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APPROXIMATION OF REGGE POTENTIALS THROUGH FORM FACTORS* 
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Department of Physics and Lawrence Radiation Laboratory 
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April 30, 196 5 

ABSTRACT 

A discussion is given of certain consequences of employing Regge poles 

rather than fixed-J poles as the source of two-particle generalized potentials. 

Three qualitative aspects are emphasized: 

(a) For the purposes of strip approximation dynamics, contrary to common 

belief, the Regge potential has roughly the same energy dependence as that 

due to exchange of a fixed-spin particle. 

(b) The Regge potential, relative to that produced by a corresponding 

,fixed-spin particle, is damped by an exponential "form fq,ctor, 11 roughly 
:. 2 
1

• • Za.' (t-m ) 
eshmated as :::: e , where a.'. is the trajectory slope, t the 

negative square of momentum transfer, and m the particle mass. 

(c) Ambiguous zero-range components in the fixed-J potential become 

replaced by unambiguous short-range components in the Regge potential •. 

.. 

'. 

~ 
\~~. ····--·- -~-- ·-' 
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I. INTRODUCTION 

Within a nuclear democracy governe.d by bootstrap dynamics all poles 

are of the Regge type, but partial bootstrap calculations for practical reasons 

more often than not compute the two-particle generalized potentials as if 

~ they were generated by fixed-J poles communicating with crossed reactions. 

' 

Sometimes .this practice gives reasonably accurate results, but sometimes 

it is totally erroneous. Also, there are ambiguities associated with the zero-

range components of fixed-J potentials. It is the purpose of this paper to 

elucidate the qualitativ,e conditions under which the use of fixed-J potentials 

is legitimate and to explain how the zero-ran.ge ambiguity is' removed if one 

understands the asymptotic behavior of Regge parameters. We also attempt 

to dispel a myth concerning the energy dependence of the Regge potential. 

Our entire discussion is carried out within the framework of the new 

form of strip approximation, in which the dynamics requiring a potential 

'',is confined to the low-energy interval where bound states and resonances 
1 

are prominent. 
1 

As explained in reference 1, one cannot extend potential 

dynamics to the high-energy region without double-counting; but if high ener­

gies are dominated by Regge poles --as suggested by most experiments to 

date
2 
--there may be no need for a detailed dynamics outside the low-energy 

strip. 

To formulate .the strip approximation, it is supposed that the four-line 

connected part may be broken into two separately analytic parts: 

A(s;t} = Vs(t, s) t As(s,t), (I: 1) 

the first term V,~ {t, s) not containing any poles in the channel invariant s 
' \ ~ ~~ 

and the second tetm As(s,t) not containing any poles in the crossed-channel·, 

invariants t and u. Conversely, A 8 (s, t) is supposed to contain all the s 

- ,, 
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poles while:vs{t, s) contains all.the cros~ed poles.· ·Regge asymptotic behavior 
• f • ,r. •. ~ 

prescribes that 

As(s,t). 

while 

·S V (t,-s) 

ex: 

tor u- .qo· 

s' fixed· 

ex: 

s or u.-.oo 
· · t fixed 

· a.J.(s} · a..(s) 
t . ± u. J , (I: 2) . 

· .. 
\ .· ~ 

. a.. (t) a.. {t) 
l . , 

s· :!:u'"· 
; . 

(I: 3) 
. '· 

... 
. "\·. : . ~ . . ' 

with a corresponding behavior for yS as s . orO'_ t":- 00 with· u. fi~ed. The 

power a./s) is ~he lea~ing Regge trajectory~ommunicating 1with the s 
.· ' . .· 

reaction, while ··a.~ (t) is the corresponding. trajectory for the t reaction .. · 

The sign (:J:) is determined by the trajectory signature .. ·· 

The possibility· of a strip approximation depends on the f-q.rther a,ssump­

tion that, as a function of s, As(s,t) is large only within a strip 

-s 1 :5 s ~ s 1• The experimental basis for such an assumption has be.en dis-

! 2 
cussed in reference 1, leading to the conclusion that s 1 ~ 4 GeV • The 

strip width s 1 must be chosen large enough so that (a) all significant s. 

resonances are included inside the strip, and (b) at all energies above the 

strip the Regge asymptotic expansion in terms of a finite number of crossed 

poles· is a reasonable approximation:·. It follows that-

for s > s 1 • (1:4) 

. These requirements do not place ·an upper limit on · s 1; ·in .practice; how­

ever, one usually chooses s 1 ils low as possible so as to minimize the 
'.>; . 

number of chaniiii,ls that must be included in ·the strip dynamics. 
~- . j. 

