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� 
Abstract— This paper introduces a predictive modeling 
framework for GPU performance. The key innovation underlying 
this approach is that performance statistics collected from 
representative workloads running on current generation GPUs 
can effectively predict the performance of next-generation GPUs. 
This is useful when simulators are available for the next-
generation device, but simulation times are exorbitant, rendering 
early design space exploration of microarchitectural parameters 
and other features infeasible. When predicting performance 
across three Intel GPU generations (Haswell, Broadwell, Skylake), 
our models achieved impressively low out-of-sample-errors 
ranging from 7.45 % to 8.91 %, while running 29,481 to 44,214 
times faster than cycle-accurate simulations. A detailed ranking of 
the most impactful features selected for these models provides an 
insight as to which microarchitectural subsystems have the 
greatest impact on performance from one generation to the next. 
 

Index Terms— graphics processors, hardware architecture, 
machine learning, modeling techniques, performance of systems.  

I. INTRODUCTION 
YCLE-ACCURATE simulation times for highly-threaded 
processors, such as GPUs, are rapidly becoming untenable. 

The situation is exacerbated in industry, where simulators serve 
a dual-purpose of performance simulation and RTL 
performance validation. Consequently, industrial simulators 
offer greater detail and higher accuracy at the cost of longer 
runtimes compared to their academic counterparts.  Ever-
increasing simulation times are prohibitive for early-stage GPU 
design space exploration when a considerable number of 
perturbations to the present design must be considered.  

Hardware-assisted predictive statistical modeling can help to 
overcome this conundrum when designing subsequent GPU 
devices in a larger family. What is needed is a commercially 
available GPU, representing a current- or past-generation 
member of the family, a simulator representing a future-
generation GPU family member under development, and a set 
of representative rendering workloads.  

This paper extends Hardware-Assisted Light Weight 
Performance Estimation (HALWPE) [1], a methodology that 
uses fabricated silicon (host) GPUs to predict the performance 
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of future GPUs under development (target). Our experiments 
focus on GPUs and treat the 7.5th generation integrated HD4600 
GPU of the Intel Core i7 4790 processor as a current-generation 
GPU (fabricated silicon) and predict the performance of three 
future-generation GPUs: two 8th generation Broadwell GPUs 
and one 9th generation Skylake GPU. The prediction is 
performed by configuring a cycle-accurate simulator (CAS) to 
model the newer generation GPUs, executing a set of 3D render 
workloads on both the host GPU, to collect performance 
counter and software metrics, and the CAS to collect target 
performance, cycles-per-frame— CPF, simultaneously. We 
then train an ensemble of regression models to predict the CPF 
of each frame using the host metrics; the models are then 
applied to new workloads. HALWPE has several contributions:  

- HALWPE’s novelty is accurately predicting GPU 
performance across three device generations, spanning 
micro-architectural, software, parallelism and process 
improvements. HALWPE achieves 7.45 %, 7.47 % and 
8.91 % average out-of-sample-error respectively. 

- HALWPE uses hardware assistance to run ~30,000-
45,000x faster than a cycle-accurate GPU simulator.  

- HALWPE predicts performance impacts from changes 
to vendor-provided drivers and APIs (Fig. 1) on current 
and future generations of GPU.  

- HALWPE predicts performance impacts caused by 
increasing available GPU parallelism on the current and 
future generations of GPU. 

- HALWPE ranks features to improve model inference 
and guide designers toward prime microarchitectural 
and software candidates that warrant additional study.  

The remaining text is organized as follows: Section 2 details 
the modeling framework, model building and application, and 
workload execution. Section 3 describes the Intel GPU 
generations modeled and their relative differences. Section 4 
details the regression model ensemble employed by HALWPE. 
Section 5 details simulation-based model results when 
modifying the driver and increasing available device 
parallelism. Section 6 details hardware-assisted, cross-
generational model results. Section 7 presents feature ranking 
and discussion, and finally Sections 8 and 9 present related 
works and our concluding remarks, respectively.  
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Fig. 1.  GPU performance depends on the application, driver/API 

commands, and architecture. 
 

 
Fig. 2.  (1) Traces are collected and stored in GWL. (2) Workloads are 

executed on the current-generation GPU, and next-generation simulator. (3) 
Performance counter readings from the host are used to train a model to predict 
the simulated performance (CPF) of the next-generation GPU. 

II. MODELING FRAMEWORK 
We assume that at least one current-generation GPU is 

available in silicon, and that a high-accuracy next-generation 
GPU simulator is available, along with representative 
workloads. Fig. 2 illustrates the HALWPE model development 
flow. The Graphics Workload Library (GWL) refers to our 
collection of benchmarks, listed in Table 1.  

The GWL contains rendering frames from 43 DirectX games 
and GPU benchmarking tools spanning the version 9, 10, and 
11 APIs. We collected multiple frames per application and treat 
each as one workload. The one-frame-per-workload constraint 
is imposed by the GPU simulator’s execution overhead, but 
longer traces can be executed as well. The GPU Simulator 
models the GPU microarchitecture, memory subsystems, and a 
representation of DRAM, all validated internally when 
configured to model post-silicon GPUs. No explicit memory 
model beyond the memory subsystem and DRAM already 
present on the integrated GPU, leading to few related counters.  

The GWL applications are assembled into a single training 
set; we apply 10-fold cross validation to estimate out of sample 
error. We use three proprietary trace tools to collect single-
frame traces in two formats (GfxCapture), replay isolated traces 
(GfxPlayer), and collect performance counters (GfxProfiler) 
[2], hardware queries [3], and DirectX program metrics [4-11] 
on the Haswell host GPU. The trace formats are HWTraces 
(DirectX commands) executed on our Haswell host GPU [2], 
and SWTraces (native GPU commands) executed on our GPU  

TABLE I 
GWL: 36 DirectX Applications, 364 rendered frames 

 
 

TABLE II 
Software Tools and Libraries used 

 
 

simulator. To reduce profiling overhead, we collect 
performance counters that can be read in one pass as detailed in 
the table on page 13 of Ref. 1. Table 2 summarizes the software 
tools required to implement the HALWPE framework. 
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TABLE III 
GPU DEVICE LEGEND. FURTHER DETAILS FOUND IN REFS: [12-14] 

 
 
The predictive models are programmed using R and other 

commercially available tools to estimate GPU cycles per frame 
(CPF). Power per frame and other metrics can also be predicted 
given the target simulator provides a reference value, though 
feature rankings and selection may change. Model training time 
is not included in the runtime comparison of HALWPE to 
cycle-accurate simulation, as training time is amortized over 
repeated model usage. In practice, models are trained on one set 
of workloads, and deployed on a disjoint second set of 
workloads. Once a model has been trained it can be applied to 
any 3D rendering workload of any length. However, validation 
of that prediction is limited to workload lengths that can be 
reasonably executed on the CAS. Fig. 3 illustrates the model 
training and deployment (prediction) workflows. 

