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Contributed by Steven P. Briggs, November 16, 2017 (sent for review October 18, 2017; reviewed by Alex Jones and Wenbo Ma)

Lysine acetylation is a key posttranslational modification that regu-
lates diverse proteins involved in a range of biological processes. The
role of histone acetylation in plant defense is well established, and it
is known that pathogen effector proteins encoding acetyltransferases
can directly acetylate host proteins to alter immunity. However, it is
unclear whether endogenous plant enzymes can modulate protein
acetylation during an immune response. Here, we investigate how
the effector molecule HC-toxin (HCT), a histone deacetylase inhibitor
produced by the fungal pathogen Cochliobolus carbonum race 1, pro-
motes virulence in maize through altering protein acetylation. Using
mass spectrometry, we globally quantified the abundance of 3,636
proteins and the levels of acetylation at 2,791 sites in maize plants
treated with HCT as well as HCT-deficient or HCT-producing strains of
C. carbonum. Analyses of these data demonstrate that acetylation
is a widespread posttranslational modification impacting proteins
encoded by many intensively studied maize genes. Furthermore,
the application of exogenous HCT enabled us to show that the activ-
ity of plant-encoded enzymes (histone deacetylases) can be modu-
lated to alter acetylation of nonhistone proteins during an immune
response. Collectively, these results provide a resource for further
mechanistic studies examining the regulation of protein function by
reversible acetylation and offer insight into the complex immune re-
sponse triggered by virulent C. carbonum.

acetylome | immunity | maize | proteome

To prevent disease, organisms have evolved elaborate systems
to provide immunity against pathogens. To overcome im-

munity, pathogens employ numerous strategies, including the
usage of virulence factors such as toxins to suppress host defense.
One common mechanism for suppressing immunity appears to
be a result of actually inducing an inappropriate defense re-
sponse (1–4). In Arabidopsis, the bacterial effector coronatine
mimics jasmonic acid isoleucine conjugate (JA-Ile) and thereby
suppresses salicylic acid (SA)-mediated defense against Pseudo-
monas syringae (2–4). Additionally, Cochliobolus species utilize a
range of toxins to promote pathogenicity. For example, Cochlio-
bolus victoriae secretes the cyclic peptide victorin as its primary
effector. Victorin induces susceptibility of oats to C. victoriae by
activating resistance to the rust fungus Puccinia coronata (1).
Furthermore, in Arabidopsis, victorin elicits a defense response,
which enables C. victoriae virulence (5).
A related pathogen, Cochliobolus carbonum, produces the ef-

fector HC-toxin (HCT), which is a cyclic peptide that functions as
a histone deacetylase inhibitor (HDACi) (6–8). Specifically, HCT
is able to inhibit members of the HD2 and RPD3/HDA1 classes of
histone deacetylases (HDACs) in plants, fungi, and animals (6–8).
In maize, hyperacetylation of histones H3 and H4 (but not histone
H2) was observed following treatment with HCT, but the sites of
acetylation were not identified (6, 7). This and subsequent work in
a range of species in which the activity of histone acetyltransferases
(HATs) or HDAC enzymes was modulated suggests that alter-
ations in histone acetylation status play a central role during
host–pathogen interactions (9–13). The changes in HAT or
HDAC activity have been interpreted to modulate immunity by
directly affecting transcription at specific defense gene promoters.

However, recent mass spectrometry-based global acetylation pro-
filing methods have been developed, leading to the realization that
lysine acetylation is a major posttranslational modification that
impacts a wide range of proteins (14–29). This finding raises the
possibly that alterations in HAT or HDAC activity function by
means of hyperacetylating proteins, in addition to histones, to
promote or modulate plant defense.
Consistently, some pathogens also modulate plant immunity

by secreting effector proteins that function as acetyltransferase
enzymes and directly acetylate host proteins (12, 30–37). For
example, pathogen effectors target host proteins that would
otherwise enable immunity, including WRKY transcription fac-
tors, RPM1-associated proteins, and microtubule-related pro-
teins. This raises the questions of whether plant HATs or
HDACs directly modulate the acetylation status of nonhistone
proteins during pathogen infection, and if they do, whether there
is selective acetylation of proteins required for immunity.
To gain insight into how HCT suppresses host defense to

