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Michael J. Gandal,1,2 Kelley Paskov,4,5 Nate Stockham,4,5 Damon Polioudakis,3 Jennifer K. Lowe,1,2 David A. Prober,7

Daniel H. Geschwind,1,2,3,8,* and Dennis P. Wall4,5,12,*
1Department of Psychiatry and Biobehavioral Sciences, Semel Institue, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
2Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
3Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
4Department of Pediatrics, Division of Systems Medicine, Stanford University, Stanford, CA, USA
5Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
6Bioinformatics IDP, University of California, Los Angeles, Los Angeles, CA, USA
7Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
8Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
9Present address: Illumina Artificial Intelligence Laboratory, Illumina, Inc., San Diego, CA, USA
10Present address: Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
11These authors contributed equally
12Lead Contact

*Correspondence: dhg@mednet.ucla.edu (D.H.G.), dpwall@stanford.edu (D.P.W.)

https://doi.org/10.1016/j.cell.2019.07.015
SUMMARY

We performed a comprehensive assessment of
rare inherited variation in autism spectrum disorder
(ASD) by analyzing whole-genome sequences of
2,308 individuals from families with multiple affected
children. We implicate 69 genes in ASD risk, including
24passinggenome-wideBonferronicorrectionand16
newASD risk genes,most supported by rare inherited
variants, a substantial extension of previous findings.
Biological pathways enriched for genes harboring in-
herited variants represent cytoskeletal organization
and ion transport, which are distinct from pathways
implicated in previous studies. Nevertheless, the de
novoand inheritedgenescontribute toacommonpro-
tein-protein interaction network. We also identified
structural variants (SVs) affecting non-coding regions,
implicating recurrent deletions in the promoters of
DLG2 and NR3C2. Loss of nr3c2 function in zebrafish
disrupts sleep and social function, overlapping with
human ASD-related phenotypes. These data support
the utility of studying multiplex families in ASD and
are available through the Hartwell Autism Research
and Technology portal.

INTRODUCTION

Autismspectrumdisorder (ASD) is a neurodevelopmental disorder

characterized by early deficits in social communication and

interaction together with restricted and repetitive patterns of

behavior, interest, or activity (American Psychiatric Association,

2013). Global prevalence is 1%–2% (Developmental Disabilities
850 Cell 178, 850–866, August 8, 2019 ª 2019 Elsevier Inc.
MonitoringNetworkSurveillanceYear 2010Principal Investigators

andCenters for DiseaseControl andPrevention (CDC), 2014),with

heritability estimated at 60%–90% (Colvert et al., 2015; Gaugler

et al., 2014; Geschwind and Flint, 2015; Hoekstra et al., 2007;

Klei et al., 2012; Sandin et al., 2014; Skuse et al., 2005).

Considerable progress in gene discovery has come from

studies of families with one affected child (simplex families),

identifying de novo copy number variants (CNVs) (Levy et al.,

2011; Marshall et al., 2008; Sanders et al., 2011; Sebat et al.,

2007), and de novo frameshift, splice acceptor, splice donor,

or nonsense variants (collectively referred to as protein-trun-

cating variants [PTVs]) (De Rubeis et al., 2014; Iossifov et al.,

2012, 2014; O’Roak et al., 2012; Sanders et al., 2012) that in-

crease ASD risk and account for an estimated 3%–5% of ASD

cases (Constantino et al., 2010; Gaugler et al., 2014; Ozonoff

et al., 2011; Sandin et al., 2014; Werling and Geschwind,

2015). Despite these remarkable advances in identifying de

novo (germline) mutations in ASD, by definition, de novo muta-

tions account for none of the substantial heritability of ASD.

To date, recurrent CNVs are the primary established form of in-

herited risk variation for ASD (Glessner et al., 2009; Leppa et al.,

2016;Mefford et al., 2008). Exploration of other types of inherited

risk variation (SNVs and indels) has been drawn primarily from

families containing only one affected child (De Rubeis et al.,

2014; Krumm et al., 2015), which are depleted for inherited risk

compared with families with two ormore affected children (multi-

plex families) (Ronemus et al., 2014; Sebat et al., 2007; Virkud

et al., 2009). A recent study by the MSSNG consortium was

limited to large rare CNVs and de novo protein-coding variation,

despite drawing 40% of samples from multiplex ASD families

(Yuen et al., 2017). Thus, a majority of ASD risk genes, especially

those contributing to inherited risk, have yet to be identified.

Moreover, without broader knowledge of individual genes

contributing to heritable risk for ASD, whether rare de novo

mailto:dhg@mednet.ucla.edu
mailto:dpwall@stanford.edu
https://doi.org/10.1016/j.cell.2019.07.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2019.07.015&domain=pdf
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Figure 1. Overview of the Analysis Pipeline

High-coverage whole-genome sequence reads were aligned to the human reference genome (hg19) and quality control checks were applied to ensure both

sample identity and sequencing coverage (Figure S1). SNVs and indels were called following GATK’s best practices, annotated using both VEP and ANNOVAR,

and then filtered for mildly stringent quality thresholds. All de novo variants were classified by ARC and high-confidence variants were retained (Figures 3, S3, and

S4). Large SVs were identified by four different SV detection algorithms, three of which used aligned sequence reads and one that performed de novo alignment

(SMuFin). Large SVs were annotated using Bamotate and then filtered for high-quality variants by using our multi-algorithm consensus pipeline. The resulting

variants were then analyzed to identify ASD risk factors and perform integrative genomic analyses.
and inherited risk variants impact the same biological pathways

remains an important but unanswered question. Here we used

whole-genome sequencing (WGS) to identify both rare de novo

and inherited genetic risk factors for ASD in both coding and

non-coding regions of the genome in the largest cohort of multi-

plex families evaluated to date.

RESULTS

We analyzed high-coverageWGS data from 2,308 individuals in

493 multiplex ASD families from the Autism Genetic Resource

Exchange (AGRE) (STAR Methods; Figure 1; Figure S1;

Table S1). This cohort, the Hartwell Autism Research and Tech-

nology Initiative (iHART), includes 960 affected children and

217 unaffected children for whom both biological parents

were sequenced.
Excess of High-Risk Inherited Variants in Affected
Children
Previous studies have shown that siblings discordant for ASD

exhibit similar overall mutation rates but differ in the rates of

certain classes of deleterious mutations (e.g., de novo PTVs)

and in the specific biological processes represented by genes

hit with deleterious variants (e.g., chromatin modifiers) (Iossifov

et al., 2012, 2014; O’Roak et al., 2012; Sanders et al., 2015).

Because multiplex ASD families are expected to be enriched for

inherited risk variants (Ronemus et al., 2014; Sebat et al., 2007;

Virkud et al., 2009), we first assessed the rate of rare inherited var-

iants in affected and unaffected children. We found no excess of

rare (allele frequency [AF] % 0.1%) inherited PTVs or missense

variants in affected subjects (Figures 2A and S2A–S2E).

To investigate non-coding regions likely to have the largest as-

sociation signal (An et al., 2018), we examined whether private
Cell 178, 850–866, August 8, 2019 851
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(observed in a single family) inherited variants were enriched in

the promoter regions of affected versus unaffected iHART chil-

dren (STAR Methods). We found no enrichment in affected sub-

jects globally (STAR Methods; p = 0.07, quasi-Poisson linear

regression), nor when restricting the analysis to promoters of

known ASD risk genes (STAR Methods; p = 0.26, quasi-Poisson

linear regression). We still found no significant excess of private

inherited variants in the promoters of affected subjects when

combined with 517 affected and 518 unaffected subjects from

the Simons Simplex Cohort (SSC; STAR Methods; all genes,

p = 0.14; ASD risk genes, p = 0.12).

Similarly, we observed no difference in the overall rate of rare

inherited SVs nor gene-disrupting SVs between affected and

unaffected individuals (Figures S2F–S2M). The absence of sub-

stantial rate differences for rare inherited variants is consistent

with prior studies, which either found no global signal or only

identified signals in selected candidates (Brandler et al., 2018;

De Rubeis et al., 2014; Krumm et al., 2015; Leppa et al., 2016;

Werling et al., 2018). Our findings are also consistent with the

expected lower average effect size and reduced penetrance of

inherited risk variation relative to de novo pathogenic mutations.

Given the low effect size of inherited risk variants, we further

leveraged family structure to identify rare variants transmitted

to all affected but no unaffected children under the hypothesis

that such variants may confer a high disease risk. These high-

risk inherited variants were further defined as variants disrupting

highly constrained genes (those predicted to be the least tolerant

to loss-of-function mutations in the human population; pLI R

0.9; Lek et al., 2016; STAR Methods). We identified 98 unique

genes harboring these high-risk inherited variants, including 62

PTVs and 40 SVs disrupting a coding exon or promoter. Three

genes (NR3C2, NRXN1, and ZMYM2) were disrupted by a PTV

in one family and a SV in a second family. To determine whether

these findings were significant, we performed 1,000 permuta-

tions under the null, using the observed PTV counts and esti-

mated gene mutation rates (Samocha et al., 2014; STAR

Methods). We observed a striking depletion of PTVs in con-

strained genes in our cohort (observed = 57, expected = 255

by permutation; STAR Methods). Indeed, both iHART parents

and SSC parents had five times fewer PTVs in constrained genes

than expected from previously established de novo rates,
Figure 2. Inherited ASD Risk Genes

(A) The number of rare inherited coding variants per fully phase-able child is d

consequence. Mean ± standard error (SE) rates are shown.

(B) Odds ratios from simulations of high-risk inherited PTV or synonymous (SY

gnomAD o/e score) and the cohort used for calculation of the null PTV or SYN

Fisher’s exact test comparing the rate of PTVs in constrained versus non-constrai

also shown. Significant p values are displayed. Whiskers represent 95% confide

(C) Direct and indirect PPI networks formed by constrained genes harboring PTV

affected children in a family. Proteins are colored according to the variant category

ASD risk genes (Sanders et al., 2015) are shown in purple. Significant seed genes

(D) Pedigrees for five ASD families with coding or regulatory NR3C2 variants. Sq

individual. Both SSC families harbor de novo variants in the proband (a PTV in S

prediction by PolyPhen-2; Adzhubei et al., 2010] in SSC12937). iHART families A–

an �850-bp deletion in family A, a PTV in family B, and a Mis3 variant in family C.

149363852) overlaps a functional non-coding regulatory region in the developing h

average ATAC-seq peak read depth from the cortical plate (CP) and ventricular zo

deletion.
whereas non-constrained genes follow the expected rate (Sa-

mocha et al., 2014; STAR Methods). This finding is consistent

with natural selection acting rapidly to eliminate deleterious

mutations.

We next updated our simulations to match the empirical ratio

of PTVs in highly constrained genes (pLI R 0.9) versus all genes

in three cohorts: the SSC (Werling et al., 2018), this iHART

cohort, or an Alzheimer’s disease (AD) cohort (Bennett et al.,

2018; STAR Methods), the latter selected for comparison

because of the lack of ASD comorbidity. We observed a signifi-

cant enrichment (p < 0.05 by permutation; STAR Methods) for

high-risk inherited variants disrupting constrained genes in

iHART when the PTV ratio was matched to AD (p = 0.007), trend-

ing enrichment when matched to SSC (p < 0.16), and no enrich-

ment when matched to iHART (Figure 2B; STAR Methods). We

draw two conclusions from these observations. First, the rare

variant burden within constrained genes differs across the

iHART, SSC, and AD cohorts; we observed significantly more

PTVs in constrained genes in the parents within the ASD cohorts

(iHART and SSC) than in the AD cohort (Fisher’s exact test, p =

1.3 3 10�6; OR = 1.3; 95% confidence interval, 1.2–1.5; Fig-

ure 2B). Second, we validated the high-risk inherited approach

(which identified 98 genes harboring high-risk inherited variants)

by observing an excess of PTVs transmitted to all affected but

not to unaffected children (transmission disequilibrium) in con-

strained genes (Figure 2B; p = 0.007; STAR Methods). Further-

more, genome-wide PTVs show a trend toward increased PTV

transmission to all affected but no unaffected children (p =

0.08), suggesting that inherited PTVs, even in not highly con-

strained genes, increase ASD liability. Thus, although we find a

significant signal for inherited variants in highly constrained

genes, larger samples will be needed to reach significance for

inherited, lower-penetrant variants more broadly.

High-Risk Inherited Coding and Non-coding Variants
Form a Significant PPI Network
Because genes harboring de novo PTVs are enriched in gene

networks representing specific biological pathways (Hormoz-

diari et al., 2015; Krishnan et al., 2016; Parikshak et al., 2013),

we reasoned that similar enrichment among genes harboring in-

herited risk variants would provide orthogonal support for the
isplayed for 960 affected (red) and 217 unaffected (blue) children by variant

N) variants. Results are shown for constrained genes (gnomAD pLI score or

rate is displayed (cohort-matched class rate). The odds ratio resulting from a

ned genes in the iHART and SSC cohorts with that observed in the AD cohort is

nce intervals.

s or SVs (promoter- or exon-disrupting) transmitted to all affected but no un-

of the variant identified in the high-risk inherited analysis, and previously known

are shown in bold and orange font. The p values are from 1,000 permutations.

uares: male; circles: female; filled shapes: individual with ASD; +: sequenced

SC13197 and a probably damaging missense [Mis3, a ‘‘probably damaging’’

C harbor rare inherited variants transmitted to both affected children, including

The NR3C2 promoter-disrupting deletion (orange rectangle, chr4:149363005-

uman brain (chr4:149362706-149367485) (de la Torre-Ubieta et al., 2018). The

ne (VZ) of developing human brain samples (n = 3) are shown below theNR3C2
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role of these genes in ASD biology. Indeed, the protein products

of the 98 genes harboring high-risk inherited variation form a sig-

nificant direct protein-protein interaction (PPI) network (p <

0.008; STARMethods; Figure 2C) as well as a significant indirect

PPI network (p < 0.002) that highlights seven risk genes as signif-

icantly connected hubs (corrected seed score p < 0.05) (Fig-

ure 2C). This PPI network is enriched for members of the BAF

(SWI/SNF) complex (two-sided Fisher’s exact test; p = 0.02;

OR = 5.9; 95% confidence interval, 1.1–20.7), including ARID1B,

SMARCC2, and SMARCA4, which are involved in chromatin re-

modeling during cortical neurogenesis and have previously been

associated with de novo variation in ASD (Parikshak et al., 2013;

Vandeweyer et al., 2014). These data show, for the first time, that

rare inherited and de novo variations impact potentially overlap-

ping molecular processes based on their convergence within a

PPI network.

InheritedRegulatory DeletionsDisruptNR3C2 andDLG2

Among the 98 genes harboring high-risk inherited variation, we

focused on NR3C2, which had not been consistently associated

with ASD in previous studies (transmitted and de novo associa-

tion [TADA] false discovery rate [FDR] = 0.079 [De Rubeis et al.,

2014], TADA FDR = 0.136 [Sanders et al., 2015]). Our analysis of

high-risk inherited variation provides the first evidence of in-

herited risk in NR3C2, including non-coding structural variation,

and further supportsNR3C2 as an ASD risk gene (Figure 2D). The

three families with NR3C2 risk variants share striking phenotypic

similarities, defining a new syndromic form of ASD characterized

by metacarpal hypoplasia, a high arched palate, sensory hyper-

sensitivity, and abnormal prosody (Table S1).

A second gene identified by the analysis of high-risk in-

herited variation was DLG2, which is associated with cogni-

tion and learning in mice and humans (Belgard and Gesch-

wind, 2013; Nithianantharajah et al., 2013) but was not

previously implicated in ASD. We identified three families

with the same 2.5-kb deletion in the DLG2 promoter (Fig-

ure S2N), which falls in a recently defined, functional, non-

coding regulatory region in the developing human brain (de

la Torre-Ubieta et al., 2018; Figure S2N) and likely arose inde-

pendently because the deletion is found on a different haplo-

type in each family (STAR Methods; Table S1). No deletions

overlap the DLG2 promoter deletion in controls (n = 26,565

controls; STAR Methods), suggesting that this region is highly

constrained. This rare regulatory mutation is significantly

associated with ASD (3 of 484 unrelated affected children

versus 0 of 2,889 WGS controls, two-sided Fisher’s exact

test, p = 0.003, OR = Inf, 95% CI = 2.47-Inf).

Identification of High-Quality De Novo Variants by
Machine Learning
De novomissense variants and PTVs have been identified as sig-

nificant risk factors for ASD in simplex families (De Rubeis et al.,

2014; Iossifov et al., 2014; Samocha et al., 2014). However, true

de novo mutations may be indistinguishable from data artifacts,

especially in WGS data derived from lymphoblastoid cell line

(LCL) DNA, which, despite widespread use in the genetics com-

munity, may contain mutations introduced and propagated dur-

ing cell line transformation that are unrelated to disease biology
854 Cell 178, 850–866, August 8, 2019
(Conrad et al., 2011; Abecasis et al., 2010). We reasoned that

removal of LCL-derived artifacts from samples whose biomate-

rials were limited to LCL DNA (Table S1) would be critical for

de novo variant identification in this study as well as of broad util-

ity for studies using LCLs. Therefore, we developed a supervised

random forest model, Artifact Removal by Classifier (ARC), to

distinguish true rare de novo variants (RDNVs) from LCL-specific

genetic aberrations as well as artifacts such as sequencing and

mapping errors.

We used 76 pairs of monozygotic (MZ) twins with LCL DNA

from iHART to train ARC under the assumption that true de

novo variants would be present in both twin pairs but LCL-

derived artifacts would not. ARC incorporates 48 features repre-

senting intrinsic genomic properties, (e.g., GC content, de novo

hotspots; Michaelson et al., 2012), sample-specific properties

(e.g., number of de novo SNVs), signatures of transformation of

peripheral B lymphocytes by Epstein-Barr virus (e.g., number

of de novo SNVs in immunoglobulin genes), or variant properties

(e.g., GATK variant metrics) (Figure 3A). To evaluate ARC, we

applied it to WGS from LCL-derived DNA in 17 patients and

compared it with WGS derived from whole blood (WB) in the

same patients. The resulting random forest classifier achieved

an area under the receiver operating characteristic (ROC) curve

of 0.99 and 0.98 in the training and test sets, respectively (Fig-

ures 3B, 3C, and S3), indicating that ARC very successfully dis-

tinguishes true and false de novo variants.

Application of ARC in the 1,177 children for whom both biolog-

ical parents were also sequenced successfully eliminated the

significantly higher rate of RDNVs in LCL samples (Figures

S4A–S4C) and resulted in the expected genome-wide de novo

mutation rate (mean = 60.1 RDNVs per child; Figure S4B) (Be-

senbacher et al., 2016; Conrad et al., 2011; Kong et al., 2012; Mi-

chaelson et al., 2012; Turner et al., 2016; Yuen et al., 2017).

Running ARC similarly corrected mutation rates to reveal that

iHART children exhibit the well-known effect of paternal age on

de novo mutation rates (increase of 1.46 RDNVs per year of

paternal age; STAR Methods; Figure S4D) (Deciphering Devel-

opmental Disorders Study, 2017; Francioli et al., 2015; Gold-

mann et al., 2016; Michaelson et al., 2012). These RDNV proper-

ties match expectation, confirming that we had high-

quality RDNVs for downstream analyses.

Evidence for Depletion of Rare De Novo ASD Risk in
Multiplex Families
We hypothesized that the iHART multiplex families would be

enriched for inherited risk variants relative to previous studies

of simplex families in whom de novo variants primarily contribute

to disease risk. Leppa et al. (2016) previously found an enrich-

ment of rare de novoCNVs in affected comparedwith unaffected

children in simplex SSC families but not in multiplex AGRE fam-

ilies. Consistent with that finding, we observed no significant

association for de novomissense variants (p = 0.56, quasi-Pois-

son linear regression) or PTVs (p = 0.87, quasi-Poisson linear

regression) in affected individuals in iHART multiplex

families (Figure 3D). The rate of rare de novo PTVs in affected

children from multiplex families (AffiHART = 0.07) was approxi-

mately half of that in simplex families (AffKosmicki = 0.13) (Iossifov

et al., 2014; Kosmicki et al., 2017) and equivalent to the rate in
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Figure 3. Rare De Novo Variants in iHART

(A) Heatmap reflecting the importance ranking for all 48 ARC features listed on the x axis in order of rank and sorted on the y axis by feature category (signatures of

transformation of peripheral B lymphocytes by Epstein-Barr virus [EBV LCL], properties of variant identification, de novo hotspots, intrinsic genomic property, or

imputed feature).

