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ABSTRACT OF THE DISSERTATION 

 

The Study of Mechanical Properties of Cells as a  

Biomarker for Cancer Diagnostics 

 

by 

 

Henry Tat Kwong Tse 

Doctor of Philosophy in Biomedical Engineering 

University of California, Los Angeles, 2012 

Professor Dino Di Carlo, Chair 

 

The measurement of cellular mechanical properties can be impactful in many areas of 

biosciences due to the interdependencies of mechanics and cell state or function.  Mechanical 

cues communicated via mechanosensing and mechanotransduction can regulate cellular behavior 

leading to biochemical and structural modifications; conversely, native cellular processes such as 

differentiation, activation, and malignant transformation triggered by biochemical cues have also 

shown to elicit significant changes to the cellular architecture. Measurement of these mechanical 

biophysical changes can therefore be used to infer cell state or function. To date, there are 

numerous approaches used to measure the mechanical properties of cells for biophysics research, 

yet these are limited in their translational ability as general research or clinical tools. The biggest 

challenges facing successful translation of these mechanical phenotyping tools are due to the 

technological complexity, manual sample handling and preparation requirements, and limited 
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sample throughput. This dissertation focuses on developing a high-throughput, label-free 

alternative for mechano phenotyping termed deformability cytometry. For the first time in the 

biophysics field, the deformability cytometry platform achieves throughputs of more than 1,000 

cells/second; a rate that is three orders of magnitude greater than previous techniques. 

Additionally, initial work involving platform validation and proof-of-concept applications for 

stem cell differentiation, leukocyte activation, and cancer diagnostics are explored. The 

dissertation also undertakes a major engineering challenge of this system - large dataset image 

processing - which has led to the development of process efficient image analysis algorithms to 

increase the utility and robustness of this mechano phenotyping technique. Lastly, a clinical 

proof-of-concept study consisting of 119 patient pleural effusion samples were collected and 

assayed using the deformability cytometry platform to determine the diagnostic performance of 

mechanical biomarkers for malignant effusions. Briefly, the result of this clinical study achieved 

an area-under-the-curve of 0.91 with sensitivity and specificity of 100% and 69%, respectively. 

The high diagnostic accuracy combined with the ease-of-use, minimal sample preparations 

needs, and large sample sizes, satisfies many translational hurdles for a label-free mechano 

phenotyping platform for applications in the biosciences community.  
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Chapter 1 

Cell Mechanics: Origins and the Motivation Towards Mechano Phenotyping 

 

 The knowledge in the field of cell biology is largely contributed by the research of 

understanding complex biochemical networks and observation of its biochemical response. 

While biochemical reactions are of immense importance in cell biology, cells are not isolate 

reaction pots. Cells are physical entities where the presence of structural mechanics is evident. 

Indeed, cellular structural architecture have shown to be integral parts both in dictating and 

facilitating biological processes1,2.  

 Cellular components such as tubulin, actin, and intermediate filaments are known 

contributors to the overall structural mechanics of a cell. Recent research reveals additional roles 

in cellular processes such as intra-cellular transport, mechanical sensing and transduction, 

motility, and facilitating cell cycle proceses3–9. For example, regulation of the cycle depends on 

the constant production and degradation of proteins and the activation or deactivation of the 

complexes responsible for targeting these proteins for degradation via ubiquitination.  While 

environmental cues such as soluble factors have long been implicated in the cell cycle control 

system, the past decade has revealed a new perspective based on mechanical cues, adding 

another dimension to our understanding of the cell as a whole. Consideration of both soluble and 

mechanical cues will be necessary to gain a more thorough comprehension of cell biology and 

the cell cycle. Mechanosensing is an important component in the physiology of the cell and 

tissue homeostasis.  Direct linkages between the extracellular matrix (ECM) and the intracellular 

environment allow external mechanical cues to alter the cellular state and structural architecture 
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in response10–12.  Conversely, these same linkages enable the cell to transmit forces 

extracellularly, altering the mechanical micro-environment itself13.  This mechanical balance can 

result in cellular differentiation2,14–16, morphological modifications17,18 and motility changes18,19, 

as well as alterations in cell cycle control20. 

Structural and mechanical modifications in cellular processes 

 Structural changes of cells can be indicative of the cell state or function. Native cellular 

processes, such as differentiation of stem cells21 and extravasation of lymphocytes18, or non-

native processes, such as intravasation in malignant progression22, have recently been discovered 

to undergo massive structural changes upon changes in the cell state or function. For instance, 

the process of successful stem cell differentiation is highly dependent on regulation of lamins 

A/C and B23. Lamins, intermediate filament proteins, create a mesh network of structural and 

organizational support to the nuclear envelope, where only lamin B is found in undifferentiated 

stem cells. Upon differentiation, stem cells increase transcription level of lamin A/C which 

increases rigidity of the nuclei21. This structural modification to the nucleus contributes to the 

silencing of pluripotency genes and the maintenance of its differentiated state. Other native 

processes, such as lymphocyte extravasation, also elicit structural reorganization. . Lymphocytes 

are continuously circulating in the blood vessels and thus require sufficient rigidity for protection 

from damage in circulation. However, upon activation by a signaling chemokine, a rapid 

conversion from a rigid architecture to a highly deformable state allows for extravasation 

through the endothelial cells to the injury site. This activation processes involves cytoskeletal 

reorganization of microfilaments, microtubules, and intermediate filaments18 to enable migration 

as well as evidence for nuclear changes needed for gene transcription and differentiation24. This 
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change from a rigid sphere to a highly deformable state exemplifies where mechanical properties 

can be used as a predictor of cell state. The mechanical changes seen in extravasation of 

lymphocytes can also be envisioned to play a similar role in the malignant transformation of 

tumors during intravasate and extravasate events. Establishing a measure of malignancy or tumor 

progression could be instrumental for treatment decisions. 

Influences of microenvironment mechanics on cellular behavior 

 The recent developments in cancer biology on the existence and relevance of 'stem-cell 

like cancer cells' or cancer stem cells is controversial25,26. This is due to numerous reports for 

evidence of rare, self-renewing, cancer progenitors subpopulations existing in tumors27–30 and 

equal number of reports against the rarity of the cancer stem cell population31, and whether 

"terminally differentiated cancer cells" are locked into this fate or can spontaneously return to 

stem-like cancer cells32,33. As such, the cancer biology field is at a deadlock about these 

conflicting cancer stem cells reports. A major challenge in cancer stem cell biology is finding 

effective stem-like biomarkers to identify cancer stem cells. Currently, the markers used are 

biochemical labels adopted from traditional stem cell biology markers including: Oct3/4, Nanog, 

CD133, nestin, Bmi-1, and c-kit34. As these markers are analyzed by flow cytometry, the 

variability between samples - but more importantly between research groups - due to the inherent 

relativity of intensity based label biochemical markers (and batch to batch label variations) 

ultimately leads to a limited value of these markers in cancer stem cell identification. 

Interestingly, recent work examining culturing tumors spheroids in soft mechanical environment 

to enrich for tumorigenic cancer stem cell populations have had success34. By using soft 

mechanical environment on tumor spheroid, spheroid cells were notably softer with increased 
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traction forces when compared to control cells. These phenotypic and biophysical changes are 

similar to stem-cell spheroids, but lack expression of conventional stem-cell biochemical 

markers. Along a similar trajectory, the second chapter in the dissertation is focused on exploring 

mechanical stresses of tumor microenvironments at the single-cell level in generating 

mechanically unstable cells. This works aims to further the understanding of the interactions of 

mechanical microenvironment cues affecting inherently mechanical cellular processes.  

Biophysics research tools to probe mechanical properties of cells 

 Over the past decade, enormous advances in our understanding of the importance of 

mechanical sensitivity and responsiveness of cells has led to the rapid development of 

biophysical research tools to measure and interpret these mechanical changes. In the 1930s, 

initial biophysical experiments by Harvey and Danielli first used methods such as centrifugation, 

plate compression, capillary aspiration, and sessile drops to study surface tension and viscosity 

of cells35. In the last 20 years, a wide variety of biophysical measurement platforms have been 

engineered to perform mechanical measurements on cells36.  Generally, these analysis techniques 

can be divided into two categories based on the samples they act on: bulk and single-cell37.  Bulk 

platforms, such as microfiltration, tend to have high throughput at the cost of [being unable to 

elucidate cellular function/state], yielding only one endpoint measurement without taking into 

account heterogeneity or size differences within the sample population of cells. Single-cell 

platforms that can assay this heterogeneity, but at lower throughputs, include micropipette 

aspiration38, atomic force microscopy (AFM)39, magnetic bead-based rheology, microfluidic 

optical stretching40, and biophysical flow cytometry37. The rapid development of these 

biophysical tools has led to numerous scientific findings associating cellular mechanical 
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properties to different cell states including metastatic potential39–41, mechanics of stem cell 

differentiation15,38, and leukocyte activation42.  Clinically, a measure of malignancy and 

metastatic potential in tissues or biological fluids could guide treatment decisions, while a 

measure of the degree of differentiation could prevent transplantation of undifferentiated, 

tumorigenic stem cells in regenerative therapies.  For drug discovery and personalized medicine, 

a simple measure of cytoskeletal integrity could allow screening for cytoskeletal-acting drugs or 

evaluation of cytoskeletal drug resistance in biopsied samples.  Additionally, measures of 

leukocyte activation are strong predictors of disease prognosis and response to treatment in 

persons with HIV-1 infection43 or rejection of allografts44. As the application areas are broad, 

biophysical mechanical markers are poised to potentially be impactful biomarkers as cell 

identifiers indicative of disease for applications in general research and clinical settings. 

 Biophysical techniques (specifically mechanical-properties-based measurement tools) are 

primed to have significant impact in both research and clinical settings. The attractiveness of 

biophysical measurements such as surface tension, viscosity, impedance, density, volume, mass, 

and mechanical stiffness is that these are intrinsic physical properties. These measurements are 

absolute as opposed to relative values (i.e. fluorescent intensity of a biochemical labeled marker). 

This readily enables creating universal standards without the need to recalibrate as is required for 

label-based biochemical detection; this advantage could lead to the development of highly 

efficient techniques. However, given the limited dynamic range of intrinsic physical properties 

compared to fluorescent intensity-based biochemical labels, it is unlikely that biophysical tools 

will have the same level of specificity as conventional flow cytometry. Yet, given a defined 

problem universe, biophysical measurements can potentially have the same or better sensitivity 

while realizing benefits of time, cost, and accuracy advantages.  
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Research need: An alternative high-throughput label-free mechanophenotyping platform 

 A simple, label-free, mechanical measurement in which cells are minimally handled has 

the potential to greatly reduce costs and allow routine cell screening and classification in clinical 

and research applications.  Current cell deformability measurements have been too low 

throughput or inconsistent to have a significant clinical impact.  Further, disease may develop 

from abnormalities in a single cell37 or small subset, such that accurately detecting rare events or 

small populations is important, and bulk measurement may result in misleading averages45. Yet, 

current single cell techniques, usually optimized for biophysics research, operate at low rates 

from 1 cell/min (AFM and optical stretching) to ~1-5 cells/sec (biophysical flow cytometry, 

electroporative flow cytometry46). For the translation of mechanical properties based biomarkers, 

a need exists for a high-throughput single-cell approach. Further, a clinically applicable platform 

will require simple operations, rapid assays, and quick data turnover. These needs are further 

explored and addressed in the subsequent chapters.  
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Chapter 2 

Increased Asymmetric and Multi-daughter Cell Division in Mechanically  

Confined Microenvironments 

 

 This chapter explores the contributory effects of tumor microenvironment mechanical 

stresses on an inherently mechanical biological process: mitosis. As the microenvironment of a 

cell changes, associated mechanical cues may lead to the breakdown of biochemical signaling 

pathways, creating positive feedback to further propagate tumorigenesis.  

 An immense amount of past and current research is dedicated to understanding the 

control systems that govern the complex network of chemical reactions that dictate cell biology.  

Perhaps the most complex and most extensively studied cellular control system is the cell cycle 

regulatory system.  Cell cycle regulation controls the progression of the life cycle of a cell and 

the growth of tissues, and is ultimately a significant contributor to the physiological homeostasis 

of complex multicellular organisms.  However, recent research has shown that non-conventional 

mitosis events contribute to natural genetic variation1, as well as tumor progression2-5.  

 Over half a century of research, sparked by Howard and Pelc’s observation that radio-

labeled phosphorous incorporates differentially into cells not undergoing mitosis6, has resulted in 

an increasingly complex understanding of cell cycle regulation.  Regulation of the cycle depends 

on the constant production and degradation of proteins, and the activation or deactivation of the 

complexes responsible for targeting these proteins for degradation via ubiquitination.  

Environmental cues such as soluble factors have long been implicated in the cell cycle control 

system, however the past decade has given a new perspective on mechanical cues involved in 
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cell biology.  In order to gain a more complete understanding of cell biology and the cell cycle, 

considering both soluble and mechanical cues will be necessary.  

 Mechanosensing is an important component of the physiology of the cell, as well as 

tissue homeostasis.  Direct linkages between the extracellular matrix (ECM) and the intracellular 

environment allow external mechanical cues to alter the cellular state7-9.  Conversely, these same 

linkages enable the cell to transmit forces extracellularly, altering the mechanical micro-

environment itself10.  Tipping this mechanical balance can result in cellular differentiation11, 

morphology12 and motility changes13, as well as alterations in cell cycle control14. 

 Mitosis is a highly regulated stage of the cell cycle, both biochemically and, more 

increasingly suspected, mechanically.  The overall spherical shape that cells adopt during this 

phase and the internal organization of the cytoskeleton are directly implicated in influencing the 

progression through mitosis15.  The Spindle Assembly Checkpoint (SAC) has been identified as 

the major checkpoint responsible for ensuring correct chromosomal alignment during 

metaphase16.  The SAC requires specific mechanical cues to proceed through mitosis, including 

microtubule-kineticore attachments as well as sufficient tension in microtubules themselves17, 

the satisfaction of which results ultimately in cytokinesis and mitotic exit18. 

The cell division axis is also dependent on the orientation of ECM near the dividing cell 

and this effect requires an intact actin cytoskeleton19.  This link between the ECM orientation, 

cytoskeleton, and condensed DNA is further supported by the co-localization of cytoskeletal 

binding proteins and the spindle apparatus during mitosis20.  Centrosome number and polarity 

has been shown to depend not only on an intact cytoskeleton21, but also on the phosphorylation 

state of focal adhesion kinase (FAK), further implicating a delicate force balance during 

mitosis22. 



14 
 

We propose that aberrant mitotic outcomes, possibly due to altered cytoskeletal 

mechanics during mitosis, can be directed by an altered mechanical microenvironment.  To 

explore this hypothesis, we have developed a novel microfluidic platform to confine a population 

of proliferating HeLa cells.  This novel culture platform allows for both alterations in the 

geometry of the microenvironment, specifically the space in which the cell is allowed to grow 

and divide, as well as the elasticity of the substrate on which the cell is dividing.  Figure 1 

illustrates the device, with an example of a mitotic cell directly interacting with the elastic 

substrate (Fig 1a).  By using a microfluidic device to compress the cells, we minimize cell death 

due to lack of nutrients, as media is constantly perfused through the compression chamber.  The 

device also allows for facile imaging of cells, as they are in a single focal plane.   

 

Results and Discussion 

Cells in confined 3D cultures exhibit drastic changes in size, shape, and symmetry of 

daughter cells when compared to unconfined 2D cultures.  The height confinement also readily 

allowed visualization of condensed chromosomes at the mitotic plane.  Within a 600 µm2 field-

of-view cells are observed under time lapse bright-field microscopy for mitosis events.  In the 

unconfined device control, with posts in the up position (Fig. 2a), cells attain a spherical 

geometry during mitosis and complete the mitosis process within 140 minutes.  However, in 

confined conditions, tri-daughter cytokinesis (Fig. 2b & 2c), daughter cells with drastically 

different sizes (Fig. 2c), tetra-daughter cytokinesis (Fig. 2d), and mitosis resulting in cell death 

(Fig. 2e) are commonly observed events that increase in frequency with increasing compression 

(decreasing y) and increasing stiffness (E). Since multi-polar divisions have previously been 

classified as divisions containing multiple centrosomes (N>2) during mitosis, to avoid confusion 
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we refer to multi-daughter divisions as observable division events resulting in more than 2 

daughter cells (including observations of tri-daughter through penta-daughter cytokinesis).  

Multi-daughter divisions induced by confinement lead to viable daughter cells with 

increased chances of chromosomal abnormalities. Interestingly, in figure 2b sequential tri-

daughter divisions in consecutive cell cycles are observed for the high confinement, low stiffness 

condition (Δy = 3 μm, E = 130 kPa).  In this case and others (Fig. 2d) we note that cells dividing 

in this manner will sometimes “re-fuse” after division before the next cell cycle. Further 

investigation is warranted to determine whether this behavior is indicative of a new class of 

checkpoint control programs that acts post-cytokinesis. Even considering potential corrective 

measures (re-fusion) that cells may employ, tri-daughter divisions (Fig. 2b & 2c), divisions 

resulting in unevenly sized daughter cells (Fig. 2c) and tetra-daughter divisions (Fig. 2d) are 

likely to result in increased susceptibility to abnormal chromosome segregation. As the HeLa cell 

line is a 3N+ karyotype, the amount of assembly of mitotic spindles from each centrosome is 

increased by at least 50% when compared to diploid cells. With extra centrosomes (N>2) and 

their associated mitotic spindles, metaphase and anaphase events are highly complex with 

respect to chromosome segregation to the poles even for bi-polar divisions. Even higher rates of 

missegregation are expected when cells divide in a multi-daughter fashion5.  

The degree of mechanical confinement affects the daughter cell size ratio in normal and 

multi-daughter cell divisions. Figure 3 illustrates the highly altered mitosis division shape and 

asymmetry under varied conditions of confinement. Upon the completion of telophase, cells in 

control conditions are ~ 20 μm in width and highly uniform (Fig. 3a), whereas in the extreme 

case of high confinement the daughter cells span between 40-80 μm in width and are highly 

asymmetric (Fig. 3d). For intermediate conditions, both increased stiffness and confinement act 
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to increase division asymmetry, as observed in the average traces (Fig. 3b, c). Quantification of 

daughter cell traces (Fig. 3e) demonstrates that the difference in area between daughter cells 

increases for all cases compared to control, where statistical significance (p<0.001) is observed 

between both low confinement high stiffness and high confinement low stiffness compared to the 

control.  