promote C. carbonum virulence, we used mass spectrometry to
quantify global changes in protein abundance and acetylation
levels triggered by pathogen infection. Critically, through the
application of exogenous HCT and C. carbonum strains that do
or do not make HCT, we demonstrate that the activity of plant-
encoded enzymes (i.e., HDACs) can be modulated to alter both
histone and nonhistone protein acetylation. Hyperacetylation
was highly selective for proteins involved with transcription,
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including homologs of known regulators of immunity in Arabi-
dopsis. Changes in protein abundance mimicked the JA-mediated
induction of the indole biosynthetic pathway in Arabidopsis; in
maize, this pathway produces benzoxazinoid (Bx) phytoalexins.
Additionally, we provide a global acetylome for maize and sig-
nificantly expand the number of acetylation sites identified in
plants. Acetylated proteins carry out a wide range of functions
and include numerous well-studied maize proteins. Thus, the data
presented here will enable new research approaches to understand
the posttranslational regulation and function of both defense- and
nondefense-related proteins.

Results
Quantitative Profiling of the Maize Immune Response.We used mass
spectrometry-based proteomics to quantify protein abundance
and uncover specific acetylation sites altered during pathogen
infection. We profiled maize plants carrying the hm1A mutation
that encodes a defective NADPH-dependent reductase (HCTR),
which is not able to inactivate HCT, rendering the plants sus-
ceptible to the fungal pathogen C. carbonum race 1 (38). Plants
were treated with (i) mock HCT solution, (ii) exogenous HCT,
(iii) an HCT-deficient (Tox−) strain of C. carbonum (resistant
interaction), and (iv) an HCT-producing (Tox+) strain of C.
carbonum (susceptible interaction) (Fig. 1A). To capture early
signaling events, we collected tissue at 22 h, which is before vi-
sual symptoms develop during a susceptible infection with the
Tox+ strain. These treatments were chosen to globally map
protein acetylation sites in maize leaves and to measure changes
induced by C. carbonum or HCT. Total protein was extracted
from the samples, and tryptic peptides were labeled with iTRAQ
(SCIEX) reagents to quantify protein abundance (39). In parallel,
we enriched for acetylated peptides with a pan–acetyl-lysine an-
tibody and then quantified the immunopurified peptides using
spectral counting (14, 40, 41). We compared the levels of 3,636
nonenriched proteins and 2,791 acetylation sites originating from
912 acetylated proteins (Fig. 1B and Datasets S1 and S2). The
2,791 sites are more than double the number of acetylation sites
previously reported in plant acetylation studies, and therefore
significantly expand our knowledge of plant acetylomes (16–21,
27–29).

Tryptophan Biosynthetic Proteins and Bx Phytoalexin Levels Are
Induced by HCT. To uncover specific biological processes that
may be targeted by HCT to promote C. carbonum virulence, we
examined our protein abundance data (Dataset S1). Globally, we
determined that 171 and 116 proteins increased and decreased,
respectively, in abundance following treatment with HCT or in-
fection by C. carbonum strains (Fig. 2A and Dataset S1). Using
these data, we identified gene ontology (GO) enrichment for a
number of biosynthetic processes that are specific to HCT and
Tox+ treatments (Fig. S1). We were intrigued by enrichment of
GO terms related to indole/tryptophan biosynthesis in HCT- and
Tox+-treated plants and examined these genes further. This
analysis revealed that proteins required for every step in the
biosynthesis of indole and tryptophan from chorismate were in-
creased in HCT and/or Tox+ treatments (Fig. 2B). Indole is the
precursor for the class of phytoalexins known as Bx phytoalexins
(42). To determine whether the increased enzyme levels caused
accumulation of Bx, we measured total Bx 44 h after treatment
(Fig. S2) and found that both HCT and Tox+ treatments in-
creased the levels of Bx. While further research is necessary to
verify that HCT transcriptionally activates expression of indole/
tryptophan genes, these findings suggest that C. carbonum alters
indole/tryptophan biosynthesis to enable infection.

