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Modeling membrane nanotube 
morphology: the role of 
heterogeneity in composition and 
material properties
Haleh Alimohamadi1, Ben ovryn2 & padmini Rangamani  1*

Membrane nanotubes are dynamic structures that may connect cells over long distances. nanotubes 
are typically thin cylindrical tubes, but they may occasionally have a beaded architecture along the 
tube. in this paper, we study the role of membrane mechanics in governing the architecture of these 
tubes and show that the formation of bead-like structures along the nanotubes can result from local 
heterogeneities in the membrane either due to protein aggregation or due to membrane composition. 
We present numerical results that predict how membrane properties, protein density, and local tension 
compete to create a phase space that governs the morphology of a nanotube. We also find that there 
exists a discontinuity in the energy that impedes two beads from fusing. these results suggest that the 
membrane-protein interaction, membrane composition, and membrane tension closely govern the 
tube radius, number of beads, and the bead morphology.

Membrane nanotubes also known as tunneling nanotubes, have been identified as intercellular structures that 
can connect cells over long distances, i.e., tens of micrometers (see Fig. 1A)1,2. Membrane nanotubes have been 
observed in a wide variety of cell types2–5 in addition to the artificial nanotubes that have been produced from 
lipid vesicles2,6. Nanotubes are typically long and thin cylindrical protrusions with sub-micron diameter and 
lengths on the order of several hundred microns1. In contrast to other types of cellular projections, such as filopo-
dia, which are attached to the substrate7–9, nanotubes are suspended in the medium5,10–13. Despite increasing 
observations in the literature highlighting the functional role of membrane nanotubes, the role of membrane 
mechanics in governing the morphology of these structures has largely remained unexplored.

Changes in the surrounding environment, rearrangement of membrane constituents, or mechanical stresses 
can result in dramatic shape transformations1,14–18. For instance, in addition to the predominantly cylindrical 
geometry of many membrane nanotubes, the formation of pearl shapes along membrane nanotubes has been 
observed in various experiments12,19–21. This morphological transition in nanotube structures resembles the 
well-known Rayleigh-Plateau fluid instability, where a change in the surface tension results in the break up of 
a cylindrical stream of fluid into multiple droplets22–24. Similarly, in the case of cylindrical membranes, various 
studies have shown a tension-driven Rayleigh-type instability, in which a perturbation in the membrane tension 
leads to the pearling instability25–30. Indeed, the formation of beads along membrane nanotubes could result 
from any asymmetry in the lipid bilayer such as protein-induced spontaneous curvature arising from local phase 
separation of proteins, adsorption of nanoparticles and/or anchored polymers, or induced anisotropic curva-
tures by membrane inclusions15,31–33. These interactions are accompanied by a change in the local tension of the 
membrane34–38.

A series of elegant modeling studies have proposed the idea that curved proteins and cytoskeletal proteins 
can induce protrusions along the membrane39–43. Separately, experiments are have demonstrated that: (a) the 
composition of a membrane nanotube is not homogeneous44; (b) tension due to adhesion of rolling neutrophils 
can lead to tether formation44; and (c) spontaneous curvature along a nanotube can lead to the formation of 
bead-like structures17,20,44–47. It is not yet clear if such beaded structures are common to membrane nanotubes and 
if they have a physiological role in cells and tissues. Nonetheless, from a membrane mechanics standpoint, these 
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structures are fascinating to study. Here, we examine how changes in the local membrane tension, originating 
from the heterogeneous distribution of the membrane components due to local phase separation, can cause the 
shape transformation from a cylindrical membrane to a beaded architecture. Therefore, we seek to answer the 
following questions: how does the presence of a membrane protein domain affect the shape of a nanotube? What 
is the phase space that governs the energy landscape of membrane nanotubes? And finally, how do multiple beads 
interact with each other along the surface of a nanotube? To address these questions, we conducted simulations 
by implementing an augmented Helfrich model that includes protein density contributions48–51 with local incom-
pressibility constraints36,52.

Methods
Assumptions. The plasma membrane is a complex structure; various molecules pack tightly together to form 
a semi-impermeable barrier for the cytoplasm, nucleus, and intercellular organelles53. Nevertheless, under certain 
assumptions as described below, it is appropriate to model this complex and heterogeneous surface using a simple 
mathematical framework.

•	 The length scale of the nanotube is assumed to be much larger (~20 times) than the thickness of the bilayer 
such that the membrane behaves as a thin elastic shell51,54,55.

•	 We assume that the membrane nanotube is at mechanical equilibrium (i.e. no inertia)56. Because of the high 
stretching modulus of lipid bilayers57, we also assume that the lipid bilayer is areally incompressible and we 
use a Lagrange multiplier to implement this constraint55,58,59.

•	 We consider the case that there is a local phase separation of proteins along the membrane surface (see 
Fig. 1A). We assume that the local phase separated membrane proteins are rotationally symmetric, induce a 
negative spontaneous curvature (ϕ < 0), and ignore the influence of anisotropic curvature inducing proteins 
such as BIN-Amphiphysin-Rvs (BAR) domain proteins40,41,60.

•	 We assume that the total energy of the system includes the membrane bending energy and a contribution 
from local protein phase separation in a dilute regime (low protein density). Thus, the membrane energy is 
modeled using an augmented version of Helfrich energy for elastic manifolds including membrane-protein 
interaction contributions61–66. In mechanical equilibrium, the total energy of the membrane including the 
effects of the local phase separation of proteins is similar to a standard Cahn-Hilliard model67 with the gra-
dient penalty for the spatial heterogeneity of the protein distribution. For simplicity, we prescribe the local 
distribution of proteins along the surface of the membrane nanotube using a hyperbolic tangent function 
(Eq. S33)68–70.

