age of occupants may significantly affect the dwelling time and use of air conditioners.

They [21] also performed simulations for Qingdao city with uniform correction coefficients for various

household types to determine optimal residential community planning. Zhou et al.  [22] demonstrated

that  the  stochastic  feature  of  air-conditioning  use  modes  was  the  main  factor  contributing  to  the

difference  between  the  design  and  actual  building  performance.  However,  Zhou  et  al.  [22] only

considered one type of occupant behavior (i.e., air-conditioning use) and assumed that air-conditioning

control was only influenced by the occupant’s thermal comfort.

In the simulation of building performance, previous research has described realistic occupant behaviors

using  probabilistic  model  development  based  on  monitoring,  sensor,  and/or  survey  data.  These

observational studies demonstrated the relationships between the indoor and outdoor environmental

factors and the occupant behaviors under consideration [23]. Hong et al. [24] identified the major types

of occupant behaviors in buildings, including occupant presence and movement as well as occupant

actions on windows, shades (blinds), lighting, thermostat, HVAC, and plug-in equipment. Data were

collected from various locations and types of  buildings around the world to construct  a library of

stochastic models for these occupant behaviors [25–33]. For example, window-opening behaviors were

described by probabilistic models (logit or Weibull functions) based on field-measured data and large-

scale surveys;  these  models  have been adopted by several  building performance simulation (BPS)

programs to determine when occupants open or close windows [34,35]. Note that stochastic models do

not necessarily produce better results than other simpler and/or non-probabilistic models of occupancy,

especially in terms of annual building energy consumption [36]. Yan et al. [23] concluded that simple

occupancy-related  models,  such  as  code-based  models  or  descriptive  representations  of  occupant

behaviors, could be adopted to determine aggregated indicators such as annual heating and cooling

consumptions.  However,  in  other  situations,  more  detailed  occupant  behavior  models  must  be

considered.

BPS programs are commonly employed to evaluate the performance of building energy systems and

technologies.  Occupant  behaviors  in  buildings  have  been  widely  acknowledged  as  a  major  factor

contributing  to  the  gaps  between  measured  and  simulated  energy  consumption  in  buildings

[19,23,37,38]. Eguaras-Martinez et al.  [39] demonstrated that the inclusion or exclusion of occupant
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behaviors in building simulations resulted in up to a 30% difference in energy use predictions. The

International Energy Agency Energy in Buildings and Communities’ Annex 53: Total Energy Use in

Buildings [40] recognized the impact of occupant behaviors as one of the six driving factors of energy

use in buildings along with climate, building envelope, building energy and services systems, indoor

design criteria,  and building operation and maintenance.  However,  in  current  practices,  simulation

users  tend  to  apply  default  standards  or  representative  settings  for  occupants  in  a  simplified  and

homogeneous way using temporal schedules and static assumptions. This might result in significant

discrepancies between simulation and measurement data.

In conclusion, these studies either only applied occupant behavior models to a single house or used

simplified methods to represent the occupant behavior diversity in a district. Few studies have applied

detailed occupant behavior models at the district level, and the influence of realistic occupant behaviors

on district load prediction is an unknown problem. The present study aims to tackle this important topic

and provide insights into the following questions:

(1) How must occupant behaviors be considered in district load prediction?

(2) What are the actual occupant behaviors in residential districts?

(3) What are the pros and cons of using the stochastic occupant behavior models in district load

prediction compared with the conventional simplified methods?

(4) What  are  the  potential  applications  of  stochastic  occupant  behavior  models  in  residential

districts?

This  study  proposes  a  novel  stochastic  occupant  behavior  method (the  SOB method)  to  consider

multiple occupant behaviors in district load prediction, and based on questionnaire surveys, presents

typical  occupant  behavior  patterns,  models,  and their  distributions  in  the  hot  summer  cold winter

(HSCW) climate  zone in  China.  A case  study in Wuhan,  China,  is  performed to  demonstrate  the

workflow of this new method and to evaluate the performance of three methods (i.e., the SOB method,

the FTFS method, and the Fixed Schedules method) in district load prediction based on a comparison

of the simulation and measurement results. Finally, the influence of simulation repetitions using this

method  and  one  application  of  this  method  in  cooling  equipment  sizing  at  the  district  scale  are

discussed.

The remaining  of  sections of  this  article  are  organized  as  follows:  Section  2 introduces the  basic

approach of SOB method, as well as the models and tools to realize the SOB modeling method. Section

3 elaborates the questionnaire survey conducted to determine the inputs of occupancy schedules and

occupant behavior modes for each occupant behavior type. In addition, a case study was performed for

a real residential district in China to demonstrate the application and workflow of the proposed SOB

method  in  Section  4.  Section  5 carries  out  some  discussions  from the  perspective  of  performing

simulation, application and limitation of the new proposed SOB method. Section 6 draws conclusion of

the study.
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2. Methodology

2.1. Overview

The bottom-up approach illustrated in Figure 1 was developed to simulate the building thermal loads in

residential districts. Instead of making a simplified assumption that all apartments in the same district

have uniform/homogeneous occupant behaviors and load characteristics, this study proposed a SOB

method  to  generate  the  occupancy  schedule  and  occupant  behavior  for  each  apartment.  Then,

Simulations of the dynamic thermal load of each apartment were performed based on detailed occupant

behavior models and finally added them up to obtain the aggregated building thermal loads of the

residential district.

Six  key  influencing  factors  are  considered  in  this  approach,  including  apartment  type,  occupancy

schedule, indoor cooling temperature set point, lighting control, window operation, and HVAC control.

The occupancy schedule is influenced by the number of occupants and their movement styles, which

can be simulated by events and the Markov chain model  [41]. Four types of occupant behaviors—

cooling temperature set point, lighting control, HVAC control, and window operation—are considered

in this study. The SOB method defined several typical modes for each occupant behavior by using

different probability models [23,42]. Using the stochastic sampling method based on the distribution of

each  factor,  this  method  assigned  specific  occupancy  schedules  and  occupant  behaviors  for  each

apartment in the district. With the probability models, this method can estimate the occupancy and

behaviors at every moment as well as the thermal load of each apartment. Therefore, the proposed

method can represent the occupant diversity in space and time, which is the main difference from the

currently used conventional methods.

Figure 1 Bottom-up approach for simulating building thermal loads of a residential district

Figure 2 illustrates the key differences between the proposed SOB method and the two conventional

methods. Considering the occupancy and air-conditioning control as an example, the FTFS method

assumes  that  all  apartments  are  always  occupied  and  air-conditioning  is  always  on.  The  Fixed
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Schedules  method  assumes  that  all  occupants  in  all  apartments  have  the  same  schedules,  e.g.,

occupants go to work during the daytime and come home at night on workdays. They turn on air-

conditioning when the  room is  occupied.  In  other  words,  this  method partly  reflects  the  occupant

diversity in time, as rooms are not conditioned during unoccupied periods. In contrast, the SOB method

can represent the temporal and spatial diversity of occupancy and occupant behavior. For example,

some  apartments  are  occupied  all  the  time  (retirees  stay  at  home  during  daytime),  while  some

apartments (working families with parents go to work during the day and kid(s) go to school) are only

occupied at night. Air-conditioning control also varies with apartments and time. Some people always

turn on air-conditioning when they are at home, while others only need cooling when they feel hot

(determined by a probability model). It should be noted that Figure 2 is only used to demonstrate the

characteristics and differences among three simulation methods, and the variations among four periods

within a day, including morning, afternoon, night before sleeping and bedtime. It does not necessarily

reflect the real situation of specific households. In this figure, 8:00 – 12:00 is morning, 12:00 – 18:00 is

the afternoon, 18:00 – 23:00 is the night before sleeping, and 23:00– 8:00 is the bedtime.

