
UC Riverside
UC Riverside Previously Published Works

Title
Hardware-Assisted Cross-Generation Prediction of GPUs Under Design

Permalink
https://escholarship.org/uc/item/36n9r2nd

Journal
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38(6)

ISSN
0278-0070

Authors
O’Neal, Kenneth
Brisk, Philip
Shriver, Emily
et al.

Publication Date
2019-06-01

DOI
10.1109/tcad.2018.2834398

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/36n9r2nd
https://escholarship.org/uc/item/36n9r2nd#author
https://escholarship.org
http://www.cdlib.org/

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2834398, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD-2017-0339 1

�
Abstract— This paper introduces a predictive modeling
framework for GPU performance. The key innovation underlying
this approach is that performance statistics collected from
representative workloads running on current generation GPUs
can effectively predict the performance of next-generation GPUs.
This is useful when simulators are available for the next-
generation device, but simulation times are exorbitant, rendering
early design space exploration of microarchitectural parameters
and other features infeasible. When predicting performance
across three Intel GPU generations (Haswell, Broadwell, Skylake),
our models achieved impressively low out-of-sample-errors
ranging from 7.45 % to 8.91 %, while running 29,481 to 44,214
times faster than cycle-accurate simulations. A detailed ranking of
the most impactful features selected for these models provides an
insight as to which microarchitectural subsystems have the
greatest impact on performance from one generation to the next.

Index Terms— graphics processors, hardware architecture,
machine learning, modeling techniques, performance of systems.

I. INTRODUCTION
YCLE-ACCURATE simulation times for highly-threaded
processors, such as GPUs, are rapidly becoming untenable.

The situation is exacerbated in industry, where simulators serve
a dual-purpose of performance simulation and RTL
performance validation. Consequently, industrial simulators
offer greater detail and higher accuracy at the cost of longer
runtimes compared to their academic counterparts. Ever-
increasing simulation times are prohibitive for early-stage GPU
design space exploration when a considerable number of
perturbations to the present design must be considered.

Hardware-assisted predictive statistical modeling can help to
overcome this conundrum when designing subsequent GPU
devices in a larger family. What is needed is a commercially
available GPU, representing a current- or past-generation
member of the family, a simulator representing a future-
generation GPU family member under development, and a set
of representative rendering workloads.

This paper extends Hardware-Assisted Light Weight
Performance Estimation (HALWPE) [1], a methodology that
uses fabricated silicon (host) GPUs to predict the performance

Manuscript received April 28, 2017; revised July 24, 2017 and Sept 20,

2017; accepted Oct 12, 2017. Date of publication Oct 25, 2017. This work was
supported in part by the National Science Foundation Award #1528181.

Kenneth O’Neal and Philip Brisk are with the University of California
Riverside, Department of Computer Science and Engineering, Riverside, CA.
(e-mail: konea001@ucr.edu, philip@cs.ucr.edu).

of future GPUs under development (target). Our experiments
focus on GPUs and treat the 7.5th generation integrated HD4600
GPU of the Intel Core i7 4790 processor as a current-generation
GPU (fabricated silicon) and predict the performance of three
future-generation GPUs: two 8th generation Broadwell GPUs
and one 9th generation Skylake GPU. The prediction is
performed by configuring a cycle-accurate simulator (CAS) to
model the newer generation GPUs, executing a set of 3D render
workloads on both the host GPU, to collect performance
counter and software metrics, and the CAS to collect target
performance, cycles-per-frame— CPF, simultaneously. We
then train an ensemble of regression models to predict the CPF
of each frame using the host metrics; the models are then
applied to new workloads. HALWPE has several contributions:

- HALWPE’s novelty is accurately predicting GPU
performance across three device generations, spanning
micro-architectural, software, parallelism and process
improvements. HALWPE achieves 7.45 %, 7.47 % and
8.91 % average out-of-sample-error respectively.

- HALWPE uses hardware assistance to run ~30,000-
45,000x faster than a cycle-accurate GPU simulator.

- HALWPE predicts performance impacts from changes
to vendor-provided drivers and APIs (Fig. 1) on current
and future generations of GPU.

- HALWPE predicts performance impacts caused by
increasing available GPU parallelism on the current and
future generations of GPU.

- HALWPE ranks features to improve model inference
and guide designers toward prime microarchitectural
and software candidates that warrant additional study.

The remaining text is organized as follows: Section 2 details
the modeling framework, model building and application, and
workload execution. Section 3 describes the Intel GPU
generations modeled and their relative differences. Section 4
details the regression model ensemble employed by HALWPE.
Section 5 details simulation-based model results when
modifying the driver and increasing available device
parallelism. Section 6 details hardware-assisted, cross-
generational model results. Section 7 presents feature ranking
and discussion, and finally Sections 8 and 9 present related
works and our concluding remarks, respectively.

Emily Shriver and Michael Kishinevsky are with the Strategic CAD Lab of
Intel Corporation, Hillsboro, Oregon (e-mail: emily.shriver@intel.com,
michael.kishinevsky@intel.com).

Color versions of one or more of the figures in this paper are available at
http://ieeexplore.ieee.org.

Digital Object Identifier XX.XXXX/TCAD.2017.XXXXXX

Kenneth O’Neal, Philip Brisk, University of California Riverside
|Emily Shriver, Michael Kishinevsky, Intel Corporation

Hardware-Assisted Cross-Generation Prediction
of GPUs Under Design

C

mailto:konea001@ucr.edu
mailto:philip@cs.ucr.edu
mailto:emily.shriver@intel.com
mailto:michael.kishinevsky@intel.com
http://ieeexplore.ieee.org/

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2834398, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD-2017-0339 2

Fig. 1. GPU performance depends on the application, driver/API

commands, and architecture.

Fig. 2. (1) Traces are collected and stored in GWL. (2) Workloads are

executed on the current-generation GPU, and next-generation simulator. (3)
Performance counter readings from the host are used to train a model to predict
the simulated performance (CPF) of the next-generation GPU.

II. MODELING FRAMEWORK
We assume that at least one current-generation GPU is

available in silicon, and that a high-accuracy next-generation
GPU simulator is available, along with representative
workloads. Fig. 2 illustrates the HALWPE model development
flow. The Graphics Workload Library (GWL) refers to our
collection of benchmarks, listed in Table 1.

The GWL contains rendering frames from 43 DirectX games
and GPU benchmarking tools spanning the version 9, 10, and
11 APIs. We collected multiple frames per application and treat
each as one workload. The one-frame-per-workload constraint
is imposed by the GPU simulator’s execution overhead, but
longer traces can be executed as well. The GPU Simulator
models the GPU microarchitecture, memory subsystems, and a
representation of DRAM, all validated internally when
configured to model post-silicon GPUs. No explicit memory
model beyond the memory subsystem and DRAM already
present on the integrated GPU, leading to few related counters.

The GWL applications are assembled into a single training
set; we apply 10-fold cross validation to estimate out of sample
error. We use three proprietary trace tools to collect single-
frame traces in two formats (GfxCapture), replay isolated traces
(GfxPlayer), and collect performance counters (GfxProfiler)
[2], hardware queries [3], and DirectX program metrics [4-11]
on the Haswell host GPU. The trace formats are HWTraces
(DirectX commands) executed on our Haswell host GPU [2],
and SWTraces (native GPU commands) executed on our GPU

TABLE I
GWL: 36 DirectX Applications, 364 rendered frames

TABLE II
Software Tools and Libraries used

simulator. To reduce profiling overhead, we collect
performance counters that can be read in one pass as detailed in
the table on page 13 of Ref. 1. Table 2 summarizes the software
tools required to implement the HALWPE framework.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2834398, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD-2017-0339 3

TABLE III
GPU DEVICE LEGEND. FURTHER DETAILS FOUND IN REFS: [12-14]

The predictive models are programmed using R and other

commercially available tools to estimate GPU cycles per frame
(CPF). Power per frame and other metrics can also be predicted
given the target simulator provides a reference value, though
feature rankings and selection may change. Model training time
is not included in the runtime comparison of HALWPE to
cycle-accurate simulation, as training time is amortized over
repeated model usage. In practice, models are trained on one set
of workloads, and deployed on a disjoint second set of
workloads. Once a model has been trained it can be applied to
any 3D rendering workload of any length. However, validation
of that prediction is limited to workload lengths that can be
reasonably executed on the CAS. Fig. 3 illustrates the model
training and deployment (prediction) workflows.

