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ABSTRACT

Compositionality and Cognitive Control in Neural Networks

JACOB RUSSIN

Compositionality, a natural property of symbolic systems, is thought to be a key principle underlying human

intelligence: known concepts can be combined in novel ways according to systematic rules, allowing for the

potentially infinite expressivity of human thought and language. Neural network models of cognition have

long been criticized for failing to capture this important property. Despite their massive success in cognitive

domains such as natural language processing, modern deep neural networks still struggle to generalize on

compositional problems in the same ways that humans do, leading some to conclude that these networks

must be augmented with symbolic or rule-like operations to fully account for key aspects of human cognition.

Others have attempted to discover the inductive biases that would encourage compositionality to emerge in

neural networks, without the need for explicit symbols or rules.

The work presented in this dissertation takes the latter approach, exploring in particular the possi-

bility that the mechanisms in the human brain responsible for cognitive control and top-down attentional

modulation may constitute just such an inductive bias. Deep neural networks are used to study composition-

ality, cognitive control, and their relationship in both machine learning and cognitive neuroscience settings.

Methods for measuring the extent to which compositional processing has emerged in neural networks are

developed, and cognition-inspired attentional mechanisms are tested on compositional generalization prob-

lems. Additionally, neural networks are used to model phenomena observed with fMRI regarding control

processes in the context of cognitive map formation.
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Chapter 1

Introduction

Deep neural networks, direct descendants of the connectionist models explored in the Parallel Distributed

Processing framework (McClelland et al., 1986), have revolutionized the field of artificial intelligence (Brown

et al., 2020; LeCun et al., 2015; Silver et al., 2016). These models, like their predecessors, are based on some

of the principles thought to underlie the functioning of the brain, e.g., they assume that representations are

distributed across populations of neurons, each of which computes a linear function of its inputs followed by

a nonlinearity. Although there is much that is biologically implausible about them including the backpropa-

gation algorithm by which they are trained (O’Reilly, 1996; Rumelhart et al., 1986a; Whittington & Bogacz,

2019), the basic principles upon which they are built, along with their success in cognitive domains such

as vision, language, and reinforcement learning, have led many researchers to suggest that modern neural

networks can also support a mini-revolution in cognitive and computational neuroscience (Botvinick et al.,

2019a; Hassabis et al., 2017; Kietzmann et al., 2018; Marblestone et al., 2016; Richards et al., 2019; Saxe

et al., 2021).

Part of this optimism stems from the fact that these networks, like the human brain, are trained on

increasingly large, high-dimensional datasets of images and video, speech, and natural language data, allowing

them to be compared with humans on tasks with a more realistic scale compared to previous models, which

were much smaller and trained on much simpler tasks. This scale also allows for fairer comparisons to be

made because these networks can be pretrained on large datasets and then instructed or prompted to perform

a specific task (Webson et al., 2023), analogous to how humans have a lot of prior experience before being

instructed on a particular task given in a psychological or neuroimaging experiment. This is again opposed

to earlier work which usually unrealistically assumed (for practical purposes) that all learning took place

exclusively within the particular task being studied. Furthermore, the high-dimensional representations that

emerge in these networks through learning can be systematically tested against brain data with methods

such as Representational Similarity Analysis (RSA) (Kriegeskorte et al., 2008) — see e.g., the work presented

in chapters 7 and 8.
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There are also reasons to be skeptical about this kind of work: although it does have roots in cognitive

science, many recent advances in deep learning have not been motivated by understanding cognition but by

engineering purposes. Furthermore, the rapid success of these models – especially in popular applications

(e.g., chatGPT) – have led some to make extravagant claims about their cognitive capabilities or psychological

plausibility.

This state of a↵airs motivates the need for cognitively-focused work that aims to leverage the advantages

of modern neural networks to gain insights into the functioning of the human brain. This is the broad aim

of much of the work of this dissertation. The remainder of this introductory section is organized as follows:

Section 1.1 briefly summarizes key historical debates that began with early work in connectionism, largely

focusing on the debates about compositionality and rule learning. Section 1.2 reviews recent work that

revisits these debates in light of advances in neural networks for machine learning. Section 1.3 outlines the

middle-ground approach to these issues that I have taken in my own work. Section 1.4 connects the two

major themes of my work – compositionality and cognitive control – and situates them in the context of this

middle-ground approach, and section 1.5 summarizes each of the chapters, elaborating on their place in this

broader research program.

1.1 The Connectionism Debates

In this section I briefly summarize key challenges raised by critics of connectionist models during their rise in

the 80s and 90s. A full review of this literature is beyond scope of the current chapter (Buckner & Garson,

2019; Medler, 1998), so I will focus on the challenges most relevant to my own work.

The connectionist models of the 80s and 90s (McClelland et al., 1986) garnered a lot of attention because

they seemed to o↵er solutions to well-known problems with classical symbolic models that were the state-

of-the-art in artificial intelligence and cognitive science at the time (Hofstadter, 1982) – e.g., robustness to

uncertainty, graceful degradation in response to noise, etc. Connectionists emphasized the advantages of dis-

tributed representations that can be learned from data and do not require any built-in rules or hand-crafted

programs, hypothesizing that rule-like or symbolic behavior can emerge through learning. For example,

Rumelhart & McClelland (1986) famously trained a neural network model on the English past tense, and

argued that the model challenged the standard assumption that knowledge of the English past tense took

the form of explicit rules, thus sparking intense debate (Pinker & Prince, 1988; Seidenberg & Plaut, 2014).

Some connectionists concluded from this and other findings that high-level psychological phenomena nor-

mally characterized in terms of discrete rules or symbolic operations were in fact epiphenomenal: these

characterizations were best thought of as approximations that would not appear in the final, more fun-

2



damental account of behavior. This more radical position is sometimes labeled eliminative connectionism

(Marcus, 1998; Place, 1992).

Many cognitive scientists pushed back against these claims and argued that neural networks lacked the

very properties that made classical symbolic models so successful in the first place. The specific claims

about the English past tense were hotly contested (Pinker & Prince, 1988; Seidenberg & Plaut, 2014), and

some theorists challenged the connectionist approach to cognitive architecture as a whole. Perhaps the most

influential of these were Fodor & Pylyshyn (1988) who argued that neural networks could never explain

human productivity and systematicity because they fundamentally lacked the compositionality inherent to

the classical approach. Compositionality, or the ability to compose familiar elements into novel combinations

according to known rules (Szabó, 2020), is a natural property of symbolic systems and readily explains the

apparent productivity and systematicity of human thought and language — when known elements can be

combined into novel concepts, the number of complex combinations that are expressible grows exponentially

in the number of elements that are learned.

Marcus (1998) argued along similar lines that neural networks, which are universal function approxima-

tors, can only generalize by interpolating within their training distribution, and are incapable of human-like

extrapolation, i.e., generalization outside of this distribution. For example, upon learning the basic defini-

tion of a novel verb like “dax,” humans are capable of systematically generalizing its usage to many di↵erent

constructions (e.g., “dax twice”) — thus extrapolating from their direct experience to a truly novel situation

(Lake et al., 2015; Lake & Baroni, 2018; Lake et al., 2019a)

Marcus (1998) argued that neural networks could not achieve this kind of out-of-distribution generaliza-

tion because they are not endowed with symbolic structures and rule-like operations. Contrary to radical

eliminative connectionism, these theorists took a strong anti-reductionist position, in some cases arguing

that neural networks could not in principle be relevant to higher-level cognitive theorizing: even if all of the

relevant properties of human cognition did somehow emerge in a neural network, nothing would be learned

at the cognitive level (Fodor & Pylyshyn, 1988).

Many connectionists took these challenges seriously, and attempted to show how the apparent compo-

sitionality of human thought and language could be accounted for in purely neural models, i.e., ones that

were not augmented with specialized symbolic or rule-like operations (O’Reilly et al., 2014; Smolensky,

1987, 1988). However, further debate about compositionality ensued (Chalmers, 1990; Fodor, 1997; Fodor &

McLaughlin, 1990; MacDonald & MacDonald, 1991; McLaughlin, 1993, 2014), and the field as a whole did

not come to a clear resolution on these issues.

3



1.2 Revisiting the Debates in Light of Advances in Deep Learning

Despite these older criticisms, many of the most successful deep learning models share the core assumptions

of connectionism, including an emphasis on the power of distributed representations learned from data, which

do not require domain knowledge to be built in (Bengio et al., 2014; LeCun et al., 2015). A major aspect

of the design philosophy of deep learning systems is a humility about the extent to which the researcher or

engineer can come up with the “right” operations or features on which the system should operate. Neural

networks are instead trained on raw inputs such as images or text, and the optimization procedure is trusted

to guide the emergence of representations that are useful enough for the system to achieve its objective.

Indeed, one way of characterizing the history of artificial intelligence and machine learning is as a pro-

gression from intensive top-down programming of entire systems from scratch (Newell & Simon, 1956), to

merely hand-designing the features on which a learning system is trained (Schölkopf & Smola, 2002), to

hard-coding as little as possible other than the learning systems themselves (e.g., the architecture, objective

function, optimization algorithm, etc.), allowing e↵ective representations at multiple levels of a deep hierar-

chy to emerge through training on raw inputs alone (Goodfellow et al., 2016). In retrospect, it may not be

so surprising that a machine trained on large amounts of data could discover better features than human

engineers — consider, for example, how challenging it would be to design by hand the features that would

allow a program to recognize whether or not a given image contains a certain object such as a cat.

Although deep learning systems are often criticized for their lack of interpretability (Murdoch et al., 2019),

this opacity may stem from the same principle: it may be precisely because these systems are not constrained

to produce clean, succinctly characterizable features (i.e., those that a human engineer or cognitive scientist

could readily understand) that they are free to learn the strange, complicated, heterogeneous features (Serre,

2019) that allow them to reach superior performance (Lipton, 2017).

The success of this design philosophy in artificial intelligence applications has been taken by some to at

least partially vindicate the principles emphasized by the early connectionists (Piantadosi, 2023), and has

therefore reinvigorated many of the older debates in cognitive science. For example, some recent work has

revisited the challenges posed by Pinker & Prince (1988) concerning the ability of neural networks to learn

discrete rules such as those thought to govern the English past tense. Kirov & Cotterell (2018), as well

as follow up work (Corkery et al., 2019; Wiemerslage et al., 2022) showed that modern natural language

processing (NLP) systems avert prior empirical criticisms, and learn to conjugate both regular and irregular

verbs from their training set, achieving high accuracy (98%-99%) on held-out regular verbs — without any

built-in capacity to represent explicit rules.

This work is part of a growing body of research investigating the extent to which modern neural networks
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trained on large amounts of natural language data capture the structures posited by classical linguistic theory

(Baroni, 2021; Linzen & Baroni, 2021; Pavlick, 2022). For example, state-of-the-art language models (Brown

et al., 2020) demonstrate surprisingly extensive syntactic abilities (Linzen & Baroni, 2021) and are capable

of producing long strings of coherent text where grammatical errors are rare. A growing body of research

has scrutinized the syntactic abilities of deep neural networks by developing test datasets designed to isolate

competence with specific syntactic phenomena (Gulordava et al., 2018; Linzen et al., 2016; McCoy et al.,

2020; Wilcox et al., 2022). While some findings have been mixed (McCoy et al., 2019), taken together

they suggest that syntactic competence in these models is robust (Linzen & Baroni, 2021), challenging prior

assumptions (Piantadosi, 2023; Wilcox et al., 2022). Furthermore, the internal representations of the models

align to some extent with the structures posited by classical linguistic theory (Manning et al., 2020; Tenney

et al., 2019), suggesting that although these representations are not symbolic or rule-like in the classical

sense, the relevant structures may nonetheless emerge through learning.

The representations learned by deep neural networks for vision (Cadieu et al., 2014; Lee & DiCarlo,

2023; Nayebi et al., 2021a; O’Reilly et al., 2021b; Yamins et al., 2014), navigation (Nayebi et al., 2021b;

Whittington et al., 2020) and language (Caucheteux & King, 2022; Goldstein et al., 2022; Luckett et al.,

2020; Mahowald et al., 2023) have also been shown to have a surprising level of correspondence with those of

the brain, suggesting that they can inform our understanding of the processes by which it operates in these

settings.

Although deep neural networks have overcome some of the criticisms associated with earlier work in

connectionism, other recent studies suggest that the old challenges remain relevant. Many studies have

found that although some kinds of compositionality have been shown to emerge in them (Lepori et al., 2023;

Lewis et al., 2023; Russin et al., 2021a), modern neural networks still struggle to generalize in the ways one

would expect of a truly compositional system (Hupkes et al., 2020; Kim & Linzen, 2020; Lake & Baroni, 2018;

Lake et al., 2017; Loula et al., 2018; Marcus, 2018). For example, in one influential study that has inspired

some of my own work (Russin et al., 2019), Lake & Baroni (2018) found that even state-of-the-art neural

networks struggle to systematically compose known elements or apply known rules in unfamiliar situations,

even though humans succeed when tested on an analogous task (Lake et al., 2019a). In particular, Lake &

Baroni (2018) tested models on their ability to generalize the usage of a known verb (e.g., “dax”) to unseen

constructions (e.g., “dax twice”), and showed that neural networks were unsuccessful in doing so. Other

follow up work has shown that the failure of neural networks on compositional generalization problems such

as this one is a robust phenomenon and reappears in many domains (Bahdanau et al., 2019b,a; Lake et al.,

2017). This is consistent with the data ine�ciency of large neural networks, which are sometimes trained

on more data than humans will encounter in an entire lifetime (e.g., GPT-3 (Brown et al., 2020) trained on
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something like 100 human lifetime’s worth of linguistic data (Wilcox et al., 2022)).

These and other findings suggest that modern neural networks are still incapable of the kind of sample

e�ciency and extrapolation/out-of-distribution generalization that the inherent compositionality of symbolic

or rule-based systems a↵ords (Marcus, 2018, 2020; Marcus & Davis, 2020). This suggests that even in the

cases where large language models seem to possess powerful generalization abilities, they are still merely

interpolating — their training set is so large that it is di�cult to even come up with out-of-distribution tests.

Despite current disagreements about how to resolve these issues, the findings exploring the successes and

failures of deep neural networks have demonstrated the importance of the cognitive perspective for artificial

intelligence, and suggests an important role for these networks in future cognitive theorizing.

1.3 Revisionary Connectionism: A Middle Ground

It is unclear how the current iterations of these debates will be resolved. Some in the deep learning community

seem to have gravitated toward an extreme position similar to the eliminative connectionism that critics

accused early connectionists of, and believe that any cognitive capacity can emerge if a large enough model

is trained on a large enough dataset. On the other hand, prominent critics argue that regardless of scale,

neural networks have inherent limitations that they will never overcome and will need to be augmented with

symbolic or rule-like processes in order to fully account for key aspects of human cognition (Marcus, 2018;

Quilty-Dunn et al., 2022).

It is important here to distinguish between the goals of research in artificial intelligence (AI), which seeks

to engineer machines that are capable of intelligent behavior, and the goals of cognitive science, which seeks to

explain how the human mind/brain accomplishes such behaviors: there is in principle a dissociation between

the question of what will work for AI in the future, and the principles underlying human cognition. For

example, it might be the case that many aspects of human cognition are in fact best characterized by symbolic

processes, but we won’t need to build explicit symbolic operations into large neural networks because scale

can compensate for such limitations. On the other hand, it could be that human symbolic behavior is merely

emergent, but that the best way forward for AI is to use hybrid architectures that incorporate symbolic

components — after all, symbolic programs are much better than humans at certain kinds of computation

(e.g., long division). So although there is good reason to think that there will be convergence between the

two fields (Hassabis et al., 2017; Marblestone et al., 2016; Zador et al., 2023), in principle the di↵erence in

their goals highlights the fact that cognitive science cannot naively treat the volatile “state-of-the-art” in AI

as the current best model of the mind/brain.

In my own work, I have sought to both bring insights from cognitive science and neuroscience to bear
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on machine learning models (see chapters 2, 3, 4, 5), and to use neural network models to gain insight

into the brain (see chapters 6, 7, 8). Inspired by previous work (Elman et al., 1997; O’Reilly et al., 2014;

Smolensky, 1990), I have sought a middle ground between the following two extreme positions: 1) an

eliminative connectionism that disregards cognitive accounts of the inner workings of the mind, emphasizing

instead the emergent quality of intelligent behaviors, and 2) the extreme kind of anti-reductionism that

maintains that neural networks cannot inform cognitive theorizing, even in principle (Fodor & Pylyshyn,

1988).

On the one hand, a growing body of work from both earlier connectionist research and current deep learn-

ing research shows that neural networks can o↵er insights into the processes underlying human cognition

and neural computation. Modern neural networks have shown time and again that it is easy to underesti-

mate emergence — many phenomena that were thought to require specific representational or architectural

assumptions have been shown to emerge in relatively generic neural networks at larger scales. However,

it is also clear that cognitive scientists need to be cautious in drawing cognitive conclusions from models

trained in wildly inhuman ways or at implausible scales, and need to think explicitly about how the brain

may embody specific inductive biases sculpted by evolution to encourage symbol-like or rule-like phenomena

to emerge in human behavior. The criticisms in the work of (Lake & Baroni, 2018; Marcus, 2018) contain

important kernels of truth that can inform ongoing work seeking to identify the inductive biases that are

missing from current systems. These inductive biases may be architectural (Elman et al., 1997; O’Reilly

et al., 2021a; Russin et al., 2019; Smolensky, 1990), but could also relate to the lack of human-like objective

functions or multimodal and interactive environments (Hill et al., 2020; Linzen, 2020; McClelland et al.,

2020).

The important task for research at the intersection of cognitive science, neuroscience, and AI is to translate

the kinds of insights from work in cognitive science, e.g., about the importance of compositionality, into

inductive biases that can be implemented in purely neural systems, i.e., without hand-coding rigid symbolic

structures that are biologically implausible and su↵er from the same limitations present in classical symbol

programs. Note that this strategy does not seek “mere implementations” (Fodor & Pylyshyn, 1988) of current

cognitive theory assumed to be rigid or final. It embodies a substantial shift in perspective: rather than

positing innate concepts or rule-like structures to explain behavioral phenomena, it seeks understanding of the

inductive biases that would lead those phenomena to emerge, and contends that this empirical investigation

may revise current cognitive theory and o↵er further insights into the development and functionality of the

brain. This strategy is a middle ground because it rejects the notion that neural networks will never fully

account for the complete set of human competences without explicit symbols or rules, and is “revisionary”

rather than “eliminative” in that it rejects the assumption that high-level cognitive explanations are merely
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epiphenomenal — it welcomes these explanations and hopes to constructively revise them through the process

of translating them into the language of neural networks.

1.4 Cognitive Control as an Inductive Bias to Encourage Compositionality

To demonstrate how this middle-ground approach has operated in the context of my own work, I will briefly

describe my approach to compositionality, and its relation to cognitive control. Although much progress has

been made in showing that neural networks can succeed on tasks thought to require rule-like or systematic

representations such as natural language processing (Brown et al., 2020), the problem of compositionality

still seems to plague modern neural networks (Lake & Baroni, 2018; Lake et al., 2017). The problem has

received much attention from the deep learning community (Hupkes et al., 2020; Jiang & Bansal, 2021;

Keysers et al., 2020; Kim & Linzen, 2020; Lake, 2019; Li et al., 2019; Liu et al., 2020; Loula et al., 2018),

but there is still no consensus on how it can be solved in a purely neural learning system (i.e., one that is

not augmented with explicit symbols or rules).

It is for this reason a suitable test bed for the middle-ground approach outlined in the previous section.

Indeed, it has been the motivation for similar middle-ground approaches in the past (O’Reilly et al., 2014;

Smolensky, 1990). For this approach to succeed, the concept of compositionality, which is deeply entangled

with the language of symbolic programs, must be deconstructed into more basic principles suitable for

translation into an inductive bias that can be readily implemented in neural networks.

One way of doing so has been to strip away assumptions about how precise mechanisms by which

compositionality operates in the context of symbolic programs, and focus instead on the more basic notion of

content-independence or role-filler independence (Quilty-Dunn et al., 2022; Smolensky, 1990) The notion of

compositionality captures the fact that symbolic programs apply the same exact operations (or structure) to

any content (e.g., consider how a function written in a programming language applies the same operations to

its arguments, regardless of the particular values those arguments take). Typical neural networks, however,

do not embody this principle, and exhibit an extreme sensitivity to contextual information, leading to failures

on the compositional generalization problems discussed earlier.

Following others (Behrens et al., 2018; Kriete et al., 2013; O’Reilly et al., 2014; Rougier et al., 2005;

Summerfield et al., 2020), my work has attempted to translate this abstract property into an inductive

bias suitable for implementation in neural networks (O’Reilly et al., 2021a; Russin et al., 2019, 2020b). By

learning structure and content separately, an out-of-distribution problem where a model must extrapolate

to unseen structure-content combinations can be transformed into two interpolation problems — a known

structure must be recognized, and applied to known content (see Figure 4.3).
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A brain area thought to be involved in learning abstract, content-independent structure and rule-like

representations is the prefrontal cortex (Mian et al., 2014; Milner, 1963; Wallis et al., 2001; Shallice &

Burgess, 1991). Its connection to compositionality, out-of-distribution generalization, and ongoing problems

with current deep neural networks is outlined in chapter 2 (Russin et al., 2020b). The prefrontal cortex is

known to be involved in high-level cognitive functions that are currently not captured well by deep learning

models: e.g., planning (Daw et al., 2005; Smittenaar et al., 2013), reasoning (Crescentini et al., 2011; Donoso

et al., 2014; Goel, 2007; Hampshire et al., 2011; Krawczyk et al., 2011), and control in novel environments

(Domenech & Koechlin, 2015; Miller & Cohen, 2001). The prefrontal cortex is thought to accomplish these

functions through top-down attentional modulation of other areas (Miller & Cohen, 2001; O’Reilly & Frank,

2006).

In my work I have explored how top-down control may be an important architectural inductive bias

implemented in the brain that encourages content-independent processing (Russin et al., 2019). This fits

with the middle ground position outlined above: rather than hand-coding symbolic operations into the brain,

evolution may have encouraged compositionality to emerge through the implementation of a mechanism for

cognitive control, specifically designed to overcome habitual responses in the service of accomplishing novel

goals (Miller & Cohen, 2001). Although there is still work to be done in both discerning the precise compu-

tations underlying cognitive control in the prefrontal cortex and in implementing analogous mechanisms in

neural networks at scale, the results of the work outlined in these chapters suggest that this middle-ground

approach is promising, and can inform cognitive science, neuroscience and AI.

