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Loblolly pine (Pinus taeda L.) is a long-lived, diploid, outcrossing 
conifer of the family Pinaceae. It is the most important timber tree in 
its native range of the southeastern United States, where it is grown 
for pulpwood, timber, and as a biofuel source (Prestemon and Abt, 
2002). Improvement of economically important traits such as tree 
height, stem volume, wood quality, and resistance to fusiform rust 
disease through traditional breeding requires more than 15 years 
per cycle (Isik and McKeand, 2019). These complex traits vary sub-
stantially between populations (Lauer et al., 2020). Marker-assisted 
selection (MAS) describes a technique in which a small collection 
of variants (typically single-nucleotide polymorphisms [SNPs]), 
linked to known quantitative trait loci (QTL), are used to predict 
genetic merit. This has been applied successfully in several crop 
systems and is ideal when traits are controlled by few loci of large 
effect, and when markers are tightly linked to (or within) the loci of 
interest (Spindel and McCouch, 2016). However, MAS is limited in 

its ability to predict complex traits controlled by many unidentified 
small-effect loci as is often seen in growth traits, drought tolerance, 
and wood quality of forest trees. The alternative approach, genomic 
selection (GS), utilizes genome-wide variants to predict the breed-
ing value for individuals with unobserved phenotype (Spindel and 
McCouch, 2016; Xu et al., 2020). Genome-wide markers capture 
both major and minor contributing alleles and can be used to main-
tain genetic diversity in the selected populations (Goddard and 
Hayes, 2007; Olatoye et al., 2019). With sufficient variant density, 
the robust statistical models available today are ideal for large-scale 
application (Resende et al., 2012; Bhat et al., 2016). This is promis-
ing for species with long generation times and traits that are costly 
to measure. GS has been successfully applied in many breeding 
programs, including livestock, legumes, and maize (Resende et al., 
2012; Bhat et al., 2016; Chen et al., 2018; Thistlethwaite et al., 2019; 
Beaulieu et al., 2020; Lenz et al., 2020). There is an increasing interest 
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data for an economically important conifer, loblolly pine. It uniquely integrates independent 
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in GS for forest tree breeding, as genotyping and high-throughput 
sequencing platforms have become more efficient and less expen-
sive (Grattapaglia et al., 2018; Ukrainetz and Mansfield, 2019).

Genomic selection requires that a large population is genotyped 
with a sufficient set of markers such that every QTL influencing a 
trait is in linkage disequilibrium with at least one marker in the panel 
(VanRaden, 2020). The variants must be dispersed throughout the ge-
nome with high enough density to ensure appropriate linkage with 
the loci influencing the desired traits (Spindel and McCouch, 2016; 
Xu et al., 2020). Genotyping arrays have been used for both MAS and 
GS because they allow rapid assessment of a large number of individ-
uals for thousands of loci. If designed from an appropriately diverse 
population, the array will represent a set of variants that should be 
polymorphic in most study populations. Array design requires sub-
stantial informatic investment for their initial design but does not 
require programmatic expertise or specialized hardware to obtain 
the variant calls. Because the markers on the array are based on spe-
cific probes, access to a high-quality reference genome dramatically 
improves the accuracy of the design process. Exome sequencing and 
genotyping-by-sequencing (GBS) are alternative resequencing ap-
proaches that can also leverage a reference genome to identify poly-
morphisms in a high-throughput manner (Bhat et al., 2016; Lu et al., 
2016; Acosta et al., 2019). Although GBS can be successful in conifers 
(Calleja-Rodriguez et al., 2020), the depth of sequencing required to 
capture loci across thousands of individuals in a species with a large 
genome remains cost-prohibitive. Although both approaches may be 
subject to sampling/selection bias, this is more likely in arrays where 
variants are pre-determined (Heslot et al., 2013).

The most significant challenge in creating a genotyping array 
for any conifer is the large and repetitive genome. The initial as-
sembly of the loblolly pine genome was generated entirely through 
short-read Illumina data (Neale et al., 2014). This assembly (v1.01) 
yielded a total of 22.5 Gbp spread across 2,158,326 scaffolds (N50 
of 75 kbp, 28% BUSCO completeness v.4.0.2 embryophyta v.10). 
The second version (v2.0), assembled in 2017, leveraged 267 Gbp 
of genomic long reads (PacBio), resulting in a 22.1 Gbp genome 
represented by 1,762,655 scaffolds (N50 of 107 kbp, 36% BUSCO 
completeness v.4.0.2 embryophyta v.10) (Zimin et al., 2017). Finally, 
v2.01 raised the N50 to 111 kbp (1,489,469 scaffolds, 37.8% BUSCO 
completeness v.4.0.2 embryophyta v.10) by scaffolding the genome 
with 70,064 PacBio Iso-Seq transcripts. Despite these improve-
ments, the v2.01 assembly remains fragmented as a consequence 
of the short-read inputs and repetitive content that exceeds 85% 
of the genome (Wegrzyn et al., 2014). The structural annotation of 
the coding region is challenged by the prevalence of pseudogenes, 
which represent five times more of the genome sequence than func-
tional genes (Wegrzyn et al., 2014). Finally, the high density of poly-
morphisms (Brown et al., 2004) further complicates the selection 
of viable polymorphisms for a genotyping array that can be used 
broadly. Array creation for GS must therefore balance the need for 
accurate markers, a high-density genome-wide distribution of these 
polymorphisms, and an avoidance of probe misalignment that can 
result in off-target variants.