III. INTEL GPU ARCHITECTURES
HALPWE is validated using three generations of Intel

integrated GPUs (see Table 3). The host desktop PC has a 4-
core, 8-thread Intel Core i7-4790k, 16 GB of DDR3 @ 1666
MHz, an Intel HD 4600 Haswell GT2 GPU running at 1155
MHz, and a 2TB 7200 RPM hard disk. The Broadwell GT2,
Broadwell GT3 and Skylake GT3 are later versions of this GPU
for which simulators are available. We include the performance
differences between each generation of GPU to highlight that
HALWPE’s model suite can accurately generate cross-
generation performance estimates, even when the relative
performance difference of the two generations is large. In
principle this method can be used on any GPU supporting the
DirectX API to produce the same metrics, and the devices
hardware counters. Further, GPUs leveraging other APIs, such
as OpenGL can produce a set of metrics like the DirectX.

To create hardware-assisted model scenarios, we use
simulator configurations that execute a driver reflective of the
GPU generation: version 1 (Haswell GT2), version 2
(Broadwell GT2), and version 3 (Broadwell GT3, which we
also use for Skylake GT3). In some situations, compatibility
issues between the architecture and driver caused trace
execution to fail on the GPU host and simulator. In Table 3, the
Haswell GPU host can execute 300 of the available traces,
while simulators for the Broadwell GT2, GT3 and Skylake GT3
can execute 282, 364, and 364 traces respectively.

While Skylake and Broadwell GPUs are commercially
available, we validate accuracy using only CAS. Our goal is to
mimic the GPU design process while employing commercially
to maximal data can be disclosed publicly, e.g. model features.
This ensure validated simulator configurations exist, while
avoiding implementation work to target in-flight designs. For
any host-target prediction scenario, the number of traces that
we use to build and evaluate the model is the minimum number
that both host and target have the capability to execute.

Fig. 3. (Top) Model training and usage (Bottom). Performance counters and

DirectX program metrics collected from host GPU execution are used to train
a model to a GPU simulator configuration’s performance. Performance
estimation of new frames uses host metrics as input to the performance model,
which predicts the CPF that the GPU simulator would report for the same
application, without further simulator execution.

A. GPU Generational Architecture Differences
HALWPE’s novelty is accurately predicting GPU

performance across multiple device generations spanning
micro-architectural, software, parallelism and process
improvements. Intel’s GPU render pipeline is organized into
two logical groups: (1) the Unslice and (2) the Slice. The Slice
count of a GPU is a measure of available parallelism and
contains three sub-elements. The slice common holds fixed
function caches, global slice units, the sub-slice, and L3 cache.
Sub-slices are organized into parallel groups each containing
Execution Unit (EU) clusters and their supporting thread
dispatch units, samplers, instruction cache, and peripherals.
Section 7 provides relative performance comparisons between
the host and target GPU representations. [12-14].

We utilize three generations of Intel integrated GPU device;
a Haswell GT2 single-slice host (previous generation
hardware), with 20 EUs per slice, two variants of Broadwell
(single slice GT2, and dual-slice GT3), with 24 EUs per slice
and a dual-slice Skylake GT3 containing 24 EUs per slice. The
following section omits detailing individual units and their
purpose, instead focusing only on the differences between
generations. Readers interested in a more detailed description
of the architectures should consult [12-14].
1) Haswell vs Broadwell Architecture

Broadwell generation GPUs optimize the microarchitecture.
Below we highlight key areas where the Broadwell device has
improved over the Haswell implementation.

Unslice: The CPU and GPU communication unit, the GT
Interface (GTI) to lower level cache (LLC) bandwidth has
improved, allowing 64-bit read and write rather than 32-bit as
in Haswell. The Fixed Function (FF) render pipeline has also
been optimized on a per-unit basis, resulting in improved pixel
back end fill rate and improved Z/Hi-Z test performance.

Slice: Most notably, Broadwell has doubled 32-bit integer
computational throughput, and has added 16-bit floating point
support. An increase in computational throughput derives from
more efficient global resource sharing (L3 cache) amongst
slices, changing the total number of EUs per slice and changing
the number of sub-slices.

Slice Common: The L1 cache has an increased in overall
size by increasing allocation per slice, and the L3 cache has
increased 33.33 % from 385 Kbytes to 576 Kbytes.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2834398, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD-2017-0339 4

 Fig. 4. The speedup computed from CPF obtained on the Broadwell GT2/GT3
and Skylake GT3 (normalized to the CPF attained by Haswell GT2) for 282
rendering frames. Frames 1-240 (top) and frames 241-282 (bottom) are shown
on two separate graphs due to the stark difference in CPF ranges.

Sub-slice: By increasing the number of sub-slices to 3 and

allocating 8 EUs per sub-slice in Broadwell rather than
maintaining two subs-slices with 10 EUs each, two sources of
additional throughput were added. First, the total number of
EUs increased, and sampler contention has decreased. In total
Broadwell contains 120 % more EUs, and 150 % more sampler
throughput than a Haswell counterpart containing the same
number of slices.

Comparing the performance of the Haswell and Broadwell
generation devices we measure a median performance
difference of 66.43 %, an average of 317.74 % and a maximum
improvement >1000 %. The comparisons are between an actual
GPU, the host Haswell generation device, and a near cycle
accurate simulator, our Broadwell generation target, the same
GPUs used in Scenarios4-5.
2) Broadwell vs Skylake Architecture

The recently released Intel Skylake generation GPUs make
significant architectural improvements to the Broadwell GPU
architecture.

Unslice: At the platform level, the GTI latency has been
reduced, and the command issue ring buffer has also been
improved. Further, DDR speed has increased from 1868 MT/s
to 2133 MT/s. In total platform compute has improved 50 %
from 768 GFLOPS to 1152 GFLOPS. Notable improvements
have also been made to the Fixed Function render pipeline,
including to the Vertex Shader, the Geometry Shader, the Hull
Shader, and the Domain Shader. Additional geometry features
have also been added such as Auto Strip detection and their
employment in the Tessellation stages of the FF pipeline. This
serves to improve both bandwidth and cull rates by reducing the
number of redundant computations performed.

Slice: pixel back end fill rate has been further increased
between 33 % and 100 %, workload dependent. In addition, a
new Multi-Sampling anti-aliasing (MSAA) mode has been
added, allowing for 16x MSAA, along with performance
improvement in the existing 2, 4 and 8x MSAA modes.

Slice Common: Cache has been increased to 768 Kbytes, an
additional 25 %, a total of 200 % over the Broadwell size cache.
In addition to the increased memory, memory management is
optimized by performing render target compression,
compressing memory before send to increase bandwidth at each
cache line. This results in 11 % increased cache line bandwidth.

Sub-slice: has been improved by adding explicit 16-bit and
32-bit floating point support. EU/Sampler throughput and
Z/Stencil and Pixel operation speed has increased 200 % by
performing individual pixel hashes on different slices. Shared
virtual memory and cache coherency have also been improved,
resulting in better 3D computation. Atomic operations for 32-
bit floats, min, max, compare and exchange have also been
added. Thread dispatching has been further improved by
allowing smaller thread groups, providing finer granularity pre-
emption to increase 3D compute responsiveness. These
architectural changes result in an additional increase of 24 %
performance on average, and 14.3 % median when comparing
the Broadwell and Skylake generations.