1.5 Chapter summaries

The work presented in the following chapters use neural networks to explore the computational mechanisms

underlying compositionality, cognitive control, and their interaction. Each chapter is a self-contained paper

that was published previously. The chapters can be broadly separated into two parts. The first part

(chapters 2 through 5) explores compositionality in the context of deep learning research, using insights

from neuroscience and cognitive science, including the use of a specialized attentional control mechanism to

achieve content-independence processing in chapter 4. Chapter 2 (Russin et al., 2020b) is a short but intensive

literature review that makes the case for the need for cognitive control in deep learning by highlighting the

degree of alignment between the functions of the prefrontal cortex and current limitations of state-of-the-art

deep neural networks. Chapter 3 (Russin et al., 2021a) explores the possibility that compositional processing

emerges in transformers trained on a large dataset of math word problems, and finds evidence for a weak kind

of emergent compositionality, suggesting that compositionality can to some extent be learned in the absence
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of strong inductive biases. However, this weak form of compositionality does not allow these networks to

generalize su�ciently outside of their training distribution: chapter 4 (Russin et al., 2020a) explores top-down

attentional control as a strong inductive bias for encouraging compositionality in recurrent neural networks,

and finds that when such networks are equipped with this mechanism, content-independence emerges and

compositional generalization is greatly improved. Chapter 5 (Chakravarthy et al., 2022)1 explores a similar

mechanism to induce content-independence in a transformer architecture (Vaswani et al., 2017) on the same

task, and shows that similar compositional generalization performance can be achieved when abstract role

information is provided as input.

The second part (chapters 6 through 8) presents work done in collaboration with Erie Boorman’s fMRI

lab at UC Davis, and explores cognitive control in neural network models in the context of cognitive maps

(Behrens et al., 2018; O’Keefe & Nadel, 1978; Park et al., 2020a), using these models to gain insight into phe-

nomena observed with fMRI. Chapter 6 (Russin et al., 2021b) describes preliminary work exploring whether

neural networks can capture the basic phenomena observed in a particular fMRI experiment investigating

cognitive map formation in humans (Park et al., 2020b). Chapter 7 (Zolfaghar et al., 2022)1 investigates

direct links between control processes and the geometry of cognitive maps learned by neural networks, and

chapter 8 (Russin et al., 2022) extends this work with a neural network model equipped with an explicit

control mechanism, showing that it can account for empirical findings related to blocked vs. interleaved

learning (Flesch et al., 2018).

1
Co-first authors on original publication.
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Chapter 2

Deep Learning Needs a Prefrontal Cortex

Jacob Russin1, Randall C. O’Reilly1, Yoshua Bengio2

The original version of this article (Russin et al., 2020b) was accepted for publication at the “Bridging
AI and Cognitive Science Workshop” at the International Conference on Learning Representations (ICLR
2020). The opinions expressed here are the author’s own and do not necessarily reflect the views of the
conference, workshop, or publisher. The original version is available online at https://baicsworkshop.

github.io/pdf/BAICS_10.pdf.

2.1 Abstract

Research seeking to build artificial systems capable of reproducing elements of human intelligence may

benefit from a deeper consideration of the architecture and learning mechanisms of the human brain. In

this brief review, we note a connection between many current challenges facing artificial intelligence and the

functions of a particular brain area — the prefrontal cortex (PFC). This brain area is known to be involved

in executive functions such as reasoning, rule-learning, deliberate or controlled processing, and abstract

planning. Motivated by the hypothesis that these functions provide a form of out-of-distribution robustness

currently not available in state-of-the-art AI systems, we elaborate on this connection and highlight some

computational principles thought to be at work in PFC, with the goal of enhancing the synergy between

neuroscience and machine learning.

2.2 Introduction

Deep learning, which has historically taken inspiration from the brain, has had unexpected and massive

success in many applications. Though much progress has been made, new advances will be needed to meet

the substantial challenges remaining on the path toward recreating the most powerful aspects of human

intelligence. State-of-the-art methods remain inferior to human learners in their ability to transfer knowledge

to new domains (Lake et al., 2017), to capture compositional or systematic structure (Lake & Baroni, 2018),

1
Center for Neuroscience, University of California, Davis

2
MILA, Université de Montréal, CIFAR Senior Fellow
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to plan e�ciently (Hamrick, 2019), and to reason abstractly (Bhagavatula et al., 2019; Xu et al., 2020). All of

these abilities share similarities with the collection of human capacities known as executive functions, and are

often associated with conscious processing, i.e., they can be reported verbally by human subjects. The human

brain must embody principles lacking in current deep learning systems that allow it to perform these powerful

functions. This has led some to consider the possibility of taking inspiration from the architecture of the

human brain to build more flexible learning systems (Marblestone et al., 2016; Hassabis et al., 2017). Here,

we observe an intriguing correspondence between some of the current open questions in deep learning research

and the functions of the human prefrontal cortex (PFC), a brain area known to be involved in executive

functions such as planning (Duncan, 1986), abstract reasoning (Donoso et al., 2014), rule-learning (Wallis

et al., 2001), and controlled or deliberate processing (Miller & Cohen, 2001). We explore this connection,

and the potential of translating what is known about this brain area into architectural assumptions or

inductive biases in deep learning (Marblestone et al., 2016; Battaglia et al., 2018). First, we elaborate on

some of the current challenges in deep learning research mentioned above, and then briefly survey some

findings from neuroscience about the PFC, noting connections to these current challenges. We then discuss

some theoretical ideas about PFC function from cognitive and computational neuroscience, with the aim of

stimulating a fruitful synergy between neurocience and deep learning research.

2.3 The Need for Neural Networks with Executive Functions

Current deep learning methods excel in perceptual tasks in which complicated patterns must be recognized

in high-dimensional data. However, no one yet knows how to build learning machines which fare well on

tasks that require deliberate, controlled processing over multiple steps or dealing with changes in distribution

(Bengio, 2017, 2019; Lake et al., 2017; Marcus, 2018). In the following, we highlight some of the aspects of

human cognition that have so far proven di�cult for neural networks to reproduce, and have become active

areas of research in deep learning.

Reasoning Bottou (2011) o↵ers a helpful working definition of reasoning as “algebraically manipulating

previously acquired knowledge in order to answer a new question.” What this definition entails is the reuse

of dynamically selected computational modules, with the results of recently produced computations feeding

the currently selected computation. Most of the tasks at the center of the rise of deep learning (e.g., object

recognition, video-game playing, machine translation) generally do not require reasoning, i.e., algebraic

manipulation of existing knowledge. Current neural nets involve composition of functions (e.g. layers) but

in a fixed order. Recently, there has been growing interest and much progress on datasets and tasks that

require reasoning over multiple steps (e.g. Bhagavatula et al., 2019; Johnson et al., 2017; Graves et al., 2016;
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Hudson & Manning, 2019; Weston et al., 2015; Xu et al., 2020; Barrett et al., 2018), with some cases of

systems surpassing human performance (e.g. Hudson & Manning, 2018; Perez et al., 2018; Yi et al., 2018).

However, as we discuss in the next section, most models trained on these tasks still fail to “answer new

questions”, in the sense of generalizing outside of the training distribution (Barrett et al., 2018; Bahdanau

et al., 2019a).

Compositionality and Systematicity It has been argued that one of the most powerful aspects

of human cognition is its systematicity: concepts can be composed in novel ways, so that the number

of expressible combinations grows exponentially in the number of primitive concepts learned (Fodor &

Pylyshyn, 1988; Lake et al., 2017; Lake & Baroni, 2018). This topic is closely related to reasoning, because

“algebraic manipulation” requires that existing knowledge be represented in a form that is systematically

composable. Interest in compositionality among deep learning researchers has grown over the past few years,

where experiments have revealed that standard approaches in deep learning show weak generalization for

compositions of known elements which are unlikely under the training distribution (Lake & Baroni, 2018;

Bahdanau et al., 2019b,a; Keysers et al., 2020, but see also Hill et al. 2020). These experiments show

that standard architectures fail to capture the compositional structure or systematic rules governing the

data-generation process.

Control in Novel Environments Just as standard deep networks have weaker generalization outside of

their training distribution in the settings described above, they are less e�cient than humans at transferring

knowledge about learned environments to novel ones (Hagendor↵ & Wezel, 2019; Kansky et al., 2017; Lake

et al., 2019b, 2017). For example, when trained on the Atari games, the generalization of standard methods

in deep reinforcement learning is not robust to slight changes in the rules of the game or the layout of the

inputs (Kansky et al., 2017). Generalization to novel environments has continued to be an important topic

in deep learning research, where an increased focus on one-shot learning (e.g. Vinyals et al., 2017), transfer

(Weiss et al., 2016), and meta-learning (e.g. Finn et al., 2017; Bengio et al., 2019) has emerged. Much

progress has been made in these areas, but human-level transfer remains elusive (Lansdell & Kording, 2019;

Gri�ths et al., 2019).

Abstract Planning It has long been recognized that the standard planning algorithms used in model-

based reinforcement learning (RL) are too computationally expensive to be useful in many real-world domains

(Barto & Mahadevan, 2003), and that humans and other animals seem to possess planning strategies that

avoid much of this computational cost (Botvinick, 2008; Botvinick et al., 2009). In particular, it has been

suggested that humans plan using temporally abstract representations, whereas model-based algorithms

usually treat each time-step independently (Botvinick et al., 2009; Botvinick & Weinstein, 2014). The

most successful algorithms in deep RL are model-free (Arulkumaran et al., 2017; Hamrick, 2019), and
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though model-based deep RL methods have had some recent success (Corneil et al., 2018; Finn & Levine,

2017; Nagabandi et al., 2018; Feinberg et al., 2018), most still plan each time step individually or lack the

abstraction and compositionality displayed in human planning (Hamrick, 2019).

2.4 Some Functions of the Prefrontal Cortex

All of the challenges described above have been noted by others, and are active areas of research. The first

of our main contributions is to draw connections between them and the functioning of the human PFC.

The PFC comprises a large swath of the most anterior portion of the cerebral cortex and appears to have

undergone a disproportionate amount of development over the course of human evolution (Schoenemann

et al., 2005; Rilling, 2006; Semendeferi et al., 2001; Falk, 2012). It receives highly processed, multimodal

information from perceptual areas, and sits at the top of the decision-making hierarchy (Fuster, 2009; Hunt

& Hayden, 2017; O’Reilly et al., 2012). Much remains unknown about the PFC, and in particular there

is ongoing investigation into functional di↵erentiation between di↵erent areas within it (Hunt et al., 2018).

However, it has been argued that much of the PFC retains a canonical computational role, with functional

di↵erentiation among subareas emerging due to di↵erences in connectivity (Miller & Cohen, 2001; O’Reilly,

2010; Thompson-Schill, 2005). Here we highlight some aspects of the general functionality of the PFC.

Reasoning One of the most well-established findings about the PFC is that it is specialized for working

memory, or the ability to maintain and manipulate information over short periods of time (Fuster & Alexan-

der, 1971; Kubota & Niki, 1971; Miller & Desimone, 1994; Goldman-Rakic, 1995; Sommer & Wurtz, 2000;

Lara & Wallis, 2015). Working memory can be seen as an important aspect of the capacity to reason, as it

allows for 1) computation on information that is not currently observable in the environment, and 2) the in-

tegration of intermediate results in a larger reasoning process (e.g., in a serial summation of a list of numbers;

Menon, 2016). Indeed, evidence of prefrontal engagement has been found in many experiments investigat-

ing the neural underpinnings of human reasoning (Donoso et al., 2014), including deductive (Goel, 2007),

inductive (Crescentini et al., 2011), relational (Krawczyk et al., 2011), and analogical reasoning (Hampshire

et al., 2011).

Representing Abstract Rules One domain in which humans excel at generalizing outside of the

training distribution is the ability to apply known rules to novel elements (Lake et al., 2019a). The PFC

has been found to be important for success on tasks that require the induction, maintenance, updating,

or application of rules (Mian et al., 2014; Milner, 1963; Wallis et al., 2001; Shallice & Burgess, 1991). For

example, patients with damage to PFC struggle to sort cards according to a changing rule (e.g., color or

shape) (Milner, 1963; Buchsbaum et al., 2005; Berg, 1948). In a seminal electrophysiology study on rule
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application (Wallis et al., 2001), monkeys were trained to either select the picture that was a ‘match’ to

the previously presented one, or select the ‘nonmatch’. Single neurons in PFC were found to respond when

invoking such abstract rules, regardless of the particular pictures presented on a given trial (Wallis et al.,

2001). Some computational models (Rougier et al., 2005) have attempted to capture this important property

of the PFC, showing, e.g., how indirection might be implemented in a canonical PFC circuit (Kriete et al.,

2013, see also Hayworth & Marblestone 2018 and Müller et al. 2016).

Control in Novel Environments Overwhelming evidence implicates the PFC in decision-making and

control processes (Domenech & Koechlin, 2015; Miller & Cohen, 2001). However, it is in general not crucial

for the execution of habitual responses that have been trained extensively (as would be the case, e.g., in a

model that had played an Atari game for hundreds of hours) — rather, it is required for overriding these

habitual responses in novel situations, with new rules or in the pursuit of a novel goal (Miller & Cohen,

2001; Botvinick & Cohen, 2014). This function, generally termed “cognitive control,” is illustrated well in

studies using the classic Stroop task (Stroop, 1935). In this task, participants are presented with color words

(e.g., ‘red’, ‘blue’) written in colored ink, which may or may not match the words. Patients with damage to

PFC perform reliably poorly on this task, which requires them to override habitual responses (reading text)

according to the color-naming rule (Perret, 1974; Vendrell et al., 1995). In general, it is thought that the

functioning of the PFC is crucially important when a novel goal is being pursued in a familiar environment

where habits have become entrenched, or in novel environments when no such habits yet exist (Miller &

Cohen, 2001).

Abstract Planning Humans and other mammals demonstrate evidence of both model-free and model-

based RL (Momennejad et al., 2017; Daw et al., 2011, 2005), but the PFC has been implicated in model-

based RL in particular (Daw et al., 2005; Smittenaar et al., 2013). Humans with damage to the PFC can

exhibit deficits in routine behaviors that require planning and coordinating sequences of actions like cooking

or making co↵ee (Miller & Cohen, 2001; Levine et al., 1998; Duncan, 1986; Shallice, 1982). Some have

theorized that the planning processes in PFC are temporally abstract or hierarchical, as in, e.g., the options

framework (Sutton et al., 1999; Botvinick, 2008; Botvinick et al., 2009; Botvinick & Weinstein, 2014; Frank

& Badre, 2012). This idea accords well with experiments indicating that PFC represents actions at multiple

timescales simultaneously (Hunt & Hayden, 2017; Botvinick et al., 2009; Sarafyazd & Jazayeri, 2019).

2.5 Computational Principles and Learning Mechanisms in PFC

The section above describing some of the functions of the PFC was structured to draw out their connection

to current challenges facing deep learning. However, the structure of this section is somewhat arbitrary, as
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all of these functions are related to one another. Here, we cover some theoretical ideas about the underlying

computational mechanisms of PFC that can unify these various functions, with an eye toward principles that

may be transferable to deep learning.

Top-down Attention and Modulation In an influential framework, Miller & Cohen (2001) argue

that many of the cognitive capacities associated with the PFC, including reasoning, rule-learning, planning,

and cognitive control, can be explained by its role in top-down attentional modulation of other brain areas.

The PFC sends projections to much of neocortex, allowing it to modulate activity in other areas, possibly

according to a current goal or in agreement with currently conscious contents. In the Stroop task, e.g., the

PFC represents the instruction to name the colors rather than read the words, and modulates the activity

of color features in higher-order visual areas of the brain to bias behavior toward naming them (Miller &

Cohen, 2001).

Top-down attentional modulation has some analogues in deep learning research. The use of attention has

become an increasingly popular approach in many tasks (e.g. Bahdanau et al., 2014; Xu et al., 2016; Hudson

& Manning, 2018). One major di↵erence with these mechanisms may be that PFC is thought to modulate

activity through multiple brain areas at once, conditioned on the current goal. This kind of conditioning may

be more similar to HyperNetworks (Ha et al., 2016), FiLM (Perez et al., 2018), where the mapping learned

by a single feedforward network can be modulated with transformations at each layer, or RIM, which tries

explicitly to model a top-down attentional modulation mechanism (Goyal et al., 2019).

Recurrence, Gating, and Seriality Recurrence is ubiquitous in the brain, but the PFC has a special

role in maintaining information in working memory over longer timescales (Lara & Wallis, 2015). Work in

computational neuroscience examining the detailed biological mechanisms that would allow PFC to accom-

plish this has emphasized its interaction with the basal ganglia and the importance of LSTM-like gating

operations (O’Reilly & Frank, 2006). Although computations in the brain are massively parallelized, the

amount of information that can be maintained in working memory at a given time is notoriously small (Petri

et al., 2021; Feng et al., 2014; Oberauer & Kliegl, 2006). This means that seriality is also an important as-

pect of how the PFC operates: top-down attention must be applied serially over the course of a planning or

reasoning process, and intermediate results must be integrated over time. However, the serial processing of a

few elements at a time can also be an advantage, as it enables arbitrary sequences of complex computational

processing at each of these steps to be combined to obtain more powerful and compositional computation.

This may be an important factor for supporting Turing-machine like universal computation (Graves et al.,

2014; Newell, 1990), and for generalizing outside of the training distribution (Bengio, 2017, 2019).

Learning: Dopamine and Reinforcement Recent proposals from deep learning researchers have

encouraged neuroscientists to focus on the architectures, learning algorithms, and cost functions in the brain,
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as opposed to the more traditional approach of characterizing the low-level biological mechanisms or tuning

properties of neurons or neuronal populations (Marblestone et al., 2016; Richards et al., 2019). This approach

has been emphasized in research in connectionism and parallel distributed processing for decades (Rumelhart

et al., 1986b), but much remains unknown about the learning mechanisms and cost functions that might

be at work in biological neurons (Richards et al., 2019). Reinforcement learning is thought to be especially

important for learning in the PFC, which receives ample dopamine signals conveying reward prediction errors

(O’Reilly & Frank, 2006), and is heavily involved in decision-making and planning (Rushworth & Behrens,

2008). A recent proposal shows that a number of empirical findings can be explained by a model in which the

PFC implements a meta-reinforcement learning system, trained by dopamine to instantiate an RL procedure

within the dynamics of its neural activity (Wang et al., 2018).

A PFC Module for Deep Learning? Much remains unknown, but an overall picture of the PFC that

has emerged in cognitive and computational neuroscience is one where it selects, maintains, and manipulates

learned representations in other areas of the brain through a serial process of top-down attentional modulation

(Miller & Cohen, 2001; O’Reilly & Frank, 2006; Hazy et al., 2007). This serial processing may be tuned

through reinforcement or meta-reinforcement learning and dopamine signals to optimize performance on tasks

that require reasoning, rule-like representations, sequential and dynamic recombination of computations,

cognitive control, or temporally abstract planning. This kind of system may be critical to ensuring flexibility

in familiar environments and controlled decision-making in novel ones, and may allow for e�cient planning

on multiple timescales.

Many of the current major challenges facing deep learning research involve tasks that require an extended

notion of generalization, not just to examples from the same distribution as the past observations, but also

to out-of-distribution inputs (Lake & Baroni, 2018; Bahdanau et al., 2019b; Bengio, 2019). The ability

to handle such non-stationarities would naturally evolve because learning agents (who change their policy

and thus end up visiting di↵erent states of the environment) naturally face them, and even more so in a

social multi-agent context where the environment itself changes. Some of the paradigmatic cases in which

humans are able to do this involve the application of known rules to novel elements (Lake et al., 2019a) — a

cognitive function that has been associated with the PFC (Miller & Cohen, 2001; Wallis et al., 2001). This

systematicity is natural in symbolic systems typical of classical approaches to AI, but these lack many of

the powerful advantages brought by deep learning (such as the ability to learn e�ciently on a large scale,

to handle uncertainty, to generalize well across symbols through distributed representations, and to ground

these symbols in a complex perceptual reality). These symbolic systems utilize the notions of indirection or

of variables — arrays of memory that can be manipulated by computations that do not depend on the specific

content stored there — ensuring the kind of abstraction necessary for this kind of systematic generalization
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to emerge. An analogous independence may exist between the PFC and posterior sensory and association

areas: the PFC may be able to select and manipulate representational content in these areas according to

learned rules that can be applied to many di↵erent elements (Russin et al., 2019; Kriete et al., 2013). This

may provide the kind of abstraction and compositionality currently missing from standard architectures in

deep learning (Bengio, 2017; Bengio et al., 2019).

2.6 Conclusion

We have argued that there is a striking correspondence between the tasks on which humans outperform

current AI systems and the executive functions associated with the PFC. We believe that a greater focus on

the principles and inductive biases at work in the PFC may inspire novel architectures that can accomplish

similar functions. Much remains to be learned in making these principles more concrete and in implementing

them in working systems, but we hope that we have taken a step in this direction and that this work will

facilitate greater synergy between neuroscience and AI in the future.
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Chapter 3

Compositional Processing Emerges in Neural Networks Solving Math Problems
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3.1 Abstract

A longstanding question in cognitive science concerns the learning mechanisms underlying compositionality

in human cognition. Humans can infer the structured relationships (e.g., grammatical rules) implicit in their

sensory observations (e.g., auditory speech), and use this knowledge to guide the composition of simpler

meanings into complex wholes. Recent progress in artificial neural networks has shown that when large

models are trained on enough linguistic data, grammatical structure emerges in their representations. We

extend this work to the domain of mathematical reasoning, where it is possible to formulate precise hypotheses

about how meanings (e.g., the quantities corresponding to numerals) should be composed according to

structured rules (e.g., order of operations). Our work shows that neural networks are not only able to

infer something about the structured relationships implicit in their training data, but can also deploy this

knowledge to guide the composition of individual meanings into composite wholes.

3.2 Introduction

A key to the power of human cognition is the principle of compositionality (Hinzen et al., 2012): complex

stimuli such as sentences are understood by 1) recognizing their relevant subcomponents, 2) extracting the

meanings of these subcomponents, and 3) combining these partial meanings according to structured rules to

produce a final result — the meaning of the whole stimulus (Martin & Baggio, 2020). This allows a potentially

1
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infinite number of stimuli to be understood as novel compositions of familiar parts. Compositionality was

explicitly built into traditional symbolic artificial intelligence (AI) systems, but in the currently dominant

approach — deep neural networks — encodings are continuous vectors that do not overtly possess the relevant

kind of compositionality (Fodor & Pylyshyn, 1988; Lake & Baroni, 2018; Lake et al., 2017; McClelland et al.,

2020).

