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Convergence or a Random Walk Method 
roe the Burgers Equation 

. Stephen Gwyn Roberts 

Abstract 

1 

In this paper we consider a random walk algorithm Cor the solution or Burgers' equation. The 

algorithm uses the method or fractional steps, The non-linear advection term or the equation 

is solved by advecting 'fluid' particles in a velocity field induced by the particles. The 

diffusion term or the equation is approximated by adding an appropriate random perturbation 

to the positions or the particles. Though the algorithm is inefficient as a method Cor solving 

Burgers' equation, it does model a similar method, the random vortex method, which has been 

used extensively to solve the incompressible Navier-Stokes equations. 

The purpose or this paper is to demonstrate the strong convergence or our random walk 

method and so provide a model Cor the proof or convergence Cor more complex random walk 

algorithms; Cor instance, the random vortex method without boundaries. We are able to show 

that the expected value or the 1 1 norm or the error or our method is or order m~/4 (ln(m ))2
, 

where m is the number or particles that generate the solution, provided the time step or the 

method is proportional to __!__/ • In addition, we show that the probability or the 1 1 error 
ml 4 

being greater than a constant multiple or the expected value or the error, decreases exponen-

tially as the constant tends to infinity. Consequently I the expected value or the error provides 

a reliable estimate Cor the error expected in any particular numerical run or our method. 

Finally, we remark that this work provides the first proof oC convergence in a strong 

sense, Cor a random walk method Cor a problem in which the related advection equation is 

non-linear. 
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Introduction 

In this paper we will study a stochastic numerical method for ~olving the Burgers equation 

uc + ""• = vu.. , u·(z ,0) = u0 (z ); (0.1) 

This equation was advanced by Burgers [8] as a one dimensional model for the Navier-Stokes 

equations. An interesting survey of many of the properties of this equation is provided by 

Burgers [ 9 J. 

The numerical method that we present, though impractical as a method for solving 

Burgers' equation, does model a similar method, the random vortex method (Chorin [11]), 

which has been used extensively to solve the incompressible Navier-Stokes equations. 

Our numerical method will be a fractional step method. The method of fractional steps 

is discussed in Richtmyer and Morton [41], § 8.9, and in the fine survey paper, Chorin et. al. 

[15]. For a more theoretical account of fractional step methods and product formulas in gen-

eral, we refer to Chernoff [10]. 

The first step of our method approximates the solution of the inviscid Burgers equation 

Uc +uu. =0 ,u(z,O)=u 0 (z). (0.2) 

We suppose that the gradient of the solution is approximated by a collection of particles so 

that 

m 

"• ~ E 6 •• ~~ 
i-=l 

where r; signifies the position of each particle, ~; denotes the strength of each particle and 6., 

denotes the delta function concentrated at the point z1 • The solution of (0.2) is obtained by 

allowing the positions of the particles to move with a velocity induced by the step function 

solution generated by the particles. 

In the second fractional step we solve the diffusion equation 

uc = vu._ , u (r ,0) = u 0 (:r) (0.3) 
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by utilizing the correspondence between the probability distribution of the position of a parti­

cle undergoing a random walk and the solution of the diffusion equation as discussed in Ein­

stein [21], Feller [23], Chorin and Marsden [14], and Chorin [11]. In essence, the diffusion is 

simulated by randomly perturbing the positions of the particles that generate the numerical •,. 

solution. We notice that the statistical errors of our method are greatly reduced since our 

numerical solution is obtained by integrating the function approximated by the particles. In 

random walk methods it is advantageous to move particles which approximate the gradient of 

. the solution instead or particles which approxipiate the solution itself. 

The random vortex method, [11], is also a fractional step method; the first step involves 

a.dvecting a collection of 'vortex particles' using an approximation of the Euler equations; the 

second step diffuses the particles as in our method. If boundaries are present, it is necessary to 

add an additional fractional step in which particles are created on the boundary so as to 

satisfy the boundary conditions. This method has proved to be a practical tool in the study of 

incompressible fluid flow; see for instance Laitone [34], Stansby and Dixon [45], Sung et. al. 

[46], Teng [47] and Vander Vegt and Huijsmans [48]. 