Fig. 4 reports the speedup of the three target GPU
architectures we predict (Broadwell GT2/GT3, and Skylake
GT3) normalized to the CPF attained by the Haswell GT2 host
for 280 frames. The CPF difference between Skylake GT3 and
Haswell GT2 varies from 3x to 112x. This large variation in
CPF speedup (and at times a decrease in the Broadwell
GT2/GT3 cases) as compared to the Haswell GT2 baseline
cannot be captured by a constant multiplier to the baseline
performance; more complex predictive models are required.

IV. REGRESSION MODELS
HALWPE includes twelve linear and one non-linear

regression models, which are presented in Fig. 5 We produce
10 least-squares variants; two the standard OLS and NNLS
approach, the remaining 8 are the combinations of employing 4
feature selection variants with each. Feature selection is
performed using a combination of forward stepwise selection,
backward stepwise selection and evaluation of the selected
features using the Akaike Information Criterion (AIC) [15] and
the Bayesian Information Criterion (BIC) [16]. We also
leverage the Lasso regularization model, a non-negative Lasso
and the non-linear Random Forest Model. We choose the model
that yields the smallest out-of-sample error (Eout) as the most
accurate.

 The choice to use multiple models is driven by the fact that
the best model is data dependent, and that each scenario exhibits
different relationships between host features and target CPF.
The OLS and NNLS models are useful when the relationship is
linear, and features are non-correlated; using the AIC and BIC
criteria to remove features can simplify the model and help to
avoid overfitting.

Linear regularization, shown in the middle, selects features
during model construction, by moving their coefficient closer
to zero, helping reduce variance and noise on the prediction
curve and can improve model accuracy. Random Forest models

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2834398, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD-2017-0339 5

Fig. 5. The generated suite of 13 regression models.

non-linear behavior, prevalent as the generation gap between
host and target grows. A larger gap may necessitate using new
models such as Neural Networks to maintain accuracy.

A. Linear Regression Overview
Let M be the number of workloads and X = [x1, x2, …, xN] be

the set of features, i.e., the values of the performance counters
that we measure for each workload. A model is a function f that
computes a scalar predicted performance value, 𝑦̂= f(X). Under
a linear model, f has the form:

 𝑓(𝑋) = ∑ 𝑥𝑗𝛽𝑗
𝑁
𝑗=𝑗 + 𝛽0, (1)

where β = {β1, β2, …, βN} is a coefficient vector that corresponds
to the features, and β0 is a bias term called the intercept, which
serves as a model adjustment factor. The error associated with
the ith workload is yi – f(Xi), where yi is the empirically obtained
CPF, and f(Xi) the predicted CPF. Given training data, the
generation of a coefficient vector is formulated as a constrained
optimization problem [17]. The model generation techniques
employed by HALPWE differ in terms of the optimization
problem formulation and how it is refined by post-processing
steps (Fig. 5).

B. Ordinary Least Squares (OLS)
Given a coefficient vector β, the aggregate error of the

training data set is the Residual Sum of Squares (RSS):
𝑅𝑆𝑆(𝛽) = ∑ (𝑦𝑖 − 𝑓(𝑋𝑖))2𝑀

𝑖=1 . (2)
Ordinary Least Squares (OLS) computes the coefficient vector
β and intercept β0 that minimizes RSS(β) [17].

C. Non-Negative Least Squares (NNLS)
OLS may produce models that estimate negative CPF values

for certain data sets, which is physically impossible. Non-
Negative Least Squares (NNLS) [18] can be applied to ensure
that model estimates cannot be negative. NNLS implicitly
removes certain features from model by setting negative-valued
coefficients to zero and distributing their impact amongst the
remaining positive values. NNLS may degrade model accuracy
as it no longer minimizes RSS(β).

D. Feature Selection and Ranking
OLS and NNLS are full regression models that may use all

input features. Feature selection, which removes feature xj from
the model by setting coefficient βj to zero, can improve
prediction accuracy by sacrificing bias to reduce variance, as
well as interpretation: identifying a subset of features that

exhibits the strongest effect on model accuracy enhances
understanding of the underlying mechanisms [19].

Forward Stepwise Selection greedily selects coefficient pairs
that achieve the maximal incremental improvement to the
model; the process terminates when adding more features is no
longer beneficial to model prediction accuracy. Backward
Stepwise Selection is similar but starts with a full regression
model and iteratively removes one feature at a time. We apply
AIC and BIC as feature ranking criteria during stepwise
selection. This provides us with four feature selection methods:
{Forward, Backward}×{AIC, BIC}, which can be applied to
either OLS or NNLS models.

For each model, we rank the selected features via p-value
hypothesis testing [17] using a threshold of 0.05 to quantify
their impact on model accuracy (a smaller p-value indicates
greater significance). We report p-values for models that
perform feature selection, omitting full regression models. We
do not rank features for NNLS models, because the NNLS
process discards features that break the assumption that model
residuals follow a normal distribution.

E. Linear Regularization Model: Lasso
Lasso [20] is a linear regularization model that constructs a

model while simultaneously selecting features using an RSS
penalty term [17]. Lasso penalizes features in a blanket fashion,
unlike step-wise selection, which is iterative. Lasso selects
features via shrinkage, which reduces “small enough”
coefficients to zero, depending on the value of the
regularization term coefficient. We produce two variants of a
Lasso, with and without the NNLS criterion.

F. Model Evaluation
We use 10-fold cross validation [21] as a precursor to

quantify an estimate of the usefulness of a trained model in
practice. We report the out-of-sample error (Eout), the mean
absolute percentage error averaged over all ten folds, as our
primary measure for model accuracy; Eout reflects the ability of
a model to accurately predict a response when applied to
previously unseen data. We also evaluate models in terms of
their inlier ratios. Given a percentage threshold T, trace Xi is an
inlier if Xi’s absolute relative percentage error (APE) is less
than T. Given T, the inlier ratio (IR) is the percentage of traces
that are inliers. We report 10 % and 20 % inlier ratios for each
model we produce and compare inlier ratios across varying
thresholds for comparative analysis of the prediction scenarios.

G. Random Forest Regression
Random Forest (RF) regression is a non-linear supervised

learning model where prediction is an aggregate of individual
predictions made by a set of regression trees. Due to space
limitations, we omit describing RF in detail; interested readers
may consult Ref. [22] for detail. We construct our RF using
bootstrap aggregation (bagging), applying feature bagging to
reduce correlation among trees. We compute Eout using 10-fold
cross-validation, by averaging the out-of-bag error for each
fold. Regression trees and forests include all features by design.
Although feature ranking via RSS error is performed, we do not
report any feature rankings produced by RF models.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2834398, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD-2017-0339 6

V. SIMULATOR BASED MODELS
Although the focus of this work is hardware-assisted

modeling, we first create simulation-based models. This
allowed us to build confidence in the cross-generational
modeling approach by evaluating the broader capability of the
hardware-assisted technique.

Using simulation-based modeling is easier, as it removes the
well-known difficulties inherent to hardware-assisted
modeling, such as limited architectural visibility, run-to-run
noise cycle count and performance counter variations.
Simulation modeling also provides greater degree control of the
degree of difference between the generations of devices
configured as host and target during model building, allowing
us to isolate and evaluate well known design time tests.
A. Framework Validation Scenarios
We created 3 simulation-based prediction scenarios which were
designed to be easy, thereby enabling us to validate our
modeling suite. We used the GPU simulator to collect
performance counters and to model the prediction target CPF.
The simulator eliminates sources of non-determinism that can
affect hardware-assisted models (see Section 6).
Scenario1 (364 traces) configures the simulator as a 2-slice
Broadwell GT3 and builds a model to predict its own CPF.
Scenario2 (364 traces) configures the simulator as a 2-slice
Skylake GT3 and builds a model to predict its own CPF.
Scenario3 (364 traces) configures the GPU simulator as a 2-
slice Broadwell GT3 running a Broadwell-generation driver
and builds a model to predict the performance a 2-slice Skylake
GT3 running the same driver. Although both GPUs have 48
EUs, the evolution from Broadwell to Skylake does include
microarchitecture changes not reported in Table 2.