Interestingly, a marked difference in type of multi-daughter division was observed when 

maintaining confinement, and changing only the substrate stiffness (Fig. 3a-d).  Under low 

compression (y = 7 μm) when substrate stiffness is 130 KPa, multi-daughter divisions result 

primarily in three progeny (90%, Fig. 3b), however upon increasing substrate stiffness to 1 MPa 

the multi-daughter division mode shifts primarily to four progeny (85%, Fig. 3c).  Assuming cell 

volume remains similar, the smaller cross-sectional cell area observed for softer 130 KPa 

substrates indicates that cells are able to apply significant force to deform the PDMS substrate 

and adopt a more rounded form. Note that a similar force is presumably applied by the cell to the 

stiffer 1 MPa substrate but this leads to less deformation.  In both cases the force applied by the 

cell, and therefore the equal and opposite force applied by the substrate to the cell are similar, but 

the cell shape differs. Therefore, cell shape during mitosis may be a dominant factor in directing 

multi-daughter divisions (in which a more spherical shape is achievable for the softer substrates).  

A tendency towards tri- or tetra- daughter divisions may be due to spatial limits of chromosome 

assembly at the metaphase plane(s) in a confined shape, which is dependent on substrate 

stiffness.  Alternatively, the location of mechanical loads may direct the geometry of these multi-

daughter divisions, perhaps acting through cortical cues sensitive to environmental force 

magnitudes23. 
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Along with possible effects of the uneven size of daughter cells and multi-daughter 

divisions on chromosomal segregation, alteration in cell shape with confinement may also pose 

difficulties in critical mitotic processes such as spindle assembly, signaling, and targeting 

processes during check point regulation and may be responsible for the increase in abnormal 

mitosis behavior. For example, signaling relying on either diffusion or active transport may 

proceed slower or be more error prone over the longer distances in an enlarged discoid shaped 

cell compared to a tight spherical cell.  Additionally, different cytoskeletal filaments have a 

characteristic persistence length over which they are effective (i.e. able to transmit force between 

protein complexes)24. It is reasonable to postulate that by dramatically changing the shape of the 

cell from spherical to discoid, the lengths of force transmission (e.g. along microtubules from 

centrosome to kinetochore or from actin-based cortical cues to centrosomal microtubules5,23) 

become anisotropic in varying directions of division, which may result in the underlying multi-

polar and asymmetric divisions.  Similarly, nonmuscle myosin II (NMM-II) distribution and 

contractility, necessary to create a uniform cleavage furrow during cytokinesis, may be affected 

by the non-spherical shape and anisotropic mechanical stress in these confined conditions.  

Fundamentally, these results suggest a role for adoption of a spherical shape during mitosis in 

maintaining bipolar division events. 

Mechanical confinement leads to statistically significant differences in the frequency of 

mitotic abnormalities.  A summary of the abnormalities observed per cell cycle is shown in 

figure 4a.  Here we define the total abnormalities per cell cycle as the combined frequency of 

multi-daughter divisions, divisions resulting in unevenly sized daughter cells, divisions resulting 

in cell death, and completed mitosis in greater than 140 minutes. Increasing both the geometric 

confinement of cells and substrate stiffness, leads to increasing frequencies of mitotic 
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abnormalities (Fig. 4a). It should be noted that in the E=1 MPa high confinement case no 

successful cell divisions were observed, but observable mitosis events (prophase, metaphase) 

were observed.  

Increased frequencies of multi-daughter divisions are observed in highly confined 

environments.  A summary of multi-daughter divisions per cell cycle is shown in figure 4b. In 

the unconfined control condition less than 1% of cell divisions generate more than two daughter 

cells. In contrast, under low confinement (y = 7 μm) slight increases in the frequency of multi-

daughter divisions are observed, and in high confinement cases (y = 3 μm) a drastic increase to 

50% of all divisions are observed to lead to multi-daughter generation.  Further, cells which have 

undergone 1 to 3 divisions remain viable and produce progeny of their own.  Figure 2b shows a 

cell undergoing a 1 to 3 division, and subsequently one of the original daughter cells undergoing 

a second 1 to 3 division.  This high frequency of multi-daughter divisions under confinement is 

unexpected, given that it is 17 times higher than the rate of multi-polar division events reported 

in standard 2D culture by Ganem et al.4, and suggests a fundamental relationship where 

confinement and elasticity of the environment can control the geometry of the cell division 

plane(s). 

Unevenly sized daughter cells, cell death rates, and mitosis duration increase with 

increasing confinement.  Of the cells completing mitosis, the rate of unevenly sized (>15% 

difference) daughter cells produced per mitosis event significantly increased with both stiffness 

and confinement: up to 100% of all divisions under the highest confinement (Fig. 4c).  In control 

conditions, mitosis resulting in cell death, possibly due to intact checkpoint failures, is observed 

in less than 1% of all division events.  Cell death increases significantly to 4% and 8% at low 
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confinement at E = 130 kPa and 1 MPa, respectively, and up to 70% under high confinement E = 

130 kPa (Fig. 4d).  

The duration of mitosis shown in figure 4e & 4f suggests increasing confinement is 

sufficient to increase mitotic duration.  This corroborates previous observations by Kwon et al.21 

and Maresca et al.17 that mitotic processes are dependent on correct orientation of, and force 

balance in, the cytoskeleton in order to achieve the proper signaling state to proceed through 

mitotic checkpoints in a timely manner. 

A unique mitotic event resulting in five daughter cells under partial confinement was 

observed in which confinement was not complete such that the gap size was between 3-7 μm 

with E = 130 kPa (Fig. 5a). The cell in metaphase is 60 μm in diameter, 4 times wider than the 

15 μm spherical cells undergoing mitosis during unconfined division.  The metaphase lineup of 

chromosomes is highly abnormal as visual inspection suggests (Fig. 5a, left image) with at least 

4 centrosome pole regions. Yet during anaphase (middle image), chromosome segregation seems 

to move toward 5 poles, leading to 5 daughter cells. Although the quantification of chromosome 

content is not available for these cells, it is reasonable to postulate that the chromosomes were 

incorrectly and unevenly segregated in this division, as with the other multi-daughter divisions 

(specifically to three daughter cells).  In the case of the three daughter divisions, one replication 

cycle (S-phase), cannot be properly split into three without an extra half S-phase.  In the case of 

the penta-daughter division, the same logic remains, however the mitotic planes appear to be 

even more complex.  Although these penta-daughter division events are rare (observed twice 

over 500 single-cell observations), our single-cell analysis platform enables the capture of these 

rare atypical biological processes.  
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Conclusion 

To elucidate the effects of confined mechanical microenvironments on cell behavior and 

mitotic processes, the microfluidic platform described here successfully creates confined culture 

environments that may mimic aspects of in vivo tumor mechanical properties. The data presented 

shows high instances of abnormal multi-daughter division events induced simply by increasing 

the confinement of a cell (i.e. decreasing the available volume to divide in) and by increasing the 

substrate stiffness.  Further, the frequencies at which these abnormalities occur is found at much 

higher rates than previously observed.  The ability to induce these abnormal divisions to 

drastically higher rates (half of all divisions in some cases) suggests a fundamental interaction 

between the extracellular mechanical environment and the overall orientation and the multi-

polarity of the cellular division axis. 

The ability of this highly confined microenvironment to induce aberrant divisions, 

specifically multi-daughter divisions, is an intriguing finding in itself.  Previously, work has been 

done to elucidate the biomolecular players involved in multi-centrosome divisions by Ganem et 

al.4, however here we contribute by supporting the hypothesis that multi-daughter divisions may 

be due, at least in part, to abnormal mechanical interactions between the cell and the immediate 

environment.   

The observations made and metrics analyzed here are purely phenotypic.  While 

chromosome quantification is not presented here, these abnormal phenotypic divisions strongly 

suggest aberrations in chromosome segregation, and should be investigated molecularly. These 

results provide strong initial evidence for the dependence of the mitotic geometry and polarity on 

the extracellular mechanical environment, and warrants dedicated in-depth molecular 

characterization of the phenomena.    
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Materials and Methods 

 Microdevice design 

To simulate aspects of a compliant confinement microenvironment we designed a 

perfusable microfluidic device with a compressible assay chamber (4 mm x 6 mm) (Fig. 1). This 

setup allows for ease of observation while simulating a pseudo-3D environment. The device’s 

low fluidic resistance allows uniform high density cell seeding and low shear stress during 

perfusion. The device operates under continuous perfusion with a total chamber volume 

exchange every two minutes to maintain the cells during assays. The array of 20 μm x 80 μm 

posts spaced 40 μm apart within the chamber provides control of the confinement height, 

structural support to resist sagging, and a pseudo-3D confined environment. In contrast to 3D 

culture in hydrogel systems our system provides precise control of the confinement volume, 

active uniform delivery of nutrients to each cell, and a single imaging plane.   

 

 Microfluidic chip fabrication 

The master molds for the mechanical micro-confinement culture device were fabricated 

using negative photoresist (SU-5, Microchem Corporation).  The base layer was spun on at 950 

RPM to yield a 15 μm channel height, and the post heights (y) were 7 μm and 3 μm, 

corresponding to 1750 RPM and 3300 RPM, respectively. Poly(dimethylsiloxane) (PDMS) was 

prepared with varying  (v/v) ratios of crosslinker to base (1:10 for E=1 MPa and 1:20 for E=130 

kPa)25. The elastomer devices were cured at 65C overnight, then cut from the mold, punched, 

and bonded to clean glass slides (Fisher Scientific) after treatment of both the glass and PDMS 

with Oxygen Plasma (0.5 Torr, 35 W) for 20 seconds. 

 



22 
 

Cell culture & experimental setup 

 Human cervical carcinoma (HeLa) cells were purchased from American Type Culture 

Collection (ATCC, Manassas, VA, catalog CCL-2). Cells were maintained in high glucose 

Dulbecco’s modified Eagle’s medium (DMEM), 100 µg mL-1 penicillin, 100 µg mL-1 

streptomycin, and 10% fetal bovine serum (Gibco). Cell synchronization was performed by a 

two day serum starve followed by a 2 mM double thymidine block26. Prior to the assay, the 

device was primed and flushed with ethanol at 20 µL min-1  for 15 minutes, followed by a PBS 

flush at 20 µL min-1 for 15 minutes. The device was then coated with bovine fibronectin 

(Invitrogen) 50 µg mL-1 adsorbed nonspecifically for 90 minutes at room temperature. Cells 

were loaded as a suspension of 1 million cells mL-1 to achieve a final in-device density of 

approximately 100 cells per 600 µm2 in the confinement assay area (Fig. 1a). Cells were then 

placed in a microscope incubator for 20 minutes to allow for attachment.  

For confinement assays, the device was compressed via a calibrated weight.  To 

determine the proper mass to use for each confinement and stiffness case, a separate device, not 

containing cells, perfused with blue dye was used to determine when the posts came in contact 

with the glass substrate (i.e.  the posts became optically clear).  This process is graphically 

represented in figure 1b.  The mass of calibration weights (80-100 g) were also confirmed by 

streak imaging of 2.2 µm beads which allowed tracking of compression progress (Fig. S1). Once 

the beads were no longer transiting under the posts, an effective calibration weight was arrived 

at.  The heights of the devices were kept approximately constant by pouring an equal volume of 

PDMS:crosslinker each time a new device was molded from the master to achieve a bulk height 

of approximately 5 mm.  Upon confinement, cells are subjected to a confinement force that is 
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equal to the force exerted by the cell onto the substrate. This confinement force is dependent on 

the confinement height but not the substrate elasticity.  

The perfusion of supplemented DMEM media began at one half of a volume exchange of 

the chamber per minute (750 nL min-1). Live-cell imaging was performed in a microscope 

incubator (temperature and CO2 controlled) with an inverted microscope (Nikon Eclipse TI).  

Images were captured with a Coolsnap HQ2 camera on the Nikon Advance Research software 

(Nikon) every five minutes with experiments lasting up to six days.  

The mechanical microenvironment of the cell is defined by the spatial confinement 

volume and elastic modulus of the substrate.  As the PDMS membrane is approximately 5 mm 

thick for each device, a large damping of the applied force to lower the chamber is expected such 

that the total effective force at the chamber cell interface is dependent on the elasticity of the 

polymer matrix with minimal dependence on the force used to lower the chamber.  In the case of 

a thin PDMS membrane the applied force would have a significant impact on the total effective 

force on the cell, however this is not the case in this system. In figure S2, we further investigate 

this by examining whether the load used to compress the cells affects the cell’s ability to deform 

the PDMS substrate.  The numerical simulations do not show a difference between load and no-

load conditions. 

 

 Analysis 

Before extracting quantitative data on cell morphology the completeness of confinement 

was confirmed for each cell video by observing that no cells in the FOV transited under posts. In 

this way we ensured an expected and repeatable height of confinement was achieved.  ImageJ 

was used to perform analysis on the images obtained experimentally.  Specifically, the area 
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function was used to calculate the areas of daughter cells after cytokinesis by manually outlining 

each daughter cell, after a complete cleavage furrow and separation was observed. Each mitosis 

event was manually identified and characterized. The onset of mitosis was defined as the point at 

which the cell lost its spindled morphology and became completely rounded.  It should be noted 

that in highly confined cases, mitosis onset was identified by the appearance of a well defined 

circular cell edge, as most of the cells did not adopt the classical spindled morphology under 

high confinement.    

For statistical analysis, the population number (n) used corresponds to the total number of 

events observed in a single category of abnormality (e.g. multi-daughter divisions, uneven 

divisions, etc).  These sample sizes were created by repeating each experimental condition two 

times, meaning two separate devices.  The standard errors of the ‘per division’ metrics were 

found using the standard error of the estimate of a proportion.  Confidence intervals between the 

mitotic duration times were performed with the Welch t-test, as the distributions did not have the 

same standard deviations.  The confidence intervals in comparing proportions, such as 

abnormalities per cell cycle, etc were calculated using the z statistic for proportions. 

Solid mechanics numerical simulation was performed using COMSOL v4.2 (Los 

Angeles, CA, USA). 
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Figures 

 

Figure 1 Microfluidic cell confinement device. (A) Device schematic with inset of confinement 

assay. The posts are 20 x 80 μm spaced equally 40 μm apart. (B) In the unconfined state, the 

posts are raised from the glass substrate (top), upon applying pressure the confinement chamber 

is compressed such that the posts are in contact with the glass substrate. (C) Seeding cells in the 

confinement chamber (left), when the posts are lowered the cell is confined to 3 or 7 μm height 

and is squeezed out from the post area (middle). Cells spread and attach in the confined volume 

(right).  
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Figure 2 Abnormal cell divisions under mechanical confinement. (A) In an unconfined device 

control, mitosis occurs within 150 minutes. (B) A confinement condition (y = 3 μm, E=130 

kPa) showing sequential tri-daughter divisions with viable daughter cells. The first tri-daughter 

division is seen at 100 minutes, with cell fusion labeled by black arrows. The second tri-polar 

division is seen at 1550 minutes along with the viable 2nd daughter cell labeled in orange. (C) A 

confinement condition (y = 7 μm, E=130 kPa) showing an asymmetric multi-daughter division 

of cytoplasm after mitosis (cell with arrow receives disproportionate cytoplasmic volume).  (D) 

A confinement condition (y = 7 μm, E=1 MPa) showing a tetra-daughter division with a cross 

geometry chromosome alignment (marked by black arrows at 0 minutes) and cell fusion at 60 

minutes (labeled by black arrows). (E) A confinement condition (y = 7 μm, E=1 MPa) showing 

a triangular chromosome arrangement (marked by black arrows) leading to cell death. All scale 

bars are 20 μm. 
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Figure 3 Daughter cell asymmetry and multi-daughter division increases with confinement and 

stiffness. Overlaid cell traces for control and all experimental conditions are shown. (A) Cell 

traces are analyzed 5 minutes post-telophase. Average control divisions are shown. (B,C)  Low 

confinement average traces show increased size and asymmetry in stiffer environments.  

Notably, multi-daughter division type (tri- vs. tetra-daughter) depends on microenvironment 

mechanical properties. (D) In high confinement states, the daughter cells are more spread out and 

highly asymmetric when compared to both low compression and control cases. (e) Area 

difference between daughter cells in each test case demonstrating asymmetry differences. Error 

bars are SEM. All scale bars are 20 μm. 
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Figure 4 Quantitative effects of confinement on cell-cycle abnormalities. (A) Summary of 

experimental data in terms of abnormalities per cell cycle characterized by: multi-daughter 

divisions, asymmetric divisions, apoptotic divisions, and divisions lasting for more than 140 

minutes. (B) Multi-daughter divisions per cell cycle characterized as divisions producing more 

than two daughter cells.  Error bars are SEP. (C) Asymmetric divisions are characterized by 

daughter cells having a difference greater than 15% in area. Error bars are SEP.  (D) Cell deaths 

per cell cycle are characterized by cells that cease activity and contract prior to completion of 

mitosis. Error bars are SEP.  (E) Comparing the mitosis duration of the high confinement (y = 3 

μm, E=130 kPa) condition to control and both low confinement conditions.  Error bars are SEM. 

(F) Summary of divisions in each case completing division within 140 minutes. For high 

confinement E=1MPa, no data (ND) was available as no completed mitosis events was observed. 

Error bars are SEP. 
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Figure 5 A penta-daughter cell division may lead to aneuploid daughter cells.  As a qualitative 

example, this cell is in a partially confined state between 3 – 7 μm. Extreme confinement 

conditions observed here can lead to aberrant mitotic orientation resulting in highly asymmetric 

divisions.  These microscopic images show the time lapse of a cell undergoing a single 1→5 

successful mitosis. Scale bar: 20 μm.  
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Supplementary Figures 

 

Figure S1: Device compression as qualified by streak imaging of 2.2 μm beads. Uncompressed 

7μm device (left), fully compressed 7 μm device (right). Scale bars 50 μm.  
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Figure S2: COMSOL simulation of effective force at the cell interface.  Numerical simulations 

comparing a 1 μm substrate deformation and the resulting stresses between no-load and a 

calibrated 15 kPa load with a 5 mm bulk PDMS layer. (A) Simulation setup for no load and 

15kPA load. (B) Interfacial stresses at the cell interface and substrate. Scale bars 10 μm. 
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Chapter 3 

Hydrodynamic Stretching of Single Cells for Large Population Mechanical Phenotyping 

 

The previous chapter explored how environmental mechanical stresses - as found in 

tumor environments - can create a positive feedback loop to increase genetic instability through 

aberrant mitosis events. Epigenetic changes, such as increased chromosome count and increased 

transcription levels due to aneuploidy, can alter cell mechanics. This is a contributing motivation 

for this chapter and the development of a high-throughput label-free mechanical properties-based 

biomarker platform.  

