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Polymers and Brownian rods have been predicted and observed to migrate across streamlines in flowing systems, poten-
tially impacting rheological measurements, material processing, and microfluidic systems. In particular, gradients in
cross-stream diffusivity give rise to concentration gradients across streamlines, in direct contrast with naive expecta-
tions from equilibrium statistical mechanics. Here, we provide a simple, physicially intuitive understanding for the
subtle mechanisms that underlie this counter-intuitive effect. Specifically, we identify three minimal ingredients: (1) the
cross-stream diffusivity of the solute must depend on its internal degrees of freedom, (2) internal degrees of freedom
must be driven nonconservatively in a position-dependent manner, and (3) a mechanism must exist for the concentration
to relax to a steady state spatial proflie. Significantly, we argue that the inhomogeneous steady-state distributions that
have been observed do not result from directed cross-stream migration. In fact, we show that no migration occurs in
systems without spatial relaxation. Rather, concentration gradients are established due to anisotropic rates of spatial
relaxation, and the lack of directed cross-stream migration that would be found in a conservative system. We demon-
strate with simple model systems analogous to Brownian rods, externally triggerable two-state molecules, and in exter-
nally imposed temperature or solute gradients, which affect steady concentration profiles beyond what would be
expected from thermophoresis or diffusiophoresis. Our results have implications for separation strategies and for vari-
ous microfluidic and processing flows. VC 2014 American Institute of Chemical Engineers AIChE J, 00: 000–000, 2014

Keywords: fluid mechanics, suspensions, rheology, transport

Background and Introduction

Understanding the behavior of small particles and macro-
molecules in suspension has long played a central role in
fundamental and applied science. In particular, many techni-
ques and technologies assume solute to remain homogene-
ously distributed. However, flows may drive unexpected
concentration gradients, with deleterious effect. For example,
polymer depletion layers near rheometer walls give an effec-
tive slip that causes material mischaracterization. Material
processing flows can cause inhomogeneous particle distribu-
tions that degrade the finished product quality. Many sensing
and detecting systems in microfluidics and biotechnology
involve flowing solutions of target molecules that bind to
wall- or bead-bound receptors.1 If fluid flows along receptor-
coated walls cause target molecules to migrate perpendicular
to the walls, sensing rates will differ between stationary and
flowing solutions. Hydrodynamic chromatographic separa-
tions are based on the relative amounts of time spent by par-
ticles of different sizes on streamlines of different speeds;
unexpected mechanisms that influence particulate distribution
will affect the resulting separation.

In addition to their applied importance, these issues raise
questions that are deceptively simple to pose, yet whose

resolution involves the subtle interplay of various fluid
mechanical, statistical mechanical, and thermodynamical
phenomena. When does intuition from equilibrium statistical
mechanics carry over to flowing systems? For example, solu-
tions of otherwise homogeneous polymers flowing through
straight channels or cylinders have been observed to develop
inhomogeneous concentration profiles, with concentration
gradients perpendicular to fluid streamlines that are attributed
to gradients in cross-stream diffusivity.2–14 Such systems are
steady in the Lagrangian sense—material elements moving
along streamlines experience a temporarily steady environ-
ment—and no forces are exerted in directions across stream-
lines. One might naively hope that results from equilibrium
statistical mechanics will apply, namely, a local concentra-
tion distribution that follows the Boltzmann distribution,
with no dependence on kinetic parameters like viscosity and
diffusivity. In many cases, such equilibrium expectations are
recovered. Nonetheless, gradients in cross-stream diffusivity
in even dilute solutions of flowing polymers give rise to
non-Boltzmann distributions, despite the lack of a clear driv-
ing force that establishes them.

Although the dissipative nature of flowing systems gives
cover for the failure of equilibrium theories, it leaves no
simple means of discerning the physical mechanisms behind
“cross-stream migration,” nor does it provide any context to
clearly distinguish flowing systems for which the Boltzmann
distribution does indeed hold from those in which cross-
stream inhomogeneities develop. In this work, we examine
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dissipative systems that establish cross-stream concentration
gradients, distill out the essential ingredients, and elucidate
the mechanism by which they do so. In the spirit of using
bead-spring models of varying complexity to capture the
qualitative (and even quantitative) mechanistic phenomena
for polymeric liquids,15 we analyze simple model systems to
elucidate phenomena that arise in systems that are more
complicated mathematically and physically. In particular, we
pose a series of paradigmatic model problems that are math-
ematically simpler than those that have been analyzed thus
far. In so doing, we clearly identify three ingredients that are
necessary and sufficient to give rise to this counter-intuitive
phenomenon, and identify a clear, mechanistic picture by
which these steady-state inhomogeneities develop. In fact,
we demonstrate that the eventual concentration gradients
arise not due to any directed cross-stream migration, as
might be expected, but rather due to anisotropic relaxation.
Perhaps ironically, it is the lack of directed, cross-stream
migration that gives rise to cross-stream gradients. After all,
anisotropic relaxation exists in equilibrium systems as well,
wherein the Boltzmann distributions reflect the mutual can-
celation between directed, cross-stream migration and aniso-
tropic relaxation.

These insights allow us to propose a variety of new sys-
tems in which we predict analogous “gradient-relaxation
drift,” including colloidal and macromolecular (e.g., poly-
meric or protein) systems. Additionally, we will discuss this
phenomenon in the context of thermophoresis and other solu-
tion gradients, and demonstrate that concentration gradients
due to anisotrophic relaxation will arise in addition to any
thermophoretic or multicomponent effects.

We begin by discussing what can be expected from sus-
pended species in equilibrium systems. Because inertia is
typically negligible in liquid solutions, particulate behavior
is governed statistically by the Smoluchowski equation

@P

@t
52r � j5r � DðrÞrP1bðrÞr/ðrÞPf g (1)

Here Pðr; tÞ is the probability of finding the particle at r

at time t, j is the probability flux, /ðrÞ is the potential
energy (e.g., gravitational, electrostatic, or magnetic) for a
particle located at r, and the diffusivity and mobility tensors
DðrÞ5kBTbðrÞ are related via the fluctuation-dissipation the-
orem. In equilibrium, Eq. 1 is solved for arbitrary DðrÞ sim-
ply by the Boltzmann distribution

PBðrÞ5P0e2/ðrÞ=kBT (2)

Notably, no kinetic properties (viscosity, diffusivity,
mobility) appear in the equilibrium distribution.

In flowing systems, the probability flux j is modified to
include advection with the local fluid via

ja5uðrÞP (3)

to give an advection–diffusion equation

@P

@t
5r � DðrÞrP1bðrÞr/ðrÞPf g2uðrÞ � rP (4)

In many cases of microfluidic, scientific, and industrial
importance, flows occur along channels or walls and are,
thus, perpendicular to confining forces ðu � r/50Þ. One
might expect the Boltzmann distribution (2) to thus hold, as

uðrÞ � rPBðrÞ52
PBðrÞ
kBT

u � r/50 (5)

even though the system is not in equilibrium.
Although the Boltzmann distribution is indeed often

observed in flowing systems, curious exceptions can be
observed even in homogeneous systems with u � r/50
everywhere. One might suspect that suspended particles
migrate across streamlines due to deterministic, hydrody-
namic interactions with channel walls; however, general and
powerful symmetry arguments based on the reversibility of
Stokes flow16–18 do not allow such cross-stream migration
for rigid particles in the low-Reynolds number limit of inter-
est here.

Additional physics are required to break this reversibility and
drive particles across streamlines. For example, inertia can
induce drift away from walls,19,20 and can be exploited to
manipulate particles and cells in “intertial microfluidics.”21

Many-body collisions in driven colloidal suspensions give rise to
“shear-enhanced migration” toward regions of low shear,22 and
induce chaos that breaks irreversibility even in deterministic,
non-Brownian suspensions.23 Deformable bodies in flow (e.g.,
red blood cells,24 emulsion drops,25 and polymers2–4,6,10–12)
migrate away from walls via a well-known hydrodynamic force-
dipole mechanism.25

Less easily explained, however, are the low polymer con-
centrations observed in the center of channel flows,5,6,8,10,11

despite the irrelevance of many-body effects, the lack of
nearby walls, and the absence of flows or forces that would
drive a cross-stream migration. Early theories appealed to
equilibrium statistical mechanics, and argued that systems
seek less deformed states to maximize entropy (see, e.g.,
Ref. 2 for a review). However, dissipative systems need not
obey even the basic principles of equilibrium statistical
mechanics. Here, by contrast, deformable bodies move to
maximize deformation.

Two model systems have been studied explicitly to
address these flowing polymer systems: Brownian rods3,4

and bead-chain polymers6,8,11 in parabolic flow between
channel walls. Through simulations and multiple-timescale
analyses, this subtle “cross-stream migration” has been
argued to result from a diffusivity that depends on rod/poly-
mer configuration, and configurations that are driven out of
equilibrium by the (position-dependent) flow.