We generated 13 models for each scenario. For each model,
we report the out-of-sample error, 10 % and 20 % inlier ratio,
the number of selected features, and the number of available
features; we also report the APE for each workload.
Tables 4 and 5 respectively report the best-performing non-
NNLS and NNLS models that minimized the out-of-sample
error for each of three scenarios listed above; Figs. 6 and 7
depict the observed CPF, predicted CPF, and APE for each
workload for the three models listed in Tables 4 and 5. For all
three scenarios, the best non-NNLS models produced lower
out-of-sample errors than the best NNLS models.

B. Non-NNLS Models
The three models reported in Table 4 exhibit very low out-of-
sample errors; the RF model for Scenario3 had a slightly higher
out-of-sample error than the OLS/Backward/AIC models for
Scenario1 and Scenario2, which is to be expected because it is a
cross-generation prediction scenario, whereas Scenario1 and
Scenario2 are same-generation. All three models obtained 10 %
inlier ratios of more than 80 % and varied slightly in terms of
the number of selected features.

In Fig. 6, it is near-impossible to discern the difference
between predicted and observed CPF for most workloads with
the naked eye, which reinforces the accuracy of these models.
The highest APEs are observed for workloads with the smallest
CPFs on the left-hand side of the graphs, which suggests that
the three models are stable; slightly higher APEs for workloads
with large CPFs are observed for Scenario3’s RF model, which

we attribute to the fact that Scenario3 entails cross-generation
prediction.

C. NNLS Models
Comparing the non-NNLS models of Table 4 and Fig. 6, the
NNLS models reported in Table 5 and Fig. 7 have a higher out-
of-sample error while selecting fewer counters as features;
however, when looking at Fig. 7 in detail, virtually all the
visible increase in per-workload APE occurs for the workloads
with the smallest CPFs. The gap in predictive accuracy between
NNLS and non-NNLS models may not be as pronounced as one
might interpret by considering out-of-sample error in isolation.

Scenario3’s NNLS/Backward/BIC model has lower APEs for
large-CPF workloads than Scenario3’s non-NNLS RF model,
which has a lower overall out-of-sample error. Likewise,
Scenario3’s NNLS/Backward/BIC model has a lower 10 %
inlier ratio than the non-NNLS RF model; however, the outliers
are clustered among workloads with the smallest CPFs. Similar,
observations hold for Scenario1 and Scenario2 as well.

D. Driver Scalability Scenario
Scenario3D (364 traces) re-runs Scenario3, modifying the target
simulator to produce new validation data obtained used the
same Skylake GT3 device, only now running the applications
with the Skylake GT3 driver instead of the Broadwell GT3
driver. Updating the driver to increase application performance
is a common optimization made by GPU designers, and it is
imperative that predictive models can accurately predict
generational changes in both the hardware and software stack.
Scenario3D shows that the HALWPE regression suite selects
features and produces models that account for the performance
difference caused by updating the target platforms driver,
producing accurate Eout estimates.

Table 6’s last row presents the best performing non-NNLS
model for Scenario3D and the first-row repeats Scenario3’s best
model result from Table 4. Table 7’s last row presents the best
performing NNLS model, and the first row repeats the last row
of Table 5. Most notably, the out of sample error of the best
performing NNLS model in Table 7 has decreased from 8.95 %
to 7.40 % using the same features without retraining. The
increased accuracy is a byproduct of using a small number of
traces, 32, for validation. The reduced frame count is
unavoidable as both driver versions were not compatible with
all frames. This study demonstrates HALWPE’s robustness
when modeling driver generation updates.

E. Slice Scalability Scenario
Scenario3S (364 traces) re-runs Scenario3, modifying the

training data to use a Broadwell GT2 device to predict the
original Skylake GT3 device. Modifying the training data
approximates a scenario in which the host platform is both a
generation older and has half the available parallelism of its
target. It is likely that as new generations of GPU are developed
and tested, their slice count will continue to increase.

The model is applied without retraining to a validation set
with 60 single frame workloads, demonstrating HALWPE’s
ability to identify features that accommodate CPF changes due
to slice scaling, obtaining high cross-generation prediction
when the host has 200 % less parallelism than the target.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2834398, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD-2017-0339 7

TABLE IV
HIGHEST ACCURACY NON-NNLS MODELS SCENARIOS1-3.

TABLE VI

HIGHEST ACCURACY NON-NNLS MODEL SCENARIO3D.

TABLE VIII

HIGHEST ACCURACY NNLS MODEL SCENARIO3S.

Fig. 6. The observed CPF, predicted CPF, and per-workload APE for the

non-NNLS models of Scenario1 (a), Scenario2 (b), and Scenario3 (c). Workloads
are ordered from left-to-right in non-decreasing order of observed CPF.

Row 1 of Tables 8 and 9 re-report Scenario3 results, and Row

2 reports the results of Scenario3S’s slice scaling study.
Comparing Scenario3 and Scenario3S, the error increases 2.3 %,
resulting in an 11.5 % average error, but remains usable for pre-
silicon performance estimation. The increase in error due to
slice scaling is also present in our hardware-assisted scenarios.

TABLE V
HIGHEST ACCURACY NNLS MODELS SCENARIOS1-3.

TABLE VII

HIGHEST ACCURACY NNLS MODEL SCENARIO3S.

TABLE IX

HIGHEST ACCURACY NNLS MODEL SCENARIO3S.

Fig. 7. The observed CPF, predicted CPF, and per-workload APE for the NNLS
models generated for Scenario1 (a), Scenario2 (b), and Scenario3 (c) in Table 5.
Workloads are ordered from left-to-right in non-decreasing order of observed
CPF.

VI. HARDWARE-ASSISTED MODELS
When profiling an application on commodity hardware,

certain sources of non-determinism may arise that simulators
either do not model or can suppress. We discuss strategies to
mitigate these issues in detail before moving on to present the
results of our hardware-assisted models.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2834398, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD-2017-0339 8

A. GPU Profiling and Mitigating Variation
Referring to Fig. 2, HWTraces refers to a stream of DirectX

GfxAPI commands that we collect without firmware or driver
modification using GfxCapture. HWTraces are repeatable,
platform-independent, and allow instrumentation of the host
GPU and API. We attach GfxProfiler directly to the device
context [10], which is created along with its device when the
GPU renders a frame. The device creates resources and queries
the GPU’s rendering capabilities, while the device context
comprises the GPU’s pipeline and resource states, which
generate actual rendering commands.

GfxProfiler collects three classes of features: performance
counter measurements (via HWTraces), profiled DirectX API
commands (via HWTraces), and hardware queries (via the
device context) which leverage exposed parts of the API. An
exemplary hardware query is PSInvocations, the number of
times the pixel shader invoked an EU while rendering.

Workload execution is performed using an unmodified
operating system (OS; Windows 7) and driver. To reduce
variability introduced by the OS, we suppress non-OS
background processes and run traces in full-screen mode. By
leaving the OS and driver unmodified, we eschew control of
sleep states. By adjusting BIOS settings, we can disable deep
sleep state RC6 and suppress dynamic frequency scaling and
Turbo Boost. The sources of variation that remain are
competing background tasks, which affect CPU-GPU
communication latency, and access to shared resources, and the
sleep states that we cannot control.

We perform outlier detection and elimination to mitigate
variation. We apply the Median Absolute Deviation (MAD) test
[23] to identify runs that exhibit abnormal behavior. We
empirically determined a threshold of ±7 MADs using 10
representative frames, executing each frame 100 times.
During model construction and evaluation, we execute each
frame 100 times on the host GPU using GfxProfiler to collect
features. We remove outliers, i.e., all runs whose CPF values
are outside of the ±7 MAD threshold. The CPF and feature
values reported for the frame are averaged across the inliers.