Early genotyping arrays for loblolly pine successfully identi-
fied QTLs for valued economic traits including wood formation 
and disease resistance (Eckert et al., 2010; Resende et al., 2012). 
Construction of these arrays, however, pre-dated the loblolly pine 
genome assembly and used expressed sequence tags (ESTs). ESTs 
are generated from cDNA and therefore only represent transcribed 
sequences. This greatly limits the available polymorphisms and may 

not provide the genome-wide distribution needed for GS. In addi-
tion, the ability to properly design probes in the absence of genomic 
alignments of the transcriptomic targets remains a challenge. For 
this same reason, the potential for off-target probe hybridization 
could not be estimated or resolved. The first Illumina Infinium array 
had just over 5000 EST-derived markers and was used to genotype 
more than 7000 loblolly and slash pine trees (Eckert et al., 2010). For 
most populations, the array had a conversion rate (defined as per-
centage of successful polymorphic markers; De La Vega et al., 2005) 
of just under 60% (Eckert et al., 2010; Chhatre et al., 2013; Cumbie 
et al., 2020). Recently, the first genome-scale loblolly pine Axiom 
array was designed from a small population (10 megagametophyte 
samples) and applied to 359 unrelated individuals from the Allele 
Discovery of Economic Pine Traits II project (ADEPT2) (Cumbie 
et al., 2011). Among 635,000 variants tested, approximately 13% 
(84,700) were polymorphic and high quality in the population as-
sessed. This speaks to the challenges of large polymorphic genomes 
and small discovery panels (Telfer et al., 2019; De La Torre et al., 
2019; Perry et al., 2020). Arrays designed for other conifers incor-
porated a variety of transcriptomic resources with varying support 
from recently sequenced reference genomes. An Axiom array for 
Douglas-fir (Howe et al., 2020), designed from transcriptomes (and 
previously validated probes), was assessed via alignments to the 
Douglas-fir reference genome and reported a 40.8% conversion 
rate. In another example, four species of European pine (Perry et al., 
2020) (42% conversion rate) were represented on a single Axiom ar-
ray that was designed from transcriptomes of the target species. The 
loblolly pine reference genome and transcriptome assemblies helped 
to eliminate probes that overlapped estimated intron boundaries 
and also provided an estimate of multiple-hit alignments. Other 
recent approaches in Axiom array development for species with 
limited genome resources used RNA-seq (Mishima et al., 2018) or a 
combination of RNA and restriction site–associated DNA sequenc-
ing (RAD-seq) (Silva et al., 2020) to both generate EST contigs and 
identify SNPs and coding regions for probe design. These arrays 
had moderate conversion rates (<50%). Comparatively, arrays con-
structed for three spruce species (Norway spruce, black spruce, and 
white spruce) (Pavy et al., 2013, 2016; Azaiez et al., 2018) achieved 
a higher conversion rate (64–96%). These generally applied stricter 
informatic thresholds for the discovery and filtering of candidate 
variants, and the array technology required longer probes (Illumina 
iSelect technology 50-mer vs. Thermo Fisher Axiom technology 
35-mer). Taken together, these reinforce the benefit of reference 
genomes in designing probes and filtering for repetitive content, in-
tronic regions, and potential off-target hybridization that can lead 
to low conversion. For a loblolly pine array, the reference genome 
will standardize the various genomic data used to identify variants 
and to produce genome-wide markers for GS implementation.

Here we describe the bioinformatic process that integrated het-
erogeneous genomic resources and identified high-quality variants 
for loblolly pine. The resulting “Pita50K” array uses the Thermo 
Fisher Axiom technology. This was organized through the Conifer 
SNP Consortium, which represents six coordinated genotyping 
projects across 14 species (Bernhardsson et al., 2020; Howe et al., 
2020) and is aimed at improving tree breeding worldwide. The 
Pita50K resource utilized a diverse population of trees gathered 
across five studies covering range-wide genetic variation for lob-
lolly pine. To overcome the challenges associated with a massive, 
fragmented, and polymorphic genome, we opted for probe selec-
tion that minimizes variants in flanking sequences and off-target 
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hybridization, thereby reducing the potential for erroneous geno-
types. Using the new structural annotation of the loblolly pine ge-
nome, we annotated variants proximal to genes and in regions of 
accessible chromatin. Finally, a screening array was used to estimate 
population genetic parameters for variant candidates to enable a 
data-driven approach for marker selection. With this, we created a 
selection technology for loblolly pine that overcomes the challenges 
of genome size, repetitive content, and polymorphic density. Future 
applications of this array include creation of an updated linkage 
map, a more contiguous reference genome, and more powerful GS 
programs for loblolly pine and taxonomically related species.