III. INTEL GPU ARCHITECTURES 
HALPWE is validated using three generations of Intel 

integrated GPUs (see Table 3). The host desktop PC has a 4-
core, 8-thread Intel Core i7-4790k, 16 GB of DDR3 @ 1666 
MHz, an Intel HD 4600 Haswell GT2 GPU running at 1155 
MHz, and a 2TB 7200 RPM hard disk. The Broadwell GT2, 
Broadwell GT3 and Skylake GT3 are later versions of this GPU 
for which simulators are available. We include the performance 
differences between each generation of GPU to highlight that 
HALWPE’s model suite can accurately generate cross-
generation performance estimates, even when the relative 
performance difference of the two generations is large. In 
principle this method can be used on any GPU supporting the 
DirectX API to produce the same metrics, and the devices 
hardware counters. Further, GPUs leveraging other APIs, such 
as OpenGL can produce a set of metrics like the DirectX.  

To create hardware-assisted model scenarios, we use 
simulator configurations that execute a driver reflective of the 
GPU generation: version 1 (Haswell GT2), version 2 
(Broadwell GT2), and version 3 (Broadwell GT3, which we 
also use for Skylake GT3). In some situations, compatibility 
issues between the architecture and driver caused trace 
execution to fail on the GPU host and simulator. In Table 3, the 
Haswell GPU host can execute 300 of the available traces, 
while simulators for the Broadwell GT2, GT3 and Skylake GT3 
can execute 282, 364, and 364 traces respectively.  

While Skylake and Broadwell GPUs are commercially 
available, we validate accuracy using only CAS. Our goal is to 
mimic the GPU design process while employing commercially 
to maximal data can be disclosed publicly, e.g. model features. 
This ensure validated simulator configurations exist, while 
avoiding implementation work to target in-flight designs. For 
any host-target prediction scenario, the number of traces that 
we use to build and evaluate the model is the minimum number 
that both host and target have the capability to execute.  

 
Fig. 3. (Top) Model training and usage (Bottom). Performance counters and 

DirectX program metrics collected from host GPU execution are used to train 
a model to a GPU simulator configuration’s performance. Performance 
estimation of new frames uses host metrics as input to the performance model, 
which predicts the CPF that the GPU simulator would report for the same 
application, without further simulator execution.  

A. GPU Generational Architecture Differences 
HALWPE’s novelty is accurately predicting GPU 

performance across multiple device generations spanning 
micro-architectural, software, parallelism and process 
improvements. Intel’s GPU render pipeline is organized into 
two logical groups: (1) the Unslice and (2) the Slice. The Slice 
count of a GPU is a measure of available parallelism and 
contains three sub-elements. The slice common holds fixed 
function caches, global slice units, the sub-slice, and L3 cache. 
Sub-slices are organized into parallel groups each containing 
Execution Unit (EU) clusters and their supporting thread 
dispatch units, samplers, instruction cache, and peripherals. 
Section 7 provides relative performance comparisons between 
the host and target GPU representations. [12-14].  

We utilize three generations of Intel integrated GPU device; 
a Haswell GT2 single-slice host (previous generation 
hardware), with 20 EUs per slice, two variants of Broadwell 
(single slice GT2, and dual-slice GT3), with 24 EUs per slice 
and a dual-slice Skylake GT3 containing 24 EUs per slice. The 
following section omits detailing individual units and their 
purpose, instead focusing only on the differences between 
generations. Readers interested in a more detailed description 
of the architectures should consult [12-14]. 
1) Haswell vs Broadwell Architecture 

Broadwell generation GPUs optimize the microarchitecture. 
Below we highlight key areas where the Broadwell device has 
improved over the Haswell implementation.  

Unslice: The CPU and GPU communication unit, the GT 
Interface (GTI) to lower level cache (LLC) bandwidth has 
improved, allowing 64-bit read and write rather than 32-bit as 
in Haswell. The Fixed Function (FF) render pipeline has also 
been optimized on a per-unit basis, resulting in improved pixel 
back end fill rate and improved Z/Hi-Z test performance. 

Slice: Most notably, Broadwell has doubled 32-bit integer 
computational throughput, and has added 16-bit floating point 
support. An increase in computational throughput derives from 
more efficient global resource sharing (L3 cache) amongst 
slices, changing the total number of EUs per slice and changing 
the number of sub-slices.  

Slice Common: The L1 cache has an increased in overall 
size by increasing allocation per slice, and the L3 cache has 
increased 33.33 % from 385 Kbytes to 576 Kbytes. 
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 Fig. 4.  The speedup computed from CPF obtained on the Broadwell GT2/GT3 
and Skylake GT3 (normalized to the CPF attained by Haswell GT2) for 282 
rendering frames. Frames 1-240 (top) and frames 241-282 (bottom) are shown 
on two separate graphs due to the stark difference in CPF ranges. 

 
Sub-slice: By increasing the number of sub-slices to 3 and 

allocating 8 EUs per sub-slice in Broadwell rather than 
maintaining two subs-slices with 10 EUs each, two sources of 
additional throughput were added. First, the total number of 
EUs increased, and sampler contention has decreased. In total 
Broadwell contains 120 % more EUs, and 150 % more sampler 
throughput than a Haswell counterpart containing the same 
number of slices.  

Comparing the performance of the Haswell and Broadwell 
generation devices we measure a median performance 
difference of 66.43 %, an average of 317.74 % and a maximum 
improvement >1000 %. The comparisons are between an actual 
GPU, the host Haswell generation device, and a near cycle 
accurate simulator, our Broadwell generation target, the same 
GPUs used in Scenarios4-5.  
2) Broadwell vs Skylake Architecture 

The recently released Intel Skylake generation GPUs make 
significant architectural improvements to the Broadwell GPU 
architecture.  