Fig. 8 reports the CPF of 100 executions of Witcher 2 Frame
769 normalized to the smallest CPF that we observed. To avoid
cold-start issues, we insert a generic “warmup” frame that is
executed but not profiled. Most of executions are within the
MAD window, although some non-negligible variation in CPF
is clearly visible.
B. HALWPE Prediction Scenarios

We present three hardware-assisted predictive models based
on performance counter measurements taken from a Haswell
GT2 GPU, which provides 577 features. The results show that
HALWPE can perform accurate cross-generation CPF
prediction.

Scenario4 (282 traces) uses a Haswell GT2 GPU host to
predict the CPF of a simulated Broadwell GT2 GPU.
Scenario5 (300 traces) uses a Haswell GT2 GPU host to
predict the CPF of a simulated Broadwell GT3 GPU.
Scenario6 (300 traces) uses a Haswell GT2 GPU host to
predict the CPF of a simulated Skylake GT3 GPU.

Fig. 8. CPF variability for a Witcher 2 Frame when executed 100 times; the
first execution was removed due to cold start issues. Of the remaining 99 runs,
7 frames were identified as outliers and removed using the ±7 MAD approach.

Tables 10 and 11 respectively report the best-performing
non-NNLS and NNLS models that minimized the out-of-
sample error for each of three scenarios listed above; Figs. 9
and 10 depict the observed CPF, predicted CPF, and APE for
each workload for the three models list in Tables 10 and 11. For
Scenario4 and Scenario5, OLS/Forward/BIC produced the
lowest out-of-sample errors; for Scenario6, the NNLS produced
the lowest out-of-sample error.

C. Non-NNLS Models
 In Fig. 9, slight differences between predicted and observed

CPF for the OLS/Forward/BIC model for Scenario4 and
Scenario5 can be seen by the naked eye; the differences are
more pronounced for Scenario6’s RF model, especially for
workloads with higher CPFs. The degradation in model quality
is clear between scenarios.

The OLS/Forward/BIC models generated for Scenario4 and
Scenario5, exhibited the largest APEs are at the low-CPF end
up the spectrum; in contrast, the RF model generated for
Scenario6 has a more uniform distribution of high APEs across
the CPF spectrum. This is similar to the distribution of APEs
reported for the RF model in Fig. 6 for Scenario3.

D. NNLS Models
The NNLS models produced for Scenario4 and Scenario5 in

Table 11 nearly double the out-of-sample errors produced by
the non-NNLS models in Table 10, with large reductions in the
10 % inlier ratios in both cases. In the case of Scenario6, the
NNLS model yielded an out-of-sample error of 8.91 %, which
is slightly worse than the 7.45 % and 7.47 % produced by the
best non-NNLS models for Scenario4 and Scenario5 in Table
10, but respectable given the challenges associated with CPF
prediction across two GPU generations; it’s 10 % inlier ratio
was respectively 14.23 % and 12.77 % lower, which can be
explained similarly.

TABLE X

HIGHEST ACCURACY NON-NNLS MODELS SCENARIOS4-6.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2834398, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD-2017-0339 9

Fig. 9. The observed CPF, predicted CPF, and per-workload APE for the

non-NNLS models summarized in Table 6. Workloads are ordered from left-
to-right in non-decreasing order of observed CPF.

 This level of accuracy should be sufficient for use in early-
stage design space exploration; however, designers must
understand that model accuracy will necessarily degrade as
number of generations between the host and prediction target
increases. Scenario6 investigates this issue further.

E. Scenario6 Model Comparison
Table 12 reports the accuracy of all 13 HALWPE models for

Scenario6. This study serves to justify the need for an ensemble
of models, by assessing the differences in model accuracy in
our most ambitious CPF prediction scenario, across two GPU
generations. The out-of-sample error ranged from 8.91 %
(NNLS) to more than 1000 % (four OLS variants); the four
highly inaccurate OLS variants likely overfit the training data.
Employing an ensemble of models increases the likelihood that
at least one model does not overfit. Both RF (which is
nonlinear) and Lasso (due to regularization) are less likely than

 TABLE XI
HIGHEST ACCURACY NNLS MODELS SCENARIOS4-6.

Fig. 10. The observed CPF, predicted CPF, and per-workload APE for the

NNLS models summarized in Table 11. Workloads are ordered from left-to-
right in non-decreasing order of observed CPF.

OLS and NNLS variants to overfit the training data;

including them in HALWPE’s ensemble increases the
likelihood that at least one model is accurate. RF, Lasso, and
Lasso/NNLS did not overfit in any of our scenarios.

Among the remaining nine models in the highest out-of-
sample error was 19.69 % (NNLS/step-forward/BIC). As
Tables 4-11 show, it is difficult to know a-priori which model
(with or without the NNLS guarantee) will yield the highest
overall accuracy, which justifies the ensemble approach. In
Table 12, NNLS achieves the smallest out-of-sample error and
is tied for third highest 10 % inlier ratio; however, it selects the
most features of the remaining nine linear models.

F. Inlier Ratio vs. Out-of-sample Error
Scenarios exist in which a processor architect may prefer a
predictive model that maintains a higher inlier ratio within a
given threshold to a model that minimizes out-of-sample error.
Treating the inlier ratio as a proxy for variance provides higher
confidence in the fidelity of the model.

Fig. 11 depicts the inlier ratios at eight thresholds for five
models generated for Scenarios4-6. For each scenario, Fig. 11
includes HALWPE’s OLS and NNLS variants that minimize

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2834398, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD-2017-0339 10

Fig. 11. Inlier ratios at various error threshold for predictive models

generated for Scenario6, Scenario7, and Scenario8. For each scenario, the best-
performing OLS and NNLS-variants are shown, along with Lasso,
Lasso/NNLS, and RF.

Fig. 12. HALWPE speedup over simulators for Broadwell GT2/GT3 and

Skylake GT3 GPUs using 280 workloads common to all three simulators (Table
3). Frames are ordered by increasing Skylake GT3 speedup. Average speedups
were 29481x for Broadwell GT2, 43643x for Broadwell GT3, and 44214x for
Skylake GT3.

out-of-sample error, its two regularization models (Lasso,

and Lasso/NNLS), and its non-linear model (RF).
For Scenario4 and Scenario5 OLS/Forward/BIC had the

smallest out-of-sample error. For Scenario4 in Fig. 11,
OLS/Forward/BIC has the highest inlier ratio at error thresholds
of 30 % or lower, except for the 1 % threshold where NNLS
and Lasso/OLS are marginally higher.

For Scenario5 it has the highest inlier ratio at error thresholds
of 20 % or below; in Scenario6, NNLS had the smallest out-of-
sample error and the highest inlier ratios for thresholds of 15 %
and lower. These observations reinforce the benefits of these
three models: they exhibit low out-of-sample errors and high
fidelity, so they can be used with high confidence.

G. HALWPE Speedup
Compared to cycle-accurate simulators that are properly

tuned, predictive models sacrifice accuracy to provide
computer architects with a rapid result.

TABLE XII

ACCURACY OF ALL HALWPE MODELS FOR SCENARIO6.

In the case of HALWPE, the execution time of the model on

a given workload entails executing the workload trace on the
Haswell host GPU and then applying the linear regression or
RF model to the obtained features; in most cases, the latter is
negligible. Fig. 12 compares the execution time of HALWPE
to the simulator configured as a Broadwell GT2, Broadwell
GT3, and Skylake GT3 GPU for the 282 common executable
traces (Table 3). On average, HALWPE achieved a speedup of
29,481x over the Broadwell GT2 simulator, 43,643x over the
Broadwell GT3 simulator, and 44,214x over the Skylake GT3
simulator. From workload to workload, the speedups reported
in Fig. 12 vary considerably; in a few cases, the simulator
executed a trace faster than the host GPU. Compared to cycle-
accurate simulators, predictive models sacrifice accuracy to
provide a rapid result.