The functf~fl Vs(t, s) is. our .generali'zed potential; to be used' with 

multichannel two-parti~le.v~-discontinuity formulas inside the str~p. s <s_1, 

• 

• 
\.-.~ 

p;~--
\ 'il•' 
\ -·· ~ 
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in order .dyna~icall y to generate the function As (s, t} which contains the s 

polese· The dynamical equations m:ay be of the N/D type .or equivale~tly o~ 

the Mandelstam iterative type. We are not here concerned with further 

approximations, often made in N/D. equations, that lead to violation of 

(I:4} by causing As (s, t) to diverge as *' s - co. We confine our attention 

to the potential itself. 

II. CONTRIBUTION TO THE POTENTIAL FROM AN 

INDIVIDUAL CROSSED POLE 

For reactions without spin in which par~icle masses (rna' mb) do not 

change, a fairly simple formula has been given for the· contribution to the 

potential from an individual Regge pole in the t reaction: 
1 

S 1 1-co v. (t, s)-- -z (3. r.(t) 
1 1 1 

. zt (s 2, t) 

(II: 1) 

• *For example, ... the approximation of left-hand discontinuities by those of the 

potential, ignorirl~ the oscillations required to maintain consistency between 
; ~is-:~-.} ' 

threshold and a~yfuptotic behavior.; . 
. ; ··1, 
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~ 

I 
I 
I 
j 

j 
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I 
i 
j 
j 

1 
I 

where 

and 

-4..;.· 
/ 

/ 

j .. 

/ 

. , , " '. ' ,I 

r i (t) ~ (Z"i (t) + i) ~i (t) {·'!, (t)ab(t)] "i (t) 

2 t 
. qa (t) = ""4 
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(II: 2) · 

. ,, 

(II! 3) 

' .. (II: 4) 

Here. a.i (t) is the Regge trajectory and 'Vi (t) the reduced reffidue, while 

13· is the appropriate ·element of the crossing matrix. The (%) sign in (II: 1.) 1 . . . . 

is determined by the signature of the trajectory.· ·The lower limit of the 

integral in (II: i) has been chosen to make the potential real for s < s 
2

, so 

s 2 in principle might be set as low as the leading multiparticle threshold, 

.. well inside -the strip. Multiparticle channels inside the strip, however, are 

better represented by unstable two-particle channels than through the Regge 

expansion, so it seems doubtful that one would ever want to choose s 2 · below , 

about s 1/2. We shall set s 2 = s 1 for the purposes of the present discussion, 

thereby achieving a potential that is real (nt;mabsorptive} throughout the 

. * stnp. 

For regions of t where Re o.. (t} > 0..- Formula (II: 1) needs to be 
. 1 

defined by analytic continuation. The result is 

*The pote~tial is:' matrix connecting all important tw~-particle channels;·. 
t:t;; 

we are considerlf1k one (not necessarily dia'gon:al) element of the matrix. 
~ ! . 

' i 
f, 
' 

-.· . 

. ·-.-
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1 . 
v.s(t, s) =- ""\"" J3. r.(t) 
. 1 c. 1 1 sin 1T a.. (t) 

1 

dz' Pa..(t)(-z' >[ 1 
· ::1: 

1 
]. 