Unslice: At the platform level, the GTI latency has been 
reduced, and the command issue ring buffer has also been 
improved. Further, DDR speed has increased from 1868 MT/s 
to 2133 MT/s. In total platform compute has improved 50 % 
from 768 GFLOPS to 1152 GFLOPS. Notable improvements 
have also been made to the Fixed Function render pipeline, 
including to the Vertex Shader, the Geometry Shader, the Hull 
Shader, and the Domain Shader. Additional geometry features 
have also been added such as Auto Strip detection and their 
employment in the Tessellation stages of the FF pipeline. This 
serves to improve both bandwidth and cull rates by reducing the 
number of redundant computations performed.  

Slice: pixel back end fill rate has been further increased 
between 33 % and 100 %, workload dependent. In addition, a 
new Multi-Sampling anti-aliasing (MSAA) mode has been 
added, allowing for 16x MSAA, along with performance 
improvement in the existing 2, 4 and 8x MSAA modes.  

Slice Common: Cache has been increased to 768 Kbytes, an 
additional 25 %, a total of 200 % over the Broadwell size cache. 
In addition to the increased memory, memory management is 
optimized by performing render target compression, 
compressing memory before send to increase bandwidth at each 
cache line. This results in 11 % increased cache line bandwidth.   

Sub-slice:  has been improved by adding explicit 16-bit and 
32-bit floating point support. EU/Sampler throughput and 
Z/Stencil and Pixel operation speed has increased 200 % by 
performing individual pixel hashes on different slices. Shared 
virtual memory and cache coherency have also been improved, 
resulting in better 3D computation. Atomic operations for 32-
bit floats, min, max, compare and exchange have also been 
added. Thread dispatching has been further improved by 
allowing smaller thread groups, providing finer granularity pre-
emption to increase 3D compute responsiveness. These 
architectural changes result in an additional increase of 24 % 
performance on average, and 14.3 % median when comparing 
the Broadwell and Skylake generations. 

Fig. 4 reports the speedup of the three target GPU 
architectures we predict (Broadwell GT2/GT3, and Skylake 
GT3) normalized to the CPF attained by the Haswell GT2 host 
for 280 frames. The CPF difference between Skylake GT3 and 
Haswell GT2 varies from 3x to 112x.  This large variation in 
CPF speedup (and at times a decrease in the Broadwell 
GT2/GT3 cases) as compared to the Haswell GT2 baseline 
cannot be captured by a constant multiplier to the baseline 
performance; more complex predictive models are required. 

IV. REGRESSION MODELS 
HALWPE includes twelve linear and one non-linear 

regression models, which are presented in Fig. 5 We produce 
10 least-squares variants; two the standard OLS and NNLS 
approach, the remaining 8 are the combinations of employing 4 
feature selection variants with each. Feature selection is 
performed using a combination of forward stepwise selection, 
backward stepwise selection and evaluation of the selected 
features using the Akaike Information Criterion (AIC) [15] and 
the Bayesian Information Criterion (BIC) [16]. We also 
leverage the Lasso regularization model, a non-negative Lasso 
and the non-linear Random Forest Model. We choose the model 
that yields the smallest out-of-sample error (Eout) as the most 
accurate. 

 The choice to use multiple models is driven by the fact that 
the best model is data dependent, and that each scenario exhibits 
different relationships between host features and target CPF. 
The OLS and NNLS models are useful when the relationship is 
linear, and features are non-correlated; using the AIC and BIC 
criteria to remove features can simplify the model and help to 
avoid overfitting. 

Linear regularization, shown in the middle, selects features 
during model construction, by moving their coefficient closer 
to zero, helping reduce variance and noise on the prediction 
curve and can improve model accuracy. Random Forest models 
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Fig. 5.  The generated suite of 13 regression models.  
 

non-linear behavior, prevalent as the generation gap between 
host and target grows. A larger gap may necessitate using new 
models such as Neural Networks to maintain accuracy.  

A. Linear Regression Overview 
Let M be the number of workloads and X = [x1, x2, …, xN] be 

the set of features, i.e., the values of the performance counters 
that we measure for each workload. A model is a function f that 
computes a scalar predicted performance value, 𝑦̂= f(X). Under 
a linear model, f has the form: 

 𝑓(𝑋) = ∑ 𝑥𝑗𝛽𝑗
𝑁
𝑗=𝑗 + 𝛽0,            (1) 

where β = {β1, β2, …, βN} is a coefficient vector that corresponds 
to the features, and β0 is a bias term called the intercept, which 
serves as a model adjustment factor. The error associated with 
the ith workload is yi – f(Xi), where yi is the empirically obtained 
CPF, and f(Xi) the predicted CPF. Given training data, the 
generation of a coefficient vector is formulated as a constrained 
optimization problem [17]. The model generation techniques 
employed by HALPWE differ in terms of the optimization 
problem formulation and how it is refined by post-processing 
steps (Fig. 5). 

B. Ordinary Least Squares (OLS) 
Given a coefficient vector β, the aggregate error of the 

training data set is the Residual Sum of Squares (RSS): 
𝑅𝑆𝑆(𝛽) =  ∑ (𝑦𝑖 − 𝑓(𝑋𝑖))2𝑀

𝑖=1 .         (2) 
Ordinary Least Squares (OLS) computes the coefficient vector 
β and intercept β0 that minimizes RSS(β) [17]. 

C. Non-Negative Least Squares (NNLS) 
OLS may produce models that estimate negative CPF values 

for certain data sets, which is physically impossible. Non-
Negative Least Squares (NNLS) [18] can be applied to ensure 
that model estimates cannot be negative. NNLS implicitly 
removes certain features from model by setting negative-valued 
coefficients to zero and distributing their impact amongst the 
remaining positive values. NNLS may degrade model accuracy 
as it no longer minimizes RSS(β). 

D. Feature Selection and Ranking 
OLS and NNLS are full regression models that may use all 

input features. Feature selection, which removes feature xj from 
the model by setting coefficient βj to zero, can improve 
prediction accuracy by sacrificing bias to reduce variance, as 
well as interpretation: identifying a subset of features that 

exhibits the strongest effect on model accuracy enhances 
understanding of the underlying mechanisms [19].         

Forward Stepwise Selection greedily selects coefficient pairs 
that achieve the maximal incremental improvement to the 
model; the process terminates when adding more features is no 
longer beneficial to model prediction accuracy. Backward 
Stepwise Selection is similar but starts with a full regression 
model and iteratively removes one feature at a time. We apply 
AIC and BIC as feature ranking criteria during stepwise 
selection. This provides us with four feature selection methods: 
{Forward, Backward}×{AIC, BIC}, which can be applied to 
either OLS or NNLS models.  

