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Department of Brain & Cognitive Sciences
MIT E10-120, Cambridge, MA 02139 USA

Abstract

Trajectory Mapping (TM) was introduced in 1995 as a new
experimental paradigm and scaling technique. Because
only a manual heuristic for processing the data was
included, we offer an algorithm based on simulated
annealing that combines both a computational approach to
processing TM data and a model of the human heuristic used
by Richards and Koenderink (1995). We briefly compare
the T approach with MDS and clustering, and then
describe the details of the algorithm itself and present
relevant several diagnostic measures.

Introduction

Psychologists have often explored how people organize their
knowledge about different objects. A variety of
experimental paradigms, such as MDS, or Multi-
Dimensional Scaling (Shepard, 1962) and hierarchical
clustering (Duda & Hart, 1973; Corter, 1996), have been
used to try to elicit the features of stimuli that subjects find
important.

In 1995 Richards and Koenderink proposed a new scaling
technique called Trajectory Mapping (TM). Broadly
speaking, TM is an experimental paradigm that asks
subjects for judgments about the features of stimuli and then
models the subjects’ conceptual structure with a connected
graph. Richards and Koenderink describe the paradigm
generally and give several examples, but do not offer a
detailed algorithm for deriving the graphs from the subject
data. We hope to offer a complete experimental TM
procedure by describing and analyzing such an algorithm.
The graphs resulting from this algorithm resemble those of
Richards & Koenderink previously made by hand using
various heuristics.

Part I: Overview of the Approach

There are 3 stages to TM. The first is the experimental
paradigm, i.e. collecting the data. The second is analyzing
the data, i.e. turning it into graphs. The third is interpreting
the data, i.e. deciding what the trajectories in the graphs
imply about the subject’s mental representations.

In each TM trial, a pair of stimuli are chosen and
designated A and B. The subject is asked to note some
feature that differs across the two and to choose from the
remaining stimuli a sample for each of the blank spaces, an
extrapolant in each direction and an interpolant. The

resulting quintuplet looks something like this: ( extrap. —
A — interp. — B — extrap ).

In some cases, extrapolating or interpolating may not be
appropriate. For these the subject also has the option to
choose “not feasible”, meaning that the subject feels
uncomfortable choosing any feature that links the pair; “not
available”, meaning that the subject can imagine the perfect
stimulus for a slot, but it is not available in the stimulus
set; or “dead end”, meaning that A or B represent a limit for
feature extrapolation.

Using these quintuplets of subject data, we use an
algorithm based on simulated annealing to generate a
connected graph or trajectory map. The links in the graph
reflect frequent connections found in the quintuplet data. By
further analyzing the trajectory map and the data that created
it, we can note subgraphs that might represent features in
the data. These subgraphs offer a representation that
combines features of both metric scaling and clustering; the
subgraphs are ordered clusters.

Comparison with MDS and Clustering

To give an idea of the role that TM can play in relation to
traditional scaling techniques, we offer an example
knowledge domain, analyzed using MDS, hierarchical
clustering, and TM, The domain is a set of 10 subway
stations in Boston. This domain is relatively abstract;
subway stations can be thought of in several contexts.
Where are the stops in relation to each other? Where are the
stops in relation to the city above them? Are the stops on
the same train line? We will illustrate how each of these
questions is answered best by a different representation of
knowledge, and therefore by a different scaling technique.
The subway stations in this example are Boylston, Central,
Charles St., Copley, Downtown Crossing, Harvard,
Kendall, Park St., Science Place, and South Station.

Figure 1 is an MDS plot that comes from asking a
subject for the “geographic similarity” of each pair of
stations, e.g. “How near is this station to that station, on a
scale from 1 to 107" MDS can turn these data into a metric
space. The space illustrates quite well the geographic aspect
of subway station knowledge, where the stations are in
relation to each other. The dimensions of the space could bhe
vaguely described as North-South and East-West, although
they appear slightly skewed here, as predicted by Lynch
(1960).

Note, however, that this plot tells us nothing about which
stops are connected to each other (the “routes™), or where
city boundaries lie (the “clusters™).
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Figure 1: This MDS plot of the similarity data for the
subway stations illustrates quite well the geographic nature
of subway station knowledge. The dimensions are similar
to the North-South-East-West axes of a traditional map of

the Boston area.