Although these recent models are the most powerful AI systems ever created, explaining how they achieve

their remarkable success is a profound mystery — a grand challenge for current science. Is it possible that

deep neural networks are somehow implicitly exploiting the principle of compositionality (See Fig. 3.1A)?

State-of-the-art neural networks called transformers (Vaswani et al., 2017) have shown impressive per-

formance on many natural language tasks (Devlin et al., 2019). Briefly, these networks learn to encode

each symbol in their inputs with a high-dimensional vector that is successively refined over several layers by

adding information from other symbols in the input. There is evidence that these networks reflect in their

activation patterns the relevant linguistic subcomponents in their inputs (Linzen & Baroni, 2021; Manning

et al., 2020; Tenney et al., 2019). However, it is unclear how, if at all, these models use such structure to

extract and compose the meanings of parts to succeed at their tasks (Lake et al., 2017).

Studying this question in the natural language setting is challenging because it is extremely di�cult

to precisely characterize the meaning of a part of a natural language expression. We therefore study the

question in a domain where the meaning of a subcomponent is clear: arithmetic expressions. The ‘meaning’

of a part — a sub-expression — is simply its numerical value, and the principle of compositionality holds

perfectly: the value of 4 ⇤ 5 + 2 ⇤ 3 is precisely obtained by taking the meanings of the sub-expressions 4 ⇤ 5

and 2 ⇤ 3 (i.e., the quantities denoted by the numerals ‘20’ and ‘6’) and composing them with the addition

operation to derive the meaning of the entire expression, the number written ‘26’.

Do deep neural networks evaluate arithmetic expressions using the principle of compositionality in this

way? We investigated this question by analyzing models trained on the Mathematics Dataset (Saxton et al.,

2019). This dataset contains 112 million mathematical word problems separated into di↵erent modules, each

of which covering a di↵erent mathematical domain such as arithmetic, algebra, calculus and probability.

Models receive as input a sequence of characters (e.g., Evaluate (12/3 + 10/2)/3) and must output the

sequence of characters exactly matching the correct answer (e.g., 3). To an untrained model, these strings

of characters have no structure or semantic content whatsoever — nothing in the characters themselves

conveys their semantics (e.g., that ‘2’ is larger than ‘1’) or the rules governing them (e.g., the correct order

of operations).

Previous work showed that transformers can achieve an impressive 77.42% accuracy on this dataset, and

that when the standard transformer is augmented with explicitly-structured, tensor product representations
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(Smolensky, 1990) — the TP-Transformer — this improves to 80.67% (Schlag et al., 2019). These models

can produce the correct answers to problems that would be challenging even to humans — for example,

problems involving simultaneous di↵erentiation and factorization:

Question: Let r(g) be the second derivative of 2*g**3/3 - 21*g**2/2 + 10*g. Let

z be r(7). Factor -z*s + 6 - 9*s**2 + 0*s + 6*s**2

Answer: -(s + 3)*(3*s - 2).

However, these models were found to exhibit poor generalization performance on problems with significant

deviations from their training set (i.e., “extrapolation” problems, including problems with larger numbers,

more terms, etc.). This may suggest that although the models were capable of answering unseen word

problems as complicated as the one above, they fail to fully capture the systematicity of the rules governing

mathematical expressions, possibly relying instead on a “mix-and-match” strategy (Lake & Baroni, 2018).

In this work, we analyzed the representations of these trained models, probing them on new problems to

investigate whether they evaluated arithmetic expressions compositionally, i.e., whether representations of the

partial results corresponding to each sub-expression in the overall question could be found in di↵erent parts

of the network. Our results suggest that to a surprising extent, both the standard transformer and the TP-

Transformer learn to solve arithmetic problems by evaluating sub-expressions separately, thus demonstrating

some ability to compose the meanings of symbols according to their structured relationships.

3.3 Methods

The code used in our analyses can be found online4.

3.3.1 Models

The models we used in our analyses were already trained on the Mathematics Dataset, and were freely

available online. Details about the architectures and procedures used to train them can be found in the

original publication (Schlag et al., 2019). Briefly, both the standard transformer and TP-Transformer contain

an encoder that processes the question, and a decoder that generates the final answer. The encoder and

decoder of both architectures had 6 transformer layers containing multi-head attention modules with 8 heads,

as described in Vaswani et al. (2017). Each head in each layer generates a query (Q), key (K), and value

(V ) vector for every input to that layer. Attention distributions are generated by taking a softmax of the

scaled dot product of the queries and keys. The final output of the attention mechanism is the average of

4https://github.com/jlrussin/interpret-math-transformer
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the value vectors, weighted by the attention distribution:

Attention(Q,K, V ) = softmax

✓
QKT

p
dk

◆
V (3.1)

where dk is the dimension of the key vectors.

The TP-Transformer adapts the transformer architecture to use a role-filler binding mechanism, where

roles are meant to explicitly capture structural or relational information in the inputs (Schlag et al., 2019;

Smolensky, 1990). The architecture shares much of the organization of the standard transformer, but an

additional role vector (R) is generated in each head, and this vector is bound to the existing output of the

attention mechanism with a Hadamard product:

TP-Attention(Q,K, V,R) = softmax

✓
QKT

p
dk

◆
V �R (3.2)

where � denotes the Hadamard product. We included the TP-Transformer in our exploration of compo-

sitionality because it had been shown to achieve state-of-the-art performance on the Mathematics Dataset

(Schlag et al., 2019), and because it was hypothesized to better capture structured relationships.

Both models were trained on all modules in the Mathematics Dataset (Saxton et al., 2019) simultaneously

and were not fine-tuned on the arithmetic module. The TP-Transformer used in our analyses had about 49

million parameters and was trained for 1.7 million steps, and the standard transformer had about 44 million

parameters and was trained for 700,000 steps. These di↵erences were perhaps reflected in the results of the

arithmetic module (“arithmetic mixed”) of the dataset, where the TP-Transformer and standard transformer

achieved about 83% and 61% accuracy, respectively, on the test set.

3.3.2 Test Datasets

To investigate the degree to which these models had learned to break arithmetic expressions into sub-

components, we tested them on problems containing well-defined sub-expressions so that we could system-

atically probe their internal representations. These test sets were derived from the arithmetic module of

the dataset, but were highly controlled in a number of ways. We created a total of six test sets, and each

contained problems that were generated from one of the following arithmetic expressions: 1) x1+x2
x3

, 2) x1⇤x2
x3⇤x4

,

3) x1+x2⇤x3, 4)
x1+x2⇤x3

x4
, 5) x1+x2

x3
+x4, 6)

x1+x2
x3

+ x4+x5
x6

. These expressions were chosen in order to have a

good mix of the possible operations, while retaining unambiguous sub-expressions that we could probe. Each

test set consisted of roughly 200 problems that were generated by randomly sampling single-digit numbers

for each of the xi, while constraining the final answers to be positive integers between 0 and 20. This was
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done so that each number was restricted to a single character, and in order to avoid complications that may

have occurred due to negative numbers and arithmetic carrying. The samples were also selected such that

the distributions of final answers in each test set were as uniform as possible. The dataset used to train the

models did not contain any of the exact samples used for testing, but it did contain some problems with the

same arithmetic forms. The models that had been trained on the entire dataset were tested on these custom

test sets without fine-tuning on them.

Figure 3.1: Conceptual illustrations of hypotheses. (A) Two extreme strategies that might be learned

by a neural network trained on language tasks (top) or arithmetic problems (bottom). A large model might

memorize in its weights a lookup table containing answers to each problem (i.e., a holistic pattern-matching

strategy), thus bypassing their implicit compositionality altogether (left). Alternatively, the model may infer

and leverage the underlying structure of the problem to decompose it into sub-expressions (right). In the

latter case, the model’s representations should show evidence of encoding the meaning of each symbol (e.g.,

quantities corresponding to numerals, shown in green circles) and the meaning of each sub-expression (e.g.,

quantities corresponding to results of intermediate operations, shown in yellow circles). (B) Hypothetical

compositional representations in a transformer model trained on math problems. The vectors representing

digit characters encode the values of the corresponding digits, in the sense that vectors associated with

similar values are closer together. Similarly, the vectors representing operators encode the intermediate

results of those operations. Distances between pairs of vectors should be highly correlated with the absolute

di↵erences between their corresponding values. Only three layers are shown, but both models had six layers.

The models generally achieved high accuracies on the probing test sets we created (numbers corresponding

to expressions above): TP-Transformer 1) 100%, 2) 100%, 3) 92%, 4) 89.5%, 5) 100%, 6) 96%; standard

transformer: 1) 100%, 2) 100%, 3) 38%, 4) 98.5%, 5) 100%, 6) 98%. Di↵erences in accuracy on the test sets

were not critical to our analyses, as our results were qualitatively reproduced for both models. The problems

incorrectly answered by the models were not excluded from the analyses.
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3.4 Results

Two extreme strategies for solving problems with implicit compositional structure are shown in Figure 3.1A.

At one extreme, a large neural network might overlook the compositional structure of the problems and

memorize in its weights a simple lookup table containing the answers to each problem individually. At the

other extreme, a perfectly compositional learner would infer whatever structured relationships exist and use

them to decompose problems into appropriate sub-components.

We hypothesized that if the models had learned to evaluate arithmetic expressions by processing their

sub-components separately, then the representations corresponding to similar quantities would be closer

together, as measured by Euclidean distance (see Figure 3.1B). For example, in expressions of the form

x1+x2
x3

(where each xi is replaced by a particular numeral in each problem), the vectors corresponding to the

partial result in the numerator x1 + x2 = 1 would be closer to those corresponding to x1 + x2 = 2 than they

would be to those corresponding to x1+x2 = 3. We therefore extracted multiple vectors (e.g., queries, keys,

values, and role vectors for TP-Transformer) from each layer of both models in order to analyze them. Our

analyses across these di↵erent kinds of vectors from each attention head yielded qualitatively similar results,

so for simplicity we report results for queries across both models. Unless noted otherwise, we report results

from vectors extracted from the highest layer (layer 6) of the encoder of each model.

Table 3.1: Spearman correlations for operators in each test set. All were highly significant (p < 0.001).

Vectors were from the last layer of the encoder.

Expression Operator TP TF

1. (x1 + x2)/x3 ‘+’ .315 .453
‘/’ .565 .539

2. (x1 ⇤ x2)/(x3 ⇤ x4) ‘⇤’ (1st) .479 .612
‘⇤’ (2nd) .662 .654
‘/’ .590 .536

3. x1 + x2 ⇤ x3 ‘⇤’ .132 .251
‘+’ .502 .381

4. (x1 + x2 ⇤ x3)/x4 ‘⇤’ .141 .297
‘+’ .159 .174
‘/’ .147 .171

5. (x1 + x2)/x3 + x4 ‘+’ (1st) .424 .423
‘/’ .510 .459
‘+’ (2nd) .353 .411

6. (x1 + x2)/x3 + (x4 + x5)/x6 ‘+’ (1st) .410 .393
‘/’ (1st) .610 .536
‘+’ (2nd) .405 .455
‘/’ (2nd) .566 .526
‘+’ (3rd) .303 .421
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Figure 3.2: Results. (A) t-SNE embedding of vectors representing digits in layer 1 of the TP-Transformer

on the test set of the mixed arithmetic module. Each point designates a vector associated with a particular

digit character, colored by its value. The semantics of the digit characters is apparent in the model’s

representations, which are partially organized according to their natural order (along the top-left to bottom-

right axis). (B) Correlations with vectors associated with operators in TP-Transformer. In each problem,

each of the xi were replaced with single-digit numerals. Vectors representing the first ‘+’ symbol encode

the results of the sum in the numerator (x1 + x2), vectors representing the ‘/’ symbol encode the results

of the division ((x1 + x2)/x3), and vectors representing the second ‘+’ symbol encode the results of the

final sum ((x1 + x2)/x3 + x4). In general, analyses focused on the vectors generated in the final layer,

but correlations displayed here across all layers show how these can change with further processing (e.g.,

representations of the ‘/’ symbol seem to encode the result of the sum in the first layer, but in later layers

strongly encode the result of the division). Colored envelopes show the minimum and maximum correlation

across heads. (C) Alignment of correlation measures across the entire input sequence with the parse tree

of the expression, colored to match the lines in the plot for the appropriate quantities. Correlations with

the values of an intermediate result peak at the vectors associated with the corresponding operator, and

are elevated over the constituent containing its arguments (shown by matching colors in the parse tree, and

colored bars covering the extent of the appropriate constituent). Black boxes highlight an example: the

vectors representing each element in the constituent (x1 + x2) show the highest correlations with the value

of the sum of x1 and x2 (blue), but also show correlations with its division by x3 (orange), and the result

of the whole expression (green). Results are from vectors in the final layer of the TP-Transformer encoder.

Vertical dotted lines delineate sub-expressions, and underscores indicate space characters.

As a first step, we probed the models for evidence that they were encoding the quantities associated

with digit characters (akin to the dots shown on the right of Figure 3.1A). Figure 3.2A shows the vectors

representing digits in layer 1 of the TP-Transformer model, visualized using t-SNE (van der Maaten & Hinton,

2008). The model’s representations capture the semantics of the digit characters in that they are organized

25



according to their natural order (e.g., vectors corresponding to 1’s are closer to 2’s than to 9’s, etc.). We

confirmed this pattern quantitatively by measuring Spearman correlations of the distances between pairs of

digit vectors with the absolute di↵erences between the values of their corresponding digits. This correlation

was significant for both TP-Transformer (TP: r = 0.440, p < 0.001), and the standard transformer (TF:

r = 0.436, p < 0.001). These were compared to correlations between these same distances and the absolute

di↵erences between the values of the other digits in the same problems. For example, in problems of the

form x1+x2
x3

, the distances in this “unmatched” correlation would be taken between vectors corresponding to

x1 vectors, but the absolute di↵erences would be taken between the values of x3 from the same problems.

This further analysis revealed that the matched correlations (TP: r = 0.440, TF: r = 0.436) were much

higher than the unmatched (TP: r = 0.086, TF: r = 0.087), indicating that the models were representing the

quantities associated with each numeral in the appropriate position in the sequence. This relationship was

found to be statistically significant in a more formal linear regression comparing “matched” and “unmatched”

pairs (p < 0.001 for both models).

Next, we investigated whether the encoding of intermediate results of arithmetic sub-expressions could be

detected in a similar way. We reasoned that if this pattern of correlation were observed for the intermediate

results corresponding to arithmetic sub-expressions, this would indicate that the model had encoded these

partial results. We repeated the analyses, but with distances between vectors associated with operators and

the di↵erences between their corresponding intermediate results. For example, if the vectors representing the

‘+’ symbol in expressions with the form x1+x2
x3

were encoding the sum of x1 and x2, we would expect those

‘+’ vectors encoding similar values for their sums to be closer together, leading to a significant correlation

between distances between the pairs of ‘+’ vectors and the di↵erences between their corresponding sums.

This correlation would be expected to peak at the position of the operator, but also be elevated over the

positions of symbols within its constituent (e.g., in (x1 + x2)/x3, the positions over the x1 + x2 constituent

for the ‘+’ operator).

These analyses revealed a striking pattern: transformer models trained on mathematics encode the

quantities of intermediate results in the vectors associated with the appropriate operators (see Table 3.1).

Figure 3.2B shows how these correlations unfold over the layers of the network, with comparisons to the

inappropriate operators (e.g., ‘+’ vectors and the result of the division). When these data were aggregated

across all the expressions we tested, a significant correlation was observed between corresponding operator

representations and partial values for both models (TP: r = 0.310, p < 0.001; TF: r = 0.314, p < 0.001). This

correlation was higher than when distances were correlated with di↵erences between intermediate results

corresponding to the other operators in the same problems (TP: r = 0.122, TF: r = 0.167). Again, a

more formal linear regression revealed that this relationship was statistically significant (p < 0.001 for both
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models), indicating that the models were representing these intermediate results in the vectors corresponding

to the appropriate operators. Figure 3.2C shows the same correlation measures on representations across the

entire input sequence of a more complicated expression. The correlations with partial results are seen to peak

at the corresponding operators, but also to be relatively elevated over the corresponding constituents. We

repeated our analyses and confirmed that the vectors representing symbols within constituents also carried

information about their corresponding partial results (TP: r = 0.201, TF: r = 0.189).

3.5 Discussion

Compositionality, a hallmark of human cognition, requires knowledge of constituent structure to guide the

assembly of partial meanings into coherent semantic wholes. Our analyses reveal that the compositional

semantics implicit in character-level math problems can emerge to a surprising extent in neural networks

even when they are instructed only on the characters comprising the problems’ answers. Our results are

consistent with previous work in the natural language setting (Manning et al., 2020; Tenney et al., 2019)

suggesting that when these networks are trained on many observations, they can learn to represent structured

relationships. However, our work shows further that these models can use this knowledge to guide a partially

compositional process whereby semantic content is integrated across symbols.

Though our results were surprising, we expect that the compositionality we observed is imperfect, and

that the trained models lie somewhere between the two extremes depicted in Figure 3.1A. A perfectly

compositional learner would completely separate the process of evaluating each of the sub-components of

an arithmetic expression (e.g., first completely evaluate the expression in the numerator, then divide the

result by the denominator). Our results suggest that transformers perform these separable computations

in di↵erent parts of the network: the vectors aligned with the input positions of the operators tended to

encode the quantities corresponding to the results of those operations. However, our analyses did not find

that these relationships were perfect (e.g., see the non-zero correlations across the sequence in Figure 3.2C).

Furthermore, it is likely that these vectors are encoding more than pure quantities; the high-dimensional

vectors in these models may encode the sum (x1 + x2) while also encoding each of the constituent elements

(such that a decoder could be trained to predict the constituents, as well as the sum, from the vector).

Previous work on transformers trained on the Mathematics Dataset (Schlag et al., 2019) showed that

these models su↵ered large reductions in generalization performance on arithmetic problems with signifi-

cantly di↵erent surface-level features (e.g., problems with larger numbers, more terms, etc.). A perfectly

compositional agent with a true understanding of arithmetic rules would in principle be able to generalize

to any problem following those rules. It is possible that although our analyses revealed a significant degree
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of compositionality, its imperfection prevented the models from generalizing on these extrapolation tests.

It should be noted that although compositionality allows for flexible cognition and a powerful form of

combinatorial generalization (Fodor & Pylyshyn, 1988; Lake et al., 2017), a strict form of compositionality

may not always be desirable — for example, when learning the meanings of idioms or other idiosyncrasies

of natural language that violate the principle of compositionality (Szabó, 2020). Human language learners

must negotiate the tension between a strict compositionality assumption and the ability to learn exceptions

(Rumelhart & McClelland, 1986; Pinker & Prince, 1988). Machine learning methods for natural language

processing face a similar tension, and may benefit from a greater dialogue with ongoing research in cognitive

science (Lake et al., 2017).

The success of modern neural networks has shown that major advances in artificial intelligence are possible

when large models are trained on enough data (Brown et al., 2020; LeCun et al., 2015). Our results show that

compositionality, which is often thought to be an inherent property of human cognition (Fodor & Pylyshyn,

1988), can to some extent emerge when a large neural network is trained on enough data. However, much

work remains to clarify whether these approaches will continue to scale to human-level compositionality,

or whether this will require learning systems that have been explicitly designed to facilitate compositional

processing (Smolensky, 1990; Russin et al., 2020b).
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Chapter 4

Systematicity in a Recurrent Neural Network by Factorizing Syntax and

Semantics

Jacob Russin1, Jason Jo2, Randall C. O’Reilly1, Yoshua Bengio2,3

The original version of this article (Russin et al., 2020a) was accepted for publication in the Proceedings
for the 42nd Annual Meeting of the Cognitive Science Society (CogSci 2020). The opinions expressed here
are the author’s own and do not necessarily reflect the views of the conference, workshop, or publisher. The
original version is available online at https://cognitivesciencesociety.org/cogsci20/papers/0027/

0027.pdf.

4.1 Abstract

Standard methods in deep learning fail to capture compositional or systematic structure in their training

data, as shown by their inability to generalize outside of the training distribution. However, human learners

readily generalize in this way, e.g. by applying known grammatical rules to novel words. The inductive biases

that might underlie this powerful cognitive capacity remain unclear. Inspired by work in cognitive science

suggesting a functional distinction between systems for syntactic and semantic processing, we implement

a modification to an existing deep learning architecture, imposing an analogous separation. The resulting

architecture substantially outperforms standard recurrent networks on the SCAN dataset, a compositional

generalization task, without any additional supervision. Our work suggests that separating syntactic from

semantic learning may be a useful heuristic for capturing compositional structure, and highlights the potential

of using cognitive principles to inform inductive biases in deep learning.

4.2 Introduction

A crucial property underlying the power of human cognition is its systematicity (Lake et al., 2017; Fodor

& Pylyshyn, 1988): known concepts can be combined in novel ways according to systematic rules, allowing

the number of expressible combinations to grow exponentially in the number of concepts that are learned.
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Recent work has shown that standard algorithms in deep learning fail to capture this important property:

when tested on unseen combinations of known elements, standard models fail to generalize (Lake & Baroni,

2018; Loula et al., 2018; Bastings et al., 2018). It has been suggested that this failure represents a major

deficiency of current deep learning models, especially when they are compared to human learners (Marcus,

2018; Lake et al., 2017, 2019a).

A recently published dataset called SCAN (Lake & Baroni, 2018) tests compositional generalization in a

sequence-to-sequence (seq2seq) setting by systematically holding out of the training set all inputs containing

a basic primitive verb (“jump”), and testing on sequences containing that verb. Success on this di�cult

problem requires models to generalize knowledge gained about the other primitive verbs (“walk”, “run” and

“look”) to the novel verb “jump,” without having seen “jump” in any but the most basic context (“jump”

! JUMP). It is trivial for human learners to generalize in this way (e.g., if I tell you that “dax” is a verb,

you can generalize its usage to all kinds of constructions, like “dax twice and then dax again”, without even

knowing what the word means) (Lake & Baroni, 2018; Lake et al., 2019a). However, powerful recurrent

seq2seq models perform surprisingly poorly on this task (Lake & Baroni, 2018; Bastings et al., 2018).

From a statistical-learning perspective, this failure is quite natural. The neural networks trained on the

SCAN task fail to generalize because they have memorized biases that do indeed exist in the training set.