For each model, we rank the selected features via p-value 
hypothesis testing [17] using a threshold of 0.05 to quantify 
their impact on model accuracy (a smaller p-value indicates 
greater significance). We report p-values for models that 
perform feature selection, omitting full regression models. We 
do not rank features for NNLS models, because the NNLS 
process discards features that break the assumption that model 
residuals follow a normal distribution.       

E. Linear Regularization Model: Lasso 
Lasso [20] is a linear regularization model that constructs a 

model while simultaneously selecting features using an RSS 
penalty term [17]. Lasso penalizes features in a blanket fashion, 
unlike step-wise selection, which is iterative. Lasso selects 
features via shrinkage, which reduces “small enough” 
coefficients to zero, depending on the value of the 
regularization term coefficient. We produce two variants of a 
Lasso, with and without the NNLS criterion.  

F. Model Evaluation 
We use 10-fold cross validation [21] as a precursor to 

quantify an estimate of the usefulness of a trained model in 
practice. We report the out-of-sample error (Eout), the mean 
absolute percentage error averaged over all ten folds, as our 
primary measure for model accuracy; Eout reflects the ability of 
a model to accurately predict a response when applied to 
previously unseen data. We also evaluate models in terms of 
their inlier ratios. Given a percentage threshold T, trace Xi is an 
inlier if Xi’s absolute relative percentage error (APE) is less 
than T. Given T, the inlier ratio (IR) is the percentage of traces 
that are inliers. We report 10 % and 20 % inlier ratios for each 
model we produce and compare inlier ratios across varying 
thresholds for comparative analysis of the prediction scenarios. 

G. Random Forest Regression 
Random Forest (RF) regression is a non-linear supervised 

learning model where prediction is an aggregate of individual 
predictions made by a set of regression trees. Due to space 
limitations, we omit describing RF in detail; interested readers 
may consult Ref. [22] for detail. We construct our RF using 
bootstrap aggregation (bagging), applying feature bagging to 
reduce correlation among trees. We compute Eout using 10-fold 
cross-validation, by averaging the out-of-bag error for each 
fold.  Regression trees and forests include all features by design. 
Although feature ranking via RSS error is performed, we do not 
report any feature rankings produced by RF models.   
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V. SIMULATOR BASED MODELS 
Although the focus of this work is hardware-assisted 

modeling, we first create simulation-based models.  This 
allowed us to build confidence in the cross-generational 
modeling approach by evaluating the broader capability of the 
hardware-assisted technique.  

Using simulation-based modeling is easier, as it removes the 
well-known difficulties inherent to hardware-assisted 
modeling, such as limited architectural visibility, run-to-run 
noise cycle count and performance counter variations. 
Simulation modeling also provides greater degree control of the 
degree of difference between the generations of devices 
configured as host and target during model building, allowing 
us to isolate and evaluate well known design time tests. 
A. Framework Validation Scenarios 
We created 3 simulation-based prediction scenarios which were 
designed to be easy, thereby enabling us to validate our 
modeling suite. We used the GPU simulator to collect 
performance counters and to model the prediction target CPF. 
The simulator eliminates sources of non-determinism that can 
affect hardware-assisted models (see Section 6). 
Scenario1 (364 traces) configures the simulator as a 2-slice 
Broadwell GT3 and builds a model to predict its own CPF.  
Scenario2 (364 traces) configures the simulator as a 2-slice 
Skylake GT3 and builds a model to predict its own CPF.  
Scenario3 (364 traces) configures the GPU simulator as a 2-
slice Broadwell GT3 running a Broadwell-generation driver 
and builds a model to predict the performance a 2-slice Skylake 
GT3 running the same driver. Although both GPUs have 48 
EUs, the evolution from Broadwell to Skylake does include 
microarchitecture changes not reported in Table 2. 

We generated 13 models for each scenario. For each model, 
we report the out-of-sample error, 10 % and 20 % inlier ratio, 
the number of selected features, and the number of available 
features; we also report the APE for each workload.  
Tables 4 and 5 respectively report the best-performing non-
NNLS and NNLS models that minimized the out-of-sample 
error for each of three scenarios listed above; Figs. 6 and 7 
depict the observed CPF, predicted CPF, and APE for each 
workload for the three models listed in Tables 4 and 5. For all 
three scenarios, the best non-NNLS models produced lower 
out-of-sample errors than the best NNLS models.  

B. Non-NNLS Models 
The three models reported in Table 4 exhibit very low out-of-
sample errors; the RF model for Scenario3 had a slightly higher 
out-of-sample error than the OLS/Backward/AIC models for 
Scenario1 and Scenario2, which is to be expected because it is a 
cross-generation prediction scenario, whereas Scenario1 and 
Scenario2 are same-generation. All three models obtained 10 % 
inlier ratios of more than 80 % and varied slightly in terms of 
the number of selected features.  

In Fig. 6, it is near-impossible to discern the difference 
between predicted and observed CPF for most workloads with 
the naked eye, which reinforces the accuracy of these models. 
The highest APEs are observed for workloads with the smallest 
CPFs on the left-hand side of the graphs, which suggests that 
the three models are stable; slightly higher APEs for workloads 
with large CPFs are observed for Scenario3’s RF model, which 

we attribute to the fact that Scenario3 entails cross-generation 
prediction. 

C. NNLS Models 
Comparing the non-NNLS models of Table 4 and Fig. 6, the 
NNLS models reported in Table 5 and Fig. 7 have a higher out-
of-sample error while selecting fewer counters as features; 
however, when looking at Fig. 7 in detail, virtually all the 
visible increase in per-workload APE occurs for the workloads 
with the smallest CPFs. The gap in predictive accuracy between 
NNLS and non-NNLS models may not be as pronounced as one 
might interpret by considering out-of-sample error in isolation. 

Scenario3’s NNLS/Backward/BIC model has lower APEs for 
large-CPF workloads than Scenario3’s non-NNLS RF model, 
which has a lower overall out-of-sample error. Likewise, 
Scenario3’s NNLS/Backward/BIC model has a lower 10 % 
inlier ratio than the non-NNLS RF model; however, the outliers 
are clustered among workloads with the smallest CPFs. Similar, 
observations hold for Scenario1 and Scenario2 as well. 