Figure 2 is the tree of hierarchical clusters representing the
same similarity data as Figure 1. Here, the stations can be
seen to be clustered by geographic region. The pair of
stations in lower right corner represent the core of downtown
Boston. The four right-most stations make up a broader
downtown area; the five right-most stations are those in
main Boston area. The Kend-Char-Sci P cluster are those
along the Charles river, and the left-most two stops are
those deep in Cambridge. These are the groupings that this
particular subject makes when he thinks about the subway
stops. These clusters answer the question, “Where are the
stops in relation to the city?” Note that we still don’t know
about which stations are on the same lines.

Figure 3 shows the trajectory map of the subway data. By
overlaying the orderings of subject data over the graph, we
can see which nodes form trajectories. In this case, there are
two trajectories that overlap at the Park station. This graph
reveals the subway lines themselves, something neither of
the other approaches could do. The nodes running from S.5.
to Harv are on Boston's Red Line, and Copl through SciP
are on the Green Line. The Park node, as it is indeed
shown, is an intersection point where riders may change
trains. Our clean division of clusters likely stems from the
subject mentally moving from station to station along
single train lines. If the subject lived at Copley, however,
and traveled to Charles St. for work, then the data would
have led us to see Park as a node where the paths “turn
corners”, and we may not have found the division of train
lines. Nevertheless, domains with stimuli that can be
thought of as varying along separate but overlapping
clusters, like subway stations, are very appropriate for TM.

For this domain, each scaling technique contributes a
different insight into the data. MDS illustrates where the
stops are in geographic relation to each other. The
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Figure 2: This hierarchical cluster tree of the subway
station data reveals clusters based on geographic region,
ranging from the core of downtown Boston (right most

cluster) to mid-Cambridge (left most cluster).

Figure 3: This trajectory map of the subway data reveals the
subway lines themselves, something neither of the other
approaches could do. The nodes running from S.5. to Harv
are on the Red Line, and Copl! through SciP are on the
Green Line.

hierarchical clustering tree groups stops together that have
relevance to their area in the city. TM shows which stops
are connected to each other, and in which order. This
comparison illustrates that each method can plays a part in
the analysis and that TM complements the traditional
methods well.

It is worth noting that several researchers have proposed
using a connected graph representation of similarity data;
most prominent are Pathfinder (Cooke, Durso &
Schvaneveldt, 1986), NETSCAL (Hutchinson, 1989), and



MAPNET (Klauer, 1989). TM distinguishes itself from
these methods by modeling not similarities but clustered
orderings of data. By doing so, TM can represent features
that are not well expressed by pairwise relations such as
similarity.

PART II: The Algorithm

Finding the best graph given the quintuplet data is a
combinatorial optimization problem. Richards and
Koenderink solve this problem through a manual heuristic
that involves systematic trial and error, resulting in what is
subsequently taken to be the “simplest” graph, given the
data, while allowing for some inconsistent data. We offer a
TM algorithm that make this procedure objective, using a
simulated annealing paradigm.

The first step in the data analysis is breaking the
quintuplets into triples. Of a quintuplet A - B-C - D E,
for example, the triples wouldbe A B-C, B C D, and
C D - E. The number of times each triple occurs in the
quintuplet data is assigned as the weight on that triple. The
weights are normalized by the maximum possible weight (n
for n stimuli) so that the maximum weight is 1.0. See
Figure 4.

The triples are used to build graphs through overlaps. If
triple (1, 5, 3) occurs frequently (has a high weight), and
triple (5, 3, 4) occurs frequently, then we connect them to
form the chain 1 - 5 - 3 - 4. If we could continue to connect
triples until we formed a complete graph, then the process
would be simple. Often triples conflict, however. There are
two main ambiguities that must be resolved in the triple
linking process. The first conflict is called a “split-or-fit.”
If our next heavily weighted triple is (5, 3, 2), for example,
we aren't sure of the relationship of nodes 2 and 4. We
could have each branch from 3 (splitting the chain), or we
could fit them both into the same straight chain, giving less
importance to the coherence of one of the triples, e.g. 1 - 5
3-4-2.