There is growing evidence that cell deformability (i.e. the ability to change shape under 

load) is a useful indicator of changes in the cytoskeleton and nuclear organization and may 

provide a label-free biomarker for determining cell states or properties such as metastatic 

potential1–3, cell cycle stage4, degree of differentiation5,6, and leukocyte activation7. Clinically, a 

measure of malignancy and metastatic potential in tissues or biological fluids could guide 

treatment decisions, or a measure of degree of differentiation could prevent transplantation of 

undifferentiated, tumorigenic stem cells in regenerative therapies. For drug discovery and 

personalized medicine, a simple measure of cytoskeletal integrity could allow screening for 

cytoskeletal-acting drugs or evaluation of cytoskeletal drug resistance in biopsied samples. 

Additionally, measures of leukocyte activation are strong predictors of disease prognosis and 

response to treatment in persons with HIV-1 infection8 or rejection of allografts9. Currently, 

major barriers to clinical use of flow cytometry-based assays for these applications are 

requirements for costly fluorescent-labeled antibodies and skilled technicians to prepare samples 

and interpret results. A simple label-free deformability measurement in which cells are 



37 
 

minimally handled thus has the potential to greatly reduce costs and allow routine cell screening 

and classification in clinical and research applications10. 

A wide variety of platforms have been engineered to perform mechanical measurements 

on cells11. Generally, these techniques can be divided into two categories based on the samples 

they act on: bulk and single-cell12. Bulk platforms, such as microfiltration, tend to have high 

throughput, but they yield one endpoint measurement and do not take into account heterogeneity 

or size differences within the sample population of cells. Disease may develop from 

abnormalities in a single cell12 or small subset, such that accurately detecting rare events or small 

populations is important, and bulk measurement may result in misleading averages13. Single-cell 

platforms that can assay this heterogeneity include micropipette aspiration5, atomic force 

microscopy (AFM)3, magnetic bead-based rheology, microfluidic optical stretching2,14, and 

microfluidic cell transit analyzers12,15–17. In particular, microfluidic single-cell mechanics assays 

have been promising, yielding more automated measurements through microscopically observed 

cell transit through microchannels or pores12,15–17. In these approaches the transit time at a 

constant pressure is indicative of mechanical properties; however, cell size and adhesiveness also 

can contribute to the measurement, which is especially relevant when dealing with 

heterogeneous cell solutions. In general, current approaches, usually optimized for biophysics 

research, operate at rates from 1 cell/min (AFM and optical stretching) to ~1-5 cells/sec 

(microfluidic cell transit analyzers, electroporative flow cytometry18). 

A unique combination of inertial focusing, hydrodynamic stretching, and automated 

image analysis enables us to carry out tunable single-cell mechanical measurements of cells with 

a throughput several orders of magnitude greater than current systems (~2,000 cells/s). Cells are 

carried and measured surrounded by fluid, and never contact, adhere to, or foul channel surfaces 
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which can lead to clogging. Moreover, the method results in high strains, which are easy to 

visualize, and high strain rates which deliver unique insights into cell mechanics. The large 

observed strains are due to stresses approximately an order of magnitude greater than current 

methods19. 

Briefly, we employ inertial focusing, a sheath-less method of ordering cells in flow20–22, 

to deliver suspended cells uniformly to an extensional flow23,24 region where they are deformed 

(Fig. 1a-d). Uniform delivery leads to increased uniformity in the hydrodynamic stresses and 

resulting deformation of individual cells. A microfluidic approach also allows tuning of the 

magnitude of hydrodynamic stresses which is important to be able to obtain sensitive 

measurements for cells with a range of deformabilities (see Supplemental Fig. 1). After entering 

the extensional flow region, an inverted microscope-mounted high-speed camera records several 

thousand deformations per second. Then, an automated image analysis algorithm finds and tracks 

cells to quantify initial diameter and deformability (the length of the long axis of a deformed cell 

divided by a perpendicular shorter axis) which are plotted in flow cytometry-like 2D scatter plots 

(Fig. 1e-f and Supplemental Fig. 2 online). This automation limits user bias and strengthens 

repeatability which are notable issues with manual mechanical measurements. Further, the ability 

to measure whole cell deformation of spherical cells in suspension limits variability due to the 

contact point of AFM tips or micropipettes on mechanically heterogeneous attached cells (e.g. 

significant differences in stiffness in the vicinity or far from actin stress fibers)25. However, in 

cases where this heterogeneity during adhesion is of interest we cannot directly probe cells (a 

task which can be performed by AFM and micropipettes). 

In this work, we thoroughly characterize the method and provide demonstrations of its 

robustness and utility with over 100,000 single-cell mechanical measurements: in clinical 
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screening of pleural fluids for malignant cells and characterization of stem cell differentiation 

state. Mechanistic and experimental details are provided in the Online Methods section. 

Specifically, we discuss modes of deformation, standard operating protocols (cell densities, flow 

rates), and methods of controlling for mechanical drift (Supplemental Fig. 3) that occurs when 

adherent cells are brought into suspension. 

 

Results and Discussion 

Validation and calibration of measurement 

Clearly, cells are complex viscoelastic objects; however, we investigated the deformation 

of several simple model systems to validate and calibrate our measurements. Surfactant-

stabilized oil droplets of low surface tension and known viscosity were measured to confirm that 

deformability cytometry could distinguish between objects of different viscoelastic properties. 

Droplets from 500 to 10,000 cSt, deformed an amount trending with their internal viscosity 

(external viscosity was held constant; see methods, Supplemental Fig. 4), allowing for evaluation 

of an effective viscosity of a deformed cell. We describe the viscosities of these emulsions as 

ratios of their internal dynamic viscosity, μi, to that of water, μo.(λ = μi/ μo)
26,27. Cell mechanical 

behavior is predominantly determined by viscous properties at high strain rates28,29. Generally, 

cells deformed like emulsions with λ < 9,650. As further validation, we also see a large decrease 

in deformability upon chemically crosslinking proteins in HeLa cells (cervical carcinoma cells 

fixed with 4% formaldehyde; see Supplemental Fig. 4 online). 

Next, we characterized the intrinsic noise level of deformability cytometry by measuring 

physical properties of rigid polystyrene microspheres (see Supplemental Fig. 4). The semi-

interquartile range of the deformability measurement was an order of magnitude lower than that 
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of a cancer cell line, suggesting that variability in cellular deformation measures is not due to 

measurement error. A correctable systematic error in the deformability of these rigid particles 

was also observed which can be attributed to 1 μs exposure time blur in the direction of particle 

motion. 

Certainly, a barrier to translation of biophysical measurements is repeatability and 

variability between labs. We measured the deformability of the breast cancer epithelial MCF7 

cell line on different days in different replicas of the device and found no statistical difference 

(nonparametric Wilcoxon ranked sum; p=0.22; Supplemental Fig. 3). It will still be important to 

confirm this minimal variability when the technique is applied in other labs. 

 

Identification of inflammation and malignancy in pleural fluids 

Confident in the accuracy of our deformability measurements we initiated studies to 

examine the mechanical properties of cells suspended within blood and pleural fluids, analysis of 

which provides insight into various diseases such as inflammation, bacterial infections, and 

tumor progression3. It has been hypothesized that the invasiveness of metastatic cells, which may 

accumulate in these fluids, is conferred by increased deformability1, and there is a precedent for 

using mechanical measurements of small sample sizes of biopsied cells for clinical diagnostics30 

in which mechanical measurements correlated with current immunohistochemical methods3. 

Work by Cross et al. showed that metastatic cancer cells disseminated in pleural fluid were 70% 

softer than benign cells from the same sample (N=40 cells) while Remmerbach et al. found that 

oral squamous cell carcinoma cells obtained by mucosal biopsy were 3.5 times more compliant 

than cells from healthy patients using a sample of 71 cells. However, in these previous studies 

time-consuming protocols are first needed to select cells to measure. By using deformability 
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cytometry, sampling thousands instead of tens of cells is possible such that all cells in a complex 

population can be measured without pre-selection. Improved statistical accuracy is conferred, 

and identification of outlier populations is possible. 

Pleural fluids – the fluid that accumulates in the space between the lungs and the chest 

cavity - is of diagnostic importance for metastatic disease. Cytological examination of pleural 

fluids for detection of malignancy is not always reliable, with an overall sensitivity rate ranging 

from 40% to 90%, with higher false-negative rates for mesotheliomas and lymphomas31,32. 

Furthermore, the preparation of cell smears and blocks (Figure 2d-g right) requires technician-

intensive fixation, labeling, and sample preparation, followed by manual microscopic scanning 

of slides by the cytopathologist to visually identify cells with suspicious features. 

Immunofluorescence flow cytometry is not routinely performed in the clinic. The reason is that 

the reagents and instruments for these systems must be routinely calibrated – (i) the fluorophore-

conjugated antibody must have extensive quality control to make sure there are minimal batch to 

batch variations in fluorescence, (ii) the flow cytometer laser power and detector sensitivity must 

also be routinely calibrated with uniform intensity standard fluorescent beads. Notably, a 

deformability measurement is an intrinsic property of a cell and therefore does not depend on the 

quality of a label or power of a detector. 

Pleural fluid contains a high density of blood cells which may obscure cells of interest. 

To gain insight into how this leukocyte population would appear in the pleural fluid, we first 

measured the deformability of resting peripheral blood mononuclear cells (PBMCs) and PBMCs 

activated with an anti-CD3 antibody (12F6) or phytohaemagglutinin (PHA) for two days. On 

average, stimulated PBMCs were much more deformable and slightly larger (12F6 activated 

PBMCs: median deformability=1.47, N=3,474; PHA activated PBMCs: median 
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deformability=1.45, N=4,765) than unstimulated PBMCs (median deformability=1.18, N=4,377; 

Figure 2a). Activated PBMCs deformed similarly to oil-in-water emulsions with λ ≤ 760 while 

untreated control PBMCs deformed similar to emulsions with λ = 970. Microfilaments, 

microtubules, and the intermediate filament, vimentin, reorganize during activation. It is 

hypothesized that this reorganization—a loss of rigidity—enables transendothelial migration33,34. 

On the other hand, granulocytes were expected to become less deformable upon stimulation. 

Here, in vitro activation of granulocytes with fMLP treatment shifted the median deformability 

value from 1.19 to 1.33 (p<0.001, Nresting=3,200, Nactivated=3,374) and increased the number of 

highly deformable cells above deformability = 1.4 (Figure 2b). While this does not agree with 

previous studies, previous measurement methods are prone to misinterpret changes in cell size 

and adhesiveness as increases in cell stiffness35. Most importantly, we have reproducibly 

measured these differences and expected to be able to detect these changes for stimulated 

leukocytes in vivo. 

Through characterization of cells from the pleural fluids of 47 patients we constructed 

deformability cytometry profiles of the primary cell populations associated with the common 

disease states detectable by cytological analysis and developed a 2-dimensional gating strategy to 

classify unknown samples (Figure 2c). These profiles are based on our initial scatter plots for 

PBMCs and stimulated PBMCs as well as correlation with the cytology diagnosis. We performed 

deformability cytometry on pleural effusions collected within the same day in parallel with 

traditional cytological methods; possible cytological diagnoses included: negative for 

malignancy, positive for malignancy, acute inflammation associated with an increased neutrophil 

population, and chronic inflammation—associated with a larger fraction of lymphocytes and 

histiocytes. In the diagnosed carcinoma cases, the tissue of origin was often known from patient 
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history. Prior to deformability cytometry, any red blood cells in the pleural fluids were 

hypotonically lysed leaving behind white blood cells, benign mesothelial cells, and cancer cells, 

if present. Leukocytes make up a majority of the cellular population in pleural fluids, but 

metastasized tumor cells from ovarian cancer, breast cancer, lung cancer, gastrointestinal track 

cancer, mesothelioma, and lymphoma can accumulate in the pleural fluid. Benign mesothelial 

cells, which are contaminants of the thoracentesis—the process of draining pleural fluids—are 

also present in the samples which we analyzed. 

As expected, patients diagnosed negative for malignancy and without diagnoses of acute 

or chronic inflammation were measured to have small rigid cells, features corresponding to 

unactivated leukocytes (Figure 2d). As indicated in cell blocks and cell smears benign 

mesothelial cells are also present. These likely appear as large rigid cells in our assay (Figure 2d 

center). Patient samples with a larger fraction of lymphocytes and histiocytes (tissue 

macrophages and dendritic cells) due to prolonged immune activation are diagnosed as chronic 

inflammation. Deformability scatter plots obtained from a majority of these samples show a 

strong similarity to those for in vitro activation of PBMCs, in which we observe a slight increase 

in median initial diameter and a large increase in median deformability (Figure 2e). Pleural fluids 

from patients with a larger fraction of neutrophils are diagnosed as acute inflammation. In 

agreement with our in vitro measurements of stimulated neutrophils we observed many small 

cells and a greater quantity of highly deformable small cells than for measurements of resting 

leukocytes (Figure 2f). 

The deformability cytometry profiles of patients diagnosed with malignancy are 

markedly different from all other outcomes (Figure 2g). In these cases, we observe many large 

cells (>17 μm) which are also highly deformable (>1.4). Gating in this region for all carcinoma 
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and mesothelioma cases (N=11), yields a high percentage of cells in this region: 15.7±8.7% 

(μ±σ). Whereas similar gating of negative outcome cases (N=9) yields 0.8±0.3% (μ±σ) in this 

upper right quadrant. Thus, if we use less than 1% of cells measuring within the gate as a 

selection criteria for a true negative outcome, the deformability assays achieves an overall 

sensitivity of 91% and specificity of 65% in detecting malignancy when screening against all 

patient outcomes (N=47). Specificity can be improved to 86% without affecting sensitivity by 

algorithmically identifying chronic inflammation cases in which there are also large deformable 

cells that lie on the border of the gate (Supplemental Figure 5). In some patients with a diagnosed 

negative outcome, large, rigid putative mesothelial cells are also present which can confound 

diagnoses of malignancy based on cell size alone (Figure 2d center). Supplemental Table 1 

contains patient diagnoses based on traditional cytological methods and deformability cytometry. 

Given the predictive power of our label-free cytological method, we envision 

deformability cytometry could complement histological analysis of pleural fluids following a 

thoracentesis, or even disaggregated biopsies, with high-throughput ensuring thorough sampling 

of the tumor mass that is often not possible with manual inspection of pathology slides. As a 

negative cytology result is not conclusive, the higher sensitivity conferred by deformability 

cytometry has the potential to eliminate costly patient follow-up procedures and invasive 

biopsies.  

 

Identification of stem cell state 

Leukocyte activation and cancer malignancy are often associated with changes in cell 

differentiation state. The unique mechanical signatures for these cells directed us to examine the 

mechanical properties of embryonic stem cells (ESCs). It is currently difficult to confidently 
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discriminate embryonic stem cells36 and induced pluripotent stem cells (IPSC)37, which are being 

explored for use in cell-based regenerative medicine, from their differentiated progeny using 

solely biochemical markers. These markers, including SSEA4, OCT4, and NANOG38, exhibit 

significant overlap and variable expression over orders of magnitude when measured with flow 

cytometry (see Supplemental Text for further discussion). We were able to classify stem cells 

and their differentiated progeny using our high-throughput deformability measurement. 

Previously, small sample sizes of mouse ESCs (mESCs) and human ESCs (hESCs) and their 

nuclei were found to be more deformable than their differentiated progeny using atomic force 

microscopy and micropipette aspiration, suggesting deformability may be a viable biomarker for 

pluripotency5,6. Here, with orders of magnitude higher throughput and statistical significance, we 

show that differentiated cells generated from mESCs by two alternate methods of differentiation 

including adherent (median deformability=1.28; N=3,427) and embryoid body (EB) 

differentiation protocols (1.54; N=1,046) are less deformable than undifferentiated mESC (1.68; 

N=3,535) (see Fig. 3a,c). Furthermore, we confirmed this trend with hESCs (median 

deformability=1.82; N=2,523) and hESCs differentiated using an adherent differentiation 

protocol for 9 days (1.48; N=1,718) and 14 days (1.59; N=2,283; Fig. 3d,h). Interestingly, mESC 

and hESC were both more deformable than the lowest viscosity emulsions that we were able to 

measure (λ < 480). Differentiation of hESCs was confirmed by an absence of alkaline 

phosphatase (AP), reduced expression of SSEA4 and TRA1-60 observed by flow cytometry, and 

a reduction of OCT4 protein on days 9 and 14 of the protocol (Fig. 3e-g). Differentiation of 

mESCs was confirmed by a reduction of OCT4 protein after EB and adherent differentiation 

protocols (Fig. 3b). Our data suggest that the deformability biomarker is an earlier indicator of 

differentiation that precedes loss of OCT4 expression in hESCs given that a statistically 
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significant decrease in deformability for day 9 differentiated cells (p<0.001) was observed prior 

to a reduction in OCT4 protein levels. The ability for a biophysical marker to change prior to 

molecular markers has been observed in neural39 and mesenchymal stem cells40 as well. 