1 z' - z z' + zt . t 

III. THE CROSSED REACTION PARTIAL-WAVE 

EXPANSION OF THE POTENTIAL 

(II: 1' ) 

We have defined the potential associated with a particular Regge pole 

I: SO that at fixed t it is analytic within an ellipse in zt p~ssing through 
., 

1 ~ zt (s 1, t), a region that includes the entire strip interval. Everywhere 

inside the strip, therefore, we may express the potential through a Legendre· 

polynomial expansion in zt: 

where 

' 1/\. 
' ~~ 

J= even; .. 
or odd integers 

(III: 1) 
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j • •. '!· ~·J·· +1. •. (IIi: 2) · 
,•;' ''A 

-1 

I 

I 

J . = <- 1 > 13 • r . (t > . l 1 

[ .T - a:. (t > ][ J + a.. (t > + 1] . 
l . 1 ... 

' : .. ·J. 

,· 

We see that, as. expected, the potentia!' comp,onent V /(t) has a pole at 

i i 
t=tJ,where a.i(tJ)=J. Thatis, 

where 

R i = 
J 

. {da.. J . y. (tJ1)/ -:r.:-tl . . . . 
.l . Ul; t=tJl . . . 

., 

' . 

R i 
J 

' (III: 3) 

(III:4} 

Let ~s now identify the standard approXimation of the p~tential by a 
. . 

fixed J component. First. one singles out of the partial-wave expansion 

. ' 
·~ .. 

. ~ . 

{III: 1) a particul~¥}; term, usually the lowest J value J 0; then one approximates '\..r 
h }i . . . 

the coefficient yJ· (t) by (III: 3), keeping only the t) dependence associated 
" 0 

with the pole and the crossed-channel thresholds.· One then has 

. J., ., 

I ' . ~. 
' ' 
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s ' i/ i V. (t, s) :::: f3. (ZJ0+ 1) (RJ tJ . - t) 
1 1 . 0 0 

(III: 5) 

/ 

The task of this paper is to 'compare Ebrmula (III: 5) to the more complete 

expression (II: 1), (II: 11 ), or equivalently (III: 1) together. with (III:Z)c 

IV. COMPARISON OF FIXED-J AND REGGE POTENTIALS 

FOR JtJ << s 1• · 

Our first remark is that for 0 < s < s 1 and t ~ 0, the only region in 

which the potential is needed for dynamics, it is not unreasonable to keep 

only the first term of the partial-wave expansion (III: 1). The expansion is 

:rapidly convergent, with an exponential behavior for large J determined by 
' 

the zt singularity at z 1 (t ): 

v /<t> < .• (IV:1) · 

J -+00 

This exponential cutoff starts becoming effective for J ~. 1 because of the 

Froissart prohibition on Regge poles for J > 1 when t < 0. 3 It is easy to 

verify that the real part of log[z 1 + (z 1
2 - 1) i/Z] is not only positive but of 

-· 
the order of magnitude unity over most ·of the strip. 

'· 

Thus any s~}ious complaint about the fixed-J approximation (III: 5) to 
~ ll 

the potential oug~t :not be with respect to the s dependence, which within 

' 
most of the strip is given adequately by P J [z(s, t)]. Of course as one 

0 .. 
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. ~pproa:ches the .upper ~boundaryofth~ strip;• Ill.ore than one Legendre poly-
• 

nomial should be kept, ·but the characteristic Regge s dependence (I: 3) will 

never appear inside the strip. We could make it appear inside by choosing 

s
2 

<< s 1 in Formula (li:1), but as explained above such a procedure raises 

problems of double counting. 

Evidently Formula (III: 5) is accurate when t is sufficiently near 

i 
t J , but often the poles. of interest, like the p 

0 
and 6l, lie a substantial 

distance from t = o.· We thus require a critical comparison for t ~ 0 .of · 

Formula (III:2) with the approximation (III:3). An essential feature of (III:2), 

not apparent from the expression given, is the exponential d~pendence on J · 

shown in (IV: 1). We have not been able to carry out the integration in (lii:2) 

so as to exhibit explicitly this exponential behavior, but Khuri and Jones 

found a slightly different Regge formula 4 for which. the partial-wave projection 

' yields 

I 

ll ·, 
. · a. (t) 

[
qa (t )qb(t >] 1_ . .: 

y. (t) 
1 

. J - a. (t) 
1 ' 

(IV: 2) 

This formula shares with Formula (ill:2) the properties of chief interest to 

us and has the advantage of being much !llore transparent.' Our problem 

then becomes a_. comparison of Formula (IV:2) with (ill: 3). 