The other type of ambiguity is simply called a
“conflicting triple,” i.e. when two triples suggest different
ordering for the same three stimuli. In our example, (5, 4,
3) would be a conflicting triple since it contradicts (5, 3, 4).
Conflicting triples can indicate noisy subject data, since a
subject who does not behave consistently would generate
more conflicting triples, but they can also arise from two
stimuli close enough to each other in the feature space that
the subject considers the two orderings interchangeable.
Usually conflicting triples cannot both be satisfied in a
graph, although it sometimes makes sense to include them
both by fitting them in a small triangular cycle.

The goal of the algorithm, as described above, is to find
the best possible graph as a model of the triples. We begin
by constructing an initial unit-link graph with all the links
that would be necessary to satisfy all the triples. We then
optimally adjust this graph for the given triples and for a
certain cost function. This optimization takes place by
carrying out simulated annealing using Gibbs sampling
(Press, et al, 1988). The state variable that we optimize is a
binary link-matrix, stochastically adding and removing links
to minimize the cost function. After finding the optimal
unit-link graph according to the annealing process, we then
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Figure 4: Summary of the Trajectory Mapping procedure.

adjust the parameters of the cost function and begin again.
After iterating this process over a large space of cost
function parameters, we have a collection of unit-link graphs
that are each optimal for their particular parameter settings.
(We discuss below how the various parameters affect the
optimal graphs.) To calculate the final trajectory map, with
a range of weights on the links, we average the optimal
unit-link graphs over the space of the cost function
parameters. See Figure 5 for an overview of the procedure.
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Figure 5: Overview of the simulated annealing portion of
the TM algorithm.



The Cost Function

The cost function is a mathematical model that chooses how
to settle the various ambiguities that arise when trying to
link triples as described above. Our cost function also
represents an attempt to model the manual heuristic of
linking triples that Richards and Koenderink (1995) suggest.
The cost function contains five costs, each of which is
based on an assumption about the constraining triples. To
summarize the cost function, graphs can differ depending on
whether the cost parameters emphasize satisfying all the
triples (giving a more connected graph) or keeping the graph
structure simple (giving a graph with more linear chains and
fewer satisfied triples). To break down this issue, we have
costs of three types, constraint costs, metric costs, and
topological costs.
Constraint Costs A constraint cost is based on the
degree to which the constraints in this optimization problem
(the triples) are satisfied. For example, if we need to satisfy
the triple 1 5 - 3 but 3 is closer to 1 than 5 in the current
graph, that triple is not satisfied. We have one term in the
cost function, called the FailedTriple cost, to penalize for
unsatisfied constraints. Because we want to emphasize the
priority of satisfying triples with higher weights, the
FailedTriple cost is the sum of the logs of the weights of
the triples that the graph left unsatisfied. This cost stems
from the initial idea that the graph should be a good
representation of the triples from the subject data.
Metric Costs There are two terms to penalize for metric
costs, the UnequalSpacing cost and the FarSpacing cost.
We suggest the graph incurs metric costs if it includes a
triple within the graph, but it does not allow the nodes of
the triple to be adjacent. If the nodes of a triple are
unequally spaced or spaced quite far apart, e.g. 1 5 3 is
satisfied, but the graph distance between 1 and 5 is 1, while
the graph distance between 5 and 3 is 4, then the graph has
incurred an UnequalSpacing cost. If the nodes are spaced far
apart, but are equally spaced, then the graph has incurred a
FarSpacing cost. The UnequalSpacing cost for a given
triple is the difference between the number of nodes between
the three triple nodes, multiplied by the weight of the triple.
The FarSpacing cost for a given triple is the number of extra
nodes between the triple nodes, again multiplied by the
weight of the triple. These metric costs stem from our
assumption in TM that when the subject performs the
extrapolations and interpolation in the original quintuplet,
she would prefer to pick stimuli that result in close,
equidistant quintuplets.
Topological Costs There are also two terms to penalize
for topological costs within a given graph. The TotalLinks
cost is equivalent to a “price” per link; each additional link
has a cost. The MaxLinksPerNode cost encourages links to
be spread across nodes instead of stemming from just one or
two individual nodes by assigning a penalty proportionate to
the greatest number of links on any one node (see below).
The TotalLinks cost come from the modeling assumption
that the simplest graph possible should be used to model the
data (Ockham’s Razor). The MaxLinksPerNode cost stems
from the assumption that it would be rare for one stimulus
within a domain to have many more features associated with
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it than the other stimuli. Thus, the cost function can be
expressed as:

COSl=W X, + W,
where ., is the FailedTriple cost, x,, is the UnequalSpacing
cost, x,, is the FarSpacing cost, x,, is the TotalLinks cost,
and x,, is the MaxLinksPerNode cost.