D. Driver Scalability Scenario 
Scenario3D (364 traces) re-runs Scenario3, modifying the target 
simulator to produce new validation data obtained used the 
same Skylake GT3 device, only now running the applications 
with the Skylake GT3 driver instead of the Broadwell GT3 
driver. Updating the driver to increase application performance 
is a common optimization made by GPU designers, and it is 
imperative that predictive models can accurately predict 
generational changes in both the hardware and software stack. 
Scenario3D shows that the HALWPE regression suite selects 
features and produces models that account for the performance 
difference caused by updating the target platforms driver, 
producing accurate Eout estimates.  

Table 6’s last row presents the best performing non-NNLS 
model for Scenario3D and the first-row repeats Scenario3’s best 
model result from Table 4. Table 7’s last row presents the best 
performing NNLS model, and the first row repeats the last row 
of Table 5. Most notably, the out of sample error of the best 
performing NNLS model in Table 7 has decreased from 8.95 % 
to 7.40 % using the same features without retraining. The 
increased accuracy is a byproduct of using a small number of 
traces, 32, for validation. The reduced frame count is 
unavoidable as both driver versions were not compatible with 
all frames. This study demonstrates HALWPE’s robustness 
when modeling driver generation updates.  

E. Slice Scalability Scenario 
Scenario3S (364 traces) re-runs Scenario3, modifying the 

training data to use a Broadwell GT2 device to predict the 
original Skylake GT3 device. Modifying the training data 
approximates a scenario in which the host platform is both a 
generation older and has half the available parallelism of its 
target. It is likely that as new generations of GPU are developed 
and tested, their slice count will continue to increase.  

The model is applied without retraining to a validation set 
with 60 single frame workloads, demonstrating HALWPE’s 
ability to identify features that accommodate CPF changes due 
to slice scaling, obtaining high cross-generation prediction 
when the host has 200 % less parallelism than the target. 
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TABLE IV 
HIGHEST ACCURACY NON-NNLS MODELS SCENARIOS1-3. 

 
TABLE VI 

HIGHEST ACCURACY NON-NNLS MODEL SCENARIO3D. 

 
TABLE VIII 

HIGHEST ACCURACY NNLS MODEL SCENARIO3S. 

 
 

 

 

 

 
Fig. 6.  The observed CPF, predicted CPF, and per-workload APE for the 

non-NNLS models of Scenario1 (a), Scenario2 (b), and Scenario3 (c). Workloads 
are ordered from left-to-right in non-decreasing order of observed CPF.  

 
Row 1 of Tables 8 and 9 re-report Scenario3 results, and Row 

2 reports the results of Scenario3S’s slice scaling study. 
Comparing Scenario3 and Scenario3S, the error increases 2.3 %, 
resulting in an 11.5 % average error, but remains usable for pre-
silicon performance estimation. The increase in error due to 
slice scaling is also present in our hardware-assisted scenarios. 

TABLE V 
HIGHEST ACCURACY NNLS MODELS SCENARIOS1-3. 

 
TABLE VII 

HIGHEST ACCURACY NNLS MODEL SCENARIO3S. 

 
TABLE IX 

HIGHEST ACCURACY NNLS MODEL SCENARIO3S. 

 

 

 
Fig. 7.  The observed CPF, predicted CPF, and per-workload APE for the NNLS 
models generated for Scenario1 (a), Scenario2 (b), and Scenario3 (c) in Table 5. 
Workloads are ordered from left-to-right in non-decreasing order of observed 
CPF.  

VI. HARDWARE-ASSISTED MODELS 
When profiling an application on commodity hardware, 

certain sources of non-determinism may arise that simulators 
either do not model or can suppress. We discuss strategies to 
mitigate these issues in detail before moving on to present the 
results of our hardware-assisted models. 
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A. GPU Profiling and Mitigating Variation 
Referring to Fig. 2, HWTraces refers to a stream of DirectX 

GfxAPI commands that we collect without firmware or driver 
modification using GfxCapture. HWTraces are repeatable, 
platform-independent, and allow instrumentation of the host 
GPU and API. We attach GfxProfiler directly to the device 
context [10], which is created along with its device when the 
GPU renders a frame. The device creates resources and queries 
the GPU’s rendering capabilities, while the device context 
comprises the GPU’s pipeline and resource states, which 
generate actual rendering commands.  

GfxProfiler collects three classes of features: performance 
counter measurements (via HWTraces), profiled DirectX API 
commands (via HWTraces), and hardware queries (via the 
device context) which leverage exposed parts of the API. An 
exemplary hardware query is PSInvocations, the number of 
times the pixel shader invoked an EU while rendering. 

Workload execution is performed using an unmodified 
operating system (OS; Windows 7) and driver. To reduce 
variability introduced by the OS, we suppress non-OS 
background processes and run traces in full-screen mode. By 
leaving the OS and driver unmodified, we eschew control of 
sleep states. By adjusting BIOS settings, we can disable deep 
sleep state RC6 and suppress dynamic frequency scaling and 
Turbo Boost. The sources of variation that remain are 
competing background tasks, which affect CPU-GPU 
communication latency, and access to shared resources, and the 
sleep states that we cannot control. 

We perform outlier detection and elimination to mitigate 
variation. We apply the Median Absolute Deviation (MAD) test 
[23] to identify runs that exhibit abnormal behavior. We 
empirically determined a threshold of ±7 MADs using 10 
representative frames, executing each frame 100 times. 
During model construction and evaluation, we execute each 
frame 100 times on the host GPU using GfxProfiler to collect 
features. We remove outliers, i.e., all runs whose CPF values 
are outside of the ±7 MAD threshold. The CPF and feature 
values reported for the frame are averaged across the inliers.  

Fig. 8 reports the CPF of 100 executions of Witcher 2 Frame 
769 normalized to the smallest CPF that we observed. To avoid 
cold-start issues, we insert a generic “warmup” frame that is 
executed but not profiled. Most of executions are within the 
MAD window, although some non-negligible variation in CPF 
is clearly visible. 
B. HALWPE Prediction Scenarios 

We present three hardware-assisted predictive models based 
on performance counter measurements taken from a Haswell 
GT2 GPU, which provides 577 features. The results show that 
HALWPE can perform accurate cross-generation CPF 
prediction. 