Because “jump” has never been seen with any adverb, it would not be irrational for a learner to assume that

“jump twice” is an invalid sentence in this language. The SCAN task requires networks to make an inferential

leap about the entire structure of part of the distribution that they have not seen — that is, it requires them

to make an out-of-domain (o.o.d.) extrapolation (Marcus, 2018), rather than merely interpolate according

to the assumption that train and test data are independent and identically distributed (i.i.d.) (see left part

of Figure 4.3). Seen another way, the SCAN task and its analogues in human learning (e.g., “dax”), require

models not to learn some of the correlations that are actually present in the training data (Kriete et al.,

2013). To the extent that humans can perform well on certain kinds of o.o.d. tests, they must be utilizing

inductive biases that are lacking in current deep learning models (Battaglia et al., 2018).

It has long been suggested that the human capacity for systematic generalization is linked to mechanisms

for processing syntax, and their functional separation from the meanings of individual words (Chomsky,

1957; Fodor & Pylyshyn, 1988). Furthermore, recent work in cognitive and computational neuroscience

suggests that human learners may factorize knowledge about structure and content, and that this may be

important for their ability to generalize to novel combinations (Behrens et al., 2018; Ranganath & Ritchey,

2012). In this work, we take inspiration from these ideas and explore operationalizing a separation between

structure and content as an inductive bias within a deep-learning attention mechanism (Bahdanau et al.,

2014). The resulting architecture, which we call Syntactic Attention, separates structural learning about
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the alignment of input words to target actions (which can be seen as a rough analogue of syntax in the

seq2seq setting) from learning about the meanings of individual words (in terms of their corresponding

actions). The modified attention mechanism achieves substantially improved compositional generalization

performance over standard recurrent networks on the SCAN task.

An important contribution of this work is in showing how changes in the connectivity of a network

can shape its learning in order to develop a separation between structure and content, without any direct

manual imposition of this separation per se. These changes act as an inductive bias or soft constraint

that only manifests itself through learning. Furthermore, our model shows that attentional modulation can

provide a mechanism for structural representations to control processing in the content pathway, similar to

how spatial attention in the dorsal visual pathway can generically modulate object-recognition processing in

the ventral visual stream (O’Reilly et al., 2017). Thus, attentional modulation may be critical for enabling

structure-sensitive processing — a natural property of symbolic models — to be realized in neural hardware.

This provides a more purely neural framework for achieving systematicity, compared to hybrid approaches

that combine symbolic and neural network mechanisms (Yi et al., 2018).

4.3 Model

The Syntactic Attention model improves the compositional generalization capability of an existing attention

mechanism (Bahdanau et al., 2014) by implementing two separate streams of information processing for

syntax and semantics (see Figure 4.1). In the seq2seq setting, we operationalize ‘semantics’ to mean the

information in each word in the input that determines its meaning in terms of target outputs, and we

operationalize ‘syntax’ to mean the information contained in the input sequence that should determine the

structure of the alignment of input to target words. We describe the mechanisms of this separation and the

other details of the model below, following the notation of (Bahdanau et al., 2014), where possible.

4.3.1 Factorizing Syntax and Semantics in Seq2seq

In the seq2seq setting, models must learn a mapping from arbitrary-length sequences of inputs x = {x1, ..., xTx}

to arbitrary-length sequences of outputs y = {y1, ..., yTy}: p(y|x). In the SCAN task, the inputs are a se-

quence of instructions, and the outputs are a sequence of actions. The attention mechanism of Bahdanau

et al. (2014) models the conditional probability of each target action given the input sequence and previous

targets: p(yi|y1, y2, ..., yi�1,x). This is accomplished by processing the instructions with a recurrent neural

network (RNN) in an encoder. The outputs of this RNN are used both for encoding individual words for

subsequent translation, and for determining their alignment to actions during decoding.
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Figure 4.1: Syntactic Attention architecture. Syntactic and semantic information are maintained in

separate streams. The semantic stream is used to directly produce actions, and processes words with a simple

linear transformation, so that sequential information is not maintained. The syntactic stream processes

inputs with a recurrent neural network, allowing it to capture temporal dependencies between words. This

stream determines the attention over semantic representations at each time step during decoding.

The underlying assumption made by the Syntactic Attention architecture is that the dependence of target

actions on the input sequence can be separated into two independent factors. One factor, p(yi|xj), which we

refer to as “semantics,” models the conditional distribution from individual words in the input to individual

actions in the target. Note that, unlike in the model of Bahdanau et al. (2014), these xj do not contain

any information about the other words in the input sequence because they are not processed with an RNN.

They are “semantic” in the sense that they contain the information relevant to translating the instruction

words into corresponding actions. The other factor, p(j ! i|x, y1:i�1), which we refer to as “syntax,” models

the conditional probability that word j in the input is relevant to word i in the action sequence, given the

entire set of instructions. This is the alignment of words in the instructions to particular steps in the action

sequence, and is accomplished by computing the attention weights over the instruction words at each step

in the action sequence using encodings from an RNN. This factor is “syntactic” in the sense that it must

capture all of the temporal dependencies in the instructions that are relevant to determining the serial order

of outputs (e.g., what should be done “twice”, etc.). The crucial architectural assumption, then, is that any

temporal dependency between individual words in the instructions that can be captured by an RNN should

largely be relevant to their alignment to words in the target sequence, and less relevant to the meanings

of individual words. We argue that this can be seen as a factorization of syntax and semantics, because

the grammatical rules governing the composition of instruction words’ meanings (e.g., how adverbs modify

verbs) must be learned in a module that does not have access to those meanings. This assumption will be

made clearer in the model description below.

32



4.3.2 Encoder

The encoder produces two separate vector representations for each word in the input sequence. Unlike the

previous attention model (Bahdanau et al., 2014), we separately extract the semantic information from each

word with a linear transformation:

mj = Wmxj (4.1)

where Wm is a learned weight matrix that multiplies the one-hot encodings {x1, ..., xTx}. This weight matrix

Wm can be thought of as extracting the information from the inputs that will be relevant to translating

individual words into their corresponding actions (e.g. ”jump” ! JUMP).

As in the previous attention mechanism (Bahdanau et al., 2014), we use a bidirectional RNN (biRNN)

to extract what we now interpret as the syntactic information from each word in the input sequence. The

biRNN processes the (one-hot) input vectors {x1, ..., xTx} and produces a hidden-state vector for each word

on the forward pass, (
�!
h1, ...,

��!
hTx), and a hidden-state vector for each word on the backward pass, (

 �
h1, ...,

 ��
hTx).

The syntactic information (or “annotations” (Bahdanau et al., 2014)) of each word xj is determined by the

two vectors
��!
hj�1,

 ��
hj+1 corresponding to the words surrounding it:

hj = [
��!
hj�1;

 ��
hj+1] (4.2)

In all experiments, we used a bidirectional Long Short-Term Memory (LSTM) for this purpose. These

representations hj di↵er from the previous model in that only the surrounding words are used to infer the

relevant syntactic information about each input. Our motivation for doing this was to encourage the encoder

to rely on the role each word plays in the input sentence. Note that because there is no sequence information

in the semantic representations, all of the information required to parse (i.e., align) the input sequence

correctly (e.g., phrase structure, modifying relationships, etc.) must be encoded by the biRNN.

4.3.3 Decoder

The decoder models the conditional probability of each target word given the input and the previous targets:

p(yi|y1, y2, ..., yi�1,x), where yi is the target action and x is the whole instruction sequence. As in the

previous model, we use an RNN to determine an attention distribution over the inputs at each time step

(i.e., to align words in the input to the current action). However, our decoder diverges from this model in that

the mapping from inputs to outputs is performed from a weighted average of the semantic representations
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of the input words:

di =
TxX

j=1

↵ijmj p(yi|y1, y2, ..., yi�1,x) = f(di) (4.3)

where f is parameterized by a linear function with a softmax nonlinearity, and the ↵ij are the weights

determined by the attention model. The softmax in f produces a distribution over the possible actions. We

note again that the mj are produced directly from corresponding xj , and do not depend on the other inputs.

The attention weights are computed by a function measuring how well the syntactic information of a given

word in the input sequence aligns with the current hidden state of the decoder RNN, si:

↵ij =
exp(eij)PTx

k=1 exp(eik)
eij = a(si, hj) (4.4)

where eij can be thought of as measuring the importance of a given input word xj to the current action yi,

and si is the current hidden state of the decoder RNN. Bahdanau et al. (2014) model the function a with a

feedforward network, but we choose to use a simple dot product:

a(si, hj) = si · hj , (4.5)

relying on the end-to-end backpropagation during training to allow the model to learn to make appropriate

use of this function. Finally, the hidden state of the RNN is updated with the same weighted combination

of the syntactic representations of the inputs:

si = g(si�1, ci) ci =
TxX

j=1

↵ijhj (4.6)

where g is the decoder RNN, si is the current hidden state, and ci can be thought of as the information in

the attended words that can be used to determine what to attend to on the next time step. Again, in all

experiments an LSTM was used.

4.4 Simulations

4.4.1 SCAN task

The SCAN4 task was specifically designed to test compositional generalization (see figure 4.2). In the

task, sequences of commands (e.g., “jump twice”) must be mapped to sequences of actions (e.g., JUMP

JUMP), and is generated from a simple finite phrase-structure grammar that includes things like adverbs

4
The SCAN task can be downloaded at https://github.com/brendenlake/SCAN
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and conjunctions (Lake & Baroni, 2018). The splits of the dataset include: 1) Simple split, where training

and testing data are split randomly, 2) Length split, where training includes only shorter sequences, and

3) Add primitive split, where a primitive command (e.g., “turn left” or “jump”) is held out of the training

set, except in its most basic form (e.g., “jump” ! JUMP).

Figure 4.2: Examples from the SCAN dataset. Details about the detaset can be found in (Lake & Baroni,

2018). Figure reproduced from (Lake & Baroni, 2018).

Here we focus on the most di�cult problem in the SCAN dataset, the add-jump split, where “jump”

is held out of the training set. The best test accuracy reported in the original paper (Lake & Baroni,

2018), using basic seq2seq models, was 1.2%. More recent work has tested other kinds of seq2seq models,

including Gated Recurrent Units (GRU) augmented with attention (Bastings et al., 2018), convolutional

neural networks (CNNs) (Dess̀ı & Baroni, 2019), meta-seq2seq (Lake, 2019), and a novel architecture (Li

et al., 2019). Here, we compare the Syntactic Attention model to the best previously reported results.

4.4.2 Implementation details

Train and test sets were kept as they were in the original dataset, but following Bastings et al. (2018), we

used early stopping by validating on a 20% held out sample of the training set. All reported results are

from runs of 200,000 iterations with a batch size of 1. Unless stated otherwise, each architecture was trained

5 times with di↵erent random seeds for initialization, to measure variability in results. All experiments

were implemented in PyTorch. Our best model used LSTMs, with 2 layers and 200 hidden units in the

encoder, and 1 layer and 400 hidden units in the decoder, and 120-dimensional vectors for the semantic

representations, mj . The model included a dropout rate of 0.5, and was optimized using an Adam optimizer

(Kingma & Ba, 2015) with a learning rate of 0.001.

4.4.3 Results

The Syntactic Attention model improves compositional generalization performance on the standard seq2seq

SCAN dataset (see table 4.1). The table shows results (mean test accuracy (%) ± standard deviation) on
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Table 4.1: Compositional generalization results. The Syntactic Attention model achieves an improvement

on the compositional generalization tasks of the SCAN dataset in the standard seq2seq setting, compared

to the standard models (Bastings et al., 2018; Dess̀ı & Baroni, 2019). Recent results from another novel

architecture (Li et al., 2019), developed concurrently using very similar principles, are also reported. Star*

indicates average of 25 runs with random initializations. Others are averages of 5 runs.

Model Simple Length Add turn left Add jump
GRU + attn (Bastings et al., 2018) 100.0 ± 0.0 18.1 ± 1.1 59.1 ± 16.8 12.5 ± 6.6
GRU + attn - dep (Bastings et al., 2018) 100.0 ± 0.0 17.8 ± 1.7 90.8 ± 3.6 0.7 ± 0.4
CNN (Dess̀ı & Baroni, 2019) 100.0 ± 0.0 - - 69.2 ± 8.2
Li et al. (2019) 99.9 ± 0.0 20.3 ± 1.1 99.7 ± 0.4 98.8 ± 1.4
Syntactic Attention 100.0 ± 0.0 15.2 ± 0.7 99.9 ± 0.16 78.4* ± 27.4

the test splits of the dataset. Syntactic Attention is compared to the previous best models, which were a

CNN (Dess̀ı & Baroni, 2019), and GRUs augmented with an attention mechanism (+ attn), which either

included or did not include a dependency (- dep) in the decoder on the previous action (Bastings et al.,

2018). Transformers (Vaswani et al., 2017) were not included in our experiments, but have been shown to

su↵er similar problems with compositional generalization on the SCAN dataset (Keysers et al., 2020).

The best model from the hyperparameter search showed strong compositional generalization performance,

attaining a mean accuracy of 91.1% (median = 98.5%) on the test set of the add-jump split. However, as in

Dess̀ı & Baroni (2019), we found that our model showed variance across initialization seeds. For this reason,

we ran the best model 25 times on the add-jump split to get a more accurate assessment of performance.

These results were highly skewed, with a mean accuracy of 78.4 % but a median of 91.0 %. Overall, this

represents an improvement over the best previously reported results from standard seq2seq models in this

task (Bastings et al., 2018; Dess̀ı & Baroni, 2019).

Recently, Lake (2019) showed that a meta-learning architecture using an external memory achieves 99.95%

accuracy on a meta-seq2seq version of the SCAN task. In this version, models are trained to learn how to

generalize systematically across a number of variants of a compositional seq2seq problem. Here, we focus on

the standard seq2seq version, which limits the model to one training set.

We also report the newer results of Li et al. (2019), which was work done concurrently with ours using

a very similar approach. These results are very consistent with our own, and, taken together, lend support

to the idea that separating mechanisms for learning syntactic information from mechanisms for learning the

meanings of individual words can encourage systematicity in neural networks.
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4.4.4 Additional experiments

To test our hypothesis that compositional generalization requires a separation between syntax (i.e., sequential

information used for alignment), and semantics (i.e., the mapping from individual instruction words to

individual actions), we conducted two more experiments:

• Sequential semantics. An additional biLSTM was used to process the semantics of the sentence:

mj = [�!mj ;
 �mj ], where

�!mj and  �mj are the vectors produced for the input word xj by a biLSTM on

the forward and backward passes, respectively. These mj replace those generated by the simple linear

layer in the Syntactic Attention model (in equation (4.1)).

• Syntax-action. Syntactic information was allowed to directly influence the output at each time step in

the decoder: p(yi|y1, y2, ..., yi�1,x) = f([di; ci]), where again f is parameterized with a linear function

and a softmax output nonlinearity.

The results of the additional experiments (mean test accuracy (%) ± standard deviations) are shown in

table 4.2. These results partially confirmed our hypothesis: performance on the add-jump test set was worse

when the strict separation between syntax and semantics was violated by allowing sequential information

to be processed in the semantic stream. In the sequential semantics experiment, the model performed

comparably on the simple split (99.3 %) but performed worse on the compositional split even though we

augmented its learning capacity by replacing a simple linear transformation with an RNN. This result

suggests that this increase in capacity, which corresponded to a violation of the factorization assumption,

allowed the model to memorize regularities in the dataset that prohibited systematic generalization during

testing.

However, syntax-action, which included sequential information produced by a biLSTM (in the syntactic

stream) in the final production of actions, maintained good compositional generalization performance. We

hypothesize that this was because in this setup, it was easier for the model to learn to use the semantic

information to directly translate actions, so it largely ignored the syntactic information. This experiment

suggests that the separation between syntax and semantics does not have to be perfectly strict, as long as

non-sequential semantic representations are available for direct translation.

Table 4.2: Results of additional experiments. Again star* indicates average of 25 runs with random

initializations.

Model Add turn left Add jump
Sequential semantics 99.4 ± 1.1 42.3 ± 32.7
Syntax-action 98.2 ± 2.2 88.7 ± 14.2
Syntactic Attention 99.9 ± 0.16 78.4* ± 27.4
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4.5 Related work

The principles of systematicity and compositionality have recently regained the attention of deep learning

researchers (Bahdanau et al., 2019b; Lake et al., 2017; Lake & Baroni, 2018; Battaglia et al., 2018). In

particular, these issues have been explored in the visual-question answering (VQA) setting (Andreas et al.,

2016; Hudson & Manning, 2018; Yi et al., 2018). Many of the successful models in this setting learn hand-

coded operations (Andreas et al., 2016), use highly specialized components (Hudson & Manning, 2018), or

use additional supervision (Yi et al., 2018). In contrast, our model uses standard recurrent networks and

simply imposes the additional constraint that mechanisms for syntax and semantics are separated.

Some of the recent research on compositionality in machine learning has had a special focus on the use

of attention. For example, in the Compositional Attention Network, built for VQA, a strict separation

is maintained between the representations used to encode images and the representations used to encode

questions (Hudson &Manning, 2018). This separation is enforced by restricting them to interact only through

attention distributions. Our model utilizes a similar restriction, reinforcing the idea that compositionality is

enhanced when information from di↵erent modules are only allowed to interact through discrete probability

distributions.

The results from the meta-seq2seq version of the SCAN task (Lake, 2019) suggest that meta-learning

may be a viable approach to inducing compositionality in neural networks. Humans have ample opportunity

through a long developmental trajectory to meta-learn the inductive biases that could facilitate compositional

generalization, so this is a promising alternative to the work discussed here. However, a key di↵erence in the

particular implementation used in that study is that the additional training episodes explicitly demarcate

the primitive verbs by permuting their meanings across episodes. In our work, the training is restricted to

a single episode in which no such permutation occurs.

The work of Li et al. (2019) was done concurrently with ours; although their presentation is framed

slightly di↵erently, we believe very similar principles have motivated their model. There are few di↵erences

with our architecture, but their improved results on the SCAN task may be due to their use of additive noise

during training. Future work will explore the exact di↵erences with their model and analyze the important

factors contributing to di↵erences in results.

Finally, we note that the experiments presented here are limited to the SCAN dataset, which may not

completely capture the kinds of compositional generalization that humans regularly manifest. This may be

important, as recent work has shown that the extent to which models can generalize outside of their training

distribution can depend heavily on the kind of environments in which they are trained (Hill et al., 2020).

Recent work has experimented with other compositional generalization problems that may be more realistic
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(Lake, 2019; Keysers et al., 2020). Future work will identify whether the principles developed in this paper

can aid generalization performance in these other settings.

4.6 Discussion

The Syntactic Attention model was designed to incorporate principles from cognitive science and neuroscience

as inductive biases into a neural network architecture: the mechanisms for learning rule-like or syntactic

information are separated (or factorized (Behrens et al., 2018)) from mechanisms for learning semantic

information. Our experiments confirm that this simple organizational principle encourages systematicity in

recurrent neural networks in the seq2seq setting, as shown by the substantial improvement in the model’s

performance on the compositional generalization tasks in the SCAN dataset.

The model makes the assumption that the meanings of individual words should be independent of their

alignment to actions in the target sequence (i.e., the attention weight applied to each word at each step

in the action sequence). To this end, two separate encodings are produced for the words in the input:

semantic representations in which each word is not influenced by other words in the sentence, and syntactic

representations which are produced by an RNN that could capture temporal dependencies in the input

sequence (e.g., modifying relationships, grammatical roles). The syntactic system alone has access to the

sequential information in the inputs, but is constrained to influence actions through an attention mechanism

only (see Figure 4.1). These constraints ensure that learning about the meanings of individual words happens

independently of learning about the structured relationships between words. This encourages systematic

generalization because, even if a word has only been encountered in a single context (e.g., “jump” in the

add-jump split), as long as its syntactic role is known (e.g., that it is a verb that can be modified by

adverbs such as “twice”), it can be used in many other constructions that follow the rules for that syntactic

role. Additional experiments confirmed this intuition, showing that when sequential information is allowed

to be processed by the semantic system (sequential semantics), systematic generalization performance is

substantially reduced.

The paradigmatic example of systematicity is a symbolic system in which representational content (e.g.,

the value of a variable stored in memory) is maintained separately from the computations that are performed

on that content. This separation ensures that the manipulation of the content stored in variables can be

completely independent of the content itself, and will therefore generalize to arbitrary elements. Our model

implements an analogous separation, but in a purely neural architecture that does not rely on hand-coded

rules or additional supervision. In this way, it can be seen as transforming a di�cult out-of-domain (o.o.d.)

generalization problem into two separate i.i.d. generalization problems — one where the individual meanings
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Figure 4.3: Illustration of the transformation of an out-of-domain (o.o.d.) generalization problem into two

independent, identically distributed (i.i.d.) generalization problems. This transformation is accomplished

by the Syntactic Attention model without hand-coding grammatical rules or supervising with additional

information such as parts-of-speech tags.

of words are learned, and one where how words are used (e.g., how adverbs modify verbs) is learned (see

Figure 4.3). This may be a useful approach to encouraging systematicity in neural networks, which are very

good at i.i.d. generalization but generally fail when presented with o.o.d. problems.

Our work shows that a strict separation between syntax and semantics can be useful for encouraging

systematicity and allowing for compositional generalization. It is unlikely that the human brain has such a

strict separation, but our work builds on related ideas in neuroscience (Behrens et al., 2018) and suggests a

useful framework for investigating whether a similar principle may be at work in the human brain. Future

work will explore this principle in other settings, e.g. with transformer models (Vaswani et al., 2017), and

investigate other ways in which such a separation can be softened while maintaining good compositional

generalization performance.
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Chapter 5

Systematicity Emerges in Transformers when Abstract Grammatical Roles

Guide Attention

Ayush Chakravarthy⇤ 1, Jacob Russin⇤ 2, Randall C. O’Reilly1,2 (⇤ denotes equal contribution)
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5.1 Abstract

Systematicity is thought to be a key inductive bias possessed by humans that is lacking in standard natural

language processing systems such as those utilizing transformers. In this work, we investigate the extent to

which the failure of transformers on systematic generalization tests can be attributed to a lack of linguistic

abstraction in its attention mechanism. We develop a novel modification to the transformer by implementing

two separate input streams: a role stream controls the attention distributions (i.e., queries and keys) at each

layer, and a filler stream determines the values. Our results show that when abstract role labels are assigned

to input sequences and provided to the role stream, systematic generalization is improved.