•	 We do not consider the role of any other forces, e.g. actin40, so that we can focus only on membrane nanotube 
deformation due to membrane-protein interactions71–73.

Figure 1. (A) A cartoon showing an intercellular membrane nanotube with local bead-shaped deformations 
due to membrane-protein interactions (red domain). (B) Axisymmetric coordinates along the membrane 
nanotube and the boundary conditions used in simulations. Lc represents the length and Rc represents the 
radius of the nanotube. (C) A schematic depicting membrane-protein interactions that could lead to the 
formation of beads along a nanotube. Proteins (shown in red) can aggregate along the membrane to induce 
local curvature and heterogeneous tension. We assume these proteins are cone-shaped such that their meridian 
makes an angle ϕ (ϕ < 0) with the normal vector (n) to the surface. (D) The coordinate system used to define a 
surface by the tangent basis a1, a2 and the normal vector n. Note that the normal is pointing downwards in this 
case.
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•	 For simplicity in the numerical simulations, we assume that the membrane in the region of interest is rota-
tionally symmetric and long enough so that boundary effects can be ignored (Fig. 1B)31,73.

Membrane energy and equations of motion. We model the membrane with two contributions 
to the strain energy – one from protein-protein interactions and the other from the membrane bending. The 
protein-protein interaction is written as a constitutive function of the protein density σ (number per unit area). 
While the exact form of this energy is yet to be experimentally verified, based on thermodynamic arguments, 
the dependence of the energy on the local protein density, the protein density gradient, and the thermal entropic 
contribution has been proposed as64,66,74–77
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where W  is the energy per unit area, α indicates the strength of the attractive energy between two neighboring 
proteins, β is a positive constant that depends on the excluded area and the effective interaction area of the pro-
teins67,78, ∇ is the gradient operator, kB is the Boltzmann constant, and T is temperature64,75. In Eq. 1, ( )2β σ∇  is a 
first order correction for a spatial inhomogeneity in the membrane composition that allows the interfacial energy 
to be modeled with a sharp gradient in a continuous surface67. We should mention that in Eq. 1, we ignore the 
higher order terms in σ 66,76 since we assume that the system is in the dilute regime and the protein density is low.

In Eq. 1, σ can depend explicitly on the surface coordinates θξ to allow for local heterogeneity (Fig. 1D). Also, 
the proteins are assumed to be transmembrane, conical insertions such that the meridian of each protein is at an 
angle ϕ ( 0ϕ < ) with the normal vector to the membrane surface (n) (Fig. 1C)49. In the dilute regime, the locally 
induced-spontaneous curvature due to membrane-protein interaction can be modeled as a linear function of the 
surface protein density as49

σ μϕσ θ= ξC( ) ( ), (2)

where μ is a length scale that represents the lipid-protein specific entropic interactions. The energy associated 
with membrane bending due to the isotropic spontaneous curvature is given by the Helfrich Hamiltonian, mod-
ified to include the heterogeneous membrane properties as36,51,79,80
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2

where H is the local mean curvature and K is the local Gaussian curvature. κ and Gκ  are bending and Gaussian 
moduli respectively, which can vary along the surface coordinate θξ 36,79,81. Hence, the total energy of the mem-
brane including both bending and protein contributions is given by

� ��������������� ��������������� � ���� ����

� ��� ���
� �������� ��������

σ θ κ θ σ θ κ θ ασ θ

β σ σ σ
σ

= − + −

+ ∇ +















−





.

ξ ξ ξ ξ ξW H K H C K

k T

( , , ; ) ( )[ ( ( ))] ( ) ( )

( ) log 1

(4)

G

B
s

2

Bending

2

Protein aggregation

2

Inhomogeneous protein distribution
Entropic contribution due to thermal diffusion

We note that k TB
κ

 is small because the membrane bending modulus is in the range of 20–40 k TB  82,83. Additionally, 
in the dilute regime of low protein density σ k T 1B . Based on this analysis, we neglect the entropic term in the 
rest of our calculations.

A local balance of forces normal to the membrane, subject to the energy density given in Eq. (4) yields the 
so-called “shape equation”49,50,84
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where Δ is the surface Laplacian operator, p is the pressure difference across the membrane, λ is interpreted as the 
membrane tension36,55, (); is the covariant derivative with the respect to the surface metric, and 

ξη
b  is the co-factor 

of the curvature tensor. A local balance of forces tangent to the membrane, which enforces the incompressibility 
condition in a heterogeneous membrane, yields the spatial variation of membrane tension λ36,49,52,85,
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For the sake of brevity, the specialization of the governing equations to axisymmetric coordinates is provided 
in the SOM along with tables of notation and parameter values (Tables S1–S3).

Analytical solutions (limit cases). In this section, we explore the analytical solution for Eq. 4, ignoring the 
boundary effects, the Gaussian curvature, and the entropic term. In this condition, for a nanotube with uniform 
bending rigidity and no protein density, the free energy density (Eq. 4) is given by κ=W H0 0

2, where H0 is the 
mean curvature of the nanotube equal to 1/(2R )c  (H 1/(2R )0 c= ). W0 is the energy minimizer for this geometry; 
adding proteins locally or including heterogeneous bending rigidity increases the energy of the system (W W0≥ ) 
(see Eq. S28). To find an analytical expression for the mean curvature of the nanotube at the center of the 
protein-enriched domain as a function of the protein density and the bending rigidity, we consider the limit case 
that W W0= . This gives us an expression for the mean curvature at the center of protein-enriched domain as
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Here, ratioκ  represents the ratio of the bending rigidity in the protein-enriched domain ( proteinκ ) compared to the 
bending rigidity of the bare lipid membrane (κ κ κ= /ratio protein ).