(B) ROC curves for 10-fold cross-validation for the ARC training set; area under the curve (AUC) = 0.99.

(C) ROC curve and threshold (threshold values on which true/false positive rates are calculated) for the ARC test set; ROC AUC = 0.98.

(D) The rate of RDNVs per child is displayed for 575 affected (red) and 141 unaffected (blue) children (716 fully phase-able samples after excluding MZ twins and

ARC outliers) by variant consequence. Rates determined after ARC. Mean ± SE rates are shown.

(E) Pedigrees for iHART families containing RDNVs in previously established ASD risk genes. Children harboring the RDNV of interest are labeled with their iHART

sample ID and a star symbol. The missense variants in SHANK3 and PTEN are predicted to damage the encoded protein (Mis3).
unaffected children (UnaffiHART = 0.07) (Table S2). We estimated

that our current cohort had more than 70% power to detect a

rate difference for de novo PTVs in affected versus unaffected in-

dividuals (Monte Carlo integration; STARMethods), suggesting a

true difference in the underlying architecture of multiplex families

compared with simplex families. Despite not observing a global

excess for damaging RDNVs in affected children, we do identify
pathogenic de novo variants in previously established ASD risk

genes (STAR Methods; Figure 3E). Interestingly, we observe

these mutations in some, but usually not all, affected family

members, in line with a complex etiology where additional rare

or common risk loci explain ASD in affected siblings, also in

agreement with previous observations based only on large de

novo CNVs (Leppa et al., 2016).
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Figure 4. 69 ASD Risk Genes Identified by TADA Mega-analysis

(A and B) The 69 genes identified in the iHART TADAmega-analysis (FDR < 0.1) are displayed in order of increasing genemutability; the 16 novel genes are shown

in bold.

(A) The per-gene TADA FDR is displayed as a bar reaching the�log10(q value). The dashed horizontal line marks the FDR = 0.1 threshold. Bars are colored by the

proportion of inherited PTVs for each gene (inherited PTVs/[inherited PTVs + de novo PTVs + de novo Mis3 + de novo small deletions]).

(B) Violin plots of the simulated Bayes factors (displayed as log10(simulated Bayes factor), 111 quantiles from the 1.1 million simulations) for each gene. The violin

plots are colored by simulation p value (maximump value = 0.006). For each gene, the gray x indicates themedian of the simulated Bayes factors, and the blue dot

is the Bayes factor obtained in the iHART TADA mega-analysis. The larger the distance between the median simulated Bayes factor and the observed TADA

mega-analysis Bayes factor, the lower the probability of having achieved the observed Bayes factor by chance.

(legend continued on next page)
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Toexpand thisanalysis tonon-coding regions,weanalyzedpro-

moters, but did not find enrichment for rare de novo promoter var-

iants when looking globally (STARMethods; p = 0.33, quasi-Pois-

son linear regression) orwhen restricting the analysis to promoters

of knownASD risk genes (STARMethods; p= 0.42, quasi-Poisson

linear regression). We also increased power by combining our

cohort with 517 affected and 518 unaffected children with WGS

data from the SSC and still found no evidence for enrichment in

promoters (STAR Methods; all genes, p = 0.25; ASD risk genes,

p = 0.31; quasi-Poisson linear regression). These data are accor-

dant with recent results in simplex families (Werling et al., 2018),

which suggests that the effect sizes in non-coding regions are,

on aggregate, too small to detect with current sample sizes.

Identification of 16 Novel ASD Risk Genes Enriched for
Inherited Variation
We next used a powerful Bayesian framework, the TADA test

(He et al., 2013), to combine inherited and de novo signals to

identify ASD risk genes (STAR Methods). To further improve

power, we combined qualifying variants (STAR Methods) from

the iHART cohort with themost recent ASD TADAmega-analysis

(Sanders et al., 2015; Table S3). Our TADAmega-analysis identi-

fied 69 genes significantly associatedwith ASD at FDR< 0.1 (Fig-

ure 4A; Tables 1 and S3), 16 of which had not been identified pre-

viously (Figure 4A; Tables 1 and S3). The 16 novel ASD risk genes

are enriched for genes in which a higher proportion of risk vari-

ants are inherited versus de novo (STAR Methods; Figure 4A).

For 6 of the 16 novel genes (UIMC1,C16orf13,MLANA,CCSER1,

PCM1, and FAM98C) and 5 of the 53 previously associated ASD

risk genes (RANBP17, ZNF559, P2RX5, CTTNBP2, and

CAPN12), 70% or more of the qualifying variants are inherited

PTVs (Fisher’s exact test, p = 0.015; OR = 5.57; 95% CI,

1.17–28.35).

Because TADA was previously applied to simplex families, the

null distribution of the TADA statistic was not known for multiplex

families. To ensure that we did not obtain false positives (type I

errors) because of family structure alone, we estimated this

distribution by simulating Mendelian transmission and de novo

mutation across family structures using the observed variant

counts (STAR Methods). As expected, genes with the lowest

FDR in the TADA mega-analysis showed the largest simulated

Bayes factors and lowest p values (Figures S5A and S5B); the

three association statistics consistently reflect ASD risk associ-

ation (the smaller the FDRor p value and the larger the Bayes fac-

tor, the stronger the association). All 69 genes with an FDR < 0.1

in the TADA mega-analysis obtained a simulated p value of less

than 0.006 (median p = 13 10�3). The lowest simulation p value
(C) Indirect PPI network formed by the 69 ASD risk genes identified by TADA (FDR

2015)) are shown in purple, and newly identified ASD risk genes (iHART TADA meg

shown in bold blue font.

(D) Gene ontology enrichment for the 69 ASD risk genes with known biological path

risk genes (all risk genes in these pathway are listed and novel risk genes have

SLC6A1, andRAPGEF4*; (2) learning andmemory includesADNP,GRIA1*,NRXN

MYO5A*, PCM1*, and TCF7L2.

(E) Gene set enrichment results for the 69 ASD risk genes displayed by the log2(

(p < 0.002); the SSC gene set was included as a positive control. In addition to t

which contains almost all of the 16 novel ASD risk genes, six additional gene sets

(2) CCSER1 and UIMC1; (3) BTRC, PRKAR1B, and MYO5A; (4) RAPGEF4 and M
was for CHD8 (p = 9 3 10�7; Figure 4B), which is a well-estab-

lished ASD gene. We also leveraged the simulation p values

and applied a stringent Bonferroni correction (p < 2.7 3 10�6)

to highlight a high-confidence subset of 24 genes (STAR

Methods; Tables 1 and S3). Stringent Bonferroni correction

had not been utilized previously to identify genome-wide signif-

icant ASD risk genes. The most comparable approach was

applying Fisher’s exact test to variants found in a large CHD8

resequencing cohort (p = 1.01 3 10�5) (Bernier et al., 2014).

The low relative risk estimated for inherited PTVs (De Rubeis

et al., 2014)means that geneswith primarily inherited risk variants

will typically require more ASD carriers than those with primarily

de novo risk to reach the same level of association. We identified

119 genes at a relaxed statistical threshold FDR < 0.2, 84 of which

were identified previously at this threshold (Sanders et al., 2015).

For 15 of the 35 genes that had not reached FDR < 0.2 in the pre-

vious study (Sanders et al., 2015), the majority (R70%) of quali-

fying risk variants are inherited PTVs; in contrast, this was only

the case for 8 of the 84 genes identified previously (FDR < 0.2)

(Fisher’s exact test, p = 7.45 3 10�5; OR = 6.98; 95% CI, 2.39–

21.96). Consistently, for these 35 genes, we observe inherited

PTV Bayes factors higher than those obtained in the previous

TADA mega-analysis performed in largely simplex families

(Sanders et al., 2015) (Kruskal-Wallis test, p = 0.0003; FigureS6A).

For five of these 35 genes (PCM1, STARD9, GRM6, RHPN1, and

SLC10A1) and two of the remaining 84 genes (CTTNBP2 and

ZNF559), the largest association signal is from inherited PTVs.

Thus, these 35 genes are enriched for genes whose association

signal is primarily driven by inherited PTVs (Fisher’s exact test,

p = 0.02; OR= 6.70; 95%CI, 1.03–73.81) (STARMethods), further

indicating that there is a substantial, previously unrecognized

signal from rare inherited variants.

Biological Insights from Known and Novel ASD Genes
Gene set enrichment analyses (STAR Methods) indicated that

the set of 69 high-confidence ASD risk genes identified in the

TADA mega-analysis was enriched in a highly co-expressed

group of transcriptionally co-regulated genes active during

human cerebral cortical neurogenesis (module M2; Parikshak

et al., 2013), FMRP targets (Darnell et al., 2011), RBFOX1 targets

(Weyn-Vanhentenryck et al., 2014), and genes enriched for

expression in the brain versus other tissues (STARMethods; Fig-

ure 4E).We also integrated new data from single-cell sequencing

of 40,000 cells from the human brain (Polioudakis et al., 2019)

and previously published single-cell sequencing data (Lake

et al., 2018; Nowakowski et al., 2017), which reveals an overall

enrichment in mid-gestation and adult glutamatergic projection
< 0.1). Proteins encoded by a previously known ASD risk gene (Sanders et al.,

a-analysis) are shown in red. Gene labels for the six significant seed genes are

ways. Three of the enriched pathways contain one ormore of the 16 novel ASD

an asterisk): (1) negative regulation of synaptic transmission includes ADNP,

1, PRKAR1B*, SLC6A1, and SYNGAP1; and (3) organelle organization includes

odds ratio), with p values listed for gene sets surviving multiple test correction

he gene set ‘‘genes enriched for expression in the brain versus other tissues’’,

contain one or more of the 16 novel ASD risk genes: (1) TMEM39B and PCM1;

YO5A; (5) BTRC; and (6) DDX3X, GRIA1, RAPGEF4, and MYO5A.
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Table 1. 69 ASD Risk Genes Identified in the iHART TADA Mega-analysis

dnPTV

count FDR % 0.01 0.01 < FDR % 0.05 0.05 < FDR % 0.1

R2 CHD8, SCN2A, ARID1B, SYNGAP1, DYRK1A,

CHD2, ANK2, KDM5B, ADNP, POGZ, KMT5B,

TBR1, GRIN2B, DSCAM, KMT2C, TCF7L2,

TRIP12, ASH1L, CUL3, KATNAL2, GIGYF1

TNRC6B, WAC, NCKAP1, RANBP17,

KDM6B, ILF2, SPAST, FOXP1,

AKAP9, CMPK2*, DDX3X*

WDFY3, PHF2, BCL11A, KMT2E, CACNA2D3a

1 NRXN1, SHANK2, PTEN, SHANK3, SETD5 DNMT3A, MYT1L, RAPGEF4*,

PRKAR1B*

MFRP, GABRB3, P2RX5, ETFB, CTTNBP2,

INTS6, USP45, ERBIN, TMEM39B*, TSPAN4*,

MLANA*, SMURF1*, C16orf13*, BTRC*,

CCSER1*, FAM98C*

0 – SLC6A1, ZNF559, CAPN12, GRIA1* PCM1*, MYO5A*, UIMC1*

All 69 genes significantly associated with ASD risk (FDR < 0.1) by the iHART TADA mega-analysis are displayed by the number of de novo PTVs iden-

tified in the gene. The 16 newly ASD-associated genes are shown with an asterisk. The 24 underlined genes are the subset of highly confident genes

that reach genome-wide significance after Bonferroni correction.
aTheCACNA2D3 gene had an FDR< 0.1 in this iHART TADA-mega analysis but not in the previousmega analysis (Sanders et al., 2015); however, it has

been reported previously (De Rubeis et al., 2014) and, thus, is not considered a novel ASD risk gene.
neurons for both the previously established (Sanders et al., 2015)

and 16 newly identified ASD risk genes (STAR Methods; Figures

S6C and S6D). Despite enrichment of ASD genes as a class in

glutamatergic projection neurons, some genes are more broadly

expressed across neuronal cell types, many with high expres-

sion in interneurons, and others are expressed in non-neuronal

cell types such as pericytes or oligodendrocyte progenitor cells

(Polioudakis et al., 2019).

Many of the 16 new ASD risk genes from this study fall into bio-

logical pathways or gene sets of interest, including negative regu-

lation of synaptic transmission (RAPGEF4), learning and memory

(GRIA1 andPRKAR1B), and cytoskeletal organization (PCM1 and

MYO5A) (Figure 4D). Other examples include PRKAR1B, which is

in a gene co-expression module comprised of structural synaptic

proteins that are highly co-expressed during human cerebral

cortical neurogenesis and in which 60 genes harboring RDNVs

in ASD probands from early exome sequencing studies are

over-represented (Parikshak et al., 2013), and three genes that

are found in the postsynaptic density of the human neocortex

(Bayés et al., 2011): GRIA1, RAPGEF4, and DDX3X. RAPGEF4

is also a known FMRP target (Darnell et al., 2011) and was previ-

ously suggested as a potential ASD candidate gene but lacked

strong statistical support (Bacchelli et al., 2003). DDX3X was

recently reported to account for 1%–3% of unexplained intellec-

tual disability in females (Snijders Blok et al., 2015). Finally, 9 of

these 16 new ASD risk genes form a significant indirect PPI

network in concert with previously associated ASD genes

(STAR Methods; seed indirect degrees mean permutation p =

0.016; CI degrees mean p = 0.024) (Figure 4C).

Pathways harboring primarily de novo variation are domi-

nated by transcriptional and chromatin regulation (De Rubeis

et al., 2014). Using gene ontology enrichment analysis, we

asked whether inherited ASD risk variants cluster in distinct bio-

logical pathways and whether those pathways are the same or

different from those implicated by de novo variation. Indeed,

genes where the majority of the signal is from inherited variants

reveal different pathways than those published based on de

novo risk, including novel pathways related to ion transport

(z = 3.7), cell cycle (z = 4.2), and the microtubule cytoskeleton

(z = 5.7) (Figure S6E).
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ASD Risk Genes Form a PPI Network with Candidate
Genes Harboring High-Risk Inherited Variation
We next asked whether the proteins encoded by the 69 ASD risk

genes identified in the TADA mega-analysis (FDR < 0.1) interact

with the 98 candidate genes harboring high-risk inherited vari-

ants. The resulting PPI network formed by these 165 unique

genes is significant for all reported network properties (p <

0.05; STAR Methods; Figures 5A and S6B). This network reveals

interactions between genes with different levels of statistical sup-

port, ranging from high-risk inherited candidate genes and estab-

lished ASD-risk genes to new ASD-risk genes, which suggests

that many of these 98 candidate genes are true ASD risk genes.

This network is preserved even when we limit the PPI analysis to

genes emerging from the version of the TADAmega-analysis that

excluded de novo variants from the iHART cohort (FDR < 0.1; Ta-

ble S3), with the seed direct and indirect degree means both

reaching significance (p = 0.013 and p = 0.0009, respectively).

Thus, inherited risk variants critically contribute to this network.

Given that a large number of predicted ASD risk genes remain

unidentified (Ronemus et al., 2014), we applied NetSig to identify

high probability candidate genes via integration of PPI and asso-

ciation statistics (Horn et al., 2018). We identified 596 genes that

were significantlymore directly connected to ASD risk genes than

expected by chance (Figure 5B; STAR Methods; Table S4), 38 of

which are enriched in a developmental co-expression module

shown previously to contain de novo variants in ASD probands

(module M2; Parikshak et al., 2013; p = 0.0003; OR = 1.98;

95% confidence interval = 1.37–2.81). Interestingly, proteins in

the network seeded by 98 high-risk inherited genes interact

with NetSig candidates more than expected by chance, both

directly (p = 0.02; OR = 12.80; 95% confidence interval = 1.07–

111.92) and indirectly (p = 4.24 3 10�16; OR = 4.90; 95% confi-

dence interval = 3.45–6.85) (STARMethods; Figure 5B), providing

further evidence that the genes identified by the analysis of high-

risk inherited variants are likely to include true ASD risk genes.

Zebrafish Modeling of NR3C2 Syndromic ASD
Because previous evidence for NR3C2was inconsistent (De Ru-

beis et al., 2014; Sanders et al., 2015) but supported by our

analyses, we sought to firmly establish NR3C2 as an ASD risk



A

B

Figure 5. PPI Networks Formed by ASD Risk Genes

(A and B) Proteins encoded by previously known ASD risk genes (Sanders et al., 2015) are shown in purple, those belonging to the BAF complex are blue, and

those belonging to more than one category are shown with all colors that apply. Gene labels for significant seed genes are shown in bold and orange font.

(A) Direct PPI network formed by constrained genes harboring high-risk inherited variants (98 genes) and ASD risk genes identified in the TADA mega-analysis

(69 genes, FDR< 0.1). The direct PPI network formed by these 165 unique genes is significant for three connectivity metrics: the direct edges count (p = 0.036), the

(legend continued on next page)
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gene by in vivo zebrafish modeling. We created a predicted null

mutation in the single zebrafish nr3c2 ortholog using CRISPR/

Cas9 (Hwang et al., 2013; Figures S7A and S7B).

Homozygous mutant animals are viable, fertile, and morpholog-

ically indistinguishable from their wild-type (WT) siblings. We first

asked whether nr3c2 mutant zebrafish exhibit abnormal social

behaviors by developing and validating (STAR Methods; Figures

S7C–S7H) a modified version of a previously described social

preference assay (Figure 6A; Dreosti et al., 2015). We found

thatWT animals display a social preference for conspecifics (Fig-

ures S7C and S7F) at 3 weeks of age or older (data not shown),

as reported previously (Dreosti et al., 2015). We found that,

on average, nr3c2+/+ and nr3c2+/� animals showed a social

preference but nr3c2�/� animals did not (Figures 6B and 6C).

There was no significant difference in the size of nr3c2�/� ani-

mals compared with their nr3c2+/+ or nr3c2+/� siblings (Fig-

ure S7I), suggesting that the mutant phenotype was not simply

due to developmental delay. This result indicates that nr3c2�/�

animals have a social behavioral deficit.

Second, because ASD is often comorbid with disrupted sleep

(Maxwell-Horn and Malow, 2017), we assayed sleep/wake be-

haviors (Prober et al., 2006) in 5- to 7-day-old nr3c2 mutants.

We found that nr3c2�/� animals were more active and slept

less at night compared with their nr3c2+/� and nr3c2+/+ siblings

(Figures 6D–6F, 6H, and 6I). This effect was due to increased

sleep latency, longer wake bouts, and shorter sleep bouts (Fig-

ures 6G, 6J, and 6K), indicating defects in both sleep initiation

and maintenance, similar to sleep phenotypes observed in indi-

viduals with ASD (Ballester et al., 2018; Maxwell-Horn and

Malow, 2017). Thus, nr3c2 mutant zebrafish exhibit both social

deficits and sleep disturbances, parallel to core and comorbid

phenotypes observed in humans with ASD, which is consistent

with the genetic evidence implicatingNR3C2as anASD risk gene.

DISCUSSION

To date, de novo variants have provided compelling evidence for

dozens of ASD risk genes, but studies in primarily simplex families

have yielded little, if any, inherited risk signal. Here we usedWGS

to identify over a dozen new genes that are significantly associ-

ated with ASD risk, the majority of which exhibit a contribution

from rare inherited mutations. The identification of more than a

dozen novel ASD risk genes was facilitated by studying families

ascertained to contain two or more children with ASD, where in-

herited risk variants are likely to contribute to the observed ASD

recurrence (Ronemus et al., 2014; Sebat et al., 2007; Virkud

et al., 2009). We provide strong support for 69 ASD risk genes,

24 of which reach genome-wide significance after Bonferroni

correction (Table 1). This substantially extends previous work;

only a few genes had previously passed this threshold. The fact

that we did not find global differences in the rate of rare inherited

variants between affected and unaffected children is consistent

with both (1) the known lower effect size of inherited ASD risk vari-
seed direct degreesmean (p = 0.046), and the CI degreesmean (p = 0.005). Protein

PTVs are shown in teal, and newly identified ASD risk genes by the iHART TADA

(B) Indirect PPI networks seeded by genes harboring high-risk inherited variants

NetSig significant genes (p < 0.05) are shown in red.
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ation (compared with de novo pathogenic mutations) and (2) the

expectation that, inmultiplex families, the unaffected siblings (like

their unaffected parents) also carry ASD risk variation (reduced

penetrance), necessitating large sample sizes. Nevertheless, we

identified a significant excess of constrained genes harboring in-

herited PTVs transmitted to all affected children but not trans-

mitted to any unaffected children and found that these genes

converge in a PPI network. This significant PPI network is seeded

by known ASD risk genes, includingmultiple members of the BAF

complex and other chromatin modifiers, and is also enriched for

proteins that interact with additional ASD risk genes, many of

which are involved in cortical neurogenesis (Parikshak et al.,

2013). Single-cell sequencing data reveal that many of these

ASD risk genes are expressed in developing glutamatergic neu-

rons (Figures S6C and S6D), lending further support to the role

of ASD risk genes in neurogenesis.