5.2 Introduction

Transformers have achieved state-of-the-art performance on many natural language processing (NLP) tasks

(Brown et al., 2020; Devlin et al., 2019; Vaswani et al., 2017), but it has been suggested that they remain

inferior to human language learners when it comes to sample e�ciency (Linzen, 2020) and more di�cult

generalization problems (Baroni, 2020; Lake & Baroni, 2018; Lake et al., 2019a; Keysers et al., 2020). These

architectures have proven to scale remarkably well (Brown et al., 2020), but may lack the strong inductive

biases that contribute to these human abilities (Battaglia et al., 2018; Lake et al., 2017).
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Systematicity, or the capacity to leverage structural or grammatical knowledge to compose familiar

concepts in novel ways (Fodor & Pylyshyn, 1988; Smolensky, 1990), has been highlighted as one potential

inductive bias present in humans (Lake et al., 2019a; O’Reilly et al., 2021a) that deep learning architectures

may lack (Lake & Baroni, 2018; Lake et al., 2017). It has been argued that in humans, the ability to

understand sentences such as “John loves Mary” necessarily implies the ability to understand certain other

sentences, e.g., those that are constructed from the same elements and grammatical relations such as “Mary

loves John” (Fodor & Pylyshyn, 1988).

The SCAN dataset (Lake & Baroni, 2018) was introduced to evaluate the systematic generalization

capabilities of deep neural networks. In SCAN, instructions generated from an artificial grammar must be

translated into action sequences, and train-test splits require models to generalize to novel compositions of

familiar words. Although deep learning models achieve good generalization performance when train and test

data are split randomly, their performance su↵ers on these systematic generalization tests (Lake & Baroni,

2018), even though humans perform well on analogous generalization problems (Lake et al., 2019a).

The mechanisms underlying human systematicity remain unclear, but a number of candidates have been

proposed, including tensor-product representations (Schlag et al., 2019; Smolensky, 1990) and specialized

attention mechanisms (Goyal et al., 2019; Bengio, 2017; Russin et al., 2020a; Webb et al., 2021). Attention

is central to the transformer architecture (Vaswani et al., 2017) and has been leveraged in mechanisms

resembling systematic symbolic processing (Graves et al., 2014; Webb et al., 2021), thus making it a key

potential target for encouraging systematicity (Russin et al., 2020a).

Figure 5.1: Examples from the add-jump split of SCAN. All except the simplest instructions with the

word “jump” are held out of the training set, requiring models to generalize its usage to more complicated

constructions.

In this work, we explore the connection between attention and systematicity using a novel transformer
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architecture designed to leverage structural or abstract information in its attention mechanism. We hypothe-

sized that systematicity would improve if attention distributions in the transformer were strictly determined

from abstract inputs containing minimal token-specific information, as this may prevent memorization of

spurious relationships in the training data. Previous work has experimented with incorporating additional

linguistic inputs into NLP systems (e.g., Sachan et al., 2021), but here we propose a novel way of utiliz-

ing additional linguistic knowledge: a separate “role” input stream is introduced to the transformer, which

determines the attention distributions at each layer but is kept separate from the typical (“filler”) input

stream used to directly generate outputs. Many kinds of information can be passed to the role input stream

(including the original tokens themselves), thereby allowing us to explore the kinds of inputs that, when

used to determine attention, result in improved systematicity. In our preliminary work, we explore the use

of abstract grammatical roles to determine attention in the transformer on the SCAN dataset.

5.3 Related Work

5.3.1 SCAN

The SCAN dataset (see Figure 5.1) uses a simple finite phrase-structure grammar to generate instruction

sequences that must be translated into sequences of actions (Lake & Baroni, 2018). In the simple split,

train and test examples are sampled randomly from the set of all possible instructions. In the systematic

generalization test called the add-jump split, all instruction sequences containing one of the primitive verbs

(“jump”) are systematically held out of the training set, except in its simplest form (“jump” ! JUMP).

The original work showed that recurrent neural networks such as long short-term memory (LSTM) succeed

at the simple split but fail on the add-jump split (Lake & Baroni, 2018).

Subsequent work introduced a new framework for generating systematic generalization tests called dis-

tribution based compositionality assessment, and showed that transformers perform poorly on these tests in

addition to the original add-jump split (Keysers et al., 2020). Although standard deep learning architectures

consistently fail at this task, a number of non-standard approaches have demonstrated some success, includ-

ing a meta-learning (Lake, 2019), recurrent networks that factorize alignment and translation (Russin et al.,

2020a) or are designed for primitive substitution (Li et al., 2019), masked language model pretraining (Furrer

et al., 2021); iterative back-translation (Guo et al., 2020), use of analytic expressions (Liu et al., 2020), and

auxiliary sequence prediction (Jiang & Bansal, 2021). Our preliminary work presents a new approach that

has many commonalities with these previous ideas.
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5.3.2 Utilizing Linguistic Knowledge

Prior work has shown that a remarkable amount of linguistic structure emerges in the representations learned

by large transformers self-supervised on natural language (Linzen & Baroni, 2021; Manning et al., 2020;

Tenney et al., 2019), and that transformers can learn to approximate a compositional process for solving

math problems (Russin et al., 2021a). These findings may cast doubt on the idea that injecting explicit

linguistic structure will aid these models in producing the kinds of systematic behavior observed in human

language learners. However, given their poor systematic generalization performance observed on tasks like

SCAN (Lake & Baroni, 2018), and their reliance on certain syntactic heuristics that lead to predictable

failures on challenging sentences (McCoy et al., 2019; Linzen & Baroni, 2021), it stands to reason that these

models may benefit from access to explicit linguistic knowledge (Sachan et al., 2021).

Some work has attempted to incorporate linguistically-informed labels such as part-of-speech tags or

syntactic parses into the inputs or training regiments of deep learning models (Sachan et al., 2021; Sennrich

& Haddow, 2016; Strubell et al., 2018), showing some improvements on machine translation (Sennrich &

Haddow, 2016) and semantic role labeling (Strubell et al., 2018). A number of methods have been used to

inject linguistic knowledge into these models, including the use of graph neural networks (Marcheggiani &

Titov, 2017; Sachan et al., 2021) and multi-task learning (Strubell et al., 2018). In this work, we develop

a novel approach that attempts to establish an explicit link between linguistic structure and the attention

mechanism of transformers to improve their systematic generalization capabilities.

5.4 Methods

5.4.1 Architecture

The transformer architecture (Vaswani et al., 2017) utilizes multi-head attention layers that take as input

query (Q), key (K), and value (V ) vectors:

Attn(Q,K, V ) = softmax(
QKT

p
dk

)V (5.1)

where dk is the dimension of the keys (K). Note that the probability distribution over the sequence length

produced by the softmax is determined by the queries (Q) and keys (K) alone. We modified the existing

transformer architecture by separating two streams of processing (see Figure 5.2): 1) the “filler” stream

determines the values at each layer, which will be averaged according to the weights given by the attention

distributions and contribute directly to the output of the model, and 2) the “role” stream determines at

each layer the queries (Q) and keys (K) — and therefore the attention distributions — but otherwise does
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Figure 5.2: Modified transformer architecture. The architecture imposes two separate role and filler

streams throughout the encoder (left) and decoder (middle). The filler stream determines the values (V )

at each layer while the role stream determines the keys (K) and queries (Q), and therefore the attention

distributions. This was accomplished by modifying the original attention mechanism (right).

not directly contribute to the output of the model. This was achieved by introducing a separate set of

embeddings for each input stream (M for the fillers and X for the roles). The existing attention mechanism

was modified so that the roles in layer l+1 are determined from a weighted combination of the keys in layer

l:

M = Attn(Q,K, V )

X = Attn(Q,K,K)
(5.2)

This ensures that no information from the filler stream can enter into the determination of the attention

distributions at each layer, and that the roles can only a↵ect the output of the model through their control

over the attention, similar to Russin et al. (2020a). The attention at each layer can have multiple heads in

the usual way (Vaswani et al., 2017), and the separation between the two streams is maintained throughout

45



both the encoder and the decoder (see Figure 5.2). Because the role stream determines the way information

from the input tokens will be combined throughout the architecture (through its influence on the attention

distributions), positional encodings are added to the role embeddings rather than the filler embeddings.

Note that this setup allows us flexibility in terms of the kind of information that is passed to the role

input stream. The original tokens themselves can be embedded separately and passed to the role stream,

in which case the architecture becomes very similar to the original transformer, with the exception of the

modification to the attention depicted in Figure 5.2. Here, we embed abstract roles for the tokens in the

SCAN dataset to investigate the relationship between abstraction in the attention mechanism and systematic

generalization behavior.

5.4.2 Role Auxiliary Loss

Each transformer layer returns two sets of vectors (X and M). The output of the filler stream (M) is a

sequence of target predictions that are used to compute the usual cross entropy loss before backpropagation

(“Filler loss”). The output of the role stream (X) can optionally be used in an auxiliary cross-entropy loss

on the roles assigned to the target sequence (“Role loss”). We performed experiments with and without this

auxiliary loss, and results are reported for both.

5.4.3 Thresholded Attention

Drawing inspiration from Rahaman et al. (2021), we also experimented with thresholding the encoder-decoder

attention:

threshold(Aij) =

8
><

>:

Aij if Aij > ⌧

0 otherwise
(5.3)

Where ⌧ is the attention threshold and A = softmax(QKT
p
dk

). The thresholded attention matrix is then

re-normalized and multiplied by the value matrix as in equation 5.1.

5.4.4 Implementation Details

The encoder and decoder had 2 layers with 8 attention heads and used a thresholding parameter (⌧) of 0.08.

The embedding dimension was 256, the hidden dimension was 512, and the dimension of the query, key and

value vectors was 256. The model was optimized for 400 epochs using Adam (Kingma & Ba, 2015) with a

learning rate of 2.5⇥ 10�4. Experiments were performed using both absolute positional encodings (Vaswani

et al., 2017) and relative positional embeddings (Dai et al., 2019); absolute positional encodings were found

to lead to slightly better performance with reduced variance, so for simplicity we only report those results.
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Model Simple Add jump
LSTM+Attn (Keysers et al., 2020) 99.9 ± 2.7 0.0 ± 0.0
Syntactic Attention (Russin et al., 2020a) 100.0 ± 0.0 78.4 ± 27.4
CGPS-RNN (Li et al., 2019) 99.9 ± 0.0 98.8 ± 1.4
T5-11B (Furrer et al., 2021) X 98.3 ± 3.3
Semi-Sup (Guo et al., 2020) X 100.0 ± 0.0
LANE (Liu et al., 2020) 100.0 ± 0.0 100.0 ± 0.0
Aux. seq. (Jiang & Bansal, 2021) X 98.32 ± 0.3
Transformer 100.0 ± 0.0 0.19 ± 0.18
Filler loss, no thresh (ours) 99.9 ± 0.01 16.2 ± 25.1
Filler loss, thresh (ours) 99.9 ± 0.01 85.6 ± 1.15
Filler + Role loss, no thresh (ours) 99.9 ± 0.02 87.4 ± 5.6
Filler + Role loss, thresh (ours) 100.0 ± 0.0 92.7 ± 3.3

Table 5.1: Performance (average accuracy ± standard deviation) on the simple and add-jump splits of

SCAN.

5.5 Experiments

To test our hypothesized link between attention, linguistic abstraction, and systematic generalization, we

developed abstract roles to label each token in the SCAN vocabulary, and performed experiments testing

our architecture with and without these abstract roles. We report results on the di�cult add-jump split

of the SCAN dataset, and compare against previous work. Our main purpose is to show that systematic

generalization is improved in the transformer when linguistic abstractions are used as inputs to the role stream

for determining attention, and that there is an asymmetry in the transformer such that these abstractions

should be used to determine attention (i.e., keys and queries) and not to directly produce outputs (i.e.,

values).

5.5.1 SCAN Roles

The phrase-structure grammar used in SCAN is very simple, so the grammatical roles used as additional

inputs were relatively straightforward to implement. In the case of the add-jump split, we hypothesized that

the best abstract role scheme would be one that assigned all primitive verbs to a single role (“prim”) in both

the instructions (source) and the actions (target). Except where indicated (section 5.5.2.2), all results used

this scheme.

5.5.2 Results

Our main results are shown in Table 5.1. We reproduce previous work and show that the baseline transformer

(Vaswani et al., 2017) achieves perfect accuracy on the simple split of the SCAN dataset, but fails dramat-

ically on the add-jump split testing its systematic generalization capabilities. Our architecture improves
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performance on the add-jump split when the role labels are used as inputs to the role stream. Marginal

improvement relative to baseline was observed without the use of attention thresholding and without back-

propagating the auxiliary role loss (“Filler loss, no thresh”). Each of these two tweaks improved performance

(“Filler loss, thresh”, “Filler + Role loss, no thresh”) and when both were used (“Filler + Role loss, thresh”),

the architecture achieved 92.7% accuracy on the test set of the add-jump split.

5.5.2.1 Abstraction in Roles vs. Fillers

To further investigate the connection between attention and systematicity, we varied the inputs used in each

of the filler and role streams of the architecture (see Table 5.2). When the filler tokens (i.e., the words from

the original SCAN vocabulary) were used as inputs to both the role and filler streams, our architecture

resembled the original transformer architecture, as these inputs were used to simultaneously determine the

outputs (i.e., the values) and the attention (i.e., the keys and queries) at each layer. This was confirmed

in the performance on the SCAN task, where using the fillers in both streams (“Fillers-Fillers”) resulted in

similar performance to the baseline transformer.

Model Simple Add jump
Transformer 100.0 ± 0.0 0.19 ± 0.18
Fillers-Fillers 100.0 ± 0.0 2.8 ± 1.6
Roles-Fillers 100.0 ± 0.0 0.22 ± 0.16
Fillers-Roles 100.0 ± 0.0 92.7 ± 3.3

Table 5.2: Performance on the add-jump split only improved when abstract annotations were used in the

role stream (“Fillers-Roles”).

As a sanity check, we also reversed the role and filler inputs, so that the role labels were inputs to

the filler stream and the words from the original SCAN vocabulary were used as inputs to the role stream

(“Roles-Fillers”). In this case, performance again matched the baseline transformer on the add-jump split,

confirming our intuition that linguistic abstractions are best used to determine attention distributions, not

values.

5.5.2.2 Varying the Level of Abstraction

We believe that the previous result highlights a strength of our setup, as it allows us the flexibility to diverge

from the original transformer in a continuous way by varying the amount of abstraction used in the inputs

to the role stream. For example, in a natural language task it would be possible to vary the kinds of abstract

labels or annotations supplied as input to the role stream from highly abstract part-of-speech tags to more

complex annotations from more sophisticated automated parses.
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Figure 5.3: Add-jump performance varies with the level of abstraction in the inputs to the role stream

(highest performance outlined in red).

To test this idea in the SCAN setting, we experimented with di↵erent schemes for assigning roles that

varied in their level of abstraction, as measured by the empirical entropy of the resultant source role vocab-

ulary (see Figure 5.3). After our initial role-assignment scheme, we made roles progressively more abstract

by assigning additional instruction words to the same role (e.g., “left” and “right” to “dir”, “twice” and

“thrice” to “num”, etc.). Results validated the assumption that the best scheme was one that used a single

role for each of the primitive verbs, and assigned a di↵erent role to each of the other words (entropy = 3.127).

This experiment shows that there is an ideal level of abstraction to use in the role stream: too much ab-

straction results in an inability to distinguish relevant distinctions, and too little results in the unsystematic

memorization typical of the vanilla transformer.

5.6 Conclusion

Our preliminary work establishes a connection between linguistic abstraction, the attention mechanism

used in transformers, and systematic generalization behavior as measured by performance on the SCAN

dataset: when abstract roles are assigned to inputs and used to determine the attention at each layer,

systematic generalization improves. We developed an architecture that may facilitate greater understanding

of the original transformer (Vaswani et al., 2017) by allowing more precise investigation into the relative

contributions of attention distributions and representation learning. Future work will test our setup on

other compositional or systematic generalization tasks (Keysers et al., 2020; Kim & Linzen, 2020) and

determine the kinds of linguistic abstraction that allows success on these tasks. In addition, future work will
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experiment with using our novel architecture on natural language datasets using varying levels of linguistic

abstraction.

The extent to which human-level language understanding requires stronger inductive biases than those

currently implemented in deep learning systems remains an open question. Our work shows that utilizing

linguistic abstraction in the attention mechanism of transformers may be a promising approach for improving

the systematic generalization capabilities of deep neural networks.
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Chapter 6

Complementary Structure-Learning Neural Networks for Relational Reasoning

Jacob Russin⇤1, Maryam Zolfaghar⇤1, Seongmin A. Park2, Erie Boorman2, Randall C. O’Reilly1 (⇤ denotes
equal contribution)
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original version is available online at https://arxiv.org/abs/2105.08944.

6.1 Abstract

The neural mechanisms supporting flexible relational inferences, especially in novel situations, are a major

focus of current research. In the complementary learning systems framework, pattern separation in the

hippocampus allows rapid learning in novel environments, while slower learning in neocortex accumulates

small weight changes to extract systematic structure from well-learned environments. In this work, we

adapt this framework to a task from a recent fMRI experiment where novel transitive inferences must be

made according to implicit relational structure. We show that computational models capturing the basic

cognitive properties of these two systems can explain relational transitive inferences in both familiar and

novel environments, and reproduce key phenomena observed in the fMRI experiment.

6.2 Introduction

Humans and non-human animals are capable of navigating e�ciently in both novel and familiar environments.

For example, in a well-learned environment like one’s hometown, it is easy to navigate to new goal locations

and plan novel routes. When traveling in a new city, it is also possible to navigate to a novel location by

reasoning over recent experiences — even those accumulated on the same day. In both cases, e�ciency

requires processes or representations that allow generalization beyond previous experience. This kind of

generalization has been a long-standing issue in cognitive science, and was integral to early arguments
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against behaviorism, where it was claimed that a simple stimulus-response mapping could not account for

such behaviors (Tolman, 1948).

More recent work has investigated the computational and neural mechanisms underlying cognitive maps,

or representations that capture the structure of the environment and thereby support generalization (Park

et al., 2020b; Whittington et al., 2020; Behrens et al., 2018). This work has emphasized the importance of

certain neocortical areas such as the entorhinal cortex (EC) for spatial reasoning and vector-based navigation

(Moser et al., 2008). Furthermore, it has been argued that these structured spatial representations may be

leveraged for other kinds of abstract relational reasoning in humans (Behrens et al., 2018). Relatedly,

although neural networks have enjoyed massive success on di�cult machine-learning tasks in recent years

these models are known to fail on out-of-distribution or extrapolation problems (Lake et al., 2017) such as

those requiring transitive inferences.

Here, we apply the well-supported complementary learning systems (CLS) framework (McClelland et al.,

1995; O’Reilly et al., 2011) to explore two qualitatively di↵erent neural mechanisms underlying spatially-

grounded relational reasoning abilities in novel and familiar environments. The CLS framework has em-

phasized the computational justification for learning mechanisms unfolding on two di↵erent timescales, as

supported by separate brain areas. Slow learning in neocortex allows for the development of more abstract

representations that integrate across many experiences and can be leveraged to make novel inferences. How-

ever, this kind of learning is not possible in naturalistic environments where sequences of events are not

presented in an interleaved or random order, as when one explores only one part of an environment at a

time. This is due to the well-known catastrophic forgetting phenomenon, where previous learning is erased

by new experiences when learning occurs too quickly or training is not su�ciently interleaved (McClel-

land et al., 1995). The CLS framework proposes that fast learning can occur in the hippocampus due to

its pattern-separated, sparse representations. These representations have little overlap across examples, and

therefore allow fast learning of novel episodes, i.e., episodic memory (Yonelinas et al., 2019), to occur without

catastrophic interference.

In the CLS framework, slow cortical learning is needed to build up structural or relational representations

over time, which provide the foundation for systematic inferences. However, for more unfamiliar situations,

rapid hippocampal learning is required. Previous work has found evidence suggesting a role for the hip-

pocampus in rapid generalization (Eichenbaum, 2004; Zeithamova et al., 2012), and that a hippocampal

model informed by the CLS framework can explain these findings when it is augmented with a recurrent

similarity-based computation, proposed to be supported by “big-loop” recurrence between the hippocampus

and the neocortex and within the hippocampus itself (Kumaran & McClelland, 2012).

Here, we build on this work and investigate the interplay between slow generalization in neocortex and
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rapid generalization in the episodic memory system with computational models based on the principles of

the CLS framework. Our model of the episodic memory system is similar to previous work (Kumaran &

McClelland, 2012) in that it allows rapid generalization in unfamiliar environments, but relies on di↵erent

computational mechanisms to do so (see Discussion). Our models of the cortical system and the episodic

memory system were both tested on a novel non-spatial structure-learning paradigm from a recent fMRI

experiment (Park et al., 2020b). Importantly, the task required transitive inferences based on learning over

two di↵erent timescales: training experience over multiple days, and training examples given on the same

day as the inference test. In the following, we briefly outline the key findings of the experiment and o↵er a

conceptual framework that integrates them with the CLS perspective. We then describe the computational

models that were built to capture the basic properties of the proposed conceptual framework, and show

that these models are capable of performing transitive inferences in the same task and reproduce other key

findings from Park et al. (2020b).

6.2.1 fMRI Experiment

Park et al. (2020b) studied the neural mechanisms underlying transitive inference performance on the

structure-learning task illustrated in Figure 6.1. Participants learned to make judgments about the “popu-

larity” or “competence” of 16 people through pair-wise comparisons along one of these two axes at a time.

Unknown to the participants, these 16 faces were arranged in a 4x4 2D grid, and were implicitly separated

into two groups. In the first two days of training participants only learned about within-group pairs that

di↵erent by a rank of 1 (see Figure 6.1A). On the third day of the experiment, participants learned about

between-group pairs containing certain faces that acted as hubs between the two groups (see Figure 6.1B).

This training provided su�cient evidence to allow participants to integrate their previously separated cog-

nitive maps, but was conducted on the same day as fMRI scanning. In the scanner, participants performed

a transitive inference test in which unseen pairs of faces from di↵erent groups were compared (see Figure

6.1C). For each of these test pairs, one of two corresponding hubs could be used to make the transitive

inference. The results we focused on in our work can be summarized as follows:

1. Participants exhibited good transitive inference performance, achieving 93.6% mean accuracy on the

unseen pairs tested in day 3.

2. Map-like representations were found in several brain areas, including ventromedial prefrontal cortex

(vmPFC) and entorhinal cortex (EC). Patterns of activity in these areas demonstrated sensitivity to

the ground-truth Euclidean distances between faces in the implicit grid. However, these e↵ects were

significantly reduced when the analysis was restricted to between-group pairs that were not encountered
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Figure 6.1: Experimental paradigm used in Park et al. (2020b). Participants learned the relative ranks of

pairs of faces on an implicit grid with two axes: competence and popularity. These faces were split into two

groups (shown in green and orange). A) Over the first two days, participants were trained on within-group

pairs that di↵ered by a rank of 1 along each designated axis. Example pairs on the popularity axis are shown

with orange lines (within group 1) and green lines (within group 2). B) On the third day, participants

learned between-group pairs containing exactly one hub linking the two groups. There were a total of 8

hubs, and each was associated with a certain axis (shown by red and blue outlines). Each hub was paired

with the 4 faces from the other group that di↵ered by a rank of 1 along the designated axis. Examples of

such pairs are shown for two hubs with blue lines (indicating the popularity axis). C) The third day included

the fMRI experiment and transitive inference test. Participants were tested on pairs of faces from di↵erent

groups that could be connected through one of the two hubs on the appropriate axis. Green, orange, and

blue lines indicate the training pairs (2 within-group and 2 between-group, which are shown in A and B)

that could be used to make the transitive inference for the pair indicated by the black dotted line.

during training.