Similar 'random walk' methods have been developed to solve other problems which con­

tain diffusion (see Ghoniem and Sherman [26]). A random vortex sheet method has been 

developed to solve the Prandtl boundary layer equation (Chorin [12]). A combination of the 

random vortex method and the the random vortex sheet method has been used to study tur­

bulent combustion (see Ghoniem et. al. [25] and Oppenheim ·?-nd Ghoniem [40]}. In addition, 

random walk methods have been developed for the solution of scalar reaction advection 

diffusion equations (see Brenier [6], [7], Chorin [13] and Hald [27]). In all of these methods, the 

diffusive part of the equation is solved by applying a random walk technique to a set of parti­

cle positions (Brenier [7] uses a pseudo random walk technique). 

The usefulness of these random walk methods depend on the following facts: 
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{1) If the Reynolds number Cor the equation is large (v small), then it may be computation­

ally too expensive tO use a standard finite difference scheme to solve the equation. Ran­

dom walk methods produce little, if any numerical diffusion. Consequently, the compu-

.~ tationallabour Cor these methods are essentially independent or the Reynolds number. 

.. 

•' 

{2) The analogy between a random walk method and the underlying physical process usually 

justifies the good qualitative behaviour or these methods. 

The convergence or these methods have still to be proved in a completely satisfactory 

sense. Marchioro and Pulvirenti [36] have shown that the two dimensional random vortex 

method converges weakly to a solution or the Navier-Stokes equations. In BeneCatto and Pul­

virenti [4], it is shown that a similar result holds Cor the random walk solution or the Prandtl 

boundary layer equation. From a numerical standpoint we would prefer the convergence to 

occur in one or the standard norms and we also need to have some idea on the rate or conver­

gence or the method. 

Hald [28] has proved the strong convergence or a random walk method Cor a coupled sys-

. tem or diffusion equations with boundary. This is the first proof or convergence or a random 

walk method in which particles are created at the boundary to satisfy the boundary condi­

tions. Hald [27] has also proved the strong convergence or a method Cor solving a reaction 

diffusion equation. Unfortunately his method does not readily generalize to equations with 

advection. Brenier [7] has generalized Chorin's [13] reaction diffusion method to the case or 

scalar reaction advection diffusion equations. His method is very similar to our method Cor the 

Burgers equation, in that particles are moved via the action of the velocity field generated by 

the particles and the diffusion is simulated by adding random perturbations to the particle 

positions. The approximation or the reaction step or his equation is undertaken by changing 

the strengths or the particles in an appropriate way. Brenier has been able to prove the L I 

convergence or a modified version or his method in which the diffusion algorithm is solved 

using a deterministic 'random walk' algorithm. 
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In this paper we prove the strong convergence of our random walk method, in an 

appropriate probabilistic sense, and provide an estimate of the rate of convergence. This is 

the first proof of convergence of a random walk method, in a strong sense, for an advection 

diffusion equation in which the advection equation is non-linear. 

In the rest of this chapter we will give an outline of our proof of convergence. To facili-

tate this discussion we will first introduce some notation and at the same time define more pre-

cisely our numerical method. 

We will use the notation F, , A1 and D1 to denote the solution operators for the equa-

tions (0.1), (0.2) and (0.3) respectively, i.e., F, is the solution operator for the full equation, A 1 

is the operator associated with advection, and D, is aasociated with diffusion. We will denote 

the operators that approximate the advec~ion and the· diffusion operators by A1 and 1ft , where 

we understand that these operators depend on the spatial parameter h , which denotes· the 

maximum absolute strength of the particles that generate the numerical solution. 

For initial data u 0 , time step k and spatial parameter h , the numerical approximation 

of F,.. u 0 is obtained as follows: 

Step 1.. In the initial step of the algorithm one approximates the smooth data u 0 with a 

step function SOu 0 (see Section 1.1) which is generated by m particles with positions X.· 0 