We employedWGS to enable the detection of non-coding var-

iants and structural variation at high resolution and identified

small non-coding regulatory deletions for both DLG2 and

NR3C2. The shared phenotypic features among the NR3C2

variant carriers are consistent with a new syndromic form of

ASD (Table S1). We were able to infer biological importance of

the NR3C2 putative regulatory deletion from its open chromatin

state in the human developing brain (de la Torre-Ubieta et al.,

2018) and phenotypic concordance to the family harboring the

coding PTV. We also modeled this syndromic ASD in zebrafish,

finding that the mutant animals exhibit both social deficits and

sleep disturbances.We also identified a recurrent deletion signif-

icantly associated with ASD that disrupts the DLG2 promoter,

which further emphasizes the utility of WGS in identifying small

functional deletions in non-coding regulatory regions.

More broadly, we found no global enrichment for non-coding

variation in promoters, structural variant or otherwise, in affected

versus unaffected children. Consistently, a previous investigation

of 53 simplex families found a small enrichment (p = 0.03) for pri-

vate and de novo disruptive variants in fetal brain DNase I

hypersensitive sites in probands. However, this signal was limited

to DNase I hypersensitive sites within 50 kb of genes that had

been associated previously with ASD risk (Turner et al., 2016).

More recent studies are consistent with our lack of enrichment

for rare, non-coding variation (Werling et al., 2018). Advances in

methods for analyzing the non-coding genome, similar to what

has been done to identify functional PTVs (e.g., constraintmetrics

such as pLI), as well as increased sample sizes are necessary to

improve power for identifying non-coding risk variants.

As previous studies have shown, inherited variation alone

does not explain all instances of ASD within multiplex families,

consistent with complex genetic contributions that include

de novomutations (Leppa et al., 2016). Given our success in un-

covering many ASD risk genes whose signal is derived at least

partially from inherited variation, even modest increases in sam-

ple sizes from families with multiple affected children will likely

confirm many new genes. Our machine learning classifier,
s encoded by a gene with a high-risk inherited SV are shown in gold, thosewith

mega-analysis are shown in red.

(98 genes). Proteins are colored according to the variant class identified, and



Figure 6. nr3c2 Mutant Zebrafish Exhibit Impaired Social Preference Behavior and Disrupted Sleep at Night

(A) Schematic of the social preference behavioral assay. Boxes indicate regions used to quantify time spent by the test fish near (blue) and far (orange) from the

conspecific. Thick lines indicate opaque dividers.

(B) nr3c2+/+ and nr3c2+/� animals, on average, showed a significant preference for the conspecific but nr3c2�/� animals did not.

(C) The change in social preference index (SPI post – SPI baseline) was significantly smaller for nr3c2�/� animals compared with their nr3c2+/+ siblings. Grey data

represent individuals. Red data indicate mean ± standard error of the mean (SEM).

(D–K) Compared with their nr3c2+/+ siblings at night, nr3c2�/� animals were 14% more active (D–F) and slept 17% less (H and I) because of 27% longer wake

bouts (G) and 16% shorter sleep bouts (K). nr3c2�/� animals also showed a 28% longer sleep latency (time to first sleep bout at night) (J). There was no difference

among the three genotypes in the number of sleep bouts at night or in any of thesemeasures during the day (data not shown). The boxed region in (D) is magnified

in (E). White and black bars indicate day (14 h) and night (10 h). Grey shading indicates night. Line graphs show mean, and bar graphs show mean ± SEM for

5 pooled experiments.

n = number of animals. *p < 0.05; **p < 0.01; ***p < 0.001, ns, not significant by paired t test (B), one-way ANOVA with Tukey’s HSD post hoc test (C), or one-way

ANOVA with Holm-Sidak post hoc test (F, G, and I–K). See also Figure S7.
ARC, will also enable increases in sample sizes when only LCL-

derived DNA is available by distinguishing sequencing and cell

line artifacts from true de novo variation.

As sample sizes grow, we can confirm whether our observed

differences between simplex versusmultiplex families are gener-
alizable, but our data suggest substantial differences in their

genetic architecture. Furthermore, with larger cohorts, we may

be able to explore additive effects of both common and rare in-

herited variation and classify risk genes based on inheritance—

(1) de novo, (2) inherited, or (3) de novo and inherited—to
Cell 178, 850–866, August 8, 2019 861



establish whether these distinct gene classes are associated

with phenotypic severity and/or specific biological pathways.

One striking finding of our study is that geneswhere themajority

of the autism signal is from inherited variants are in pathways

related to ion transport, the cell cycle, and the microtubule cyto-

skeleton (Figure S6E). In contrast, genes harboring primarily de

novo variation are enriched in pathways related to transcriptional

and chromatin regulation. These observations suggest that in-

herited and denovo variation, the former expected to have smaller

effects and reduced penetrance and the latter with larger effects

(Kosmicki et al., 2017), may impact distinct biological processes.

Nevertheless, the ASD risk genes identified here contribute to

cellular processes that are interconnected at the level of gene

co-expression and PPI networks, a pattern of interaction that,

we hypothesize, will be replicated in future studies having more

power to assess variants on a broad continuum of effect sizes.

The iHART portal (http://www.ihart.org/home) provides re-

searchers access to these data, facilitating additional analyses

of these samples and integration with future cohorts.
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Comprehensive characterization of complex structural variations in

cancer by directly comparing genome sequence reads. Nat. Biotechnol. 32,

1106–1112.

Moy, S.S., Nonneman, R.J., Shafer, G.O., Nikolova, V.D., Riddick, N.V., Ag-

ster, K.L., Baker, L.K., and Knapp, D.J. (2013). Disruption of social approach

by MK-801, amphetamine, and fluoxetine in adolescent C57BL/6J mice. Neu-

rotoxicol. Teratol. 36, 36–46.

Nithianantharajah, J., Komiyama, N.H., McKechanie, A., Johnstone, M.,

Blackwood, D.H., St Clair, D., Emes, R.D., van de Lagemaat, L.N., Saksida,

L.M., Bussey, T.J., and Grant, S.G. (2013). Synaptic scaffold evolution

generated components of vertebrate cognitive complexity. Nat. Neurosci.

16, 16–24.

Nowakowski, T.J., Bhaduri, A., Pollen, A.A., Alvarado, B., Mostajo-Radji, M.A.,

Di Lullo, E., Haeussler, M., Sandoval-Espinosa, C., Liu, S.J., Velmeshev, D.,

et al. (2017). Spatiotemporal gene expression trajectories reveal develop-

mental hierarchies of the human cortex. Science 358, 1318–1323.

O’Roak, B.J., Vives, L., Girirajan, S., Karakoc, E., Krumm,N., Coe, B.P., Levy, R.,

Ko, A., Lee, C., Smith, J.D., et al. (2012). Sporadic autism exomes reveal a highly

interconnected protein network of de novo mutations. Nature 485, 246–250.

Ozonoff, S., Young, G.S., Carter, A., Messinger, D., Yirmiya, N., Zwaigenbaum,

L., Bryson, S., Carver, L.J., Constantino, J.N., Dobkins, K., et al. (2011). Recur-

rence risk for autism spectrum disorders: a Baby Siblings Research Con-

sortium study. Pediatrics 128, e488–e495.

Parikshak, N.N., Luo, R., Zhang, A., Won, H., Lowe, J.K., Chandran, V., Hor-

vath, S., and Geschwind, D.H. (2013). Integrative functional genomic analyses

implicate specific molecular pathways and circuits in autism. Cell 155,

1008–1021.

Parikshak, N.N., Gandal, M.J., and Geschwind, D.H. (2015). Systems biology

and gene networks in neurodevelopmental and neurodegenerative disorders.

Nat. Rev. Genet. 16, 441–458.

Parikshak, N.N., Swarup, V., Belgard, T.G., Irimia, M., Ramaswami, G., Gan-

dal, M.J., Hartl, C., Leppa, V., Ubieta, L.T., Huang, J., et al. (2016). Genome-

wide changes in lncRNA, splicing, and regional gene expression patterns in

autism. Nature 540, 423–427.

Pinto, D., Delaby, E., Merico, D., Barbosa, M., Merikangas, A., Klei, L., Thiru-

vahindrapuram, B., Xu, X., Ziman, R., Wang, Z., et al. (2014). Convergence of

genes and cellular pathways dysregulated in autism spectrum disorders. Am.

J. Hum. Genet. 94, 677–694.

Polioudakis, D., de la Torre-Ubieta, L., Langerman, J., Elkins, A.G., Shi, X.,

Stein, J.L., Vuong, C.K., Nichterwitz, S., Gevorgian, M., Opland, C.K., et al.

(2019). A Single-Cell Transcriptomic Atlas of Human Neocortical Development

during Mid-gestation. Neuron. Published online July 11, 2019. https://doi.org/

10.1016/j.neuron.2019.06.011.
Prober, D.A., Rihel, J., Onah, A.A., Sung, R.J., and Schier, A.F. (2006). Hypo-

cretin/orexin overexpression induces an insomnia-like phenotype in zebrafish.

J. Neurosci. 26, 13400–13410.

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D.,

Maller, J., Sklar, P., de Bakker, P.I., Daly, M.J., and Sham, P.C. (2007). PLINK:

a tool set for whole-genome association and population-based linkage ana-

lyses. Am. J. Hum. Genet. 81, 559–575.

Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for

comparing genomic features. Bioinformatics 26, 841–842.

Ronemus, M., Iossifov, I., Levy, D., and Wigler, M. (2014). The role of de novo

mutations in the genetics of autism spectrum disorders. Nat. Rev. Genet. 15,

133–141.

Rossin, E.J., Lage, K., Raychaudhuri, S., Xavier, R.J., Tatar, D., Benita, Y., Cot-

sapas, C., and Daly, M.J.; International Inflammatory Bowel Disease Genetics

Consortium (2011). Proteins encoded in genomic regions associated with im-

mune-mediated disease physically interact and suggest underlying biology.

PLoS Genet. 7, e1001273.

Samocha, K.E., Robinson, E.B., Sanders, S.J., Stevens, C., Sabo, A.,

McGrath, L.M., Kosmicki, J.A., Rehnström, K., Mallick, S., Kirby, A., et al.

(2014). A framework for the interpretation of de novo mutation in human dis-

ease. Nat. Genet. 46, 944–950.

Sanders, S.J., Ercan-Sencicek, A.G., Hus, V., Luo, R., Murtha, M.T., Moreno-

De-Luca, D., Chu, S.H., Moreau, M.P., Gupta, A.R., Thomson, S.A., et al.

(2011). Multiple recurrent de novo CNVs, including duplications of the

7q11.23 Williams syndrome region, are strongly associated with autism.

Neuron 70, 863–885.

Sanders, S.J., Murtha,M.T., Gupta, A.R., Murdoch, J.D., Raubeson, M.J., Will-

sey, A.J., Ercan-Sencicek, A.G., DiLullo, N.M., Parikshak, N.N., Stein, J.L.,

et al. (2012). De novo mutations revealed by whole-exome sequencing are

strongly associated with autism. Nature 485, 237–241.

Sanders, S.J., He, X., Willsey, A.J., Ercan-Sencicek, A.G., Samocha, K.E.,

Cicek, A.E., Murtha, M.T., Bal, V.H., Bishop, S.L., Dong, S., et al.; Autism

Sequencing Consortium (2015). Insights into Autism Spectrum Disorder

Genomic Architecture and Biology from 71 Risk Loci. Neuron 87, 1215–1233.

Sandin, S., Lichtenstein, P., Kuja-Halkola, R., Larsson, H., Hultman, C.M., and

Reichenberg, A. (2014). The familial risk of autism. JAMA 311, 1770–1777.

Scheet, P., and Stephens, M. (2006). A fast and flexible statistical model for

large-scale population genotype data: applications to inferring missing geno-

types and haplotypic phase. Am. J. Hum. Genet. 78, 629–644.

Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to

ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675.

Sebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese-Martin, C., Walsh, T.,

Yamrom, B., Yoon, S., Krasnitz, A., Kendall, J., et al. (2007). Strong association

of de novo copy number mutations with autism. Science 316, 445–449.

Skuse, D.H., Mandy, W.P., and Scourfield, J. (2005). Measuring autistic traits:

heritability, reliability and validity of the Social and Communication Disorders

Checklist. Br. J. Psychiatry 187, 568–572.

Snijders Blok, L., Madsen, E., Juusola, J., Gilissen, C., Baralle, D., Reijnders,

M.R., Venselaar, H., Helsmoortel, C., Cho, M.T., Hoischen, A., et al.; DDD

Study (2015). Mutations in DDX3X Are a Common Cause of Unexplained Intel-

lectual Disability with Gender-Specific Effects on Wnt Signaling. Am. J. Hum.

Genet. 97, 343–352.

Sugathan, A., Biagioli, M., Golzio, C., Erdin, S., Blumenthal, I., Manavalan, P.,

Ragavendran, A., Brand, H., Lucente, D., Miles, J., et al. (2014). CHD8 regu-

lates neurodevelopmental pathways associated with autism spectrum disor-

der in neural progenitors. Proc. Natl. Acad. Sci. USA 111, E4468–E4477.

Turner, T.N., Hormozdiari, F., Duyzend, M.H., McClymont, S.A., Hook, P.W.,

Iossifov, I., Raja, A., Baker, C., Hoekzema, K., Stessman, H.A., et al. (2016).

Genome Sequencing of Autism-Affected Families Reveals Disruption of Puta-

tive Noncoding Regulatory DNA. Am. J. Hum. Genet. 98, 58–74.

Van der Auwera, G.A., Carneiro, M.O., Hartl, C., Poplin, R., Del Angel, G.,

Levy-Moonshine, A., Jordan, T., Shakir, K., Roazen, D., Thibault, J., et al.

(2013). From FastQ data to high confidence variant calls: the Genome
Cell 178, 850–866, August 8, 2019 865

http://refhub.elsevier.com/S0092-8674(19)30780-9/sref69
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref69
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref69
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref70
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref70
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref70
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref70
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref71
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref71
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref71
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref71
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref72
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref72
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref72
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref72
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref72
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref73
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref73
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref73
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref73
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref73
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref74
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref74
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref74
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref74
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref75
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref75
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref75
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref75
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref75
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref76
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref76
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref76
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref76
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref77
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref77
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref77
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref78
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref78
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref78
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref78
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref79
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref79
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref79
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref79
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref80
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref80
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref80
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref81
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref81
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref81
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref81
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref82
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref82
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref82
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref82
https://doi.org/10.1016/j.neuron.2019.06.011
https://doi.org/10.1016/j.neuron.2019.06.011
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref84
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref84
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref84
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref85
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref85
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref85
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref85
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref86
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref86
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref87
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref87
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref87
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref88
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref88
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref88
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref88
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref88
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref89
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref89
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref89
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref89
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref90
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref90
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref90
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref90
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref90
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref91
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref91
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref91
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref91
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref92
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref92
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref92
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref92
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref93
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref93
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref94
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref94
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref94
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref95
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref95
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref96
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref96
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref96
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref97
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref97
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref97
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref98
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref98
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref98
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref98
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref98
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref99
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref99
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref99
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref99
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref100
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref100
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref100
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref100
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref101
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref101
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref101


Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43,

11.10.11–33.

Vandeweyer, G., Helsmoortel, C., Van Dijck, A., Vulto-van Silfhout, A.T.,

Coe, B.P., Bernier, R., Gerdts, J., Rooms, L., van den Ende, J., Bakshi,

M., et al. (2014). The transcriptional regulator ADNP links the BAF (SWI/

SNF) complexes with autism. Am. J. Med. Genet. C. Semin. Med. Genet.

166C, 315–326.

Virkud, Y.V., Todd, R.D., Abbacchi, A.M., Zhang, Y., and Constantino, J.N.

(2009). Familial aggregation of quantitative autistic traits in multiplex versus

simplex autism. Am. J. Med. Genet. B Neuropsychiatr. Genet. 150B,

328–334.

Voineagu, I., Wang, X., Johnston, P., Lowe, J.K., Tian, Y., Horvath, S., Mill, J.,

Cantor, R.M., Blencowe, B.J., and Geschwind, D.H. (2011). Transcriptomic

analysis of autistic brain reveals convergent molecular pathology. Nature

474, 380–384.

Wang, K., Li, M., and Hakonarson, H. (2010). ANNOVAR: functional annotation

of genetic variants from high-throughput sequencing data. Nucleic Acids Res.

38, e164.

Werling, D.M., and Geschwind, D.H. (2015). Recurrence rates provide evi-

dence for sex-differential, familial genetic liability for autism spectrum disor-

ders in multiplex families and twins. Mol. Autism 6, 27.
866 Cell 178, 850–866, August 8, 2019
Werling, D.M., Brand, H., An, J.Y., Stone, M.R., Zhu, L., Glessner, J.T., Collins,

R.L., Dong, S., Layer, R.M., Markenscoff-Papadimitriou, E., et al. (2018). An

analytical framework for whole-genome sequence association studies and

its implications for autism spectrum disorder. Nat. Genet. 50, 727–736.

Weyn-Vanhentenryck, S.M., Mele, A., Yan, Q., Sun, S., Farny, N., Zhang, Z.,

Xue, C., Herre, M., Silver, P.A., Zhang, M.Q., et al. (2014). HITS-CLIP and inte-

grative modeling define the Rbfox splicing-regulatory network linked to brain

development and autism. Cell Rep. 6, 1139–1152.

Willsey, A.J., Sanders, S.J., Li, M., Dong, S., Tebbenkamp, A.T., Muhle, R.A.,

Reilly, S.K., Lin, L., Fertuzinhos, S., Miller, J.A., et al. (2013). Coexpression net-

works implicate human midfetal deep cortical projection neurons in the path-

ogenesis of autism. Cell 155, 997–1007.

Zimmermann, F.F., Gaspary, K.V., Siebel, A.M., and Bonan, C.D. (2016).

Oxytocin reversed MK-801-induced social interaction and aggression deficits

in zebrafish. Behav. Brain Res. 311, 368–374.