For low protein density ( σ 1), the higher order terms in Eq. 7 can be ignored and the equation can be sim-
plified using Taylor expansion around σ which gives
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The relationship in Eq. 7 can be used to predict how the local curvature of the nanotube at the center of the 
protein-enriched domain varies with protein density and κratio. For a homogenous membrane (κ = 1ratio ), as σ 
increases, the negative spontaneous curvature becomes dominant and the mean curvature at the center of the 
protein-enriched domain decreases (Fig. 2A). For a constant protein density (σ = . × − −2 5 10 nm5 2), as ratioκ  
increases, the positive term under the square root becomes smaller and therefore the mean curvature decreases 
(Fig. 2B). A decrease in the mean curvature of the nanotube at the center of the protein-enriched domain cor-
responds to a larger radius in that point (Eq. S20). This implies that protein aggregation with heterogeneous 
properties alters the morphology of the membrane nanotube where bead-shaped structures with larger radii 
than the nanotube radius (r Rb c> , where rb is the radius of the bead) forms along the protein-enriched 
domains.

In Fig. 2C, we plotted the derived analytical mean curvature at the center of the protein-enriched domain 
(Eq. 7) as a function of protein density and bending rigidity ratio. Interestingly, we observed that the sign of the 
analytical mean curvature at the center of the protein-enriched domain changes from positive (pink domain) to 
negative (blue domain) for large values of the bending rigidity ratio and protein density. However, we know that 
for a rotational symmetric nanotube, the mean curvature at the center of the protein-enriched domain cannot be 
negative. This suggests that for low protein density and bending rigidity ratio (pink domain in Fig. 2C), the energy 
of the system can be minimized with decreasing the local mean curvature along the protein-enriched domain. 
But, for large protein density and the bending rigidity ratio (blue domain in Fig. 2C), the system needs to exploit 
another mechanism to lower the work done on the system.

We next relate the analytical curvature in the protein-enriched domain (Eq. 7) to the radius of the bead assum-
ing that the bead shape can be approximated by a cylinder and therefore =H 1/(2r )analytical b,analytical . Thus, using 
Eq. 7, we have

https://doi.org/10.1038/s41598-020-59221-x
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Similar to Eq. 7, we can simplify Eq. 9 for low protein density given by
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Because Eq. 10 is valid only for small membrane deformation, we use the mechanical model (Eqs. 5 and 6) to 
run simulations and obtain the shape and the size of the large beads.

numerical implementation. In axisymmetric coordinates, the equations of motion (Eqs. S14 and S15) 
simplify to a system of first-order differential equations (Eq. S24) with six prescribed boundary conditions 
(Eq. S25). In order to solve these coupled equations, we used the commercially available finite element solver 
COMSOL MULTIPHYSICS. In this work, we assume that the total length of the membrane nanotube is con-
served and to focus on the net effect of membrane tension, we set the transmembrane pressure at zero ( =p 0). 
The values of parameters used in the model are summarized in Table 1. All COMSOL files are available at http://
www.github.com/Rangamani-Lab/Rangamni-Nanotubes2020 for public dissemination.

Results
formation of beads along a nanotube due to protein-induced spontaneous curvature. For 
membrane nanotubes, it has been shown that the composition of the lipid bilayer is a critical factor in determin-
ing their shapes and radii29,73,86,87. To explore how heterogeneity in the membrane properties due to a surface 
protein aggregation affects the shape of a nanotube, we conducted simulations on cylindrical nanotubes with the 
aspect ratio of radius Rc = 35  m and length Lc = 20 μm, and set the boundary tension to λ = .0 064 pN/nm0 . The 
effect of boundary tension on the initial nanotube radius and length is shown in Fig. S1. To ensure a smooth con-
tinuous transition between the domains, we implemented the difference in the protein density using a hyperbolic 
tangent function (Eq. S33), such that the covered domain by the protein-enriched domain at the center of the 
nanotube remains constant (L 8 mprotein μ= ), and the number of proteins per area increases from σ = 00  to 

1 25 10 nm0
4 2σ = . × − −  (Fig. 3A).

As the number of proteins in the fixed domain (Lprotein) is increased, the membrane bends outward such that 
it resembles a bead-shaped structure that forms along the nanotube (Fig. 3B). This bead formation can be under-
stood by considering the energy of the membrane (Eq. 4). In the absence of any protein (σ = 0, therefore =C 0), 
the curvature of the nanotube is constant everywhere ( μ= = −H R1/(2 ) 1/70 mc0

1). Increasing the density of the 
conical-shaped proteins induces a negative spontaneous curvature (see Fig. 1C) and therefore increases the bend-
ing energy (Eq. 4). As a result of this increase in energy, the membrane curvature locally decreases by bending 
outward in the domain of the protein aggregation to minimize the total energy (Fig. 3B). For example, with 
increasing the protein density from 00σ =  to σ = . × − −1 25 10 nm0

4 2, a bead with a radius of ~350 m forms 
(Fig. 3B).

Figure 2. Analytical mean curvature along the protein-enriched (Eq. 7) domain as a function of the protein 
density (σ) and bending rigidity ratio (κratio). (A) With increasing the protein density, the mean curvature along 
the protein aggregation domain decreases ( 1ratioκ = ). (B) Decrease in the mean curvature of the protein-
enriched domain as the bending rigidity ratio increases ( 2 5 10 nm5 5σ = . × − − ). (C) Heat map shows the 
analytical mean curvature along the protein-enriched domain (Eq. 8) as a function of the protein density and 
bending rigidity ratio. The sign of the analytical mean curvature changes from positive to negative along the 
dotted black line.
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To understand the relationship between increasing σ and the shape of the bead, we compared the results from 
our simulations against the analytical approximation for the bead radius (Eq. 10) as a function of σ assuming a 
uniform bending rigidity all along the nanotube ( 1ratioκ = ) (Fig.  3C). For small protein densities 
( 5 10 nm0

5 2σ < × − − ) and small membrane deformation (rb < 200 m), we found a good match between the ana-
lytical approximation and numerical results (Fig. 3C). However, for larger protein densities, the membrane defor-
mation along the protein-enriched domain is large and the bead no longer has a cylindrical shape anymore 
exposing the limits of the analytical expression.