(Xi i, j =0) and strengths }i, i = l, .. ,m, such that l}i I= h. The initial step function 

approximation is then given by 

m 

SOuo (y) = u~ + EH (y-Xi 0
) }i 

i =-1 

where u ~ is the limit of u 0 at minus infinity and H denotes the Heaviside fu.nction (defined - . 
in Section 1.1 ). 
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Step 2. Given particles at positions X; i , we evolve the positions of the particles so that 

their motion approximates the flow of particles in the exact velocity field. Specifically, the 

new particle positions X; i+I/2 are given by 

X; i+I/2 = x;(k) 

where x; ( t ) solves the evolution equation 

with initial conditions X; (0) ~ X; i. The function 6; ( x 11 •• ,Zm ) gives the value of the velocity 

field generated by the m particles at position z; . The definition of 6; is chosen to approxi-

mate the behaviour of the exact entropy solution. Ir two or more particles form a discon-

tinuity which would correspond to a shock satisfying the entropy condition for the exact equa-

tion, then 6; is defined so all of those particles will be moved with a common velocity given by 

the correct shock velocity. On the other hand, if the particles are part of a discontinuity 

which would naturally form into a rarefaction wave, then the particles are made to fan out in 

such a way as to approximate the exact rarefaction wave. 

To denote that the approximate advection operator actually operates on particle posi-

tions, we will use the notation 

In addition, we will also use the notation 

m 

si+t12u 0 (y) = uk + :EH (y-X, i+t/2 ) ~. = .Ak [.Dk .Ak ]1 SOuo (y ). 
i-1 

to denote the step function generated by the random variables X1 i +l/2. Here we are using the 

notation A to denote an operator on particle positions or alternatively an operator on step 

functions. For both cases we implicitly require that we have a collection of generating parti-

cles. 
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Step 3. We must now solve the diffusion step. To the position of the particles we add a ran-

dom component. Let B1 i +l, i = 1 , .. , m be an independent collection of normally distributed 

random variables such that E [B1 i +
1] = 0 and V ar[B; i +lj = 2llk . Then the new positions of 

the particles are given by 

X. i+1 =X. i+1/2 + B, i+1 

and the new numerical approximation is given by 

m 

si+1uo(Y)=uf; + l;H(y-X.i+ 1)~, =[DA:X.Ji+1SOuo(Y). 
i=l 

Step 4. Finally, we set j =i +1 and go back to Step 2 if j < n. 

Our numerical approximation for Fu u 0 is then given by 

'" s· Uo (y) = uf; + EH (y-X..) ~. = [DA:AA: ]• SOuo (y ). 
i-1 

Our convergence results, as contained in Theorems 5.4.2 and 5.4.3, can now be stated 

explicitly. If the time step k satisfies k = 111l2h 114, then for any a > 1, 

and 

!.oto(l/4 }-2 
< M h 2 
- e 

(0.4) 

(0.5) 

The constants that appear in these results and the constants that will be introduced in the rest 

of this chapter will depend on 11, u 0 and T = nk , unless stated otherwise. 

The choice of the L 1 norm as a measure of the error is determined by the existence of 

stability results in this norm, for all of the operators under consideration, and lack of such 

results in any other Lebesgue norm. 

The derivation of statements (0.4) and (0.5) is accomplished in five stages, the final one 

being a synthesis of the preceding stages. Three of the. stages consist of analyzing the 

-. 

-. 

·-
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accuracy of steps 1, 2 and 3 of the numerical method. That is, analyzing the accuracy of the 

operators SO, A1 and De . 

The first stage involves studying the accuracy of the exact fractional step algorithm, 

namely, the fractional step algorithm in which [D• A• Jn is used to approximate Fu. Note 

that we are using the exact operators D• and A• . It would be foolhardy to hope that a frac­

tional step algorithm using random walks would converge if the corresponding exact fractional 

step algorithm did not convergence. In Theorem 2.2.1 we show that the use of the method is 

justified, when we show that 

(0.6) 

This result is not only a justification, it is also an integral part of the proof of convergence for 

our random walk algorithm. By considering the exact operators, we are able to use standard 

tools of analysis to· obtain an estimate on the interaction of the advection and diffusion parts 

of the fractional step algorithm. 

The derivation of expression (0.6) is based on the one step estimate 

(0.7) 

where v 0 = F;• u 0 for i = O, .. ,n -1. Expression (0.6) follows from (0.7) by using a simple 

triangle inequality argument. 

It is interesting to note that the constant C2 has a v-1 dependence, which can be verified 

by letting v 0 be a travelling wave solution of the viscous Burgers equation (see section 2.3). 