METHODS

Genomic data sources for loblolly pine

The final loblolly pine genotyping array (Pita50K) was designed 
from five population studies implemented with high-throughput 
sequencing and reduced-representation strategies. All alignments 
and resulting variants were based on early versions of the lob-
lolly pine genome (i.e., v1.0, v1.01, and v2.0). Many of the origi-
nal studies, while independently designed, were part of the Pine 
Integrated Network: Education, Mitigation, and Adaptation project 
(PINEMAP; http://www.pinem​ap.org). Combined, they assessed 
2698 unique trees representing much of the native range of lob-
lolly pine (Table 1, Fig. 1) (Farjat et al., 2017b). The investigations 
provided different genomic sources and were sequenced at a range 
of depths. The first of two exome capture studies, conducted at the 
University of Florida (Acosta et al., 2019), included 24 distinct, nat-
urally distributed populations across 11 U.S. states. Exome capture 
was performed on haploid megagametophyte tissue using 54,773 
120-mer RNA probes designed from loblolly ESTs. Sequencing 
was performed on an Illumina HiSeq2000 (2 × 100 nucleotides 
[nt]; Illumina, San Diego, California, USA) to a depth of approx-
imately 30× and initially called 67,071 SNPs. The second exome 
capture study, led by a team at Texas A&M University (Lu et al., 

2016), represented 375 clonally propagated samples from 12 U.S. 
states in the ADEPT2 population. Exome capture was performed 
via the NimbleGen SeqCap EZ method (Roche Sequencing and Life 
Science, Indianapolis, Indiana, USA) that targeted over 196,000 ex-
ons from the v1.01 reference. The needle samples were sequenced 
to a depth of approximately 30× by Illumina HiSeq 2500 (2 × 125 
nt) and originally called 2.82 million SNPs. Two data sets contained 
genomic sequence from double-digest RAD sequencing (ddRAD-
seq [Peterson et al., 2012]; PstI and MspI restriction enzymes were 
used in both studies). The first, conducted at North Carolina State 
University (NCSU), contained 1536 phloem (diploid) samples 
sourced from the Plantation Selection Seed Source Study (PSSSS), 
a set of field trials of 140 families planted in 20 locations across 11 
U.S. states (Farjat et al., 2017a). These samples were collected from 
a field site near Oliver, Georgia, and the libraries were sequenced 
on an Illumina HiSeq2000 (2 × 100 nt) across 16 lanes. Average se-
quence coverage at sites with at least one aligning read was approx-
imately 15× (sample standard deviation of 6×). The second study, 
conducted at Virginia Polytechnic Institute and State University 
(VTech), represented 752 individuals from a subset of the same 
PSSSS families. Samples were sequenced on an Illumina HiSeq 2500 
(2 × 100 nt) and demultiplexed with Stacks (v1.44) (Catchen et al., 
2013). Coverage was approximately 22× (sample standard deviation 
of 5×). Both ddRADseq studies were originally aligned against the 
v1.01 reference genome. Finally, one whole-genome sequencing 
data set representing 10 megagametophytes derived from individ-
uals from seven states within the native range of the species was 
included (De La Torre et al., 2019). Sequencing was performed on 
an Illumina HiSeq 3000 (2 × 150 nt) to a depth of 10× and was 
aligned to the v2.0 reference genome (Bowtie2 alignment and vari-
ants called with SAMTools/BEDTools [Li et al., 2009; Quinlan and 
Hall, 2010]) to call more than 455 million SNPs.

Variant detection and selection

The Illumina short reads from all genomic sources were quality 
controlled by Sickle (v1.33; Joshi and Fass, 2011) with quality and 

TABLE 1.  Summary of populations and variant filters.

Information category

Cohort

Exome capture of 
375 trees

Exome capture of 24 
trees

ddRAD of 1536 
trees

ddRAD of 753 
trees WGS of 10 trees

Illumina Infinium 
array

Tissue and ploidy Needle (diploid) Megagametophyte 
(haploid)

Phloem
(diploid)

Phloem (diploid) Megagametophyte 
(haploid)

Megagametophyte 
(haploid)

Sequencing platform 
(estimated  
coverage)

Illumina HiSeq  
2500 (30×)

Illumina HiSeq  
2000 (30×)

Illumina HiSeq 
2000 (15×)

Illumina HiSeq  
2500 (22×)

Illumina HiSeq  
3000 (>10×)

Probes designed 
from Sanger 
resequenced ESTs

Total reads aligned to 
reference (%)

91% 98% 35% 75% >99% NA

Total strict quality 
variantsa 

7,702,804 1,516,877 261,768 1,105,218 1,546,311 1181 aligned, 1840 
unaligned

Total pre-screening 
variantsb 

109,602 86,200 268,154 34,388 156,456 1178 aligned, 1656 
unaligned

Total post-screening 
variantsc 

28,518 7642 27,657 6009 17,973 108 aligned, 1209 
unaligned

Total variants on final 
array (Pita50K)d 

13,962 4432 15,635 3398 10,854 36 aligned, 919 
unaligned

Note: ddRAD = double-digest RAD sequencing; NA = not applicable; WGS = whole genome sequencing.
aTotal number of strict quality variants: 8,272,630. 
bTotal number of pre-screening variants: 642,275. 
cTotal number of post-screening variants: 84,845. 
dTotal number of variants on the final array: 46,439. 

http://www.pinemap.org
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length thresholds set to 30Q and 50 bp, respectively. The reduced set 
of trimmed reads were aligned to the loblolly pine reference genome 
(v2.01, 568,339 scaffolds >3000 nt) with BWA-MEM (v0.7.15; Li, 
2013). This aligner was chosen for its ability to index large genomes 
and its robust strategy to contend with the anticipated gaps and 
polymorphisms. Alignment rates varied by genomic source (Table 
1). In the exome capture and whole genome sequencing (WGS) 
cohorts, an average of >90% of reads aligned per sample. In the 
VTech and NCSU ddRADseq cohorts, average alignment rates per 
sample were lower at 75% and 35%. The NCSU samples possessed 
markedly greater adapter contamination and low-complexity reads, 
resulting in overall lower alignment success. No individual NCSU 
samples were eliminated due to low alignment rates, as all samples 
were affected and there were no clear outliers.