X, + WeXe WXy FW Xy

The Parameters of the Cost Function

Each of the five terms includes a parameter w which weights
that term in relation to the others. Each vector of
parameters w defines a graph space in which we can perform
simulated annealing. A good way to think about the
parameters is as a set of priorities about whether to satisfy
triples or cut down on links. See Figure 6. The fewer links
there are, the fewer satisfied triples there can be. For
example, if the FailedTriple parameter is very low (allowing
triples to fail pell-mell) or if the TotalLink parameter is very
high (reducing the number of links drastically), then the
graph will likely have very few links at all, let alone chains
that could make meaningful trajectories. Likewise, if the
FailedTriple parameter is very high or the TotalLink
parameter is very low, then links will flourish and the graph
will be a dense, fully-connected mess.

@u&

Failed
Triple
Eost —~  contours
- of graphs
f 4 il s l"\___,,_ with equal
s [y number of
/ i links
i ¥ _ - R 0 o
L 0o

-

TotalLinks cost

Figure 6: A schematic illustration of the trade-off between
satisfying triples and keeping graphs simple.

Thus we can cover a useful area of the parameter space by
exploring a three-dimensional subspace of the five-
dimensional parameter space by using just the three
parameters for FailedTriples, TotalLinks, and FarSpacing.
Because graphs can vary so dramatically in this space, the
algorithm runs at a wide range of parameter settings and then
averages the resulting graphs. “Average” means that if link
(1 3) occurred in 50% of the graphs in the sampled
parameter space, then the output graph has a weight of 5.0
(of 10.0) on link (1 - 3).

The question remains as to how to determine this range of
settings.  The current sampling of settings has been
carefully chosen through trial and error on a variety of
different types of data. We run the algorithm over a



sufficiently wide area of space that we are assured that it
reaches extremes in all directions. The extrema can be
recognized when graphs are fully connected, or when there
are no connections at all. The sampling is not completely
uniform; at lower values of the parameters we sample more
densely, because smaller changes in that range have a
significant effect on graphs. We believe that the ideal
subspace within the parameter space varies slightly
depending on various attributes of the stimulus domain, but
our experiments in that area are not yet finished. Even if the
ideal subspace were found, results would not change
dramatically; all the stronger trajectories would emerge the
same, More subtle paths might be able to be identified
more accurately, however,

Once we have a graph, the experimenter can see how the
graph breaks into trajectories by iteratively thresholding the
graph (removing links below a certain weight) and by
plotting the data triples over the graph. Thresholding points
to the strongest trajectories within the graph, and plotting
the actual triples often helps disambiguate intersecting
trajectories. Because the graphs that appear through gradually
increasing the threshold approximate the graphs that one
finds in the weight space as one moves from the areas of
very dense graphs to the areas of less dense graphs, the TM
output graph can be seen as a single representation of a set
of the graphs in the parameter space.

Our algorithm outputs the graph as a text file that is
structured to be read by the Dot and Neato graph-drawing
software of Bell Labs (Koutsofios & North, 1993; North,
1992).

PART III: Diagnostic measures

As with any data collection and analysis procedure,
diagnostic measures are important for answering questions
like, “How well does my model fit the data?’, “How noisy
is the data to begin with?”, and “How similar are these two
subjects’ models?” Below we describe three diagnostic
measures created for TM. The first is a simple test for
whether a set of triples is random or not. The second
measures the explanatory power of the resulting trajectory
map. The third provides a method of comparing different
trajectories maps of the same data.

Measure of Randomness

It is helpful to have a measure of randomness of the subject
data. We measure randomness by comparing the distribution
of the triple weights from the subject’s data with the
distribution of weights that would occur if data were created
arbitrarily, i.e. created by hundreds of Monte Carlo
simulations of subjects.. If the two distributions differ
significantly according to a chi-squared test, then we can
conclude that the subject’s data is worth examining.