Zook, J.M., Chapman, B., Wang, J., Mittelman, D., Hofmann, O., Hide, W., and

Salit, M. (2014). Integrating human sequence data sets provides a resource of

benchmark SNP and indel genotype calls. Nat. Biotechnol. 32, 246–251.

http://refhub.elsevier.com/S0092-8674(19)30780-9/sref101
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref101
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref102
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref102
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref102
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref102
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref102
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref103
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref103
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref103
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref103
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref104
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref104
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref104
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref104
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref105
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref105
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref105
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref106
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref106
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref106
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref107
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref107
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref107
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref107
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref108
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref108
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref108
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref108
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref109
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref109
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref109
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref109
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref110
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref110
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref110
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref111
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref111
http://refhub.elsevier.com/S0092-8674(19)30780-9/sref111


STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

AGRE DNA samples AGRE https://www.autismspeaks.org/agre

Chemicals, Peptides, and Recombinant Proteins

MK-801 Sigma Aldrich Cat# M107

Ethanol Koptec Cat# V1016

Critical Commercial Assays

Illumina Infinium Human Exome-12 v1.2 Illumina Cat# WG-353-1204

Infinium CoreExome-24 Kit Illumina Cat# 20024662

Illumina TruSeq Nano library kits Illumina Cat# 20015964

Deposited Data

Raw and analyzed data: WGS This paper http://www.ihart.org/access

Exome Variant Server, NHLBI GO Exome

Sequencing Project (ESP)

Exome Variant Server, NHLBI

GO Exome Sequencing Project

(ESP), Seattle, WA (URL: https://

evs.gs.washington.edu/EVS/)

[Oct 2017].

https://evs.gs.washington.edu/EVS/RRID:SCR_012761

Exome Aggregation Consortium (ExAC) Lek et al., 2016 http://exac.broadinstitute.org/RRID:SCR_004068

Complete Genomics Genomes Drmanac et al., 2010 https://www.completegenomics.com/public-

data/69-genomes/

1000 Genomes Project Auton et al., 2015 https://www.internationalgenome.org/RRID:SCR_008801

Genome Aggregation Database (gnomAD)

(version 2.0.2)

Karczewski et al., 2019 https://gnomad.broadinstitute.org/downloads

RRID:SCR_014964

Database of Genomic Variants (DGV) MacDonald et al., 2014

[release date 2015-07-23]

http://dgv.tcag.ca/dgv/app/home RRID:SCR_004896

Human Reference Genome (Hg19; 1000

Genomes Project Phase 3 reference assembly)

N/A https://www.internationalgenome.org/category/grch37/

Illumina genotyping array data for AGRE

CNV calls

Leppa et al., 2016 NDAR: Submission ID 393 (https://nda.nih.gov/

study.html?id=393)

Genome in a bottle (GIAB) Zook et al., 2014 ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/

analysis/NIST_union_callsets_06172013/NISTIntegrated

Calls_14datasets_131103_allcall_UGHapMerge_

HomRef_VQSRv2.18_all_bias_nouncert_excludes

implerep_excludesegdups_excludedecoy_exclude

RepSeqSTRs_noCNVs.vcf.gz

Simons Simplex Collection (SSC), Pilot set and

Phase 1 WGS quads

N/A https://www.sfari.org/resource/sfari-base/RRID:

SCR_004644

pLI constrained gene scores (nonpsych) Lek et al., 2016 ftp://ftp.broadinstitute.org/pub/ExAC_release/

release0.3/functional_gene_constraint/

gnomAD observed/expected (o/e) constrained

gene scores

Karczewski et al., 2019 https://storage.googleapis.com/gnomad-public/

release/2.1.1/constraint/gnomad.v2.1.1.lof_metrics.

by_gene.txt.bgz

GTEx data v6 Battle et al., 2017 dbGap # phs000424.v6.p1 RRID:SCR_013042

ARC annotation source files This paper https://github.com/walllab/iHART-ARC/tree/master/

Annotation_Source_Files

PolyPhen-2 v2.2.2r395 HDIV predictions from

the Whole Human Exome Sequence Space

(WHESS dataset)

Adzhubei et al., 2010 http://genetics.bwh.harvard.edu/pph2/dbsearch.

shtml RRID:SCR_013189
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Gencode v19 Harrow et al., 2012 https://www.gencodegenes.org/human/release_

19.html RRID:SCR_014966

Exome mutation rates (PTV and Mis3) Samocha et al., 2014 N/A

InWeb Lage et al., 2007 http://www.lagelab.org/wp-content/uploads/2017/

06/NetSig_Code.zip

Experimental Models: Organisms/Strains

zebrafish nr3c2 ct#867 mutant This paper RRID: ZDB-ALT-190607-1

Oligonucleotides

Primer: nr3c2 mutant Forward: CTTCCCTG

CAGAGCTCAAAG

This paper N/A

Primer: nr3c2 mutant Reverse: ATAGCCAG

CGAACACCACTT

This paper N/A

Recombinant DNA

Software and Algorithms

ANNOVAR (version 20160201) Wang et al., 2010 http://annovar.openbioinformatics.org/en/latest/

RRID:SCR_012821

PLINK (version 1.07) Purcell et al., 2007 http://zzz.bwh.harvard.edu/plink/RRID:SCR_001757

verifyIDintensity (VII) Jun et al., 2012 https://github.com/gjun/verifyIDintensity

Burrows-Wheeler Aligner (bwa-mem, version

0.7.8)

Li and Durbin, 2009 http://bio-bwa.sourceforge.net/RRID:SCR_010910

BamTools (version 2.3.0) Barnett et al., 2011 https://github.com/pezmaster31/bamtools

RRID:SCR_015987

PicardTools (version 1.119) N/A http://broadinstitute.github.io/picard/RRID:

SCR_006525

GATK (version 3.2-2) McKenna et al., 2010 https://software.broadinstitute.org/gatk/RRID:

SCR_001876

Variant Effect Predictor (version VEPv83) McLaren et al., 2016 http://uswest.ensembl.org//useast.ensembl.org/

info/docs/tools/vep/index.html?redirectsrc=//uswest.

ensembl.org%2Finfo%2Fdocs%2Ftools%2Fvep%2F

index.html

RRID:SCR_007931

SAMtools (version 1.2) Li et al., 2009 http://www.htslib.org/doc/samtools.html

RRID:SCR_002105

BreakDancer (version 1.1.2) Chen et al., 2009 https://github.com/genome/breakdancer

RRID:SCR_001799

LUMPY (version 0.2.11) Layer et al., 2014 https://github.com/arq5x/lumpy-sv RRID:SCR_003253

GenomeSTRiP (version 1.04) Handsaker et al., 2011;

Handsaker et al., 2015

http://software.broadinstitute.org/software/genomestrip/

Somatic MUtation FINder (SMuFin) Moncunill et al., 2014 http://cg.bsc.es/smufin/

Bamotate Sanders et al., 2015 N/A

BEDTools (version 2.28.0) Quinlan and Hall, 2010 https://bedtools.readthedocs.io/en/latest/

RRID:SCR_006646

Disease Association Protein-Protein Link

Evaluator (DAPPLE)

Rossin et al., 2011 https://cloud.genepattern.org/gp/pages/login.jsf

fastPHASE Scheet and Stephens, 2006 http://stephenslab.uchicago.edu/software.

html#fastphase

Artifact Removal by Classifier (ARC) This paper https://github.com/walllab/iHART-ARC

Python scikit-learn package (version 0.18.1) N/A https://www.python.org/RRID:SCR_008394

Transmitted And De novo Association (TADA)

test

He et al., 2013 http://www.compgen.pitt.edu/TADA/TADA_

homepage.htm

NetSig Horn et al., 2018 http://www.lagelab.org/wp-content/uploads/2017/

06/NetSig_Code.zip

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

R (version 3.5.1) N/A https://www.r-project.org/ RRID:SCR_001905

Megalign Pro DNASTAR https://www.dnastar.com/manuals/MegAlignPro/

15.2/en/topic/welcome-to-megalign-pro

MATLAB (R2017b) Mathworks RRID:SCR_001622

Prism6 GraphPad RRID:SCR_002798

ImageJ Schneider et al., 2012 RRID:SCR_002285

Other

Flat-bottom 12-well plate for zebrafish social

preference assay

CytoOne Cat# CC7672-7512

96-well plate for zebrafish sleep assay GE Healthcare Life Sciences Cat# 7701-1651

MicroAmp Optical Adhesive Film for zebrafish

sleep assay

Thermo Fisher Scientific Cat# 4311971

Illumina’s HiSeq X Illumina Cat# SY-412-1001
LEAD CONTACT AND MATERIALS AVAILABILITY

The whole-genome sequencing data generated during this study are available from the Hartwell Foundation’s Autism Research and

Technology Initiative (iHART) following request and approval of the data use agreement available at http://www.ihart.org.We provide

the code for ARC (Artifact Removal by Classifier), our random forest supervised model developed to distinguish true rare de novo

variants from LCL-specific genetic aberrations or other types of artifacts such as sequencing and mapping errors, together with a

full tutorial at https://github.com/walllab/iHART-ARC. The zebrafish mutant line generated in this study will be deposited to the

Zebrafish International Resource Center (ct867, ZFIN ID: ZDB-ALT-190607-1). Further information and requests for resources and

reagents should be directed to and will be fulfilled by the Lead Contact, Dennis Paul Wall (dpwall@stanford.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

ASD multiplex family samples
The UCLA and Stanford IRBs designated this study as ‘‘Not human subjects research’’ and therefore exempt from review; this was

due to the study being limited to previously-existing coded data and specimens. Study subjects were carefully selected from the

Autism Genetic Resource Exchange (AGRE) (Lajonchere, 2010) and chosen from families including two or more individuals with

ASD (those with a ‘‘derived affected status’’ of ‘‘autism’’, ‘‘broad-spectrum’’, ‘‘nqa’’, ‘‘asd’’, or ‘‘spectrum’’). Patients with known

genetic causes of ASD (15p13 duplication, 15q deletion, 15q duplication, 16p deletion, 16p duplication, 22q duplication, mosaic

for deleted Y, mosaic trisomy 12, Trisomy 21 (Down Syndrome), Fragile X) or syndromes with overlapping ASD-features (Gaucher

Disease, Marfan’s Syndrome, Sotos Syndrome) were excluded from sequencing. We prioritized ASD-families harboring affected

female subjects. We also prioritized monozygotic-twin containing families, in part to facilitate the development of our machine

learning model (Artifact Removal by Classifier (ARC)). A complete list of sequenced samples can be found in Table S1.

A total of 2,308 individuals from 493 ASD families from the Autism Genetic Resource Exchange (AGRE) (Table S1) passed quality

control. Details for each of these 2,308 samples, including sex, ethnicity, phenotype, and familial relationship, can be found in

Table S1. Unless otherwise specified (STAR Methods or Table S1), our analyses included a subset of 1,177 children (960 affected

and 217 unaffected children) for whom both biological parents were sequenced.

Purified DNAwas obtained from the Rutgers University Cell and DNA Repository (RUCDR; Piscataway, NJ). Where available, DNA

from whole blood was used; however, for many samples, only lymphoblastoid cell line (LCL) DNA was available because DNA was

not extracted from whole blood at the time of recruitment.

Control cohorts
Throughout this manuscript, we reference several control cohorts used for assessing variant frequencies in samples not ascertained

for ASD. These cohorts are described below. The AD cohort was only used for the high-risk inherited simulation analysis. The

Genome Aggregation Database (gnomAD) cohort was only used for the analysis of non-coding variants.

Publicly available databases

Unless otherwise specified, the publicly available databases (all annotations provided by ANNOVAR) referenced include: the NHLBI

Exome Sequencing Project (ESP, esp6500siv2_all) (https://evs.gs.washington.edu/EVS/), the Exome Aggregation Consortium

(ExAC_ALL annotation from version exac03nonpsych) (Lek et al., 2016), 46 unrelated, whole-genome sequenced (high coverage
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on the Complete Genomics platform), non-disease samples (https://www.completegenomics.com/public-data/69-genomes/, cg46)

(Drmanac et al., 2010) and the 1000 genomes project (1000 g2015aug_all) (Auton et al., 2015).

UCLA internal controls

Throughout this manuscript, the use of ‘‘UCLA internal controls’’ refers to a set of 379 unrelated, whole-genome sequenced

(30x coverage on Illumina platform, processed by the same bioinformatics pipeline as was used for iHART) samples with a neurode-

generative disorder known as Progressive Supranuclear Palsy (PSP). There is no known etiological overlap or comorbidity between

PSP and ASD.

Healthy Non-Phaseable (HNP) samples

Throughout this manuscript, the use of ‘‘HNPs’’ refers to the 922 healthy non-phaseable (no biological parents sequenced) iHART

samples. Themajority of these samples are parents of affected or unaffected children. Due to the fact that these samples likely harbor

genetic ASD-risk variants, these HNPs provide a helpful estimate of allele frequencies but we generally apply more permissive allele

frequency filtering to retain inherited risk variants.

Alzheimer’s disease cohort

The Alzheimer’s disease (AD) cohort (n = 1,173 unrelated samples) was selected as a control group for the high-risk inherited simu-

lation analysis (Bennett et al., 2018). This AD cohort was selected because of the lack of ASD comorbidity and the late-onset of the

disease which precludes ASD diagnoses in this cohort.

gnomAD

We used allele frequency estimates from gnomAD (version 2.0.2) (Karczewski et al., 2019) for the analysis of non-coding variants

because these data include 15,708 genomes from unrelated individuals which facilitates allele frequency estimation in the non-

coding regions of the genome.

Curated Database of Genomic Variants (cDGV)

To assess the population frequency of structural variants in a more precise manner, we manually curated the Database of Genomic

Variants (DGV, release date 2015-07-23) (MacDonald et al., 2014). This curation involved removing studies that did not include

sample identifications and/or only analyzed targeted genomic regions, as well as SVs detected in non-human samples or individuals

diagnosed with intellectual disability (ID) or developmental delay (DD). The ID and DD samples from two studies (Coe et al. 2014 and

Cooper et al., 2011) were flagged for exclusion by Evan Eichler’s laboratory and their accession numbers were shared with us

(E. Eichler, personal communication). This resulted in a total of 26,353 unique samples with DGV data. We then removed redun-

dancies in DGV’s SV types by collapsing all SV types in the remaining samples into five different categories: deletions (‘‘deletion’’ +

‘‘loss’’), duplications (‘‘duplication’’ + ‘‘gain’’ + ‘‘tandem duplication’’), insertions (‘‘insertion’’ + ‘‘mobile element insertion’’ + ‘‘novel

sequence insertion’’), inversions, and unknown (‘‘complex’’ + ‘‘gain+loss’’ + ‘‘sequence alteration’’). We finally re-calculated the

frequency of the different SV categories by continuous genomic intervals, avoiding double-counting SVs (of the same type) identified

in the same sample and same region by different studies.

Zebrafish studies
Zebrafish experiments and husbandry followed standard protocols in accordance with Caltech Institutional Animal Care and Use

Committee (IACUC) guidelines (animal protocol 1580). Zebrafish behaviors were studied before the onset of sexual differentiation

and were performed using siblings with the same genetic background, differing only in nr3c2 genotype, or in treatment with

drugs and appropriate vehicle controls. WT and mutant stocks were derived from a TLAB hybrid strain. Animals were raised on a

14:10 hour light:dark cycle, and were housed in Petri dishes with 50 animals per dish in E3 medium (5 mM NaCl, 0.17 mM KCl,

0.33 mM CaCl2, 0.33 mM MgSO4) until 4 days post-fertilization. Animals were then either assayed for sleep/wake behaviors, or

were transferred to 0.8 L tanks and fed rotifers (Brachionus plicatilis) twice per day until reaching 2 weeks of age. Animals were

then fed brine shrimp (Artemia salina) until 3-4 weeks of age, at which point their social behavior was assayed. Animals were not

involved in any previous procedures and were naive to the tests and drugs used. The zebrafish mutant generated in this study will

be made available upon request.

METHOD DETAILS

Whole-genome sequencing and data processing
DNA samples were submitted to the NewYork GenomeCenter (NYGC) for whole-genome sequencing. DNA sampleswere examined

for quality/quantity and subsequently genotyped using Illumina Infinium Human Exome-12 v1.2 or Infinium Human Core Exome

microarrays (San Diego, CA) according to standardmanufacturer protocols. Identity-by-descent estimation and sex checks in PLINK

v1.07 (Purcell et al., 2007) were used to validate expected versus observed family relationships and confirm sample identity based on

these genome-wide genotyping data. Contamination was assessed using verifyIDintensity (VII) (Jun et al., 2012); samples exceeding

3% contamination in two or more modes were excluded from sequencing.

Samples passing these array-based identity and quality checks were sequenced at NYGC using the Illumina TruSeq Nano library

kits and Illumina’s HiSeq X (San Diego, CA) according to standard manufacturer protocols.

All iHART WGS data were processed through the same bioinformatics pipeline; this pipeline was designed based on GATK’s best

practices (DePristo et al., 2011; Van der Auwera et al., 2013). The metadata for each sample are stored in a customMySQL database
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where each sample was tracked as it progressed through the sequencing and bioinformatic pipelines, and finally the quality assur-

ancemetrics were populated based on the resulting processed data. The first step in the pipeline was to align the raw short sequence

reads to the human reference genome (human_g1k_v37.fasta). This was accomplished by processing the fastq files with the

Burrows-Wheeler Aligner (bwa-mem, version 0.7.8) (Li and Durbin, 2009) to generate BAM files. BAM files were generated in a

read-group-aware fashion (properly annotating sequence reads derived from the same flow cell and lane) and thusmultiple BAM files

were subsequently merged using BamTools (version 2.3.0) (Barnett et al., 2011) to generate a single BAM file per sample. The second

step in the pipeline was to mark duplicate reads in the BAM file using the Picard MarkDuplicates tool (version 1.119; http://

broadinstitute.github.io/picard/). The third step in the pipeline was to perform local realignment of reads around indels using GATK’s

IndelRealigner (version 3.2-2). The fourth step in the pipeline was to genotype each sample, generating a gVCF file. To achieve ac-

curacy at this stage, base quality score recalibration was run using GATK (version 3.2-2) (McKenna et al., 2010). Subsequently,

GATK’s HaplotypeCaller (version 3.2-2) was run on each base-recalibrated BAM to identify the variant and non-variant bases in

the genome. All four of these steps were performed at the NYGC, resulting in a BAM and a gVCF file for each sample.

The fifth step in the pipeline was to jointly call variants across all iHART samples to generate a VCF file. This was accom-

plished by combining gVCF files, 200 samples at a time using GATK’s combineGVCFs (version 3.2-2), and then running GATK’s

GenotypeGVCFs (version 3.2-2). Step 5 was accomplished by splitting data by chromosome (which increases parallelization)

and resulted in one cohort-wide VCF per chromosome. Finally, to help filter out low quality variants within the call set, GATK’s

Variant Quality Score Recalibration (VQSR, version 3.2-2) was run to generate well-calibrated quality scores. The final step in

the pipeline was to annotate the resulting variant calls (SNVs and indels) in order to generate an annotated VCF file. This was

accomplished by annotating with ANNOVAR (version 20160201) (Wang et al., 2010) and then with Variant Effect Predictor

(version VEPv83) (McLaren et al., 2016). The resulting VCF contains gene-based, region-based, and filter-based annotations

for each identified variant. For all the analyses described in this manuscript, we excluded VQSR failed variants and multi-allelic

variants.

Quality control assessment
We performed standard quality control checks on our WGS data to ensure both sequencing/variant quality and sample identity.

This included checking relatedness between samples, exclusion of duplicate samples, concordance between genotyping chip

and WGS data, concordance between self-declared sex and observed biological sex, exclusion of samples with contamination

from other samples, variant quality evaluation with GATK’s VariantEval module (data not shown), and sequencing coverage. A

total of 2,308 individuals from 493 ASD families from the Autism Genetic Resource Exchange (AGRE) passed quality control

(Table S1).

Whole-genome sequence coverage

We used SAMtools v1.2 (Li et al., 2009) depth utility to calculate genome-wide (excluding gap regions in the human reference

genome, downloaded from the UCSC table browser) per-base sequencing coverage for each sample. In order to reduce memory

requirements, the reported depth was truncated at a maximum of 500 reads. Subsequently, we calculated two main summary

statistics for each sample using custom scripts: (i) average coverage and (ii) percent of the genome (excluding gap regions)

covered at 1X, 10X, 20X, 30X and 40X. On average, 98.97 ± 0.37 % of bases were covered at a depth of R 10X (Figures

S1A–S1E).

Variant inheritance classifications

Children with only a single parent sequenced are referred to as partially phase-able and children with both parents sequenced are

referred to as fully phase-able. For eachmember of the iHART cohort with at least one parent sequenced (partially or fully phase-able

affected or unaffected children), all identified variants were classified based on their observed inheritance (defined below). To perform

this classification, we developed a custom script to simultaneously evaluate variant quality and inheritance within each family. Prior to

this classification step, all VQSR failed variants and multi-allelic variants were excluded. Additionally, we set permissive quality con-

trol thresholds in order to retain sensitivity while removing variants with a high probability of being false positives. Variants were

required to have a depth ofR 10x, a genotype quality ofR 25, and a ratio of alternative allele reads/total readsR 0.2. We assumed

that if a variant met these quality thresholds, then the assigned genotype was correct.