On the other hand, numerical experiments indicate that 

II F.- Vo -[D. A• ]n Vo II L 1:S C2' k2 

where C2' - 0 as 11 - 0. Hence, the interaction of the errors over a number of time steps pro­

duce an error which is smaller than that predicted by our simple analysis, based on one time 

step. Beale and Majda [3] have studied the corresponding exact fractional step algorithm for 

the incompressible Navier-Stokes equation. They have ·shown that the constant C:!, for the 
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one step error of their problem, tends to zero as v - 0. This difference in behaviour between 

the fractonal step algorithm for the Burgers equation and the corresponding algorithm for the 

Navier-Stokes equation can be attributed to the existence of a priori bounds on the derivatives 

of the solution of Euler's e9uations (see Beale and Majda [3], McGarth [37]) compared to the 

existence of a priori bounds on the derivative of the solution. of Burgers' equation which 

depend on v-1• 

Having completed the analysis of the exact fractional step algorithm, it is then necessary 

to study the accuracy of the operators SO, .Ai and ~. In Section 1.1 we define the operator 

SO and show that 

(0.8) 

The advection operator is studied in Chapter 3, where it is shown that 

(0.9) 

We note that Brenier [6] uses a simplier method to move his particles during the advection. 

step. Even though his method converges and, as k - 0, produces numerical results similar to 

those obtain with our method, we found it necessary, for the proof of convergence of our ran-

dom walk method, to use an approximate advection operator which was more accurate during 

each time step. 

In Chapter 4 we develop the tools to show that for a > 1, 

and 

.!.oiD(l/A }-1 
< M h 2 
- 4 

(0.10) 

(0.11) 

The proof of these results is based on the observation that D~r Si -ll2u 0 (y) can be represented 

as a sum of bounded random variables. We use a result due to Hoeffding ([30], Theorem 1) to 

show that for any fixed y E lR the following strong result (Theorem 4.3.4) holds. 
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P( I D~: si-112(y)- D~: si-112(y) I > mh 8) < 2exp(-2s2m ). 

This estimate can be extended to obtain L 00 estimates in any bounded interval. The L 1 

· result, (0.10), then follows by noting that there exists a bounded interval, outside of which the 

L 1 error is very small, with large probability. 

In Chapter 5 we show that the random variable 

is less than or equal to 

II Fa~~: u 0 - [D~: A~:]" u 0 II L 1 

+ II u o - SOu o II L 1 

• + E II A~: s1-1uo -A~: s1- 1uo II L 1 
i-1 

" + :EIID~:S1- 112uo -D~:S1-112uoiiL1· 
i-1 

(0.12) 

(0.13) 

(0.14) 

(0.15) 

To obtain this estimate we need to make extensive use of the stability of the operators D1c and 

A~c. The convergence proof is concluded by comparing expressions (0.6) and (0.8)-(0.11) with 

expressions (0.12)-(0.15). With appropriate restrictions placed on h , the convergence results 

(0.4) and (0.5) then folio~. 

We conclude this introduction with a revtew of the organization of this paper. In 

Chapter 1 we introduce some notation and results that are used in the rest of the paper. 

Chapter 2 contains our analysis of the exact fractional step algorithm which shows that the 

use of a fractional step algorithm for Burgers equation in justified. In Chapter 3 we define and 

study our approximate advection operator and in Chapter 4 we prove the L 1 norm conver-

gence of the random walk approximation to the solution of the diffusion equation. Finally, in 

the fifth chapter we bring together the results of the preceding chapters to complete the proof 

of convergence of our method. 
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Chapter 1 

Preliminary Results 

In this chapter we will introduce some of the notation and general results that will be used in 

the rest of the paper. The first section will concentrate on general definitions and results per­

taining to the space of step functions on which our approximation operators will be defined. 

Section two will contain the properties of the solution of the viscous Burgers equation that will 

be needed. Section 3 contains similar results pertaining to the inviscid Burgers equation. 

Finally, in Section four we state some results from probability theory that are of use. 

1.1. Definitions and Notation. The Heaviside function is defined to be the function 

H{z) - 1 if z >0, 

1/2 if X = 0, 

0 if X < 0. 