We next investigated the effect of the extent of the protein aggregation in Eq. 1 on the bead morphology. We 
repeated the simulations in Fig. 3 for three different values of α (Fig. S2). We found that varying α does not alter 
the shape or the radius of the bead significantly (Fig. S2). This is because the protein aggregation term in the 
energy has a small contribution to membrane bending; the dominant effect comes from the coupling between the 
protein density and spontaneous curvature (Eqs. 2, 3).

Another important factor that controls the lipid flow on the surface of nanotubes and lipid packing is mem-
brane tension78,88. Consistent with the previous studies34–36, we observed that a local decrease in the membrane 
tension of the beaded domain corresponding to membrane bending and the applied area incompressibility con-
straint (Fig. S3). This variation in the membrane tension allows us to also represent the radius of the bead radius 
as a function of the local membrane tension, where we found a nonlinear relationship between the increase in the 
radius of the bead and the decrease in the local membrane tension (Fig. S3).

Heterogeneity in membrane stiffness lead to the formation of bead-like structures along a 
nanotube. Motivated by our numerical observation that a protein-induced spontaneous curvature along the 
membrane can result in the bead-like structures, we next asked if a change in the membrane stiffness due to 
membrane-protein interaction could also induce a similar deformation along the nanotube. To answer this ques-
tion, we repeated the simulation in Fig. 3 for σ = . × − −1 25 10 nm0

4 2 assuming that the bending rigidity along the 
domain covered by the proteins is higher than the rest of the membrane, but C 0=  (e.g for cylindrical proteins 
where ϕ = 0)87,89 (Fig. 4A). This represents a case where the membrane-protein interaction induces a change in 
the membrane composition but does not induce an asymmetry between the leaflets.

As it is clear, by increasing κratio from 1ratioκ =  to ratioκ  = 3087,89,90, the membrane bending energy (Eq. 4) 
increases. To compensate for this increase in the bending energy, the membrane curvature decreases by bending 
outward significantly in the domain of the rigid segment and an ellipsoidal bead-shaped structure forms along the 
nanotube (Fig. 4B). For instance, we found that with increasing bending rigidity ratio from κ = 1ratio  to 

30ratioκ = , a large bead with a radius of ~400 nm forms in the domain of the rigid protein (Fig. 4B). Comparing 
radius of the bead obtained from numerical simulation (Fig. 4B) and the analytical expression (Eq. 10) as a func-
tion of the bending rigidity ratio for constant protein density ( 1 25 10 nm0

4 2σ = . × − − ), we observed that for low 
values of the bending rigidity ratio ( 5ratioκ < ), the membrane deformation is small ( <r 200 nmb ) and therefore 
there is a good agreement between the analytical and simulation results (Fig. 4C). However, for large membrane 
deformations (when κ > 5ratio ), the analytical solution underestimates the radius of the bead because of our 
assumption in Eq. 9 that the bead has a cylindrical shape is no longer valid (Fig. 4C).

Figure 3. Protein-mediated bead formation along a membrane nanotube. (A) Protein density distribution on 
the membrane surface in which μ=L 8 mprotein  shows the length of the protein-enriched domain and σ0 
represents the number of the proteins per unit area. (B) The formation of a large bead-shaped structure along 
the membrane nanotube as the density of proteins (σ0) increases for λ = .0 064 pN/nm0  and uniform bending 
rigidity. The scale bar in panel (B) is 350 nm. (C) Bead radius (rb) increases as a function of the protein density 
for both the analytical solution (Eq. 10) (dashed red line) and the simulation result (solid blue line).

https://doi.org/10.1038/s41598-020-59221-x
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Additionally, we observed a local reduction in the membrane tension with increasing the bending rigidity of 
the protein domain and the formation of the bead along the nanotube (Fig. S4). Interestingly, we found a similar 
trend in the reduction of the local membrane tension for both protein-induced spontaneous curvature and the 
protein rigidity mechanisms (Figs. S3 and S4). The membrane tension decreases from λ = .0 064 pN/nm to about 
zero with the formation of a bead with a radius of r 100 nmb = . After that, for the larger beads, the local mem-
brane tension is almost zero and remains constant (Figs. S3 and S4). For completeness, we also varied the 
Gaussian modulus along the domain of protein aggregation ( ( )/G G G G,protein ,lipid ,lipidκ κ κ κΔ = − ). Varying 
−20 < Δ 20Gκ <  for σ = . × − −1 25 10 nm0

4 2 and κ = 1ratio , we found that the changes in the Gaussian modulus 
alone lead to small membrane deformations as compared with other effects (see Fig. S5).

energy landscape of bead-shaped structures along a nanotube. Our simulation results have 
demonstrated that two unrelated mechanisms, protein-induced curvature, and heterogeneity in the membrane 
rigidity, each independently lead to the formation of the bead-like structures along the membrane nanotube and 
that the radius of the bead increases nonlinearly with increasing strength of the heterogeneity. In order to explore 
how these two mechanisms might interact and modulate the shape of a nanotube, we conducted simulations 
where the heterogeneous domain has effects from both the protein-induced spontaneous curvature and from 
increased bending rigidity. We repeated the simulations shown in Fig. 3 but this time assumed that the bending 
rigidity is heterogeneous (κ = 11ratio ).