Fig. 13. Model training and host GPU execution time for Scenarios 4,5 and 6.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2834398, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD-2017-0339 11

The execution time of a model on a frame entails running the
frame trace on the host GPU and then generating model using
the obtained features; in most cases, the latter is negligible.

Fig. 13 reports the time to train all 13 HALWPE models --
excluding target simulation time and host GPU execution time
to render each frame once. In addition to rendering, host GPU
execution time includes overhead associated with loading the
application, profiling, and streaming API commands from the
trace player. The longest model training and host GPU
execution time was ~2.5 hours for Scenario3. We rendered each
frame 100 times, thus execution time is dominated by the host
GPU, not model training.

When comparing Haswell to Skylake the total performance
increase is 820.79 % on average, and 242 % on median.
HALWPE can provide accurate models, which utilize a
Haswell generation GPU to predict the performance of a
Skylake generation GPU, as demonstrated in Scenario6.

VII. FEATURE RANKING
This section reports the 10 highest ranked features from the

models generated for Scenario4, Scenario5, and Scenario6. We
rank the features using the OLS/Forward/BIC model, which
was the best performing model for Scenario4 and Scenario5, and
the third best for Scenario6. In our system, 577 features are
available (see Section 6). In the feature list tables presented in
the next two subsections, performance counters are yellow
rows, DirectX metrics are blue rows, and hardware queries are
grey rows. All the features reported in these subsections have
been publicly disclosed [2, 3-11].

A. Broadwell GT2/GT3
Tables 13 and 14 report the top-ten most influential features

for the OLS/Forward/BIC models produced for Scenario4 and
Scenario5, ranked by p-values (Section 4.D). These scenarios
respectively target the Broadwell GT2 and GT3 GPU, where
the latter has twice as many slices/EUs.

In Table 13, the top-5 highest ranked features provide
information about EU activity relating to front-end render
pipeline units. The top-2 features are EU active and stall times,
which holds consistent with the observation that the limited
parallelism in a single-slice Broadwell GT2 GPU can impede
performance. The 3rd through 5th highest ranking features
report compute and domain shader EU activity, which suggests
that interactions between the two shaders and their EU
occupations should be analyzed. Notably, the presence of
A19_CSEUStallTime suggests that limiting the amount of time
that the compute shader stalls the EU array could potentially
improve overall GPU throughput.

In Table 14, EU busy/stall cycles no longer fall within the top
10 ranked counters, which reflect the increase in parallelism
provided by GT3 GPUs. The two counters representing the
domain shader are ranked 8th and 10th, suggesting that they still
influence performance, but that other subsystems with higher-
ranking features should be given priority for analysis. Again,
A19_CSEUStallTime is within the top-5 ranked features, which
suggests that the process by which the compute shader stalls the
EU array still influences performance significantly.

TABLE XIII
TOP-10 MODEL FEATURES RANKED BY P-VALUE FOR THE OLS/FORWARD/BIC

PRODUCED FOR SCENARIO4.

TABLE XIV
TOP-10 MODEL FEATURES RANKED BY P-VALUE FOR THE OLS/FORWARD/BIC

PRODUCED FOR SCENARIO5.

The geometry shader now appears in the top-10 highest

ranked features with the inclusion of
A22_GSThreadBusyTime, which suggests that as parallelism
increases doubles Broadwell GT2 to GT3, additional front-end
units start to influence performance.

B. Skylake GT3
Table 15 reports the 10 most influential features for the

OLS/Forward/BIC model for Scenario6 ranked by p-values.
The top two features from Scenario5 (Table 14) remain in the
top ten for Scenario6. The highest-ranking feature in Table 15,
the number of cycles not idle, is the second feature in Table 14.
 This suggests that the ability to provide the render engine
with a steady supply of data remains a critical indicator of
performance; potential optimizations ensure that the GPU can
consume enough data to avoid idle states. In Fig. 4, we see that

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2834398, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD-2017-0339 12

Broadwell GT3 and Skylake GT3 had similar CPF profiles, and
that the gap in favor of Skylake 3 was small. Table 15 suggests
that Skylake GT3 CPF can be predicted foremost by back-end
pixel-based metrics corresponding to pixel shader memory
activity, pixel shader invocations, and the render engine’s
ability to pre-emptively avoid pixel processing by killing pixels
(A36_RSKillPixelCount); A40, which counts render target
writes also corresponds to the back-end. Compared to Table 14,
the absence of geometry and compute shader metrics suggests
that changes to the Skylake GT3 front end may have removed
performance bottlenecks present in Broadwell GT3.
 Table 15 also includes domain and hull shader metrics, which
correspond to the first and last stages of the DirectX tessellation
pipeline. This suggests that tessellation has emerged as a prime
indicator for CPF for Skylake, and that it may be a suitable
candidate for further optimization.

C. Discussion
This analysis shows how to interpret predictive models to

obtain insights regarding which features have the greatest
predictive impact on CPF. A highly-ranked feature may hint
that a subsystem that could benefit from further architectural
improvement; however, models are inexact, and, for a given
scenario, feature rankings may vary from model to model.
Thus, feature ranking can provide “hints” to understanding
performance, not solutions These hints are symptoms, and
should not be misconstrued as having diagnostic abilities to
validate the existence of the bottlenecks or to identify root
causes. Any hint provided by a model should be validated by
further simulation before being accepted as fact. Architects
should use predictive models judiciously and conservatively
and should not misconstrue them as automated substitutes for
existing methodologies or human intelligence.

.
TABLE XV

TOP-10 MODEL FEATURES RANKED BY P-VALUE FOR THE OLS/FORWARD/BIC
PRODUCED FOR SCENARIO6.

VIII. RELATED WORK
Cycle-accurate simulators such as GPGPU-Sim [24], Atilla

[25], and Multi2Sim [26] run orders of magnitude slower than
native execution [27, 28]. Techniques to reduce simulation
times, such as representative sampling [29], multi-threading
[30], and synthetic benchmark generation, such as for cache-
coherent traffic [31] [32] are helpful but remain prohibitively
slow. In response, we have turned to predictive modeling
intended to speedup pre-silicon GPU design by avoiding cycle-
accurate simulation in favor of estimating CPF via predictive
models instead. HALWPE can leverage reduced simulation
time to reduce model training time, with a reduction in speedup.

A. Predictive Models for CPUs
HALWPE is inspired by predictive models for CPUs

performance and power using linear regression [33] and
artificial neural networks (ANNs) [34]. Like HALWPE these
models are built using performance counter readings and
program metrics as features; however, the features that
effectively predict CPU and GPU performance are different due
to architectural dissimilarities. Cycle-accurate simulator
internals can be more effective predictors than performance
counters [35]; however, this requires simulation of each new
workload before its performance can be predicted.

Cross-architecture models can predict the performance of an
application from one CPU to another and can overcome ISA
and microarchitectural differences with 90 % accuracy on
computationally-intensive embedded kernels [36], and up to 97
% accuracy for both performance and power consumption when
prediction is performed on the granularity of program phases
[37]. Like HALWPE, the predictive features are performance
counter measurements obtained from direct execution, which
lends credence to our approach.

Approximate analytical models for out-of-order processors
can perform high-level microarchitectural analysis [38]. This
method requires a trace-driven off-line analysis of the model
parameters to determine program locality behavior and miss
rates as well as drain time after branch miss-prediction. The
model does not generalize for workloads that have not been
included in the off-line analysis.

B. Predictive Models for GPUs
Predictive models for GPUs based on linear regression [39]

decision trees [40], random forests [41] and ANNs [42] can
accurately predict performance and power consumption for the
GPUs on which they were trained. HALPWE, in contrast, offers
cross-generation prediction capabilities.