Figure 2 Comparison of three simulation methods for building cooling loads of a residential district

The remainder of Section 2 describes the models and tools to realize the SOB modeling method. 

2.2. Occupancy schedules

Occupancy schedules are the basis for performing building energy simulations. They influence not only

the internal heat gains from humans but also the operational status of building equipment or personal

devices because occupants can adjust and control them (e.g., air-conditioning, lighting, windows) when

they are in the building [37,43]. A non-realistic input of occupancy can significantly affect the energy

consumption simulation, especially for a community with hundreds of households. Static occupancy

schedules,  such as the average results for all  occupancy schedules or  fixed schedules from design

standards, are widely used in building performance simulations. However, static schedules could not

reflect the realistic occupant movement and the variations between spaces within the buildings owing

to their temporally and spatially stochastic nature [20]. 
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This study adopted the approach for building occupancy simulation proposed by Wang et  al.  [41].

Events  (e.g.,  reaching home) represent  the time-related movement,  while  Markov chain is  used to

simulate the occupant stochastic movement process. Markov chain is a relatively more accurate and

mature  method  in  occupancy  prediction[44].  The  future  state  relies  on  the  present  state  and  the

probability  of  the  state  change,  which  is  represented  by  the  transition  probability  matrix,  is  time

independent as shown in Equation (1). 

p {Xk+1= j|X k=i }=pi . j
(1)

Here, k and k+1 indicate the present and next time step; i, j represent two states; p is the transition

probability; and pi . j  is an element of the transition probability matrix.

Finally, the location of each occupant and the occupancy of each zone in a house or building can be

generated. The occupancy schedules generated by this method can reflect the variation, diversity, and

stochastic characteristics of realistic occupant presence and movement. These generated schedules are

more reasonable than the simplified static occupancy schedules.

2.3. Occupant behavior types

Yan et al. [23] pointed out that occupant behaviors mainly include interactions with operable windows,

lighting, blinds, thermostats, and plug-in appliances. This study considers all behaviors, i.e., indoor

temperature  set  point,  lighting  control,  control  of  plug-in  appliances,  HVAC control,  and  window

operation, excluding the control of blinds owing to its infrequency in residential buildings. The actions

of occupants vary. Numerous studies have proposed several typical users. One way is to define some

typical  users  according  to  their  energy  consumption  attitudes,  which is  a  combination  of  multiple

occupant behavior types. Hong [45] described three behavior styles for office workers based on their

workstyles:  austerity,  normal, and wasteful.  Each occupant behavior style includes a corresponding

energy consumption performance, such as temperature set points and HVAC control. Similar to Hong’s

study, Santin [46] defined five behavior styles: spenders, affluent-cool, conscious-warm, comfort, and

convenience-cool. On the other hand, other researchers separately considered the typical modes of each

behavior type (e.g., HVAC control and window operation) according to their research object instead of

defining the user styles. Feng et al.  [47] derived five typical air-conditioning control modes from a

large-scale  questionnaire  survey  on  HVAC  control.  D’Oca  et  al.  [48] combined  user  profiles  for

window opening and thermostat set point adjustment into one building energy model and analyzed their

influence on household energy consumption. This study adopted the second approach to separately

define the typical modes of each occupant behavior based on a large-scale questionnaire survey and

combined them to compose the behaviors for each apartment. 

2.3.1. Cooling temperature set point

The indoor cooling temperature set point influences the air-conditioning load. The cooling temperature

set point reflects people’s thermal comfort requirement level. Some people like a lower cooling set

point, such as 20°C, while most Chinese prefer a relatively high cooling set point, such as 26°C, which

is also the suggested default  cooling set  point  in the design standard of China  [8]. Several  typical

cooling set points and their distributions that are close to the realistic distributions in the examined
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community were defined. In the case study, we classified some typical cooling set points and derived

their distributions based on the large-scale questionnaire survey conducted in the same climate zone for

a similar residential community.

2.3.2. HVAC control

HVAC is the most important and direct influencing factor in cooling loads. HVAC control varies with

users. However, the air-conditioning usage schedule has been generally defined with few variations

among the residents in typical HVAC system design. For a community with hundreds of households, a

quantitative random usage model must be adopted to describe the diverse HVAC control  modes in

residential buildings.

This study adopted the method proposed by Wang et al.  [49] to simulate the state of air-conditioning

for each apartment. The control actions are grouped into environment- and event-triggered based on

factors influencing the occupants switching on/off air-conditioning. For example, occupants switch air-

conditioning on when they feel hot and switch it off when it is sufficiently cool; this is referred to as the

environment-triggered mode. On the other hand, some occupants turn on air-conditioning as soon as

they reach home; this is a case of an event-triggered mode. The control of air-conditioning is presented

as a probability function correlated with the indoor environment (e.g., temperature) or a daily event

(e.g., reaching home) and varies among modes.

The environment-triggered mode, such as “switch on when feeling hot,” follows the three-dimensional

Weibull distribution as follows.

Pon={1−e
−(

t−u
l

)
k

∆τ

t ≥ u ,when occupied
0 t <u

(2)

Here,  Pon  is  the  probability  that  occupants  will  turn  on  the  air-conditioning;  t  is  the  indoor

temperature (°C); u is the threshold temperature (°C) representing the lowest temperature for switching

on  the  air-conditioning;  l  is  the  scale  parameter  (°C)  to  non-dimensionalize (t-u);  k  is  the  slope

parameter showing sensitivity to temperature;  and  ∆ τ  is  the time step used in the simulation,

typically 5 or 10 min.

The probability of the event-triggered mode is one constant value when the event occurs and equals 0

in other conditions. For instance, “switch on after reaching home” can be described by the following

function.

Pon={p τ=τ0

0 τ ≠ τ0

(3)

Here,  Pon  is  the probability  that  the occupants  will  turn  on the air-conditioning;  τ  is  the

current time in the simulation; and τ0  is the moment when the event occurs.

The parameters of the probability functions for each occupant behavior mode are usually determined

based on field investigations or some other criteria. For example, Ren et al. [42] conducted a long-term

survey  on  air-conditioning  use,  indoor  temperature  and  humidity,  and  CO2 concentration  in  three

families and developed an air-conditioning probability model for each family. This case study adopted
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probability models from reference studies. For some occupant behavior modes unavailable in previous

studies, different approaches were used to determine the parameter values.