Variant discovery was performed with FreeBayes (v1.0.2; 
Garrison and Marth, 2012) on the five source cohorts independently 

prior to creating a merged data set. FreeBayes was chosen because 
the Bayesian framework is designed to detect rare variants (in-
creased sensitivity), consider multi-mapping reads, and also ac-
commodate variable ploidy (haploid and pooled designs). For the 
standard quality data set, variant discovery required minimum 
coverage of 8, minimum alternative allele count of 2, base quality 
of 15, and no threshold for mapping quality. The strict quality vari-
ants required a minimum coverage of 10, alternative coverage of 6, 
mapping quality of 20, and base quality of 25. Both runs allowed 
SNPs and indels, but no complex events, and required a minimum 
within-sample minor allele frequency of 0.2. Population-level allele 
frequency was not considered for further filtering of alleles due to 
pooling effects across the variable genomic data sources used. All 
variants were annotated with SnpEff (v4.3q; Cingolani et al., 2012) 
using a custom database of the loblolly reference genome and 
annotation (v2.01). The genome annotation of the loblolly pine 

FIGURE 1.  Informatic workflow describing the Pita50K array design. Four types of genomic data across six data sets were used in array design. 
Genomic reads from exome capture, ddRADseq, and whole genome sequencing (WGS) studies were aligned to the Pinus taeda reference genome, 
and variants were called with two thresholds. Probes designed around strict quality variants of exome capture and ddRADseq studies were assessed 
for potential off-target hybridization through k-mer to genome alignment scores. Variants from the WGS study (and later all variants from haploid 
megagametophyte tissue) that were heterozygous were removed. Previously successful Illumina Infinium array probes that align to the genome 
were assessed alongside the candidate variants for polymorphisms within flanking regions of probes. Passing probes were scored by Thermo Fisher 
Scientific, and recommended probes were further filtered via a screening array to create the final Pita50K Thermo Fisher Axiom array. This array con-
tains 919 probes from the Illumina Infinium array that did not align to the reference genome and 36 that did align. 
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assembly v2.01 represents 51,571 genes (48,238 multi-exonic, 3513 
mono-exonic). The annotated coding regions have an estimated 
BUSCO (Simão et al., 2015) v.4.0.2 completeness of 41.7% and 47% 
when assessed with lineages Embryophyta v.10 and Viridiplantae 
v.10, respectively. Regions of open chromatin were identified in 
the reference genotype (N201010) using the ATAC-seq protocol 
(Buenrostro et al., 2013), with unexpanded immature foliage as the 
source of isolated nuclei for six replicate reactions. The six librar-
ies were sequenced first using Illumina MiSeq (3.43 million to 4.36 
million pairs of 76 nt reads/sample) for quality-control purposes, 
then using Illumina NextSeq (85.95 million to 95.38 million pairs of 
76 nt reads/sample), to yield a total of 43 Gbp of raw sequence data. 
Reads were filtered using the BBMap suite of tools (B. Bushnell, 
https://sourc​eforge.net/proje​cts/bbmap/) to remove reads from or-
ganellar genomes, and aligned to the v2.01 assembly using BWA-
MEM (v0.7.15). The short reads were pooled together, and genome 
regions less than 140 nt in length that were detected in four or more 
of the six replicate reactions were considered “open chromatin” for 
purposes of filtering and annotating candidate variants.

To assess the potential for off-target probe hybridization, 
probes are broken down into k-mers and aligned to the genome 
(Appendix S1A). For k-mer alignment testing, probes consisting 
of 35-nt flanks around strict quality variants were generated in 
reference sequence (71 nt total). Each probe was then split into 
four 18-mer sequences with the central variant represented twice. 
If the variant was an indel, only the first reference nucleotide was 
used. The genome was subsequently parsed with an 18-nt sliding 
window and matched to the list of probe 18-mers. Each probe was 
scored by the sum of alignment counts for each of its 18-mers. 
Variants with a score above the mean of 286 alignments were 
removed. Heterozygosity filtering was performed on the whole 
genome–sequenced megagametophyte (haploid) samples because 
these calls could only result from misalignment or sequencing 
errors. Strict quality variants with at least one heterozygous call 
across all 10 samples were excluded. From the previously designed 
Illumina Infinium array, a total of 3029 successful variants and their 
reported flanking regions were available. Because these were orig-
inally designed from transcriptomic resources (ESTs), they were 
assessed against the genome for the first time. These 3029 variants 
were reduced to 3021 probes that contained at least 70 nucleotides 
of flanking sequence (35 nucleotides on either side of the variant 
as required by the Axiom platform). The probe sequences with the 
variant coded as the appropriate International Union of Pure and 
Applied Chemistry (IUPAC) code were aligned to the loblolly pine 
reference genome (v2.01) with Bowtie2 (v2.3.3.1; Langmead and 
Salzberg, 2012). Bowtie2 was chosen for its support of ambiguous 
bases in the aligned sequence. For probes that aligned, success was 
determined by querying the resulting alignment files (71 matches 
indicated a non-gapped alignment). Variants from all studies were 
combined and probes were re-generated in a similar manner (2 × 
35 nt), but with IUPAC codes assigned to identify variants of both 
strict and standard quality in the flanking regions. Probes were re-
moved if polymorphisms of any quality occurred in both flanking 
arms. If polymorphisms occurred in only one arm, the probe was 
trimmed before that site.