Evidently s~;me knowledge of the trajectory and reduced residue 
~·): 

functions, a. (t) . a)ld y. (t), is required. Experimental indications are that 
1 i; ... , 1 . 

• . ;~~~ t. . . , 

for Jt J s t J 1 '.'1 cr linear approxima~imi to the trajectory is not misleading, 
. . 0 

so we take 

~I 
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(IV: 3) 

Let us also assume 
2 2 

s 1 >>rna , mb , Jt J, so that the exponential factor in 

(IV:2) becomes 

a.. (t)-J 
1 

(IV:4} 

With these simplications, we reduce {IV:2) to 

(IV: 2' ) 

whe.re · 

yi {t) a.. (t)-J 
1 

81 (IV:S) 

'I .. 

The adequacy of the fixed-J approximation (III: 3) has thus finally 1·educed to 

·the adequacy of ignoring the t depe~dence of the function. R/(t) defined by 

(IV: 5). To make further progress the ::.·educed-residue :function requires 

attention. 

A rough formula has been given by Chew and Teplitz for the res5.due 

f . 5 
unctlon: 

yi (t)._, 

0. • I (t) 
1 

. " 

~et-t) 

""ll" 0.; (t} 
lJ _- (t) 

(IV:6) 

·~ .~t~ 

~' ~ ' 
VJherc iJ3

(t) is tJi~ projection of the t-r~action potential onto (complex) 

angular momentum J. The quantity t is a characteristic energy {squared) 
! 
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Pl:'"esumed to be .somew·here in the m~Cl.dle of the . t strip. Since the widths 

of all strips should be sim:i.larD we estimate t as ~ s 1/2. In deriv{n.g 

Formula (IV:2 1 ) it was assumed that Jtl << s,.., so variation of the factor 
. 1 

(t - t) in {IV:6} is weak and the mQst :i.mportC!--nt 't dependence is that of the 

function 

F.{t) 
l 

a. (t} 
CV' 1 (t) 

41 ° (t} 

which for convenience has been normalized to unity at t = t i 
. Jo 

F i (t} evidently may be regarded as a kind of.form factor8 
! 

The first factor in (IV:'i'), if we estimate qa (t) as 

{IV:7) 

Tb.e function. 

.~·~and similarly for qb(t), becomes 

i; 

- [J 0 -o.i (t}] .en 8 
e ~ 

·." ,· 

(IV:8) 

where.· 

t - i : "'·· • I It . i) tJ o "" \ ... ;t.:!:l o. c 1 ..~ 0 . 

The second factor is harder to estimate and fn.ay in'. ~ome cas~s be impor-

ta ... ntb but in sL"nple s:-nodels its val"iation v..rith. t fer · lt !. < t .is no zt::.-onger. 

~:han. that:· o! factors already neglected. 5 . ' 

The -::ssential point is that fhe t 
. . 

" ' t .·~,;~ h . 1· · ' ' . . ~ th . . :reacnon po enha.t1 as s:~.ng~t ar1hes 1n .Z1~ mucn CLoser an z 1, ansmg 
.. ~, ! ~ • 

f:rom the s noles--whkh tend to o.ccur towa~d the lower side oi the s . ~ . .. . 

t • ..,..,. h· . I • 1: 0,/J(-) r. • o · s np. rnus t e o;yscerr.ahc exponential decrease ox v t LOr 1ncreasmg 

• 

., 
( 

\.... 

...~ 

~(~~-
.·,,. 
·'·-.::· 
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J is much slower than (IV: 1). · Of course one cannot rule out a strong 

variation with J fort-reaction potentials with complex structure. 

A crude estimate of the Regge effect for small ltl. tberefore, is to 

reduce the .f~xed-J potential by a "form fa.cto!:' 11 

with 

F. (t) ~ 
1 

-1 
t 

c 
::::: 2 a. 1 (tJ i}. 