 
Scenario4 (282 traces) uses a Haswell GT2 GPU host to 
predict the CPF of a simulated Broadwell GT2 GPU. 
Scenario5 (300 traces) uses a Haswell GT2 GPU host to 
predict the CPF of a simulated Broadwell GT3 GPU.  
Scenario6 (300 traces) uses a Haswell GT2 GPU host to 
predict the CPF of a simulated Skylake GT3 GPU. 

 

 
Fig. 8.  CPF variability for a Witcher 2 Frame when executed 100 times; the 
first execution was removed due to cold start issues. Of the remaining 99 runs, 
7 frames were identified as outliers and removed using the ±7 MAD approach. 

Tables 10 and 11 respectively report the best-performing 
non-NNLS and NNLS models that minimized the out-of-
sample error for each of three scenarios listed above; Figs. 9 
and 10 depict the observed CPF, predicted CPF, and APE for 
each workload for the three models list in Tables 10 and 11. For 
Scenario4 and Scenario5, OLS/Forward/BIC produced the 
lowest out-of-sample errors; for Scenario6, the NNLS produced 
the lowest out-of-sample error. 

C. Non-NNLS Models 
 In Fig. 9, slight differences between predicted and observed 

CPF for the OLS/Forward/BIC model for Scenario4 and 
Scenario5 can be seen by the naked eye; the differences are 
more pronounced for Scenario6’s RF model, especially for 
workloads with higher CPFs. The degradation in model quality 
is clear between scenarios.  

The OLS/Forward/BIC models generated for Scenario4 and 
Scenario5, exhibited the largest APEs are at the low-CPF end 
up the spectrum; in contrast, the RF model generated for 
Scenario6 has a more uniform distribution of high APEs across 
the CPF spectrum. This is similar to the distribution of APEs 
reported for the RF model in Fig. 6 for Scenario3. 

D. NNLS Models 
The NNLS models produced for Scenario4 and Scenario5 in 

Table 11 nearly double the out-of-sample errors produced by 
the non-NNLS models in Table 10, with large reductions in the 
10 % inlier ratios in both cases. In the case of Scenario6, the 
NNLS model yielded an out-of-sample error of 8.91 %, which 
is slightly worse than the 7.45 % and 7.47 % produced by the 
best non-NNLS models for Scenario4 and Scenario5 in Table 
10, but respectable given the challenges associated with CPF 
prediction across two GPU generations; it’s 10 % inlier ratio 
was respectively 14.23 % and 12.77 % lower, which can be 
explained similarly. 

 
TABLE X 

HIGHEST ACCURACY NON-NNLS MODELS SCENARIOS4-6. 
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Fig. 9.  The observed CPF, predicted CPF, and per-workload APE for the 

non-NNLS models summarized in Table 6. Workloads are ordered from left-
to-right in non-decreasing order of observed CPF. 

 
  This level of accuracy should be sufficient for use in early-
stage design space exploration; however, designers must 
understand that model accuracy will necessarily degrade as 
number of generations between the host and prediction target 
increases. Scenario6 investigates this issue further. 

E. Scenario6 Model Comparison 
Table 12 reports the accuracy of all 13 HALWPE models for 

Scenario6. This study serves to justify the need for an ensemble 
of models, by assessing the differences in model accuracy in 
our most ambitious CPF prediction scenario, across two GPU 
generations. The out-of-sample error ranged from 8.91 % 
(NNLS) to more than 1000 % (four OLS variants); the four 
highly inaccurate OLS variants likely overfit the training data. 
Employing an ensemble of models increases the likelihood that 
at least one model does not overfit. Both RF (which is 
nonlinear) and Lasso (due to regularization) are less likely than  

 TABLE XI 
HIGHEST ACCURACY NNLS MODELS SCENARIOS4-6. 

 

 

 

 

  
Fig. 10.  The observed CPF, predicted CPF, and per-workload APE for the 

NNLS models summarized in Table 11. Workloads are ordered from left-to-
right in non-decreasing order of observed CPF. 

 
OLS and NNLS variants to overfit the training data; 

including them in HALWPE’s ensemble increases the 
likelihood that at least one model is accurate. RF, Lasso, and 
Lasso/NNLS did not overfit in any of our scenarios. 

Among the remaining nine models in the highest out-of-
sample error was 19.69 % (NNLS/step-forward/BIC). As 
Tables 4-11 show, it is difficult to know a-priori which model 
(with or without the NNLS guarantee) will yield the highest 
overall accuracy, which justifies the ensemble approach. In 
Table 12, NNLS achieves the smallest out-of-sample error and 
is tied for third highest 10 % inlier ratio; however, it selects the 
most features of the remaining nine linear models. 

F. Inlier Ratio vs. Out-of-sample Error 
Scenarios exist in which a processor architect may prefer a 
predictive model that maintains a higher inlier ratio within a 
given threshold to a model that minimizes out-of-sample error. 
Treating the inlier ratio as a proxy for variance provides higher 
confidence in the fidelity of the model. 

Fig. 11 depicts the inlier ratios at eight thresholds for five 
models generated for Scenarios4-6. For each scenario, Fig. 11 
includes HALWPE’s OLS and NNLS variants that minimize  
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Fig. 11.  Inlier ratios at various error threshold for predictive models 

generated for Scenario6, Scenario7, and Scenario8. For each scenario, the best-
performing OLS and NNLS-variants are shown, along with Lasso, 
Lasso/NNLS, and RF. 

 

 
Fig. 12.  HALWPE speedup over simulators for Broadwell GT2/GT3 and 

Skylake GT3 GPUs using 280 workloads common to all three simulators (Table 
3). Frames are ordered by increasing Skylake GT3 speedup. Average speedups 
were 29481x for Broadwell GT2, 43643x for Broadwell GT3, and 44214x for 
Skylake GT3. 

 
out-of-sample error, its two regularization models (Lasso, 

and Lasso/NNLS), and its non-linear model (RF).  
For Scenario4 and Scenario5 OLS/Forward/BIC had the 

smallest out-of-sample error. For Scenario4 in Fig. 11, 
OLS/Forward/BIC has the highest inlier ratio at error thresholds 
of 30 % or lower, except for the 1 % threshold where NNLS 
and Lasso/OLS are marginally higher.  

For Scenario5 it has the highest inlier ratio at error thresholds 
of 20 % or below; in Scenario6, NNLS had the smallest out-of-
sample error and the highest inlier ratios for thresholds of 15 % 
and lower. These observations reinforce the benefits of these 
three models: they exhibit low out-of-sample errors and high 
fidelity, so they can be used with high confidence. 