Basic System

For guidance, we turn to a minimal system that gives rise
to non-Boltzmann profiles under steady-state flows. For
mathematical simplicity, we consider a particle whose state
Pðq; y; tÞ can be described by two Cartesian co-ordinates: y
as a physical location and q as a “configuration” (Figure 1).
The translational y-diffusivity Dyy depends on configuration
q, which is driven in a nonconservative, y-dependent manner
(i.e., with a convective flux uqðyÞ in configuration space), to
give a Smoluchowski equation

@P

@t
5
@

@q
Dqq

@P

@q
2uqðyÞP

� �
1
@

@y
DyyðqÞ

@P

@y

� �
(6)

More generally, some conservative force / (e.g., an exter-
nal magnetic field) might affect the configuration, in which
case
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(7)

where

aðyÞ5uqðyÞ2
Dqq

kBT

@/
@q

(8)

We have deliberately stripped our model system of as
many mathematical complications as possible, for clarity and
ease of presentation. One analogous physical representation of
this system would be a Brownian rod flowing in a Poiseuille
flow between straight channel walls (Figure 1). The location
of the rod within the channel is given by y, and the rod’s ori-
entation angle (described in the full, physical system by one
or two rotation angles) is simplified here to a Cartesian vari-
able q in our model system. The translational (cross-stream)
diffusivity Dyy of the rod at each instant depends on its orien-
tation q, as diffusivity parallel to the axis of an infinitely thin
rod is double that perpendicular to the axis (e.g., Ref. 17).
Finally, any local shear rate changes the average alignment of
the rod [introducing a peak to an orientation distribution func-
tion Pðh;/Þ, here simplified as changing the “q” distribution
function P(q)] in a spatially nonhomogeneous way: stronger
shear rates (near walls) shift the peak in conformation space
to greater average orientations. A different realization of this
basic system would be a (deformable) polymer in flow, whose
configuration variable “q” could be multidimensional, depend-
ing on the level of detail it was modeled.

We briefly adapt the multiple-scales analysis from Ref. 3
to the present system (Eq. 7). If gradients in y are small and
configurations q relax quickly, then a quasisteady distribution
in q is achieved at each position y

Pðq; y; sÞ � Aðy; sÞ exp
uqðyÞq

Dqq
2

/ðqÞ
kBT

� �
(9)

where the time scale s over which the local concentration A
evolves is long compared with the relaxation time for config-
urations. A steady distribution Psðq; yÞ is achieved, when
there is no net flux in the y-directionð

DyyðqÞ
@Psðq; yÞ

@y
dq50 (10)

where we have integrated over all possible configurations q.
This no-flux condition

@

@y
AsðyÞ

ð1
21

DyyðqÞ exp
uqðyÞq

Dqq
2

/ðqÞ
kBT

� �
dq

� �
50 (11)

can be directly integrated via

AsðyÞ
ð1

21
DyyðqÞ exp

uqðyÞq
Dqq

2
/ðqÞ
kBT

� �
dq5C0 (12)

to give an explicit form for the prefactor As

AsðyÞ5C0

ð1
21

DyyðqÞ exp
uqðyÞq

Dqq
2

/ðqÞ
kBT

� �
dq

� �21

(13)

The steady-state concentration CsðyÞ is thus inhomogene-
ous and given by

CsðyÞ5
ð

Psðq; yÞdq5

C0

ð
e

uqðyÞq
Dqq

2
/ðqÞ
kBT

� �
dq

ð
DyyðqÞe

uqðyÞq
Dqq

2
/ðqÞ
kBT

� �
dq

(14)

Analogous integrals for the specific system of Brownian
rods in Poiseuille flow are given in Ref. 3.

Significantly, neither forces nor advective flows exist that
drive particles across streamlines (i.e., in the y-direction).
Nonetheless, a nonuniform (non-Boltzmann) concentration
profile is attained, wherein concentrations are higher where
cross-stream diffusivities are lower. This would appear to
require two key features: a configuration-dependent transla-
tional diffusivity DyyðqÞ, and configurations that are driven
by a nonconservative “advection” uqðyÞ. If Dyy were inde-
pendent of configuration q, it could be taken outside the inte-
gral in (13) and (14) would give a constant concentration
Cs5C0=D0. If the “configuration advection” uq did not
depend on position y, the right-hand side of (14) would sim-
ply be constant. Finally, in a conservative system, the config-
uration flux uq would be derivable from a scalar potential

ucons
q ðyÞ52

@U
@q

(15)

which would, in turn, introduce a positional advection

ucons
y 52

@U
@y
� q

@uq

@y
(16)

whereupon (6) would simply give a Boltzmann distribution
for Cs.

How are these non-Boltzmann concentration profiles
established? One might naturally expect that the local flow
induces a directed, cross-stream drift. We now demonstrate,
however, that no average drift occurs in an unbounded sys-
tem. The Smoluchowski equation (6) represents conservation
of probability

_P52r � j (17)

where j consists of probability fluxes, both in configuration

j q52Dqq
@P

@q
1uðyÞP2

Dqq

kBT

@/
@q

P (18)

and position

j y52DyyðqÞ
@P

@y
(19)

Figure 1. Model system for cross-stream concentration
gradient formation.

A solute flows at cross-stream position y along a channel,

and possesses a configuration or internal degree of free-

dom, denoted by a Cartesian variable q (which is here

depicted as rod orientation.) The cross-stream diffusivity

DyyðqÞ is taken to depend upon configuration (just as

rod diffusivity depends upon orientation), and the con-

figuration is driven in a nonconservative, position-

dependent way (here depicted as a shear-rate gradient

that orients the rod to a varying amount.)
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Multiplying the Smoluchowski equation (17) by y, and
integrating over q and y gives an evolution equation for hyi

@hyi
@t

52

ð
y

ð
@jq

@q
dq

� �
dy2

ð ð
y
@jy

@y
dy

� �
dq (20)

The first term vanishes identically upon integration
because jq50 at infinity, and the second may be integrated
by parts to yieldð ð

jydydq5

ð ð
DyyðqÞ

@P

@y
dydq (21)

which direct integration gives

@hyi
@t

52

ð
DyyðqÞP

����
y51

y521
dq (22)

Since Pðy561Þ � 0 at any finite time, the cross-stream
drift is given precisely by

@hyi
@t
� 0 (23)

We are now faced with an apparent contradiction: this sys-
tem evolves from an initial Boltzmann concentration to a
non-Boltzmann distribution (14) under a nonconservative
configuration “flux.” Although one might expect this to
result from a directed, cross-stream migration, we have
shown that there is identically zero drift in this system. How
can these two observations be reconciled?

We now argue that anisotropies in the way that concentra-
tion profiles relax to steady state, rather than any net cross-
stream drift velocity, are responsible for the eventual non-
Boltzmann steady state. Arguments based on the steady state
obscure the dynamics that must occur to establish that
steady state. The lack of any mean drift (Eq. 23) in the
simplest model system (a polymer or rod flowing within a
channel3,4,6,11,12), arises because no mechanism exists for
concentration profiles to relax to a steady state—rather, the
profiles can simply spread without bound. Steady state is
never achieved in the unbounded system, as the spatial relax-
ation time is infinite.

Particles flowing between two no-flux channel walls
ðy56LÞ, however, experience no confining force until they
encounter the wall, which exerts whatever force is required
to maintain the no-flux condition. Repeating the above argu-
ment for systems bounded by no-flux walls at 6L modifies
(22) to give

@hyi
@t

52

ð
DyyðqÞ½Pðq;LÞ2Pðq;2LÞ�dq (24)

which is not generally zero. The position-dependent
“configuration advection” gives a different configuration dis-
tribution Pðq;6LÞ at the top and bottom surfaces. The no-
flux boundary effectively takes those particles that would
have diffused past 6L in an unconfined system, and injects
them back in. It is the diffusivity difference between
particles reinjected at the top (y 5 L) vs. those at the bottom
ðy52LÞ that leads to the eventual cross-stream gradients. In
other words, the particles themselves experience no net
migration within the channel—as many fluctuate up as
down, and the ensemble-averaged position does not drift—
until particles experience a confining force that drives their
positional relaxation. The response to this confining force
depends on the local mobility byy5Dyy=kBT of the solute:

those particles that reach the upper wall (where Dyy is lower)
take longer to return than those that reach the channel center
(where Dyy is higher). Therefore, solute gradually accumu-
lates in regions of low average diffusivity over time scales
relevant for positional relaxation (here given by s � L2=Dyy).

Conservative Systems

The same anisotropy in positional relaxation occurs in con-
servative systems, whenever spatial diffusivity Dyy depends on
position y. How is it that equilibrium systems avoid non-
Boltzmann concentrations? For guidance, we turn to the mini-
mal conservative system, which has spatially varying diffusiv-
ity DyyðyÞ but no internal degrees of freedom q. Its
Smoluchowski equation

@P

@t
5
@

@y
DðyÞ @P

@y

� �
(25)

when multiplied by y and integrated over all y, yields an
evolution equation for the mean position

@hyi
@t

52

ð
y
@jy

@y
dy5yjy

����
L

2L

1

ð
jydy (26)

The first term on the right vanishes because there is no
flux from “outside”—whether at infinity or at a boundary.
The second term involves a diffusive flux, which can be
integrated by parts to giveð

D
@P

@y
dy5DðyÞPðyÞ

����
L

2L

2

ð
PðyÞ @D

@y
dy (27)

so that

@hyi
@t

5

ð
PðyÞ @D

@y
dy2DðyÞPðyÞ

����
L

2L

(28)

The DðyÞPðyÞjL2L term is the precise analog of Eq. 24,
describing the anisotropic “reinjection” of particles due to
the confining forces imposed by the two walls, and drives a
gradual accumulation of solute in regions of low diffusivity.

The
Ð

PðyÞ@yDdy term, however, has no analog in the sys-

tems described above. Any diffusivity that depends explicitly
on position y drives a true cross-stream migratory velocity
toward regions of greater diffusivity, as though the solute
species were convected with velocity r � D. Thus, even in
an unbounded system (L!1, in the absence of relaxa-
tion)—there is a nonzero solute drift up diffusivity gradients.
In equilibrium, this drift is precisely counteracted by the ani-
sotropic positional relaxation: a constant concentration
PðyÞ5P0, satisfying the Boltzmann distribution, clearly satis-
fies Eq. 28

@hyi
@t

5P0DðyÞ
��L
2L

2P0 DðLÞ2Dð2LÞ½ � � 0 (29)

By contrast, a spatial diffusivity Dyy that does not depend
explicitly on position y, but rather on configuration q, which
on average depends on position y, exhibits no r � D drift to
cancel the anisotropic positional relaxation, giving rise to
non-Boltzmann distributions as in Eq. 24.