2.3.3. Lighting control

Lights are the main appliance in residential buildings. The average energy consumed by appliances and

lighting  is  12% of  the  total  energy  consumption  and  60% of  the  total  electricity  consumption  in

European households  [50]. In China, lighting consumes 5.8% of the total energy consumption in the

residential sector [51]. The control of lights affects the building thermal loads through changes in the

internal heat  gains from lights, which can be influenced by indoor environmental  parameters (e.g.,

illuminance) and events; thus, this study used the same probability function structure as the HVAC

control. 

2.3.4. Window operation

Natural ventilation, i.e., letting fresh air in and out through windows, is the main ventilation method in

Chinese residential buildings. The habit of operating windows varies greatly. Some people tend to keep

windows open on all days, even when it is cold outside, while others prefer to open windows only

when the  weather  is  comfortable and clear.  Tthe occupant  behavior  model  structure introduced  in

Section 2.3.3 was adopted. 

2.3.5. Control of plug-in appliances

Plug-in appliances include domestic appliances such as TV, laptops, and refrigerators. Yamaguchi et al.

[52] performed measurements in numerous households in Japan and proposed event-triggered models

for the control of plug-loads. They concluded that the appliances have a strong relationship with events.

For example, inhabitants use electric water heater when they take a shower. As the related measurement

data is limited, this study adopted a simpler method to assign a fixed schedule for each household.

Mahdavi  et  al.  [53] indicated  that  there  exists  a  relationship  between  inhabitants’ presence,  their

respective installed equipment power, and the resulting electrical energy consumption. Therefore, the

corresponding plug-load schedules of every room were designed for each combination of occupancy

schedule and apartment  type,  and the schedules  of  plug-loads were  determined  based on practical

investigations [11,12]. For example, the results of a field survey conducted in China illustrated that the

main appliance in a living room is TV with a power of around 100 W; therefore, the plug-load schedule

in the living room is the schedule of TV usage when inhabitants are in the living room The control of

plug-loads is not an independent variable as it is determined by occupancy schedule and apartment

type. Therefore, it has not been shown in Figure 1.

2.4. Stochastic sampling

This study assigned the occupancy schedule and occupant behavior for each apartment by using the

stochastic sampling method. There are two main steps in establishing the inputs for every apartment:

(1) determining the apartment types and their numbers for a residential district according to actual

building design; (2) randomly selecting the occupancy schedule and four types of occupant behaviors
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for  every  apartment  one  by  one  based  on  their  distributions.  Note  that  these  five  parameters  are

independent; therefore, the order of selection does not matter. 

2.5. Building simulation engine

The  case  study  used  Designer’s  Simulation  Toolkit  (DeST)—a  whole-building  energy  modeling

program developed by Tsinghua University, China, [54] based on a state-space multi-zone heat balance

calculation method [55,56]. The occupant movement and behavior models, including lighting control,

HVAC control,  and window operation, have been implemented in DeST  [57]. The building energy

models are built in the DeST environment, and the information of occupants’ presence and behaviors is

stored in an extra file in a SQLite database.  The occupant behaviors in BPS are considered by the

following three steps: (1) the occupancy is calculated using the Markov chain model and the results are

stored in the SQLite database; (2) the lighting is calculated based on occupants’ presence and indoor

illuminance level, and the results are also stored in the SQLite database; and (3) as the HVAC control

and window operation are strongly coupled with the indoor thermal condition, the simulation module

should be discretized into time steps of 5 or 10 min. In each time step, this method first determines the

state  of  HVAC  and  windows  and  then  simulates  the  indoor  air  temperature,  humidity,  and

cooling/heating energy consumption. Finally, the state schedules of the appliances, indoor environment,

and energy consumption are saved in the output file.

This study used time steps of 10 min for a compromise between accuracy and computation time [58].

The stochastic  sampling is performed in MATLAB (matrix laboratory),  which is a multi-paradigm

numerical  computation  environment,  and  a  fourth-generation programming language developed by

MathWorks.

2.6. Comparison method

To validate the proposed method, five metrics are proposed as shown in Table 1.

Table 1 Metrics used to evaluate the simulation methods for district cooling loads

Number Metrics Applications

1 Total cooling

consumption

Total building cooling consumption prediction

2 Peak cooling load Chiller sizing

3 Load distribution Chiller sizing and energy conservation measures (ECMs)

evaluation

4 Load profile Evaluation of control strategy of DHC plants and pumps

5 Household

cooling

consumption

distribution

Representing the demand difference of each household, evaluating

various policy and techniques

The total cooling consumption and the peak load are the two most popular and common metrics for
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evaluating the performance of a thermal load simulation method  [59], and they are very useful and

significant  in  real  projects  and  research.  Therefore,  this  study  chose  these  two  metrics  in  our

comparison analysis. 

This study also considered the load distribution as it influences the selection of multiple chillers with

different capacities to maximize the operation efficiency under various load conditions [60]. The two-

sample  Kolmogorov-Smirnov  test  (K-S  test)  was  used  to  calibrate  the  load  distribution  of  the

simulation results in this study [61]. The K-S test is a non-parametric test for the equality of continuous

one-dimensional  probability  distributions  that  can  be  used  to  compare  a  sample  with  a  reference

probability distribution (one-sample K-S test) or to compare two samples (two-sample K-S test). This

study  used  the  K-S  test  to  quantify  the  discrepancy  between  the  statistical  distributions  of  the

simulation results and the measurement results. The null distribution of this statistic test was calculated

under the null hypothesis that the samples are drawn from the same distribution. If the hypothesis test

result H is 0, the hypothesis is accepted at the 5% significance level. On the other hand, the hypothesis

is rejected if H is 1. The decision to reject the null hypothesis occurs when the significance level equals

or exceeds the P-value.

In addition, hourly loads are required to perform the analysis of the equipment control strategy; thus,

this study adopted the load profile of the entire district as the metric. This study used the coefficient of

variation of the root mean square (CVRMSE) and the normalized mean bias error (NMBE) to quantify

the differences among multiple simulations. The CVRSE and NMBE were determined by comparing

the measurement results ( y i ) with the predicted results of simulation ( ŷ i ) using the following

formulas.

NMBE=

∑
i=1

n

( y i− ŷi)

n × ý
× 100

(4)

CVRMSE=
[∑

i=1

n ( y i− ŷ i)
2

n ]
1 /2

ý
× 100

(5)

Here, n is the number of data points used in the calibration, and ý  is the average value of y i .

The ASHRAE Guideline 14  [62] is a useful guide for calibrating energy models, and the calibration

criteria can be applied to two time scales: monthly and hourly. The NMBE and CVRMSE should be

less than 10% and 30%, respectively, if the hourly calibration data is used.