Pathogen Infection Alters Histone and Nonhistone Protein Acetylation.
To determine if HCT targets proteins in addition to histone
H3 and H4, we quantified acetylation levels after infection with

Tox− and Tox+ C. carbonum or treatment with HCT (Dataset S2).
We first verified our acetylation measurements using a commer-
cial antibody that recognizes tetra-acetylated histone H4 (H4K5/8/
12/16). Using mass spectrometry, we confirmed that the histone
H4 tetra-acetylation pattern quantified matched the pattern de-
termined using Western blotting (Fig. 3 A and B and Dataset S2).
While it has previously been shown that histone H3 and H4
acetylation increases following HCT treatment and by infection
with Tox+, the specific sites of acetylation were not previously
identified (6, 7). Both the mass spectrometry and the independent
Western blot data demonstrate that histone H4 tetra-acetylation
induced by HCT or Tox+ infection occurs on histone H4 lysine
residues 5, 8, 12, and 16. In addition, we observed increased lysine
acetylation on specific residues of H2A.W, H3.1, H3.3, and a
linker histone-like protein following HCT or Tox+ treatment
(Dataset S2).
Globally, we found that 62 acetylated peptides (155 sites) in-

creased following treatment, while only nine acetylated peptides
(12 sites) decreased (Fig. 3 C and D and Dataset S2). Further-
more, the majority of hyperacetylation events occurred with either
the HCT or Tox+ treatment but not in response to Tox− infection
(Fig. 3 C and D). This observation is consistent with HCT pro-
moting protein hyperacetylation by inhibiting HDACs (6).
To gain insight into how HCT-induced hyperacetylation pro-

motesC. carbonum virulence, we performed GO overrepresentation
analyses. First, we examined GO categories overrepresented among
the acetylated peptides that were altered in abundance following
HCT treatment or infection with C. carbonum strains (Dataset S3).
Strikingly, there are 31 and eight GO categories related to tran-
scriptional regulation overrepresented in the HCT and Tox+ treat-
ments, respectively (Fig. 3E). These hyperacetylated transcriptional
regulatory proteins include gene-specific transcription factors, sub-
units of the general transcription factor TFIID (TAF5 and TAF6),
transcriptional corepressors, chromatin remodeling enzymes, and
HAT enzymes (Datasets S2 and S3). Examination of the hyper-
acetylated transcriptional regulatory proteins reveals numerous
proteins that have homologs in Arabidopsis with known roles in
plant immunity. For example, the hyperacetylated maize protein
GRMZM2G406712 is a homolog of RNA pol II C-terminal domain
phosphatase-like 3 (AtCPL3), which is a negative regulator of im-
mune gene expression (43). Several chromatin remodeling enzymes
are also hyperacetylated. These include GRMZM2G387890, a ho-
molog of AtSPLAYED (SYD), which is a negative regulator of
SNC1-mediated immunity and is required for defense against
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Botrytis cinerea (44, 45). A homolog of SEUSS-like 2 (SLK2;
GRMZM2G071491), which is a transcriptional corepressor in-
volved in abiotic stress responses and distribution of auxin (46, 47),
is hyperacetylated (HCT: P = 0.06, Tox+: P = 0.08). Additionally, a
homolog of the basic helix–loop–helix (bHLH) transcription factor
AtMYC2 (GRMZM2G001930) is hyperacetylated in response to
HCT (P = 0.07) and Tox+ (P = 0.06) treatments. In Arabidopsis,
MYC2, along with homologs MYC3 and MYC4, regulates JA-
mediated immunity and biosynthesis of tryptophan-derived
indole-glucosinolates (48–51). Finally, we only observe acetylation
of ramosa1 enhancer locus 2 (REL2), a transcriptional corepressor
(52), following HCT treatment. In Arabidopsis, the REL2 homolog
TOPLESS (TPL) functions in the AtMYC2 complex (53).
There were no GO categories associated with transcriptional

regulation among the acetylated peptides that respond to Tox−

infection (Fig. 3E and Dataset S3). Furthermore, defense-related
GO terms were only present among the Tox+-responding acet-
ylated peptides. Taken together, these data suggest that virulent
C. carbonum utilizes HCT to reprogram the transcriptional re-
sponse to infection, resulting in a defense response that is
inappropriate for arresting C. carbonum infection. Another
nonmutually exclusive possibility is that acetylation of defense
proteins by Tox+ infection results in inactivation of their
function and suppresses host defense.