It is perhaps ironic that the non-Boltzmann concentration
gradients attained in steady-state flowing systems arise due
to the absence of a cross-stream drift velocity. The hallmark
of the phenomenon described here is that concentration gra-
dients build only through anisotropic relaxation of the
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concentration field. An ensemble of particles experiences
zero net drift until the particle positions are forced to relax
toward a steady state, at which point the cross-stream gra-
dients in mobility and diffusivity cause positional relaxation
from one end to occur more quickly than from the other.

Specific Model Calculations

Having laid the general framework for cross-stream gradi-
ent formation via anisotropic relaxation, we now demonstrate
with explicit calculations of the dynamics of three paradig-
matic model systems, each of which illustrates a different
feature. The first involves a solute whose configuration q and
position y are both confined by harmonic potential wells.
The second involves a solute whose configuration q is har-
monically confined, but whose position y is confined
between two planar walls, and thus, which relaxes purely
diffusively. Although the latter is the simplest and most
direct analog of the flowing suspensions described initially,
it is algebraically more cumbersome than the harmonic sys-
tem. These two examples involve different relaxation mecha-
nisms, in line with the general role for relaxation we have
argued. A particular benefit of these two computations is
that they elucidate the dynamic, transient processes by which
cross-stream gradients arise. To generalize our picture
beyond continuous degrees of freedom (like rotation), we
examine a third model system with two discrete states, such
as a protein or macromolecule that can be folded or
unfolded. Finally, we examine particles in solutions with
imposed gradients (e.g., thermal or solute), wherein
“differential relaxation” drives steady-state concentration
gradients in addition to those driven by thermophoretic or
diffusiophoretic drift.

Doubly harmonic potential well

We begin with perhaps the simplest model system (Fig. 3)
in which anisotropic relaxation gives rise to cross-stream
gradients. Specifically, we consider a solute whose positional
diffusivity DYYðQÞ depends linearly on “configuration” Q via

DYYðQÞ5D0ð11�QÞ (30)

where D0 is a constant diffusivity. We assume this linear
dependence for the sake of analytical tractibility and to illus-
trate the fundamental mechanism behind this phenomenon,
rather than because it accurately describes a range of sys-
tems. Although rods3,4 and near-spheres26 have diffusivities
with a mild Oð1Þ dependence on orientation (at most a fac-
tor 2 for rods of infinite aspect ratio17), deformable solutes
like polymers can stretch significantly to yield extremely
large differences in diffusivities when subjected to different
flows.

The solute sits in a doubly harmonic potential well that
confines both position and configuration

UðQ;YÞ5kBT
Q2

2L2
q

1
Y2

2L2
y

 !
(31)

so that spring constants in the Q- and Y-directions are

kQ5
kBT

L2
Q

; kY5
kBT

L2
Y

(32)

Finally, a nonconservative flux drives conformational
changes in a position-dependent manner, via

uQ52 _cY (33)

Note, here that the capital variables Q, Y, and T represent
dimensional quantities; later, nondimensionalized quantities
will be represented by lower-case variables.

The Smoluchowski equation for this system is

@P

@T
52

@jQ
@Q

2
@jY
@Y

(34)

where

jQ52D0

@P

@Q
2 _cYP2D0

QP

L2
q

(35)

and

jY52D0ð11�QÞ 2
@P

@Y
2

YP

L2
Y

� �
(36)

We take the particle to start at Q05Y050 at T 5 0. Scaling
lengths Q and Y by typical Q-excursions from the center of
the well, LQ, and time T by the Q-relaxation time back to
the center of the well, L2

Q=D0, we obtain a nondimensional-
ized equation

@P

@t
5Pqq1ayPq1ðqPÞq1ð11bqÞ Pyy1s21ðyPÞy

� �
(37)

Here, the parameter a

a5
_cL2

q

D0

� 1 (38)

is a dimensionless shear rate, and relates the time to diffu-
sively explore “configuration space” (i.e., to diffusively
explore the q-well) to the shear shear time _c21. The parame-
ter b

b5Lq�� 1 (39)

relates the spatial extent of the configuration well to the
length scale over which the diffusivity varies ð�21Þ; and s

s5
L2

y

L2
q

� 1 (40)

gives the positional relaxation time scaled by the configura-
tional relaxation time. We assume configurations relax much
more quickly than position within the channel, so s� 1,
and that the q-spring is much “stronger” than the y-spring,
so that y-excursions are larger than q-excursions by O s1=2

	 

.

It will prove convenient to rearrange the Smoluchowski
equation as

L0P5ayPq1bqPyy1bs21qðyPÞy (41)

where

L0P � @P

@t
2Pqq2ðqPÞq2Pyy2s21ðyPÞy (42)

gives the dynamics of the “unforced” system, wherein a par-
ticle diffuses within a doubly harmonic potential well.

Before launching into a full, propagator-based treatment,
the steady problem can be readily be solved using a pertur-
bation expansion

Psðq; yÞ5Ps
01aPs

a1bPs
b1ab Ps

ab1Ps
ba

h i
(43)
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where

Ps
a5L21

0 y
@Ps

0

@q

� �
(44)

Ps
ab5L21

0 q
@2Ps

a

@y2
1

q

s
@

@y
yPs

a

	 
� �
(45)

and so on. By way of notation, Pab is the solution arising
from the “source” terms bqPa;yy, Pba arises from ayPb;q and
so on. The steady distributions can be shown to be given by

Ps
0ðq; yÞ5

e2q2=22y2=ð2sÞ

2ps1=2
(46)

Ps
aðq; yÞ52s1=2qy

e2q2=22y2=ð2sÞ

2pð11sÞ (47)

Ps
bðq; yÞ50 (48)

Ps
abðq; yÞ5

s1=2ð2s1q2Þy
ð113s12s2Þ

e2q2=22y2=ð2sÞ

2p
(49)

Ps
baðq; yÞ50 (50)

The ensemble-averaged displacement �ys, computed using
(43) in

�ys5

ð1
21

ð1
21

yPsðq; yÞdqdy (51)

is zero for all terms smaller than O abð Þ, with the first non-
zero contribution to �ys

�ys5ab
s2

11s
(52)

arising exclusively from Pab, which represents particles

whose configurations are first driven by a position-dependent
advection (giving aPs

aÞ, and whose positions then relax back

to the center anisotropically (introducing s), due to the
configuration-dependent diffusivity/mobility (giving b). This
is the mechanism indicated in Figure 2. By contrast, Ps

ba —

which reflects contributions from particles that first diffuse
anisotropically, then experience conformation advection—is
actually zero, and does not contribute to �ys.

Because two-dimensional (2-D) diffusion in a harmonic
well

L0P50 (53)
subject to initial conditions

Pðq; y; 0Þ5dðq2q0Þdðy2y0Þ (54)

can be solved exactly,27 and because the forcing terms on
the right-hand side of Eq. 41 are all small, we can treat this
system perturbatively. The leading-order behavior is
described simply by the unperturbed propagator L0 for a par-
ticle diffusing in a 2-D harmonic well, with the right-hand
terms acting as “source” terms much as weak scatters act as
source terms for scattering. A significant benefit to this
approach is that it elucidates the dynamic mechanism that
gives rise to the gradients we seek to understand, as the
order in which the processes occur (advection, relaxation,
etc.) is accounted for naturally.

To examine the full, time-dependent behavior of this sys-
tem, we pose an expansion of the form

Pðq; y; tÞ5P01aPa1bPb1abðPab1PbaÞ1::: (55)

where the “free” propagator P0 relates the probability that a
particle starting at fq0; y0g within a doubly harmonic poten-
tial at time t0 will be located at fq; yg at time t, and is given
by27

P0ðq; y; t; q0; y0; t0Þ5f ðq; q0; t; t0Þgðy; y0; t; t0Þ (56)

where

f ðq; q0; t; t0Þ5
exp 2

ðq2q0e2ðt2t0ÞÞ2
2ð12e22ðt2t0ÞÞ

� �
ffiffiffiffiffiffi
2p
p
ð12e22ðt2t0ÞÞ1=2

(57)

gðy; y0; t; t0Þ5
exp 2

ðy2y0e2ðt2t0Þ=sÞ2
2sð12e22ðt2t0Þ=sÞ

� �
ffiffiffiffiffiffi
2p
p

s1=2ð12e22ðt2t0Þ=sÞ1=2
(58)

We now sketch the perturbation calculation; details are
given in Appendix B. We take the particle as initially being
located at the origin at time t 5 0. At any later time t0, the
particle has a probability P0ðq0; y0; t0; 0; 0; 0Þ of being located
at fq0; y0g. Therefore, at time t0 the “advective” perturbation
effectively gives rise to sources and sinks according to
ay0@P0=@q0, each of which then propagates in time via P0ðq;
y; t; q0; y0; t0Þ to contribute to the resulting probability of being
at fq; yg at time t. Since advective perturbations occur at
any time t0 between zero and t, the full advective contribu-
tion is found by integrating over all times from zero to t

Paðq; y; tÞ5L21
0 y

@P0

@q
(59)

Figure 2. Fundamental physical mechanism for differential relaxation.

(a) The solute makes a diffusive step either up (1a) or down (1b), with equal probability, leading to no net change in the ensemble-

averaged position of the particles. (b) The solute “configuration” is driven by a local “configuration advection,” that is different

for up (2a) and down (2b) steps. The solute configuration rapidly equilibrates to a new quasisteady mean configuration. The

ensemble-averaged center of mass continues to remain unchanged. (c) The solute molecules relax back to the center. However, as

the mean diffusivity (or, equivalently, mobility) of the solute is lower for the “up” step (3a) than for the “down” step (3b), the lat-

ter relaxes to the center more quickly. The slower relaxation from above causes the mean position to rise, eventually establishing

cross-stream concentration gradients over the relaxation time scale.
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5

ðt

0

ð ð1
21

y0
@P0ðq0; y0; t0; 0; 0; 0Þ

@q0

� �
P0ðq; y; t; q0; y0; t0Þdq0dy0dt0

(60)

The term in parenthesis reflects “scattering” at time t0—–
here due to position-dependent advection—and the second
free propagator P0 takes the “scattered” probability at time t0

and propagates it forward to time t.
As shown in Appendix B, the O að Þ probability is

Paðq; y; tÞ52qyf ðq; 0; t; 0Þgðy; 0; t; 0ÞHaðtÞ (61)

where

HaðtÞ5
s

11s 2 se22t=s

s21
1 2se2s11

s t

s221

ð12e22tÞð12e22t=sÞ (62)

At times long enough for the system to relax to steady
state ðt� sÞ;Paðq; y; tÞ approaches the steady value Ps

a given
in (47).