A significant capability of our single-cell measurement approach is the ability to observe 

the distribution of cell behaviors and identify sub-populations within two-dimensional scatter 

plots - similar to traditional flow cytometry plots. Interestingly, density scatter plots for stem 

cells reveal one large population centered at a deformability of 1.8, and size of 16 μm (88.9%), 

and a smaller population at 1.15, 11 μm (10.1%) that corresponds with the smaller fibroblast 

feeder cells used in culture (Fig. 3d, see Supplemental Figure 6 for a scatter plot for pure 

fibroblast feeders). After 14 days of differentiation we also notice a broad distribution of sizes 

and deformability (although generally less deformable) that corresponds to the multiple 

terminally differentiated lineages. Using this type of multiparametric data we also demonstrated 

high statistical accuracy of classification for the combination of biophysical biomarkers (i.e. size 

and deformability). We constructed a classification tree (Supplemental Fig. 7) to identify 

undifferentiated hESC and 9 day adherent differentiated hESC with the cost of misclassifying an 

undifferentiated hESC being 4 times greater than misclassifying differentiated cells (i.e. the tree 

was designed to avoid misclassifying undifferentiated cells as they will be especially dangerous 

if delivered in vivo). The tree achieved an area under the curve (AUC) of 0.91 with a sensitivity 

of 0.93 and specificity of 0.88. This is comparable to the classification accuracy of a decision 

tree derived from flow cytometry data (surface markers for pluripotency): an AUC of 0.84, a 

sensitivity of 0.82, and a specificity of 0.86. 
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Cytoskeletal and nuclear origins of deformability 

 It remains to be seen what molecular changes are responsible for differences in whole cell 

deformability upon differentiation; however, the nuclear architecture has been implicated and is 

easily probed with our large deformation amplitudes. Pajerowski et al. found nuclear lamins A 

and C (intermediate filaments absent from pluripotent cells) contributed to measured increases in 

nuclear stiffness that occurred as cells matured while the stiffer rheological character of the 

nucleus was dependent on tighter chromatin packing 5. In the process of differentiation, cells 

gain regions of condensed heterochromatin with which nucleoproteins are more closely 

associated, while these proteins are dynamically associated with a loose chromatin structure in 

undifferentiated cells41. 

Besides changes in chromatin density and nuclear architecture, cytosolic cytoskeletal 

components are expected to contribute to cell deformability measurements and response to 

mechanical stimuli42. Using our high-throughput measurement system we studied the effect of 

cytoskeletal perturbations on whole-cell deformability. We treated human cervical 

adenocarcinoma cells (HeLa) and NIH 3T3 fibroblasts with pharmacological inhibitors of two 

cytoskeletal components with roles in regulation of cell shape and motility, a compound shown 

to reorganize keratin intermediate filament networks, as well as an inhibitor of myosin 

contractility (blebbistatin) and characterized their resistance to deformation43,44. As shown in 

Figure 4 and Supplemental Figure 8 treatment with these compounds did not have the profound 

effects on cell deformability observed in the processes of disease (Figure 2) and differentiation 

(Figure 3). Depolymerization of actin with latrunculin A, disruption of the microtubule network 

with nocodazole, and reorganization of keratin networks with sphingosylphosphorylcholine 

(SPC45) resulted in small deviations in deformability from that of untreated cells (Figure 4). 
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Treatment with blebbistatin, which prevents myosin II from generating contractile stresses in the 

actin network, resulted in more apparent changes, including an increase in the distribution of 

deformabilities as well as the presence of a larger more deformable population ( size > 20 μm 

and deformability > 2.2) for both HeLa and 3T3 cells. 

Notably, the overall changes in median deformability for all of the cytoskeletal disruptors 

was small compared to deformability changes observed upon differentiation of stem cells or 

activation of leukocytes, suggesting that the relative nucleus size, nuclear cytoskeletal 

components and chromatin structure may be the dominant molecular changes that our large 

amplitude and strain rate deformations report on. Cell deformation is likely dominated by the 

viscous properties of cytoplasmic material and chromatin in the cell. This may be expected given 

that rigid actin networks are known to fluidize at high strains46. Beyond the large strains resulting 

from our method, the large strain rate (~105/s) likely affects the observed mechanical 

properties28. Like for magnetic bead twisting cytometry and laser tracking microrheology29 

operating at high frequencies, the observed cell response may be similarly predominantly 

viscous, and therefore largely independent of cytoskeletal structure. As such, deformability 

cytometry may complement a low strain, low strain rate method like AFM, which is useful in 

probing this different regime. 

 

Conclusions 

Combined, our results highlight interesting correlations whereby lymphocyte activation 

and stem cell pluripotency are each associated with increased deformability. Both cell states have 

been characterized by the presence of loose, open chromatin structures. For a multitude of 

biophysical questions, the dramatic (>3 orders of magnitude) increase in throughput provided by 
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deformability cytometry will provide statistically robust answers, enabling new discoveries 

across fields. Further, for pleural fluid diagnostics an automated assay would: (i) augment 

traditional cytology and diagnostic routines without requiring additional sample preparation, (ii) 

limit operator bias, and (iii) provide a standardized and compact measurement (the deformability 

scatter plot) useful for quantitative communication of disease states between clinicians. The 

developed microfluidic instrument integrates label-free physical measurements of cells with the 

massive throughput and statistical significance of flow cytometry, providing a practical 

realization of a mechanical biomarker in clinical assays. 

 

Materials and Methods 

 MCF7 cell culture 

 The MCF7 cell line (ATCC Number: HTB-22) was propagated in DMEM-F12 with 0.01 

mg/mL bovine insulin and fetal bovine serum at a final concentration of 10% (v/v).  For 

biomechanical measurements MCF7 cells were released from substrates with 0.25% porcine 

trypsin and resuspended in culture media at a density between 200,000 and 500,000 cells/mL. 

 

Embryonic stem cell culture 

 Undifferentiated mESC lines were cultured in 5.0% CO2 at 37°C on mitomycin C-

inactivated CF1 mouse embryonic fibroblast cells (MEFs).  Culture medium contained 

KnockOut Dulbecco’s modified Eagle’s medium (DMEM), 15% fetal calf serum, 1X non-

essential amino acids (Invitrogen/GIBCO, 100X concentration), 1X Pen Strep Glutamine 

(Invitrogen/GIBCO, 100X concentration), 0.055mM 2-mercaptoethanol (Invitrogen/GIBCO, 
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1000X concentration, 55mM), and 5×105 units leukemia inhibitory factor (Millipore, 106 

units/ml).  Information regarding HSF-1 (46XY) can be obtained at 

http://stemcells.nih.gov/stemcells.  Undifferentiated hESC colonies were maintained as 

previously described47.  For all experiments, hESCs were used between passages 35 and 60. All 

hESC experiments were conducted with prior approval from the UCLA Embryonic Stem Cell 

Research Oversight Committee. 

 

Differentiation of embryonic stem cells 

 Mouse ESCs were differentiated through either embryoid bodies (EBs) within hanging 

drops or through adherent culture on gelatin.  Differentiation medium contained KnockOut 

(DMEM), 15% fetal calf serum, 1X non-essential amino acids, 1X Pen Strep Glutamine, and 

0.055mM 2-mercaptoethanol.  EBs were collected at day 6 for analysis.  For adherent culture, 

15,000 cells were plated on gelatin-coated six-well plates in mESC differentiation medium. 

Media was changed at day 4, 5 and 6. At day 7, cells were collected for analysis.  Differentiation 

of hESCs was performed as previously described except without RA treatment48. At days 9 and 

14, of differentiation, hESCs were collected for analysis. 

 

NIH 3T3 and HeLa cell culture and pharmacological inhibition 

 NIH 3T3 and HeLa cell lines were maintained in DMEM-F12 with 1% (v/v) 

penicillin/streptomycin and 10% (v/v) fetal bovine serum. To explore the effects of cytoskeletal 

components on deformability, we inhibited microtubules with nocodazole, inhibited non-muscle 

myosin II with blebbistatin, and disrupted actin polymerization with Latrunculin A.  Keratin 
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networks architecture was modified by sphingosylphosphorylcholine (SPC).  Cells were 

incubated in 0.001-10 µM Latrunculin A, 0.001-10 µM nocodazole, 0.1-10 µM SPC, or 5 µM 

blebbistatin for 2 hours, prior to the deformability assay.  For biomechanical measurements cells 

were released from culture flasks with 0.25% porcine trypsin and resuspended in culture media 

at a density between 200,000 and 500,000 cells/mL.  Cultured cells were measured immediately 

(t<10 minutes from harvest) with the deformability cytometer as mechanical properties were 

observed to change significantly over longer time periods (see ‘Device Operation’). 

 

Western blots 

 Protein was harvested from undifferentiated and differentiated ESCs using M-PER cell 

lysis reagent (Thermo Scientific, Rockford, IL).  Protein concentration was measured using BCA 

Protein assay (Thermo Scientific). 3.5 (mouse) and 10 (human) μg of total protein were 

electrophoresed through 12% NuPAGE Novex Bis-Tris gels (Invitrogen) and transferred 

according to standard procedures.  For immunoblotting, primary antibodies were goat anti-Oct4 

(Santa Cruz Biotechnology) used at a 1:250 dilution and rabbit anti-β-actin (Abcam) used at a 

1:5,000 dilution.  Secondary donkey polyclonal to goat HRP-conjugate was used at a 1:5,000 

dilution and secondary donkey polyclonal to rabbit HRP-conjugate was used at a 1:7,500 

dilution. Blots were developed using Amersham ECL Western Blotting Analysis System (GE 

Healthcare). 
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Alkaline phosphatase assay 

 Detection of alkaline phosphatase was performed using Fast Red Salt (Sigma F2768) and 

Napthol AS-MX phosphate (Sigma 85-5) dissolved in water. 

 

Preparation and activation of PBMCs and granulocytes 

 Peripheral blood mononuclear cells (PBMCs) were obtained from normal healthy donors 

and processed at the UCLA Virology Core Facility. The PBMCs were separated via Ficoll-Paque 

density gradient (Sigma 1077 Histopaque) and resuspended in RPMI 1640 medium (Sigma) with 

penicillin-streptomycin and L-glutamine and 50 units/ml of recombinant human Interleukin-2 

(NIH AIDS Reagent Repository). The PBMCs were then seeded in a 6 well plate at 106 cells per 

well with or without the addition of an anti-CD3 antibody (12F6) at 0.5 μg/ml or 

phytohaemagglutinin (PHA; Sigma L9132) at 5 μg/ml to stimulate the PBMCs for three days.  

For deformability cytometry, the suspended cells from each well were harvested and assayed at a 

density between 200,000 and 500,000 cells/mL.  BD Vacutainer® CPT™ cell preparation tubes 

were used as prescribed.  However, granulocytes were also extracted from below the cell barrier 

and red blood cells were hypotonically lysed with Red Blood Cell Lysis Buffer as prescribed 

(Roche Applied Science, Indianapolis, Indiana, USA) in preparation for our assay.  Granulocytes 

were stimulated with 10 μM fMLP for 45 minutes. 

 

Pleural Fluid preparation and analysis 

 Pleural fluids were obtained from Ronald Reagan UCLA Medical Center and Santa 

Monica UCLA Medical Center.  Cell blocks and cell smears were prepared by traditional 
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cytological methods.  In parallel, a fraction of each sample was concentrated and red blood cells 

and debris were removed by hypotonic lysis with Red Blood Cell Lysis Buffer as prescribed.  

The remaining cells were resuspended in culture media at a density between 200,000 and 

500,000 cells/mL for the assay. 

 

Microfluidic device fabrication and device dimensions 

 The devices were designed in AutoCAD (Autodesk, San Rafael, California, USA).  

Transparency photomasks for these designs were printed at 20,000 dots per inch (CAD/Art 

Services, Inc., Bandon, Oregon, USA).  Molds for replica molding were prepared using these 

masks in the UCLA Nanoelectronics Research Facility.  Negative photoresist, SU-8 50 

(MicroChem, Newton, Massachusetts, USA) was spun on a 4 inch Silicon wafer at 4000 

rotations per minute.  The coated wafer was soft baked at 65°C for 5 minutes then 95°C for 15 

minutes.  The wafer was then exposed under near UV at 8.0 mW/cm2 for 30 seconds.  A post 

exposure bake of the wafer was carried out at 65°C for 2 minutes then at 95°C for 3.5 minutes.  

The unexposed photoresist was developed in SU-8 Developer (MicroChem) until an isopropyl 

alcohol rinse produced no white film.  The height of the resulting features was characterized by a 

surface profiler.  The width of microchannels immediately before and after the extensional flow 

region was 67 μm.  The height of the features in the device was 28 μm. 

The mold was taped to the lower plate of a petri dish with features facing up and an 

approximately 6 mm layer of Sylgard 184 Silicone Elastomer (Dow Corning, Midland, 

Michigan, USA), polydimethylsiloxane (PDMS), mixed 10 parts base to 1 part curing agent, was 

poured on top.  The cast mold was placed in a vacuum chamber and the chamber was evacuated 
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for 30 minutes to remove air from the curing polymer.  It was then moved to an oven set to 65°C 

for 3 hours.  The devices were cut from the mold and inlet and outlets were punched into the 

cured polymer.  They were then placed in a plasma cleaner along with slide glasses to be 

activated.  After a 30 second exposure to air plasma the activated surfaces of PDMS and glass 

were placed in contact to form permanent covalent bonds between the two materials.   

 

Production of droplet models 

 Saturated, surfactant-stabilized viscous oil-in-water emulsions were created using PDMS 

oils (ρ = 960 kg/m3) of known viscosity by rigorously vortexing PDMS oil at 3% (w/w) with 

Tween 80 at 3% (w/w) in water.  Size was not controlled but droplets were typically sheared to 

approximately the size of cells by microscale, size-exclusion filters on the microfluidic device.  

The kinematic viscosity of the PDMS oils ranged from 500 to 10,000 cSt.  The Capillary 

Number (Ca=μU/σ where μ is the dynamic viscosity of the fluid, U is the droplet velocity, and σ 

is the surface tension) is used to represent the ratio of viscous stress to interfacial tension27.  The 

interfacial tension of a saturated, surfactant-stabilized emulsion49 is <5 mJ/m2.  Here µo and 

Capillary number are kept constant for all experiments27, but we vary λ = µi/µo, the ratio of inner 

to outer viscosity to determine the effect on deformability. 

 

Device operation 

 Cell suspensions were prepared as described above.  The optimal cell density for the 

devices is between 200,000 and 500,000 cells/mL.  In this range there is minimal interaction 

between cells.  Cells were loaded into 5 mL plastic syringes.  A 25 gauge luer stub (Instech 
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Laboratories, Inc., Plymouth Meeting, Pennsylvania, USA) was connected to the syringe and a 

short length of PEEK tubing (Upchurch Scientific, Oak Harbor, Washington, USA) with an inner 

diameter of 0.02 inches and an outer diameter of 0.0313 inches was connected to the luer stub.  

The free end of the tubing was fitted into the open inlet.  Equal tubing lengths were inserted into 

the outlets with free ends directed into a waste receptacle.  The syringe was loaded onto a PHD 

2000 syringe pump (Harvard Apparatus, Holliston, Massachusetts, USA) and set to inject at a 

flow rate optimized for the device.  A volumetric flow rate of 1,075 μL/min was selected for the 

MCF7 and HeLa cell lines and 800 μL/min for hESCs and mESCs (Figure 3) unless otherwise 

stated.  900 μL/min was optimal for prepared blood and pleural fluid samples as well as NIH 3T3 

cells.  After initiating the injection, imaging was delayed a further 20 seconds to account for 

fluidic capacitance.  Cells migrated across fluid streamlines to the center of the channel due to 

inertial lift forces.  At the junction, an extensional flow was generated.  When a cell reached the 

center of the extensional flow it could be stretched. 

After being released from substrates with trypsin, as described above, cell morphology 

shifted with time.  With increasing time, for example topographic features became smoothed 

most likely as cytoskeletal structures from the adherent state reorganized.   These changes were 

accompanied by a measured shift in deformability.  For example HeLa cell deformability 

increased over a period of several hours.  Over shorter time periods of minutes only small 

changes in deformability were observed (Supplemental Figure 3).  We accounted for the time 

dependence by maintaining a uniform measurement time after bringing cells in suspension, such 

that measurements of the same cell line (e.g. MCF7) harvested on different days were not 

statistically different (Supplemental Figure 3).   
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Microscopy 

 Cells in flow were magnified with a 10x objective (Nikon Japan 10x/0.30) on a Nikon 

Eclipse Ti inverted microscope.  A digital high-speed video camera, Phantom v7.3 (Vision 

Research, Inc. ,Wayne, New Jersey, USA), was connected to the microscope via a c-mount for 

image capture.  Camera settings were controlled with Phantom Camera Control (Vision 

Research, Inc.).  The frame rate of the camera is limited by the chosen pixel resolution.  256x32 

pixels was use.  The resulting frame rate was 142,857 per second.  The minimum allowable 

exposure time, 1 μs, was used for both devices.  The device was aligned at the center of the field 

of view.  The aperture was half-closed to focus light and reduce scatter. Light intensity was 

adjusted to maximize the contrast between the cell walls and the exterior fluid.   

 

Data processing 

 A custom built script in Matlab v2009a (MathWorks, Natick, Massachusetts, USA), was 

used to automate image analysis, data collection, and post-processing analysis (Supplemental 

Figure 2).  When required, images were processed with Cine Viewer (Vision Research, Wayne, 

New Jersey, USA) and ImageJ (NIH) to increase contrast and assist the automated image 

analysis.  Image analysis is similar to previously published techniques2. Briefly, the image of a 

cell is mapped from polar to Cartesian coordinates and cell walls are determined by a custom 

algorithm.  This analysis provides a dataset of cell diameters at intervals of 2 degrees.  Analysis 

of each cell begins 4 frames prior to the extensional flow junction.  Upon entering the 

extensional flow junction, the lower cell velocity allows for 360˚ measurements of the cell 

diameter where deformability and circularity parameters are determined.  In post-processing the 
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deformability, circularity, and size biomarkers are collected.  The cell diameter measurement is 

determined as the minimum cell diameter at 90° ± 30° measured prior to the flow junction (the 

walls at 0° ± 30° cannot be visualized due to motion blur at the higher velocity experienced in 

this part of the channel).  The deformability parameter is determined by the ratio of the 

maximum diameter in the vertical direction at 90° ± 30° to the minimum diameter in the 

horizontal direction at 0° ± 30°.  Finally, the circularity parameter = (4πA/P2) is calculated where 

A is the area of the observed cell, and P is the perimeter of the cell (Figure 1).  These parameters 

are extracted for all frames where the whole cell is visible in the field-of-view, but we chose the 

maximum value as the representative value for plots and statistics.  Our code also collected a 

variety of statistics concerning cell speed as well as the number of frames cells resided in the 

extensional flow.  We used this data for quality control of device operation and rejected data in 

which the speed or time within the stretching flow were outside of our accepted normal range.  