Interestingly, we found that the competition between these two mechanisms leads to the formation of beads 
with different shapes. Based on the magnitude of the protein density, three different oblate spheroid shapes were 
obtained – (i) an ellipsoidal bead at 2 10 nm0

5 2σ = × − − , (ii) a flat cylindrical bead at 1 10 nm0
4 2σ = × − − , and 

(iii) a large unduloid-shaped bead at 1 85 10 nm0
4 2σ = . × − −  (Fig. 5A). These different bead shapes are classified 

according to the sign of H″ (the second derivative of the mean curvature), (i) in the ellipsoidal bead, H″ is positive 
everywhere along the bead, (ii) in the cylindrical bead, the change in the radius of the bead is very small com-
pared to the radius of bead ( < .Δ 0 01r

r
b

b
, we set 0.01 as our threshold), and (iii) in the unduloid-shaped bead, H″ 

changes sign along the bead (see Fig. S6).
These results showed that the coupling between two modes of spatial heterogeneity along a membrane nano-

tube not only increases the radius of a bead (see Fig. S7) but also broadens the energy landscape, enabling the 
formation of a variety of bead shapes. Furthermore, these shape transitions suggest that the energy landscape of 
the membrane, which is now modulated by heterogeneities in κ and σ plays an important role in the shape of the 
bead.

To further understand the relationship between the mean curvature and the bead shape transition, we plotted 
the mean curvature distribution that was obtained from our mechanical solution along the nanotube length for 
three different observed beads shapes in panel A (Fig. 5B). As expected for all shapes, the mean curvature 
decreases along the beaded domain to lower the energy of the system (Fig. 5B). For the large ellipsoidal bead in 

Figure 4. Heterogeneous membrane properties result in the formation of local bead-shaped structures. (A) 
Bending modulus variation along the length of the nanotube. κratio is the bending rigidity ratio of the rigid 
protein domain compared to that of the bare lipid membrane ( /ratio rigid lipidκ κ κ= ) and Lrigid represents the 
length of the rigid protein domain (L 8 mrigid μ= ). (B) Membrane deformation in the region of large bending 
rigidity resembles a local bead formation phenomenon; the tension at the boundary is set as 0 064 pN/nm0λ = .  
and the protein density is fixed to be constant as 1 25 10 nm0

4 2σ = . × − −  and C = 0. The scale bar in panel (B) is 
400 nm. (C) Increase in the radius of the bead as a function of κratio for both the derived analytical solution in 
Eq. 10 (dashed red line) and the simulation result (solid blue line).
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panel A, the mean curvature of the middle point of the bead is very small (Fig. 5B, dotted blue line). As the mean 
curvature becomes very small, the only possible behavior to further decrease the energy of the system is to use the 
third dimension, arclength (H s( , , )ratioσ κ ). Therefore, by increasing the protein density from 2 10 nm0

5 2σ = × − −  
to σ = × − −1 10 nm0

4 2 in Fig. 5A, the mean curvature decreases all along the bead which leads to the formation 
of the cylindrical bead (Fig. 5B, dotted red line). After the formation of the cylindrical bead, any further increase 
in the energy of the system causes a buckling instability where the large unduloid-shaped bead forms(Fig. 5B, 
dotted green line).

competition between length scales determines the morphology of the bead-shaped structures 
along a nanotube. To identify the range of protein density and κratio over which three different bead shapes 
in Fig. 5A can form, we performed simulations over a range of protein densities, (σ = − . × − −0 3 75 10 nm0

4 2), 
as well as over a range of κ = −2 11ratio , encompassing soft protein domains to very stiff clusters. This variation 
allowed us to construct a phase diagram to identify the regions of different bead morphologies (Fig. 6A). The pink 
region represents the formation of ellipsoidal bead-shaped structures, the blue region denotes the cylindrical 
beads, and the green region indicates the unduloid-shaped beads configuration.

To determine the dominant length scale for each bead shape morphology in Fig. 6A, we compared the two 
“induced” length scales, one by the rigid domain (l 1/2 /k proteinκ λ= ) and the other one associated with the 
protein aggregation ( μϕσ=σl 1/ )34,42,52. The background of the phase diagram in Fig. 6A shows that these two 
length scales act in tandem to regulate the bead size and shape. When l lkσ  or ( )log 0l

lk
>σ , ellipsoidal beads 

form along the protein-enriched domain (Fig. 6A, blue). When the two length scales become comparable 
( ( )log 0l

lk
σ ~ ), the formation of cylindrical beads are energetically favorable for the system (Fig. 6A, pink). Finally, 

at very large values of protein density, when the “induced” length scale by the rigid domain becomes dominant 
( ( )log 0l

lk
<σ ), the unduloid-shaped bead forms along the membrane nanotube (Fig. 6A, green).

Regardless of which mechanism dominates, the edge tension 0λ  implicitly governs the length scale of the 
membrane; therefore the natural question that arises is: how does this tension govern the shape and length scale 
transitions of the beads? We explore these questions by conducting two sets of simulations. For the first set of 
simulations, we varied the edge membrane tension (λ0) and the protein density ( 0σ ) in a range 
(λ = . − .0 004 0 064 pN/nm0  and σ = − . × − −0 3 75 10 nm0

4 2) assuming that κ = 2ratio  (Fig. 6B). We observed 
that high edge tension shifted the transition of ellipsoidal to cylindrical and unduloid-shaped beads to the large 
protein densities while the shape transition of the beads is still governed by the ratio of the two induced length 
scales σl  and κl  (Fig. 6B). For the second set of simulations, we fixed the protein density ( 6 10 nm0