3. A repetition-suppression analysis in hippocampus suggested that one of the two relevant hubs was

retrieved from episodic memory at the time of inference.

Taken together, these findings suggest that cortical learning systems in vmPFC and EC were able to

integrate across the pairs of faces encountered during training to form map-like representations that would

be useful for making transitive inferences within groups. However, the e↵ects in these areas were reduced

when the analysis was restricted to novel between-group pairs, and participants seemed to retrieve the

relevant hubs from episodic memory in hippocampus during the transitive inference test. Thus, although

the within-group pairs were well-learned over the first two days of training, these groups may not have

been fully integrated into a single coherent cognitive map at the time of testing. This may have forced
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participants to rely instead on hippocampal retrieval of recently-learned between-group training episodes

(which always included a hub) to generalize during the transitive inference test. Thus, there appear to be

two separable cognitive mechanisms that allow for relational transitive inferences to be made in this task: 1)

if given enough training time, cortical areas such as vmPFC and EC can learn representations that reflect the

implicit relational structure of the grid, and 2) an episodic retrieval mechanism can ensure good transitive

inference performance with pairs that were seen only on the same day as the test. Below we outline a general

framework that integrates these findings, and the apparent redundancy in these two systems, with the CLS

perspective.

6.3 Complementary Structure-Learning Systems

The CLS framework explains how the brain can support integrative representation learning without su↵ering

from catastrophic forgetting (McClelland et al., 1995; O’Reilly et al., 2011). However, the CLS framework

also emphasizes other important reasons for fast learning in an episodic memory system. In particular, slow

cortical learning may be insu�cient to allow for e�cient adaptation in relatively unfamiliar environments

(Kumaran & McClelland, 2012). The findings from Park et al. (2020b) suggest that humans are capable of

making novel transitive inferences using experiences acquired on the same day. Furthermore, they show that

these inferences are mediated by hippocampal retrieval of the intermediate states (i.e., hubs) that would

allow such inferences to occur. Taken together, these findings suggest that the dual-process view emphasized

in CLS may explain the apparent redundancy in structure-learning mechanisms studied in neuroscience and

psychology (see Table 6.1).

Table 6.1: Complementary structure-learning systems.

System Properties
Cortical learning • Learns slowly through small,

incremental weight changes
• Inference is fast and less e↵ort-
ful with map-like representations

Episodic memory • Learning can be fast due to
sparse, pattern-separated repre-
sentations
• Inference is slower, requir-

ing cognitive control for deliber-
ate, goal-directed retrieval

In the case of spatial navigation, slow cortical learning can integrate across many experiences to form

map-like representations. This system is capable of directly utilizing its integrative representations without

further processing, and can thus make inferences rapidly. However, this system would not be able to make
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inferences in a newly learned environment if it did not have time to integrate across particular episodes

(Kumaran & McClelland, 2012). This may have been the case in the transitive inference test conducted on

the same day as the between-group training in the fMRI study (Park et al., 2020b). Fast episodic learning, on

the other hand, can immediately store memories of individual experiences, allowing inferences to be made in

unfamiliar environments based on few such experiences. However, the episodic nature of its representations

do not allow the sort of direct inferences that are available to the cortical system. Instead, transitive

inferences require a slower, more deliberate process of goal-directed retrieval and further processing of the

stored memories (Zeithamova et al., 2012). An organism equipped with both systems would be capable of

making novel inferences in both familiar and unfamiliar environments. In the following, we provide evidence

from models that capture, on a computational level, the basic properties of the proposed complementary

structure-learning systems, and show that these systems reproduce key findings from Park et al. (2020b).

6.4 Modeling Framework

We simulated3 each of our models on the training and testing procedure used in the task, including its

within-group and between-group structure and transitive-inference test. In particular, each trial consisted

of a presentation of two faces and the axis along which the judgment should be made (i.e., “competence”

or “popularity”). The models were required to make a binary judgment about whether the first face ranked

higher or lower than the second face along the specified axis.

6.4.1 Cortical Map-Building

The cortical representation-learning system should accumulate small updates over many trials to build map-

like representations that can be directly utilized to make transitive inferences. We modeled this process

with a simple feedforward neural network with two convolutional layers (see right side of Figure 6.2). Face

images were taken from the same database used in the fMRI experiment (Strohminger et al., 2016), and

were downsampled to 64x64 and grayscaled for faster simulation. The within-group and between-group

hub samples were all trained simultaneously (i.e., the pairs that were trained on di↵erent days of the fMRI

experiment were trained simultaneously in the model). This is because the purpose of our model of the

cortical system was to show that, if given enough training time, it could perform transitive inferences based

on its learned representations, and allow fast inference in familiar environments. Each face was processed with

the same convolutional neural network, and the axis variable, encoded as a one-hot vector, was embedded

with a linear layer. These three embeddings were then concatenated and passed through a multi-layer

3
All data and code used for experiments and analyses are available at https://github.com/MaryZolfaghar/CSLS
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Figure 6.2: Model architecture. (Left) The episodic memory system stores representations of individual

training trials in a key-value memory. New inferences are made by querying the memory to retrieve the

relevant trials, which are then processed by an MLP to generate an answer. (Right) The cortical learning

system was modeled as a simple feedforward network with convolutional layers to process the images. This

system relies on its learned representations to perform transitive inferences.

perceptron (MLP) with rectified linear unit (ReLU) activation functions. This network captures the basic

properties of slow cortical learning in that it accumulates small updates to its synaptic weights over many

trials, and makes inferences directly based on its learned representations of each face.

6.4.2 Goal-Directed Episodic Memory Retrieval

The episodic memory system should learn quickly by storing individual training episodes, and make inferences

by retrieving the previous trials that are relevant to the current one (McClelland et al., 1995; Kumaran &

McClelland, 2012). For this purpose, we used a neural memory system (see left side of Figure 6.2) with a

soft retrieval mechanism (Botvinick et al., 2019a). This memory system immediately stores each trial (xi)

seen during training as a key, value pair: ki = Wkxi, vi = Wvxi, where ki is the key, vi is the value, and xi is

the trial, which is a concatenation of a one-hot encoding of each face, the axis variable (a), and the correct

answer (y) of the ith trial. One-hot encodings were used for faces under the assumption that what is stored
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in the episodic memory system should be a highly processed, sparse encoding (McClelland et al., 1995). To

make an inference, the model generates a query according to the current pair of faces: qj = Wqx
�
j + bq,

where x�
j indicates the jth test trial with the same components but excludes the correct answer (y). This

query is then used to retrieve the memories most relevant to the current trial:

v̄j = softmax
�
qjK

T
�
V (6.1)

where K and V are matrices containing all of the stored memories. Finally, the retrieved memories v̄j

are passed through an MLP to produce the final answer: ŷj = MLP(v̄j). This network captures the basic

properties of a fast-learning episodic memory system in that each training episode can be stored in memory

immediately upon presentation, and must later be retrieved in a goal-directed way to make a transitive

inference.

An interesting problem in modeling episodic memory concerns the learning mechanisms involved in goal-

directed memory retrieval. We assume that the human participants recruited for the Park et al. (2020b)

study had extensive prior experience with goal-directed memory retrieval and everyday transitive inferences.

We therefore adopted a meta-learning strategy (Santoro et al., 2016) to model this prior experience, and

pretrained the episodic memory system to learn to solve new transitive inference problems sampled from a

distribution of such tasks. This pretraining consisted of slow, incremental changes to the weights responsible

for mapping into and out of the episodic memory itself, and should thus be thought of as occurring in

memory-related cortical areas rather than in the hippocampus proper (McClelland et al., 1995). The system

was pretrained on a distribution that was generated by permuting the positions of each face in the 4x4

grid. For each new task, the memory system stored training samples in its memory and used them to make

transitive inferences in the testing phase, where it accumulated errors that were then used to update its

learnable parameters. The model was then tested on how well it could generalize with a new configuration

of faces it had never seen before.

This kind of meta-learning strategy was adopted from previous work (Lake, 2019), and shares with it the

limitation that the pretraining tasks are unrealistically similar to the final test — future work will examine

the extent to which the model can generalize when trained on substantially di↵erent goal-directed retrieval

and transitive inference tasks. Additionally, although the resulting goal-directed retrieval mechanism in this

model does not capture the hypothesized properties of being deliberative and requiring cognitive control

(thus making inferences slower), a more biologically grounded approach involving frontal cortical executive

function systems, planned for future work, would do so. Our purpose in the current study was to show that

this system was capable of making transitive inferences in a structured environment.
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6.4.3 Implementation Details

Models were built using PyTorch. Models were trained with a cross-entropy loss function and Adam optimizer

(Kingma & Ba, 2015) with a batch size of 32 and a learning rate of 0.001.1 The cortical system was trained

for 100 epochs with a batch size of 32. The axis embedding (ea) had 32 dimensions. Convolutional layers had

no padding, a kernel size of 3, a stride of 2, and 4 and 8 channels in the first and second layers, respectively.

Each convolutional layer was followed by a max-pooling layer with a kernel size of 2. The CNN contained

a linear layer to produce flat 72-dimensional vectors e1 and e2, which were passed to the final MLP, which

had 128 hidden units. The episodic memory system was pre-trained on 10,000 permutations. Queries, keys,

and values were all 32-dimensional, and the final MLP had 64 hidden units.

6.5 Results

Both systems proved to be capable of performing transitive inferences in the task environment from Park

et al. (2020b): each system achieved 100% accuracy on the held-out test set in which unseen between-group

pairs were tested. This validates the idea that the two qualitatively di↵erent kinds of learning system outlined

above are capable of reproducing human transitive inference performance on the task. To investigate how

these qualitative di↵erences might have a↵ected each model’s inference strategy, we performed analogues of

key analyses done in the experiment (Park et al., 2020b) to interpret the behavior of each system, and to

evaluate them against empirical results obtained in the fMRI experiment.

6.5.1 Cortical Representations Reflect Task Structure

To understand how the cortical system had learned to represent each of the faces, we conducted analyses

on the embeddings of each face obtained from the CNN. Visualization of these embeddings with principal

components analysis (PCA; see Figure 6.3) showed that the cortical system had learned to represent the

faces in terms of their structured relationships, i.e., it had learned map-like representations. These top two

principal components explained 95.1 % of the variance in the embeddings, indicating that the model had

learned to represent the faces on a near two-dimensional grid.

In addition to the PCA, we conducted an analysis similar to those done in the fMRI experiment (Park

et al., 2020b), where patterns of activity in vmPFC and EC were found to be sensitive to Euclidean distances

in the ground-truth grid. We measured the Pearson correlation between ground-truth Euclidean distances

in the grid and the observed distances between each pair of embeddings. A strong correlation was observed

1
Note that the “learning rate” for the episodic memory refers to the weight updates in the pre-training phase. During

training, it immediately stored experiences upon presentation.
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Figure 6.3: Visualization of embeddings learned by the cortical system. Embeddings for each face was

projected into two dimensions using PCA, and then rotated by a fixed angle for illustration purposes. The

relative positions of the representations indicate that the model has learned to represent the faces in terms

of their implicit relational structure.

(r(118) = .910, p < 0.001), indicating the same sensitivity to structured relationships in the grid.

6.5.2 Episodic Memory System Retrieves Hubs

In the original fMRI experiment, a repetition-suppression analysis suggested that participants were retrieving

the relevant hubs from hippocampus during the transitive inference test (see Figure 6.1C). Although the

episodic memory model did not have analogous neural adaptation dynamics that would allow us to model

repetition suppression, we conducted an analysis on the retrieved memories to see how the hubs were being

used to make transitive inferences. The soft episodic retrieval mechanism shown in equation (6.1) uses a

softmax to produce a probability distribution over all of the items in memory. For each test trial, we directly

analyzed the weights applied to the memories for the relevant hub trials and compared these weights to the

irrelevant memories (see Figure 6.4). Memories were counted as relevant if they included one of the two

possible between-group hubs for the given pair of faces, and connected this hub to one of the two faces from

the current trial (see Figure 6.1C). This revealed that the weights applied to the relevant hub memories

were usually the largest (i.e., the hub trials were retrieved more than the irrelevant trials). Furthermore, an

additional analysis found that in every test trial, one of the two possible “paths” connecting the first face to

the second face (e.g., in Figure 6.1C, the path through the blue line and green line or the path through the

blue line and orange line) was in the top 5% of retrieved memories.
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Figure 6.4: Histograms of relevant and irrelevant trials retrieved from the episodic memory during

testing. Relevant memories, which always contained a hub, made up the majority of those with the highest

weights. This reproduces the fMRI finding that the hubs were retrieved during the inference test. Note that

it was not necessary to retrieve every relevant memory to get the correct answer, which may be why the

relevant memories were not always retrieved with the highest weights. Counts were normalized to probability

densities.

6.6 Discussion

The CLS perspective emphasizes the need for two qualitatively di↵erent learning systems in the brain: fast

learning can occur in the hippocampus due to its pattern-separated representations, while learning in the

neocortex must be slow due to its overlapping representations (McClelland et al., 1995). Here, we investigate

this conceptual framework in the domain of structure-learning and relational transitive inference (Kumaran

& McClelland, 2012), and propose an analogous distinction. The episodic memory system can learn quickly

and generalize in relatively unfamiliar environments, but requires a more deliberate goal-directed retrieval

process. The cortical system learns slowly but can make fast inferences in familiar environments from its

learned representations. As in the traditional CLS framework, an organism equipped with both systems

would retain the benefits of each, allowing generalization in both novel and familiar environments. Our

computational models provide evidence that each of the two proposed systems are able to perform well on a

di�cult relational transitive-inference test under di↵erent circumstances: the cortical system can make these

inferences once extensive experience with an environment has been accumulated, while the episodic system

can do so quickly, as long as it has had su�cient prior exposure to similar tasks. Our models also reproduce

the basic findings from a human fMRI experiment (Park et al., 2020b): the cortical system learns map-like

representations that encode the implicit relational structure of the grid, while the episodic memory system

61



learns to query its memory for the appropriate hubs connecting the two groups.

Kumaran & McClelland (2012) investigate rapid generalization in a hippocampal model based on the

principles of the CLS framework. The model allows retrieval-based inferences to be made — despite the

nature of its pattern-separated representations — by incorporating a recurrent similarity computation that

can perform associative linking (Eichenbaum, 2004; O’Reilly & Rudy, 2001). This computation is hypoth-

esized to be supported by “big-loop” recurrence (Koster et al., 2018). Our model of the episodic memory

system is not inconsistent with hippocampal retrieval-based inferences based on dynamic similarity compu-

tation, and in fact the fMRI experiment showed evidence of the presence of such similarity structure in the

hippocampus (Park et al., 2020b). In addition, the strategy used by our model to solve transitive inference

problems appeared consistent with the associative linking exhibited by the model of Kumaran & McClelland

(2012), as shown by the retrieval of hubs linking the two groups (see Figure 6.4). However, in our model

this strategy emerged over the course of (meta-)learning the structure of transitive inference problems, sug-

gesting a more general mechanism that could be applied to goal-directed retrieval tasks that are not solvable

with an associative linking strategy. This learning mechanism has been shown to be useful in the context

of one-shot learning (Santoro et al., 2016), and compositional generalization (Lake, 2019). More work is

needed to investigate whether hippocampal involvement in rapid generalization occurs when such a strategy

is not possible, and whether our model would benefit from the recurrent computation intrinsic to the model

of Kumaran & McClelland (2012).

Our modeling framework shares important properties with the Tolman-Eichenbaum Machine (TEM)

(Whittington et al., 2020), which also incorporates meta-learning and models structure-learning in EC. A

critical di↵erence between these two models is that in TEM, structure-learning depends on backpropagat-

ing error signals through the hippocampus, whereas the CLS framework holds that slow cortical learning

can operate independent of the hippocampus to facilitate inferences, consistent with the remarkably intact

abilities of early developmental amnesics (Vargha-Khadem et al., 1997).

Our proposed framework integrates ongoing empirical findings about cognitive maps with the CLS per-

spective, but it also shares some similarities to other prominent dual-process views in cognitive science. For

example, prominent theories emphasize a distinction between habitual and controlled processing (O’Reilly

et al., 2020), fast and slow thinking (Kahneman, 2011) and model-free and model-based RL (Botvinick et al.,

2019a). Our conceptual framework proposes a similar distinction between the deliberative, goal-directed re-

trieval that must occur in the episodic memory system to make transitive inferences, and the more automatic

or vector-based generalization that can occur in the cortical system in familiar environments.

There are some important limitations of our current computational models that must be addressed in

future work. First, although the two proposed cognitive systems are hypothesized to be realized in the hip-
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pocampus and cortical areas such as EC, we have not focused on the interactions that should occur between

the two systems. For example, the representations stored in episodic memory should be directly informed

by the slowly changing representations learned in cortex, reflecting cortical inputs to the hippocampus. The

fMRI study found that map-like representations were also present in the hippocampus (Park et al., 2020b),

perhaps due to interactions with nearby cortical areas (Kumaran & McClelland, 2012). A more integrated

model would show how map-like representations in cortex can influence hippocampal processing, and how

reliance on the episodic memory early in learning shifts to reliance on the cortical system later in learning.

This shift may occur due to the cognitive demands imposed on an episodic retrieval mechanism required to

reason over individual past experiences. The current episodic memory system does not capture the cognitive

control hypothesized to be required for inferences to be made; future work will address this with a more

integrated model that deploys an episodic retrieval mechanism with costly sequential processing. Finally, the

neural networks used in our models biologically implausible in a number of ways, e.g., the use of a slot-based

episodic memory and the standard backpropagation algorithm. Future work will focus on more biologically

plausible learning algorithms and more detailed biology of the neocortex and hippocampus.

6.7 Acknowledgments

We would like to thank the members of the Computational Cognitive Neuroscience lab and the Learning and

Decision Making lab, as well as reviewers for helpful comments and discussions. The work was supported

by: ONR grants ONR N00014-20-1-2578, N00014-19-1-2684 / N00014-18-1-2116, N00014-18-C-2067. J.R.

was supported by the NIMH under Award Number T32MH112507. The content is solely the responsibility

of the authors and does not necessarily represent the o�cial views of the NIH.

63



Chapter 7

The Geometry of Map-Like Representations under Dynamic Cognitive Control

Maryam Zolfaghar⇤1, Jacob Russin⇤1, Seongmin A. Park⇤2, Erie Boorman2, Randall C. O’Reilly1 (⇤ denotes
equal contribution)

The original version of this article (Zolfaghar et al., 2022) was accepted for publication in the Proceedings
for the 44th Annual Meeting of the Cognitive Science Society (CogSci 2022). The opinions expressed here
are the author’s own and do not necessarily reflect the views of the conference, workshop, or publisher. The
original version is available online at https://escholarship.org/uc/item/28j425kf.

7.1 Abstract

Recent work has shown that the brain organizes abstract, non-spatial relationships between entities into map-

like representations. However, an animal’s objectives often depend on only a subset of the features of the

environment. Under these circumstances, cognitive control – the capacity to flexibly select the features most

relevant in the current context – becomes paramount. Here, we explore the relationship between cognitive

control and the geometry of map-like representations by combining fMRI with neural network modeling.

We find that brain areas including hippocampus and entorhinal cortex spontaneously organize pairwise

relationships into 2D map-like representations, and that this 2D structure was controlled by compressing

task-irrelevant dimensions in areas of prefrontal and parietal cortex. Our neural network model reproduced

these findings and additionally predicted warping in the geometry along a context-invariant axis. This

prediction was confirmed with fMRI, which showed that the degree of warping was correlated with individual

di↵erences in cognitive control.

7.2 Introduction

Substantial evidence suggests the brain organizes incoming relational information into cognitive maps (O’Keefe

& Nadel, 1978; Moser et al., 2008) – even when relations are abstract or non-spatial (Behrens et al., 2018;

Bernardi et al., 2020; Garvert et al., 2017; Knudsen & Wallis, 2021; Park et al., 2020b; Stachenfeld et al.,

1
Center for Neuroscience, University of California, Davis

2
Center for Mind and Brain, University of California, Davis
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2017). For example, when humans are trained on stimulus features that vary systematically (e.g., the lengths

of a bird’s neck or the competence and popularity of people in a social hierarchy), brain areas such as the me-

dial temporal lobe and medial parietal cortex e�ciently encode these features with map-like representations

(Constantinescu et al., 2016; Park et al., 2021, 2020b). Just as geographic maps depict true distances between

locations in the world, the geometry of these “map-like” representations reflects the latent structure of their

underlying feature spaces, such that distances in the representational space are consistent with distances

in the feature space. This map-like quality is thought to facilitate relational reasoning behavior, allowing

animals to generalize to novel or unseen stimuli (Behrens et al., 2018; O’Reilly et al., 2021a; Summerfield

et al., 2020; Whittington et al., 2020).

Most models of cognitive map formation consider cases where animals must navigate or reason within a

single context or goal. However, animals are often faced with scenarios where multiple possible objectives

can determine the subset of stimulus features that are important at any given time. These scenarios require

cognitive control, or the capacity to flexibly select or attend the features of the environment that are most

relevant to the current context or goal. Classic theories of cognitive control hypothesize that top-down

attention mechanisms in the prefrontal cortex can dynamically modulate the processing in posterior brain

regions in order to meet the demands of a current goal (Miller & Cohen, 2001; Herd et al., 2006; Rougier

et al., 2005). Computational models of these processes have been used to successfully explain cognitive and

neural phenomena and have emphasized their functional benefits for managing the interference caused by

conflict or incongruence (Miller & Cohen, 2001; Musslick et al., 2017; Shenhav et al., 2013). These studies

have focused on classic cognitive control tasks such as the Stroop task (Stroop, 1935) that use discrete

exogenous stimulus features such as color or orthographic features (Cohen et al., 1990; Herd et al., 2006;

Rougier et al., 2005). However, less is known about how such processes might be used to control endogenous

map-like representations retrieved from memory, such as those observed in the medial temporal lobe (MTL)

or parietal cortex during abstract relational reasoning tasks.