Screening array

To guide the selection of variants using population-based crite-
ria, a screening phase was executed. To create the screening array, 

the filtered set of 642,275 variants were scored by Thermo Fisher 
Scientific through their custom informatic assessment. This assess-
ment categorized each variant as “recommended,” “neutral,” “not 
recommended,” or “not possible” for probe development. These cate-
gories corresponded to a number of metrics derived from alignments 
of each probe sequence against the loblolly pine v2.01 reference ge-
nome, which downgraded probes in highly repetitive regions as well 
as probes with interfering polymorphisms outside the focal variant. 
All variants in the “recommended” and “neutral” categories were au-
tomatically retained for the screening array. For variants in the “not 
recommended” category, a linear index incorporating several align-
ment metrics was used to rank the variants. These metrics included 
“polycount” (the number of instances where 24 bp flanking the vari-
ant match other sequences on the list, but the alleles differ), “wobble 
count” (the number of interfering polymorphisms within 24 bp), and 
“wobble distance” (the distance between the focal variant and the 
nearest interfering polymorphism). An index was produced for each 
strand of each probe. The linear index took the form

Where I represents the index value, q represents the wobble dis-
tance, and p represents the summation of the polycount and wobble 
count. This index places a positive weight on the wobble distance 
and a negative weight on the counts. The index was used to sort the 
list of “not recommended” markers in decreasing index order.

A total of 423,695 variants were included on the assay, using 
a panel of 424 samples (388 diploid samples and 36 haploid me-
gagametophyte samples). A total of 84,845 variants were labeled 
as “polyhighres,” “nominorhom,” or “callratebelowthreshold” in the 
Axiom Analysis Suite (Thermo Fisher Scientific, 2020) software. 
The average homozygosity of megagametophyte samples was 0.9. 
Therefore, variants with more than 10% heterozygous genotypes 
across the 36 haploid megagametophyte samples were removed. 
Genotype frequencies were estimated using the diploid samples 
only. Variants that failed a chi-squared test for Hardy–Weinberg 
equilibrium as determined by a Bonferroni-corrected P value of 
<5.89e-07 were removed. From the remaining markers, variants in 
the “callratebelowthreshold” category with only two genotype clus-
ters were filtered. Next, from the remaining markers, any sites with 
>10% missing data were filtered. Finally, variants with a minor allele 
frequency of <0.01 were removed. In an attempt to identify variants 
segregating according to Mendelian ratios in families, the haploid 
samples were reanalyzed with the variants passing the filters de-
scribed above. For each variant, the genotype of the six parents was 
ascertained. For each variant with a heterozygous call in the parents, 
the six offspring megagametophytes of the respective parent were 
tested for Mendelian segregation. However, in a sample this small, 
it is feasible to observe only one genotype among the six offspring; 
therefore, greater weight was placed on heterozygosity among these 
samples. Variants with more than one heterozygous result out of its 
six tests were removed. In an effort to maximize the number of fea-
tures on the array, the final list was sorted such that variants with 
complementary nucleotides (A/T, G/C) were given the lowest pri-
ority, as these require more than one probe.

To estimate the ability of the selected markers to capture known 
genetic relationships among individuals, a comparison was made 

(1)I = (0.6 ∗ (1 −

(
1

|log10(q)|

)
) + (0.4 ∗

1

p
)

https://sourceforge.net/projects/bbmap/
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between A, the additive (or average) numerator relationship ma-
trix estimated from the pedigree (Henderson, 1975), and G, the 
genomic relationship matrix estimated from the marker data. This 
subset represented only the diploid samples with known pedigree 
and the markers that were polymorphic on these samples. Missing 
data were imputed using mean imputation via custom in-house R 
scripts (R Core Team, 2020). For the purpose of this comparison, G 
matrix was calculated as in VanRaden (2008):

With M representing a (375 × 49,014) marker matrix with values 
of 0, 1, or 2 representing minor allele counts. P is a (375 × 49,014) 
matrix composed of doubled minor allele frequencies. The denom-
inator, 2Σp

(
1 − p

)
, represents the variance of allele frequencies and 

scales G to be analogous with A (VanRaden, 2008). We used the 
difference between A and G, represented by matrix C, to gauge the 
ability of the markers to capture known relationships.

RESULTS

Variant detection and selection

The samples included here were sequenced using very different 
approaches (WGS, ddRADseq, and exome capture) and used less 
contiguous versions of the loblolly pine reference genome. As such, 
variation in sequence depth required that we realign the reads from 
each sample to the most recent reference. Variant discovery prior-
itized finding strong heterozygous polymorphisms in individual 
samples while tracking additional lower-confidence variation in 
the sequence. To assess genomic heterozygosity and select optimal 
variants for array design, two versions of variant detection were per-
formed on the exome capture and ddRADseq cohorts. First, a stan-
dard quality run was performed on the aligned reads to determine 
base-level polymorphisms. A stricter second run was subsequently 
performed to identify a subset of high-quality variants for probe 
design (Fig. 1, Table 1). The number of strict and standard qual-
ity variants relates to genomic source, number of individual trees, 
and the fraction of reads that map to the reference genome. Exome 
capture data sets from 375 and 24 trees produce approximately 
7.7 million and 1.5 million strict quality variants, respectively. The 
lower-coverage ddRADseq data sets of 1536 (35% mapping rate) 
and 753 trees (75% mapping rate) generated approximately 260,000 
and 1.1 million strict quality variants, respectively. Variants from 
the previous Illumina Infinium array (Eckert et al., 2010) were also 
included. These 3029 probes (≤50-bp flanks surrounding the target 
genotype) were generated from EST contigs and therefore lacked 
reference genome coordinates. To include them, probes that con-
tained at least 70 nucleotides of flanking sequence (3021 of the 
3029) were aligned to the reference genome. A total of 1294 variants 
aligned (43%), but only 1181 (39%) aligned without gaps and could 
be assigned reference genome coordinates. The low alignment suc-
cess and high prevalence of gaps may be the result of exceptional 
variation in the probe regions, fragmentation of the reference, and 
assembly errors. However, all 3021 Illumina Infinium probes with 
sufficient sequence were included as candidates for the screening ar-
ray because they previously converted in loblolly pine populations. 