In principle Pab can be computed through straightforward,
but involved, Gaussian integrals. As discussed earlier for the
steady solutions, Pab captures processes whereby the advec-
tively perturbed probability ðaPaÞ experiences a
configuration-dependent relaxation involving b. From the
arguments we presented above, we expect that precisely
those terms give rise to the eventual accumulation of proba-
bility in the “slow-relaxation” regions. Indeed, the mean
position

hyi5ab
ð ð

yPabdydq (63)

is shown in Appendix B to be

hyi5 s2

s11
1

s2e22t=s

s21
22

se211s
s t

s221
22se2t

s (64)

The mean position hyi asymptotes to Ps
ab (from Eq. 52),

and is plotted in Figure 4. As expected from Eq. 23 the ini-
tial mean drift dhyi=dtjt50, is identically zero. Despite the
nonzero gradient in the average cross-stream diffusivity

@hDyyðqÞi
@y

����
t50

6¼ 0 (65)

the mean position does not change before the concentration
profile has a chance to relax. Had there been a true cross-
stream drift velocity due to cross-stream diffusivity gra-
dients, it would have been evident even at t 5 0.

Singly harmonic well, between two walls

We now turn to a second example (Figure 5), which is
more cumbersome mathematically, but is a closer analogy to
the simplest system we described earlier, and which most
clearly demonstrates the mechanism by which concentration
accumulates. In particular, we consider a particle whose
position Y is confined by two hard walls (i.e., no forces
except to confine it between 6h), whereas “configurations”
Q are confined within a harmonic potential centered at
Q 5 0, as shown in Figure 5. We take the configuration-
dependent diffusivity DyyðQÞ to be given by (30), and the
advective velocity

uq52U0sin ðpY=2hÞ (66)

to simplify an image treatment, as will soon be apparent.
This gives a Smoluchowski equation

@P

@T
5

@

@Q
D0

@P

@Q
1U0 sin

pY

2h
P1D0

Q

L2
q

P

 !
(67)

1D0ð11�QÞ @
2P

@Y2
(68)

Figure 3. Definition sketch for the simplest model sys-
tem for differential relaxation.

A solute whose position y and configuration q are both

confined by harmonic springs. The “configuration

advection” uqðyÞ is spatially dependent and nonconser-

vative, and diffusivity DyyðqÞ depends on configuration.
Figure 4. The mean position hyi as a function of time

for the doubly harmonic solute (from Eq. 64).

Note that the slope dhyi=dt is zero at t 5 0, as the mean

position builds up via differential relaxation, rather than

a directed cross-stream migration. Over the characteris-

tic relaxation time, the mean position saturates to the

value given by (52).

Figure 5. Definition sketch for a solute whose configu-
ration q is harmonically confined, but which
undergoes free diffusion between hard walls
at y56h.

The configuration advection uqðyÞ is taken to be sinusoi-

dal, as periodic extensions of the system can be added,

and walls treated with images (fig. 6).
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where capital variables are dimensional. To nondimensional-
ize, we scale Q by typical Q-excursions from the center of
the well, Lq, Y by the channel height h, and time T by the
Q-relaxation time back to the center of the well L2

q=D0, to
obtain the nondimensionalized equation

@P

@t
5Pqq1ðqPÞq1a sin

py

2
Pq1K 11bqð ÞPyy (69)

where

a5
U0Lq

D0

� 1 (70)

b5�Lq � 1 (71)

K5
sq

sy
5

L2
q

h2
� 1 (72)

Here, unlike the doubly periodic well, we must impose
boundary conditions. Imposing a no-flux condition at the
walls gives

DyyðqÞ
@Pðq; y; tÞ

@y

���
y561

50 (73)

It is straightforward to find the steady solution perturba-
tively, posing a regular expansion

Psðq; yÞ5Ps
01aPs

a1abPs
ab (74)

and finding

Ps
0ðq; yÞ5

e2q2=2

2
ffiffiffiffiffiffi
2p
p (75)

Ps
aðq; yÞ52

ffiffiffi
2

p

r
e2q2=2q sinðpy=2Þ

41Kp2
(76)

Pabðq; yÞ5
2e2q2=2ð81Kp2q2Þ sinðpy=2Þ
ð32112Kp21K2p4Þ

ffiffiffiffiffiffi
2p
p (77)

whereas both Ps
b and Ps

ba are zero.
The average position can likewise be found from Ps

hysi5 16ab
p2ð41Kp2Þ (78)

in steady state. In the limit K� 1 (configurational relaxation
occurring much more quickly than positional), the mean
position is given by

hysiK!05
4ab
p2

(79)

As with the doubly harmonic case, the shift in the mean posi-
tion occurs because the position-dependent “configurational”
advection (a) drives nonuniform configurations, which then
relax in an anisotropic way due to the configuration-dependent
positional diffusivity (b). The steady-state nature of the solution
(Eq. 74) implies that relaxation has already occurred. Irrespec-
tive, the steady solution inherently encodes the order of the
processes that gives rise to cross-stream gradient formation: (1)
solute molecules move diffusively (P0); (2) a local
“configurational” equilibrium is achieved ðaPaÞ, which gives
rise to a spatially inhomogeneous average mobility/diffusivity;
and (3) relaxation back to the center proceeds at different rates
for solute in different locations ðabPabÞ. Solute in regions with
relatively slow mobility take more time to relax than those in
regions with relatively high mobility. As there is no difference

(to first order) in solute flux into regions of high or low average
mobility, the fact that it takes longer for the slow solute to relax
means solute will gradually and generally accumulate there.

This dynamic picture is confirmed by explicitly solving
for the dynamics of the system perturbatively, treating the
terms proportional to a and b as weak source terms. Doing
so clarifies the physical mechanism by which the concentra-
tion gradients arise. The no-flux boundaries at y561 can be
naturally enforced using the method of images, whereby the
walls are replaced by introducing “image” particles at
f62;64;66; :::g, as in Figure 6. All solute particles—both
the true solute as well as all images—obey the same convec-
tion–diffusion equation (69), as we have chosen the advec-
tive term to be periodic. We can thus simply solve for a
single particle that starts at the origin y050, and evolves in
an infinite and unbounded system—P1ðq; y; tÞ—from which
the image system for a particle starting at y52j can be
obtained by shifting the origin to P1ðq; y22j; tÞ. The solu-
tion to the bounded system, then, is given by

Pðq; y; tÞ5
X1

j521
P1ðq; y22j; tÞ (80)

We thus need only to solve for the unbounded system,
which obeys

L0P15a sin
py

2

� � @P1
@q

1Kbq
@2P1
@y2

(81)

where

L0P5
@P

@t
2
@2P

@q2
2
@

@q
ðqPÞ2K

@2P

@y2
(82)

subject to the initial condition

P1ðq; y; 0Þ5dðqÞdðyÞ (83)

The unperturbed propagator, which obeys L0P0
150 and

reflects the probability that a particle starting at q0, y0 at time
t0 is found at q, y at time t is given by

Figure 6. The walls at y56h in Figure 5 can be treated
using images.

An infinite series of image particles, located at y562jh, with

integer values of j, diffuse in an infinite system.
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P0
1ðq; y; t; q0; y0; t0Þ5f0ðq; q0; t; t0Þg0ðy; y0; t; t0Þ (84)

where

f0ðq; q0; t; t0Þ5
e

2
ðq2q0hÞ2

2ð12h2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð12h2Þ

p (85)

g0ðy; y0; t; t0Þ5
e

2
ðy2y0 Þ2
4Kðt2t0 Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pKðt2t0Þ

p (86)

and

h5e2ðt2t0Þ (87)

The approach is entirely analogous to that given for the
doubly harmonic case: the right-hand side terms are treated
perturbatively as distributions of sources and sinks of proba-
bility that continuously arise and subsequently evolve via the
free-particle propagator P0

1ðq; y; t; q0; y0; t0Þ. Details of the
solution are given in Appendix C. As expected, the first non-
zero mean drift arises due to Pab—reflecting nonuniform
configuration “advection,” followed by anisotropic relaxa-
tion. The mean drift, computed in Appendix C, is shown in
Figure 7.

Thus, the dynamic mechanism in Figure 2 is responsible
for these steady-state concentration gradients: (1) the particle
fluctuates up or down, and the position-dependent advection
(proportional to a) changes the mean configuration q; (2) the
configuration difference “above” and “below” give rise to
different mean diffusivities/mobilities “above” and “below”;
(3) the difference in mean mobility/diffusivity “above” and
“below” cause relaxation from the two sides to occur at dif-
ferent rates. Slower relaxation on the side with lower aver-
age diffusivity gives rise to a gradual accumulation of solute
there.

Notably, no cross-stream migratory drift velocity is driven
by gradients in average diffusivity. At times much shorter

than the positional relaxation time (T � 1, or equivalently
t� h2=D0), the cross-stream velocity is exponentially small
(Figure 7), since at small times

hyi
hyis

����
T�1

�
ffiffiffi
T
p

exp
21

4T

� �
(88)

meaning

dhyi
dT

����
T�1

� 1

T3=2
exp

21

4T

� �
(89)

On these short time scales, the exponentially small shift in
hyi reflects the exponentially small probability that a particle
starting at y 5 0 has diffused to the wall y 5 h. Correspond-
ingly, the probability that any such particles have started to
“relax” is exponentially small. As all shifts in hyi arise
purely due to asymmetric relaxation, it is only over the posi-
tional relaxation time scales that hyi changes appreciably.