5 2σ = × − − ) and 
varied the edge tension (λ0) and the rigidity ratio (κratio) between 0.004–0.064 pN/nm and 2–11 respectively 
(Fig. 6C). As our results show, in this case, all three possible shapes of beads are only formed at high membrane 
tension and the ratio of the induced length scale govern the morphology of the bead (Fig. 6C). In general, we can 
see that by increasing the edge membrane tension either at a constant protein density or a fixed rigidity ratio, we 

Figure 5. Three different possible shapes of a bead-like structure resulting from the presence of a rigid protein 
domain. (A) Formation of (i) an ellipsoidal bead (top) at low protein density, (ii) a cylindrical bead (middle) at 
average protein density, and (iii) an unduloid-shaped bead (bottom) at high protein density; 11ratioκ = . The 
scale bar in panel A is 2 μm. (B) The mean curvature (H) distribution along the nanotube length for ellipsoidal 
(blue line), cylindrical (red), and unduloid-shape (green) beads in panel (A). See Fig. S6 for details of the change 
in the second derivative of H.
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decrease the value of the induced length scale by the rigid domain ( κ λ/protein ), and therefore we move from the 
cylindrical and unduloid-shaped beads to the ellipsoidal bead-shaped region of the phase space.

Another aspect of the heterogeneous membrane properties is the variation of the Gaussian modulus between 
the protein-enriched domain and the bare membrane90. Specifically, in the unduloid-shape bead that the Gaussian 
curvature along the bead changes the sign from positive to negative, the heterogeneity in the Gaussian modulus 
can play an important role. To explore how the variation in the Gaussian modulus can affect the morphology of 
the unduloid-shape bead, we repeated the simulation in Fig. 5A (σ = . × − −1 85 10 nm0

4 2 and κ = 11ratio ) varying 
the relative Gaussian modulus of the protein-enriched domain between 20 20Gκ− < Δ <  (Fig. S8). As our 
results show, the variation in the Gaussian modulus has no observable effect on the morphology of the bead and 
only changes the size of the bead; increasing the Gaussian modulus of the protein-enriched domain respect to the 
bare membrane decreases the radius of the bead, whereas decreasing it makes the bead larger (Fig. S8).

interaction between multiple beads along a nanotube. Often, multiple beads are observed along a 
membrane nanotube, suggesting that multiple domains of heterogeneity exist along the nanotube15,17,19,44–47,91. 
(Fig. 1A). These observations lead to the following question: how does the profile of these beaded strings depend 
on the different length scales associated with beaded nanotubes? Previous studies have shown that membrane 
curvature and tension can control the interaction between two domains of membrane heterogeneities92–94. Here, 
in order to answer this question from the perspective of beading morphology of membrane nanotubes, we con-
ducted simulations for the formation of two beads along the membrane by prescribing two domains of hetero-
geneity for three cases: (i) varying membrane rigidity alone in each domain in the absence of protein-induced 
spontaneous curvature, (ii) varying protein density for uniform rigidity, and (iii) varying protein density for 
domains with higher bending rigidity respect to the bare lipid membrane.

First, we found when there are two regions of proteins far from each other with an end-to-end distance given 
by μ=L 4 mseparation  (Fig. 7A, top), two independent beads form (Fig. 7A bottom). The size and the shape of the 
beads are independent of the number of domains as long as the domains are far away from each other (Fig. S9). 
Having established that the regions of heterogeneity are independent when they are far from each other, we next 
asked under what conditions might these beads interact with one another? In other words, what length scales 
govern the stability of multiple beads knowing that there is a certain relaxation length between the beads and the 
cylinder? To answer this question, we repeated the simulation of two beads (Fig. 4), and varying the rigidity ratio 
(κratio) and end-to-end distance (Lseparation) between 1–11 and 0–4 μm respectively (Fig. 7B). Based upon the 
results, we constructed a phase diagram separating the two possible morphologies; (i) two distinct beads repre-
sented by the color blue, and (ii) one single bead denoted by the color red (Fig. 7B).

We found that when the distance between two rigid domains is shorter than 2 rb, there is a smooth transition 
from two beads connected by a string to a single bead (purple line in Fig. 7B). We observe that the smooth 

Figure 6. Bead morphology depends on the protein density (σ0), the bending rigidity ratio of the protein-
enriched domain compared to the lipid membrane (κratio), and the edge membrane tension λ0. (A) Phase 
diagram for bending rigidity ratio versus the number of proteins per unit area, 0 064 pN/nm0λ = . . The 
background of the phase diagram shows the log of the ratio of the two induced length scales ( )l

1
σ

κ
. The three 

different bead shapes can be distinguished by the dominant length scale: (i) ellipsoidal beads when >σ

κ( )log 0l
1

 
(blue domain), (ii) cylindrical beads when σ

κ( )log 0l
1

~  (pink domain), and (iii) unduloid-shaped beads when 

( )log 0l
1

<σ

κ
 (green domain). (B) The protein density versus the edge membrane tension λ0 phase diagram for 

2ratioκ = . The background of the phase diagram of the log of the σ

κ

l
1

 for a range of the membrane tension and the 
protein density. (C) The bending rigidity ratio versus the edge membrane tension λ0 phase diagram for 
σ = . × − −1 5 10 nm0

4 2. The background of the phase diagram of the log of the σ

κ

l
1

 for a range of the membrane 
tension and the bending rigidity ratio. The colors in panels (B,C) represent the same bead shapes as panel (A).
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transition in the number of beads is accompanied by the shape transition from an unduloid-shaped bead to a 
large ellipsoidal bead (Fig. 7C). This suggests that at close distances ( <L 2rbseparation ), the energy minimum 
(Eq. 4) of the nanotube with rigid protein domains is attained for a single large bead rather than for two beads 