As there is increasing concern regarding the diversity of thermal demand from different households and

its  impact  on  policy  and  technology  deployment  [63,64],  the  household  cooling  consumption

distribution should also be considered as one metric. This study also applied K-S tests to analyze the

household cooling consumption distribution calculated by the three different methods.
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3. Questionnaire survey

Tsinghua University conducted a household questionnaire survey to investigate occupant behavior in

residential  buildings  in  the  summer  of  2013  in  Chengdu,  China.  The  questionnaire  survey  was

distributed to 287 districts by the local survey team. The surveyed districts were randomly chosen to

cover the urban area of Chengdu. A total of 1426 valid responses to the questionnaire survey were

received, among which 431 respondents answered questions on the AC on/off control. Multiple choices

were allowed in the survey, for example, respondents could choose both “AC turned on when feeling

hot” and “AC turned on after reaching home.”

The questionnaire included the following: 

(1) Basic information regarding family members, house characteristics, HVAC system equipment, and

the hot water system.

(2) Household energy consumption including monthly usage of electricity, gas, coal, and water.

(3) Lifestyle including the occupancy schedules of each room and the occupant behavior in terms of

cooling temperature set point, AC control, lighting control, and window operation.

(4) Evaluation and expectation of the indoor environment.

The questionnaire results were analyzed as follows.

3.1. Typical occupancy schedules

This study derived six typical occupancy schedules based on the number and type of occupants (i.e.,

office workers, students, and retirees) residing in the same apartment. The occupancy schedules of

office workers, retirees, and students were summarized from the questionnaire survey: office workers

go to work from 7:00 to 18:00 on weekdays and do not work on weekends; retirees go to bed early and

wake up early and often stay home except for going out for shopping at 9:30–10:30 and 15:30–16:30;

students  spend more  time at  home during  summer  school  holidays  and  they  wake up  late  in  the

morning and go out at 10:30–11:30 and 16:00–17:30. The occurrence time of an event is within a range

rather than at a fixed time. The occupants’ positions (room/space granularity) at home were determined

by the Markov chain model. Overall, the occupants prefer to stay in living rooms when they are at

home, with some probabilities of staying in their own bedroom, dining room, among other areas. 

Table 2 Typical occupancy schedules

Modes Maximum occupancy Resident composition

O_1 1 One office worker

O_2 2 Two office workers

O_3 2 Two retirees

O_4 3 Two office workers and one student

O_5 4 Two office workers, one student, and one retiree
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O_6 5 Two office workers, one student, and two retirees

Figure 3 shows the investigated average occupancy schedule and the simulated occupancy schedule in

the bedroom on one day for mode O_1. The stochastic occupancy schedules represent the diversity of

occupancy among different apartments.

Figure 3 Comparison of occupancy schedules from the simulation and survey for Mode O_1

In addition, this study analyzed the distribution of the occupancy schedules and concluded that the

distribution is influenced by the apartment size (floor area). The more people there are in the same

apartment, the larger the apartment is, when the floor area is less than 100 m2, However, if the floor

area is greater than 100 m2, it no longer influences the number of occupants of an apartment. Therefore,

this study separately calculated the proportions of each occupancy schedule based on apartment size to

establish the distribution matrix.

3.2. Typical modes of occupant behavior types

Based on the questionnaire results, the typical modes of each occupant behavior type can be derived

according to the corresponding number of votes for each occupant behavior mode. The typical cooling

temperature set points and their corresponding proportion are listed in Table 3.

Table 3 Typical cooling temperature set points

Modes Cooling temperature set point (°C) Proportion

C_1 24 13%

C_2 25 31%

C_3 26 38%

C_4 27 8%

The approach to determine the typical models for the other three occupant behavior types is described

using AC control as an example.

As  the  survey  respondents  could  choose  multiple  behavior  modes  in  each  question,  numerous

responses were obtained for each occupant behavior type. To simplify the answers, this study first

individually summarized the typical AC on/off modes (Figure 4). Note that because the respondents
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could choose multiple modes, the total number of on/off modes can be greater than the number of

respondents. Figure 4 shows that the behavior mode “on when feeling hot” was the most common and

received 298 votes. Moreover, the top four AC off modes were “off when leaving living room,” “off

when leaving home,” “off when sleeping,” and “off when feeling cold.” Therefore, this study selected

one AC on mode and four AC off modes to further analyze their combinations.

(a) AC on mode profiles

(b) AC off mode profiles

Figure 4 Survey results for behavior modes of air-conditioning use 

Then, this study summarized the proportions of the combinations of the selected AC on and off modes

and ranked them from the highest to the lowest as shown in Figure 5. The top five AC control modes

were choosen as the typical modes in Table 4. 
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Figure 5 Survey results for the combined air-conditioning use behavior (the control modes are the same

as those in Figure 4)

Table 4 Typical AC control modes

Modes AC on and off control Proportion

AC_1 On when feeling hot, off when feeling cold 42.2%

AC_2 On when feeling hot, off when feeling cold or when sleeping 18.2%

AC_3 On when feeling hot, off when feeling cold or leaving home 18.2%

AC_4 On when feeling hot, off when leaving home or when sleeping 11.2%

AC_5 On when feeling hot, off when leaving home 10.2%

This study also analyzed other occupant behavior types by the same approach; the results are shown in

Tables 5 and 6.

Table 5 Typical lighting control modes

Modes Light on and off control Proportion

L_1 On when its dark, off when falling asleep 37%

L_2 On when its dark, off when falling asleep or the room has sufficient

brightness

24%

L_3 On when its dark, off when there is sufficient brightness 14%

L_4 On when its dark, off when leaving home 14%

L_5 On when its dark, off when leaving home, falling asleep, or when there

is sufficient brightness

11%
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Table 6 Typical window operation modes

Modes Window operation Proportion

W_1 Always open 65%

W_2 Open after reaching home, close before leaving home 14%

W_3 Open  when  the  room is  hot  or  smelly,  close  when  feeling  cold  or

sleeping

13%

W_4 Open after waking up, close before falling asleep 8%

Then, this study translated these qualitative descriptions of air-conditioning control, lighting control,

and window operation to the quantitative occupant behavior models introduced in Section  2.3. The

parameters (i.e., u, k, l, and p) in the corresponding models were determined by three methods: 

(1) This study directly used the parameters and probability functions from the literature.