Acetylation Is a Global Protein Modification. To gain insight into the
composition of the overall maize acetylome, we examined the
functional category distribution of acetylated proteins using
MapMan classification, which is an ontology system developed

for plants to classify gene function (54–56). Proteins in 32 of the
35 major MapMan bins (i.e., functional categories) contained
acetylated proteins (Fig. 4 and Dataset S2). The only bins that
did not contain acetylated proteins were the sparsely populated
bins “fermentation,” “polyamine metabolism,” and “microRNA,
natural antisense” comprising 59, 41, and 3 proteins, respectively,
out of a total of 63,542 MapMan-annotated proteins. Therefore, it
is possible that sampling additional tissues and/or deeper acety-
lome profiling may reveal that proteins in these functional cate-
gories are also acetylated.
We found that the third largest MapMan bin of acetylated

proteins is “RNA,” which contains proteins annotated to be in-
volved in RNA splicing and transcriptional regulation (Fig. 4).
Specifically, we detected 108 acetylated proteins from the RNA
bin, which is greater than expected by chance (P = 2.9E−7). Fur-
thermore, we observe acetylation of 17 GRASSIUS annotated
transcription factors (57). While earlier studies have described
acetylated plant transcription factors, the prevalence of this
functional category is greater than previously reported in Arabi-
dopsis (16). Potentially, the increased identification of transcrip-
tional regulatory proteins is due to increased acetylome depth.
We observed acetylation of 61 of the 468 “classical” maize

proteins (Dataset S2), which are a set of maize genes that have
been the subject of a disproportionate share of publications
recorded at MaizeGDB (58). For example, photosynthetic pro-
teins, including light harvesting proteins (LHCB3, LHCB7, and
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LHCB9) as well as the small and large subunits of Rubisco (RBCL
and SSU3), are acetylated, which is consistent with the acetylation
of homologous proteins in Arabidopsis (16, 17). We observed
acetylation of phosphoenolpyruvate carboxylase (PEP1 and PEP4)
proteins. Additionally, the oxylipin signaling proteins lipoxygenase
(LOX6) and 12-oxo-phytodienoic acid reductase (OPR1) were
detected as acetylated proteins (59, 60). We also identified acet-
ylation of starch biosynthetic enzymes, including sucrose synthase1
(SUS1), UDP-glucose pyrophosphorylase1 (UGP1), ADP glucose
pyrophosphorylase small subunit Leaf1 (AGPSLZM), and starch
branching enzyme 3 (SBE3) (61–63). Finally, genes involved in
transcriptional regulation such as REL2 are acetylated.

Discussion
In this study, we used global mass spectrometry-based acetylome
profiling in maize to identify over 2,700 acetylation sites arising
from 912 proteins in the maize leaf. This represents an ∼twofold
increase in acetylome depth relative to previous plant acetylome
reports, which have reported several hundred to ∼1,300 sites of
acetylation (16–21, 27–29). The acetylated proteins we identified
represent a wide range of functional categories, suggesting that
this posttranslational modification can regulate diverse bi-
ological processes (Fig. 4). Notably, we discovered that many
well-characterized maize proteins are acetylated, including pro-
teins responsible for major commercial traits such as starch and oil
biosynthesis. These descriptions of acetylation sites enable new
approaches to study the potential regulation of well-characterized
proteins and agronomically important traits.
In addition to the well-characterized alteration in histone acet-

ylation levels that occurs during an immune response (6, 7, 9–13,
64), pathogen infection has been shown to induce nonhistone
protein acetylation and to alter host immunity (12, 30–33, 65).
However, all of the induced nonhistone protein acetylation events
previously identified are a result of pathogen effector molecules
functioning as acetyltransferase enzymes that act on host proteins.
Here, through the application of the exogenous HDACi HCT and
C. carbonum strains, we demonstrate that the activity of plant-
encoded enzymes (i.e., HDACs) can be modulated to alter both
histone and nonhistone protein hyperacetylation in response to
pathogen infection.
We observed that 52% of the proteins hyperacetylated in re-