Measurements of cells that had initial diameters greater than or equal to 28 μm are discarded as 

these cells are bigger than the smallest channel dimension and are deforming to fit through the 

channel.  Measurements of cells that had initial diameters that measured less than or equal to 5 

μm are also discarded as our confidence in these measurements is diminished by the limited 

number of pixels per cell at this size.  Lastly, measurements of cells are omitted when their initial 

diameters are greater than the third quartile plus 1.5 times the interquartile range or less than the 

first quartile minus 1.5 times the interquartile range, except for results in Figure 3. Scatter plots 

were constructed using the dscatter function available from the MATLAB File Exchange50.  
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Statistical analysis 

 All sample comparisons and determinations of statistical significance were performed 

using the Wilcoxon rank sum test in Matlab (equivalent to the Mann-Whitney U-test).  The 

deformability measure has a lower bound of one, and the circularity measure has an upper bound 

of one, thus measured populations are asymmetric, non-normally distributed, and using the 

Wilcoxon rank sum test is appropriate.  We also used R to train classification trees to recognize 

the differences between populations of cells based on various metrics: size, deformability, and 

circularity or intensity of fluorescently labeled molecular markers measured by flow 

cytometry51,52.  Classification was performed after an initial gating: flow cytometry data was 

gated by cell optical properties and relevant concentrations of molecular markers of cell death or 

pluripotency; deformability cytometry data was gated by the probability that a cell was part of 

the pure population (Supplemental Fig. 7).  We then evaluated these trees with the data and 

created sensitivity/specificity, receiver operating characteristic (ROC) curves, extracting the area 

under the curve.  All trees were constructed weighting the cost of false negatives four times 

greater than false positives. 

 

Cytoskeletal Staining 

 All samples were fixed with 4% formaldehyde for 7 minutes, followed by a 

permeabilization with 0.25% Triton X-100 (Sigma), and 1% bovine serum albumin (Sigma) for 

10 minutes.  The first staining solution contained rat-anti-α-tubulin primary (Novus Biologicals, 

CO, USA) with 3 mM magnesium chloride (Sigma), and 10mM EGTA for 3 hours at room 

temperature.  The second staining solution contained goat-anti-rat Alexa Fluor 568 secondary 
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(Molecular Probes), 800 nM DAPI, and 1.6U FITC-phalloidin in PBS for 3 hours at room 

temperature.  

 

Acknowledgements 

 We are grateful to the UCLA Statistics Consulting Center and Sophia Gkountela for 

helpful discussions. We are also grateful for computing services provided by the UCLA 

Academic Technology Services High Performance Computing group and the technical assistance 

of Prakashan Korambath and thank Hwee Ng, Mary Levin, Sean O'Byren, Christopher Johnson, 

Michael Cutidioc, and Amanda Cokhlin for preparing samples and technical assistance. Support 

for this project involved funds from the Eli and Edythe Broad Center of Regenerative Medicine 

and Stem Cell Research (ATC), the David and Lucile Packard Foundation Fellowship (DD) and 

a DARPA Young Faculty Award (DD). 



60 
 

Figures 

 

Figure 1. Principles of deformability cytometry. (A) A photograph of the microscope-mounted 

and fluid-coupled microfluidic deformability cytometry device. Only a single inlet is required. 

Scale bar is 25 mm. (B) A schematic of the microfluidic device (channel height = 28 μm) that 

focuses cells to the channel centerline before delivering them to the stretching extensional flow is 

shown. Cells can enter the extensional flow from both directions. (C) A schematic of the 

deformation of a cell delivered to the center of an extensional flow by being previously aligned 

at an inertial focusing position, Xeq is shown. (D) High speed microscopic images showing a 

focused cell entering the extensional flow region. Delivery and stretching occurs in less than 30 

μs. Scale bar is 40 μm. (E) Definitions of the shape parameters extracted from images are shown. 

(F) Density scatter plot of 9,740 size and deformability measurements of single human 

embryonic stem cells. 
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Figure 2. Mechanical measurements help distinguish populations of cells within blood and 

pleural fluids. (A) Density scatter plots of the size and deformability of untreated PBMCs and 

PBMCs stimulated with 12F6 or PHA. (B) Density scatter plots of the size and deformability of 

untreated granulocytes and granulocytes stimulated with fMLP. (C) Locations of cell populations 

found in pleural fluids on a size-deformability map: (1) Non-Activated Leukocytes, (2) Non-

Activated Leukocytes, (3) Activated Mononuclear Cells, (4) Mesothelial Cells, (5) Suspicious 

Cells. (D) Density scatter plot of the size and deformability of cells within pleural fluid of a 

patient diagnosed negative for carcinoma (left) and typical cell blocks and smears for this 

diagnosis. (E) Density scatter plot of the size and deformability of cells within pleural fluid of a 

patient diagnosed negative for carcinoma but with chronic inflammation (left) and typical cell 

blocks and smears for this diagnosis. (F) Density scatter plot of the size and deformability of 

cells within pleural fluid of a patient diagnosed negative for carcinoma but with acute 
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inflammation (left) and typical cell blocks and smears for this diagnosis. (G) Density scatter plot 

of the size and deformability of cells within pleural fluid of a patient diagnosed positive for 

carcinoma (left) and typical cell blocks and smears for this diagnosis. 
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Figure 3. Increased deformability is correlated with increased pluripotency. (A) Density scatter 

plots of the size and deformability of undifferentiated mESCs, and mESCs differentiated by 

embryoid body (EB) and adherent methods. (B) Cell extracts from undifferentiated day 0 and 

differentiated day 6 (EB) and day 7 (adherent) mESCs were analyzed for Oct4 protein 

expression. Decreased Oct4 protein in differentiated mESCs was confirmed by Western blot 

analysis with anti-actin antibodies as a loading control. (C) Median and Semi Interquartile 

Deviation (SID) statistics of mESC measurements in part a; * Wilcoxon ranked sum, p<0.001. 

(D) Density scatter plots of the size and deformability of undifferentiated hESCs, and hESCs 

differentiated adherently for 9 days and 14 days. (E) Differentiation of hESCs is accompanied by 

reduced expression of SSEA4 and TRA1-60, although significant overlap is observed between 

populations. (F) Decreased Oct4 protein in differentiated hESCs was confirmed by Western blot 
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analysis with anti-actin antibodies as a loading control. (G) Differentiation of hESCs was also 

confirmed by an absence of staining by alkaline phosphatase (AP). (H) Median and Semi 

Interquartile Deviation (SID) statistics of hESC measurements in part a; * Wilcoxon ranked sum, 

p<0.001. 



65 
 

 

Figure 4. Effects of individual cytoskeletal components on whole cell deformability. (A) Density 

scatter plots of the initial diameter and deformability of untreated NIH 3T3 cells (control), 3T3 

cells treated with latrunculin A, nocodazole, sphingosylphosphorylcholine, and blebbistatin for 2 

hours. (B) Median and Semi Interquartile Deviation (SID) statistics of untreated 3T3 cells and 

3T3 cells treated with different concentrations of one of four compounds for 2 hours (error bars 

are SID). “Drug-induced substrate release” indicates that cells detached from the substrate into 

suspension before the 2 hour treatment period elapsed. 
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Supporting Figures  

 

Supplemental Figure 1. Tuning of deformability measurements with flow rate.  (A)  The 

deformability of undifferentiated and differentiated hESCs increases with flow rate, but analysis 

at too low or high flow rates result in inconsistent measurements (i.e. higher SIDs).  (B)  The 

cells exhibit non-uniform trajectories at low flow rates resulting in non-uniform mechanical 

stretching (left – notice the larger scatter over the deformability axis).  At high flow rates the 

cells can be stretched beyond the imaging window resulting in saturation of the measurement 

(right).  In an optimal range of flow rates the cells reach the center of the extensional flow where 

they deform a non-saturating amount. 
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Supplemental Figure 2.  Schematic of the automated image processing conducted to obtain and 

analyze cell deformability biomarkers.  A custom MATLAB image analysis script performs 

image processing and data collection on each 1.8 second experiment totaling 260,000 frames, 

with expected individual measures for 1,000 to 5,000 cells.  Preprocessing image filters are used 

to enhance cell identification by adjusting contrast, gamma, brightness, and using Fourier space 

filtering techniques.  To collect data, a fixed field-of-view is positioned in the pre-junction area.  

When a cell enters this field-of-view, a centering algorithm identifies the cell center based on the 

cell position, shape, and local intensities.  Once the cell center has been identified, the field-of-

view is cropped and resized 10X to increase the accuracy of measurements to sub-pixel 

resolution.  The image is then mapped from a polar to Cartesian coordinate system.  The cell 

walls are found by examining changes in the intensity derivatives, and diameters are extracted 
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every 4°.  The tracking algorithm then proceeds to the next frame to continue measurements until 

the cell leaves the deformation inducing extensional-flow region. After data collection the 

analysis of the parameters: initial diameter, deformability, and circularity is performed.  By 

taking the initial diameter measurement from the vertical axis, noise due to blur attributed to high 

velocities in the horizontal direction is prevented.  As the cell enters the extensional-flow region 

and changes trajectory the deformability and circularity parameters are measured.  The dataset is 

then plotted as a 2D scatter for visual interpretation and/or tested in classification and regression 

tree analysis to determine cell type or establish cell type-specific deformability biomarker 

characteristics for future classification. 
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Supplemental Figure 3.  Time dependence of the deformability measurement for adherent cell 

lines.  Over short time scales (minutes), hESCs generally have little change in deformability but 

tend to be slightly less deformable (left).  Over longer time scales (hours), HeLa cells become 

more deformable over time (center).  MCF7 cells from different cultures were harvested and 

measured resulting in no statistical difference in median deformability when measured at a 

similar time after being brought into solution (right; p=0.22). 
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Supplemental Figure 4. Deformation measurements for model systems. (A)  The deformability of 

surfactant-stabilized, oil-in-water emulsions depends on the viscosity of the silicone oil 

component and the initial diameter of emulsions before deformation (i.e. less viscous droplets 

deform more).  Two parameters, Capillary number, the ratio of viscous vs. interfacial stresses, 

and the viscosity ratio, λ, can affect deformability.  Here µo and Capillary number are kept 

constant for all experiments27, but we vary λ = µi/µo, the ratio of inner to outer viscosity to 

determine the effect on deformability.  Below λ = 0.8 the device fails to distinguish between 

viscosities.  Larger droplets are also more deformable.  (B)  Deformability of polystyrene 

microspheres.  The median deformability is 1.09.  This systematic shift above 1 can be attributed 
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to a 1 μs exposure blur in the direction of particle motion and does not affect our relative 

measurements with cells.  (C)  Chemical cross-linking of proteins increased the stiffness of HeLa 

cells.  Note, the flow rate here is lower (900 µL/min) than used to deform HeLa treated with 

cytoskeleton-acting drugs. 
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Supplemental Figure 5. Pleural fluid diagnostic classification protocol. (A) An initial gating by 

diameter and deformability is performed. The composite scatter profiles are depicted and gated 

cell percentages displayed. (B) When greater than 1% of a patient’s cells lie within the initial 

gate the patient’s profile is compared to a standard (composite) inflammation profile within the 

initial diameter range where deformability is especially dynamic. A root-mean-square error 

(RMSE) is calculated. If the RMSE is greater than 0.2, the profile is regarded as substantially 

different from the inflammation cases which we have observed and is classified as malignant.
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Supplemental Figure 6.  Composition of hESC cultures. Mouse embryonic fibroblasts (MEFs) 

make up a small less deformable subpopulation in hESC cultures. 
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Supplemental Figure 7.  Decision trees for classifying single hESC cells by their degree of 

differentiation (day 0 versus day 9 (deformability cytometry) or day 14 (flow cytometry).  (A)  

Initial probabilistic gating of deformability cytometry data to define populations.  (B)  

Algorithmically generated decision tree to classify unknown cells by their deformability, size 

and circularity, pruned to limit false negatives (especially dangerous in the application of stem 

cell quality control).  (C)  Density scatter plot of true positives (TP) and true negatives (TN) 

classified by the deformability cytometry-derived decision tree.  (D)  Density scatter plot of false 

positives (FP) and false negatives (FN) classified by the deformability cytometry-derived 

decision tree.  (E)  Initial gating of flow cytometry data by optical properties (FSC-A) and 

viability (Comp-7AAD-A).  (F)  Algorithmically generated decision tree to classify unknown 

cells by the concentration of surface pluripotency markers, pruned to limit false negatives.  (G)  

Density scatter plot of true positives (TP) and true negatives (TN) classified by the flow 

cytometry-derived decision tree.  (H)  Density scatter plot of false positives (FP) and false 
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negatives (FN) classified by the flow cytometry-derived decision tree.  (i)  Classification 

accuracy statistics. 
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Supplemental Figure 8.  Effects of individual cytoskeletal components on whole cell 

deformability.  (A)  Density scatter plots of the size and deformability of untreated HeLa cells 

(control), HeLa cells treated with latrunculin A, and HeLa cells treated with nocodazole.  (B)  

Fluorescently stained DNA (DAPI), tubulin (TRITC) and F-actin (FITC) in adhered, untreated 

HeLa cells (control), HeLa cells treated with latrunculin A, and HeLa cells treated with 

nocodazole.  The depolymerization of actin stress fibers (left arrow) resulting in the loss of 

filaments (indicated by arrow at the center) results in a slighly increased median deformability, 

while actin reorganization (indicated by arrow at right) in cells with depolymerized microtubules 

did not statistically alter median deformability, but leads to a smaller population with lower 

deformability.  Scale bar is 50 μm.  (C)  Median and Semi Interquartile Deviation (SID) statistics 

of untreated and treated HeLa measurements in part a; * Wilcoxon ranked sum, p<0.001. 
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Supplemental Figure 9.  Inactivation of myosin II with blebbistatin in HeLa cells.  Density 

scatter plots of the size and deformability of untreated HeLa cells (control) and HeLa cells 

treated with 5 μM of blebbistatin.  * Wilcoxon ranked sum, p<0.001. 
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Patient # Cytology Results 
Deformability 

cytometry 

  Inflammation Malignancy Origin 
Predicted 
Diagnosis 

1 Acute N N 
2 Acute N N 
3 Acute N N 
4 Acute N N 
5 Acute N N 
6 Acute N N 
7 Acute N N 
8 Chronic N N 
9 Chronic N N 
10 Chronic N N 
11 Chronic N N 
12 Chronic N N 
13 Chronic N N 
14 Chronic N N 
15 Chronic N N 
16 Chronic N N 
17 Chronic N M* 
18 Chronic N M* 
19 Mixed N N 
20 - N N 
21 - N N 
22 - N N 
23 - N N 
24 - N N 
25 - N N 
26 - N N 
27 - N N 
28 - N N 
29 - N N 
30 - N N 
31 - N N 
32 - N N 
33 - N N 
34 - N M* 
35 - N M* 
36 - N M* 
37 Chronic M-Gastrointestinal M 
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38 - M-Breast M 
39 - M-Ovary M 
40 - M-Ovary, Lung N* 
41 - M-Lung  M 
42 - M-Lung, Gastrointestinal M 
43 - M-Lung  M 
44 - M-Ovary M 
45 - M-Lung M 
46 - M-Pancreatic M 
47 - M-Mesothelioma M 

 

Supplemental Table 1. Summary of clinical outcomes and deformability cytometry predicted 

outcomes for pleural effusion samples (N=47).  Analysis by the cytology lab yields inflammation 

state (acute, chronic, and mixed) and the presence of malignancy (N-Negative, M-

Malignancy)—the originating source listed.  Based on initial diameter and size gating and RMSE 

analysis pleural fluids are predicted to be negative or positive for malignancy.  A 91% sensitivity 

and 86% specificity was achieved. The * indicator marks incorrectly diagnosed samples.
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Chapter 4 

Strategies for Implementing Hardware Assisted High-Throughput Image Analysis 

 

The mechano phenotyping platform developed in the previous chapter enabled high-

throughput mechanical measurements of cells via high-speed imaging. One of the major 

challenges of the system lie in the data processing burden due to the rate of data capture 

(>140,000 fps). In order to develop a robust platform applicable for general research and in 

clinical settings, new process efficient image analysis algorithms are needed. The analysis and 

development of these algorithms are explored here.  

Imaging is ubiquitous in industrial processing, medicine, environmental science, and cell 

biology. Given the diverse modes of imaging that exist, an image can contain a wealth of 

information about an object. Process quality control in semiconductor manufacturing and particle 

synthesis uses a number of spatial metrics from images from scanning electron microscopy 

(SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), and optical 

microscopy1,2. Imaging tools including positron emission tomography (PET), X-ray, magnetic 

resonance imaging (MRI) and computed tomography (CT) are widely used in medicine for 

diagnostic and prognostic purposes. Ocean and waterway monitoring, a critical charge of 

environmental science, can be performed with high-speed camera-coupled flow cytometry 

whereby the diversity and density of microscopic organisms, key indicators of ecosystem health, 

can be identified3,4. In cell biology, for example, cell size, morphology, and location can be 

extracted from bright-field or phase-contrast images. And, the presence or location of 

biomolecules within cells can be obtained from fluorescence images of chemically labeled 

cells—which has recently been implemented with automated fluid handling and imagers for high 
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content analysis5. As technology improves, imaging rates and resolution increase and the cost of 

acquiring image sets decreases but this can burden the end user or associated analysis or sorting 

systems with large image backlogs. Ultimately, both extreme high-speed bright-field imaging 

and high-content analysis systems based on fluorescence imaging now have the propensity to 

generate truly massive image-based datasets and will require a method to accommodate the time-

requirements of the user or system (e.g. real-time results will be required for cell sorting in 

medicine and cell biology). Only if automated image analysis can extract useful information and 

operate at meaningful rates will emerging image-based technologies find utility. 