Here, we combined fMRI with a neural network model to investigate the relationship between cognitive

control and endogenous map-like representations. We tested human participants and the neural network on

the same task, which was designed to facilitate the learning of map-like representations while simultaneously

requiring the use of cognitive control as a function of the current task context. Using parallel analyses of

the neural network and human fMRI data, we observed three key phenomena related to cognitive maps,

cognitive control, and their relationship:

1. Learning in both the human brain and neural network models sculpted unitary map-like representations

that integrated information across multiple contexts to capture the latent relational structure of the
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task space.

2. To e↵ectively resolve the interference caused by incongruence in the task, these map-like representations

were dynamically modulated by cognitive control processes such that irrelevant dimensions of the

representational space were compressed according to the current context.

3. This interference, and the resultant demand on cognitive control, was related to congruence e↵ects in

the map-like representations learned over the course of the task, as measured by the degree of warping

in their geometry: pattern dissimilarity between congruent stimulus pairs was greater than that of

incongruent stimulus pairs.

7.3 Methods

7.3.1 Experimental Task

Participants learned about the relative ranks of 16 hypothetical people on two social hierarchy dimensions:

“competence” and “popularity.” Unknown to the participants, these 16 people were arranged in a 4x4 grid

along these two axes (see Figure 7.1). On each trial, a cue indicating the axis was presented, followed by

two images showing the faces of two of the people in the hierarchy. The stimuli consisted of 16 grayscale

photographic images of faces (Strohminger et al., 2016) and two colored cues (red and blue squares). Partici-

pants were instructed to select which of the two people ranked higher on the indicated axis. During training,

participants only saw pairs of faces that di↵ered by one rank along the appropriate axis (and were instructed

that this was the case). Participants were then tested in the scanner on pairs with rank di↵erences greater

than or equal to one, requiring them to make novel transitive inferences.

It was hypothesized that over the course of training, participants would learn the latent 4x4 grid structure

of the hierarchy. However, participants could only learn this structure through pairwise comparisons, allowing

us to investigate how the brain learns to encode stimuli into map-like representations.

In addition to facilitating an examination of cognitive maps, the task probed the interaction between

these map-like representations and cognitive control processes. Cognitive control is required to selectively

attend to goal-relevant features in the presence of interference (Miller & Cohen, 2001). In this task, the

relevant axis of the social hierarchy is cued, but the irrelevant axis may cause interference when the pair

of faces is incongruent, i.e., when each of the two faces being compared ranks higher on one of the two

axes, such that the correct answer depends on which axis was cued (see Figure 7.1). This is analogous to

classic cognitive control tasks such as Stroop (Stroop, 1935), where control demands are increased when the

stimulus features (e.g., ink color and color word) conflict.
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Figure 7.1: Experimental task design. Participants made decisions about which of two people ranked

higher on one of two social hierarchy dimensions. The dimension (“Axis”) was cued at the start of each

trial. Unknown to the participants, the 16 hypothetical people in the hierarchy were arranged in a 4x4 grid

along these two dimensions. Some pairs were congruent (example shown with green arrow), in the sense that

the correct face ranked higher on both dimensions, and some pairs were incongruent (example shown with

orange arrow), in the sense that each of the two faces ranked higher on one of the two dimensions, thereby

requiring the “Axis” cue to disambiguate the higher-ranking face.

7.3.2 Participants

A total of 33 participants (16 female, age range: 19–23, normal or corrected to normal vision) were recruited

for this study via an online recruitment system. Six participants were excluded due to strong head movements

larger than the voxel size of 3mm. In total, 27 participants entered the analysis (mean age: 19.37 ± 0.26,

standard error mean (SEM)). The study was approved by the local ethics committee, all relevant ethical

regulations were followed, and participants gave written consent before the experiment.

7.4 Neural Network Model

The model was trained and tested on the same task used in the fMRI experiment, including its 4x4 grid

structure and transitive inference test. On each trial, the model was presented with two 64x64 grayscale

images of faces (x1 and x2), along with the context indicating the axis along which they should be compared

(xa - represented as a 1-hot vector). The model was trained to select which of the two faces ranked higher

on the appropriate axis through supervised feedback on the correct answers during training. As in the fMRI

experiment, the model did not have access to these rankings or to the latent structure of the 4x4 grid and

had to learn these through trial-and-error on pairwise comparisons.

Our goal was to explore the e↵ects of dynamic cognitive control on the geometry of map-like representa-
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tions, so we developed a recurrent neural network model in order to capture the dynamics of representations

unfolding over the course of each trial.

Figure 7.2: Neural network model architecture. The model used a convolutional neural network (CNN)

to process images and a long short-term memory (LSTM) to process the sequence of inputs over time.

7.4.1 Model Architecture

The neural network model (see Figure 7.2) was composed of standard building blocks including a convolu-

tional neural network (CNN) and a long short-term memory (LSTM). The CNN processed the images of

faces, and a linear embedding layer processed the axis. The same CNN was used to process both faces on

each trial. The result of these initial operations was a single vector encoding each of the axis (ea), Face 1

(e1), and Face 2 (e2), each with the same dimension:

ea = Waxa e1 = CNN(x1) e2 = CNN(x2) (7.1)

where xa is a 2-dimensional (one for each context) one-hot vector indicating the current context, and x1 and

x2 are the Face 1 and Face 2 images. The LSTM processed the embeddings (ea, e1, e2) in sequence:

h(t) = LSTM(e(t), h(t�1)) (7.2)

ŷ = Woh
(3) (7.3)

where h(t) is the hidden state of the LSTM at time-step t, e(t) is the input embedding at time step t (ea, e1,

or e2), and Wo is a linear output layer that produces a prediction ŷ about the answer from the final (third)

hidden state of the LSTM (h(3)).
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7.4.2 Implementation Details

All modeling experiments were implemented using PyTorch. The model was trained using standard op-

timization techniques, including the backpropagation algorithm. The model was optimized using Adam

(Kingma & Ba, 2015) with a learning rate of 0.001 and a batch size of 32 for 1000 gradient steps. For each

simulation, 20 runs were performed with di↵erent random initializations.

The CNN included two convolutional layers with kernel sizes (3, 3), strides (2, 2) and number of channels

(4, 8). Max pooling followed each convolutional layer with kernel sizes (2, 2) and strides (2, 2). The CNN

also included a final linear layer to map the output of the last pooling operation to a single vector with 32

dimensions. The axis embedding ea was also 32-dimensional, and the LSTM had a hidden layer size of 128.

7.5 Results

Participants performed well on the unseen pairs of faces tested in the scanner (93.6% mean accuracy),

indicating good transitive inference performance. To test our main hypotheses, we conducted representational

similarity analyses (RSA) Kriegeskorte et al. (2008) to characterize the representations in the brain, and

performed analogous tests on the representations gathered from the model throughout training (see Figure

7.3). In the following, we describe the results of the analyses pertaining to each of our main hypotheses,

with particular emphasis on the warped representational geometry, as this was the most novel aspect of our

investigation.

7.5.1 Map-Like Representations

Although neither the model nor the human participants were explicitly instructed on the underlying struc-

ture of the 4x4 grid, representations in hippocampus (HC), entorhinal cortex (EC), orbitofrontal cortex

(OFC), and in hidden layers of the model captured this basic structure (see Figure 7.3A). In both the model

and these brain regions, similarity between representations was correlated with 2D Euclidean distances be-

tween faces’ position in the 4x4 social hierarchy. In the fMRI data, this was shown with both whole-brain

searchlight-based and anatomically-defined ROI-based RSA. Importantly, ROI analyses revealed that ide-

alized 2D representations explained pattern similarity significantly better than the alternative hypothesis

of two separate one-dimensional maps in HC, EC, and OFC. In the model, a similar analysis revealed a

significant correlation between representational distances and pairwise Euclidean distances between faces in

the 4x4 grid (p < 0.05). This relationship emerged early and was maintained throughout training. These

results are consistent with the hypothesis that the human brain spontaneously organizes incoming relational

information into map-like representations (Behrens et al., 2018; Park et al., 2020b), and show that these
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Figure 7.3: Results of analyses testing three main hypotheses. Top panels show results of analyses on

the neural network model, which are given by statistics calculated on its representations over the course

of training. Box plots show the variance in these statistics over 20 runs. Bottom panels show results of

fMRI analyses, along with diagrams depicting idealized representations of the grid used as regressors in the

RSA. A) Evidence of map-like representations was found in both the model and the brain. In the model,

this is shown by a significant relationship (p< 0.05) between distances between representations and their

corresponding distances in the underlying grid. In the fMRI analysis, map-like representations were found in

hippocampus (HC), entorhinal cortex (EC) and orbitofrontal cortex (OFC). pTFCE: threshold-free cluster

enhancement. B) Evidence of dynamic selection of the task-relevant dimension was found in both the model

and the brain. Representations were expanded along the task-relevant axis (or equivalently, compressed

along the task-irrelevant axis). This e↵ect emerged early in the model’s training and was significant in

posterior and medial parietal cortex (PMC) and dorsomedial frontal cortex (dmFC). C) Evidence of warped

representational geometry was observed in both the model and the brain. Distances between representations

of congruent pairs of faces (along the green diagonal) were larger than those of incongruent pairs (along

the orange diagonal), causing a consistent warping of the space along the context-invariant axis (i.e., along

the congruent diagonal). In the model, this is visualized with the ratio of average Euclidean distances

between congruent pairs of faces to average Euclidean distances between incongruent pairs of faces, which is

consistently larger than 1 throughout training. This was associated with the corresponding accuracy ratio

(black line in the same plot). Warping was observed on a group-level in HC, and warping in the medial

prefrontal cortex (mPFC) and posterior cingulate cortex (PCC, not labeled in figure) was correlated with

individual di↵erences in cognitive control (as measured by di↵erences in reaction times between congruent

and incongruent trials.)

emerge in a neural network model without any specialized components that were explicitly designed to do

so.
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7.5.2 Dynamic Selection of Task-Relevant Dimension

This basic 2D representational geometry was dynamically modified by the current context: in both the

neural network model and in brain regions including dorsomedial frontal cortex (dmFC) and posterior and

medial parietal cortex (PMC) distances along the irrelevant axis were compressed (see Figure 7.3B). In

the fMRI data, this was again shown using a searchlight-based multiple regression RSA that included the

representational dissimilarity matrix (RDM) capturing 2D Euclidean distances between face pairs and a

RDM capturing task-relevant 1D distances that assumed the currently irrelevant dimension of the grid was

compressed (see Figures 7.3A and 7.3B, respectively). In the model, a regression revealed a significant

relationship between the pairwise 1D rank-di↵erences between faces in the task-relevant dimension and the

distances between corresponding representations (over and above their 2D structure, which was also included

as an independent variable in the regression). These findings indicate that the task-irrelevant features of

the map-like representations stored in memory were compressed relative to the task-relevant features. This

relationship emerged early in training and was maintained throughout the entire training period. These

findings are consistent with previous experiments in tasks with exogenous sensory features in these regions

(Mante et al., 2013; Takagi et al., 2021; Flesch et al., 2022a), and suggests how cognitive control can operate

on 2D map-like representations from memory by accentuating the task-relevant dimensions of a learned

representational space.

7.5.3 Warped Representational Geometry

In the fMRI experiment, reaction time (RT) was faster on congruent than incongruent trials regardless of

the distance between locations of faces (p< 0.01), providing a measure of individual di↵erences in cognitive

control. We also tested for an e↵ect of congruence on the map-like representations in both the model

and the human participants by comparing distances between representations of congruent and incongruent

pairs of faces sampled from di↵erent trials across blocks. Analyses of both the hidden layers and fMRI

data consistently showed warping along the congruent compared to the incongruent axis – i.e., a stronger

relationship between pattern similarity and Euclidean distance in congruent pairs of faces than incongruent

pairs of faces (see Figure 7.3C). In the model, a regression revealed that distances between representations of

congruent pairs of faces were significantly larger than those of incongruent pairs (p < 0.05, see top panel of

Figure 7.3C). Group-level fMRI analyses revealed the same warped geometry in representations in brain areas

including HC (see bottom panel of Figure 7.3C). Additionally, the levels of warping observed in the amygdala,

medial prefrontal cortex (mPFC), and posterior cingulate cortex (PCC) were correlated with individual

di↵erences in our behavioral measure of cognitive control (i.e., the di↵erence in RT between congruent and
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Figure 7.4: Results of additional analyses addressing the causal relationship between warping and cog-

nitive control. A) The model improved its accuracy on congruent trials before incongruent trials. This

di↵erence coincided with the emergence of warping in its representations (see accuracy ratio vs. warping in

previous figure), suggesting that warping is associated with a decreased reliance on contextual information

and cognitive control. Error bars show standard error of the mean (SEM). The dotted horizontal line indi-

cates chance performance (50% accuracy). B) To directly investigate the relationship between the strength

of contextual information and the degree of warping, we performed simulated ablations of the axis embedding

in the model by multiplying (ea) by values (w) ranging from 0 to 1. C) Results of this ablation experiment

showed increases in warping (again measured by the ratio of congruent distances to incongruent distances)

when context information was inhibited. The dotted horizontal line indicates a ratio of 1 (i.e., no warping).

Error bars again indicate SEM. D) A related fMRI analysis showed stronger reactivation of the current

context on incongruent trials than congruent trials in hippocampus (HC), medial prefrontal cortex (mPFC)

and posterior cingulate cortex (PCC) at decision time (pTFCE< 0.05; p< 0.005 for visualization).

incongruent trials). This result suggests that individuals with greater representational warping in these brain

regions also experienced a greater demand on cognitive control on incongruent trials (as measured in their

behavior).

Finally, we found that the warping in the neural network model was linked to an initial tendency to

ine↵ectively utilize context information that would mitigate the interference on incongruent trials. On

congruent trials, context information does not strictly need to be maintained because the correct answer

does not depend on the current context (see Figure 7.1). However, on incongruent trials context information

is required to mitigate the interference caused by the fact that each face ranks higher on one of the two

axes. We observed that early in training, the model performed well on congruent trials but poorly on

incongruent trials (see Figure 7.4A), and that this di↵erence emerged simultaneously with the warping in

its representational geometry (see accuracy ratio in Figure 7.3C). We reasoned that the warping may be

related to the model’s capacity to manage the interference on incongruent trials by utilizing context (axis)

information. We therefore simulated an “ablation” of the contextual input by down-scaling the embedding

vector (ea) by multiplying it by a factor less than 1 (see Figure 7.4B). Results of this simulated ablation

showed that warping increased when context was inhibited (see Figure 7.4C), confirming the link between

the strength of context information in the model and the degree of warping in its representations. Inspired
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by this observation in the model, an fMRI analysis found stronger reactivation of the current context on

incongruent trials than congruent trials in HC, mPFC and PCC at decision time (see Figure 7.4D), suggesting

greater reinstatement of the behavioral context during decisions in the presence of incongruence.

7.6 Discussion

It has been suggested that a key to the power of human intelligence is the capacity to integrate sensory

information into cognitive maps or representations that capture the structure of the environment (Behrens

et al., 2018; O’Reilly et al., 2021a). The map-like quality of these representations is thought to empower

deliberative or model-based reasoning capabilities and to facilitate generalization to unseen stimuli (Behrens

et al., 2018; Vikbladh et al., 2019). However, humans are not only capable of systematically encoding relevant

structural information into map-like representations, but can flexibly deploy them to meet the demands of

multiple contexts or goals (Miller & Cohen, 2001; Musslick et al., 2017). This flexibility is thought to emerge

in part from cognitive control mechanisms in the prefrontal cortex (Herd et al., 2006; Miller & Cohen,

2001; Rougier et al., 2005), which may endow humans with the specialized circuitry necessary for systematic

generalization (Russin et al., 2020b).

In this work we explore the relationship between cognitive control and the geometry of map-like repre-

sentations by integrating fMRI with neural network models (Flesch et al., 2018, 2022a). Consistent with

previous work (Russin et al., 2021b), we find that when a neural network was trained on our task, it devel-

oped map-like representations that captured the latent 2D structure of the task, qualitatively reproducing

phenomena observed with fMRI in HC, EC and OFC. These representations emerged despite the fact that

only one of the two dimensions of the grid was cued at a time and both the model and the human participants

learned from pairwise comparisons alone.

As with all neural network simulations, our model could not be supplied with the wealth of experience

that human participants bring to laboratory tasks such as ours, and therefore may not capture the breadth

of the processes that are likely involved in the formation of cognitive maps in humans. We expect that prior

experience with 2-dimensional spaces allowed participants to leverage existing knowledge while they learned

the task. However, we emphasize that the latent 4x4 configuration of the faces was completely arbitrary, and

that despite its lack of prior experience, the model captured the map-like qualities observed in the brain’s

representations.

The emergence of map-like representations allowed us to explore their interaction with cognitive control.

In particular, we investigated whether their geometry was dynamically modulated according to the current

context. Parallel analyses revealed dynamic compression of the irrelevant axis (or equivalently, expansion
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of the relevant axis) in the representations of both the neural network and brain regions including PMC

and dmFC, consistent with previous experimental findings using a di↵erent task (Flesch et al., 2022a). This

phenomenon emerged in the dynamics of the model through learning: the model was not explicitly designed

with a capacity to scale its representations or implement a specific mechanism for cognitive control. However,

these emergent dynamics are consistent with previous neural network models of cognitive control, which im-

plement a top-down attention mechanism to modulate specific stimulus features in posterior representations

(Herd et al., 2006; Rougier et al., 2005). Flesch et al. (2022a) found that a similar compression emerged in

neural networks in the “rich” regime, where they were initialized with small weights. We did not test our

models with di↵erent initialization schemes, but we expect that the defaults we used would put them in the

“rich” regime. Future work will test the extent to which our results depend on the magnitudes of initial

weights.

The model also revealed another way in which cognitive control can a↵ect the geometry of map-like

representations: the 2D structure of the representations in the model was warped along the context-invariant

axis (i.e. the congruent diagonal, see Figure 7.3C). Again, this phenomenon occurred without any specific

modification to the model, suggesting it is an emergent property of representations learned by neural networks

trained on the task. This prediction of the model was confirmed in the fMRI experiment: group-level analyses

revealed significant warping in HC, and warping in mPFC and PCC was found to be correlated with individual

di↵erences in cognitive control.

One of the strengths of pairing a computational model with any experimental approach is the ability

to simulate experiments that would be di�cult or impossible with real subjects. Our simulations o↵ered

insight into the relationship between warping and the dynamics of cognitive control. Early in training,

the model performed better on congruent than incongruent trials; because congruent trials did not require

contextual information to be used, we reasoned that warping in the model’s 2D map-like representations

was related to its capacity to utilize the current context. When we simulated an ablation of contextual

information, warping increased and was maintained for a longer time period throughout training (see Figure

7.4). This suggests that warping may be a natural way for the brain to compensate for a relatively weak

capacity for cognitive control to orthogonalize representations according to the current context. Without

strong contextual information, learning may opportunistically seize on relations between congruent pairs,

which do not require context to disambiguate correct responses.

If no contextual information was available whatsoever, the best an agent could do would be to collapse the

2D grid into an integrated 1D ranking, resulting in a perfectly “warped” map projecting each face onto the

congruent (bottom-left to top-right) diagonal. Thus, one explanation for our findings is that warping in HC,

as well as mPFC and PCC compensated for imperfect cognitive control in the human participants by shifting
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their representations to approximate this idealized 1D ranking. This is consistent with the finding that the

degree of warping found in mPFC and PCC was correlated with individual di↵erences in cognitive control,

as measured by the di↵erence in RT between congruent and incongruent trials. This explanation is also

consistent with a further fMRI analysis that found that the current task-relevant context was more strongly

reinstated in HC, mPFC and PCC on incongruent trials compared to congruent trials. An alternative way of

interpreting our results is that participants who developed more warping in their representational geometry

could not utilize context information as e↵ectively during learning, which in turn led to greater di�culty in

overcoming interference on incongruent trials. Our results, although they are suggestive, cannot definitively

establish the direction of causality between representational geometry and individual di↵erences in cognitive

control. We leave it to future work to more thoroughly investigate the causal structure of the link between

these phenomena that we establish here.

Taken together, our results reveal an intricate relationship between cognitive control during cognitive

map formation, the resulting representational geometry, and its role on subsequent control during decisions.

We found evidence of complementary representational geometries for e�ciently encoding abstract relational

information and flexibly selecting behaviorally relevant attributes from those representations in both neu-

ral networks and human brains. The findings further cast cognitive control in a new light, whereby an

individual’s representational geometry is both sculpted by and used for cognitive control when retrieving

representations with endogenous feature dimensions from memory. Furthermore, our work demonstrates

the virtues of integrating a neural network modeling approach with neuroimaging, and may help to address

current limitations of modern neural networks used for artificial intelligence (Russin et al., 2020b).
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Chapter 8

A Neural Network Model of Continual Learning with Cognitive Control

Jacob Russin1, Maryam Zolfaghar1, Seongmin A. Park2, Erie Boorman2, Randall C. O’Reilly1

The original version of this article (Russin et al., 2022) was accepted for publication in the Proceedings
for the 44th Annual Meeting of the Cognitive Science Society (CogSci 2022). The opinions expressed here
are the author’s own and do not necessarily reflect the views of the conference, workshop, or publisher. The
original version is available online at https://escholarship.org/uc/item/3gn3w58z.

8.1 Abstract

Neural networks struggle in continual learning settings from catastrophic forgetting: when trials are blocked,

new learning can overwrite the learning from previous blocks. Humans learn e↵ectively in these settings, in

some cases even showing an advantage of blocking, suggesting the brain contains mechanisms to overcome

this problem. Here, we build on previous work and show that neural networks equipped with a mechanism for

cognitive control do not exhibit catastrophic forgetting when trials are blocked. We further show an advantage

of blocking over interleaving when there is a bias for active maintenance in the control signal, implying a

tradeo↵ between maintenance and the strength of control. Analyses of map-like representations learned

by the networks provided additional insights into these mechanisms. Our work highlights the potential of

cognitive control to aid continual learning in neural networks, and o↵ers an explanation for the advantage

of blocking that has been observed in humans.