G. HALWPE Speedup 
Compared to cycle-accurate simulators that are properly 

tuned, predictive models sacrifice accuracy to provide 
computer architects with a rapid result.  

 
TABLE XII 

ACCURACY OF ALL HALWPE MODELS FOR SCENARIO6. 

 
 
In the case of HALWPE, the execution time of the model on 

a given workload entails executing the workload trace on the 
Haswell host GPU and then applying the linear regression or 
RF model to the obtained features; in most cases, the latter is 
negligible. Fig. 12 compares the execution time of HALWPE 
to the simulator configured as a Broadwell GT2, Broadwell 
GT3, and Skylake GT3 GPU for the 282 common executable 
traces (Table 3). On average, HALWPE achieved a speedup of 
29,481x over the Broadwell GT2 simulator, 43,643x over the 
Broadwell GT3 simulator, and 44,214x over the Skylake GT3 
simulator. From workload to workload, the speedups reported 
in Fig. 12 vary considerably; in a few cases, the simulator 
executed a trace faster than the host GPU. Compared to cycle-
accurate simulators, predictive models sacrifice accuracy to 
provide a rapid result.  

 

 
Fig. 13.  Model training and host GPU execution time for Scenarios 4,5 and 6. 
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The execution time of a model on a frame entails running the 
frame trace on the host GPU and then generating model using 
the obtained features; in most cases, the latter is negligible. 

Fig. 13 reports the time to train all 13 HALWPE models --
excluding target simulation time and host GPU execution time 
to render each frame once. In addition to rendering, host GPU 
execution time includes overhead associated with loading the 
application, profiling, and streaming API commands from the 
trace player. The longest model training and host GPU 
execution time was ~2.5 hours for Scenario3. We rendered each 
frame 100 times, thus execution time is dominated by the host 
GPU, not model training. 

When comparing Haswell to Skylake the total performance 
increase is 820.79 % on average, and 242 % on median. 
HALWPE can provide accurate models, which utilize a 
Haswell generation GPU to predict the performance of a 
Skylake generation GPU, as demonstrated in Scenario6.  

VII. FEATURE RANKING 
This section reports the 10 highest ranked features from the 

models generated for Scenario4, Scenario5, and Scenario6. We 
rank the features using the OLS/Forward/BIC model, which 
was the best performing model for Scenario4 and Scenario5, and 
the third best for Scenario6. In our system, 577 features are 
available (see Section 6). In the feature list tables presented in 
the next two subsections, performance counters are yellow 
rows, DirectX metrics are blue rows, and hardware queries are 
grey rows. All the features reported in these subsections have 
been publicly disclosed [2, 3-11].  

A. Broadwell GT2/GT3 
Tables 13 and 14 report the top-ten most influential features 

for the OLS/Forward/BIC models produced for Scenario4 and 
Scenario5, ranked by p-values (Section 4.D). These scenarios 
respectively target the Broadwell GT2 and GT3 GPU, where 
the latter has twice as many slices/EUs.  

In Table 13, the top-5 highest ranked features provide 
information about EU activity relating to front-end render 
pipeline units. The top-2 features are EU active and stall times, 
which holds consistent with the observation that the limited 
parallelism in a single-slice Broadwell GT2 GPU can impede 
performance. The 3rd through 5th highest ranking features 
report compute and domain shader EU activity, which suggests 
that interactions between the two shaders and their EU 
occupations should be analyzed. Notably, the presence of 
A19_CSEUStallTime suggests that limiting the amount of time 
that the compute shader stalls the EU array could potentially 
improve overall GPU throughput.  

In Table 14, EU busy/stall cycles no longer fall within the top 
10 ranked counters, which reflect the increase in parallelism 
provided by GT3 GPUs. The two counters representing the 
domain shader are ranked 8th and 10th, suggesting that they still 
influence performance, but that other subsystems with higher-
ranking features should be given priority for analysis. Again, 
A19_CSEUStallTime is within the top-5 ranked features, which 
suggests that the process by which the compute shader stalls the 
EU array still influences performance significantly.  

TABLE XIII 
TOP-10 MODEL FEATURES RANKED BY P-VALUE FOR THE OLS/FORWARD/BIC 

PRODUCED FOR SCENARIO4.

 
 

TABLE XIV 
TOP-10 MODEL FEATURES RANKED BY P-VALUE FOR THE OLS/FORWARD/BIC 

PRODUCED FOR SCENARIO5. 

 
The geometry shader now appears in the top-10 highest 

ranked features with the inclusion of 
A22_GSThreadBusyTime, which suggests that as parallelism 
increases doubles Broadwell GT2 to GT3, additional front-end 
units start to influence performance. 

B. Skylake GT3 
Table 15 reports the 10 most influential features for the 

OLS/Forward/BIC model for Scenario6 ranked by p-values. 
The top two features from Scenario5 (Table 14) remain in the 
top ten for Scenario6. The highest-ranking feature in Table 15, 
the number of cycles not idle, is the second feature in Table 14. 
    This suggests that the ability to provide the render engine 
with a steady supply of data remains a critical indicator of 
performance; potential optimizations ensure that the GPU can 
consume enough data to avoid idle states. In Fig. 4, we see that 
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Broadwell GT3 and Skylake GT3 had similar CPF profiles, and 
that the gap in favor of Skylake 3 was small. Table 15 suggests 
that Skylake GT3 CPF can be predicted foremost by back-end 
pixel-based metrics corresponding to pixel shader memory 
activity, pixel shader invocations, and the render engine’s 
ability to pre-emptively avoid pixel processing by killing pixels 
(A36_RSKillPixelCount); A40, which counts render target 
writes also corresponds to the back-end. Compared to Table 14, 
the absence of geometry and compute shader metrics suggests 
that changes to the Skylake GT3 front end may have removed 
performance bottlenecks present in Broadwell GT3.  
  Table 15 also includes domain and hull shader metrics, which 
correspond to the first and last stages of the DirectX tessellation 
pipeline. This suggests that tessellation has emerged as a prime 
indicator for CPF for Skylake, and that it may be a suitable 
candidate for further optimization. 