There are numerous applications where images have several advantages over other types 

of signal outputs and are often the preferred method of analysis.  Qualitatively, images are most 

effective in conveying certain types of messages.  They may also confer some measureable 

advantages.  For example, flow cytometry measures scattered light to assess cell size and 

granularity, but theses values are only relative6.  Analysis of microscopic images, on the other 

hand, yields an exact value of size.  Image analysis can also be used to distinguish between cells, 

debris, and clusters of cells where flow cytometry would yield erroneous results.  Spectroscopic 

readings of biochemically labeled cells in microtiter plates lack the sensitivity to detect to rare 

cell populations7 and can vary greatly with cell seeding density.  In contrast, high-throughput 

automated microscopy coupled with automated image analysis can be used to identify and 

measure properties of single-cells with multiple spectra, high spatial and temporal resolution for 

measuring dynamic processes, and with high bit depth.  This is a powerful tool for studying 

complex biological pathways or measuring heterogeneous response to stimuli.  Further, new 

tools are being introduced to take images of cells in flow.  High-speed CMOS cameras, with high 

frame rates, fast shutter speeds, and high sensitivities, have recently enabled novel studies of 
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highly dynamic events such as bubble rupture and microscale phenomena in particle-laden flow8–

11.  Other recent advances in computing, optics, and electronics have enabled imaging flow 

cytometry.  This technology has shared roots in flow cytometry and microscopy, and can be 

applied to problems which would traditionally require multiple pieces of equipment and users 

trained in both.  The ImageStream® system (Amnis Corporation, Seattle, WA) acquires 

multispectral/multimodal images at a rate of 1000 cells per second with sufficient resolution to 

extract features such as fluorescence intensity, morphology, and signal localization12.  It will be a 

useful tool for complex problems such as detecting tumor cells in body fluids and studying 

hematopoietic cells12,13. 

Cell morphology has been studied extensively and is a clinically useful biomarker for 

several diseases. In this paper, a high-throughput imaging cytometry system examines 

morphological features of cells. The dramatic morphological change that occurs following 

stimulation of granulocytes is one example where imaging cytometry will be useful (Fig. 1). The 

Amnis ImageStream system has been used to characterize morphological changes associated 

with the maturation processes of erythroid cells; traditional biomolecular labels were correlated 

with morphological changes in size, shape, texture, and nucleus to cytoplasm ratios13. 

Additionally, multispectral imaging flow cytometry has been used for the identification of 

morphological changes such as ruffle formations on HIV-1 infection T-cells14. In the clinic, cell 

blocks and smears are scrutinized for cells with shape and size characteristics that are indicative 

of infections and cancer. These examples illustrate the importance of image analysis of 

morphology. However, the current stage of morphological analysis relegates it to the role of cell 

classification, while biochemical biomarkers are used for critical applications in cell sorting. The 

ability to sort cells (requiring real-time measurement and analysis) would greatly enhance the 
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utility of morphology, and this ability will only be obtained by improvements to image analysis 

algorithms and processes.  

However, these new technologies introduce challenges, especially in image processing 

and informatics15.  Images can be very complex signals, with blurring occurring if an object’s 

motion is faster than the shutter speed of the camera, and nonuniform illumination in wide field-

of-view images.  Filtering, measuring, tracking, and fitting data from, for example, 3D confocal 

images16 to complex multivariable models requires lengthy computation.  Further, imaging flow 

cytometry and high speed microscopy can produce thousands of images per second.  The 

qualities of these images (multispectral, high spatial and temporal resolution, and high bit depth) 

make the files tremendously large15 adding to computational requirements.  In general, these 

technologies require offline image analysis.  Gradually, increased computing power will increase 

image analysis speed and methods such as cloud computing image analysis17 will help share 

computing power with users on demand.  But, for these technologies to be immediately 

accessible a new strategy which enhances the efficiency of image analysis algorithms is required. 

Here we present a high-throughput image analysis strategy for a bright-field flow 

cytometry application with an image acquisition rate of over 140,000 frames per second.  

Analysis of bright-field images is in some respects more difficult than fluorescence images 

because of the more complex variation in intensities that are observed, such that our described 

strategies should also be compatible with fluorescence-based or other image sets. We first 

examine bottlenecks in the original detection and analysis algorithm, then design an alternative, 

less computationally demanding filtering algorithm, put in place a new detection strategy, and 

implement the algorithm on a graphical processing unit (GPU). Realization of real-time or near 

real-time analysis will enable systems like this one to be clinically relevant. The strategy which 
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we describe here should be considered for future implementations of high-speed image analysis 

in hardware. 

 

Algorithm Description 

Image enhancement and cell detection method 

 The automated analysis script was built in MATLAB v2009a (MathWorks, Natick, 

Massachusetts). The algorithm examines high-speed brightfield microscopic images (208 x 32 

pixels x 142,857 frames/second) of cells in a high-throughput flow-through system. The 

algorithm (1) performs image adjustments, (2) detects the presence of an object, (3) tracks its 

motion, and (4) performs a measurement of morphology.  The analysis is implemented frame-by-

frame at a FOV of 23 x 20 pixels at an upstream location. The cell image signature is enhanced 

by bottom-hat filtering, which highlights intensity differences in a local area to allow for 

diameter measurement extractions. When a cell is detected in the first FOV the morphological 

analysis algorithm extracts morphological features. The same cell is then tracked downstream to 

examine changes in morphology. Analysis continues by moving the FOV downstream stepwise 

until the cell is within the FOV. Analysis continues until the cell is tracked out of the field. The 

FOV resets to the upstream location to detect the next cell. 

 

Morphological analysis routine 

 Upon detection of a cell in the FOV, the image is interpolated and resized by 10x (230 x 

200 pixels) to enhance the accuracy of centroid analysis and the extraction of morphological 

features of interest: area, diameter, and topography. The centroid method examines the bottom-

hat filtered image using a 70 pixel disk (the expected average cell size) to locate the centroid 
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followed by a polar to Cartesian transformation. The cell walls are highlighted by locating the 

local maximums in pixel intensity (Fig. 2). Final data outputs are radius measurements at 

intervals of 4˚ per cell at each frame.  

 

Hardware Acceleration 

Recent work in hardware-assisted image analysis acceleration platforms have been 

implemented for various high-throughput applications18. In this section, first, we discuss 

acceleration platform modalities suited for high-throughput image analysis and their advantages 

and disadvantages. However, to fully utilize these hardware platforms for image analysis of cells 

or particles, the underlying algorithms for (1) image enhancement, (2) detection, (2) tracking, 

and (3) morphological analysis must be optimized for the specific platform. A systematic review 

of algorithm bottlenecks in the MATLAB-based CPU-run algorithms is first performed and 

algorithm components with the most intensive computing requirements are redesigned to 

optimize performance for GPU implementation. Finally, we compare the performance 

enhancements obtained with the GPU over the CPU algorithm. 

 

Hardware-assisted image analysis acceleration platforms 

 Graphical processing units (GPUs) provide a high performance, low cost platform for 

hardware-assisted image analysis.  GPUs employ a task parallel architecture that is primarily 

targeted towards accelerating graphics applications.  However, they are being used more widely 

across other domains including databases19, weather forecasting20 and cryptography21.  They are 

also broadly utilized in digital image processing and the medical imaging field22–24.  GPUs utilize 

a pipeline designed for efficient independent processing of data, and multiple pipelines are used 
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to exploit task level parallelism. GPUs outperform the CPUs by one to two orders of magnitude.  

They tend to perform well on highly parallel applications with limited number of memory 

accesses.  Furthermore, they are ill-suited for applications with substantial amount of control 

flow, e.g., branching and looping.  GPUs are programmed using custom languages and APIs; for 

example, the compute unified device architecture (CUDA) is an extension of the C programming 

language developed by NVIDIA for programming their GPUs.  This and other GPU 

programming languages work using a stream model of computation where the application is 

divided into a set of parallel threads which explicitly defines parallelism and communication.  

Field-programmable gate arrays (FPGAs) are another option for hardware acceleration which is 

also used in a wide variety of applications. FPGAs use fine-grained programmable logic 

elements that implement basic Boolean logic functions (e.g., AND, OR, XOR).  This creates the 

opportunity for substantial customization leading to significant performance increases over both 

CPUs and GPUs.  As a concrete example, an FPGA implementation of the Viola-Jones object 

detection algorithm is about four times faster and uses an order of magnitude less power than the 

same algorithm running on a GPU25. The high degree of customization afforded by FPGAs is 

both a blessing and a curse. It provides great flexibility in terms of the design of an application, 

yet it substantially increases the programming complexity. FPGA design tools require a 

significant amount of hardware design expertise. These design environments are a far cry from 

those used to program microcontrollers, microprocessors, digital signal processors and even 

GPUs. Therefore, the fundamental tradeoff when using an FPGA boils down to the need for high 

performance versus the ease of development.  

In summary, FPGAs are typically the best option to create a high performance hardware 

accelerator. However, GPUs tend to be easier to program and more readily allow for 
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experimentation in parallelized algorithm design.  Our initial analysis presented in the remainder 

of this article was done on GPUs due to reduced development complexity. The transition to 

FPGA implementation will build upon the work here emphasizing the design of novel efficient 

parallelization routines.  

 

Bottleneck Analysis  

To identify components of the algorithm that were most computationally intensive we 

used MATLAB v2009a and its profiler to obtain the run-times of three parts of the algorithm: 

image filter for image enhancement, morphological analysis, and other minor operations 

(detection and tracking). The run-time associated for each parts breaks down to 33.02%, 59.55%, 

and 7.42%, respectively. These results show that the image filter and morphological analysis 

constitute the majority of computing demands. Therefore, we focused on accelerating these two 

parts of the algorithms on the GPU platform. 

These two computationally-intensive algorithms are naturally suitable for GPU 

parallelization since they call on high repetition of the same operations. For both image filter and 

morphological analysis, the algorithm can be divided into many identical operations (e.g., (1) 

local search operations that find minimum values; (2) repetition of simple transformation 

algebraic expressions). In a serial CPU program, these operations execute sequentially on the 

pixels. Since these operations execute the same computation on similar data types and without 

data dependency (e.g., one operation does not affect the others in a sequence), the image filter 

and morphological analysis algorithms can be implemented with GPUs very well and significant 

speedups can be expected. 
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Algorithm Modification   

The architecture of GPUs and CPUs are significantly different in terms of thread 

scheduling26 and on-chip memory27. If the CUDA program has inefficient thread scheduling or 

memory access, GPU platforms will be no better than CPUs. This fact makes it necessary to 

modify algorithms for efficiency and minimal memory access before implementing it with 

GPUs. 

In the image filter algorithm, the computing usage is dominated by image adjustment techniques. 

The main filtering algorithm is the bottom-hat filter which employs dilation and erosion 

operations. These two operations use a mask to search either for maximum or minimum values, 

respectively, in a local area of the image. The pixel corresponding to the center of the mask is 

replaced by the maximum or minimum value that is found in the local area28. In the algorithm, 

the mask used is a disk area with an area of 16,357 pixels. This large size is required to ensure 

higher fidelity in the centroid analysis process. In the dilation and erosion operations, updating 

every pixel requires a maximum or minimum value search among all 16,357 elements at each 

pixel of the FOV. Resulting in over 46,000 calls per image (FOV: 230 x 200 pixels).  

In the conventional dilation and erosion operations each mask area shares an overlapping region 

with the next mask. In order to minimize re-searching of these sections, we developed the “grid 

method” which organizes the image on to a grid system then re-uses the minimum or maximum 

search result of this common area by recording minima and maxima of each grid (Fig. 3). The 

pixels on the eroded or dilated image are then replaced by the corresponding value among the 

local minima or maxima in each grid. Further adjustments are possible by tuning the grid size to 

manage computing load for balancing resolution and efficiency. For a grid size of 40X40, the 
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minimum or maximum search operation for each image will be 16 elements instead of 16,357 

elements.  

In the morphological analysis algorithm the morphological features of the cell (e.g. 

diameters) are extracted to characterize the shape of the cell.  The main operation of this 

algorithm is a centroid analysis of the cell to establish the origin for a polar to Cartesian 

coordinate transformation. The mapped image is then examined by a threshold analysis to outline 

cell walls and output the diameter at intervals of θ. In this original state, the algorithm is not 

suitable for GPU implementation for two reasons: (1) the centroid defined at each iteration is not 

located at the coordinate origin, thus creating scheduling inefficiencies for each GPU thread; and 

(2) the polar and Cartesian coordinate systems have different memory storage patterns which 

increase the memory access latency thus limiting run-time speedups (Fig. 4A). 

To address these parallelization limitations, we made adjustments to both the centroid algorithm 

and data storage and access strategies. First, upon finding the centroid, the image is adjusted such 

that the centroid coordinate is also the origin of the polar coordinate (Fig. 5). Since the 

transformation from (r, θ)  (x, y) are the same for all frames, the computation load for each 

GPU thread is predictable making it possible to assign threads efficiently in the GPU 

programming model. We next changed the memory storage and access strategy (Fig. 4B). 

Instead of searching along all possible (r, θ) values, the new method accesses a (r, θ)  (x, y) 

look-up-table (LUT) memory to find a corresponding pixel in the polar coordinate instead of 

algebraically converting the entire image into a Cartesian coordinate system. This strategy will 

result in quicker access times for mapping (r, θ)  (x, y). 
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GPU Programming Model 

The GPU program for the grid method bottom-hat filter consists of two modules: (1) 

erosion and (2) dilation. These two modules are very similar to each other erosion being a search 

for minimum values and dilation being a search for maximum values. Otherwise the GPU 

programming models are the same for both modules. Here we describe the GPU programming 

model for erosion.  

The grid erosion algorithm consists of two phases: (1) finding a local minimum for each 

grid and (2) replacing the pixel on the erosion image with the minimum value among the local 

minimums of all grids inside or intersecting with the disk mask. The GPU grid erosion program 

model can parallelize these two phases using two kernels (Fig. 6). In the first kernel, we assigned 

a thread to each grid. The thread executes the local minimum value searching for the 

correspondent grid. In the second kernel, we assigned a thread to each pixel that is to be updated. 

The thread searches for the minimum value among the local minimums found in the first phase. 

The morphological analysis GPU programming model utilizes a parallel threading 

scheme. Each thread is scheduled to operate at a defined θ, for the (r,θ)  (x,y) transformation. 

Further parallelization can be achieved by a reduction GPU thread arrangement. However this 

method requires a uniform image size between sequential frames. The reduction method is not 

implementable for this version of the program, but in future revisions this process will aid in 

decreasing run-times. At this state we have kept the minimum gray-scale pixel searching as a 

serial process within each GPU thread (Fig. 4B). 
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Results 

Image filter algorithm optimization using the grid erosion bottom-hat method results in 

distortion at the peripheries of the image (Fig. 7A). The interior of the image displays minimal 

differences against the conventional bottom-hat method (Fig. 7B). Error analysis of the grid 

erosion method highlights the top-left corner in the final bottom-hat image with higher error 

when comparing between the grid method and conventional method. This artifact is due in part 

to the grid erosion disk mask starting the grid analysis method at the upper left corner. These 

errors are compounded with the dilation operation to produce the high local error in final filter 

output. The final total error of the top left region is approximately 30% difference compared to 

the conventional method. Additionally, by using the grid method, high local intensity variations 

are completely smoothed out. These errors are not expected to interfere significantly with final 

morphological output as morphological analysis routine utilizes maxima threshold rules to 

extract diameter measurements. However, one can decrease the filtering error by adjusting to a 

smaller grid size. 

Lastly, we compared the optimized image filter and morphological algorithm for GPU 

processing to the native CPU code. The testing was done on a 64-bit Intel Core i7 1.60GHz 

machine with 6GB RAM and Nvidia GT230M GPU.  Our first benchmark compared the 

conventional bottom-hat filter against the grid method. The grid method bottom-hat filter 

algorithm resulted in a 2.15X speedup against the baseline algorithm (Fig. 8). When this is 

implemented on GPU hardware, we see a total decrease of 8.54x speedup.  

The morphological analysis algorithm when modified with the transformation LUT also 

decreased the run-time dramatically. When compared to the original method without coordinate 

correction and the use of the transformation LUT, there is a 2.88x decrease in run-time on a 
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CPU, and when implemented on GPU there is a 55.64x decrease in run-time. As discussed in the 

previous section, we can expect further decreases in run-time as we adjust the degree of batch 

image processes. Determining the optimal batch rate is an on-going investigation.   

 

Conclusion 

In our approach to hardware-assisted high-throughput image analysis, we have shown 

that through improvements to algorithm design, execution of data management shortcuts, and 

optimization of image filters for implementation in parallelization schemes, the computational 

requirements for image analysis routines can be diminished dramatically. To date, the 

combination of improvements to the cell morphology analysis algorithm and the initial 

implementation of the GPU have resulted in a combined 20.30x run-time improvement. 

However, to achieve real-time analysis capabilities work remains to further improve the 

algorithms and eventually transition from a GPU to an FPGA, which often imparts an additional 

speedup which will ultimately be necessary to elicit wider adoption of biomedical technologies 

which require computationally demanding image analysis. 
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Figures 

 

Figure 1. An example of cellular morphology differences due to cell states. High-speed 

microscopic images of a granulocyte (left) and a granulocyte activated by a chemical treatment 

(right) with associated measure of circularity as a characterization of the morphological 

differences of each cell. 
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Figure 2. Automated cell tracking and analysis algorithm framework. The raw video frame is 

first contrast enhanced by the image filter algorithm, and the cell detection algorithm examines 

the field-of-view (FOV) (in red) for presence of a cell. When a cell is located in the FOV, the 

frame is cropped and resized by 10x. The morphological analysis algorithm starts by performing 

centroid analysis to determine origin of the polar to Cartesian coordinate transformation. The 

diameters are then extracted from the mapped image. The analysis is then iterated on the 

remaining cell image series until the FOV tracks out of frame. 
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Figure 3. The grid method filter algorithm. The image is divided into several grids and each grid 

is analyzed for the local minimums or maximums (dots). For each pixel of the erosion or dilated 

image, the pixel value is determined by searching the grid for local minimums and maximums, 

respectively, within the disk mask. 
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Figure 4. (A) Original morphological analysis algorithm. (B) Modified morphological analysis 

algorithm where a LUT lowers computation demands for the (r, θ)  (x, y) transformation. 