sponse to HCT or Tox+ are associated with transcriptional reg-
ulation (Dataset S2). These transcriptional regulatory proteins
are not limited to histones and include gene-specific transcrip-
tion factors, subunits of the general transcription factor TFIID
(TAF5 and TAF6), chromatin remodeling enzymes, and HAT
enzymes. Of particular interest are homologs of Arabidopsis
MYC2, CPL3, SYD, and SLK2 proteins, which play key roles in
Arabidopsis stress responses (43–48, 50, 66). The role of tran-
scription factors in plant defense is well documented, and the

importance of both chromatin remodeling and modifying en-
zymes is now recognized (9, 44, 67). Furthermore, acetylation of
these types of transcriptional regulatory proteins is able to both
reduce and enhance function, depending on the protein and/or
specific site of acetylation (68–71). This suggests that the ob-
served HCT-induced hyperacetylation will result in alteration of
the transcriptional response during pathogen infection, thereby
promoting pathogen virulence either through induction of an in-
appropriate immune response or by induction of a suppressor(s)
of defense (2–4).
Consistent with this notion, suppressing resistance by eliciting

an inappropriate defense response is a common mechanism
employed by pathogens (1–4). Cochliobolus species utilize a
range of toxins to promote pathogenicity. For example, C. vic-
toriae secretes victorin as its primary effector, which induces
susceptibility of oats by activating resistance to the rust fungus,
P. coronata (1). Furthermore, in Arabidopsis, victorin elicits an
inappropriate defense response, which enables C. victoriae
virulence (5). In Arabidopsis, the bacterial effector coronatine
mimics JA-Ile and thereby suppresses SA-mediated defense
against P. syringae (2–4).
By measuring protein abundance levels, we determined that

treatment with either HCT or Tox+ C. carbonum results in an
increase of metabolism-related proteins. We are particularly
intrigued by the observed increase in proteins in the indole/
tryptophan biosynthesis pathway, which may promote suscepti-
bility through several mechanisms. For example, up-regulation of
the indole/tryptophan biosynthesis pathway may result in in-
creased auxin biosynthesis (Fig. 2), thereby altering plant re-
sistance. Auxin is known to promote either susceptibility or
resistance, depending on the pathogen and host (72–76). In
maize, Ustilago maydis infection induces auxin biosynthesis and
auxin-responsive gene expression, which are hypothesized to
promote susceptibility (77, 78).
Finally, in line with the increased accumulation of indole/

tryptophan biosynthetic enzymes, we observed an increase in the
level of indole-derived Bx phytoalexins, which are a class of defensive
secondary metabolites found in grass species (42, 79–81), following
treatment with HCT or Tox+ C. carbonum (Fig. S1). Intriguingly, we
also observed that a maize homolog (GRMZM2G001930) of the
Arabidopsis bHLH transcription factors AtMYC2, AtMYC3, and
AtMYC4 is hyperacetylated. In Arabidopsis, transcript levels of
tryptophan biosynthesis genes are induced in a dominant gain-of-
function myc3(atr2D) mutant (82). Additionally, AtMYC2 directly
binds to the promoters and is required, along with MYC3 and
MYC4, for the expression of genes responsible for production of the
class of tryptophan-derived defensive secondary metabolites termed
indole glucosinolates (48). Thus, the hyperacetylated ZmMYC2
protein may function to directly activate indole and Bx production. In
this scenario, Bx would represent inappropriate defensive metabolites
to C. carbonum and their induction would prevent an effective de-
fense response. Future work will need to address whether auxin and/
or Bx directly functions in promoting C. carbonum virulence.