Finally, we connect this calculation back to the original
observations motivating this work: polymers or rods carried
with a pressure-driven (Poiseuille) flow along a channel. In
these systems, the channel center is generally a location of
zero shear rate, giving the most randomly aligned rods or
unstretched polymers. As this is the highest-mobility state,
migration will generally occur away from channel centers.
The examples above, for which hDiðyÞ increased monotoni-
cally with y, would correspond, for example, to the upper
half of a channel in these flowing systems, such that poly-
mer/rod accumulation at y > 0 corresponds to migration
away from the channel centerline. Alternately, one could
use, for example, a magnetic field to externally align rods at
some angle relative to the channel. For example, shear might
rotate the rods above the centerplane to be more aligned
with the flow, whereas it would rotate those rods below the
centerline to be more perpendicular to the flow. In this case,
the diffusivity would decrease monotonically in the 1 y-
direction, and anisotropic relaxation would drive a net accu-
mulation above the centerline.

Two-state system

The above two examples involved a “continuous” degree
of freedom (e.g., rod orientation). We now illustrate with a
third model system which can adopt a discrete set of
“configurations” (e.g., a protein that can exist in folded or
unfolded states, fig. 8.) For simplicity, we will focus on a
solute with two states, confined by rigid walls at Y56L, and
will denote the probability of being in either state as aðy; tÞ
or bðy; tÞ. The two states have different diffusivities

Da5ð12�ÞD0 (90)

Db5ð11�ÞD0 (91)

These discrete, state-dependent diffusivities are analogous
to a diffusivity that depends on a configuration described by
a continuous variable q. For simplicity, we will consider
transitions between solute states to occur with equal forward
and backward rate constants Ka!b5Kb!a � K. The internal
degrees of freedom must be driven in a nonconservative,
position-dependent way—here an additional, externally trig-
gered b! a transition (e.g., laser light with an intensity gra-
dient that unfolds a macromolecule). Specifically, we choose
this nonconservative transition to have sinusoidal spatial
dependence, aK sinðpY=2LÞ, to allow image systems as in
Figure 6. The evolution of the system is then described by

Figure 7. (a) The ensemble-averaged position hyi vs.
time, for a particle of the configurationally
harmonic, diffusive particle of Figure 5.

(b) There is no drift for very small times: the only

mechanism by which hyi changes is via differential

relaxation, and (c) at short times there is an exponen-

tially small probability (~e21=4T or e2h2=4D0t) that a par-

ticle will encounter the wall and relax. Over the

positional relaxation time scale h2=D0, however, the

average position does indeed change and asymptote to

that given by (79).
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@a

@T
5Da

@2a

@Y2
1Kðb2aÞ1aK sin

pY

2L

� �
b (92)

@b

@T
5Db

@2b

@Y2
2Kðb2aÞ2aK sin

pY

2L

� �
b (93)

Note that analog of the “position-dependent configuration
advection” in the systems with continuous internal degrees
of freedom q is here given by a position-dependent transition
rate constant aK sinðpY=2LÞ.

First, we demonstrate the absence of any net drift in an
unbounded system. Adding the equations for both states,
multiplying by Y and integrating over Y gives an evolution
equation for the mean position hYið

Yð _a1 _bÞdY � _�Y5Da

ð
YaYYdy1Db

ð
YbYYdY (94)

Each of these terms can be integrated by parts twice, pre-
cisely as in (24), to give

_�Y5DafaðLÞ2að2LÞg1DbfbðLÞ2bð2LÞg (95)

In an infinite system, where L!1; _�Y50 at any finite
time. Finite systems, however, show anisotropic relaxation
bðLÞ 6¼ bð2LÞ.

We can, as well, find the approximate steady-state distri-
bution, in the limit where gradients in the Y-direction are
gentle (a condition that can be checked a posteriori). In such
a case, at any given position the two populations reach a
local nonequilibrium steady state, in which the equilibrium
and driven transitions balance

Kðbs2asÞ1aK sin
py

2L

� �
bs � 0 (96)

This gives a local relationship between the two
populations

bsðYÞ5
1

11a sin pY
2L

	 
 asðYÞ (97)

For the populations to be in true steady state, there can be
no net flux of solute in the y-direction

Da
@as

@Y
1Db

@bs

@Y
50 (98)

which implies

DaasðYÞ1DbbsðYÞ5C0 (99)

Equations 97 and 99 give the steady-state concentration of
each state

asðYÞ5C0

11a sin pY
2L

	 

Dað11a sin pY

2L

	 

Þ1Db

(100)

bsðYÞ5C0

1

Dað11a sin pY
2L

	 

Þ1Db

(101)

and thus, the total solute concentration

csðYÞ5asðYÞ1bsðYÞ (102)

5C0

21a sin pY
2L

	 

Dað11a sin pY

2L

	 

Þ1Db

(103)

Once again, one sees that three ingredients must exist for
a steady-state non-Boltzmann profile. First, the diffusivity
must depend on conformation: if Da5Db, then (103) gives a
constant concentration. Second, the conformation must be
driven in a position-dependent, nonconservative way (here
with an additional b! a transition that varies via

aK sin pY
2L

	 

Þ. If a50, then again 103 gives a constant concen-

tration. Finally, the concentration field must be able to relax
to steady state—the steady argument given here implicitly
assumes that steady state has somehow been reached, which
can only occur when particle positions have had time to
relax. As we showed earlier, in the absence of relaxation
(e.g., in systems with no confining force), there would be
identically zero drift in this system.

The mean position can be found in the �� 1 and a� 1
limits by Taylor expanding (103) to yield

cs �
C0

D0

1a�
C0

D0

sin pY
2L

	 

2

(104)

from which it is apparent that C05D0=2. Next, we find the
mean steady position via

hYsi5
ð1

21

YcsðYÞdY5
2a�
p2

L (105)

It will prove convenient to switch to “concentration” and
“difference” variables

c5b1a (106)

d5b2a (107)

to solve for the dynamics as well as steady-state distribu-
tions. Using these variables, the governing equations become

@c

@T
5D0

@2c

@Y2
1�D0

@2d

@Y2
(108)

@d

@T
5D0

@2d

@Y2
22Kd1�D0

@2c

@Y2
2aK sin

pY

2L

� �
ðc1dÞ (109)

Nondimensionalizing time by the configurational relaxa-
tion time k21 and distance by L, these become

Figure 8. Definition sketch for a two-state system,
which demonstrates differential relaxation
for a solute with discrete configurations.

A macromolecule can be folded (b) or unfolded (a),

with (high and low) diffusivities Db and Da, respectively.

In equilibrium, the two states are equally likely, with

identical forward and reverse rate constants K. Particle

unfolding is triggered by an external, spatially varying

mechanism. Particles are equally likely to diffuse to the

right as to the left; once doing so, those to the right

have a higher chance of unfolding than those to the left.

When these particles relax to steady state, then, those

to the right relax more slowly than those to the left,

giving rise to a net accumulation of particles in the

slow-average-diffusion region.
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_c5K
@2c

@y2
1�

@2d

@y2

� �
(110)

_d5Kðdyy1�cyyÞ22d2a sin
py

2

� �
ðc1dÞ (111)

where

K5
D0

KL2
� 1 (112)

is the ratio of the configurational relaxation time (K21) to
the positional relaxation time scale (L2/D0), and is therefore
small, and a relates the strength of “configuration advection”
to the standard reaction rate.

Power series expansions give approximate steady-state dis-
tributions, with

ds � ads
a52

2a
81p2K

sin
py

2

� �
(113)

cs � a�cs
a�5

2a�
81p2K

sin
py

2

� �
(114)

with all other components up to O a�ð Þ being identically
zero. The mean position

hYsi5Lhysi5 8

p2

2L

81p2K
a�! 2a�

p2
L (115)

reproduces (105) in the long-wavelength limit ðK� 1Þ,
where positional relaxation is much slower than configura-
tional relaxation.

The dynamics, derived in Appendix D, are essentially
identical to those in Figure 7.

Suspension profiles under solute or temperature
gradients

We finally turn to systems with imposed external gra-
dients, with thermal and solute gradients as examples. Par-
ticles are known to move thermophoretically along local
temperature gradients28,29 or diffusiophoretically in solute
gradients,30,31 which naturally drive concentration gradients.
Such phoretic motions are generally described by phoretic
mobilities—for example, the diffusiophoretic mobility DPðcÞ
is given by

UP5DPðcÞ
@c

@y
(116)

where @c
@y is the local solute concentration gradient that would

exist in the absence of the colloid. In addition to this pho-
retic drift, however, such suspensions will also establish con-
centration gradients due to asymmetric relaxation, analogous
to the systems described earlier, whenever the diffusivity
depends on temperature or solute concentration.

Such suspensions exhibit the three ingredients required for
differential relaxation. (1) The diffusivity of a suspended
particle does not depend explicitly on position y, but rather
on a degree of freedom, whether temperature T or solute
concentration c. Although the temperature-dependence of
diffusivity is obvious, solute dependence is more subtle. For
example, the diffusivity of a charged particle depends on the
local ionic strength via the electroviscous effect.32,33 (2) The
degree of freedom (T or c) is forced to be spatially inhomo-
geneous in a nonconservative way, as free energy must be
irreversibly supplied to maintain heat or solute fluxes. (3)
Any finite system presents a mechanism for concentration

profiles to relax to steady state. One should, therefore, expect
steady-state concentration gradients to be established due to
the differential relaxation mechanism we have been discus-
sing, in addition to any gradients that are established due to
a true thermophoretic or diffusiophoretic drift.