Additionally, memory access is reduced as the polar coordinate image is not used. 
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Figure 5. Re-centering FOV prior to coordinate transformation. (A) In the original algorithm, the 

cell center is not at the coordinate origin, thus requiring computing time to map each unique 

coordinate for the polar to Cartesian transformation from the (a,b) origin. (B) When a re-

cropping event for a new FOV based on the centroid location, this enables the use of the (r, θ)  

(x, y) transformation look-up-tables per mapping event.  
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Figure 6. GPU programming model for grid erosion algorithm. In kernel 1, the local minimum 

(dots) search operations are executed in parallel by assigning each grid to a thread. In kernel 2, 

the eroded pixel value is found in parallel by assigning each disk to a thread. 
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Figure 7. Results of bottom-hat filter using the grid erosion method. (A) Visual comparison of 

the gray scale images of original bottom-hat filtered image (middle) versus the grid erosion 

method bottom-hat filtered image (right). (B) Error analysis of the grid erosion bottom-hat filter 

method against the naïve bottom-hat filter method illustrating that the highest errors are along the 

edges of the image, while interior pixels values are conserved. 
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Figure 8. Run-time improvements against baseline algorithm. The grid erosion (GE) routine for 

the bottom-hat filter method achieves a 2.15x run-time improvement on a CPU, and an 8.54x 

run-time improvement when implemented on a GPU. The coordinate transformation look-up-

table (LUT) routine achieves a 2.88x run-time improvement on a CPU, and a 55.64x run-time 

improvement when implemented on a GPU. 
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Chapter 5 

Mechano Phenotyping for the Diagnosis of Malignant Pleural Effusions 

 

The utility of mechanical biomarkers for cancer diagnostics was briefly explored in 

Chapter 3 with promising results. Now coupled with increased robustness attributed to the 

improvements in data processing (chapter 4), the work here extends the deformability cytometry 

platform for the application of diagnosing malignant pleural effusions.  

Pleural effusions are valuable sources of diagnostic information. In a healthy individual 

the amount of pleural fluid (PF) is between 7 and 16 mL of acellular liquid, however systemic 

imbalances and disease may lead to an abnormal accumulation fluid containing disseminated 

cells (up to 2L).1,2 As such pleural fluid samples can provide insight into patient health such as 

the status of infections, inflammatory processes, and malignant diseases. The process of 

thoracentesis, the procedure of removing pleural effusions, is performed to relieve patient 

discomfort in the chest cavity and to provide clinicians a fluid biopsy to determine etiology.  

The examination of pleural effusions for malignancies in clinical settings relies on 

cytological analysis as the gold standard. The cytopathologist examines cells from cell smears 

and cell blocks and identifies features of cytoplasmic and nuclear morphology suggestive of 

malignancy. Clinical outcomes in diagnosis of malignant pleural effusions include: negative for 

malignant cells (NFMC), acute inflammation (AI), chronic/mixed inflammation (CMI), and 

malignant pleural fluid (MPF). Pathological analysis of each specimen spans minutes to tens of 

minutes depending on the complexity of the biological sample. Difficulties in morphological 

identification include “biological noise” arising from similar morphology of reactive mesothelial 

cells (cells derived from the mesothelium membrane) and a high density of leukocyte 
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populations, which both can mask possible epithelial or hematopoietic malignancies3,4. As such, 

the sensitivity for malignant pleural effusions spans a wide range between 40-90%.5 This 

variability is due to: 1) the source of the malignancy (e.g.,mesotheliomas: 4-77% sensitivity)6–8, 

2) paramalignancies where the volume of the sample analyzed on cell smears or blocks is unable 

to capture rare malignant subpopulations within the field-of-view, 3) specimen quality 

(cellularity) and number of specimens, and 4) experience of the cytopathologist.4,5 Due to these 

difficulties, conclusive diagnosis of pleural effusions often requires follow-up molecular-label-

assisted-techniques such as biochemical surface markers characteristic of disease phenotype 

using flow cytometry9–11 and immunohistochemistry12,13, disease specific genetic signatures by 

fluorescence in situ hybridization (FISH)12,14, as well as additional invasive follow-up biopsies to 

confer findings. However, even with these drawbacks, cytological analysis of pleural fluids is an 

attractive technique when considering the level of sensitivity and specificity relative to degree of 

time investment. 

Sample preparation of pleural effusions for cytological analysis involves numerous 

processing steps, staining reagents, pre-screening reads by cytotechnicians prior to the 

cytopathologist reading. Even while many of these protocols are now automated, sample 

preparation can take on the order of 1-2 hours in batch and still require some manual steps. The 

majority of pleural effusion samples are identified to be negative for malignancies (>80%). Thus 

a simple, quick, and automated pre-screening tool to identify high-risk patients would be greatly 

beneficial to maximize the use of available resources, reduce sample processing burdens, and 

decrease the time to final diagnosis for treatment intervention.  

To achieve this benefit an approach with reduced labeling and sample preparation 

requirements would be ideal, avoiding time and cost associated with repeated solution exchange 



111 
 

operations and reduced need for follow-up reagents for conventional molecular biomarkers and 

stains. Label-free biomarkers, such as the mechanical properties of single cells or the 

mechanophenotype, have shown promise in clinical diagnostics. Label-free mechanophenotyping 

has shown that the mechanical properties of cancer cell lines drastically differ from their benign 

counterparts in a laboratory setting. While it has long been known that tumors are stiffer than 

neighboring healthy tissue15,16, it has recently been reported that individual cancer cells are 

softer, and this deformability may confer their ability to migrate through tissue. Several methods 

have been developed or adapted to probe mechanical properties of cells: atomic force 

microscopy (AFM)15,17,18, micropipette aspiration19,20, cell transit analysis21–25, microfluidic 

optical stretching16,26, and hydrodynamic forces27. Yet prior technology was limited to small 

clinical studies of a few cells from a few patients due to the technological complexity. One group 

has previously analyzed biophysical signatures of cells in PF. AFM analysis of malignant cells 

isolated from malignant pleural fluids demonstrated that these subpopulations are mechanically 

softer than the native cells.15 However, the technological complexity requiring user intervention 

to select morphologically malignant cells limits the systems throughput. Yet this initial work 

showing differences indeed exists in subpopulations of clinically relevant biological samples, 

gives this work precedent to further the applicability of biophysical markers as a diagnostic 

marker.   

In this study, we evaluate a technique previously developed and validated by our group – 

Deformability Cytometry (DC) 28– to measure mechanical properties of single cells in a high-

throughput manner (>1,000 cells/sec) towards the diagnoses of malignant pleural effusions (Fig. 

1). Briefly, the cells are accelerated upwards of 3 m/s, then rapidly decelerated by an opposing 

wall of fluid which causes the velocity of the cell to approach 0 m/s over a 200 μm distance with 
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a period of 100 μs. In this process the cells are subjected to fluid stress forces upwards of 1µN. 

Using the quantitative metrics of cell deformability (D - maximum ratio of major over minor axis 

over the whole deformation series) and initial size, 2D scatter plots are generated for analysis. 

Additionally, as this technique screens cells at throughputs comparable to flow cytometry, this 

high-throughput capacity enables quantitative population analysis of the biophysical 

characteristics. Analysis of subpopulation characteristics can then be correlated to the cytological 

diagnosis and final clinical outcome. DC is able to confer high correlation to cytology outcomes 

of negative for malignant cells (NFMC), acute inflammation (AI), chronic/mixed inflammation 

(CMI), and malignant pleural fluids (MPF).  This platform is similar in operation and analysis to 

conventional flow cytometry, but without the extensive sample preparation steps - each sample 

yielding high density quantitative profiles is processed within 5 minutes. In this study of 119 

patients, averaging over 3,000 single-cell measurements per patient, DC provides the advantages 

of both high cell counts per patient and large patient samples for confidence in sampling 

hetereogenous populations, and confidence in establishing common outcome profiles, 

respectively. The sensitivity and specificity of DC is promising as a label-free method used in a 

pre-screening role. As a complementary method to slide-based cytology and follow-up 

techniques, DC has the capabilities to dramatically increase diagnostic accuracy and decrease 

healthcare costs. 

 

 

 

 



113 
 

Results and Discussion 

Distinct deformability cytometry profiles correlated with separate clinical outcomes 

During cytological analysis of pleural effusions the cytopathologist analyzes slides 

prepared with cells from the effusions and notes morphological features including nuclear-to-

cytoplasmic ratio, nuclear shape, nucleation level, the density of nuclei (chromatin irregularity), 

the density of cytoplasm, cell-cell junctions, the shape of cytoplasmic and nuclear membranes, 

granules, cell cycle states (e.g., mitosis), cell size distribution, clustering of cells, and 

concentration of cells. With this information, the cytopathalogist identifies cell subpopulations 

which are representative of disease states. Previously we have observed biomechanical changes 

in vitro models of diseases typically manifesting in pleural fluids and thus expected to find 

correlations in clinical samples. We performed DC and cytological analysis on 119 patient 

samples. In order to correlate the two analysis methods we engaged in both bottom-up – isolating 

predominant subpopulations indicative of disease states and measuring them alone – and top-

down approaches – grouping DC datasets by cytological diagnosis and searching for similarities.  

In samples designated as negative for malignant cells (NFMC) – without confounding 

inflammatory diseases – by cytology, the cellular composition is predominately made up of non-

activated inflammatory cells and benign mesothelial cells. Comparative analysis of these samples 

by DC displays the major feature of a high density population with small size (<12 μm), rigid 

deformability (D<1.4), and with a minimal scattering in both size and deformability. 

Characteristic DC profiles of NFMC patients – patients 1-5 – are shown in Fig. 2. The median 

deformability of this main leukocyte population is 1.32 (n=21).  To confirm this population as 

leukocytes, isolated healthy donor leukocytes from peripheral blood were also measured and 

were found to have be predominantly small and rigid (Fig 2b).  Another feature of PF samples is 
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a large sized mesothelial subpopulation with a low deformability measure. For example in 

patient #4 the DC profile shows a significant population between 15 – 20 μm with a 

deformability <1.4. This population was confirmed by cytology findings to correspond to benign 

or reactive mesothelial cells. This feature appears in specimens with the reactive mesothelial 

(RM) cytology outcome. 

 In cases of infections, tissue inflammation (due to cirrhosis, kidney failure, heart failure), 

or leukemia, the PF is populated by increased numbers of leukocytes. Analysis for malignancy in 

cases where inflammation is also present are difficult by cell smears or cell blocks as dense 

leukocyte populations can obscure malignant cells of interest. Additionally, a high density of 

leukocytes indicates a possibility for leukemia. However, morphological analysis of leukemia 

cells is difficult, with sensitivities between 30-50%29,30, and relies heavily on flow cytometry as a 

follow-up procedure. Activated leukocytes in these samples pose a significant diagnostic 

management challenge. 

 Notably, leukocytes are shown to undergo drastic architectural changes in response to 

activation, with corresponding changes in mechanical properties.31,32 Activated neutrophils and 

lymphocytes undergo structural chromatin reorganization and decondensation potentially 

important for up-regulation of activation response pathways. The associated mechanical changes 

are also found in the mechanophenotype we measure. Deformability cytometry profiles for acute 

inflammation (AI) and chronic/mixed inflammation (CMI) samples both differ from NFMC 

profiles. Acute inflammation is a response to infections characterized by activation of the 

neutrophil population. Activated neutrophils are known to have cytoplasmic and nuclear shape 

changes resulting in globular nuclei and increased formation of lamellipodia which make it 

difficult to identify malignancies by conventional cell smears and cell blocks alone as features 
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mimics malignant phenotypes (Fig. 3B), thus requiring specific immuno-labels for confirming 

diagnoses. However, deformability cytometry analysis of these cases reveal a distinct profile that 

possesses a small (<12 μm) population with an increased subpopulation of highly deformable 

cells with mean proportion of cells above deformability of 1.6 to be 16.6%, which is ~12x higher 

when compared to NFMC outcomes (1.4%). The median deformability of AI specimens is 1.56 

(n=30). Characteristic DC profiles of AI patients – patients 6-10 – are shown in Fig. 3. This 

change from rigid non-activated leukocytes agrees with in vitro observations as neutrophils are 

activated by short incubation with tetradecanoyl-Phorbol-13-acetate (TPA) (Fig. 3C).  

 In CMI cases, mononuclear cells such as lymphocytes and macrophages can be the main 

cellular constituent of samples. An increase in size is a key indicator of lymphocyte activation. 

Additionally, activated cells have globular nuclei and undergo morphological changes such as 

increases in size. However, similar to AI cases, conventional cell smears and cell blocks have 

difficulty ruling out malignancy due to the CMI background (Fig. 4B) and frequently require 

follow-up procedures to confirm diagnoses. In DC profiles, CMI cases are observed to have a 

slightly larger size spanning 8 – 15 μm and a large distribution of deformability (D: 1.0 – 3.0). 

Pooling all CMI samples, the mean proportion of cell less than 12 μm and above a deformability 

of 1.6 is 24.7%, comparatively to NFMC and AI this is an 18x and 1.5x increase in region 

density, respectively. The median deformability in CMI specimens is 2.0 (n=39). Characteristic 

DC profiles of CMI patients – patients 11-15 – are shown in Fig. 4. In vitro activation of 

peripheral blood mononuclear cells by phytohemagglutinin (PHA) reveals profile features 

similar to those of samples with a CMI outcome (Fig. 4C).  
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 Deformability cytometry profile features accurately identify malignant pleural fluids 

 Malignant pleural fluid (MPF) typically contain a subpopulation of cells residing in the 

large (>17 μm) and highly deformable (D>1.4) upper right quadrant (Fig. 5). However, MPF 

cases are also diverse compared to NFMC, AI, and CMI cases. This may be due to the wide 

range of origins of malignancy that accumulate in the PF. The 17 MPF cases include breast 

adenocarcinoma (N=1), ovarian adenocarcinoma (N=3), mesothelioma (N=1), soft tissue 

sarcoma (N=1), pancreatic adenocarcinoma (N=1), non-small cell lung carcinoma (N=1), 

gastrointestinal carcinoma (N=7), lymphoma (N=1), and unknown origin (N=1). Interestingly, in 

a majority of these cases DC profiles indicated features of AI or CMI concurrently with an 

increased percentage of large and deformable cells, which are seldom noted in cytology 

diagnoses.  

 

 Algorithmic diagnosis using characteristic profile features 

 Using pooled DC profiles associated with each clinical outcome, unknown patient 

samples can be algorithmically analyzed and a DC-based diagnosis given based on unique 

statistically significant features. The quantification of cells within the large (>17 μm) and 

deformable (D: >1.4) quadrant across MPF samples spans 3% – 31% with a mean of 23%. In 

NFMC samples the analysis of the same quadrant spans 0% - 26% with a mean of 2%. Using this 

quadrant analysis alone, DC can achieve a sensitivity of 88% and a specificity of 71% by a 

simple gating threshold established by using the upper 95% confidence limit for the mean 

proportion of NFMC samples in this upper right region (6%) (Fig. 6A). To further increase the 

sensitivity of the assay, we examined the similarity of profile features to standard profiles of 

NFMC, AI, and CMI. Standard curves for each of the pooled outcomes are created by binning 
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size, and deformability at the cumulative sum threshold of the top 90% of bins describing the 

dataset then taking the median (Fig. 6B). Calculating the root mean squared error (RMSE) of 

individual profiles against each standard profile gives a metric of similarity to the non-malignant 

profile types. These metrics can also be used to further stratify cases for inflammatory profiles of 

acute or chronic/mixed inflammation. The detailed algorithm is described in the supplementary 

information. While DC could be implemented in the clinical workflow in various manners, 

diagnostic methods which possess high sensitivity can have a profound effect on efficiency. We 

propose two operational modes: high sensitivity – DC-A – mode and high specificity – DC-B – 

mode. Tuned for high sensitivity – DC-A – with a sensitivity of 100% and specificity of 69%. 

Alternatively, the decision analysis algorithm tuned for high specificity – DC-B – can be 

weighted to achieve 100% specificity and 35% specificity (Fig. 6C). These two operational 

modes confer an area under the curve (AUC) of 0.91. This capability is only possible since DC 

provides objective quantitative analysis of each sample.  This performance can assist cytology in 

reducing follow-up procedures.  Without DC 89% of MPFs required follow-up (flow cytometry, 

immunohistochemistry, or additional biopsies) and 38% of samples with outcomes that were 

NFMC required follow-up (Fig. 6D).  

 Implementing DC as an adjunct to cytology analysis will reduce cytology and follow-up 

workload.  Using the DC-A criterion, which has a high negative predictive value (1.00) in a pre-

screening role, this would identify 58 samples as true NFMC (69%) without needing to undergo 

cytology analysis. Additionally, this eliminates 21 follow-up procedures (44%) that would have 

been ordered following cytology alone. The remaining 43 cases would require cytology because 

of the lower positive predictive value (0.40). Following cytology-based stratification of 

conclusive cases and cases requiring follow-up analysis, DC decision analysis can further reduce 
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the workload of follow-up orders by cytology using the DC-B algorithm for high specificity. The 

DC-B method screens out MPF cases as this method has a high positive predictive value (1.00) 

(Fig. 6E). Employing both analysis methods (DC-A, and DC-B) adjunct to cytology for the cases 

we have already studied, would ultimately reduce reduces the workload of samples handled and 

samples requiring follow-up analysis by 56% (Fig 6F).  

 We also investigated the performance of using the size parameter independently for 

diagnosis (S. Fig 1). Setting the size threshold of 17 μm and using the 95% upper CI limit of the 

mean proportion (14%), this method achieves a sensitivity of 65% and specificity of 87%. This 

result suggests that differential size counts alone have some diagnostic value, but complementing 

this metric with the deformability parameter increases diagnostic accuracy. 