Related to the Heaviside function is the sgn function, which is defined by the following rela-

tionship. 

sgn(x) 1 if X > 0, 

- 0 if X =0, 

-1 if X < 0. 

We will say that a function u is constant in a neighbourhood of infinity if there exist con­

stants R >0, u L and u R such that 

u (r) for x < -R, 

u R for x > R. 
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1.1.1. Pseudo-norms. We denote the set of functions with continuous j tA derivatives by 

Ci (R ). For u E Ci (R ) we let 

II u llsoi =II 8/u II Loo· 

For a locally integrable function u , the variation of u is defined to be 

00 

llullsv =auplzl-1 I lu(z+z)'-u(z)jdz. 
zl"'O ~ 

If u E C 1(1R ) and constant in a neighbourhood of infinity then 

This follows from the fact that 

oo ool 

J 1 u(z+z),.-u(z) I dz <I I lu.(z+Oz)l dOdx =llu.IILl· 
-<XI z -<XI 0 

1.1.2. The Set of Step Functions S . . For a given h > 0, we let S denote the step func-

tions with a finite number of discontinuities, each with a step size a multiple of h . We will 

regard an element of S as being generated by a set of particles. For each s E S we can find 

two finite sequences {z; }/:.1 and {~; };~ 1 such that I~; I = h, so that 8 can be written, 

m 

"(y) = "L + :E H (y -z;) ~; . 
i-1 

For convenience, we think of the function "E S as being generated by the set of m particles 

with positions :ti and strengths ~i. It should be noted that this description is not unique, since 

it is possible that z; = z i , i 7'= j . 

We observe that the variation norm of an element of S can be estimated by the follow-

ing sum: 

m 

II " II BV < E I~. I ' 
i-1 

with equality if r; = r 1 implies sgn(s-;) = sgn(s-;) for all i ,j = l, .. ,m. 
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1.1.3. Approximation or Smooth Functions by Step Functions. In Chapters 3 and 4 

we will define our approximate advection and diffusion operators. They will be defined to 

operate on the positions of a collection of particles which generate elements of S . Hence the 

first step of our algorithm is to approximate smooth data, u 0 , by step functions SOu 0 in S 
' ·. 

and consequently define a corresponding set of generating particles. 

Definition or SO. Let the initial data u 0 e C 1(R ) be constant in a neighbourhood of 

infinity. Let h > 0 be given so that h divides u k - u C . We will define the step function 

SOu 0 in the following manner. Consider the set 

E == { , e R: "o (y)- Uo (-oo) fl. h 'll } 

where 'll is the set of integers. We will suppose that u 0 .is not a constant and so E is non-

empty. Since u 0 is a continuous function which is constant in a neighbourhood of infinity 

and h divides u k - u C , it follows that the set E is a union of open intervals contained in 

some compact set. Hence there exist two sequences of distinct points {a; }; e 1 and { b; } ; e 1 (I 

countable, possibly infinite) such that a, < b; Cor all i E I and 

E = U(a; ,b;). 
iE 1 

In addition, we may suppose that a; < a; implies that b; < a; (This implies that the sets 

(a; ,b;) are disjoint; see figure 1.). We define the step function S0u 0 by specifying a set of 

generating particles. The positions of the particles are given by 

{z; };':.,1 = {..!...(a;+b;): u 0 (b;) =r u 0 (a;)}. 
2 

The corresponding strength of the i t4 particle is given by 

1 
where· j satisfies z; = -(a· +b ·) and we note that I u 0 ( b1·) - u 0 ( a1·) I = h . The step 2 J J 

function SOu 0 is then given by 
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m 

SOu o (y) = u ~ + E H (y -xi) ~i. 
i-=1 

Since the function u 0 is of bounded variation, it follows that there exist only a finite number 

of intervals (a; ,b;) such that Uo (b;) r Uo (a;). Thi~ implies that SOuo is well defined . 

Hence the function S0u 0 is generated by m particles at distinct positions zi, i = l, .. ,m each 

with strength of absolute size h . We observe that the above discussion holds even if the set 

{j: Uo (b;) r Uo (a;)} is empty. ln that Case 

The error introduced by approximating a function u 0 by SOu 0 is estimated in the fol-

lowing theorem. 