(2) For the environment/temperature triggered behavior modes, i.e., switch on air-conditioning when

feeling hot, switch off air-conditioning when feeling cold, open window when feeling hot, and close

window  when  feeling  cold,  this  study  adopted  the  method  in  Sun  et  al.  [20] to  determine  the

parameters. This study assumed that the probability of turning on air-conditioning is about 20% at the

suggested cooling temperature set point in the Chinese design standard (i.e., 26°C) [8] and about 50%

at the upper limit of the Chinese comfort zone in HSCW (i.e., 29.8°C) [65]. Therefore, the parameters

for the occupant behavior model of the AC on mode [a] were u = 20, l = 33, and k = 2.22 with a

cooling temperature set point of 26°C. This study assumed that only parameter u changes with the

cooling temperature set point.  The parameters were u = 18, l = 33, and k = 2.22 with the cooling

temperature set point of 24°C; u = 19, l = 33, and k = 2.22 with the cooling temperature set point of

25°C; and u = 21, l = 33, and k = 2.22 with the cooling temperature set point of 27°C. It was assumed

that there is a 20% probability of turning off air-conditioning when the indoor temperature decreases to

the suggested cooling temperature set point of 26°C and about 50% probability at the lower limit of the

Chinese  comfort  zone  in  HSCW  (i.e.,  24.2°C)  [65].  Therefore,  the  parameters  for  the  occupant

behavior model of the AC off mode [a] were u = 28.3, l = 16, and k = 1.95 with the cooling temperature

set  point  of  26°C.  This  study  also  assumed  that  only  the  parameter  u  changes  with  the  cooling

temperature set point. The parameters were u = 26.3, l = 16, k = 1.95 with the cooling temperature set

point of 24°C; u = 27.3, l = 16, and k = 1.95 with the cooling temperature set point of 25°C; and u =

29.3, l = 16, and k = 1.95 with the cooling temperature set point of 27°C. In addition, both turning on

air-conditioning or opening window when feeling hot in the summer are possible ways for occupants to

decrease the indoor temperature, but because opening windows does not consume energy, this study

assumed occupants will open windows first when feeling hot and then turn on air-conditioning if they

still feel hot. Note that the windows stay closed when the air-conditioning is on. The parameters of the

window-open models for mode [d] are the same as those of the AC on models. Occupants may still

keep windows open at a lower temperature compared with the AC on mode. Thus, this study assumed

the probability of turning off air-conditioning was about 20% at 24.2°C and about 50% at the suggested

heating temperature set point in the design standards (i.e., 18°C) with the parameters u = 32, l = 53, and

k = 2.

(3) For the window operation triggered by events and indoor CO2, this study adopted the suggested
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models using the simulation tool DeST.

Table 7 Models and parameters for the AC on mode

AC on modes Probability function

[a] On when feeling hot

Pon={1−e
−(

t−μ
l

)
k

× 10

t ≥ μ ,whenoccupied
0 t <μ

Table 8 Models and parameters for AC off modes

AC off modes Probability function

[a] Off when feeling cold

Po ff={1−e
−(

μ−t
l

)
k

×10

t ≤ μ ,w henoccupied
0 t >μ

[b] Off before sleeping Poff=0.8, when going ¿ sleep  [47] 

[c] Off when leaving home
Poff=1−e

−( t leave

l 2.79 )
21.91

×10

, whenleaving home  [47] 

Table 9 Models and parameters for switching on lights

Light on modes Probability function

[a] On when its dark

Pon={1−e
−(

325−E
427.32

)
9.15

×10

E ≤ 325, whenoccupied
0 E>325

[49] 

Table 10 Models and parameters for switching off lights

Lights off modes Probability function

[a] Off before sleeping Poff=0.8, when going ¿ sleep  [49] 

[b]  Off  when  brightness  is

sufficient Poff={1−e
−(

E−175
2300.53

)
1.3

×10

E ≥ 175, whenoccupied
0 E<175

[49] 

[c] Off when leaving home
Poff=1−e

−( t leave

l 2.79 )
21.91

×10

, whenleaving home  [49]

Table 11 Models and parameters for opening windows

Window open modes Probability function

[a] Always open Pon=1
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[b] Open when arriving home Pon=0.8, when arrivinghome

[c] Open when room is smelly

Pon={1−e
−(

C−1300
100

)
3

× 10 C ≥ 1300, w henoccupied
0 E<1300

[d] Open when feeling hot

Pon={1−e
−(

t−μ
l

)
k

× 10

t ≥ μ ,whenoccupied
0 t <μ

[e] Open after waking up Pon=0.8, when wakingup

Table 12 Models and parameters for closing windows

Window closed modes Probability function

[a] Never closed Poff=0

[b] Closed before leaving home
Poff=1−e

−( tleave

120 )
2

×10

, when leaving home

[c] Closed when feeling cold

Po ff={1−e
−(

25−t
26.5

)
2

×10

t ≤25, w henoccupied
0 t >25

[d] Closed before sleeping Poff=0.8, when going ¿ sleep

When multiple options were chosen in the proposed typical occupant behavior modes—such as AC off

mode in AC_2: off when feeling cold or sleeping—the total probability of the occupants to operate air-

conditioning, windows, and lighting, which meant at least one event in these options would occur,

should be calculated in terms of the stochastic processes defined as follows [47].

¿ i=1

p (¿n Ai )=∑
i=1

n

P( A i)−∑
i< j

∑
❑

P ( A i ) P ( A j )+∑
❑

∑
i< j< k

∑
❑

P ( A i ) P ( A j ) P ( A k )−…+(−1 )n+1 P ( A1 ) P ( A2 ) … P ( An )

(6)

Here, A1, A2, …, An are treated as independent events.

4. Case study

4.1. Workflow of the case study

A case study was performed in a real community located in Wuhan, China, to demonstrate and evaluate

the proposed SOB method, which can reflect the occupant diversity in space and time. Figure 6 shows

the overall workflow of the case study.

First, a field investigation of the real community was performed to determine the building geometry,

number of  apartments,  apartment  types,  climate  data,  and actual  vacancies,  which can be used  to

establish the prototype household energy models. In addition, the inlet and outlet temperature and flow
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rate of the chilled water in the cooling station were measured. Thus, the supplied cooling load of the

centralized plant  system can be calculated and used as the ground truth to  evaluate the results  of

various simulation methods. The monthly household cooling cooling consumptions were recorded by

the building operator. 

Second, seven prototype household energy models were chosen according to various apartment types.

As this community was built in 2009, the envelope performance follows the 2001 edition of the Design

Standard for Energy Efficiency of Residential Buildings in the Hot-Summer and Cold-Winter Zone [8]

(the next version of the standard was released in 2010).

Third, a questionnaire survey was used to acquire the inputs of occupancy schedules and occupant

behaviors (i.e., cooling temperature set point, lighting control, window operation, and HVAC control).

As described in Section 3, six occupant schedules and four or five typical modes were derived for each

occupant behavior type, whose values and distributions were then used to generate occupant behavior

models for every apartment in the district.

Then,  this  study  performed  stochastic  sampling  to  assign  the  occupancy  schedules  and  occupant

behaviors  for  each  apartment  based  on  the  investigated  distribution  of  each  variable.  For  each

sampling, this study generated one group of energy models using the prototype models and inputs of

occupant behaviors and ran these household energy models to simulate the household cooling loads,

which were further aggregated to derive the district cooling load.

Finally, this study verified the performance of the proposed SOB method by comparing its results with

the measurement results as well as the results of the other two conventional simulation methods, i.e.,

the FTFS method and the Fixed Schedule method.

Figure 6 Workflow of the case study

4.2. Case building models

The field investigated residential district, located in Wuhan City, Hubei Province, China, has five 21-

story high-rise residential buildings: Building 112#, Building 113#, Building 116#, Building 117# and
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Building 118#, with a total floor area of around 50,000 m2. Each building has a different geography,

floor area, and number of households. A central cooling station is used to supply cooling for the entire

district. The layout of this district is shown in  Figure 7. As this community represents a typical and

normal residential district in southern China, this study chose it as the case district in this study. The

thermal properties of the envelope are shown in Table 13.