 

 Case study: atypical cell diagnoses  

 The ability of deformability cytometry to adjust to a high sensitivity mode can aid in 

cytological analysis is particularly apparent in correctly identifying ambiguous samples with 

“atypical cells” (AC) that always require follow-up. In such cases, DC diagnosis of MPF or 

NFMC can reduce the number of cases requesting follow-up procedures. Difficulties in cytology 

for diagnosis of these cases are due to difficult to interpret cellular morphology compounded 

with patient's history of prior malignancies or pre-malignancies. Follow-up procedures including 

flow cytometry, immunohistochemistry, and further biopsies are always ordered for samples 

receiving this diagnosis. Of the initial AC diagnoses, the DC-A decision analysis was able to 

conclusively diagnose 70% (X of Y) of AC cases correctly as MPF or NFMC when compared to 

the final clinical outcome (Fig. 7). AC cases with large and highly deformable cells and with 

minimal profile similarities to pooled cases were identified to be MPF matching final outcome 
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diagnoses with 100% sensitivity (Fig. 7, pt. 1-4). In NFMC cases, AC profiles with a small and 

rigid subpopulation were correlated to the negative outcome with 50% specificity (Fig. 7, pt. 5-

10). AC cases with chronic inflammation features were also quantitatively identified in patient 

samples (Fig. 7, pt. 7, 9, 10). Benefits of correctly identifying these inconclusive samples can be 

realized by earlier disease treatment and management, as well as reduced costs associated with 

follow-up procedures as discussed in Figure 6. 

 

 Case study: differing diagnoses for patients with concurrent disease 

 PF samples from 18 patients with known concurrent malignancies or tumors were 

considered separately from the main analysis set. These cases all received a NFMC score by 

cytology and cytology follow-up, however when assayed by DC the profile features are found to 

have enough variability from standard outcome profiles that the DC-A decision analysis 

algorithm categorized 15 of 18 cases as MPF. Profiles feature irregularities and instances of large 

and highly deformable cells (Fig. 8). Samples from patients with concurrent diseases, including 

leukemias (Fig. 8 pt. 1-4, 8), mesothelioma (Fig. 8 pt. 7), small cell carcinomas (Fig. 8 pt. 5), and 

adenocarcinomas (Fig. 8 pt. 6, 9, 10), were assayed. The majority of these samples also 

underwent additional follow-up procedures to verify cytology findings, including flow cytometry 

and immunohistochemistry. However, even with follow-up procedures cytology did not identify 

cells consistent with the concurrent disease. The appearance of malignant DC profiles in these 

patients with concurrent disease is suggestive of the ability of DC to identify malignant cell 

populations not easily identified by cytology and standard immunolabeling-based follow-up.  

 

 



120 
 

 Case study: mesothelioma 

 The low sensitivity of cytology (40%) to mesotheliomas is due to limited morphological 

differences between malignant and benign mesothelial cells.33,34 However, given biophysical 

differences between transformed and healthy cells we hypothesize this disease can be identified 

by DC. Samples in which reactive mesothelial cells were observed by cytology had 

corresponding deformability cytometry profiles with a population of large (>15 μm) cells with a 

moderate deformability (D: 1.2-1.4). This specific pattern is observed in 100% (25 of 25) of all 

cases with noted benign or reactive mesothelial subpopulations. In a confirmed mesothelioma 

case, the DC profile (Fig. 9) displays an absence of these large moderately deformable cells but 

the presence of large softer population (D: 1.4-2.0). As we only collected one sample with a 

mesothelioma outcome, further investigation is needed for this disease type. 

 

 Case study: leukemia 

 Five cases examined also were associated with leukemia or lymphoma outcomes (Fig. 

10). These PF samples were harvested from patients with concurrent leukemia or near future (<1 

year) diagnoses of leukemia. Leukemia disease types assayed include acute myeloid leukemia 

(AML), chronic myelogenous leukemia (CML), myelodysplastic syndrome (MDS), and 

lymphoma. In the case of AML, the DC profile is uniquely distinctive showing a larger size and 

increased deformability shift in the major leukocyte population. In the first AML case, this DC 

assayed this specimen 3 months prior to a follow-up procedure that confirmed the disease. 

Comparing this profile to in vitro HL-60 myeloid leukemia cell lines shows a similar 

characteristic features – a highly deformable population at the 13-16 μm size range. The chronic 

myelogneous leukemia case had similarities to the second acute myeloid leukemia. Cytology 



121 
 

analysis suggested this second population of large (16-25 μm) and moderate deformability (1.2-

1.8), are a subpopulation of histiocytes. However, the DC profiles rarely observed such a 

distinctive second population in CMI or NFMC cases. Lastly, the myelodysplastic syndrome and 

lymphomas have large scatters into the large and highly deformable regions, with feature similar 

to CMI profiles.  

   

 Case study: inflammation states 

 Mechnophenotyping also exhibits sensitivity to inflammation states. Both AI and CMI 

responses have distinctive profile features that can be used to monitor inflammatory response.28 

Figure 11 examines inflammatory disease DC profiles in detail. In PF of patients with diseases 

triggering an AI response, including sepsis, acute pneumonia, and tissue injury; the 

corresponding DC profile shows features of AI - small populations with scatter in the 

deformability measurement (Fig. 11A). In PF of patients with chronic kidney and liver failures 

and chronic pneumonia, a chronic inflammatory response is elicited. DC profiles of these 

patients’ PF exhibit similarities to other CMI cases. Note the profiles lack specificity for the 

originating disease; however, the differences between acute and chronic inflammation are 

distinctive. This ability to distinguish between AI and CMI cases suggests utility of this system 

for clinical diagnoses beyond malignancy diagnosis. The sensitivity of AI diagnosis was: 80% 

while that of CMI diagnosis was 92% using a threshold analysis based on similarities of profile 

features to the pooled AI or CMI cases.  
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Conclusion 

 Thoracentesis procedures are performed at a rate of greater than 1.5 million per year in 

the United States35. Malignant pleural fluids are drained to relieve patients of discomfort and are 

also recognized for having clinical diagnostic value: to deduce etiology, diagnose progression of 

malignant diseases and monitor patient relapse. Conventionally, PF samples are analyzed by 

cytology with follow-up procedures including flow cytometry, immunohistochemistry, and 

further biopsies as required to reach a diagnosis. The burden of follow-up procedures and 

biopsies is a significant cost to the healthcare system.  An accurate, low-cost, automated 

technique to pre-screen samples such that only a small subset of suspicious samples are further 

analyzed by manual approaches has the potential to reduce healthcare costs. Deformability 

cytometry can fill this role by providing a high-throughput label-free measurement of disease 

states with quantitative metrics indicating the confidence in the diagnostic prediction.  In using 

this system in prescreening roles for pleural fluid analysis, this tool is predicted to eliminate 

approximately 56% of the workload for cytology and related follow-up procedures.  Notably, the 

specimens used for this dataset were analyzed at the UCLA Department of Pathology & 

Laboratory Medicine by highly experienced staff including cytopathologist, cytotechnicians, and 

lab technicians. Advantages of DC as a pre-screening tool can be expected to have even higher 

workload reduction impact in limited resource hospitals. Further benefits of DC quantification of 

specimens are advantages in archiving patient data compared to conventional slide based 

analysis. Currently slides are rarely imaged and digitally archived because of the large memory 

requirements for storing imaging data, whereas DC profiles are discrete representations of 

patient data in an information-rich format, easily stored and interpretable. Lastly, as DC profiles 

have readily recognizable disease specific features it will enable increased transparency of 
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patient data facilitating clinician collaborations. Combined with established label based methods, 

this technique has the potential to improve the speed and accuracy of cancer diagnosis, while 

simultaneously reducing costs to the healthcare system.  
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Material and Methods 

 Pleural Fluid preparation and analysis 

 Patient samples were initially collected for DC analysis from the UCLA Cytopathology 

Lab which arrived from patients at clinics from UCLA Ronald Reagan, UCLA Santa Monica, 

and other regional hospitals. Samples provided by cytopathology were remnants from 

thoracentesis following cytological examination and usually consisted of 10-50 mL. Patient 

pleural fluids samples harvested the within 24 hours of thoracentesis were obtained from 

Department of Pathology at UCLA processing patient samples from Ronald Reagan UCLA 

Medical Center, and Santa Monica UCLA Medical Center. For each sample cell blocks and cell 

smears were prepared by conventional methods for cytological analysis.  Preparation for DC 

mechanical phenotyping samples were first processed to remove red blood cells and debris by a 

hypotonic lysis buffer (Roche, X).  The remaining cells were resuspended in PBS at density 

between 200,000 and 300,000 cells/mL prior to DC assay.  

 

 

 Microfluidic device fabrication and device dimensions 

 Microfluidic devices were designed in AutoCAD (Autodesk, San Rafael, California, 

USA) and printed to transparency photomasks (CAD/Art Services, Inc., Bandon, Oregon, USA).  

Transferring the designs on the photomasks to a replica mold by spinning negative photoresist, 

SU-8 50 (MicroChem, Newton, Massachusetts, USA) ] on a 4 inch silicon wafer at 4000 

rotations per minute.  The coated wafer was soft baked at 65°C for 5 minutes then 95°C for 15 

minutes.  The wafer was then exposed under near UV at 8.0 mW/cm2 for 30 seconds.  A post 

exposure bake of the wafer was carried out at 65°C for 2 minutes then at 95°C for 3.5 minutes.  
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The unexposed photoresist was developed in SU-8 Developer (MicroChem) until an isopropyl 

alcohol rinse produced no white film.  The height of the resulting features was characterized by a 

surface profiler.  The height and width of the immediately before the extensional flow junction 

was 28 μm and 67 μm, respectively.  Devices were then casted using Sylgard 184 Silicone 

Elastomer (Dow Corning, Midland, Michigan, USA), polydimethylsiloxane (PDMS), mixed 10 

parts base to 1 part curing agent.  The poured mold was degassed by 30 minutes followed by a 3 

hour curing at 65°C.  Devices were then cut from the mold, input and output punched, air plasma 

cleaned for 30 second, and bonded to plasma activated glass slide.  Devices were then placed in 

the 65°C oven for 3 hours prior to use. 

 

 Device operation 

 Pleural fluid cell suspensions were prepared as described above.  At the optimal cell 

density between 200,000 and 500,000 cells/mL cell to cell collision events are minimized.  The 

suspension were loaded into 3 mL plastic syringes (BD, X), connected with a 25 gauge luer stub 

(Instech Laboratories, Inc., Plymouth Meeting, Pennsylvania, USA) and terminated with a short 

length of PEEK tubing (Upchurch Scientific, Oak Harbor, Washington, USA) with an inner 

diameter of 0.02 inches and an outer diameter of 0.0313 inches.  Equal tubing lengths were 

inserted into the outlets with free ends directed into a waste receptacle.  The syringe was loaded 

onto a PHD 2000 syringe pump (Harvard Apparatus, Holliston, Massachusetts, USA) and set to 

inject at a flow rate optimized for the device.  A volumetric flow rate of 900 μL/min was optimal 

for prepared pleural fluid samples.  At the start of each run, devices was primed for 20 seconds at 

the operational flow rate to allow for the fluidic capacitance to stabilize.  Cells are stretched 

when it reached the center of the extensional flow.  
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 Data acquisition and processing 

 Video data was captured using a Vision Research Phantom v7.3 high speed camera at 

140,000 fps, with a 1 us exposure.  Videos were contrast enhanced prior to image analysis. The 

automated image analysis is built using MATLAB v2009a (MathWorks, Natick, Massachusetts, 

USA) and processed on the UCLA Hoffman 2 Cluster. We have previously described the image 

analysis process (PNAS paper). Briefly, for each cell the size is extracted upstream of the 

junction tracked and upon reaching the junction proximity and until it tracks out of the field-of-

view deformability measurements are obtained. Diameters of the cell are extracted by a polar to 

Cartesian coordinate transformation where major and minor axis of the cells are extracted at 90° 

± 30° and 0° ± 30°, respectively. The deformability parameter reported here is defined as the 

ratio of major to minor axis. Post-processing scatter plots were created using dscatter function 

(Creator: X, MathWorks File Exchange) 

 

 Statistical and decision analysis 

 Sample analysis for characterization of NFMC, AI, and CMI used 90 of 119 samples. 

The remaining 29 samples were of MPF (n=17) or had both AI and CMI disease conditions 

reported (n=12). 

 Standard clinical outcome profiles were created by pooling 10 representative patient 

cases for each clinical outcome: NFMC, AI, CMI, and MPF.  In creating the standard clinical 

outcome profiles, the cell counts per patient case were normalized. Upper right quadrant gating 

was created by using the 95% confidence interval of the mean on NFMC cases. The DC-A and 

DC-B decision analysis was trained on nine parameters based on DC profile features. The 
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algorithm assigns threshold based scores to each condition, where the scores sum determines a 

MPF or NFMC diagnosis (S. Fig. 2).  

 

 Specimen selection criterion 

 In the main sample set of 119, we omitted from the analysis 5 malignant samples 

collected over a 5 week span due to specimen collection error. Analysis of these samples had 0% 

sensitivity for malignant pleural fluids with DC-A. We suspect this is due to sedimentation as 

larger cells were not observed in high frequency in any of the confirmed malignant samples as 

we expected from the cytology cell smears. Additionally, 28 samples beyond the 24 hours cut-off 

criteria were omitted due to sample degradation. Some samples do maintain cellular integrity up 

to 48 hours, but degrade substantially beyond this time point (S. Fig 1). From this main set of 

119 samples, 101 samples were analyzed in which cytology + follow-up procedures agreed well 

with concurrent disease states.  Within the main set, 18 samples had cytology + follow-up 

procedures discordant with underlying disease states, and were analyzed separately (Fig. 8). 
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Figures 

 

Figure 1 Deformability Cytometry device operations. (A) Pleural fluid samples are collected 

from the pleural cavity. (B) Sample is then prepared for DC assay by RBC hypotonic lysis and 

concentration. (C) The sample is driven through the DC device and data is recorded by high-

speed imaging. (D) The deformation contributed by Fc (compressive stress) and Fs (shear stress) 

forces on the cells. (E) The reported parameters are the size (initial diameter) and deformability 

(D : the ratio of major/minor axes) extracted from the video data.  
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Figure 2 Cases that are negative for malignant cells (NFMC) exhibit a dominant non-activated 

leukocyte population. Comparative table of cytology methods and cytology outcomes and DC 

analyses and outcomes of 5 NFMC patients.  Note additional follow-up performed by flow 

cytometry and immunohistochemistry in patients 2-4. CS – Cell Smear, CB – Cell Block, IHC, 

Immunohistochemistry, FC – Flow Cytometry, RM – Reactive Mesothelial Cells, AI – Acute 

Inflammation.  
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Figure 3 Acute inflammation (AI) cases exhibit activated neutrophil populations with increased 

spread in deformability. (A) Comparative table of cytology methods and outcomes and DC 

analyses and outcomes of 5 AI patients. (B) Cell smears and cell blocks of neutrophil dense 

samples. Scale bar 10 μm. (C) Activation of healthy donor neutrophils generates a biomechanical 

change similar to that seen in AI patient samples. CS – Cell Smear, CB – Cell Block, IHC, 

Immunohistochemistry, RM – Reactive Mesothelial, AI – Acute Inflammation.  
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Figure 4 Chronic/mixed inflammation (CMI) cases exhibit more deformable activated 

lymphocyte populations. (A) Comparative table of cytology methods and outcomes and DC 

analyses and outcomes for 5 CMI patients.  Note additional follow-up procedures in patients 13-

15. (B) Cell smears and cell blocks of lymphocyte-dense samples. (C) PHA activation of healthy 

donor lymphocytes generates a similar profile as seen CMI patient samples. CS – Cell Smear, 

CB – Cell Block, IHC, Immunohistochemistry, RM – Reactive Mesothelial, CMI – 

Chronic/mixed Inflammation. 
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Figure 5 Malignant pleural fluid (MPF) cases exhibit large and highly deformable 

subpopulations along with smaller and stiffer leukocyte populations using the DC-A analysis. CS 

– Cell Smear, CB – Cell Block, IHC, Immunohistochemistry, RM – Reactive Mesothelial, AI – 

Acute Inflammation, CMI – Chronic/mixed Inflammation. 
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Figure 6 Algorithmic decision analysis for identifying malignant pleural fluids and hypothetical 

cytology workload reduction workload reduction. (A) Strategy using quadrant analysis for large 

(>17 μm) and highly deformable cells (D>1.4) (B) Standard curve of pooled common outcome 

profiles, N=6 patient samples for each standard profile. (C) Deformability cytometry decision 

analysis performance. DC compared to gold standard of cytology and follow-up procedures. 

Receiver operating curve shows two operational points, DC-A and DC-B, to leverage high 

sensitivity or high specificity detection. (D) Cytology standalone performance without follow-up 

procedures. (E) DC performance by first pre-screening with the high sensitivity DC-A analysis 

method, followed by cytology stratification of samples. High specificity DC-B analysis 

reexamines follow-up requests by cytology. (F) Total workload reduction of 56% using DC to 

pre-screen samples pre-cytological analysis and pre-follow-up analysis.TP – True Positive, TN – 

True Negative, FN – False Negative, FO – Follow-up Ordered. 
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Figure 7 Cases receiving Atypical cell (AC) diagnoses by cytology. DC-A decision analysis 

diagnoses these cases with 70% accuracy when compared to final clinical outcomes arrived at 

post- follow-up procedures. 
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Figure 8 Concurrent disease cases. Cytology and DC outcomes were discordant when known 

concurrent malignant disease was present. MBx – multiple biopsies. 
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Figure 9 Comparison between benign and malignant mesothelial subpopulations. Benign cases 

exhibit a subpopulation residing in large (15 - 25 μm) and stiff (D: <1.4) region. Malignant 

mesothelioma case shifts the large subpopulation to D: 1.4 - 1.8. 

 

 

Figure 10 Pleural fluids with leukemia and lymphoma diseases. AML: Acute myeloid leukemia, 

CML, chronic myelogenous leukemia, MDS: myelodysplastic syndrome. 
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Figure 11 DC profiles of disease states associated with acute and chronic inflammatory 

responses. (A) Sepsis, soft tissue injury, and acute pneumonia, induces acute inflammatory 

responses, while DC profiles have characteristic features of acute inflammation. (B) Chronic 

diseases such as kidney and liver failure, chronic pneumonia, result in chronic inflammatory 

responses, in which DC profiles have characteristic features of chronic/mixed inflammation. 
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Supplementary Figures 

 

Supplementary Figure 1 Large cell gating analysis. Profiles are gated at the > 17 μm region. The 

threshold limit (14.1%) for determining NFMC or MPF uses the upper 95% confidence interval 

limit of the mean (8.3%). 

 

Supplementary Figure 2 DC points based diagnosis. The points per case is determined by how 

each individual profile fits to standard cases. For DC-A, the points threshold is set at 2 where 

scores above than this value is marked as MPF.   
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