1 0 

Using the p trajectory as an example, 

2 a. I 
p 

and we have 

::::: 2 
.1- 0.5 

2 
m 

p 

2 
=m p ~ 

2 I 2 F (t) ::::: exp [ (t - m ) m ] 
p p p 

a (0) ::::: 0. 5, 2 • 6 so 
p . 

(IV: 10) 

. (IV: 11) 

'Thus the "range" of the Reggeized p potential, as measured by its loga­

. rithmic derivative with respect to t at t = 0, is ~ times as great as 

that of a conventional p potential. Als.o it is damped in strength by a 

factor ::::: 1/ e. 

Note that we are giving no justificat:~on for the "Born approximation" 

(or peripheral model) 

A(s,t}::::: Vs(t, s) 

·~. for s < s 1• What we are suggesting is that a simple form factor may 

correct the most serious trouble with the f:i.xed-J potential for small lt ]. 

The potential is tb be inserted into dynamical equations--which still have 

to be solved befd.~e the low-energy amplitude is achieved. 

The above arguments could be e~ended to Regge recurrences, that 
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is, to J values in the expansion (III: 1) beyond the first~· The e:~p0n.ential 

damping rapidly suppresses these, however, by successive factors of the ~I 

order 
-2,6.J -4 

e = e There will rarely be any need, therefore, to go 

beyond the leading physical value of J. The Pomeranchuk trajectory 

presents a special problem because the first physical J value, J = 0; has t' 

no t pole.associated with it. We shall deal elsewhere with this extremely 

important special case. 

Ve BEHAVIOR OF THE POTENTIAL AT LARG;E Jt l 

We have proposed ·adding a particular form factor to tl;.e fixed-J 

potential {III: 5). Our estimat:lon of thts factor employed many approximations 

that required t to be less than s 1, but it i& plausible that ti:e Regge 
/ 

parameters a. (t) and y. (t) will have a behavior as t - 00 that wiJ.l c.ause 
1 1 f 

the actual form factor to decrease strongly. At first sight, the asymptotic 

, ·behavior for large t might seem irrelevant, since in the physical region 
i 
of the s reaction l t]. < s and we are confining ourselves to s < s ". If, 

. . ~ 

however, an anal)rtic continuation is attempted in the angular momentum of 

the s reaction one must, in the projection of the potential, .integrate to -oo 

in t. The continuation is defined only for Re J > N, if the potential behaves 
s 

'l1'ke · N t as t ...... ,oo. . / 

Jo-~ 
Now, the fixed-J potential (III: 5) behaves like t aB t ~ (!()' so 

one is in difficulty for s-rea~tion angular momenta ~ J 0-1. For example~ 

the p potenti<~1 gives trouble for J = 0 in the Tr1i system. In this case 

Formula (III:-5} b~comes · 

~: 



IJ 

.. 

s V (t, s} ~ ~ 3 
p p 

. ' 

i 
R Pi 

1 
z 

m -t 
p 
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2 
2s + t - 4m 

'If 

4 

3 
= 4 ~p [ 

2s + m 
2 

- 4m 
2 

R P p n 
1 

m - t 
p 
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0 
(V: 1) 

Obviously the -1 inside the bracket is effective for no al?-gular momenta in 

the s reaction except the~ wave, and there is always uncertainty about 

whether this singular ("zero-range") component in the potential should be 

taken seriously. 

The Reggeized potential eliminates all such ambiguities if the effective . 
. -(Jo-1> 

form factor vanishes more rapidly than t as t - eo Suppose, for 

example, that we add the simple exponential (IV: i 1) to (V: 1). There is now 

no difficulty. Both terms in (V: 1) are to be taken seriously. The first is 

',attractive (if ~ is positive) and has a "range" :::: rz;m . as explained above. 
p . p 

The second is repulsive and of a shorter "range" :::: 1/m that arises 
p 

entirely from the form factor. Both terms are effective for all a-reaction 

angular momenta, although the first term is relatively more important for 

high angular momentum and the second term for low • 

/ 

'(? 

l"' J< 
'" 
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