The set of well-aligned probes (1181) was assessed with the filter-
ing criteria applied to all other variants with physical positions in 
the genome. The final merged set of alleles contained 35,196,703 
bi-allelic variants with 8,272,630 candidate variants of strict qual-
ity across 2688 unique individuals. The variants from the ddRAD-
seq and exome sequencing were coded to include 35 nucleotides 
of reference flanking sequence on either side of the variant to rep-
resent final probe sequence length. These probes were assessed for 
off-target hybridization to filter variants based on the 18-mer align-
ment frequency (Appendix S2A). A total of 33,087,264 18-mers 
comprised the set of probes, with 24,875,817 being unique. The 
average 18-mer mapped 14.6 times to the genome, demonstrating 
the expansive repetitive content and potential for off-target hybrid-
ization (Appendix S2B). The full length of the probe was assessed 
on the sum genome alignments of each 18-mer that comprised the 
flanking sequence (Appendix S2C). The minimum score for a probe 
would therefore be four if each of the four probe 18-mers mapped 
to the genome uniquely. The mean probe score was 286 (median 
8; maximum 4,667,554). Probes with a score above the mean were 
removed, resulting in a filtered set of 7,744,534 variants from 2608 
unique individuals.

The 10 whole genome re-sequenced haploid (megagameto-
phyte) samples were included to increase the pool of genome-
wide variants (De La Torre et al., 2019). These samples were not 
included in the k-mer testing, but flanking sequence content was 
subject to downstream filtering steps. Polymorphisms were called 
and filtered in an identical manner to the previous cohorts and 
provided 1,546,311 strict and 7,702,804 standard quality variants. 
These variants were further filtered to remove heterozygous calls as 
the haploid megagametophyte tissue source should not be hetero-
zygous. The heterozygous calls in these samples represented 64% of 
strict quality sites. These likely arose from alignment errors (multi-
mapping) stemming from the genome’s repetitive and pseudogene 
content. Strict quality variants that were heterozygous in at least one 
haploid sample were removed, resulting in 557,204 retained vari-
ants. Further heterozygosity filtering on the exome capture cohorts 
(also haploid tissue sourced) was performed later in the screening 
array and removed approximately 10% of variants from these sam-
ples. When combined with the other cohorts, there were 8,101,034 
unique variants across 2618 unique individuals. The number of 
variants contributed from each data set (Table 1) is dependent on 
the number of samples, genomic data source, and sequence depth. 
Strict quality variant filtering required a minimum coverage of 10 
and a minimum alternate allele coverage of 6, which limits identify-
ing variants from WGS samples and lower-coverage sources.

Probe creation and annotation

Designing probes with polymorphic sites in the flanking sequence 
is known to decrease binding affinity during genotyping (Benovoy 
et al., 2008). To mitigate this, the 8.1 million filtered probe flank 
sequences were annotated with polymorphisms from both the strict 
and standard quality variant data set. Probes containing at least one 
flanking arm without variants of any type or quality were kept. The 
other arm could contain variant sites but was trimmed before the 
first variant. This dramatically reduced the set of passing probes to 
642,275 (622,443 SNPs and 19,832 indels) from 2618 unique in-
dividuals. A total of 1656 of these probes were from the Illumina 
Infinium array that did not align to the v2.01 genome and 1178 
were from those that did align. All 642,275 variants were passed to 

(2)G =
(M − P) (M − P)�

2�p
(
1 − p

)
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Thermo Fisher Scientific for scoring, using the v2.01 reference ge-
nome. To additionally assess the proximity of these probes to genes, 
variants were annotated with SnpEff (Fig. 2A, Appendix S3). This 
resulted in 18.4% of the total variants situated in or around 19,001 
unique genes (less than 5000 nt upstream or downstream of a gene). 
The largest of these categories were intron variants (6.3%, variants 
within an intron including splice sites), upstream or downstream 
variants (6.5%, within 5000 nt upstream or downstream of a gene), 
and synonymous variants (3.6%). A total of 5% of variants were an-
notated as having a high or moderate impact on a predicted protein 
product. High-impact variants are predicted to be greatly disrup-
tive to the protein product (e.g., truncation, frameshift, splice site 
variant), whereas moderate-impact variants may disrupt protein 
functionality (e.g., missense variant, inframe indel). In total, synon-
ymous or missense variants occurred within the coding region in 
2798 unique genes.