Every variant was categorized into one of eight inheritance types: (i) de novo, (ii) maternally inherited, (iii) paternally inherited, (iv)

newly homozygous, (v) newly hemizygous, (vi) missing, (vii) unknown phase, or (viii) uncertain. While maternally inherited, paternally

inherited, and de novo categories are self-explanatory, definitions for the remaining inheritance classifications are more complex. A

homozygous variant observed in a child was called a newly homozygous variant if it was heterozygous in both parents. Similarly, a

newly hemizygous variant on the X chromosome was defined as a hemizygous variant observed in a male child which was not iden-

tified as hemizygous in the corresponding father. A variant was classified asmissing (./.) if the variant was called in at least one child in

the iHART cohort but did not have sufficient coverage for GATK’s haplotype caller to define a genotype. A variant was classified as

unknown phase if a child had an inherited variant and only one biological parent was sequenced (unless on a sex chromosomewhere

inheritance can be inferred) or if both parents carry the variant and thus the phase cannot be determined from this site alone. Finally, a

variant was classified as uncertain if it could not be classified into another inheritance type; this includes: Mendelian error variants

(e.g., heterozygous variants on male sex chromosomes), variants failing the quality control thresholds above (in a child or a parent),

or a variant that couldn’t be classifiedwith confidence (e.g., a variant identified in a child but absent in its only sequenced parent could
Cell 178, 850–866.e1–e17, August 8, 2019 e5

http://bio-bwa.sourceforge.net/
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/


be de novo or inherited). Unless otherwise specified, variants classified asmissing, uncertain, or unknown phase were excluded from

our analyses.

Detection of large structural variants
We developed a custom pipeline for high-resolution detection of large structural variants (SVs) from whole-genome sequence data

(Figures S1F–S1H). This pipeline combines four different detection algorithms, including: BreakDancer (Chen et al., 2009), LUMPY

(Layer et al., 2014), GenomeSTRiP (Handsaker et al., 2011, 2015), and Somatic MUtation FINder (SMuFin) (Moncunill et al., 2014)

(STAR Methods; Figures 1 and S1F–S1H).

BreakDancer

We first used the bam2cfg.pl script (part of the BreakDancer v1.1.2 package (Chen et al., 2009) to generate a tab-delimited config-

uration file per family required to run BreakDancerMax. This configuration file specifies the locations of the BAM files, the desired

detection parameters (the upper and lower insert size thresholds to detect SVs) and sample metadata (e.g., read group and

sequencing platform); we used default detection parameters. We then ran BreakDancerMax to call SVs per chromosome within

families. The resulting output files were combined for all chromosomes and samples and converted into a single VCF file using a

custom script (see SV post-detection processing for details about genotyping). We filtered to exclude variants if the identified variant

(i) was in a sequence contig, (ii) had a quality score < 80, (iii) had < 4 supporting reads, or (iv) had a length of < 71 base pairs

(small indel).

LUMPY

We used SAMtools v1.1 (Li et al., 2009) to extract both the discordant paired-end reads and the split-read alignments per sample,

generating two different sorted BAM files required to run LUMPY v0.2.11(Layer et al., 2014). We then ran lumpyexpress to call SVs

within families. Wemerged the resulting VCF files per family (containing raw calls), into a single genotyped VCF file for all the samples

in the cohort, using a custom script (see SV post-detection processing for details about genotyping). We filtered to exclude variants if

the identified variant (i) was in a sequence contig or (ii) was a small insertion or inversions with a length of < 71 base pairs. No filter was

applied for small duplications because the min length identified was 74 base pairs.

GenomeSTRiP

We obtained genotyped SV calls generated by the NYGC’s in-house GenomeSTRiP v1.04 standard pipeline (Handsaker et al., 2011;

Handsaker et al., 2015). This pipeline consists of three main modules: (i) SVPreprocess: a pre-processing module that was run per

sample to generate genome-wide metadata required for next processes; (ii) SVDiscovery: a discovery module, that was run in three

large batches to call deletions, producing a VCF file with raw calls detected per batch; and (iii) SVGenotyper: amodule run to produce

genotyped VCF files per sequencing batch. In total, we received three genotyped VCF files, for sequencing batch one (N = 956 sam-

ples), two (N = 538 samples), and three (N = 858 samples). We filtered out variants flagged as ‘‘LowQual’’ and merged the final set of

SV calls for downstream analyses.

SMuFin

We adapted Somatic MUtation FINder (SMuFin) (Moncunill et al., 2014), a reference-free approach, for family-based structural

variant detection by performing de novo alignment of child reads to the parental reads (Figure S1H), to provide high sensitivity

and break point accuracy in the detection of SVs. Families were processed as independent trios and SMuFin was used to directly

contrast sequencing reads between the parents and the offspring (Figure S1H). During the detection process, one parental genome

is used as the reference genome to identify genetic variants in the children that were absent in that parent and then this process is

repeated using the other parental genome as the reference genome. This produced one output file for each parent-offspring

comparison run, containing the SVs detected per comparison. We then merged all the SV calls identified in phase-able individuals

(i.e., individuals for which at least one biological parent was also sequenced) and classified them according to their inheritance

patterns.

SV post-detection processing

We assumed heterozygosity for all SV calls, with two exceptions: (i) SVs identified in sex chromosomes from males, which were

annotated as homozygous; and (ii) SVs identified by GenomeSTRiP, whose genotypes were defined by its SVGenotyper module.

The inheritance type for all SVs identified in phase-able individuals was classified as: de novo, maternal, paternal, newly homozygous,

newly hemizygous, unknown phase, missing, or uncertain – as defined above. For SVs, the missing classification was only applied to

BreakDancer calls with a quality score of < 80 and/or < 4 reads supporting the variant call.

We focused on the analysis of high-confidence SVs, specifically deletions (DELs), duplications (DUPs), and inversions (INVs), by

restricting to events identified by at least two detection algorithms and removing SVs that overlapped genomic regions of low

complexity (i.e., centromeres, segmental duplications, regions of low mappability, and regions subject to somatic recombination

in antibodies and T cell receptor genes) (Brandler et al., 2016) by more than 50%. We made two exceptions to the rule that at least

two detection algorithms must detect an SV. The first exception was to exclude SVs detected by only LUMPY and BreakDancer

because this subset of SVs had very low concordance with genotype array data (Table S5). The second exception was to include

an SV event if it was called by at least two detection algorithms in one or more family members, but called by only one algorithm

in another family member.

Even though WGS theoretically enables high-resolution prediction of breakpoints, the breakpoints called by the detection

algorithms can vary due to technical differences between these methods and also between samples (e.g., coverage) despite the
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fact that they are detecting the same underlying SV event. To adjust for this, SV calls made by different detection algorithms were

considered to be the same SV event if they were: (i) called in the same individual, (ii) had a reciprocal overlap of at least 50%, and

(iii) shared the same SV type (e.g., DEL) and inheritance pattern. A similar approach was subsequently applied to SVs within a family,

where SV events are likely inherited and thus identical; the breakpoints of overlapping SVs (R50% reciprocal overlap of the same SV

type) identified in individuals within the same family were adjusted to the predicted minimum start and maximum end coordinates

predicted (maximum size based on breakpoints) in family members with the SV call.

SVs were defined as rare if they had no more than 50% overlap in (a) regions commonly disrupted by SVs in our Curated

Database of Genomic Variants (cDGV; allele frequency R 0.001) and (b) regions commonly disrupted by the same SV type (allele

frequency R 0.01) in the HNP samples. We also classified SVs as rare if (c) they had a region of R 500Kb that did not overlap

with common SVs in cDGV (allele frequency R 0.001) or HNP samples (allele frequency R 0.01).

Finally, in order to facilitate prioritization for likely pathogenic variants, gene-based and region-based annotations were added to

the final set of high-confidence SV calls by using custom scripts and the Bamotate annotation tool (Leppa et al., 2016).

Multi-algorithm consensus SV calls

The four algorithms chosen to call SVs use different detection strategies and are suitable for identifying different sizes and types of

SVs with varying levels of sensitivity and specificity. Therefore, we ran amulti-algorithm comparison to identify high-quality SVs iden-

tified by at least two methods (as described above). We used BEDTools (Quinlan and Hall, 2010) to intersect SV calls detected by the

different algorithms by performing an all-against-all comparison (Figure S1F; Table S5).

The start and end positions of identical SV events identified for an individual (R50% reciprocal overlap of the same SV type and

inheritance pattern) were reassigned based on the coordinates from the detection algorithm predicted to be more precise in calling

breakpoints. By considering the strategy implemented to identify SVs (e.g., split-read methods can detect SVs at single base-pair

resolution) for each detection algorithm, we defined the following rank for breakpoint precision accuracy: SMuFin (split-read and

de novo assembly method) > LUMPY (split-read and read-pair method, with coordinates assigned within families) > GenomeSTRiP

(split-read, read-pair and read-count method, with coordinates assigned within sequencing batch) > BreakDancer (read-pair

detection method).

Array-based SV detection is a well-established method with high accuracy for certain SV classes, in particular large deletions

(Miller et al., 2010). Thus, to confirm our ranking of algorithms by their SV breakpoint precision, we compared our WGS-based SV

calls to SV calls obtained from Illumina genotyping array data (Leppa et al., 2016) on overlapping AGRE samples. Specifically, we

identified a high confidence set of heterozygous deletions for which heterozygous deletions were also detected (R50% reciprocal

overlap) in the array data (n = 224 SVs). We then used GATK’s VariantEval tool to generate het:hommetrics for SNVs identified within

224 heterozygous deletions. A heterozygous deletion with accurate break points would include only homozygous SNVs (het:hom

ratio of zero). This analysis reavealed no significant differences between these methods (with all of them showing a median het:hom

ratio of 0.01), but ranking of mean het:hom ratios was generally consistent with our ranking of algorithms by their SV breakpoint

precision: SMuFin (0.028) < LUMPY (0.043) < BreakDancer (0.059) < GenomeSTRiP (0.067).

Joint LUMPY-BreakDancer SV call inspections

Copy Number Variants (CNVs) detected from genotyping array data can be visualized by plotting the B Allele Frequency and Log R

Ratio values for array genotyped SNPswithin the estimatedCNV region and its flanking regions (25%of the length of the CNVon each

side); we will refer to this as an ‘‘array visualization plot.’’ Given the low concordance rate between LUMPY and BreakDancer SV calls

with othermethods (Table S5), wemanually inspected array visualization plots generated by using available Illumina genotyping array

data (Leppa et al., 2016) for regions with LUMPY-BreakDancer joint SV calls identified in the iHART WGS data.

We randomly selected LUMPY-BreakDancer detected SV events within bins containing events of different sizes/lengths (n = 218)

and used a custom script to generate array visualization plots for each detected SV region. For each of the 218 SVs, an array visu-

alization plot was generated for the carrier and all corresponding family members. Manual inspection of the array visualization plots

was conducted (blindedwith respect to the predicted carrier(s) of the LUMPY-BreakDancer SV call), and each SVwas categorized as

true or false. By treating the array-based true calls as the gold standard, we were able to estimate the validation rate for LUMPY-

BreakDancer joint SV calls (Table S5).

Sensitivity to detect rare SVs

A set of rare SVs detected from Illumina genotyping array data (array-SVs) were available for 553 iHART fully phase-able samples

(Leppa et al., 2016). We used BEDTools (Quinlan and Hall, 2010) to intersect our set of SV calls (WGS SV calls, DELs and DUPs)

with rare SVs identified in genotyping array data (Leppa et al., 2016) in these 553 overlapping samples. We evaluated our sensitivity

to detect array-SVs by considering events detected withR 50% reciprocal overlap by both array and NGS in the same sample – both

with and without LUMPY-BreakDancer joint SV calls (Table S5).

Defining rare inherited and private variants
We define rare inherited variants (SNVs and indels) as those with an allele frequency (AF) less than or equal to 0.1% in public data-

bases (1000 g, ESP6500, ExACv3.0, cg46), internal controls, and iHART HNP samples and were restricted to those not missing in

more than 25% of controls and not flagged as low-confidence by the Genome in a Bottle Consortium (GIAB; Zook et al., 2014).

Rare SVs (DELs, DUPs, INVs) were defined as those with an AF < 0.001 in cDGV and an AF < 0.01 in iHART HNP samples.
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Wedefine private variants as variants that are observed in one and only one iHART/AGRE family (AF�0.05%) and are notmissing in

more than 25% of iHART HNPs. Additionally, private variants were (i) never observed in any control cohorts (AF = 0), (ii) not missing in

more than 25% of the PSP control samples, and (iii) not flagged as low-confidence by the GIAB consortium. We only report analyses

for iHART private variants in the 1,177 children with both biological parents sequenced (fully phase-able). For non-coding private

inherited variants, variants present in gnomAD (version 2.0.2) were also removed.

Non-coding analyses
Definition of non-coding variants

We defined non-coding SNVs and indels as variants that do not occur within a coding transcript, as annotated by VEP. This includes

17 of the 35 VEP consequences: ‘‘mature miRNA variant,’’ ‘‘5 prime UTR variant,’’ ‘‘3 prime UTR variant,’’ ‘‘non-coding transcript

exon variant,’’ ‘‘intron variant,’’ ‘‘non-coding transcript variant,’’ ‘‘upstream gene variant,’’ ‘‘downstream gene variant,’’ ‘‘TFBS abla-

tion,’’ ‘‘TFBS amplification,’’ ‘‘TF binding site variant,’’ ‘‘regulatory region ablation,’’ ‘‘regulatory region amplification,’’ ‘‘feature

elongation,’’ ‘‘regulatory region variant,’’ ‘‘feature truncation,’’ or ‘‘intergenic variant.’’ If multiple annotations for consequence

were present for a single variant, only the first most damaging consequence was considered in order to stringently filter for non-

coding variants. Only variants that were not flagged as low-confidence by the GIAB consortium were considered. To increase our

accuracy in assessing the allele frequency of these non-coding variants, we also annotated these variants with the Genome Aggre-

gation Database (gnomAD) (version 2.0.2) allele frequencies identified from whole-genome sequencing of over 15K samples not

enriched for ASD phenotypes. We defined promoters as 2Kb upstream and 1Kb downstream of the transcription start site (TSS)

by referencing the longest transcript for each gene (ties in transcript length were resolved by selecting the lower Ensembl Transcript

ID). The ASD-risk genes used for this analysis are the 69 genes with an FDR < 0.1 in the iHART TADA-mega analysis.

Samples included for non-coding analyses

iHART non-coding private variants were identified in the 1,177 children with both biological parents sequenced (fully phase-able)

(Naff = 960, Nunaff = 217). iHART non-coding RDNVs were considered after running ARC to identify high confidence variants and

were restricted to those identified in the 716 non-ARC outlier samples (Naff = 575, Nunaff = 141).

To increase our power for non-coding variants, we obtained data from 519 whole-genome sequenced Simons Simplex Collection

(SSC) quads (mother, father, affected child, unaffected child). These data were also generated and processed to a per sample gVCF

(GATK version 3.2-2) by NYGC. We then performed joint genotyping, annotation, and quality control using the same pipeline applied

to the iHART genomes. After resolving 4 identity crises in these data by quality control, we removed one likely contaminated sample

and two samples with unresolvable sex crises. This resulted in 516 quads and 3 trios from the SSC (Naff = 517, Nunaff = 518). We iden-

tified an average of 89 rawRDNVs per child in this cohort. After applying ARC to these data, we obtain an average of 61.83 RDNVs per

SSC child which is very similar to the genome-wide expectation and matches the average observed for iHART RDNVs after applying

ARC (60.3 RDNVs per child in LCL-derived samples and 59.4 RDNVs per child in WB-derived samples). Given that the SSC cohort is

comprised entirely of WB-derived samples, we identified zero ARC outliers (no samples with > 90% of their raw RDNVs removed by

ARC). The resulting combined iHART + SSC whole-genome cohort includes 1,092 affected and 659 unaffected samples for RDNV

analysis and 1,477 affected and 735 unaffected samples for the analysis of private inherited variants.

High-risk inherited variant analysis
To characterize potential high-risk inherited variants, we identified rare damaging variants that were transmitted to all affected indi-

viduals in a multiplex family, but not transmitted to unaffected children. High-risk inherited variants were further defined as those that

disrupted a gene with a high probability of being loss-of-function (LoF) intolerant (pLIR 0.9, n = 3,483 genes) (Lek et al., 2016). Such

genes are also referred to as constrained genes because they are under evolutionary constraint – as evidenced by the lack of mu-

tations in such genes in the general human population. Specifically, we considered rare PTVs (AF % 0.001 in public databases and

internal controls) or rare SVs (AF% 0.001 in cDGV and AF% 0.01 in HNPs) disrupting an exon or promoter, where the promoter was

defined as being 2Kb upstream of the TSS. The families selected for the PTV analysis were restricted to a subset of 346 families with

R 2 genetically distinct (i.e., not a family with just a pair of affectedMZ twins) fully phase-able affected childrenwith a variable number

of unaffected children. Given the small number of qualifying SVs in these ASD families, all families (n = 493) were considered.

We next used protein-protein interaction (PPI) analysis to assess whether the 98 genes harboring high-risk inherited variation

showed evidence for biological convergence. To determine if these high-risk inherited variants formed a PPI network, we used

the Disease Association Protein-Protein Link Evaluator (DAPPLE) (Rossin et al., 2011) and performed 1,000 permutations (within-

degree node-label permutation). Given that PPI databases are incomplete and biased against typically less well-studied neuronal

interactions (Parikshak et al., 2015), we also expanded the network to include indirect interactions among the seed genes.

When we combined both high-risk inherited variant classes (PTVs and SVs), we found that the protein products of the 98 genes

harboring high-risk inherited variation formed a significant direct PPI network (p < 0.008, 1,000 permutations). The protein products

of both of the high-risk inherited variant classes also formed a significant direct PPI network on their own (p < 0.04 for the 61 genes hit

by qualifying PTVs and p < 0.02 for the 40 genes hit by qualifying SVs).

Gene set enrichment (STAR Methods) for the 98 genes harboring high-risk inherited variation identified a trend for enrichment for

targets of RBFOX1 (Weyn-Vanhentenryck et al., 2014) (p = 0.034, uncorrected), which regulates neuronal alternative splicing and

previously has been implicated in ASD (Martin et al., 2007; Sebat et al., 2007).
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The PPI network formed by the 69 TADA ASD-risk genes and these 98 genes harboring high-risk inherited variants (n = 165 unique

genes) was significant for all DAPPLE reported network properties (Rossin et al., 2011); this includes: the direct edges count

(p = 0.036), the seed direct degrees mean (p = 0.046), the seed indirect degrees mean (p = 0.003), and the CI degrees mean

(p = 0.005) (Figures 5A and S6B).

Simulations for high-risk inherited variants

Wesought to establish how exceptional it was to observe 98 genes harboring high-risk inherited variation. To simplify the simulations,

we focused on high-risk inherited PTVs (n = 57) identified in the subset of 323 families containing only fully phase-able children

(excluding extended families). We also analyzed synonymous variants (SYN) with the same inheritance pattern as high-risk inherited

variants (transmitted to all affected and no unaffected children), as a negative control, because this variant class is not expected to

confer disease risk. First, we calculated the LCL-artifact rate for SNVs and indels (separately) for each parent in these 323 families.

Rare SNVs and indels (AF% 0.1%) on the autosomes, not falling in problematic regions (GIAB regions (Zook et al., 2014), problematic

CNV regions (Brandler et al., 2016), or common CNV regions from cDGV), were categorized as being transmitted to at least one

versus never transmitted to any of their offspring. A zero-inflated binomial model was then used to estimate the LCL-artifact rate

per parent via maximum-likelihood. The parental LCL-artifact rate for SNVs and indels were highly correlated (Pearson correlation =

0.94); therefore, we used the combined SNV+indel parental LCL-artifact rate. The parental LCL-artifact rates were modest with a

median of 0.05 (mean = 0.06).

To test for an excess of high-risk inherited PTVs in constrained genes, we performed simulations that permute the location of PTVs

(or SYN) across genes and simulate LCL-artifact adjusted Mendelian inheritance. First, we extracted all qualifying variants in the par-

ents (rare AF% 0.1%, PTV (or SYN) – SNVs and indels – in non-GIAB regions). Second, we grouped genes into constraint score bins

(spanning the full score range of 0-1) by either gnomAD pLI score or gnomAD o/e score. Third, we computed the per-bin PTV (or SYN)

rates in an external cohort (either the SSC (Werling et al., 2018) or the AD cohort (Bennett et al., 2018)). These rates are the empirical

ratio of PTVs in highly constrained genes (pLIR 0.9) versus all genes (pLI-PTV)/(PTV) in each cohort: parents from this iHART cohort,

parents from the SSC, or samples from the AD cohort. Finally, we counted the observed number of high-risk inherited variants within

each constraint score bin, and compared these to 1,000 simulations of a null expectation. Each simulation randomly assigns each

PTV to a constraint score bin according to the expected rates computed in one of the cohorts (iHART parents (iHART-matched), SSC

parents (SSC-matched), or AD samples (AD-matched)), using a multinomial distribution. Each simulation subsequently simulates

transmission to each child assuming a Mendelian transmission of 50% while adjusting for parental LCL artifact rates (for instance,

a parent with a 5% LCL rate would have a 5% chance to not transmit a variant to any child, and a 95% to transmit the variant

with Mendelian transmission).