8.2 Introduction

Neural networks have shown impressive performance in many domains in machine learning (ML), where

they are typically trained on batches of data that are independent and identically distributed (Hadsell et al.,

2020). However, agents learning about the world in real time experience streams of data that are not

independent (e.g., a human may spend a few hours exploring one part of an unfamiliar city). The neural

networks that have driven recent success in artificial intelligence perform poorly in these continual-learning

1
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2
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settings because of the well known phenomenon of catastrophic forgetting/interference (McClelland et al.,

1995; McCloskey & Cohen, 1989). When samples or trials are blocked, learning in new blocks overwrites

the learning that occurred in previous blocks. Humans and other animals do not exhibit such extreme

forgetting (McClelland et al., 1995), and in some cases even demonstrate an advantage when trials are

blocked (Carvalho & Goldstone, 2014; Flesch et al., 2018; Noh et al., 2016; Wulf & Shea, 2002), suggesting

there are mechanisms in the brain that mitigate catastrophic forgetting and can even reverse it, making

learning easier when experiences are correlated over time.

A number of strategies for overcoming catastrophic forgetting in neural networks have been proposed in

both computational neuroscience (Flesch et al., 2018, 2022b; McClelland et al., 1995) and ML (Botvinick

et al., 2019b; Hadsell et al., 2020; Mnih et al., 2013; Velez & Clune, 2017). Complementary learning systems

(CLS) theory emphasizes that catastrophic forgetting arises when learning occurs too quickly in overlapping

representations (McClelland et al., 1995; O’Reilly et al., 2011), and that the episodic memory system in

the hippocampus plays an important role in learning representations that are sparse or pattern-separated,

allowing rapid learning to take place. However, constraining patterns of activity to be sparse is not the

only way to ensure they will not overlap and interfere with each other. Theories of cognitive control in the

prefrontal cortex (PFC) emphasize that a crucial function of control is to selectively modulate activity in

other brain areas in order to coordinate a response that aligns with the current context or goal (Herd et al.,

2014; Miller & Cohen, 2001; Rougier et al., 2005). Cognitive control may therefore play an important role

in regulating learning so that patterns of activity do not overlap across di↵erent contexts or goals (Rougier

et al., 2005; Tsuda et al., 2020).

Here, we build on this work and test neural networks in conditions where trials are either blocked or

interleaved, showing how even in the absence of a hippocampal episodic memory system, cognitive control

can help to mitigate catastrophic forgetting in the blocked condition. We further hypothesized that in some

cases learning across blocked trials is superior to interleaving because of an internal bias of the PFC to

maintain its activity over time, creating a cost to rapidly switching between contexts or goals (Blackwell

et al., 2014; Herd et al., 2014; O’Reilly & Frank, 2006). This idea fits well with a general framework where

the cost of switching must be traded o↵ against the strength of control: stronger control results in less

catastrophic forgetting, but more di�culty switching (Herd et al., 2006; Shenhav et al., 2013). We perform

our simulations on a task designed to induce learning of map-like representations (Park et al., 2021, 2020b;

Russin et al., 2021b) so that we could additionally investigate how cognitive control a↵ected the model’s

representations.
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8.2.1 Task

Figure 8.1: Task structure. The model learned the relative ranks of people along two social hierarchy

dimensions: popularity and competence. The model learned through trial and error to select which of two

faces ranked higher along one of the two dimensions (indicated by a cue). Trials were either interleaved,

where cues were randomly shu✏ed, or blocked, where one dimension was learned at a time.

We trained neural network models on an existing task taken from an fMRI experiment (Park et al.,

2020b; Russin et al., 2021b). Participants in the experiment learned about the relative ranks of 16 people in

a hypothetical social hierarchy along two separate social dimensions: “popularity” and “competence” (see

Figure 8.1). On each trial, the participants predicted which of two people ranked higher on one of the two

dimensions, indicated by a cue. Unknown to the participants, these faces were organized into a 4x4 grid

along the two dimensions; the participants were not instructed on the structure of the grid, and had to infer

this structure from trial-and-error learning over pairwise comparisons.

During training, participants only saw pairs of faces that di↵ered by one rank on the given dimension.

Then in the scanner they performed a transitive inference test where comparisons were made between faces

more than one rank apart. Intriguingly, the researchers found in pilot experiments that participants learned

better when trials were blocked (i.e., one dimension learned at a time). This is consistent with previous

results showing that learning is improved when trials are blocked (Flesch et al., 2018). This task allowed us

to explore the learning dynamics in our models, but because it was designed to investigate cognitive maps in

the brain, we were also able to make concrete predictions about the representations that would be learned

under di↵erent conditions.

We tested neural networks on the same task structure, including its 4x4 grid and transitive inference test.
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However, we introduced two training conditions to compare the learning behavior of models when trials were

blocked vs. interleaved (see Figure 8.1). In the interleaved condition, popularity and competence trials were

shu✏ed randomly, but in the blocked condition the models were trained on one of the two dimensions at a

time. This allowed us to investigate the potential for cognitive control and gating mechanisms to alleviate

the e↵ects of catastrophic forgetting, as has been observed in humans learning certain tasks (Carvalho &

Goldstone, 2014; Flesch et al., 2018; Noh et al., 2016; Wulf & Shea, 2002).

8.3 Neural Network Model

We designed a neural network that leveraged the principles of cognitive control in the PFC, including active

maintenance and selective modulation according to the current context or goal. To test our hypotheses, we

implemented models 1) with and without PFC gating, 2) with di↵erent levels of active maintenance, and 3)

with di↵erent levels of control strength.

8.3.0.1 Base Model

To start, we built a simple base neural network with a multi-layer perceptron (MLP) for learning the relation-

ships between the faces in the task (see Figure 8.2). The base model takes three one-hot vectors representing

the context cue (“Axis”, 2 dimensions) and each of the two faces (“Face1” and “Face2”, 16 dimensions each)

as inputs, and returns a prediction for which face ranked higher on the appropriate dimension. Each of these

three inputs were embedded with linear layers , concatenated, and fed into an MLP with one hidden layer:

ea = Waxa + ba e1 = Wfx1 + bf e2 = Wfx2 + bf (8.1)

h = ReLU(Wh[eae1e2] + bh) (8.2)

ŷ = Wyh+ by (8.3)

where xa, x1, x2 and ea, e1, e2 are the one-hot vectors and embeddings representing the axis cue, face 1,

and face 2, respectively, h is the hidden representation of the MLP, and ŷ is the output. Brackets denote

concatenation, and ReLU() is the rectified linear unit activation function.
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8.3.0.2 Prefrontal Cortex for Cognitive Control

In further simulations the base MLP was augmented with a PFC layer that received the context as input

and controlled the units in the hidden layer of the MLP with a gating mechanism:

g = c� h (8.4)

where c is a control signal vector generated from the axis cue, and � signifies element-wise multiplication.

The output layer of the MLP then acted on the gated hidden layer, rather than the hidden layer itself

(replacing equation 8.3 above):

ŷ = Wyg + by (8.5)

Note the PFC was responsible for modulating activity according to the current context, as the MLP

no longer received ea as input. This mechanism is largely consistent with classic neural network models of

cognitive control (Cohen et al., 1990; Miller & Cohen, 2001; Rougier et al., 2005), which emphasize the role

of the PFC in modulating and regulating the flow of activity in posterior areas through top-down attentional

control according to the current goal.

The control signal was determined from the axis cue according to a simple scheme: half of the units in

the hidden layer were gated in response to one of the cues, and the other half of the units were gated in

response to the other cue.

c =

8
>><

>>:

[11...100...0] · � if axis = 0

[00...011...1] · � if axis = 1

(8.6)

where � determines the strength of the control signal’s influence on the hidden units. Note that there was no

learning in the PFC: in this work we were interested in the e↵ects of cognitive control and gating on learning

in the MLP when trials were blocked or interleaved. Future work will explore methods for introducing

learning into the PFC (Flesch et al., 2022b; Tsuda et al., 2020; Wang et al., 2018).

8.3.0.3 Active Maintenance

We also implemented a parameter � that controlled a default bias in the PFC layer to maintain its activity

over time:

s(t) = �(c(t) + �(s(t�1) � 1 + �)) (8.7)

where t indicates time, � determines the degree to which the previous control signal is added to the current

one on each time step, � is a rectified linear function that returns 0 for inputs less than 0 and 1 for inputs
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Figure 8.2: Model architecture. The model was trained to predict which of two faces ranked higher on

the cued dimension (“Axis”). Inputs were embedded and passed through an MLP. The units in the hidden

layer were modulated by a PFC module, which could gate them via element-wise multiplication by numbers

from 0 to 1 (shown for illustration purposes as unit-wise probabilities of gating vs. not gating). Additional

parameters � and � determined the strength of the control signal and the active maintenance, respectively.

greater than 1, and now the new variable s integrates the control signal over time and acts on the hidden

state of the MLP (replacing Equation 8.4):

g(t) = s(t) � h(t) (8.8)

The maintenance parameter (�) allowed us to control the degree to which the control signal was biased to

maintain its activity over time, which introduces a cost when the context (i.e., the axis cue) was switched

from trial to trial due to interference from the previous control signal (s(t�1)). The bias to actively maintain

patterns of activity in PFC is well established (O’Reilly & Frank, 2006), and is fundamental to the important

role the PFC plays in working memory, executive functioning, and planning. We hypothesized that these

dynamics would be relevant to our setting because when trials are interleaved the switch cost may have

negative e↵ects on learning. We used a particularly simple implementation to capture this basic dynamic,

but future work will investigate whether its e↵ects on learning play out in more realistic implementations

(O’Reilly & Frank, 2006).
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Figure 8.3: Accuracy results. Each plot shows accuracy (y-axis) over the course of training steps (x-axis)

for a configuration of the model, depicted by a diagram next to the associated plot. In each experiment,

trials were split on the test set by the relevant axis cue (popularity = P, shown in blue, and competence =

C, shown in red), and accuracy was measured separately for each in order to show the e↵ects of blocking.

Each simulation included 5 runs where trials were interleaved (dashed lines) and 5 runs where trials were

blocked (solid lines). Solid areas show SEM across runs. A) Catastrophic forgetting occurred in the base

MLP model when it was trained on the blocked condition. B) Catastrophic forgetting was alleviated by the

addition of a control signal from the PFC module (highlighted in cyan). C) The model’s performance on the

interleaved condition su↵ered when a default active maintenance was introduced in the control signal (shown

by self-connection highlighted in cyan), inducing a cost to switching between contexts. D) This switch cost

was eliminated when the control strength was reduced (shown by � highlighted in cyan), demonstrating the

tradeo↵ between control strength and switch cost.

8.3.0.4 Implementation Details

Models were built in PyTorch, and were supervised on correct responses with a cross entropy loss function.

Models were optimized using backpropagation and Adam (Kingma & Ba, 2015) with a learning rate of 0.001.

Embedding vectors had 32 dimensions, and there were 128 units in the hidden layer. For each simulation, 5

runs with di↵erent random initializations were performed.

8.4 Results

All versions of the model were trained on both blocked and interleaved conditions. In particular, we ex-

plored our hypotheses by testing the model with di↵erent configurations of the parameters described above.

Accuracy on the test set was evaluated for each social dimension separately in order to assess forgetting in

the blocked condition.
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8.4.1 Catastrophic Forgetting when Trials are Blocked

First, we reproduced catastrophic forgetting in the model by training the base MLP (without a PFC) on

both the blocked and interleaved conditions of the task (see Figure 8.3A). When trials were interleaved, the

base MLP model had no problem learning the task, and quickly achieved 100% accuracy on the test set.

However, when trials were blocked, we observed catastrophic forgetting: after initially performing well on

the first block, over the course of the second block performance progressively declined, indicating increasing

forgetting of the relationships along the first dimension that were learned in the preceding block. This result

can be understood in the context of CLS theory (McClelland et al., 1995), which suggests that catastrophic

forgetting occurs whenever overlapping patterns interfere with each other.

8.4.2 Cognitive Control Mitigates Forgetting

To establish that gating in the PFC can mitigate interference and reduce catastrophic forgetting, we trained

the model equipped with a PFC on the same set of conditions (see Figure 8.3B). For the purposes of this

experiment, we removed the internal dynamics of the PFC, setting the � parameter to 0 (no maintenance)

and the � parameter to 1.0. When this model was trained on the task, its performance on interleaved trials

was una↵ected, and quickly rose to 100% accuracy. However, when it was trained on blocked trials, the

catastrophic forgetting observed in the previous experiment was alleviated, and the model was capable of

retaining what it had learned in the first block through the subsequent block.

This finding is consistent with the basic principles of CLS (McClelland et al., 1995): when the over-

lap between patterns of activity in the hidden layer is reduced, interference and forgetting are alleviated.

However, CLS theory holds that the hippocampus reduces overlap in its representations with mechanisms

that promote sparsity, whereas here we show that a PFC equipped with a dynamic gating mechanism can

accomplish a similar goal. This is consistent with the results of previous computational models (Rougier

et al., 2005; Tsuda et al., 2020) showing that adaptive gating can o↵er an alternative mechanism for reducing

the overlap between patterns of activity, thereby reducing interference and forgetting.

8.4.3 Blocking Advantage with a Switch Cost

The results above and the results of previous models (Rougier et al., 2005; Tsuda et al., 2020) show that

catastrophic forgetting can be reduced when learning occurs in non-overlapping patterns of activity across a

layer, thereby explaining the reduced e↵ects of interference observed in humans and other animals as com-

pared with standard neural network models. However, in certain cases human performance has been shown

to be superior when trials are blocked compared with when they are interleaved (Carvalho & Goldstone,
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2014; Flesch et al., 2018; Noh et al., 2016). We hypothesized that this reversal of the catastrophic forgetting

phenomenon may be due to the internal dynamics of cognitive control processes (Flesch et al., 2022b), and

in particular due to the bias in neurons in the PFC to actively maintain their activity over time (O’Reilly &

Frank, 2006). To explore this hypothesis, we implemented a control model with simple recurrent dynamics

(see Equation 8.7), keeping the � parameter at 1.0 but setting the � parameter to 0.9 (i.e., 90% of the previ-

ous control signal is maintained at each time step). The resultant dynamics can be thought of as exhibiting a

switch cost (Blackwell et al., 2014; Hyafil et al., 2009), wherein rapidly switching the context or goal (in this

case the relevant social dimension) introduces interference due to the ongoing maintenance of the previous

context. Note that the cognitive cost of task switching is usually measured in increased reaction times or

errors, but here we study it in the context of its e↵ects on learning.

Figure 8.4: E↵ect of maintenance parameter (�) on performance. In the blocked condition (purple),

accuracy on the test set does not depend much on maintenance. However, as maintenance increases, the

cost to switching worsens and performance in the interleaved condition declines.

When these dynamics were introduced, the model was relatively una↵ected when trials were blocked,

but exhibited a consistent reduction in performance when trials were interleaved (see Figure 8.3C). When

trials were interleaved, many switches between contexts occurred throughout training, thereby introducing

interference in the control signal, causing processing to be ine↵ectively modulated according to the current

context. We also performed simulations where we systematically varied the � parameter (see Figure 8.4),

showing consistent reductions in performance on the interleaved condition with increased active maintenance.

8.4.4 Tradeo↵ between Control Strength and Switch Cost

Previous work has suggested a natural tradeo↵ between the strength of cognitive control and the cost incurred

when a context or task-set is switched (Herd et al., 2014): stronger control would be more e↵ective in coordi-
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nating activity in other brain regions according to the current goal, but may make rapid switching between

task sets or goals more di�cult. To demonstrate this tradeo↵, we tested a model with the maintenance (�)

kept at 0.9, but reduced the value of � (control strength) to 0.1. In this case, the model still performed well

when trials were blocked, but the reductions in performance when trials were interleaved disappeared (see

Figure 8.3D). This shows that weakening the control signal can reduce the switch cost, aiding performance

when there are many switches. Our results are consistent with a tradeo↵ between the strength of control

and the switch cost: without control, catastrophic forgetting is detrimental to performance when trials are

blocked, but when control is too strong, interference hurts performance when trials are interleaved.

8.4.5 Analysis of Learned Representations

Figure 8.5: Results of analyzing the learned representations of the model. Representations were analyzed

in terms of how well they captured the 2D structure of the 4x4 grid (left) and how much the irrelevant

dimension of the grid was compressed on each trial (right). Idealized grids depicting these two predictions

are shown on the top, where the red grid indicates idealized spacing between representations extracted during

trials on which competence was cued, and the blue grid indicates the same for popularity trials. Plots show

the beta coe�cients over training from performing the relevant regressions. These were conducted on hidden

representations either before (left) or after (right) control was applied, on two configurations of the model

- one with � = 0 (no maintenance) and one with � = 0.9. Regression results revealed strong 2D map-

like structure in the hidden layer before control was applied, and strong 1D compression of the irrelevant

dimension after control was applied. However, when the active maintenance was too strong (� = 0.9), the

compression e↵ect disappeared in the interleaved condition, indicating a failure to modulate representations

according to the current context. Vertical lines indicate the switch in the blocked condition.
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The grid structure of our task allowed us to make concrete predictions about the representations that

would be learned in the hidden layers of the network (Park et al., 2020b; Russin et al., 2021b). In particular,

we tested whether the model formed 2D map-like representations that captured the basic structure of the

grid (Constantinescu et al., 2016; Park et al., 2020b, 2021), and whether these 2D map-like representations

were modulated by the current context. Previous work has shown that on a similar task, 2D structure was

modulated by the current context, compressing the irrelevant dimension (Flesch et al., 2022a).

Figure 8.5 shows the results of performing a regression on the representations from the hidden layer

with hypothetical distance matrices (depicted as idealized map-like representations) as the predictors. We

compared the results of this regression throughout training when the maintenance parameter (�) was set

to 0 and 0.9, and when the hidden representations were extracted before and after the control signal was

applied (i.e., g and h in equation 8.8). � was fixed at 1.0.

The model reliably learned the 2D structure of the grid in its hidden representations regardless of the

maintenance, as can be seen in the results from the hidden representations before the control signal was

applied. This 2D structure was modulated by the current control signal, which had the e↵ect of compressing

the currently irrelevant dimension (or equivalently, expanding the relevant dimension). This suggests that the

e↵ect of the control signal was to allow the model to generate its response based on the relevant dimension,

and to appropriately facilitate learning in the neurons coding for that dimension. However, when trials

were interleaved and maintenance (�) was set to 0.9, the model did not show this compression pattern after

control was applied, indicating a failure to modulate its representations according to the current context.

This confirmed the idea that the poor performance on interleaved trials when the switch cost was high (see

Figure 8.3C) was caused by interference in the control signal.

8.5 Discussion

The neural networks driving current ML research do not perform well in continual-learning settings where

incoming data is blocked or otherwise correlated over time (Hadsell et al., 2020). Humans do not exhibit the

catastrophic forgetting that plagues these neural networks in these settings (McClelland et al., 1995), and

in some cases even show a learning advantage when trials are blocked (Carvalho & Goldstone, 2014; Flesch

et al., 2018). In this work, we built on previous computational frameworks (Flesch et al., 2018; Rougier

et al., 2005; Tsuda et al., 2020), and investigated the potential for cognitive control mechanisms in the PFC

to induce non-overlapping patterns of activity in order to mitigate interference. Consistent with previous

studies (Tsuda et al., 2020), our simulations suggest that these mechanisms can aid learning when trials are

blocked over time.
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In addition to pattern-separation mechanisms in the hippocampus proposed in CLS (McClelland et al.,

1995), and the gating mechanism in PFC proposed here and elsewhere (Rougier et al., 2005; Tsuda et al.,

2020) a number of alternative mechanisms for alleviating catastrophic forgetting in neural networks have

been explored (Flesch et al., 2018; Kirkpatrick et al., 2017; Velez & Clune, 2017). In particular, Flesch

et al. (2018) show that forgetting was reduced on a similar task when their network was augmented with a

good inductive prior. However, they did not show an advantage to blocking over interleaving, although they

observed this e↵ect in their human experiments. While our approach is not incompatible with the idea that

good inductive priors can mitigate catastrophic forgetting, we also show that a bias to maintain activity in

the PFC leads to an advantage of blocking over interleaving, providing an explanation for some of the results

observed by Flesch et al. (2018) and others.

In work developed concurrently with ours, Flesch et al. (2022b) show an advantage of blocking in a

model based on very similar principles. In their framework, a neural network equipped with a context-

gating mechanism was modified to have “sluggish” units that maintain information from previous trials,

inducing a switch cost that degrades performance when trials are interleaved. Although there were some

slight di↵erences in implementation and in interpretation, we believe the broad convergence between this

work and ours highlights the potential of these principles for explaining the advantage of blocking observed

in humans.

The advantage of blocking can seem to contradict the well-established principles of CLS (McClelland et al.,

1995). However, we show here that a “cortex-like” neural system equipped with mechanisms for cognitive

control and active maintenance can enter a di↵erent regime than those typically considered in the CLS

framework, wherein a reliance on control exposes the system to interference in the control signal caused by

rapid context switches. We speculate that in the brain, pattern-separation mechanisms in the hippocampus

are usually su�cient to ensure e↵ective learning regardless of whether experiences are correlated over time,

but animals such as humans that rely heavily on cognitive control may in some cases require learning

experiences to be correlated over time due to the bias for active maintenance in the cognitive controller. In

our simulations, we introduced this bias to show how it could lead to a learning advantage of blocking, but

of course there was no real need for active maintenance in the task (as shown by the good performance of

the base MLP when trials were interleaved). We expect that there are good computational reasons that the

PFC would have a bias to maintain its activity over time (e.g., related to its role in working memory and

planning), and that these may be unrelated to the demands of this particular task. We leave it to future work

to show that a system augmented with cognitive control and active maintenance is superior in an absolute

sense to one without these mechanisms.

Our simulations were also inspired by the idea that active maintenance engenders a cost to switching
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between contexts, which must be traded o↵ against the strength with which control can be applied (Herd

et al., 2014). The presence of this tradeo↵ means the cognitive system as a whole must optimize the strength

of its control signal according to constraints imposed by learning as well as the current need for control

(Shenhav et al., 2013). This optimization may have taken place over the course of evolution (Herd et al.,

2014), but it may also occur in real time according to the task at hand (O’Reilly et al., 2020).

Representational analyses showed that cognitive control can act on 2D map-like representations to mod-

ulate them according to the current context by compressing irrelevant dimensions and allowing learning to

take place in non-overlapping patterns. However, a strong bias to maintain activity over time leads to inter-

ference in the control signal, reducing this e↵ect and leading to poor performance when trials are interleaved.

Flesch et al. (2022a) also showed compression along currently irrelevant dimensions in representations of a

neural network trained on a similar task. In particular, this occurred in a “rich” regime when their neural

network was initialized with small weights. The default random initializations we used in our model were

likely small enough to put them in the “rich” regime, but future work will assess the extent to which our

results depend on initialization.

Intelligent systems should be capable of continually learning in settings where data is not independently

sampled over time. Our simulations demonstrate computational principles that may underlie human contin-

ual learning, and help to explain behavioral phenomena observed in human experiments.
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