Screening array

The 642,275 variants for manufacture on the screening array were 
scored and included 58,155 variants in the “recommended” cat-
egory, 99,982 variants in the “neutral” category, 475,585 variants 
in the “not recommended” category, and 8551 variants in the “not 
possible” category. A subset of these markers was used to gauge the 
relationship between the bioinformatic scoring categories and pre-
viously obtained empirical data, because they were successfully con-
verted to array SNPs as part of the previously successful Illumina 
Infinium array project (Eckert et al., 2010). Out of the 3279 mark-
ers, 595 were labeled as “recommended,” 588 were labeled as “neu-
tral,” and 2096 were labeled as “not recommended.” This suggests 
that the bioinformatic scoring categories used here may have little 
utility in predicting the conversion success of markers in complex 

genomes and reiterates the need for empirical data when evaluat-
ing variants in such species. Due to the presence of markers with 
homologous alleles that require more than one probe, the final 
manufactured screening array contained a total of 423,695 variants 
from the original list of 642,275 (Appendix S4). The preliminary 
output of the Axiom Analysis Suite software, provided as a service 
by Thermo Fisher Scientific, labeled 27,336 variants as “polymor-
phic, high-resolution with three clusters,” 32,277 variants as “poly-
morphic, high-resolution with two clusters,” and 25,232 variants as 
“call rate below threshold” (Appendix S4). Here, the word “cluster” 
refers to a group of genotype calls having a similar signal intensity 
based on the colors associated with the two alleles of a given marker 
on the array. The number of clusters for a microarray variant is 
the number of distinct genotypes that a marker yields. The screen-
ing array pipeline described above in the Methods took as input 
these 84,845 markers, and filtered 5991, 16,050, 4786, 1963, 4409, 
and 1228 variants in steps 1 through 6, respectively. The conversion 
rate was 97%, 44%, and 38% for variants in the scoring categories 
“polymorphic, high-resolution with three clusters,” “polymorphic, 
high-resolution with two clusters,” and “call rate below threshold,” 
respectively. This suggests that two-cluster markers should still be 
considered in outcrossing species with large effective population 
sizes such as conifers, where the site-frequency spectrum has a well-
known bias toward low-frequency variants. No minor-allele homo-
zygotes were observed for close to 30% of the selected variants. The 
variant filtering procedure using the screening array increased the 
average marker-based heterozygosity by 80%, and nearly doubled 
the average polymorphic information content of selected markers 
relative to the non-selected markers (Appendices S2, S5). The site-
frequency spectrum showed a large shift toward moderate allele 
frequencies relative to the non-selected markers (Appendix S6), 
which should be considered in downstream applications where 

FIGURE 2.  Proximity and function of pre-screening candidate variants and final array variants to genes. (A) Annotation of 642,275 candidate probes 
prior to scoring by Thermo Fisher Scientific and screening array selection. Results do not include 1656 Illumina Infinium array probes that did not have 
reference gene coordinates. Rare functions were grouped as “other.” All annotation categories and effects are available in Appendices S3 and S7. (B) 
Annotation of the final array probes. Results do not include 919 Illumina Infinium array probes that do not have reference genome coordinates. 
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omission of rare variants affects methodological performance (e.g., 
demographic model fitting). This underscores the fundamental im-
portance of empirical population-based data in variant selection 
for genotyping arrays, particularly in conifer species with a large 
effective population size. In its final form, the production array con-
tained 46,439 unique features (45,197 SNPs and 1242 indels) from 
2423 unique individuals. The final number of markers was lower 
than the number of variants in the original list (50,418) for two 
reasons: (1) variants with complementary nucleotides require more 
than one probe, and (2) stochastic production issues during array 
manufacture resulted in less than 100% of the surface area of the 
chip being available for probe synthesis.

Final genotyping array

The final Pita50K production array contained 36 aligned and 919 
non-aligned Illumina Infinium variants. Of the 45,520 probes with 
reference genome coordinates, 33.9% were annotated in or near 
genes, which is markedly higher than the 18.4% in the 642,275 can-
didates on the pre-screening array (Fig. 2B, Appendix S7). Similarly, 
the largest of these categories were intron variants (10.9%), up-
stream or downstream variants (9.5%), and synonymous variants 
(9.6%). A reduced fraction of 2.9% were annotated as having a 
medium or high impact on the protein product. The type of initial 
genomic resource did not heavily bias the proportion of variants 
contributed in or near genic regions. ddRAD data sets provided 
36.7% of variants in the final array and 28.4% of those annotated in/
near genes. Together, a total of 5854 unique genic regions (including 
variants upstream and downstream of a gene) are represented, with 
5688 variants occurring within the coding region of 2796 unique 
genes. A total of 10,469 variants on the final array are within regions 
of open chromatin. The 45,520 probes cover 2,553,757 unique nu-
cleotides on 20,682 unique scaffolds in the 22.5 Gbp v2.01 genome 
assembly that comprises 1,762,655 scaffolds.

The genomic relationship matrix computed from these markers 
captured relationships between individuals previously thought to be 
unrelated (Appendix S8). The mean of the distribution of C matrix 
was −0.035, indicating that the markers were largely in agreement with 
the pedigree information, but also suggesting previously unknown re-
lationships between individuals. This result demonstrates the value of 
genome-wide markers in capturing putative ancestral relationships 
that are missed by the pedigree or errors in pedigree records. A small 
number of samples showed large disagreements between the pedigree 
and the marker information; in at least two cases, this represented 
cross-contamination between adjacent wells of a DNA plate. In a 
small number of other cases, pedigree recording errors were deemed 
the most likely explanation for the discrepancies.