Figure 7. Multiple beads along a nanotube. (A, top) Protein density distribution with two domains of protein 
accumulation. The covered length by each protein-enriched domain is L 8 mprotein μ=  and the domains are far 
from each other (L 4 mseparation μ= ). The number of proteins within each domain increases by the same 
amount. (A, bottom) Two beads form corresponding to each protein-enriched domain, λ = .0 064 pN/nm0 . (B) 
The distance between two beads versus the bending rigidity ratio phase diagram with C = 0 and 
σ = . × − −1 25 10 nm0

4 2. There are two possible shapes, (i) two separated beads denoted with the color blue, 
and (ii) one single bead marked by the color red. The transition from two to one bead is smooth everywhere in 
this parameter space and occurs when L 2rseparation b<  (purple line). (C) Membrane profiles for the marked 
points along the dotted black line in panel (B). (D) Membrane profiles for the black dotted line in panel (E) 
show the smooth evolution of membrane shape from two beads to one bead at σ = . × − −8 25 10 nm0

5 2 with 
decreasing Lseparation (κ = 1ratio ). (E) Phase diagram for the distance between two beads versus the protein 
density at κ = 1ratio . The colors represent the same morphologies as panel (B). When L 2rbseparation < , there is a 
smooth transition from two beads to one bead at low protein density and a snap-through instability in the 
transition from two beads to one bead for large protein densities. (F) Membrane profiles show the snap-through 
transition from two kissing beads to one large bead at σ = × − −3 10 nm0

4 2 corresponding to the marked points 
along the green dashed line in panel (E). (G) Membrane profiles for the black dotted line in panel (H) show the 
smooth evolution of membrane shape from two beads to one bead at 1 875 10 nm0

5 2σ = . × − −  with decreasing 
Lseparation setting 4ratioκ = . (H) Phase diagram for the distance between two beads versus the protein density at 

4ratioκ = . The colors represent the same morphologies as panel (B). (I) Membrane profiles show the snap-
through transition from two kissing beads to one large bead at 3 10 nm0

4 2σ = × − −  for the green dashed line in 
panel (H).
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connected by a string. As expected, with increasing κratio, the larger beads form along the nanotube (Fig. 4) and 
therefore the transition from two beads to one bead occurs even when the beads are far from each other (Fig. 7B). 
For example, for a very rigid protein domain (κ = 11ratio ), the transition to one bead happens when 

μ< .L 0 8 mseparation  (Fig. 7B). However, for the case that 4ratioκ = , the single bead does not form until the centers 
of two beads almost overlap (Fig. 7B).

Interestingly, when we varied the separation distance between the beads for a range of protein densities 
(Fig. 7A), we found a sharp transition from two beads to one bead accompanied by a snap-through instability 
(Fig. 7D–F). Indeed, for small protein densities, when the separation between the two beads is shorter than 2 rb 
(purple line in Fig. 7E), the nanotube appears to have one large bead, while the transition from two beads to one 
bead is continuous indicating that there is no energy barrier or discontinuity to move from one state to another 
(Fig. 7D and black dotted line in Fig. 7E). However, as the protein density increases, larger beads form along the 
nanotube and we found the emergence of a snap-through instability for small separation distance (Fig. 7E) corre-
sponding to bead shapes that show a distinct transition from two ellipsoids to a flower-shaped bead to a large 
ellipsoidal bead (green dashed line in Fig. 7E,F). This means that the landscape between two beads and one bead 
at high protein densities is governed by a large energy discontinuity, and therefore there is no stable solution for 
the membrane nanotube in the transition stage from two beads to one bead. The existence of this type of elastic 
energy discontinuity is also observed between two neighboring embedded nanoparticles in membranes95–97.

Finally, when we repeated these calculations for a rigid protein domain such as 4ratioκ =  (Fig. 7G–I), we 
found that the distance and protein density still govern the energy and stability landscape, but the transition 
point, where the snap-through instability occurs, is shifted towards the lower protein densities, with no change in 
bead shapes (Fig. 7G–I). This is because for rigid protein domains, larger beads form along the nanotube com-
pared to the uniform bending rigidity in Fig. 7D,G. Therefore, the snap-through transition from two beads to one 
bead for the rigid protein domain occurs in smaller values of the protein density (Fig. 7H). Generally, our results 
in Fig. 7 indicate that individual beads along nanotubes potentially tend to be dominant because any fusion of two 
beads requires overcoming an energy discontinuity with non-trivial shape transitions.

Discussion
Tunneling nanotubes are membranous projections between cells1,2,17. Much of the biophysics associated with 
these dynamic structures are only beginning to be explored but it is becoming increasingly clear that the cel-
lular membrane and membrane-protein interactions play a critical role in maintaining these cellular architec-
tures15,19,73,86,98. In this study, we explored how the energy landscape and the role of heterogeneity in the membrane 
either due to protein aggregation or material properties alter the architecture of nanotubes. Our results can be 
summarized as follows – membrane heterogeneity due to either protein-induced spontaneous curvature (Fig. 3) 
or membrane rigidity (Fig. 4) can result in the formation of bead-like structures along a nanotube. Additionally, 
the interaction between these two modes of heterogeneity can lead to the formation of beads with distinct shapes 
while the transitions between these shapes from ellipsoidal to cylindrical to unduloid-shaped beads are conse-
quences of energy minimization and competing length scales in the system (Figs. 5 and 6). Finally, we found that 
there is an energy discontinuity that impedes any fusion of two beads which suggests the formation of multiple 
stable beads along the nanotube due to membrane heterogeneity (Fig. 7).