Figure 7 Layout of the case district (five buildings and a central cooling plant)

Table 13 Envelope thermal properties based on Chinese design standard [8] 

Wall U-factor W/

(m2K)

Roof U-factor W/

(m2K)

Window U-factor W/

(m2K)

Window SC

1.5 1.0 3.2 0.83

This  residential  district  has  a  total  of  414  apartments,  which  can  be  grouped  into  seven  typical

apartment  types based on their  geography, zoning, floor area,  and orientation.  The details  of  each

apartment type are presented in Table 14. This study built seven prototype apartment energy models.

The actual vacancy rate is around 11%, which translates into 45 unoccupied apartments out of the total

414 apartments.

Table 14 Details of the seven apartment types

Apartment type A_1 A_2 A_3 A_4

Floor area (m2)
116 103 69 68

Rooms
3 bedrooms

1 study room

1 living room

1 dining room

1 kitchen

2 restrooms

3 bedrooms

1 living room

1 dining room

1 kitchen

2 restrooms

2 bedrooms

1 living room

1 dining room

1 kitchen

1 restroom

2 bedrooms

1 living room

1 dining room

1 kitchen

1 restroom
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Floor plan

Apartment type A_5 A_6 A_7

Floor area (m2) 68 88 71

Rooms
2 bedrooms

1 living room

1 dining room

1 kitchen

1 restroom

3 bedrooms

1 living room

1 dining room

1 kitchen

1 restroom

2 bedrooms

1 living room

1 dining room

1 kitchen

1 restroom

Floor plan

Notes: In the floor plans, K represents Kitchen, D represents Dining room, R represents Restroom, B

represents Bedroom, L represents Living room, S represents Study room, and C represents Corridor.

The central  plant  system is responsible for 24 h cooling/heating in the cooling/heating season and

comprises three water-source heat pumps: two with a rated cooling capacity of 633 kW and an input

power 112 kW and one with a rated cooling capacity of 928 kW and an input power 156 kW. The

operators control the number of chillers being operated to adjust the supply cooling loads. There are

four identical constant-speed chilled water pumps. Therefore, the chilled water flow rate is controlled

by changing the number of chilled water pumps being operated and the on/off state of the bypass valve.

The air handling equipment in the households is a fan coil unit (FCU) that can be switched on or off by

the occupants. Each main room in an apartment (i.e., bedrooms, living room, dining room, and study

room) has an FCU. As the HVAC expenses of each household depend on its cooling/heating energy

consumption,  this  study  can  assume that  the  supply  energy  should  be  approximately  equal  to  the

demand, which this study intends to estimate.
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4.3. This study performed a field investigation

in the summer of 2013. This measurement

phase  lasted  around  two  months.  This

study  recorded  the  water  temperature

every 5 min with thermometers from 9:00

h, July 5, to 24:00 h, August 31, 2013. As

the water flow rate is only influenced by

the number of operating pumps and the

on/off  state  of  the  bypass  valve,  this

study only measured the flow rate of the

chilled  water  in  certain  scenarios  (e.g.,

one pump with the bypass valve off, one

pump with the bypass valve on)  several
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times and monitored the state of chilled

water  pumps  and  the  bypass  valves  by

measuring the water temperature every 5

min. In this manner, this study calculated

the supplied cooling of this central cooling

station.  In  addition,  this  study  obtained

each  apartment’s  cooling  consumptions

from the building operators, who recorded

the  cooling  consumption  of  each

apartment every month to bill  the HVAC

energy expenses. This study also recorded

the outdoor air temperature and humidity

every  5  min  with  a  hygrothermograph
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from 0:00 h, July 7, to 10:00 h, August 26,

2013. Input data collection

To  evaluate  and  verify  the  performance  of  the  SOB  method  through  a  comparison  with  the

measurement results, this study applied the SOB method as well as the two conventional methods to

simulate the district cooling loads of the same community. The SOB method is based on the stochastic

occupancy movement and occupant behavior models. The FTFS method assumes all apartments are

occupied all the time, have constant internal heat gains, have a constant ventilation rate of 1 ACH, and

AC is always on [8,66]. The Fixed Schedules method considers the temporal diversity in internal heat

gains,  ventilation,  and  air-conditioning  control  [66] and  uses  the  inputs  schedules  of  occupancy,

lighting, appliances, windows, and air-conditioning from references [11,12]. Table 15 summarizes the

energy model inputs in the three simulation methods.

Table 15 Energy model inputs in three simulation methods

Inputs SOB method FTFS method Fixed Schedule

method

Geography Real community Real community Real community

Vacancy rate 11% 11% 11%

Envelope performance Follows the 2001

design standard

Follows the 2001

design standard

Follows the 2001

design standard

Weather data 2013 weather data 2013 weather data 2013 weather data

Occupancy schedules Simulated by

occupancy movement

models

The internal heat gains

stay constant in space

and time with a

lighting density of

0.0141 kWh/m2, and

heat gains from

occupants and

appliances of 4.3

W/m2

Maximum density of

occupants, lights and

appliances, and fixed

schedules for

occupancy, lighting,

and appliance in

different rooms

Control of lights Simulated by light

on/off control models

Control of appliances Fixed schedules for

each occupancy

schedule

Cooling temperature

set point

26°C 26°C 26°C 

AC control Simulated by AC

on/off control models

Always on Fixed schedules in

each room with a

trigger temperature of

29°C
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Window operation Simulated by window

on/off control models

Always open with a

ventilation rate of 1

ACH

Variable ventilation

rate from 0.5 to 1

ACH

Air-conditioned rooms Main rooms except

kitchen, restrooms,

and corridors

Main rooms except

kitchen, restrooms,

and corridors

Main rooms except

kitchen, restrooms,

and corridors

4.4. Results analysis

DeST was used to simulate the district cooling loads using energy models for each apartment based on

the three methods. This study compared the simulation results of the three methods with the measured

supply cooling loads in the real case community by using the method described in Section  2.6. This

study compared the simulation results with the measurement results with the same time interval (i.e., 5

min) during the same measurement period (i.e., 9:00 h, July 5 to 24:00 h, August 31, 2013). This study

compared the measured data and simulation results for the total cooling consumption of each apartment

in  July  and  August  2013.  Five  performance  metrics,  representing  the  aggregated  district  cooling

consumptions,  peak  district  cooling  loads,  district  cooling  load  distributions  and  profiles,  and  the

spatial (apartment level) distribution of the district cooling consumptions, were used to compare and

evaluate the results of the three simulation methods while using the actual measured district cooling

loads as the ground truth results.

(1) Metric 1: Total cooling consumption of the district

This study calculated the total cooling consumption of the district from 9:00 h July 5 to 24:00 h August

31, 2013 using the measured data and the simulated loads from the three methods and then compared

the total cooling consumption results as shown in Figure 8. The simulation results of the SOB method

and the Fixed Schedules method are close to the measurement results within −7% and 4%, respectively.