For a null expectation based on AD-matched PTV rates, we found that the most constrained genes based on o/e (the lowest

o/e bins; o/e (upper confidence interval) < 0.467) are significantly enriched for transmitted-to-all PTVs over the expectation

(observed = 83, expected = 65, p = 0.022), and the same holds true for the most constrained genes based on pLI (the highest pLI

bins; pLI > 0.889; observed = 46, expected = 32, p = 0.007) (Figure 2B). When matching to the SSC, we find the expectations

and p values are, respectively, 80 (p = 0.402) and 39 (p = 0.172) (Figure 2B). While we observe both an excess of pLI-PTVs (class

imbalance) and an excess of PTVs transmitted to all affected and no unaffected children (transmission disequilibrium) in the bins

containing the constrained genes, the number of high-risk inherited variants (PTVs transmitted to all affected and no unaffected

children in only constrained genes) were too few (n = 57 SNV/indel) to simultaneously test for transmission disequilibrium conditioned

on constraint.

We also note that the simulation results were highly sensitive to the estimated parental LCL-artifact rates and the empirical ratio

of PTVs in highly constrained genes (pLI R 0.9) versus all genes (Figure 2B). The deviation of the synonymous variants from the ex-

pected odds ratio of 1 is likely due to slightly different LCL-artifact rates for synonymous variants (as opposed to PTVs).

Gene set enrichment
The purpose of gene set enrichment (GSE) analysis is to count the number of genes in common between two sets of genes and deter-

mine if there is greater overlap than expected by chance. We use a null model in which the probability that a gene is hit by mutation is

proportional to the length of this gene, as previously described (Iossifov et al., 2014). In this model, we collapse all recurrent hits re-

sulting in a gene being classified as hit (1) or not hit (0) in the sample of interest (e.g., ASD affected children). We then compare the

genes targeted by at least onemutation in the sample (T) to a predefined gene set (S), and obtain the overlap (O) from the intersection

of T and S. We estimate the probability p(S) that an exonic mutation (and hence the gene) is contained within S by taking the ratio of

the sum of the coding lengths of the genes of S and the sum of the coding lengths of all genes.

pðSÞ=S coding lengths of genes of S

S coding lengths of all genes
As described in Iossifov et al. (2014), we then perform a two-sided
 binomial test of jOj outcomes in jTj opportunities given the prob-

ability of success p(S), where ‘jj’ denotes the number of gene members in a set.

For some analyses, only a portion of the genome was considered (e.g., only genes with a pLIR 0.9), and thus all parameters (T, S,

and p(S)) were adjusted to remove genes (and gene lengths) not being considered in the count of T. All gene sets (S), were first
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converted to their HGNC symbol and then matched by HGNC symbol to the target genes (T) before intersecting to obtain O. In the

analysis of high-risk inherited variants, the gene set enrichment analysis was adjusted to include only the 3,483 genes which have a

pLI R 0.9. In the TADA mega-analysis, the gene set enrichment analysis was adjusted to include only the 18,472 gencodeV19

TADA genes.

We selected 22 gene sets with known or hypothesized biological relevance in the study of ASD. This included four transcriptome

co-expression studies: (1) one module downregulated (M12) and one module upregulated (M16) in ASD brain versus control brain

(Voineagu et al., 2011), (2) three modules downregulated (M4, M10, M16) and three modules upregulated (M9, M19, M20) in ASD

brain versus control brain (Parikshak et al., 2016), (3) three neurodevelopmental co-expression networks from multiple human brain

regions across human development enriched for genes hit by a single de novo PTV in ASD patients from the Simons Simplex Collec-

tion (SSC) (3_5_PFC_MS, 4_6_PFC_MSC, and 8_10_MD_CBC) – after removing the nine high-confidence ASD (hcASD) genes on

which these networks were seeded (Willsey et al., 2013), and (4) five neurodevelopmental co-expression modules – constructed

agnostic to ASD-risk genes – enriched for ASD-risk genes/variants (M2, M3, M13, M16, and M17) (Parikshak et al., 2013). In addition

to these 16 gene sets, we compiled a list of geneswithR 2SSCprobands harboring a de novoPTV (Iossifov et al., 2014); this gene set

serves as a positive control. We also included FMRP targets (Darnell et al., 2011), CHD8 targets (Sugathan et al., 2014), RBFOX1

targets (Weyn-Vanhentenryck et al., 2014), and genes encoding proteins identified in the post synaptic density in human neocortex

(Bayés et al., 2011). Finally, we used > 8,000 samples from various tissues (e.g., brain, heart, liver) in GTEx (Battle et al., 2017) data v6

(dbGap # phs000424.v6.p1) to identify genes enriched for expression in the brain versus other tissues. These genes had a 2-fold

enrichment (FDR < 0.05) after regressing out RNA Integrity Number (RIN) and various sequencing covariates (principal component

1 and 2 of sequencing statistics provided by GTEx). Significance should only be considered for gene sets surviving multiple test

correction (Bonferroni correction for the 22 gene sets tested or p < 0.002).

DLG2 association and haplotype prediction
The 2.5Kb deletion identified in the promoter region of DLG2 is significantly associated with ASD when considering the three inde-

pendent ASD carriers in the iHART cohort (3 of 484 unrelated, phase-able (at least one parent sequenced), affected children with

SVs called) and the lack of any deletions intersecting thisDLG2 promoter region deletion among 212 unaffected children in this cohort

(iHART) and 26,353 cDGV controls (curated DGV) (two-sided Fisher’s Exact Test, p = 5.73 10�6, OR= Inf, 95%CI = 22.7- Inf). In other

words, no deletions were found to overlap the DLG2 promoter deletion in public databases nor in any of our controls (n = 26,565

controls). However, it is unclear if this SV is detectable by microarray. Since the majority of DGV SV detection was based on micro-

array, we restricted to onlyWGS control samples (212 unaffected children in this cohort and 2,677 cDGV controls), and found that this

association is significant (two-sided Fisher’s Exact Test, p = 0.003, OR = Inf, 95% CI = 2.47- Inf).

Given that all carriers of the recurrent, high-risk, inherited SV deletion disrupting the promoter of DLG2 (chr11:85339733-85342186)

were of Hispanic or Latino origin, we wanted to eliminate the possibility that this was a rare population-specific event from a common

ancestor. When restricting to only Hispanic or Latino (AdMixed American [AMR]) WGS control samples (98 unaffected children in this

cohort and 351 cDGV controls), this association remains significant (two-sided Fisher’s Exact Test, p = 0.006, OR = Inf, 95% CI =

1.92-Inf). To determine if this SV was always found on the same haplotype, we first extracted all high-confidence SNVs (genotype

quality of R 30 and % 30% of samples with missing genotypes) in the region surrounding the SV (1Kb upstream and downstream

the start and end positions of the SV, respectively). We then ran fastPHASE (Scheet and Stephens, 2006) to estimate the haplotype in

this region for all the 2,308WGS samples included in this study, as well as the corresponding haplotype frequencies (using –F option).

Of the 40 possible estimated haplotypes, a different haplotype was found in each of the three families carrying the SV, with haplotype

frequencies of 0.469, 0.024 and 0.001 (Table S1).

Artifact Removal by Classifier (ARC)
Artifact Removal by Classifier (ARC) is a random forest supervised model developed to distinguish true rare de novo variants from

LCL-specific genetic aberrations or other types of artifacts such as sequencing and mapping errors (https://github.com/walllab/

iHART-ARC). To train the model we used rare de novo variants identified in 76 pairs of fully phase-able monozygotic (MZ) twins

with WGS data derived from LCL DNA. We performed GATK joint genotyping of variants in MZ twins together with all samples in

the iHART cohort and identified the de novo variants as described above. We defined rare de novo variants as de novo variants

with a population frequency of zero in the publicly available databases, UCLA internal controls, and HNP samples. In the training

set, rare de novo variants identified in both MZ twins were labeled as true variants (positive class), whereas discordant calls were

labeled as false variants (negative class). Our final training set consisted of 5,667 positive and 56,018 negative variants.

A random forest classifier with 1,000 decision trees was trained on these positive and negative examples. We used the Random-

ForestClassifier implementation from the Python scikit-learn package (version 0.18.1). Weights associated with classes were

adjusted inversely proportional to the class frequencies by using sklearn ‘balanced’ class weight option to control for class imbalance

(many more negative examples than positive). We performed hyperparameter optimization by grid search.

ARC features

Variants in both classes were annotated with 48 features; these features are related to intrinsic genomic properties (e.g., GC content

and other properties implicated in de novo hotspots (Michaelson et al., 2012)), sample specific properties (e.g., genome-wide number

of de novo SNVs), signatures of transformation of peripheral B lymphocytes by Epstein-Barr virus (e.g., number of de novo SNVs in
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immunoglobulin genes), or variant properties (e.g., GATK variant metrics). We also annotated whether or not each variant fell into a

region flagged as low-confidence (regions for which no high-confidence genotype calls were possible) by theGIABConsortium (Zook

et al., 2014); variants flagged as low-confidence (deemed ‘‘GIAB variants’’) were retained for calculating sample-level metrics but

subsequently removed prior to running the classifier (5,373 positive and 53,622 negative variants remained for use in classifier).

For the eleven features which occasionally had missing values, missing values were imputed and a feature ‘‘is.X.feature.na’’ was

included to capture this imputation process as an independent feature. All non-missing GATK metrics were taken directly from

the VCF, with the exception of ABhet (see ABhet adjustment details below). A complete list of features and the importance (relative

importance of each random forest feature was obtained from the RFECVmodule from scikit-learn) of each feature used in the random

forest classifier are shown in Figure 3A.

Evaluation of ARC performance

The performance of the model was first evaluated with the receiver operating characteristic (ROC) curve analysis using a ten-fold

cross validation procedure. In the ten-fold cross validation, the entire training set was divided into ten folds such that the ratio of pos-

itive to negative examples was constant across folds. We achieved an AUC of > 0.98 (Figures S3A and S3B). The ROC and precision

recall curves are shown in Figures S3C and S3D.

To assess the generalization error of our model, we additionally performed whole-genome sequencing (�30X) of matched whole

blood (WB) and LCL samples from 17 fully phase-able individuals from the iHART cohort (‘‘test set’’). These samples were also jointly

genotyped with all samples in the iHART cohort so as to preserve variant calling metrics between the training and test set. We

followed the same procedure as in the training set to identify and extract rare de novo variants in our WB-LCL matched samples.

We assumed that true de novo variants would be those identified in both the WB and LCL sample in a pair (deemed ‘‘concordant’’).

We further assumed that variants detected in only one sample of a pair (deemed ‘‘discordant’’), would be due to LCL-specific

aberrations (if called in LCL) or other sources of errors (if called in WB or LCL). In total, 1,512 concordant rare de novo variants

(n = 1,291 after excluding GIAB variants) were called in these samples, which we used as positive examples in our test set.

Furthermore, 2,560 discordant rare de novo variants (n = 1,898 after excluding GIAB variants) were called in only one sample of a

pair (64% of discordant variants found only in LCL, 36% of discordant variants found only in WB) and were used as negative exam-

ples.We evaluated amodel that was trained using the entire training set on this independent test set and achieved anAUCof 0.98 and

an F1 score of 0.89.

To determine a cutoff point for the predicted ARC scores, below which a variant would be considered likely to be an LCL-

specific genetic aberration or other type of artifact, we chose a conservative cutoff value. We selected a conservative ARC

score threshold (0.4) that achieved a minimum precision and recall rate of 0.92 and 0.80, respectively, in the 10-fold cross

validation training set (Figures S3C and S3D); and achieved a precision and recall rate of 0.98 and 0.84, respectively, in the test

set (Figure S3H).

ABHet adjustment

ABHet is a variant-level annotation from GATK that aims to estimate if biallelic variants match expected allelic ratios. An ideal

heterozygous variant will have a value of close to 0.5 and an ideal homozygous variant will have a value of close to 1.0. ABHet is

calculated for a variant based on all samples in the VCF which are not homozygous reference at this site. The ABHet annotation

is not currently provided by GATK for indels. Using the ABHet formula below, we manually calculated the ABHet value for all indels.

ABHet =
# REF reads from heterozygous samples

# REF+ALT reads from heterozygous samples
Additionally, in the training set, we manually adjusted ABHet value
s by only including the proband and removing his/her twin(s) from

the calculation. This corrects for bias introduced by applying the rawGATKmetric calculated based on two samples to a single sam-

ple because we retain only the probandmetrics (and exclude theMZ twinmetrics) for shared de novo variants. This systematic bias is

particularly apparent when comparing to the sample-level ADDP metric (formula below).

ADDP=
# ALT reads in a sample at variant site

# REF+ALT reads in a sample at variant site
If a variant is present in only one sample in the VCF, then ABHet =
 = 1 – ADDP. In contrast, for shared de novo variants a variant is in

two different samples (proband (x) and MZ twin(y)), and ADDPx is rarely equal to ADDPy, and thus ABHetxy ! = 1 – ADDPx.

Similarly, in the test set we manually adjusted the ABHet values by only including the LCL sample and removing its matched WB

sample from the calculation.

Imputing missing values for ARC features

For eleven of the ARC features (Inbreeding coefficient, ABHet, ABHom, Overall non-diploid ratio (OND), Recombination rate, Base

quality rank sum, Mapping quality rank sum, DNase hypersensitivity, Read position rank sum, Replication timing, Transcription in

LCL), some variants had missing values. In general, we used the mean of all non-missing values to impute the missing values of a

feature. However, for GATK’s ‘‘OND’’ feature, missing values were imputed as zero. In order to account for missingness and capture

this imputation process in the ARC model, a binary feature ‘‘is.X.feature.na’’ was included for all variants for each of these features,

with the exception of the ‘‘OND’’ feature (as OND values were missing for the majority of variants).
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For two ARC features, indels were occasionally annotated with multiple values – SimpleRepeats and EncodeCaltechRna

SeqGm12878R2x75. For SimpleRepeats, if multiple values were listed, only the lowest value was retained. For EncodeCaltechRna

SeqGm12878R2x75, only the max value was retained. We chose these features to be most conservative and least likely to bias the

classifier. These exceptions are also captured by the ‘‘is.indel’’ feature.

ARC outlier samples

After applying ARC to all 1,377 children (partially or fully phase-able), we identified a subset of outlier samples for which > 90%of their

raw DN variant calls had an ARC score of less than 0.4. These are samples for which > 90% of raw DN variant calls were excluded by

ARC (partially phase-able n = 2; fully phase-able n = 346). These outlier samples were those with the largest number of rawDN variant

calls prior to running ARC (biological sequencing source was LCL) and it’s likely that the classifier was unable to confidently distin-

guish variants in these samples. Unless otherwise mentioned, all ARC outlier samples were excluded from downstream analyses

involving de novo variants.

De novo mutation rate versus paternal age
Weevaluated the correlation betweenDNvariant rate in 574 fully phase-able iHART affected children (excludingMZ twins, ARCoutliers,

and one sample without paternal age information) and paternal age at the child’s birth using a generalized quasi-Poisson linear model,

assuming that the counts are distributed as an over-dispersed Poisson distribution (a generalized quasi-Poisson linear model):

RC = TC 3 ðA3FC +BÞ
Where RC is the rate of DN events per child, FC is the age of the
 father at the birth of the child and TC is the percent of the child’s

genome covered at R 10X and A and B are whole population parameters, estimated by maximizing the likelihood over all children

(as previously described in Iossifov et al., 2014). We performed this analysis before and after ARC, considering only DN events not

falling in GIAB low-confidence regions.

Given the well-known effect of paternal age on germline mutation, we tested for an effect of paternal age on the number of de novo

mutations per affected ASD child and found a robust signal after running ARC (p = 3.6 3 10�13), but not prior to application of

ARC (STARMethods; Figure S4D). We observed an increase of 1.46 RDNVs per year of paternal age (95%CI = 1.37-1.55), matching

previously published rates (Deciphering Developmental Disorders Study, 2017; Francioli et al., 2015; Goldmann et al., 2016; Michael-

son et al., 2012).

Rates for rare de novo mutations
When calculating de novomutation rates, we only considered the 1,177 children with both biological parents sequenced (fully phase-

able). Rare de novo variants (absent in all controls) were restricted to those with an ARC score R 0.4 that were not flagged as low-

confidence by the GIAB consortium. We then excluded ARC outlier samples (n = 346). Consistent with what is shown in Figure S4B,

there was no significant difference in the rate of rare de novo variants based on the biological sequencing source (WB versus LCL;

after ARC and after excluding ARC outliers) when including all MZ twins. However, we observed that shared de novo (TRUE) variants

from the LCLMZ twins have slightly inflated ARC scores (median number of de novo variants is 69), as compared to LCL non-MZ twin

samples (median number of de novo variants is 57) (Figure S4A). This difference in de novo rateswas significant when evaluated using

Wilcoxon rank sum test (p = 1.283 10�12). The inflated ARC scores are likely due to the fact that these LCLMZ twins were used as the

ARC training set; therefore, de novo variants from all MZ twin samples were excluded from all de novo rate calculations (n = 158, some

of which are also ARC outliers n = 43). Therefore, all de novo mutation rate calculations were performed using 716 fully phase-able

non-MZ twin and non-ARC outlier samples (Naff = 575; Nunaff = 141).

We observed amean genome-wide de novomutation rate of 60.1 RDNVs per child (Figure S4B), which is consistent with previously

reported genome-wide de novo mutation rates (mean = 64.4; range 54.8-81) (Besenbacher et al., 2016; Conrad et al., 2011; Kong

et al., 2012; Michaelson et al., 2012; Turner et al., 2016; C. Yuen et al., 2017).

Power calculations for RDNVs
Given our observation that children from multiplex families and simplex families have comparable rates of rare de novo synonymous

and missense variants in both affected and unaffected children but different rates for rare de novo PTVs (Table S2), we sought to

determine if this represented a true difference in the underlying genetic architecture of multiplex ASD families by performing a Monte

Carlo integration. This revealed that with the current iHART sample size (Naff = 575, Nunaff = 141), we had only 51%power to detect an

odds ratio greater than or equal to the odds ratio reported in simplex families (OR = 0.13/0.07 = 1.86) (Iossifov et al., 2014; Kosmicki

et al., 2017) and that our power to reject the null hypothesis that affected and unaffected children have no difference in the rate of de

novo PTVs was 70.8%.We estimate that once we expand our cohort by a factor of 2.5 (Naff = 1,438, Nunaff = 353), we will have > 95%

power to detect a rate difference in de novo PTVs if such a difference exists in multiplex ASD families.

Defining pathogenic de novo variants
We defined pathogenic de novo variants (Figure 3E) as missense or PTV variants passing ARC and found in one of the previously

established 65 ASD-risk genes (Sanders et al., 2015). Despite finding no global excess of damaging RDNVs in ASD cases in the study,
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we do identify PTVs and predicted deleterious missense (Mis3) RDNVs in previously established ASD-risk genes, including CHD8,

SHANK3, and PTEN (Figure 3E; Table S3). As expected, such pathogenic RDNVs are only found in affected children in our cohort.

TADA mega-analysis
Samples and qualifying variants

We used the Transmitted AndDe novo Association (TADA) test (He et al., 2013) to combine evidence from rare de novo (DN) or trans-

mitted (inherited) PTVs and de novoMis3 variants identified in ASD cases. Within the 422 iHART families with at least one ASD case

and both biological parents sequenced, there were 838 genetically non-identical (only one MZ twin retained) ASD cases available for

the TADA analysis. These 838 affected samples, and their biological parents, were treated as independent trios for the TADA analysis.

This approach means that siblings were treated as belonging to independent trios, an approach for which we also approximate the

null distribution (see details on TADA simulations below). To further increase power for the identification of novel ASD-risk genes, we

combined qualifying variants found in ASD cases from the current (iHART) cohort with themost recent TADAmega-analysis (Sanders

et al., 2015), which included variants described in the Simons Simplex Collection (SSC) and the Autism Sequencing Consortium

(ASC) cohorts, together with small de novo CNV deletions (SmallDel) identified in SSC and Autism Genome Project (AGP) probands

(Table S3).