Interaction between membrane inclusions has been studied extensively99–102. The membrane inclusions may 
attract or repel each other depending on the local membrane deformation due to the induced spontaneous cur-
vature or the hydrophobic mismatch of the membrane inclusion100,103. For instance, Gil et al. showed that the 
interaction between two adjacent inclusions is attractive if both inclusions change the membrane thickness in 
the same manner (decrease or increase membrane thickness)104. Phillips et al.105 and later Simunovic et al.106 
demonstrated that there is an attractive force between inclusions with opposite intrinsic curvature. Even in the 
case of the nano particles, it is suggested that the long-range Casimir-like forces in the fluctuating membrane can 
induce attractive forces between two neighboring particles107. Despite the rich literature on the interaction of the 
membrane inclusions, the shape of membrane nanotubes resulting from the interplay between a spatially varying 

Notation Description Value

λ0 Edge membrane tension114,115 0–0.064 pN/nm

κ Bending rigidity of the bare lipid 
membrane83 320 pN · nm

κprotein
Bending modulus of the rigid 
protein-enriched domain89,116,117 320–9600 pN · nm

σ Protein density118 0–3.75 × 10−4 nm−2

α Strength of protein-protein 
interactions49,64,65,74,78 128 × 105 pN · nm3

μ Constant length scale49 200 nm

ϕ The cone-shaped protein angle49 −1

Lc Nanotube length 20 μm

Rc Nanotube radius 35 nm

kBT Boltzmann energy 4.114 pN · nm

p Transmembrane pressure 0 pN · nm−2

Table 1. Parameters used in the model.
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membrane rigidity and protein-induced spontaneous curvature has not been previously explored. Our findings 
should be a motivation for future studies to investigate the interaction between two regions of heterogeneity, par-
ticularly for estimating the effective force between two beads and how membrane tension, lipid flow, and other 
force generating mechanisms can regulate this force between two domains of heterogeneity.

Various recent studies have demonstrated that inducing a constant homogeneous membrane tension along 
a cylindrical membrane can also lead to a dramatic shape transformation into a modulated structure of a string 
of pearls25–30. However, the tension of lipid membranes can change not only globally but also locally due to the 
absorption of proteins, nanoparticles, inclusions, or actomyosin interactions with the membrane34–38. Here, we 
show that local variation of the membrane tension corresponding to the membrane heterogeneities in the beaded 
nanotubes (Figs. S3 and S4) may play a role in governing the morphology of the membrane nanotubes. In addi-
tion to the membrane nanotubes, the beaded morphologies have been observed on different membrane structures 
which make direct connect with the extracellular matrix108,109. The membrane mechanics of these “beaded apo-
topodia” is still a matter of the debate110. However, we anticipate that an extension of our membrane mechanical 
model can be a powerful tool to understand the physics behind the formation of these unusual beaded structures.

Our simulations lead to the following predictions. Tension at the edge of the nanotube not only governs the 
nanotube radius but also its response to heterogeneity. Therefore, manipulating cell tension and evaluating how it 
affects the morphology of the nanotube will provide information on how the tensional homeostasis of cells affects 
the membrane nanotubes. Additionally, we found that there is an energy discontinuity that governs the landscape 
of the transition from two beads to one bead. This energy discontinuity, governed by a snap-through instability, 
suggests that the fusion of two beads depends on the membrane composition and its material properties such that 
under high protein density or high rigidity conditions, there is a large crossover energy discontinuity for fusion. 
These predictions can be extended to multiple beads as well.

In the broader context of interactions between the bilayer membrane and curvature inducing moieties (pro-
teins and cytoskeletal filaments), Shlomovitz and Gov showed that the coupling between membrane shapes and 
membrane-bound FtsZ filaments can induce high-density FtsZ rings along a cylindrical membrane91. With no 
entropic effects, these rings interact with each other, can coalesce and form larger rings depending on the mem-
brane tension and separation distances. They predict that when the separation between two rings is larger than 
2 πR (R is the radius of the cylinder), membrane shape undulations around each ring act as an energy barrier to 
stabilize the separate rings and preventing coalescence91. These results suggest that the observed energy disconti-
nuity in our model and Shlomovitz and Gov paper could have a similar origin since both responses appear due to 
the elastic behavior of the lipid membranes in interactions with local curvature inducing moieties.

Recent experiments on the fission of yeast have demonstrated that the formed rings along the tubular mem-
branes by the actin-myosin contractile force interact and fuse when the natural width of the ring is much smaller 
than their separation distance91,111. This is also consistent with our simulation results, as we found that the transi-
tion from two beads to one bead occurs when the distance between two beads is shorter than the diameter of the 
beads (L 2rbseparation < ) (Fig. 7). Ultimately, to explore the instability that we observed in the interaction of two 
beads, futures studies will be needed to focus on detailed non-linear stability analysis for large deformations 
including tension and shape coupling and without the restriction of small deformations and linearization78,91.

Although our model has provided several fundamental insights into the role of membrane composition in 
nanotube morphology, we have made simplifying assumptions that may need to be revisited as more experimen-
tal evidence is gathered regarding these structures. Additionally, the dynamics of membrane-protein diffusion 
and what could be the underlying mechanisms that govern protein aggregation along the nanotube as suggested 
in our model are not yet fully explored. While there is evidence for the strong curvature-mediated feedback 
for the protein aggregation64, it is possible that feedback between proteins in the lumen of the nanotube and 
biochemical signaling can lead to the formation of protein microdomains. For example, it is known that phase 
separation between two main components of the membrane – clusters of sphingolipids and cholesterol molecules 
– can result in the formation of lipid rafts89,112.

In addition, the role of the cytoskeleton (actin and microtubule filaments) and motor protein transport along 
the nanotube is known to be an important contributor1,2,113, but a correlation with the beading morphology is yet 
to be established. Also, there are only a handful of direct experimental observations of membrane heterogeneities 
along nanotubes in cells44. And finally, the role of the active transport versus the flow of cytosolic components 
in governing the stability of these nanotubes is not captured by our model and remains an active focus of our 
research and modeling efforts.
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