This indicated that these two methods could be used to predict the total cooling consumption at the

district level. However, the FTFS method overestimated the total district cooling consumption by 81%.
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Figure 8 Total district cooling consumptions from the actual measurement and the three simulation

methods from July 5 to August 31, 2013

(2) Metric 2: Peak cooling load of the district

The  peak  district  cooling  loads  are  summarized  in  Figure  9.  The  SOB  method  has  significant

advantages in estimating the peak cooling load within 9% from the actual measurement results. The

performance of the two conventional methods is not satisfactory owing to their much larger errors,

151% and 55%, respectively. The peak cooling load estimated by the Fixed Schedules is even worse

than that estimated by the FTFS method. In the Fixed Schedules method, the occupants were assumed

to always have the same schedules instead of constantly operating air-conditioning (i.e., 24 h on both

weekdays and weekends).  A large coincident  peak occurs when the occupants start  to run the air-

conditioning at the same time. In contrast, the FTFS method assumes that the occupants always run air-

conditioning. The estimated cooling loads of the FTFS method are often greater than the measured

cooling load, but its peak cooling load is not as large as that estimated using the Fixed Schedules

method.

Figure 9 Peak district cooling loads from the actual measurement and the three simulation methods

from July 5 to August 31, 2013

(3) Metric 3: District cooling load distribution
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As aforementioned, the measured cooling loads were recorded every 5 min. However, the simulations

were performed with a 10 min time interval. To compare the cooling load distributions of the measured

and simulation results (Figure 10), this study generated new simulation results of the three presented

methods with a 5 min interval by using the finite difference method. 

Figure 10 District cooling load distributions of the measured and simulated results

As can be observed from the figure, all simulated cooling load distributions are obviously different

from the measured cooling load distribution and none of them passes the K-S test. The main reason

could be that the measured cooling load is the cooling supplied by the chillers, which were manually

controlled by the substation cooling plant operator. The multiple chillers and associated chilled water

pumps were sequentially switched on to meet the cooling load. Therefore, the flow rate of the chilled

water and supplied cooling load did not vary continuously, leading to over- or undersupply of cooling

to households in the district. In other words, the supply cooling loads are always at certain values, such

as 400 kW, 800 kW, and 1600 kW. On the  other  hand,  the simulated  district  cooling load is  the

aggregated cooling demand of each apartment of the district, which varied continuously. Although the

cooling  load  distributions  from  the  measurement  and  simulation  results  using  the  SOB  method

significantly differ, they did show some similarities. Most cooling loads fall between 700 and 800 kW

and only around 20% of the cooling loads are greater than 1000 kW. In the Fixed Schedules method,

the cooling loads were either too small (equal to 0 kW) or too large (greater than 1600 kW), which is

completely  different  from the  measurement.  In  the  FTFS  method,  the  cooling  loads  were  always

relatively large values and around 30% of the cooling loads were greater than 1600 kW.

(4) Metric 4: District cooling load profile

This  study  compiled  one-week  cooling  load  profiles  from  the  measurement  and  three  simulation

methods, as shown in Figure 11. It can be observed that the actual cooling loads were relatively low in

the morning and increased at night before the bedtime of the occupants. Thus, it can be inferred that

most occupants went out to work in the morning and some of them returned home for lunch at noon,
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while majority stayed at home at night. The proposed SOB method can reflect the occupant diversity

quite well. As can be seen from  Figure 11, the simulated cooling loads match the actual loads. The

Fixed Schedules method assumes all occupants are out during daytime; thus, there is no cooling load

during daytime. Furthermore, occupants will return home at the same time and turn on air-conditioning

once they arrive home. At that time, the air-conditioning has to handle the heat stored in the indoor air

and building structure (envelopes, interior partitions, and furniture), leading to a large coincident peak

of the cooling load. From the peak, the cooling load started to decrease until occupants went to sleep in

bedrooms and turned on the air-conditioning in bedrooms, which created another peak cooling load

before bedtime. Hence, although the cooling load estimated by the Fixed Schedules has a very large

peak,  the  total  aggregated  cooling  consumption  is  close  to  the  measurement  because  the  air-

conditioning does not work in the daytime. In the FTFS method, the cooling loads are always at a high

level and vary with outdoor weather.

Figure 11 District cooling load profiles in one typical week based on the measurement and three

simulation methods 

This study generated hourly cooling load data and calculated the NMBE and CVRMSE for the cooling

load results of the three simulation methods, as shown in Table 16. It can be seen that all CVRMSEs

are greater than 30%, which exceeds the upper limit defined in ASHRAE Guidance 14. As mentioned

before, the simulation results are the cooling demand/loads of households while the measured data are

the supply cooling energy/loads of the chillers in the substation cooling plant. Therefore, the supply

cooling loads have multiple certain values. In reality, the supply-cooling load at a certain time is the

cooling demand of households at different times owing to the time lag between the measurement and

simulation cooling loads. These could be the main factors contributing to the large errors. However,

compared with the two conventional simulation methods, the SOB method performed remarkably well.

Table 16 NMBE and CVRMSE of the cooling load results of the three simulation methods

Simulations The SOB method The Fixed Schedule method The FTFS method

NMBE (%) 7.2 −4.4 −80.7

CVRMSE (%) 47.7 106 103

(5) Metric 5: Household cooling consumption distribution

This study summarized the cooling consumption of each household in July and August and arranged

them from small to large as shown in Figure 12. The x-axis represents different households and the y-

axis represents the sum of the cooling loads of the corresponding households in July and August. It can
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be seen that  the  SOB method predicts  similar  household cooling consumption distributions as  the

measurement data.  However,  the maximum value of the measured cooling consumptions is  around

8000 kWh during July and August, which is greater than the simulation results of the SOB method. In

the  SOB method,  each  sampling  could  lead  to  different  results.  Therefore,  ideally,  an average  of

multiple  sampling  results  should  be  used  for  a  better  comparison  with  the  measurement  results.

Furthermore, this study only considered the occupant behaviors of the majority of the population in the

district;  the behavior  of  occupants  who consumed the most  cooling (tend  to  be a  minority  of  the

population)  was  not  considered  in  our  case  study.  The  Fixed  Schedule  method  assumes  that  all

occupants behave uniformly and cooling is supplied for the living room and the occupied bedrooms,

which leads to small differences in the cooling consumptions of different apartments.  On the other

hand,  the  FTFS  method  assumes  that  all  apartments  have  constant  internal  heat  gains  and  air-

conditioning operates  all  the  time in  every  room of  the house  except  the  kitchen,  restrooms,  and

corridor. Thus, the household cooling consumptions only vary with the size (total floor area) of the

house.

 

Figure 12 Household cooling distribution according to measurement and simulation results

The K-S test was performed for the three simulation methods, as shown in  Table 17. Only the SOB

method passed the test, which confirms the conclusion drawn from Figure 12.