As before, we denote the spatial co-ordinate by y and the
local degree of freedom (e.g., the local temperature T or sol-
ute concentration c that would exist in the absence of the
particle) by q. For clarity, we will consider q to be given by
the solute concentration c, and denote the probability that a
particle is located at y and surrounded by a concentration c
that would exist in the absence of the particle by Pðc; y; tÞ.
We assume Fickian diffusion for the particles and the solute,
and the particles to move with a diffusiophretic velocity
given by Eq. 116. The evolution equation for Pðc; y; tÞ is
given by

@P

@t
5
@

@y
DðcÞ @P

@y

� �
1
@

@c
Dc
@c

@y

� �
2
@

@y
DP

@c

@y
P

� �
(117)

For simplicity, we start by assuming no phoretic drift
ðDP 50Þ, so that the colloidal flux

jy52DðcÞ @Pðc; y; tÞ
@y

(118)

is purely diffusive. We also assume the solute concentration
c to have an externally imposed linear gradient

cðyÞ5 @�c

@y
y (119)

Under this simplified picture, the total particle flux is
given by

Jyðy; tÞ52

ð
DðcÞ @Pðy; c; tÞ

@y
dc (120)

and must vanish in steady state, requiring

Js
y5052

@

@y

ð
DðcÞPsðy; c; tÞdc (121)

We define the steady probability Ps in terms of a local
concentration CsðyÞ and a normalized probability distribution
psðy; cÞ

Psðy; cÞ5CsðyÞpsðy; cÞ (122)

where ð
psðy; cÞdc51 (123)

The steady, spatially inhomogeneous concentration Cs is
then given by

CsðyÞ5 C0ð
psðy; cÞDðcÞdc

� C0

�DðyÞ (124)

Even in the absence of any true phoretic drift, an inhomo-
geneous concentration profile thus develops in steady state.

Locally expanding �cðyÞ and D(c)

�cðyÞ � �c01
@�c

@y
ðy2y0Þ (125)

DðcÞ � D0 11bðc2c0Þð Þ (126)

gives an average diffusivity
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�DðyÞ � D0 11bð�c2�c0Þð Þ (127)

� D0 11b
@�c

@y
ðy2y0Þ

� �
(128)

The steady-state particle concentration then follows from
(124) as approximately

CsðyÞ5 C0

D0

12b
@�c

@y
ðy2y0Þ

� �
(129)

If, conversely, a phoretic migration (Eq. 116) were
included, the steady state particulate flux would be given by

Jy52DðcÞ @Cs

@y
1DP

@�c

@y
Cs (130)

which must vanish, giving

@ lnCs

@y
5

DP

DðcÞ
@�c

@y
(131)

To compare the magnitude of these effects, we now com-
pute the equivalent local phoretic drift velocity that would
reproduce the concentration gradient arising from anisotropic
relaxation. Using the local expansion of Cs for the nonpho-
retic system (Eq. 129) in the equation giving zero-flux for a
phoretic drift (Eq. 131) gives an apparent phoretic mobility
Dapp

P

Dapp
P

D0

@�c

@y
52b

@�c

@y
1O b2

	 

(132)

meaning that the concentration gradients due to anisotropic
relaxation are equivalent to those arising from an equivalent
phoretic mobility

Dapp
P 52bD0 � 2

dDðcÞ
dc

(133)

The anisotropic relaxation of particle concentration fields,
which we have shown to cause particle accumulation where
average diffusivities are low, gives concentration gradients
that are equivalent to those that would arise from a phoretic
velocity down the diffusivity gradient. Diffusiophoresis and
thermophoresis can occur either up or down gradients in sol-
ute31 or temperature.29 Anisotropic relaxation, conversely,
always builds concentration in low-diffusivity regions. A
more significant distinction, however, is that the particles
migrating phoretically exhibit a net drift velocity ðh _yi 6¼ 0Þ,
whereas those accumulating via asymmetric relaxation expe-
rience identically zero net drift unless the concentration pro-
files are themselves relaxing spatially.

Discussion and Conclusions

We have here presented and discussed anisotropic relaxa-
tion as a central mechanism by which concentration (or
probability) gradients form across streamlines in suspensions
where no net, directed migration occurs. In particular, we
have argued that such gradients form via a three-step pro-
cess: (1) the solute takes diffusive steps across streamlines to
regions where different configurations/internal degrees of
freedom are more likely; (2) internal degrees of freedom, or
configurations, quickly equilibrate to reach a new quasis-
teady state whose average diffusivity and mobility are differ-
ent; (3) the solute positions relax to steady state (whether
bound by forces or constrained to remain within walls) with

a rate determined by the mean mobility. Low-mobility states
take longer to relax, so probability gradually accumulates in
low-mobility regions. We have thus argued that cross-stream
concentration gradients arise whenever three conditions are
met: (1) the translational diffusivity depends on an internal
degree of freedom, (2) internal degrees of freedom must be
driven in a nonconservative, position-dependent manner, and
(3) some mechanism must exist for the concentration fields
in the system to relax to steady state.

In treating conservative systems with diffusivity gradients,
naive algorithms that neglect the r � D drift velocity give
rise to erroneous steady concentration profiles, with low con-
centrations in regions of low diffusivity (see, e.g., Ref. 34
for a discussion). Correct algorithms incorporate the r � D
drift, for example, Ermak and McCammon’s algorithm35

introduces the drift explicitly, whereas Fixman’s algorithm36

involves a higher-order midpoint scheme which naturally
incorporates the drift. Such naive algorithms, in fact, corre-
spond directly to the (correct) dynamics of the systems we
discussed earlier, where diffusivity depends on conformation,
which is nonconservatively forced in a position-dependent
way. In the cases, we described above, there is identically
zero r � D drift, as D depends on configuration, rather than
position. This can be seen, as well, in Ma & Graham’s
kinetic theory of polymers in flowing systems6: what appears
to be a cross-stream migratory drift term ð2r � DÞ, in fact,
cancels the cross-stream migratory drift in the Fickian diffu-
sion term that would otherwise exist in a truly conservative
system. It seems ironic that it is actually the absence of
cross-stream, r � D drift that gives rise to cross-stream
gradients.

The three conditions we have outlined above are quite
general, and we have discussed several example systems to
highlight different realizations of the basic idea. Anisotropic
relaxation does provide a mechanism for concentrating par-
ticles in certain regions of flow, and could thus in principle
be used for separations. It must be remembered, however,
that anisotropic relaxation, as we have been describing here,
gives rise to identically zero directed drift, with gradients
only forming over the timescales with which the suspension
concentration profile itself relaxes. Although potentially
effective, asymmetric relaxation may thus be considerably
slower than other separation mechanisms.

Literature Cited

1. Squires TM, Messinger RJ, Manalis SR. Making it stick: convection,
reaction and diffusion in surface-based biosensors. Nat Biotechnol.
2008;26(4):417–426.

2. Agarwal US, Dutta A, Mashelkar RA. Migration of macromolecules
under flow—the physical origin and engineering implications. Chem
Eng Sci. 1994;49(11):1693–1717.

3. Nitsche LC, Hinch EJ. Shear-induced lateral migration of Brown-
ian rigid rods in parabolic channel flow. J Fluid Mech. 1997;332:
1–21.

4. Schiek RL, Shaqfeh ESG. Cross-streamline migration of slender
Brownian fibres in plane poiseuille flow. J Fluid Mech. 1997;332:
23–39.

5. Jendrejack RM, Schwartz DC, de Pablo JJ, Graham MD. Shear-
induced migration in flowing polymer solutions: simulation of long-
chain DNA in microchannels. J Chem Phys. 2004;120(5):2513–
2529.

6. Ma HB, Graham MD. Theory of shear-induced migration in dilute
polymer solutions near solid boundaries. Phys Fluids. 2005;17(8):
083103.

7. Chen YL, Graham MD, de Pablo JJ, Jo K, Schwartz DC. DNA mol-
ecules in microfluidic oscillatory flow. Macromolecules. 2005;
38(15):6680–6687.

12 DOI 10.1002/aic Published on behalf of the AIChE 2014 Vol. 00, No. 00 AIChE Journal



8. Usta OB, Ladd AJC, Butler JE. Lattice-Boltzmann simulations of
the dynamics of polymer solutions in periodic and confined geome-
tries. J Chem Phys. 2005;122(9):094902.

9. Khare R, Graham MD, de Pablo JJ. Cross-stream migration of flexi-
ble molecules in a nanochannel. Phys Rev Lett. 2006;96(22):
224505.

10. Hernandez-Ortiz JP, Ma HB, Pablo JJ, Graham MD. Cross-stream-
line migration in confined flowing polymer solutions: theory and
simulation. Phys Fluids. 2006;18(12):123101.

11. Usta OB, Butler JE, Ladd AJC. Flow-induced migration of polymers
in dilute solution. Phys Fluids. 2006;18(3):031703.

12. Saintillan D, Shaqfeh ESG, Darve E. Effect of flexibility on the
shear-induced migration of short-chain polymers in parabolic chan-
nel flow. J Fluid Mech. 2006;557:297–306.

13. Usta OB, Butler JE, Ladd AJC. Transverse migration of a confined poly-
mer driven by an external force. Phys Rev Lett. 2007;98(9):098301.

14. Butler JE, Usta OB, Kekre R, Ladd AJC. Kinetic theory of a con-
fined polymer driven by an external force and pressure-driven flow.
Phys Fluids. 2007;19(11):113101.

15. Bird RB, Curtiss CF, Armstrong RC, Hassager O. Dynamics of Poly-
meric Liquids, 2nd ed. New York: Wiley-Interscience, 1987.

16. Purcell EM. Life at low Reynolds number. Am J Phys. 1977;45(1):
3–11.

17. Leal LG. Advanced Transport Phenomena: Fluid Mechanics and
Convective Transport Processes. Cambridge: Cambridge University
Press, 2007.