Materials and Methods
Plant Material. Zea mays plants in which the hm1A (83) allele was intro-
gressed into the B73 inbred were used for all experiments. Plants were
grown in a growth chamber in a 16-h light/8-h dark photoperiod at tem-
peratures of 28 °C (day) and 24 °C (night). Leaves 2, 3, and 4 of 15-d-old
plants were sprayed midday until runoff with mock HCT solution (0.1%
Tween-20), 100 μM HCT (Sigma), or 400,000 spores per milliliter of an HCT-
deficient (Tox−) or HCT-producing (Tox+) strain of C. carbonum race 1 (Guri
Johal, Purdue University, West Lafayette, IN). Following treatment, plants
were bagged to increase humidity and placed back in the growth chamber
for either 22 h for proteomics or 44 h for Bx analysis, at which point tissue
was collected and flash-frozen. Four independent biological replicates were
used for each treatment. Each biological replicate is composed of leaf tissue
pooled from multiple plants.
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Fig. 4. Diverse maize proteins are acetylated. Proteins from 32 of 35 major
MapMan bins are acetylated.
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Proteomics. Peptide preparation and protein abundance profiling by mass
spectrometry were based on previously described methods (41, 63, 84, 85).
Quantification of total nonenriched protein abundance was conducted by
labeling peptides before acetyl enrichment with iTRAQ reagent, which la-
bels primary amines and lysine side chains (39, 86). For acetylated peptide
enrichment, 2 mg of anti–acetyl-lysine antibody immobilized on agarose
beads (ImmuneChem-ICP0388) was added to ∼10 mg of maize peptides,
which were not iTRAQ-labeled, in 50 mM Tris·HCl pH 7.4. Samples for each
biological replicate series (e.g., Mock_Rep1, HCT_Rep1, Tox−_Rep1, Tox+_Rep1)
were processed in parallel. The antibody-peptide mixture was incubated
for 1 h with rotation at 4 °C on a 0.2 μM centrifugal device (Microsep
MCPM02C68). Following incubation, the beads were washed three times with
50 mM Tris·HCl pH 7.4, and acetyl peptides were then eluted using 1.5 mL of
0.1% trifluoracetic acid. The antibody-conjugated beads were washed twice
with 50 mM Tris·HCl pH 7.4 and then used for a second round of immuno-
precipitation of the same sample (i.e., the original flow-through). The two
enrichments for a given sample were then pooled and desalted using a Sep-
Pak C18 column (Waters WAT054960) before liquid chromatography-tandem
mass spectrometry. Acetylome quantification was conducted using spectral
counting of the acetyl-enriched peptides (40). Full proteomic methods are
detailed in SI Materials and Methods.

Western Blotting. Proteins for Western blot analysis were extracted using
trichloroacetic acid/acetone from 250 mg of the same maize leaf tissue used
for proteomics. Extracted proteins were quantified using a Pierce BCA Protein
Assay Kit with bovine serum albumin as a standard. Fifteen micrograms of
protein was loaded per sample onto a NuPAGE Novex 4–12% Bis-Tris protein
gel (Thermo Fisher Scientific). Proteins were transferred to a nitrocellulose
membrane using a Bolt Western transfer kit (Thermo Fisher Scientific),

blocked at room temperature (RT) in 5% nonfat milk for 2 h, and then in-
cubated overnight at 4 °C with commercial antibodies specific for H4Kac5/8/
12/16 (06-866; Millipore) or nonmodified H4 (05-858; Millipore) at 1:1,000
and 1:2,000 dilutions, respectively. After washes with Tris-buffered saline
containing 0.1% Tween-20, a 1:3,000 dilution of secondary goat anti-rabbit
HRP-conjugated antibody was added, and after 1 h at RT, the immunore-
active bands were visualized using Pierce ECL Western Blotting Substrate
(Thermo Fisher Scientific) imaged using a ChemiDoc XRS System with
ImageLab software (Bio-Rad).

Functional Annotations and Enrichment. The MapMan functional annotation
file “Zm_B73_5b_FGS_cds_2012 download”was downloaded from mapman.
gabipd.org (54). MapMan bin enrichment was determined with a hyper-
geometric test carried out in R using the dhyper command. GO term en-
richment was carried out using VirtualPlant 1.3 (virtualplant.bio.nyu.edu/cgi-
bin/vpweb/virtualplant.cgi) (87). Enrichment was calculated using the Fisher
exact test with false discovery rate correction. GO terms with a P value less
than 0.05 were considered enriched.

Bx Measurement. Total Bx was measured as previously described (79).
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