Qualifying variants in the iHART cohort included rare DN/transmitted PTV and rare DN Mis3 variants identified in the 838 affected

samples, and not flagged as low-confidence by the GIAB consortium (Zook et al., 2014). Following the allele frequency threshold

used in the previous TADA mega-analysis (Sanders et al., 2015), we required transmitted PTVs to have an AF % 0.1% in public da-

tabases (1000 g, ESP6500, ExACv3.0, cg46), internal controls, and iHART HNP samples. DN variants identified in the iHART cohort

were required to be absent in all public databases, internal controls, and HNP samples (AF = 0). High confidence DN variants were

obtained by ARC for all non-MZ twin samples. DN variants shared by MZ twins (shared DN variants, used as TRUE examples in the

ARC training set) were also included as qualifying variants without filtering on their ARC score. Additionally, for the 185 TADA samples

identified as ARC outlier samples, we excluded DN variants in these samples and retained only their inherited PTVs as qualifying

variants. We used the PolyPhen-2 (Adzhubei et al., 2010) v2.2.2r395 HDIV predictions from the Whole Human Exome Sequence

Space (WHESS dataset) to annotate DN Mis3 variants in the iHART cohort. This method is highly concordant to the method

(PolyPhen-2 web application) implemented for the ASC and SSC (Sanders et al., 2015), with our re-annotation resulting in identical

Mis3 classifications for 99.8% of the reported DN Mis3 variants in the ASC and SSC cohorts. When multiple qualifying variants in a

gene were found in the same sample, only the most damaging variant was retained.

We then tallied qualifying variants from the different cohorts into a gene by variant-type matrix for the TADA analysis, which con-

tained variant counts for a total of 18,472 gencodeV19 genes with HGNC approved gene names (this excludes a subset of genes

(193 out of 18,665) from the most recent TADA mega-analysis (Sanders et al., 2015) that could not be easily converted to a single

non-redundant HGNC gencodeV19 gene). In particular, counts of DN PTV/Mis3 variants come from 4,689 ASD cases from ASC

(De Rubeis et al., 2014), SSC (Iossifov et al., 2014), and iHART (this manuscript), while counts for the transmitted and non-transmitted

PTVs are from 3,813 ASD cases and 7,609 controls from the ASC (De Rubeis et al., 2014) and iHART (this manuscript) (Table S3).

Finally, counts of DN SmallDel were calculated in 4,687 ASD cases from the SSC (Sanders et al., 2015) and the AGP (Pinto et al.,

2014; Table S3).

Critically, 424 AGRE samples (sample list obtained from B. Devlin, M. Daly, and C. Stevens, personal communication) were

included as ‘‘cases’’ in the original ASC TADA analysis (De Rubeis et al., 2014) meaning that all qualifying PTVs identified in these

cases were treated as transmitted PTVs because de novo status could not be determined. Given that iHART sequenced 119 of these

samples (or themonozygotic twin of one of these samples) and their biological parents, wewere able to recover the de novo status for

variants identified in these samples (71 samples after excluding ARC outliers) by using the iHART data. Thus, we used iHART data to

count qualifying DN PTV and Mis3 variants in these samples and allowed transmitted PTV counts to come from the original study

(De Rubeis et al., 2014). To do this in a non-redundant way (without double-counting variants), we looked for all qualifying DN

PTVs identified by iHART data in these samples in the ASC VCFs (downloaded from dbGAP (De Rubeis et al., 2014)) and subtracted

a transmitted PTV count from the iHARTmega-analysis TADA-ready table for each variant found in the ASC VCFs. In three instances,

the transmitted PTV count from ASC cases was already zero for the gene harboring the corresponding variant and thus we left it

at zero.

TADA parameters

The parameters used for performing the TADA analysis, matched those used in previous TADA mega-analyses (De Rubeis et al.,

2014; He et al., 2013; Sanders et al., 2015); including the previously observed aggregate association signals used to estimate relative

risk (RR, g) for each variant class – DN PTV (g = 20), DN SmallDel (g = 15.3), DN Mis3 (g = 4.7), and transmitted PTV (g = 2.3) (use of

these parameters facilitated replication of previous findings prior to adding the iHART cohort to perform amega analysis). PTVs clas-

sified as uncertain or missing (as defined previously) in children were excluded. In addition to these RR parameters, we also assumed

the fraction of ASD-risk genes (p) to bez0.05 (1,000 ASD-risk genes divided by a total of 18,472 genes), the PTV frequency param-

eters (required by TADA to integrate transmitted and non-transmitted PTV variant counts into themodel) were r = 0.1 and n = 200 and

the genemutation rates were taken directly from themost recent TADAmega-analysis (Sanders et al., 2015), with PTV andMis3 gene

mutation rates calculated by multiplying the exome mutation rates, originally estimated by Samocha et al. (Samocha et al., 2014), by

the fractional constants of 0.074 and 0.32, respectively. This use of gene mutation rates as ground truth (rather than comparing to
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control samples) facilitates the use of TADA in mega-analyses because differences in sample size and variant detection between

studies impact the power of TADA, but are not a potential source of bias.

Novel gene discovery

We applied stringent parameters for declaring a gene as novel – genes had to have an FDR < 0.1 in our TADAmega-analysis and lack

genome-wide statistical support in all previous studies (Sanders et al., 2015; De Rubeis et al., 2014) with statistical rigor. The

CACNA2D3 gene was significantly associated with ASD in the iHART mega-analysis, but not the previous TADA mega-analysis

(Sanders et al., 2015); however it was previously reported (De Rubeis et al., 2014) and thus is not considered as a novel ASD-risk

gene. In contrast, MYO5A was reported as a ‘‘putative ASD-risk gene’’ (C. Yuen et al., 2017), however the binomial test they use

to obtain an FDR is not applied genome-wide (e.g., they first restrict to genes withR 2 PTVs in genes with a pLIR 0.9). Furthermore,

they apply an FDR threshold of < 0.15 (the standard in the field is an FDR < 0.1) and they do not provide per gene FDR values. There-

fore, we consider MYO5A a novel ASD-risk gene.

Removal of de novo signal

Given that our multiplex ASD familial cohort is expected to be depleted for de novo variation relative to simplex families, we also

asked how our novel gene discovery would change if we ignored the contribution of de novo variants in the iHART cohort to the

TADA mega-analysis (by assigning a relative risk of one to de novo variants in iHART children). Using this overly conservative

approach, a total of 65 ASD-risk genes are identified at an FDR < 0.1, including six of the 16 novel genes identified in the iHART

TADA mega analysis (C16orf13, CCSER1, MLANA, PCM1, TMEM39B, and TSPAN4) and five additional genes (ASXL3, CDH13,

NR3C2, SCN7A, STARD9) Table S3.

Replication of previous TADA-mega analysis

Comparison of the iHART TADA-mega analysis to the previously published findings (Sanders et al., 2015) identified 16 newly-signif-

icant (FDR < 0.1) ASD-risk genes plus CACNA2D3, which was previously reported as an ASD-risk gene (De Rubeis et al., 2014; Ta-

ble 1; Figure S5D). We failed to replicate 13 of the genes previously published with an FDR < 0.1 (Sanders et al., 2015; Figure S5C).

The q-values for these 13 genes were borderline significant in iHART (Figure S5C), and their simulation p values were greater (min

p value = 0.01, max p value = 0.06; Figure S5E) than those of the 69 ASD-risk genes we identified in the TADA mega-analysis

with high confidence, which include the 16 newly significant genes (min p value = 0.001, max p value = 0.006) (Figures 4B, S5D,

and S5F). While some of the genes that failed to replicate in our study may reach genome-wide significance again as sample sizes

grow, at this stage our data do not support them.

TADA simulations
The distribution of the TADA statistic (under the null) is known for independent trios (He et al., 2013), but not for multiplex families.

Therefore, we estimated the distribution of the null TADA statistic by simulatingMendelian transmission and de novomutation across

the family structures used in our TADA-mega analysis. This simulation was based on the observed qualifying variant counts and

family structures from our TADA-mega analysis datasets, which included: (1) iHART multiplex families, (2) ASC and SSC trios and

ASC case-control samples, and (3) small deletions from Sanders et al. (Sanders et al., 2015; Table S3). Simulations under the null

model (1.1 million-simulations) were conducted prior to running TADA with the same parameters used for our TADA-mega analysis

(see ‘‘TADA mega-analysis’’).

The occurrence of rare de novo variants (RDNVs) was simulated by randomly shuffling genes carrying the observed qualifying

RDNVs across the genome of each sample by redrawing in proportion to the gene-specific mutation rates (derived from Samocha

et al. (Samocha et al., 2014)). For example, if an affected sample harbored 8 RDNVs, these RDNVs would be placed in 8 genes in

simulation 1, independently in 8 genes in simulation 2, and so on, where the probability of a gene containing an RDNV is proportional

to its genemutation rate. This methodwas applied to simulate RDNVs in affected children from iHARTmultiplex families and affected

children from ASC and SSC trios.

The occurrence of transmitted (inherited) and non-transmitted variants was simulated by (A) randomly shuffling genes carrying the

observed qualifying variants in the parents of a given family, by redrawing in proportion to the gene-specific mutation rates and (B)

randomizing the Mendelian inheritance of such variants across all children (affected and unaffected) in the family. Randomization of

the Mendelian inheritance simply means that for each simulation a variant can be transmitted to each child, regardless of affected

status, with a 50%probability. For example, in Family001, if mom harbored 10 qualifying PTV variants and dad harbored 10 qualifying

PTV variants; then in each simulation each of these 20 variants would be randomly placed in a gene according to its gene-specific

mutation rate and is either transmitted or not transmitted to each of the children in the family. This method was applied to simulate

transmitted and non-transmitted PTVs in the cohorts listed in Table S3.

Finally, we simulated small deletions disrupting 2-7 genes at a time (Sanders et al., 2015). For each observed small deletion

containing Ngenes, we selected a contiguous set of Ngenes by redrawing in proportion to the multi-gene mutation rates. Multi-gene mu-

tation rates were calculated by summing single-gene mutation rates of adjacent genes using sliding windows of K genes across the

genome. For example, if a small deletion disrupted 5 genes in an affected sample, then for each simulation a contiguous set of 5 genes

would be randomly selected for this sample with a probability proportional to the 5-gene-sliding-window multi-gene mutation rates.

The resulting set of simulation-based Bayes factors from TADA were multiplied together. A single p value for each gene was

generated, reflecting how unlikely it is to have observed the Bayes factor obtained in our TADA-mega analysis given the 1.1 million

simulation-based Bayes factors observed for this gene (Figures S5A and S5B).
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We used the simulation p values to identify genes reaching genome-wide significance after applying a stringent Bonferroni correc-

tion for the total number of genes included in the TADA analysis (0.05/18,472 = 2.7x10�06). We restricted this to genes obtaining an

FDR < 0.1 by TADA and a simulation p value of less than or equal to 2.7x10�06 (Table S3). If we remove the requirement for a TADA-

mega analysis FDR < 0.1, then a 25th gene, DNAH10, also reaches genome-wide significance implicating that variants in this gene

show over transmission to affected children in our multiplex children.

Genes with large inherited PTV contribution
Given our signal for rare inherited variants, we sought to highlight genes for which a large contribution of the TADA ASD-risk asso-

ciation signal is derived from inherited PTVs. Conservatively, we considered only variants where the inheritance was known (de novo

versus inherited). Therefore, we adjusted the total number of TADA-qualifying variants to ignore PTVs from cases because some of

the TADA-mega analysis qualifying variants originate from case-control studies (not iHART) where inheritance is unknown. We

applied twomethods to identify geneswith a large contribution from inherited PTVs.Method 1: The total number of qualifying variants

(N) in each TADA gene was defined as NDN.PTV + NDN.SmallDel + NDN.Mis3 + NInherited.PTV; and if NInherited.PTV/N R 70%, then this gene

was considered to have a higher proportion of inherited risk variants. Method 2: Alternatively, we identified genes for which the main

driver of the TADA association signal was from inherited PTVs. We defined this class of genes as those where the Bayes Factor from

inherited PTVs was greater than the Bayes Factor from all other de novo variant classes (BFinheritedPTV > BFdnPTV & BFinheritedPTV >

BFdnSmallDel & BFinheritedPTV > BFdnMis3). For PCM1, the Bayes Factor contribution from inherited PTVs was greater than the Bayes

Factor from any class of de novo variants, indicating that the association signal for PCM1 is mainly driven by inherited PTVs.

Single cell RNA-seq
Gene cell type enrichment scores were obtained from an unpublished single cell RNA sequencing (scRNA-seq) dataset of GW17-18

human fetal cortex, a human fetal forebrain scRNA-seq dataset from Nowakowski et al. (Nowakowski et al., 2017), and adult brain

scRNA-seq dataset from Lake et al. (Lake et al., 2018; Figures S6C and S6D). Cell type enrichment lists were grouped into major cell

classes (glutamatergic, GABAergic, glial and other support cells). Broadly expressed genes were determined by enrichment in

neuronal and glial or other support cell types, or above a mean expression threshold across all cells in the dataset but without

cell type specific enrichment. Enrichment log2 odds ratios were calculated using a general linear model (binomial distribution).

Identifying candidate ASD genes with NetSig
In order to identify genes whose encoded proteins directly interact with potential ASD-risk genes more than expected by chance, we

ran NetSig (Horn et al., 2018). NetSig requires two input files: (1) a set of genes and their associated q-values (or p values) and (2) a PPI

network. We input the q-values obtained in the iHART TADA mega-analysis and known protein-protein interactions from InWeb v3

(Lage et al., 2007) after converting to HGNC and restricting to genes included in the iHART TADA mega-analysis (12,015 genes); this

resulted in a subset of 302,991 knownPPIs. Given that iHARTSVswere not included in the TADA analysis (Table S3), and therefore do

not contribute to the input q-values in this analysis, we explored enrichment for NetSig significant genes using the direct and indirect

network seeded by high-risk inherited PTVs (Figure 2C).

Zebrafish experiments
Generation of zebrafish nr3c2 mutant

The zebrafish nr3c2 mutant was generated using CRISPR/Cas9 as described (Hwang et al., 2013) with sgRNA target sequence 50-
GGTGTGTGGTACGAGAGCGG-30. The mutant contains a 5 bp deletion (open reading frame nucleotides 2120-2124, 50-CCGCT-30)
that shifts the translational reading frame after amino acid 707 and results in a premature stop codon after amino acid 738, compared

to 970 amino acids for the WT protein. The predicted mutant protein lacks the ligand binding domain, and thus should be non-

functional. Mutant animals were genotyped using the primers 50-CTTCCCTGCAGAGCTCAAAG-30 and 50-ATAGCCAGCGAACAC

CACTT-30, which produce a 164 or 159 bp band for the WT or mutant allele, respectively. nr3c2 heterozygous mutants were out-

crossed to the parental TLAB strain for three generations before use in experiments. For each behavioral experiment, nr3c2 +/� an-

imals were in-crossed, generating nr3c2�/�,�/+ and +/+ sibling progeny. Experiments were performed blind to genotype, and an-

imals were genotyped using PCR after each experiment. Multiple sequence alignments were performed using Megalign Pro

(DNASTAR Lasergene).

Pharmacology

MK-801 (M107, Sigma Aldrich) was dissolved in dimethyl sulfoxide (DMSO, 4948-02, Macron Chemicals) as a 100mMstock solution.

Immediately before each experiment, this stock solution was diluted in systemwater for a final concentration of 20 mM.WT TLAB fish

were exposed to either 20 mM MK-801 in 0.02% DMSO or 0.02% DMSO vehicle control for 1 hour prior to behavioral testing. For

ethanol experiments, WT TLAB fish were exposed to ethanol (V1016, Koptec) diluted in system water at a final concentration of

0.5% for 1 hour prior to behavioral testing. After each drug treatment, fish were rinsed in fresh systemwater 3 times before behavioral

testing.

Social preference assay

Beginning at 2 weeks of age, and becoming robust at 3 weeks of age, zebrafish showwhat has been described as social behavior by

exhibiting a strong preference to remain in a compartment where they can view conspecifics compared to a compartment where they
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cannot (Dreosti et al., 2015). This behavior is not simply a result of attraction to a novel or moving object, as it is only elicited by

conspecifics of similar size and behavioral patterns (Dreosti et al., 2015; Larsch and Baier, 2018). Based on these observations,

we developed a modified version of a previously-described social preference assay (Dreosti et al., 2015). Zebrafish were raised

on a 14:10 hour light:dark cycle and were fed rotifers (Brachionus plicatilis) twice per day until reaching 2 weeks of age. Fish were

then fed brine shrimp (Artemia salina) until 3-4 weeks of age, at which point their behavior was assayed. The behavioral assay

was performed using a flat-bottom 12-well plate containing round wells made of clear plastic (CC7672-7512, CytoOne) and

custom-built removable opaque dividers. Single ‘‘test’’ animals, whose behaviors were analyzed, were placed in each of the 4middle

wells of the plate, and a WT conspecific of similar age and size was placed in a well either above or below each middle well. Wells

were filled with fresh system water and the plate was placed in a custom-modified, Zebrabox (Viewpoint Life Sciences) that was illu-

minatedwith infrared andwhite LEDs. The 12-well platewas housed in a chamber filledwith recirculating water tomaintain a constant

temperature of 28.5�C. Locomotor activity wasmonitored using an automated videotracking system (Viewpoint Life Sciences) with a

Dinion one-third inch monochrome camera (Dragonfly 2, Point Grey) fitted with a fixed-angle megapixel lens (M5018-MP, Computar)

and infrared filter. The tracking mode was used to record the location of each test animal, with the following empirically determined

settings: low detection threshold = 130; xmin size = 3; inactivity = 5. Animals were given a 5-minute habituation period before the start

of data acquisition. During a 10-minute baseline period, opaque dividers were inserted between each well to prevent the animals

from seeing each other. The dividers separating each row of wells (but not the dividers separating each column of wells) were

then removed, allowing each test animal to view one well containing a conspecific and one empty well. The fish were given another

5-minute habituation period, followed by a 10-minute post-baseline period. For data acquisition, wells containing test fish were

divided into two 0.5 cm3 2.2 cm zones, one closest to the well containing a conspecific and one closest to the empty well (indicated

as blue and orange boxes in Figure 6A, respectively). The amount of time spent by a test fish in each zone during the baseline and

post-baseline periods was recorded.

Social preference of test fish was quantified by calculating the social preference index (SPI) = (time spent in zone near the conspe-

cific – time spent in zone near the empty well)/time spent in both zones. Thus, SPI = 1 indicates a fish that spends 100% of its time

near a conspecific, SPI =�1 indicates a fish that spends 100%of its time near the empty well, and SPI = 0 indicates a fish that spends

equal amounts of time near the conspecific and near the empty well. Data analysis and statistical tests were performed using Prism

(GraphPad).

To validate the social preference assay, we treated zebrafish with either MK-801, an NMDA receptor antagonist that disrupts

rodent (Moy et al., 2013) and zebrafish (Zimmermann et al., 2016) social behaviors, or DMSO vehicle control, for one hour prior to

performing the behavioral assay. Animals treated with DMSO on average showed no spatial preference during the baseline period

and a strong preference for conspecifics during the post-baseline period (Figure S7C). This behavior was only observed in animals

3 weeks of age or older (data not shown), as previously reported (Dreosti et al., 2015). In contrast, while animals treated with 20 mM

MK-801 also on average showed no spatial preference during the baseline period, social preference for conspecifics during the post-

baseline period was abolished (Figure S7D). To further validate the assay, we treated zebrafish with ethanol, which has also been

shown to reduce preference for conspecifics in 3-week old zebrafish (Dreosti et al., 2015). Similarly, we found that treatment with

0.5% ethanol for 1 hour prior to behavioral testing significantly reduced social preference (Figure S7G). Furthermore, both

MK-801 and ethanol treatment significantly suppressed the increase in SPI during the post-baseline period compared to the baseline

period (Figures S7E and S7H), indicating reduced social preference. Taken together, these results reproduce observations obtained

using a similar assay (Dreosti et al., 2015) and suggest that our assay can identify social interaction defects in zebrafish.

Zebrafish size was quantified by measuring body length from the tip of the mouth through the midline of the body to the end of the

tail fin in single frames of video recordings of the social preference assay using ImageJ (Schneider et al., 2012). The social behavioral

deficit observed in nr3c2 �/� animals (Figures 6B and 6C) is unlikely to be due to developmental delay because there was no

significant difference in the size of nr3c2 �/�, +/� and +/+ siblings when the assay was performed (Figure S7I).