18. Happel J, Brenner H. Low Reynolds Number Hydrodynamics. The
Hague: Martinus Nijhoff Publishers, 1983.

19. Segre G, Silberberg A. Behaviour of macroscopic rigid spheres in
Poiseuille flow. 2. Experimental results and interpretation. J Fluid
Mech. 1962;14(1):136–157.

20. Ho BP, Leal LG. Inertial migration of rigid spheres in 2-dimensional
unidirectional flows. J Fluid Mech. 1974;65:365–400.

21. Di Carlo D. Inertial microfluidics. Lab Chip. 2009;9(21):3038–3046.
22. Leighton D, Acrivos A. Measurement of shear-induced self-diffusion

in concentrated suspensions of spheres. J Fluid Mech. 1987;177:
109–131.

23. Pine DJ, Gollub JP, Brady JF, Leshansky AM. Chaos and threshold
for irreversibility in sheared suspensions. Nature. 2005;438(7070):
997–1000.

24. Barbee JH, Cokelet GR. Fahraeus effect. Microvasc Res. 1971;3(1):
6–16.

25. Smart JR, Leighton DT. Measurement of the drift of a droplet due
to the presence of a plane. Phys Fluids. 1991;3(1):21–28.

26. Leal LG, Hinch EJ. The rheology of a suspension of nearly spherical
particles subject to Brownian rotations. J Fluid Mech. 1972;55:745–765.

27. Van Kampen NG. Stochastic Processes in Physics and Chemistry.
Amsterdam: Elsevier, 2007.

28. Duhr S, Braun D. Why molecules move along a temperature gradi-
ent. Proc Natl Acad Sci USA. 2006;103(52):19678–19682.

29. W€urger A. Thermal non-equilibrium transport in colloids. Rep Prog
Phys. 2010;73(12):126601.

30. Anderson JL. Colloid transport by interfacial forces. Annu Rev Fluid
Mech. 1989;21:61–99.

31. Prieve DC, Anderson JL, Ebel JP, Lowell ME. Motion of a particle
generated by chemical gradients. Part 2. Electrolytes. J Fluid Mech.
1984;148:247–269.

32. Booth F. The electroviscous effect for suspensions of solid spherical
particles. Proc R Soc A. 1950;203(1075):533–551.

33. Sherwood JD. The primary electroviscous effect in a suspension.
J Fluid Mech. 1980;101:609–629.

34. Grassia PS, Hinch EJ, Nitsche LC. Computer-simulations of brownian-
motion of complex-systems. J Fluid Mech. 1995;282:373–403.

35. Ermak DL, McCammon JA. Brownian dynamics with hydrodynamic
interactions. J Chem Phys. 1978;69(4):1352–1360.

36. Fixman M. Simulation of polymer dynamics. 1. General theory.
J Chem Phys. 1978;69(4):1527–1537.

37. Hinch EJ. Perturbation Methods. Cambridge: Cambridge University
Press, 1991.

Appendix A: Gaussian Integrals for q0 5 0

We are interested in computing integrals of the form

In5

ð1
21

q0ngðq; q0; t; t0Þgðq0; 0; t0; 0Þdq0 (A1)

where

gðq; q0; t; t0Þ5
exp 2

ðq2q0hÞ2
2sð12h2Þ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2psð12h2Þ

p (A2)

and

h5e2ðt2t0Þ=s (A3)

Defining

h05e2t0=s (A4)

h15e2ðt2t0Þ=s (A5)

d512e22t=s (A6)

A5
d

2sð12h2
0Þð12h2

1Þ
(A7)

B5
h1q

sð12h2
1Þ

(A8)

C5 exp 2
q2

2sð12h2
1Þ

� �
(A9)

we must compute

In5
C

2ps
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12h2

0Þð12h2
1Þ

p ð1
21

q0ne2Aq021Bq0dq0 (A10)

We then scale u5
ffiffiffi
A
p

q and complete the square, giving

In5
gðq; 0; t; 0Þffiffiffi

p
p

An=2

ð1
21

v1
B

2
ffiffiffi
A
p

� �n

exp 2v2
	 


dv (A11)

where we have used the simplifications

CeB2=ð4AÞ5 exp 2
q2

2sd

� �
(A12)

Aðn11Þ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12h2

0Þð12h2
1Þ

q
5

An=2d1=2ffiffiffiffiffi
2s
p (A13)

and

B

2
ffiffiffi
A
p 5h1q

ð12h2
0Þ

2sdð12h2
1Þ

� �1=2

(A14)

The polynomial must then be expanded, and the integrals can be

done easily ð1
21

vne2v2

dv5
ffiffiffi
p
p

Vn (A15)

where V051;V251=2;V453=4;V6515=8;V85105=16 and so on,

giving

I05
e2

q2

2dsffiffiffiffiffiffiffiffi
2ps
p

d1=2
� gðq; 0; t; 0Þ (A16)

I15gðq; 0; t; 0Þ ð12h2
0Þh1

d
q (A17)

I25
sð12h2

0Þð12h2
1Þ

d
1
ð12h2

0Þ
2

d2
h2

1q2

 !
gðq; 0; t; 0Þ (A18)
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Appendix B: Doubly Harmonic Well—
Development

Here, we compute the dynamics of the particle in the doubly

harmonic well, shown in figs. 3-4, which obeys the Smoluchow-

ski equation

L0P15a sin
py

2

� � @P1
@q

1Kbq
@2P1
@y2

(B1)

doubly harmonic well. We assume the particle to be located at

the origin at time t 5 0, meaning that it has a probability P0ðq0;
y0; t0; 0; 0; 0Þ of being located at fq0; y0g at a later time t0. At

each time t0, the “advective” perturbation introduces a distribu-

tion of weak sources and sinks, ay0@P0=@q0, which then propa-

gate in time via P0ðq; y; t; q0; y0; t0Þ to contribute to the resulting

probability of being at fq; yg at time t. The full advective contri-

bution is found by integrating over all times from zero to t

Paðq; y; tÞ5L21
0 y

@P0

@q
(B2)

5

ðt

0

ð ð
y0
@P0ðq0; y0; t0; 0; 0; 0Þ

@q0

� �
P0ðq; y; t; q0; y0; t0Þdq0dy0dt0

(B3)

The term in parenthesis reflects “scattering” at time t0, and the

second free propagator P0 takes the “scattered” probability at

time t0 and propagates it forward to time t. This integral can be

written

Paðq; y; tÞ5
ðt

0

Faðq; t; t0ÞGaðq; t; t0Þdt0 (B4)

where

Faðq; t; t0Þ5
ð1

21

@f ðq0; 0; t0; 0Þ
@q0

f ðq; q0; t; t0Þdq0 (B5)

5
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2
q0f ðq0; 0; t0; 0Þ
ð12e22t0 Þ f ðq; q0; t; t0Þdq0 (B6)

52
qf ðq; 0; t; 0Þe2ðt2t0Þ

d
(B7)

Gaðy; t; t0Þ5
ð1

21
y0gðy0; 0; t0; 0Þgðy; y0; t; t0Þdy0 (B8)

5ygðy; 0; t; 0Þ e
2ðt2t0Þ=sð12e22t0=sÞ

ds
(B9)

where f and g are given by Eqs. 57 and 58 and where

d512e22t (B10)

ds512e22t=s (B11)

Formulae for the Gaussian integrals are given in Appendix A.

The O að Þ probability is then given by

Paðq; y; tÞ52
qyf ðq; 0; t; 0Þgðy; 0; t; 0Þ

dds
(B12)

3

ðt

0

e2
ðt2t0 Þ

s ð12e22t0
s Þe2ðt2t0Þdt0 (B13)

which can be integrated directly to give

Paðq; y; tÞ52qyf ðq; 0; t; 0Þgðy; 0; t; 0ÞHaðtÞ (B14)

where
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dds

s
11s
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2se2s11
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s221
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(B15)

Next, we compute Pab, the asymmetric relaxation of these per-

turbed configurations
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(B16)
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where
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Computation of these integrals is tedious but straightforward.

Rather than presenting all details, we compute the time depend-

ence of the mean position

hyðtÞi5ab
ð ð

yPabdydq (B21)

52ab
ðt

0

Haðt0Þ
ð

Fabdq

ð
yGabdy

� �
dt0 (B22)

and start with the integrals over q and yð
Fabdq5

ð
q02f ðq0; 0; t0; 0Þdq0 (B23)

512h2
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yGabdy5e2
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�
dy0 (B26)

as ð
ygðy; y0; t; t0Þdy5y0e2ðt2t0Þ=s (B27)

On integrating B26 by parts, the first term vanishes to leaveð
yGabdy52

e2
ðt2t0 Þ

s

s

ð
y02gðy0; 0; t0; 0Þdy0 (B28)

52e2
ðt2t0 Þ

s ð12h2
0sÞ (B29)

Using B24 and B29 in B22 gives an integral for the mean

position

hyðtÞi5ab
ðt

0

Haðt0Þe2
ðt2t0 Þ

s ð12h2
0sÞð12h2

0Þdt0 (B30)

which can be evaluated to give Eq. 64

hyi5 s2

s11
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s21
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se211s
s t

s221
22se2t

s (B31)

plotted in Figure 4.
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Appendix C: Singly Harmonic with Sinusoidal
Advection

Here, we compute the dynamics of the solute molecule

described in section, which obeys the Smoluchowski equation

L0P15a sin
py

2

� � @P1
@q

1Kbq
@2P1
@y2

(C1)

where

L0P5
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2
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2
@
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ðqPÞ2K

@2P

@y2
(C2)

subject to the initial condition

P1ðq; y; 0Þ5dðqÞdðyÞ (C3)

The no-flux boundaries at y561 are treated using a method of

images: we solve for the dynamics of a single particle in an

unbounded system, then add images at yj5y12j

P1ðq; y; 0Þ5dðqÞdðy22jÞ (C4)

We will thus start by solving perturbatively for the single-

particle probability in an unbounded system and will then add

the corresponding images.