If a TM subject ignored our instructions and answered
randomly, the weight distribution of the subject’s triples
would match the Monte Carlo distribution closely. To
measure the significance of the difference, we calculate the z
scores of the differences for each weight level (since the
threshold for significance falls exponentially with increasing
weight). Even the smallest difference in the distributions at
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high weight levels such as 7 or 8 results in an enormous z-
score. For a Monte Carlo subject, for example, with
medium-sized N (N=15), the likelihood of generating a triple
with weight greater than 4 is very small (< 2.4 x 10%), so
any subject data that we find with even one triple with a
weight of 4 or greater is already likely to be far from
random.

Measure of Trajectory Map Fit to the Data

Once we are satisfied with input data, we need a measure of
fit, a number which tells us how well the output of the TM
algorithm models the data. To calculate measure of fit
between a set of triples from a subject and the resulting
trajectory map, we make a list of the triples held within the
model, and then we compare the two lists. So that we can
assign weights to the model-based triples, we first assign
costs to the links of the graph that are inversely proportional
to the link weights. We can then list the triples contained in
the graph with their costs. The cost of a triple consists of
the cost of all links traversed while moving from the first
node to the third node. Once we order the model-triples, we
can compare this list of triples with the original data

We then use two different measures to assess fit, each

based on a comparison of these two lists of triples. The
first is simply the percentage of unmatched triples, i.e. the
percentage of the data triples that were not included in the
model. If a model contains 3 out of the 4 data triples, for
example, this measure is 25%. This measure does not
penalize the model for containing additional triples beyond
the data, however, and thus a fully-connected model would
satisfy 100% of the triples while offering little insight into
the domain. Also, this measure gives us no indication as to
whether the weightings on the satisfied triples are
appropriate.
Our second measure of fit is based on ranking the triples in
the two lists, and then calculating the Kolmogorov-Smirnov
statistic, D, (Press et al, 1988; Siegel, 1956) for the two
cumulative distributions of the two lists of ranks. D equals
the maximum difference between the two distributions. If
the model contained exactly the same triples as the data,
weighted in the same order, the statistic would be zero. As
the model adds additional triples (as it often does just
because of the necessary topology of a graph that models
other triples), the distribution of model-triple ranks becomes
distorted in comparison to the ranks of the data triples.
Thus, this measure penalizes for the additional triples in a
model that the matched-triple measure does not take into
account.

Both of these measures are key for determining the level
of “noise” in the data. Because it is likely that lower-
weighted triples contain more noise, we threshold the triples
data, i.e. remove triples weighted below a certain threshold
before using them as input for the algorithm. The measures
of fit are used to determine the threshold. We run the
algorithm on sets of triples based on all possible thresholds,
and then examine the various measures of matched triples
and the Kolmogorov-Smirnov statistic. Note that when we
measure the number of maiched triples, we compare the
model-triples with all data triples, even if the model was
based on only triples of weight 3 and above, etc. Using



both measures, we can see at which threshold the model fits
best.

Measure of Similarity of Two Trajectory Maps

Because we have proposed a new model for representing
subject data, it is important that we also propose a measure
for rating the similarity of two different models. Given two
trajectory maps, we look at the lists of the weighted links
for both graphs, and reward for common links and punish for
distinctive links. To differentiate between graphs with
identical topology but differently weighted links, we also
penalize for the difference between weights on the common
links. The range of this measure is [-1.0, 1.0], where 1.0
implies identical graphs. Using such a measure, we can
compare the trajectory maps of two subjects and decide
whether they might be using similar features to construct
their maps. It is important to note that our feature measure
focuses explicitly on individual links, as opposed to overall
graph structure.

Summary & Conclusions

We have described an algorithm designed to build trajectory
maps from subject data objectively. Based on the simulated
annealing, the algorithm uses triples derived from subject
data as constraints that can be used to find an optimal
connected graph. We have chosen parameters of the cost
function so that the algorithm models the manual heuristics
followed by Richards & Koenderink (1995). Lastly, we
introduced three diagnostic measures for trajectory maps: a
measure of subject data noise, a measure of fit for a
trajectory map its data, and a measure of similarity between
two trajectory maps. We believe that this algorithm offers
an useful method of creating trajectory maps that closely
mimics the original intentions of Richards & Koenderink.

A more detailed explanation of the algorithm can be found
in Gilbert (1997). This work also includes Trajectory Maps
of a variety of data sets, including kinship terms, colors,
sound textures, musical intervals, Boston tourist attractions,
and knowledge representations. The web page at
<http://www-bcs.mit.edu/~stephen/tma> allows the reader to
download source code for the algorithm.
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