Table 17 K-S test results of household consumption distribution from the three simulation methods

Simulations The SOB method The Fixed Schedules method The FTFS method

H 0 1 1

P 0.2630 1.4853e-27 3.2249e-88

In summary, the SOB method is superior in terms of all five performance metrics considered in this

case study, namely, the total district cooling consumption, the peak district cooling load, the district

cooling load distribution, the district  cooling load profile,  and the household cooling consumption

distribution. Regarding the measurement data, i.e., the supply cooling load data, the simulation results
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of the SOB method could not match the measurement in terms of the district cooling load distribution

and the district cooling load profile but it still performs better than the other two conventional methods.

5. Discussion

5.1. Influence of stochastic sampling

The proposed method adopts stochastic  sampling to assign the occupancy schedules  and occupant

behaviors for each apartment in the district. Thus, different samplings, by running the SOB method

multiple times, will produce different simulation results for the district cooling loads. Ten repetitions

were recommended by Feng et  al.  [58] to estimate the average or aggregated results of stochastic

occupant behavior modeling. 

To  quantify  and  evaluate  variations  in  the  results  of  the  SOB method,  this  study  conducted  ten

simulations. The differences in the five performance metrics among the ten runs were found to be

insignificant. Therefore, multiple simulation runs are not necessary to predict the district cooling loads

by the SOB method.

5.2. Applications of the SOB method

The proposed SOB method can be applied to building and district cooling plant design, especially to

determine  the  peak  cooling  loads  and  thus  the  maximum  capacity  of  the  HVAC  system  and  to

determine the load profiles for the optimal selection (sizes) of multiple HVAC equipment. Occupant

behavior is usually simplified as deterministic and homogeneous across all buildings in a district, for

example,  in  the  case  of  the  FTFS  method  and  the  Fixed  Schedules  method,  which  are  the  two

conventional methods used for load calculation in China and most other countries. The FTFS method

could result in a significant overestimation of the peak cooling load, leading to a significantly oversized

district cooling system that would require much more capital investment to build the cooling plant as

well as low operational efficiency owing to the low-load operating conditions of the cooling plant. For

example, in our case study, the total chiller capacity (2194 kW) was oversized by about 30% compared

with the measured peak cooling load (1678 kW) in Figure 13.

Figure 13 also shows the calculated peak cooling load of the case district using the FTFS method and

the proposed SOB method for design purposes. Since information such as vacancy and actual weather

data would not be available at the design stage, the vacancy was set to 0 (assuming all apartments are

occupied) and the typical meteorological  year (TMY) was adopted for this calculation. TMY data,

which comprises weather data from a combination of 12 calendar months usually selected from 30

historical years, are often used for building design. In addition, a coincidence factor of 0.85 for the

district cooling and heating was adopted in the FTFS method based on interviews with a number of

experienced mechanical engineers. The peak cooling load calculated by the FTFS method (2113 kW) is

very close to the installed chiller capacity (2194 kW), which validates the adoption of the FTFS method

in the design process. On the other hand, the peak cooling load calculated by the SOB method (1835

kW) is much less than the installed chiller capacity (2194 kW) but close to the actual measured peak

cooling load (1678 kW), which indicates that the SOB method can represent the realistic load diversity

within a  district.  Therefore,  the  proposed  SOB method could be  employed in the  building  design

process to provide a more accurate estimation of  the peak cooling load of  the district,  which will
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effectively avoid oversizing of the equipment (chillers, cooling towers, and pumps) in the substation

cooling plant. 

However,  note  that  the  application  of  the  new SOB method requires  the  use  of  typical  occupant

behavior modes extracted from large-scale questionnaire surveys. As the occupant behavior modes vary

significantly with culture and climate zones, a nation-wide questionnaire survey should be conducted

before actually implementing the new SOB method in the design standard.

Figure 13 Comparison of the installed chiller capacity, the calculated cooling capacities, and the actual

measured peak cooling load

5.3. Limitations

This study has several limitations. First, this study assumed that the typical occupant behaviors in the

residential  questionnaire  investigation  in  Chengdu,  China,  could  represent  the  typical  occupant

behaviors in the hot summer and cold winter climate zone of China. This study used them as the inputs

of simulations to estimate the district cooling load in Wuhan, China. Chengdu and Wuhan are both

located in the hot summer and cold winter climate zone of China. However, it  is better to conduct

broader surveys in more cities  in the same climate zone to have a better understanding of typical

occupant behaviors in residential buildings.

Second, although the inputs of the Fixed Schedules method are from different data sources than our

questionnaire survey, there are no significant differences between occupant behaviors in these surveys.

Because both surveys were conducted in the same hot summer and cold winter climate zone with a

large number of respondents rather than in the exact same district as the case study, this study can

assume  both  surveys  effectively  represent  the  typical  occupant  behaviors  in  Chinese  residential

buildings. In the future, it is recommended to obtain more measurement results to determine consistent

inputs for the SOB method and the Fixed Schedules method.

Third, this study used defaults for some occupant behavior modes owing to the lack of measurement

data to determine the probability functions. More household measurements of occupant behaviors and

corresponding influencing factors can benefit the accuracy of occupant behavior models.

Fourth,  the  proposed SOB method is  slightly  complicated  for  implementation by  regular  users.  It

should be simplified by creating a database of occupant behavior models and distributions of typical

occupant behaviors in various cities based on measurements and surveys and develop a user-friendly

graphical user interface to select the input values, enabling the adoption of the method by a broader

audience. This will improve HVAC equipment sizing and lead to more efficient operation and lower

energy use in real district energy projects.
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Lastly, this study consider less about the uncertainty of building envelope performance. Although there

are definitely differences on building envelope performance between design and reality,  leading to

disparate  building  loads,  the  gap  would  not  be  so  big  as  the  final  construction  was  checked and

accepted by professional institute according to Chinese standard. This uncertainty should be considered

in future researches.

6. Conclusions

Occupant behavior assumptions significantly influence the calculation of district cooling loads. The

proposed  SOB  method  represents  the  detailed  occupant  behaviors  and  the  spatial  diversity  of

apartments in a residential district by using stochastic occupant behavior models. The district cooling

loads  simulated  using  the  SOB  method  agree  with  the  actual  measurement  data  for  the  five

performance metrics, which proves the applicability of the SOB method. This is the first application

and evaluation of detailed occupant behavior  models for district  load prediction, which is of great

importance  in  application  of  detailed  occupant  behavior  models  for  thermal  loads  prediction  in

districts. The two currently used conventional simulation methods (the FTFS method and the Fixed

Schedules method) oversimplify the complexity and diversity of occupant behaviors, leading to well-

overestimated annual energy use and peak cooling loads.

Although the  proposed SOB method significantly improves  the  district  cooling load  prediction,  it

requires much more detailed inputs of the occupant behavior models; it can be challenging for most

users to obtain such data. Therefore, future work will investigate the simplification of the proposed

SOB method for practical use. Future work will also extend the proposed SOB method to commercial

districts or mixed-use districts with both residential  and commercial  buildings.  The proposed SOB

method can also be examined for simulating district heating loads.
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