Sleep/wake assay

Sleep/wake analysis was performed as previously described (Prober et al., 2006). Zebrafish were raised on a 14:10 hour light:dark

cycle until 4-days post-fertilization, when individual animals were placed into each well of a 96-well plate (7701-1651,Whatman) con-

taining 650 mL of E3 embryomedium (5mMNaCl, 0.17mMKCl, 0.33mMCaCl2, 0.33mMMgSO4, pH 7.4). Plates were sealedwith an

optical adhesive film (4311971, Applied Biosystems) to prevent evaporation. The sealing process introduces air bubbles in some

wells, which are discarded from analysis. Animals were blindly assigned a position in the plate and were genotyped by PCR after

the behavioral experiment was complete. Locomotor activity was monitored using an automated videotracking system (Viewpoint

Life Sciences) with a Dinion one-third inch monochrome camera (Dragonfly 2, Point Grey) fitted with a fixed-angle megapixel lens

(M5018-MP, Computar) and infrared filter. The movement of each larva was recorded at 15 Hz using the quantization mode with

1-minute time bins. The 96-well plate and camera were housed inside a custom-modified, Zebrabox (Viewpoint Life Sciences)

that was continuously illuminated with infrared LEDs, and illuminated with white LEDs from 9 a.m. to 11 p.m. The 96-well plate

was housed in a chamber filled with recirculating water tomaintain a constant temperature of 28.5�C. The parameters used for detec-

tion were: detection threshold, 15; burst, 29; freeze, 3, which were determined empirically. A movement was defined as a pixel

displacement between adjacent video frames preceded and followed by a period of inactivity of at least 67 ms (the limit of temporal

resolution). Any one-minute period with no movement was defined as one minute of sleep because this is associated with a

significant increase in arousal threshold (Prober et al., 2006). A sleep bout was defined as a continuous string of sleepminutes. Sleep
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latency was defined as the length of time from lights off at night to the start of the first sleep bout. Data were processed using custom

PERL and MATLAB (The Mathworks, Inc.) scripts. Statistical tests were performed using Prism (GraphPad).

QUANTIFICATION AND STATISTICAL ANALYSIS

Unless otherwise noted, statistical calculations were done using R (3.5.1). DAPPLEmetrics results for evaluating the significance of PPI

networkswere all done using 1,000 permutations (within DAPPLE parameter) and P values < 0.05were considered significant. For gene

set enrichment analyses, significance should only be considered for gene sets surviving multiple test correction (Bonferroni correction

for the 22 gene sets tested or p < 0.002). NetSig genes were considered significant if they obtained a P value < 0.05. Unless otherwise

specified, enrichment tests (e.g., enrichment of NetSig genes within high-risk inherited PPI networks) was performed by Fisher exact

test; we considered P values < 0.05 as significant and also report the odds ratio (OR) with its associated 95% confidence interval.

All statistics for Artifact Removal by Classifier (ARC) are described within the Method Details and corresponding figures. The sam-

ples included in the training and test set are shown in Table S1. We also re-emphasize that we selected a conservative threshold of

ARC score R 0.4 to consider only RDNVs with extremely high confidence.

Determining rate differences between groups
Unless otherwise specified, rates comparisons between phenotypic groups (affected versus unaffected) were calculated by taking

the number of variants per child and performing a quasi-Poisson linear regression and resulting P values < 0.05 were considered sig-

nificant. This method enabled us to adjust for both biological sequencing source (WB versus LCL) and biological sex (male versus

female). Biological sex was not used as a covariate for hemizygous variants because only male children are considered. Unless

otherwise noted, rates are displayed as the mean number of variants with error bars representing the standard error. Here we

reiterate the sample sizes for each of the rate tests performed: (i) rare inherited coding variants (Naff = 960, Nunaff = 217), (ii) coding

RDNVs (Naff = 575, Nunaff = 141), (iii) iHART non-coding RDNVs (Naff = 575, Nunaff = 141), (iv) iHART non-coding inherited variants

(Naff = 960, Nunaff = 217), (v) iHART+SSC non-coding RDNVs (Naff = 1092, Nunaff = 659), (vi) iHART+SSC non-coding inherited variants

(Naff = 1477, Nunaff = 735).

TADA and TADA simulations
The sample sizes for the TADA-mega analysis are provided in Table S3. Benjamini-Hochberg correction was performed for TADA

results and q-values (False Discovery Rate (FDR)) < 0.1 were considered significantly associated with ASD. When we apply the field

standard FDR < 0.1, we identify 69 genome-wide significant genes. The TADA simulations were performed using the same sample

sizes (and family structures) as used in the TADA-mega analysis. For the TADA simulations, only genes with a P value < 2.7x10�06

were considered as reaching genome-wide significance because these genes pass the stringent Bonferroni correction for the total

number of genes included in the TADA analysis (0.05/18,472 = 2.7x10�06).

Zebrafish statistics
The Shapiro-Wilk normality test was used to determine whether data in each experiment was normally distributed. Most datasets

were normally distributed and were analyzed as mean ± standard error of the mean using parametric statistical tests, except where

noted that data was analyzed as median ± 95% confidence interval using non-parametric statistical tests. The specific test used to

assess statistical significance in each experiment is described in each Figure Legend. Statistical tests were performed using Prism

(GraphPad). Data were considered to be statistically significant if p < 0.05.

DATA AND CODE AVAILABILITY

The whole-genome sequencing data generated during this study are available from the Hartwell Foundation’s Autism Research and

Technology Initiative (iHART) following request and approval of the data use agreement available at http://www.ihart.org. Access to

the whole-genome sequencing data generated in this study will be subject to approval by Autism Speaks and AGRE. Details about

the format of the data, access options, and access instructions are included at http://www.ihart.org.

We also freely provide the code for ARC (Artifact Removal by Classifier), our random forest supervised model developed to distin-

guish true rare de novo variants from LCL-specific genetic aberrations or other types of artifacts such as sequencing and mapping

errors, together with a full tutorial at https://github.com/walllab/iHART-ARC.

Interactive genotype/phenotype search engine
To facilitate sharing of iHART data with the broader autism research community and patients, we implemented a set of online data

access methods to preview and search genetic variants and phenotypic traits (http://www.ihart.org/home).

Zebrafish data
The zebrafish datasets generated and analyzed in this study, and the code used to generate the data, are available upon request.
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Figure S1. WGS Coverage Statistics for 2,308 iHART/AGRE Samples and the High-Resolution Detection of Large SVs, Related to Figure 1

There were no significant differences in the average fold coverage per sample across the cohort and no differences in the categories of (A) ASD affectation status,

(B) sex, or (D) family member type – where family member type was simplified to include Mother, Father, Child (proband, sibling, MZ or DZ twin) and Other

(e.g., cousin). (C) The percent of exonic and genomic bases covered at R 10x in all family members for each of the 422 fully-phaseable iHART families. Exonic

regions were defined as those annotated as protein-coding exons in Gencode V19 (> 75Mb). Genomic regions were defined as all non-N bases in the reference

genome (> 2.8Gb). (E) The percentage of genomic bases covered at greater than or equal to 1X, 10X, 20X, 30X, and 40X bases for the 2,308 iHART samples with

WGS data. On average, 98.97 ± 0.37%of bases were covered at a depth ofR 10X. (F) An overview of our custommulti-algorithm consensus SV pipeline for high-

resolution detection of large structural variants (SVs) from whole-genome sequence data. The four boxes at the top list the four main algorithms used to call SVs,

and the parenthetical describes the detection strategy(s) used by each algorithm: AS, de novo assembly method; SR, split-read method; RP, read-pair method;

(legend continued on next page)



RC, read-count method. (G) Venn diagrams of structural variants detected by four different algorithms for all and rare (AF < 0.001 in cDGV and AF < 0.01 in iHART

HNP samples) SVs (DELs, DUPs and INVs) detected in 1,377 phase-able WGS samples by SMuFin, LUMPY, GenomeSTRiP and BreakDancer, after excluding

events withR 50% overlap with genomic low-complexity regions (Brandler et al., 2016). Additional per-algorithm filters were also applied prior to the generation

of this Venn diagram as described in STAR Methods. (H) A schematic overview of the SMuFin detection pipeline. Families are processed as independent trios,

where the sequence reads from a child are aligned to the mother’s genome and then the father’s genome, treating the parental genome as the reference genome

in both comparisons. Each comparison, or SMuFin execution, results in variants identified in the child by that parent-offspring comparison. All three members of

the trio are considered for assigning the corresponding inheritance of variants identified in the child. A variant detected when comparing to both mom and dad is

de novo,while a variant detected only when comparing to mom is paternally inherited and a variant detected only when comparing to dad is maternally inherited.
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Figure S2. Additional Details for Rare Inherited PTVs and SVs, Related to Figure 2

(A-D) Rare inherited coding variants by consequence and inheritance. The rate of rare inherited coding variants per fully phase-able child is displayed for 960

affected (red) and 217 unaffected (blue) children by both variant consequence and inheritance, this includes newly hemizygous variants in 563 affected (red) and

100 unaffected (blue) male children. The graph for newly homozygous PTVs (C) was excluded because none were identified in affected or unaffected children.

Mean ± SE rates are shown. (E) The rate of private inherited PTVs in 960 affected (red) and 217 unaffected (blue) children iHART children for all genes versus PTV

intolerant genes. We found no excess of inherited private PTVs in mutation intolerant genes (pLI R 0.9) (Lek et al., 2016) in affected subjects (p = 0.40, quasi-

Poisson linear regression). Mean ± SE rates are shown. (F) The rate of rare inherited SVs per fully phase-able child is displayed for 960 affected (red) and 217

unaffected (blue) children by inheritance type. Mean ± SE rates are shown. (G) The rate of rare inherited SVs per fully phase-able child is displayed for newly

hemizygous variants in 563 affected (red) and 100 unaffected (blue) male children. (H-M) The rate of rare inherited SVs per fully phase-able child identified in 960

affected (red) and 217 unaffected (blue) children by inheritance type; this includes newly hemizygous variants in 563 affected (red) and 100 unaffected (blue) male

children. Mean ± SE rates are shown. Maternally and paternally inherited SVs by affectation status and gene disruption for deletions (H), duplications (I), and

inversions (J). Newly hemizygous SVs by affectation status and gene disruption for deletions (K), duplications (L), and inversions (M). (N) The DLG2 promoter-

disrupting 2.5Kb deletion (chr11: 85339733 – 85342186), displayed as an orange rectangle, detected in three independent iHART families. This 2.5Kb deletion is

transmitted to all affectedmembers of two different iHART families. This deletion falls in a recently-defined, functional, non-coding regulatory region in developing

human brain (chr11:85338026-85340560) (de la Torre-Ubieta et al., 2018); below the deletion we show the average ATAC-seq peak read depth from the cortical

plate (CP) and ventricular zone (VZ) of developing human brain samples (n = 3).
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Figure S3. ARC Performance in the Training and Test Sets, Related to Figure 3

The 10-fold cross validation (CV) for the ARC training set (A-D). (A) Receiver Operating Characteristic (ROC) curves for the true positive rate (Sensitivity) is plotted

as a function of the false positive rate; (B) Area Under the ROC Curve (ROC AUC) statistics (median = 0.992) for each of the 10-folds; (C) Precision rates versus

predicted score cutoffs – the dashed line at the selected score (0.4) highlights that the minimum precision across all 10-folds is > 0.9; (D) Recall rates versus

predicted score cutoffs – the dashed line at the selected score (0.4) highlights that the minimum precision across all 10-folds is�0.8. ARC performance in the test

set (E-H). (E) Distribution of all test set variants by ARC score; (F) Distribution of all TRUE test set variants by ARC score – the majority of concordant variants have

an ARC score ofR 0.4; (G) Distribution of all FALSE test set variants by ARC score – almost all discordant variants have an ARC score of < 0.4; (H) The precision

and recall rates versus predicted ARC score cutoff in the test set – the dashed line at the selected score (0.4) highlights that the precision is > 0.95 and the recall

is > 0.85.
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Figure S4. RDNVs Identified in iHART Samples before and after ARC, Related to Figure 3

(A) The ARC score distribution for raw de novo variants identified in 1,177 fully phase-able samples – displayed as non-MZ twin samples versusMZ twin samples.

Samples for which DNA was derived from LCL or WB are shown in red and green, respectively. All LCLMZ twins were included in the ARC training set and all WB

MZ twins were included in the ARC test set. (B) The number of rare de novo variants identified in LCL (pink) andWB (blue) fully phase-able (non-MZ twin) samples

before ARC (N = 1,019 samples) and the number of rare de novo variants identified in LCL (pink) and WB (blue) fully phase-able (non-MZ twin) samples after ARC

(variants with an ARC score < 0.4 are filtered out) and after excluding ARC outlier samples (samples with > 90%DNs removed by ARC) (N = 716). After ARC, there

is no significant difference in the rate of rare de novo variants based on the biological sequencing source (LCLmean = 60.3 and WBmean = 59.4; LCLmedian = 57 and

WBmedian = 57). The difference in DN rates between the biological sequencing source (LCL versus WB) was evaluated using Wilcoxon rank sum test. (C) The

(legend continued on next page)



number of rare de novo coding variants identified per fully phase-able sample displayed as histograms. The coding RDNVs before ARC are from 1,177 fully phase-

able samples and after ARC (variants with an ARC score < 0.4 are filtered out) and after excluding ARC outlier samples (samples with > 90% DNs removed by

ARC) (n = 831 samples). (D) The correlation between the rate of rare de novo variants and paternal age before and after ARC. This analysis considers 574 fully

phase-able ASD children (excluding MZ twins and ARC outliers) for which paternal age was known. The red line is the linear regression line. The graph on the left

shows the raw number of rare de novo variants (SNVs and indels) per child by paternal age at the time of the participant’s birth in years. The graph on the right

shows the number of rare de novo variants (SNVs and indels) per child after running ARC by paternal age at the time of the participant’s birth in years.
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Figure S5. TADA Mega-analysis Simulation Results, Related to Figure 4

(A) For each of the 18,472 TADA genes, the observed FDR in the iHART TADA-mega analysis is plotted against the simulated p value. Genes with the smallest

FDRs also have small simulated p values, as expected. (B) The observed Bayes Factor (BF), for genes with a BF > 1, in the iHART TADA-mega analysis is plotted

against the simulated p value. Geneswith the largest BF also have small simulated p values, as expected. (C-F) The TADA-mega analysis results from the previous

study versus current iHART study. Genes are sorted by increasing difference in the FDR (q-value) obtained in Sanders et al. (2015) versus the current iHART

TADA-mega analysis. In panels (C) and (D) the per-gene TADA FDR is displayed as the -log10(q-value) (higher dots have a lower FDR) obtained in Sanders et al.

(2015) (green) and the current iHART study (red) and the horizontal line marks the FDR = 0.1 threshold; for (C) the 13 genes with an FDR < 0.1 in Sanders et al.

(2015) that failed replication in iHART (FDR > 0.1), and (D) the 16 newly significant genes identified in the iHART mega analysis with an FDR < 0.1. Note that the

CACNA2D3 gene is significantly associatedwith ASD in the iHARTmega-analysis, but not the previous TADAmega-analysis. However, it was previously reported

in De Rubeis et al. (2014) and thus we do not consider it a new risk gene. Below this, in panels (E) and (F), are the per-gene violin plots of Bayes Factors (displayed

as log(simulated Bayes Factor)) obtained for each of the 1.1 million TADA simulations. The gray ‘‘x’’ marks the median simulated Bayes Factor, the blue dot

indicates the observed Bayes Factor in the iHART TADAmega analysis, and the violin plots are filled according to their simulation p value; for (E) the 13 genes with

an FDR < 0.1 in Sanders et al. (2015) that failed replication in iHART (FDR > 0.1) (max p value = 0.06) and (F) the 16 newly significant genes (plus CACNA2D3)

identified in the iHART mega analysis with an FDR < 0.1 (max p value = 0.006).
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Figure S6. Biological Insights from Known and Novel ASD Risk Genes Identified in the TADA Mega Analysis, Related to Figure 4

(A) A boxplot for the inherited PTV Bayes Factors observed for the 35 genes with an FDR < 0.2 in the current iHART TADAmega analysis that had an FDR > 0.2 in

the et al., 2015 TADAmega analysis (Sanders et al., 2015) (Kruskal–Wallis test, p = 0.003). (B) The indirect PPI network formed by the 69 ASD-risk genes and the

98 genes harboring high-risk inherited variants (n = 165 unique genes). The resulting indirect PPI was significant for two connectivity metrics – seed indirect

degreesmean p = 0.003, and CI degreesmean p = 0.005. Proteins encoded by a gene with a high-risk inherited PTVs are shown in teal and SVs are shown in gold.

Proteins encoded by a previously established ASD-risk gene (Sanders et al., 2015) are shown in purple, newly identified ASD-risk gene (iHART TADA mega

analysis) are shown in red, those belonging to the BAF complex are shown in blue, and any protein falling in more than one category is colored with all categorical

colors that apply (e.g., ARID1B). The gene label for significant seed genes are bold and blue. (C-D) Enrichment of iHART ASD-risk genes in single-cell RNA seq

(scRNA-seq) cell type expression signatures. Genes enriched inmajor cell type classes were obtained from human fetal brain datasets and an adult brain dataset,

and the percentage of iHART ASD-risk genes in each cell type class is shown. (C) iHART 69 ASD-risk genes in fetal cell classes (left and center) and adult cell

classes (right). (D) iHART 16 novel ASD-risk genes in fetal cell classes (left and center) and adult cell classes (right). Significant log2 odds ratios of neuronal cell type

enrichment: Fetal drop-seq glutamatergic, 3; GABAergic 4.7; neuron 4.8. Fetal (Nowakowski et al., 2017) glutamatergic, 1.6; GABAergic 2.4; neuron 5.4. Adult

(Lake et al., 2018) Glutamatergic, 2.9; GABAergic 0.65; Neuron 3.4. The Broad expression class was defined as expression in neuronal cell types and glial cell

types and Neuron class was defined as expression in glutamatergic and GABAergic cell types. The numbers inside each pie chart indicate the percentage of

iHART ASD-risk genes in that cell type. (E) The interaction network for the gene ontology over-represented terms, and associated genes, for the genes enriched in

inherited variation (TADA FDR < 0.2, proportion of inherited variantsR 70%).We focused on the 23 genes with an FDR< 0.2 for which themajority (R70%) of their

qualifying risk variants were inherited PTVs. The z-score is displayed together with each color-coded ontology term (squares) and the genes are color coded by

the proportion of qualifying TADA variants that were inherited PTVs (circles).



Figure S7. NR3C2 Protein Sequence Alignment, Zebrafish Mutant Sequence, and Validation of the Social Preference Assay, Related to

Figure 6

(A) Multiple sequence alignment for human (Hs), mouse (Mm) and zebrafish (Dr) NR3C2 proteins. Amino acids are colored according to their chemical properties

to highlight identical and similar residues. (B) Alignment of WT and mutant zebrafish NR3C2 proteins. Gray shading indicates altered amino acid sequence in

the mutant. Blue and red lines indicate DNA binding domain and ligand binding domain, respectively. (C-I) Validation of the social preference assay. (C,D)

WT zebrafish treated with DMSO vehicle control showed a significantly higher SPI during the post-baseline period compared to the baseline period, but WT

zebrafish treated with 20 mMMK-801 did not. (E) The increase in SPI in the presence of a conspecific was significantly smaller for zebrafish treated with MK-801

compared to controls. (F,G) Both untreated WT zebrafish and WT zebrafish treated with 0.5% ethanol showed a significantly higher SPI during the post-baseline

period compared to the baseline period, although the SPI increase was smaller for ethanol-treated animals. (H) The increase in SPI in the presence of a

conspecific was significantly smaller for zebrafish treated with 0.5% ethanol compared to controls. (I) There was no significant difference in the body length of

nr3c2 +/+, +/� and �/� siblings for the data presented in Figures 6B and 6C. Grey data points and lines represent individual animals. Red lines indicate mean ±

SEM (C-H) or median ± 95% confidence interval (I). *p < 0.05; **p < 0.01; ***p < 0.001, ns = not significant by paired t test (C,D,F,G), unpaired t test (E,H), or

Kruskal-Wallis test with Dunn’s multiple comparison test (I).
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