The work most closely related to HALWPE is an ANN-based
model which can accurately predict the performance and power
consumption of an application across a variety of GPU
configurations comprising core frequency, available
parallelism, memory bandwidth, etc. [28]. Like HALWPE,
performance counter measurements are collected using a real
GPU. The authors of the study modified the GPU firmware to
control the number of active compute units, core frequencies,
and memory frequencies, yielding 448 different configurations.
They then trained an ensemble model that allows the user to

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2834398, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD-2017-0339 13

predict the performance and power consumption of an
application (given collected performance counter
measurements) on any of the 448 configurations.

HALWPE differs from the ANN predictor in two respects.
First, HALWPE achieves cross-generation performance
prediction, while the ANN predictor is limited to variants of the
current-generation (host) GPU with three degrees of freedom.
Second, HALWPE does not modify the firmware, enabling
usage of production drivers. In its favor, the ANN predicts
performance and power consumption, while HALWPE,
presently, is limited to CPF prediction. Our evaluation of
HALWPE focuses on graphics and gaming workloads, whereas
the ANN predictor was evaluated using OpenCL workloads
spanning several application domains.

A prior work on single-generation predictive performance
and power models for ATI GPUs [43] shares many principle
similarities with our work. They use Random Forest Regression
for prediction and model feature ranking. We extend the feature
ranking capability to all models generated using P-Value
significance testing.

XAPP [44] uses single-threaded CPU performance counter
measurements to predict performance when porting an
application to a GPU. XAPP’s objective is to determine which
portions of a program will reap the greatest benefit from GPU
acceleration, which is a challenging problem in performance
tuning for heterogeneous platforms; in contrast, HALWPE
focuses on early-stage GPU architectural design space
exploration within an architecture family and early performance
feedback for graphics software development.

Analytical GPU models can predict performance and power
consumption [45] but require extensive tuning and require co-
execution with functional simulators. In contrast, HALWPE
automates model training and feature selection without co-
simulation, thereby making it much easier to use in practice.

As performed in this work and explicitly in [46], it is
important to compare the relative difference between
generations of architecture when evaluating workload
performance. Ref. [46] compares the performance of two
dedicated graphics cards, a Maxwell and Pascal GPU across 6
different matrix factorization workloads. In this work, we
evaluate 4 integrated GPU architectures on 36 distinct
rendering workloads, to study the effectiveness of cross-
generational performance prediction.

IX. CONCLUSION AND FUTURE WORK
HALWPE has established the feasibility of cross-generation

GPU CPF prediction using performance counter readings,
DirectX metrics, and hardware queries. HALWPE achieved an
out-of-sample error rate of 8.91 % when predicting across two
GPU architecture generations, which include extra parallelism,
microarchitecture changes, and driver upgrades. HALWPE
achieved a speedup of 44214x compared to a cycle-accurate
simulator for this prediction scenario. Our results and analysis
suggest that predictive modeling can aid early-stage
microarchitecture design space exploration and may be able to
help with identification of performance bottlenecks; however,
predictive modeling must be applied with care, as the models

themselves are inherently finicky.
Several open questions remain: (1) Can HALWPE predict

energy consumption with equal effectiveness? (2) Can models
be re-used to predict CPF of similar targets without retraining?
Criteria for model retraining/reuse would be beneficial. (3) Can
HALWPE generalize to other GPU vendors, rendering APIs,
and to GPGPU workloads with greater workload diversity?

REFERENCES
[1] K. O’Neal, P. Brisk, E. Shriver, and M. Kishinevsky, “HALWPE:

Hardware-Assisted Light Weight Performance Estimation for GPUs” in
Proc. Of Annual Design Automation Conference (DAC), 2017.

[2] Intel Corporation, "Open Source Intel HD Graphics Programmer's
Reference Manual" [Online]. pp. 13-15 Available: https://goo.gl/9KSJks

[3] Intel Corporation, "Intel GPA GPU Metrics", Available:
https://goo.gl/3Ird2x

[4] Microsoft Corporation, "ID3D10Device Interface" [Online]. Available:
https://goo.gl/4YNKpl

[5] Microsoft Corporation, "ID3D11DeviceContext Interface" [Online].
Available: https://goo.gl/4VnmIj

[6] Microsoft Corporation, "ID3D11Device Interface" [Online]. Available:
https://goo.gl/gzeD0o

[7] Microsoft Corporation, "IDirect3DDevice9 Interface" [Online].
Available: https://goo.gl/HCSNTw

[8] Microsoft Corporation, "IDirect3DIndexBuffer9" [Online]. Available:
https://goo.gl/flRm1A

[9] Microsoft Corporation, "IDirect3DQuery9 Interface" [Online].
Available: https://goo.gl/UZDyRD

[10] Microsoft Corporation, "Introduction to a Device in Direct3D 11"
[Online]. Available: https://goo.gl/bi6USV

[11] Microsoft Corporation, "New Resource types in Direct3D 11" [Online].
Available: https://goo.gl/gX4MZz

[12] Intel Corporation, “The Compute Architecture of Intel Processor Graphics
Gen7.5.” [Online]. Available: https://goo.gl/5HZ54v

[13] Intel Corporation, “The Compute Architecture of Intel Processor Graphics
Gen8.” [Online]. Available: https://goo.gl/TnpAGc

[14] Intel Corporation, “The Compute Architecture of Intel Processor Graphics
Gen9.” [Online]. Available: https://goo.gl/RMmUc6

[15] H. Akaike, “A new look at the statistical model identification” in IEEE
Transaction on Automatic Control, 1974, pp. 716-723.

[16] B.N. Petrov, and F. Csáki, "Information theory and an extension of the
maximum likelihood principle", in 2nd International Symposium on
Information Theory, Tsahkadsor, Armenia, USSR, 1971, pp. 267-281.

[17] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. Springer series in statistics. Springer, New York, 2001.

[18] C. Lawson, and R. Hanson, Solving Least Squares Problems, Siam by
Applied Mathematics (1995).

[19] R. R. Hocking, “The Analysis and Selection of Variables in Linear
Regression”, Biometrics, Vol. 32, No. 1, 1976, pp. 1-49.

[20] R. Tibshirani, “Regression Shrinkage and Selection via the Lasso”, in
Journal of The Royal Statistical Society, Series B Vol. 58, No. 1, 1996,
pp.367-288.

[21] R. Kohai, A study of Cross Validation and Bootstrap for Accuracy
Estimation and Model Selection, IJCAI, 1995.

[22] L. Breiman, Random Forests, Machine Learning, Vol. 45, Issue 1, 2001.
pp. 5-32

[23] C. Leys, K. Olivier, P. Bernard, and L. Laurent, “Detecting Outliers: Do
not use standard deviation around the mean, use absolute deviation around
the median” in Journal of Experimental Social Psychology, 2013.

[24] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA Workloads Using a Detailed GPU Simulator,” in Proc.
of the Int’l Symp. on Performance Analysis of Systems and Software
(ISPASS), 2009, pp. 163-174.

[25] V.M. del Barrio, C. Gonzalez, J. Roca, and A. Fernandez, R. Espasa,
“ATILLA: a cycle-accurate execution drive simulator for modern GPU
architectures” in International Symposium on Performance Analysis of
Systems and Software, (ISPASS) March 2006 pp. 231-241.