DISCUSSION

As evident through the completion of the first 11 gymnosperm ge-
nomes in the past six years, sequencing and assembling large genomes 
is now accessible (Zimin et al., 2017). Among these conifer genomes, 
only one is organized into chromosome-scale scaffolds and all remain 
challenging to annotate (Scott et al., 2020). Despite this, exome cap-
ture and other reduced representation approaches are now commonly 
used to interrogate these mega-genomes. Their complexity, paired 
with long generation times, makes them an ideal candidate for GS. At 
the same time, the diverse (polymorphic) outcrossing populations and 

the repetitive nature of conifer genomes present unique challenges. 
The Pita50K array represents the first pine resource that is designed 
across several independent high-throughput genomics studies. The 
diverse populations represented by these studies increased the repre-
sentation of genetic variation across the species range. Compared to 
the arrays that have come before it, the Pita50K array has the added 
advantage of a comprehensive screening design that will guarantee 
success in future applications. Unlike recent approaches that primar-
ily leveraged transcriptomes or exome capture, Pita50K includes vari-
ants both within and around genes along with substantially further 
upstream or downstream variants that may capture important reg-
ulatory elements. Finally, the use of an improved reference genome 
provides insight into the limitations of using only gene-targeting data 
sets. The exome capture sources in this study provided over nine mil-
lion high-quality variants but only within 45.7% of all predicted genes 
and only 43% of EST-derived probes aligned to the reference genome. 
Exome bait design resulting in off-target or failed genome alignments 
has been observed in other pine species (Suren et al., 2016; Telfer et al., 
2019).

While the Thermo Fisher Axiom technology provides a cost-
competitive approach for genotyping at scale, the use of shorter 
probes is a considerable hurdle for repetitive plant genomes. Although 
longer probes provide greater sequence complexity and reduce off-
target alignments, the ubiquity of polymorphisms in flanking se-
quences (the largest filter barrier in constructing this array) may 
further limit the number of viable probes. The bioinformatic approach 
presented in the construction of this array considers the unique as-
pects of the reduced representation approaches, ploidy of the original 
samples, off-target probe potential, and polymorphic nature of the 
populations to provide high-quality variants. Compared to previous 
array constructions for pines, the use of a reference genome greatly 
enhanced the pool of potential high-quality variants for the screen-
ing array. Limiting the scope to genic regions would have reduced the 
final size of the array or required lower-quality thresholds for vari-
ants. The high frequency of problematic heterozygous calls from hap-
loid tissue and poor alignments of probes from the set of successful 
variants evaluated on the first array remain a challenge. Above all, we 
demonstrated that a pedigree-informed screening array is imperative 
to the final selection process and should be used with the informatic 
recommendations provided here.
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APPENDIX S1. Distributions of 18-mer genome mapping rates 
and probe composition. (A) Each of the 8,272,630 candidate probes 
built around high-quality variants are broken into four 18-mer 
sequences with the central variant represented twice in reference 
bases. An 18-mer sliding window queries the reference genome 
(v2.01) for 18-mer alignment rates. A probe’s four 18-mer genome 
alignment counts are then summed to create the probe’s total map-
ping score. (B) The distribution of mapping rates for probe 18-mers 
(barred at <1000) is shown. A majority of 18-mers map to the ge-
nome multiple times, which could result in off-target probe hybrid-
ization. (C) The distribution of probe mapping scores summed from 
each probe’s four 18-mers from (B). Probes with a score greater than 
the mean (286) are eliminated.

APPENDIX S2. Marker-based heterozygosity (H) increased by 
80% for selected SNPs relative to non-selected SNPs. A histogram 
and overlaid density plot for marker-based heterozygosity (H) is 
shown for non-selected SNPs (blue) and selected SNPs (orange). 
Vertical dashed lines show the mean for both groups.

APPENDIX S3. Full SnpEff annotation of 642,275 variants with 
reference genome coordinates before scoring by Thermo Fisher 
Scientific and in the final array. A total of 117,783 variants (18.4%) 
are annotated near/in genes.

APPENDIX S4. Bioinformatic scoring categories for screening ar-
ray variants provided by the Axiom Analysis Suite, based on a num-
ber of metrics including cluster quality, signal intensity, number of 
distinct clusters, and amount of missing data.

APPENDIX S5. Polymorphic information content (PIC) nearly 
doubled for selected SNPs relative to non-selected SNPs. A histo-
gram and overlaid density plot for PIC is shown for non-selected 
SNPs (blue) and selected SNPs (orange). Vertical dashed lines show 
the mean for both groups.

APPENDIX S6. A folded site frequency spectrum of selected mark-
ers showed a marked shift toward intermediate-frequency SNPs 
relative to non-selected markers. A histogram and overlaid density 
plot for minor allele frequency (MAF) is shown for non-selected 
SNPs (blue) and selected SNPs (orange). Vertical dashed lines show 
the mean for both groups.

APPENDIX S7. Full SnpEff annotation of the 45,520 variants with 
reference genome coordinates in the final array. A total of 15,424 
variants (33.9%) are annotated near/in genes.

APPENDIX S8. Distribution of deviations between the additive nu-
merator relationship matrix (A) and the genomic relationship ma-
trix (G). The distribution shows the efficiency of molecular markers 
in capturing ancestral relationships among individuals.
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