The unperturbed propagator, which obeys L0P0
150 and reflects

the probability that a particle starting at q0, y0 at time t0 is found

at q, y at time t is given by
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The leading-order, single-particle probability that satisfies the

initial conditions (C4) for the jth image is then given by
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At O að Þ, we must compute
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which is given by
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Now, computing Fa
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gives the OðaÞ unbounded, single-particle probability for the jth
image
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Under the substitution t05tð12uÞ, this becomes
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In the asymptotic limit t� 1 (i.e., many q-relaxation times), the

integral is exponentially dominated around u 5 0 and is thus can

be approximated using Watson’s lemma.37 Expanding the inte-

grand around u 5 0 and computing the leading-order approxima-

tion gives

Paðq; y; tÞ � ð21Þj11 qe2
q2

2de2
Y2

j
4Ktt

2p
ffiffiffiffiffiffiffiffi
2Kt
p sin

pYj

2

� �
(C21)

3

ð‘10

0

exp 2t
p2K

4
11

� �
u

� �
du (C22)

� ð21Þj11 q
ffiffiffi
2
p

e2
q2

2 e2
Y2

j
4Kt

p
ffiffiffiffiffi
Kt
p

p2K14ð Þ
sin

pYj

2

� �
(C23)

Note we have also taken d51; as is appropriate in the limit

t� 1. Summing all images using Yj5y22j gives

Paðq; y; tÞ � ð21Þj11 2qe2
q2

2

p
ffiffiffiffiffiffiffiffi
2Kt
p

p2K14ð Þ
(C24)

3
X1

j521
e2

ðy22jÞ2
4Kt sin

py

2
2jp

� �
(C25)

which simplifies to

Paðq; y; tÞ � 2
4qe2q2=2 sin py

2

	 

ffiffiffiffiffiffi
2p
p

p2K14ð Þ
X1

j521

e2
ðy22jÞ2

4Kt

2
ffiffiffiffiffiffiffiffi
pKt
p (C26)

Note that the sum itself is the free diffusion of an infinite series

particles starting at y562j, which in the t!1 limit

approaches 1/2
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X1
j521

e2
ðy22jÞ2

4Kt

2
ffiffiffiffiffiffiffiffi
pKt
p ! 1=2 (C27)

giving the long-time behavior of Pa

Paðq; y; t!1Þ ! 2
2qe2q2=2ffiffiffiffiffiffi

2p
p

p2K14ð Þ
sin

py

2

� �
(C28)

in agreement with (76).

Last, we need to compute Pab, to get the leading-order mean

drift due to differential relaxation. We define

Paðq; y; tÞ52
4

p2K14ð Þ faðqÞgaðy; tÞ (C29)

where

faðqÞ5
qe2q2=2ffiffiffiffiffiffi

2p
p (C30)

and

gaðy; tÞ5 sin
py

2

� �X e2ðy22jÞ2=4Kt

2
ffiffiffiffiffiffiffiffi
pKt
p (C31)

The probability Pab is given by

Pabðq; y; tÞ5L21ðKqðPaÞyyÞ (C32)

52
4K

41p2K

ðt

0

Fabðq; t; t0ÞGabðy; t; t0Þdt0 (C33)

Here

Fabðq; t; t0Þ5
ð1

21
q0faðq0; t0Þf0ðq; q0; t; t0Þdq0 (C34)

and

Gabðy; t; t0Þ5
ð1

21

@2

@y02
gaðy0; t0Þð Þg0ðy; y0; t; t0Þdy0 (C35)

Our central interest concerns the quantity hyðtÞi, which requires

integrating Pab over both q and y. For simplicity, we integrate

over q first

hFabi5
ð1

21
Fabðq; t; t0Þdq (C36)

5

ð
dq0q0faðq0; t0Þ

ð1
21

dqf ðq; q0; t; t0Þ (C37)

5

ð
dq0q0faðq0; t0Þ51 (C38)

to give an average probability

hPabiðy; tÞ52
4abK

41p2K

ðt

0

Gabðy; t; t0Þdt0 (C39)

There is no longer any “short” time, so we rescale all times by

the long (relaxation) time scale Kt

T5Kt (C40)

To compute Gab in Eq. C13, we will consider ga from Eq. C31

to be

gaðy;TÞ5
e2ðy22jÞ2=4T1ipy

2

2
ffiffiffiffiffiffi
pT
p (C41)

and will eventually take the imaginary part. Using

@2gaðy0; T0Þ
@y02

5
ð21Þje2p2T0=4

8T02
ffiffiffiffiffiffiffi
pT0
p e2u02=4T0 ðu0222T0Þ

� �
(C42)

where u05y022j2ipT0, and evaluating Eq. C13 gives

Gabðy;T0Þ5
ð21Þje2p2T0=4

8T5=2
ffiffiffi
p
p ðu222TÞe2u2

4T

� �
(C43)

where u5y22j2ipT0.
To find the mean position hyðtÞi, we must compute

hyðtÞi52
4ab

41p2K

ðT

0

ð1

21

yGabðy;T0ÞdydT0 (C44)

We compute the integral over y firstð1

21

yGaðy; t0Þdy5
e

2p2T0
4

4
ffiffiffi
p
p

T3=2

X
j

ð21Þj (C45)

3e2
ð2j2y1ipT0 Þ2

4t ðyð2j1ipT02yÞ22TÞ
���1
21

(C46)

The integral over T0 can then be performed to giveðT

0

ð1

21

yGaðy; t0ÞdydT05 (C47)

2
ie2ðy22jÞ2=4T

2p3=2T1=2
y ð21Þj2eipy=2
� ����1

21
(C48)

1i
e2p2T

16 e
ipðy12jÞ

4 ðipy24Þ
4p

Im erf
4j1ipT22y

4
ffiffiffi
T
p

� �����
1

21

(C49)

The first term (C48) vanishes on summation. Finally, using C44

gives the mean position

hyðtÞi5 4ab
41p2K

e2p2T
16

4p
(C50)

3
X

j

Re e
ipðy12jÞ

4 ðipy24ÞIm erf
4j1ipT22y

4
ffiffiffi
T
p

� �����
1

21

" #
(C51)

which appears in Figure 7.

Appendix D: Two-State Dynamics

The equations are

_c5K cyy2�dyy

	 

(D1)

_d5Kdyy22d2K�cyy2a sin
py

2

� �
ðc1dÞ (D2)

Unperturbed propagators are

c0ðy; y0; t; t0Þ5
e2ðy2y0Þ2=4Kðt2t0Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pKðt2t0Þ

p (D3)

d0ðy; y0; t; t0Þ5e22ðt2t0Þ e2ðy2y0Þ2=4Kðt2t0Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pKðt2t0Þ

p (D4)

We start with a particle at y 5 0, equally likely in either state

aðy; 0Þ5bðy; 0Þ5 dðyÞ
2

(D5)
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or

cðy; 0Þ5dðyÞ (D6)

dðy; 0Þ50 (D7)

So the perturbative solution is

c0ðy; tÞ5
X1

j521

e2ðy22jÞ2=4Kt

2
ffiffiffiffiffiffiffiffi
pKt
p ! 1

2
(D8)

d0ðy; tÞ50 (D9)

To O að Þ
caðy; tÞ50 (D10)

daðy; tÞ5
ð21Þj11

2
ffiffiffiffiffiffiffiffi
pKt
p

ðt

0

e22ðt2t0Þ2Y222ipYKt01p2K2 t0 ðt2t0 Þ
4Kt dt0 (D11)

5
ð21Þj11t

2
ffiffiffiffiffiffiffiffi
pKt
p

ð1

0

e22tu2Y2

4Kt2
Kp2 tuð12uÞ22ipð12uÞY

4 du (D12)

where we have made the substitution t05tð12uÞ. In the limit K
� 1 (equilibration time short compared with diffusive relaxa-

tion), the first exponential kills the integrand for u > Oð1Þ,
whereas the second exponential varies slowly. Taylor expanding

the second around u 5 0 to use Watson’s lemma gives

daðy; tÞ �
ð21Þj11te2Y2

4Kt e
ipY
2

2
ffiffiffiffiffiffiffiffi
pKt
p

ð 010
0

e22tudu (D13)

� ð21Þj11

4
ffiffiffiffiffiffiffiffi
pKt
p e2Y2

4Kte
ipY
2 (D14)

Taking the imaginary part and summing over all images j gives

daðy; tÞ52
X1

j521

e2
ðy22jÞ2

2Kt sin py
2

	 

4
ffiffiffiffiffiffiffiffi
pKt
p (D15)

which in the limit t!1 becomes

daðy; t!1Þ ! 2
1

4
sin

py

2

� �
(D16)

Finally, we compute the O a�ð Þ term, this corresponds to the

probability that has been advected, then anisotropically relaxes

ca�5

ðt

0

ð1
21

da
y0y0

e2ðy2y0Þ2=4Kðt2t0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Kpðt2t0Þ

p dy0dt0 (D17)

Using

da
y0y05

ð21ÞjðKt0ð21Kp2t0Þ12iKpt0Y02Y02Þ
16

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pK5t05

p e2 Y02
4Kt0e

ipY0
2 (D18)

and computing

hyiðtÞ5a�
ðt

0

ð1

21

ð1

21

cabðyÞydydy0dt0 (D19)

gives a result that is functionally identical to the singly har-

monic drift (Figure 7). hyi is thus exponentially small at small

times ðKt� 1Þ, then approaches the steady state

hyiðKt �O 1ð ÞÞ ! 2
2

p2
a� (D20)

as expected (e.g., from Eq. 105).

Manuscript received Oct. 8, 2013, and revision received Dec. 24, 2013.
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