[26] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2Sim: A
Simulation Framework for CPU-GPU Computing,” in Proc. of the Int’l
Conf. on Parallel Architectures and Compilation Techniques (PACT),
2012.

https://goo.gl/9KSJks
https://goo.gl/3Ird2x
https://goo.gl/4YNKpl
https://goo.gl/4VnmIj
https://goo.gl/gzeD0o
https://goo.gl/HCSNTw
https://goo.gl/flRm1A
https://goo.gl/UZDyRD
https://goo.gl/bi6USV
https://goo.gl/gX4MZz
https://goo.gl/5HZ54v
https://goo.gl/TnpAGc
https://goo.gl/RMmUc6

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2834398, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TCAD-2017-0339 14

[27] A. Gutierrez, J. Pusdesris, R. G. Dreslinski, T. Mudge, C. Sudanthi, C. D.
Emmons, M. Hayenga, and N. Paver, “Sources of Error in Full-System
Simulation,” in Proc. of the Int’l Symp. on Performance Analysis of
Systems and Software (ISPASS), 2014.

[28] G. Wu, J.L. Greathouse, A. Lyashevsky, N. Jayasena, and D.Chiou
“GPGPU Performance and Power Estimation Using Machine Learning”
in IEEE International Symposium on High Performance Computer
Architecture, 2015, pp. 564-576.

[29] W. Jia, K. Shaw, and M. Martonosi, “Starchart: Hardware and Software
Optimization Using Recursive Partitioning Regression Trees,” in Proc. of
the Int’l Conf. on Parallel Architectures and Compilation Techniques
(PACT), 2013.

[30] S. Lee and W. W. Ro, “Parallel GPU Architecture Simulation Framework
Exploiting Work Allocation Unit Parallelism,” in Proc. of the
International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2013.

[31] M. Badr, N. E. Jerger, "SynFull: Synthetic traffic models capturing cache
coherent behaviour", 2014 ACM/IEEE 41st International Symposium on
Computer Architecture (ISCA), pp. 109-120, June 2014.

[32] J. Yin, O. Kayiran, M. Poremba, N. E. Jerger, "Efficient synthetic traffic
models for large, complex SoCs," 2016 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pp. 297--308, 12-
16, March 2016.

[33] E. ¨Ipek, S. A. McKee, R. Caruana, B. R. de Supinski, and M. Schulz,
“Efficiently Exploring Architectural Design Spaces via Predictive
Modeling,” in Proc. of the Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2006.

[34] B. C. Lee and D. M. Brooks, “Accurate and Efficient Regression
Modeling for Microarchitectural Performance and Power Prediction,” in
Proc. of the Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2006.

[35] B. Ozisikyilmaz, G. Memik, and A. Choudhary, “Machine Learning
Models to Predict Performance of Computer System Design Alternatives”
in 37th International Conference on Parallel Processing (ICPP), 9-12 Sept
2008, pp. 495-502.

[36] X. Zheng, P. Ravikumar, L.K. John, and A. Gerstlauer, "Learning-based
Anlaytical Cross-Platform Performance Prediction" in Embedded
Computer Systems, Architectures, Modeling and Simulation (SAMOS),
July 2015, pp. 52-59.

[37] X. Zheng, L. John, A. Gerstlauer, "Accurate Phase-Level Cross-Platform
Power and Performance Estimation" in Design Automation Conference
(DAC), June 05-09, 2016, pp. 4.

[38] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A Mechanistic
Performance Model for Superscalar Out-of-Order Processors,” ACM
Transactions on Computer Systems, vol. 27, no. 2, pp. 3:1–3:37, May
2009.

[39] P. E. Bailey, D. K. Lowenthal, V. Ravi, B. Rountree, M. Schulz, and B.
R. de Supinski, “Adaptive Configuration Selection for Power-
Constrained Heterogeneous Systems,” in Proc. of the Int’l Conf. on
Parallel Processing (ICPP), 2014.

[40] X. Ma, M. Dong, L. Zhong, and Z. Deng, “Statistical Power Consumption
Analysis and Modeling for GPU-Based Computing” Proceedings of the
ACM SOSP Workshop on Power Aware Computing and Systems
(HotPower), October 2009.

[41] J. Chen, B. Li, Y. Zhang, L. Peng, and J. Peir, “Tree structured analysis
on GPU Power study” in IEEE 29th International Conference on
Computer Design (ICCD), 2011, pp. 57-64.

[42] S. Song, S. Chunyi, B, Rountree, and K.W. Cameron, “A Simplified and
Accurate Model of Power-Performance Efficiency on Emergent GPU
Architectures”, in International Symposium on Parallel & Distributed
Processing (IPDPS), 2013. Pp. 673-686.

[43] Y. Zhang, Y. Hu, B. Li, and L. Peng, “Performance and power analysis
of ATI GPU: a statistical approach,” in Proc. Int. Conf. Networking,
Architecture and Storage (NAS), 2011, pp. 149-158.

[44] N. Ardalani, C. Lestourgeon, K. Sangkaralingam, X. Zhu, "Cross-
architecture performance prediction (XAPP) using CPU to predict GPU
performance" in in Proc. of the 48th International Symposium on
Microarchitecture(MICRO-48), 2015 pp 725-737.

[45] S. Hong, and K. Hyesoon, “An integrated GPU power and performance
model”, in Proc. of the 37th International Symposium on Computer
Architecture (ISCA), 2010 pp. 280-289.

[46] X. Xie, W. Tan, L. Fong, and Y. Liang, “CuMF_SGD: Parallelized
Stochastic Gradient Descent for Matrix Factorization on GPUS” in Proc.
of the 26th International Symposium on High-Performance Parallel and
Distributed Computing (HPDC), 2017. pp 79-92.

Kenneth O’Neal received the B.S. and
M.S. degrees from University of California
Riverside in 2012 and 2016 respectively.
He is presently pursuing a Ph.D. degree in
CS at UCR. He has also worked as an intern
at Intel corporation in 2014, 2015, 2016,
and 2017. His research interests include
power and performance analysis and

optimization for heterogeneous computing platforms with an
emphasis on GPUs and FPGAs, and algorithmic design for
high-level synthesis of Digital Microfluidic BioChips.

Philip Brisk received the B.S., M.S., and
Ph.D. degrees from the University of
California at Los Angeles, in 2002, 2003,
and 2006, respectively, all in computer
science. From 2006 to 2009, he was a Post-
Doctoral Scholar with the Processor
Architecture Laboratory, School of
Computer and Communication Sciences,

École Polytechnique Fédérale de Lausanne (EPFL). He is an
Associate Professor with the Department of Computer Science
and Engineering, University of California at Riverside,
Riverside. His current research interests include programmable
microfluidics, FPGAs, compilers, and design automation and
architecture for application specific processors.

Dr. Brisk was a recipient of the Best Paper Award at CASES
2007 and FPL 2009. He has been a Program Committee
member for several conferences and workshops, including
DAC, ASPDAC, DATE, VLSI-SoC, FPL, and FPT. He has
been the General (Co-)Chair of the IEEE SIES 2009, the IEEE
SASP 2010, and IWLS 2011, and the Program (Co-)Chair of
the IEEE SASP 2011, IWLS 2012, ARC 2013, and FPL 2016.

Emily Shriver is a research scientist in
system design and rchitecture at Strategic
CAD Labs at Intel. She conducts research
on power and performance modeling and
simulation techniques across a broad
spectrum of abstraction levels; circuits,
RTL, emulation, architectural, and system
level platform and software. She has

coauthored over 20 published conference and journal papers,
been an invited panelist at DAC, and served on the technical
program committees of ISCA, ICCD, and DAC.

Michael Kishinevsky received the MS and
PhD degrees in CS from the
Electrotechnical University of St.
Petersburg. He leads a research group in
system design and architecture at Strategic
CAD Labs of Intel. Prior to joining Intel in
1998, he has been a research fellow at the
Russian Academy of Science, a senior
researcher at a start-up in asynchronous

design (TRASSA), a visiting associate professor at the
Technical University of Denmark, and a professor at the
University of Aizu, Japan. He coauthored three books in
asynchronous design and has published more than 100 journal
and conference papers. He received the Semiconductor
Research Corporation outstanding mentor awards (2004 and
2010) and the best paper awards at DAC (2004) and ASD
(2009).