C. Discussion 
This analysis shows how to interpret predictive models to 

obtain insights regarding which features have the greatest 
predictive impact on CPF. A highly-ranked feature may hint 
that a subsystem that could benefit from further architectural 
improvement; however, models are inexact, and, for a given 
scenario, feature rankings may vary from model to model. 
Thus, feature ranking can provide “hints” to understanding 
performance, not solutions These hints are symptoms, and 
should not be misconstrued as having diagnostic abilities to 
validate the existence of the bottlenecks or to identify root 
causes. Any hint provided by a model should be validated by 
further simulation before being accepted as fact. Architects 
should use predictive models judiciously and conservatively 
and should not misconstrue them as automated substitutes for 
existing methodologies or human intelligence. 

. 
TABLE XV 

TOP-10 MODEL FEATURES RANKED BY P-VALUE FOR THE OLS/FORWARD/BIC 
PRODUCED FOR SCENARIO6. 

 

VIII. RELATED WORK 
Cycle-accurate simulators such as GPGPU-Sim [24], Atilla 

[25], and Multi2Sim [26] run orders of magnitude slower than 
native execution [27, 28]. Techniques to reduce simulation 
times, such as representative sampling [29], multi-threading 
[30], and synthetic benchmark generation, such as for cache-
coherent traffic [31] [32] are helpful but remain prohibitively 
slow. In response, we have turned to predictive modeling 
intended to speedup pre-silicon GPU design by avoiding cycle-
accurate simulation in favor of estimating CPF via predictive 
models instead. HALWPE can leverage reduced simulation 
time to reduce model training time, with a reduction in speedup.  

A. Predictive Models for CPUs 
HALWPE is inspired by predictive models for CPUs 

performance and power using linear regression [33] and 
artificial neural networks (ANNs) [34]. Like HALWPE these 
models are built using performance counter readings and 
program metrics as features; however, the features that 
effectively predict CPU and GPU performance are different due 
to architectural dissimilarities. Cycle-accurate simulator 
internals can be more effective predictors than performance 
counters [35]; however, this requires simulation of each new 
workload before its performance can be predicted.    

Cross-architecture models can predict the performance of an 
application from one CPU to another and can overcome ISA 
and microarchitectural differences with 90 % accuracy on 
computationally-intensive embedded kernels [36], and up to 97 
% accuracy for both performance and power consumption when 
prediction is performed on the granularity of program phases 
[37]. Like HALWPE, the predictive features are performance 
counter measurements obtained from direct execution, which 
lends credence to our approach.  

Approximate analytical models for out-of-order processors 
can perform high-level microarchitectural analysis [38]. This 
method requires a trace-driven off-line analysis of the model 
parameters to determine program locality behavior and miss 
rates as well as drain time after branch miss-prediction. The 
model does not generalize for workloads that have not been 
included in the off-line analysis. 

B. Predictive Models for GPUs 
Predictive models for GPUs based on linear regression [39] 

decision trees [40], random forests [41] and ANNs [42] can 
accurately predict performance and power consumption for the 
GPUs on which they were trained. HALPWE, in contrast, offers 
cross-generation prediction capabilities.  

The work most closely related to HALWPE is an ANN-based 
model which can accurately predict the performance and power 
consumption of an application across a variety of GPU 
configurations comprising core frequency, available 
parallelism, memory bandwidth, etc. [28]. Like HALWPE, 
performance counter measurements are collected using a real 
GPU. The authors of the study modified the GPU firmware to 
control the number of active compute units, core frequencies, 
and memory frequencies, yielding 448 different configurations. 
They then trained an ensemble model that allows the user to 
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predict the performance and power consumption of an 
application (given collected performance counter 
measurements) on any of the 448 configurations.  

HALWPE differs from the ANN predictor in two respects. 
First, HALWPE achieves cross-generation performance 
prediction, while the ANN predictor is limited to variants of the 
current-generation (host) GPU with three degrees of freedom. 
Second, HALWPE does not modify the firmware, enabling 
usage of production drivers. In its favor, the ANN predicts 
performance and power consumption, while HALWPE, 
presently, is limited to CPF prediction. Our evaluation of 
HALWPE focuses on graphics and gaming workloads, whereas 
the ANN predictor was evaluated using OpenCL workloads 
spanning several application domains. 

A prior work on single-generation predictive performance 
and power models for ATI GPUs [43] shares many principle 
similarities with our work. They use Random Forest Regression 
for prediction and model feature ranking. We extend the feature 
ranking capability to all models generated using P-Value 
significance testing. 

XAPP [44] uses single-threaded CPU performance counter 
measurements to predict performance when porting an 
application to a GPU. XAPP’s objective is to determine which 
portions of a program will reap the greatest benefit from GPU 
acceleration, which is a challenging problem in performance 
tuning for heterogeneous platforms; in contrast, HALWPE 
focuses on early-stage GPU architectural design space 
exploration within an architecture family and early performance 
feedback for graphics software development.    

Analytical GPU models can predict performance and power 
consumption [45] but require extensive tuning and require co-
execution with functional simulators. In contrast, HALWPE 
automates model training and feature selection without co-
simulation, thereby making it much easier to use in practice.  

As performed in this work and explicitly in [46], it is 
important to compare the relative difference between 
generations of architecture when evaluating workload 
performance. Ref. [46] compares the performance of two 
dedicated graphics cards, a Maxwell and Pascal GPU across 6 
different matrix factorization workloads.  In this work, we 
evaluate 4 integrated GPU architectures on 36 distinct 
rendering workloads, to study the effectiveness of cross-
generational performance prediction.   

IX. CONCLUSION AND FUTURE WORK 
HALWPE has established the feasibility of cross-generation 

GPU CPF prediction using performance counter readings, 
DirectX metrics, and hardware queries. HALWPE achieved an 
out-of-sample error rate of 8.91 % when predicting across two 
GPU architecture generations, which include extra parallelism, 
microarchitecture changes, and driver upgrades. HALWPE 
achieved a speedup of 44214x compared to a cycle-accurate 
simulator for this prediction scenario. Our results and analysis 
suggest that predictive modeling can aid early-stage 
microarchitecture design space exploration and may be able to 
help with identification of performance bottlenecks; however, 
predictive modeling must be applied with care, as the models 

themselves are inherently finicky.  
Several open questions remain: (1) Can HALWPE predict 

energy consumption with equal effectiveness? (2) Can models 
be re-used to predict CPF of similar targets without retraining? 
Criteria for model retraining/reuse would be beneficial. (3) Can 
HALWPE generalize to other GPU vendors, rendering APIs, 
and to GPGPU workloads with greater workload diversity?  
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