1.1.4. Theorem. Let u 0 E C 1(R ) be constant in a neighbourhood of infinity such that 

u 0 (y)=u~,ify <-R andu 0 (y)=u~,ify >R. Lethdivideu~-u~. ThenSOuo 

is generated by a collection of m particles with strengths ~i such that I ~i I = h , 

mh < II u o II BY and 

where C1 = 2R. 

Proof. Since S0u 0 is a step function with a finite number of discontinuities, we have, by 

section 1.1.2, 

6 J 

= E I u 0 ( b j ) - u 0 ( a j ) I = E I I a z u 0 (X ) d:r I 
j 

•, 00 

:::; E I I az u 0 (:r) I d:r < I I az u 0 (z) I d:r = II u 0 II BY. 
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Hence the first part of the theorem holds, since mh = II SOu 0 II BV. To prove the second state-

ment we observe that by definition I SOu o (11)- u o (11) I < h , for all 11 E E. On the other 

hand, if 11 fi E, then SOu 0 (11) = u 0 (11 ). The theorem now follows since E £ [-R ,R ]. 

1.2 Viscous Burgers Equation. We denote the solution operator for the viscous Burgers 

equation, 

Ut + UUa = 1/Un 1 U (r ,0) = Uo (r ), (1.1) 

by F; . The existence and uniqueness of a classical solution of this equation is guaranteed by 

standard results from the theory of second order quasilinear parabolic equations (see Friedman 

[24] or Oleinik and Kruzkov [39]). An explicit formula for the solution of {1.1) also exists: 

1.2.1. Theorem (Hopt [31], Cole (17]). If the initial data u 0 for equation (1.1) satisfies 

s 

fuo (e)d e = 0 (z 2), for large lr I. then the 6olution of the V~COUB Burgers equation is given 
0 

by the explicit formula, 

· tPz(z,t) 
u(z,t)=-2v ,P(r,t), 

where 

1 00 y2 
,P(z,t)= 

112 
f,P0(z-y)exp(--)dy 

( 41l'vt ) _
00 

4vt 

and 

1 , 
4>o(Y) = exp(-T I u 0 (e)d e). 

-1/ 0 

Using this explicit form it is possible to obtain special solutions of the viscous Burgers equation 

given specific initial data. Chapter 4 of Whitham [50] gives a good survey of such specific 

soiutions. We will use Theorem 1.2.1 to obtain estimates for the BDi norms of the solution of 

the viscous Burgers equation in terms of the initial data. 

•. 
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1.2.2. Theorem (A priori Bounds). Let u 0 E C 2(R) be constant in a neighbourhood of 

infinity. Then 

II Fc u 0 II L 00 ~ II u 0 II L 001 

.· II Fc Uo II BDI ~ 2..[ vii Uo II BDI +II u o II Coo], v 

Sketch or Proof. We will use the explicit formula for Fe u 0 given in Theorem 1.2.1. Since, 

1 J 

4>o(y) = exp(--f u 0 (e)d e) 
2v 0 

it follows that 

4>o'(y) = -l,., u o (y )4>o(Y ), 

4>o"(y) = [ 4~ uo2 (y)- 2~ "o'(y )] 4>o(Y) 

and 

1 3 1 
4>o111(71) = [-

8
,.,3 u o3 (y) + 

4
,.,2 u o (y )u o'(y) -

2
,., u o"(y) ] 4>o(Y ). 

We substitute these expressions for 4>0' , 4>0
11 and 4>0

111 into the integral expressions for 4> and 

its derivatives tO obtain 

1 
l4>z(y,t) I ~ 2)1uo IILoocPo(!f), 

l4>u(!f,t)l ~ [
4

1
.,lluoiiCoo+ i-lluoiiBoll cPo(Y) ,.,- .. v 

and 

.. 

The normed estimates are now easily obtained. As an example we wiJI derive the bound on 

the quantity II Fc u o II 801· 
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Ia F.u ()I <2v l41 .. (y,t)4J(y,t)-¢.,y,t)1 
~ t 0 y - 2( ) 

¢ \Y ,t 

~ 2v [ 4~ II u 0 II {co + 2
1
v II u 0 II Boll + 2v[ 4~ II u 0 II {co] 

~..!..[vii uo llaol +II uo ll{col· 
v 

Hence 

The other bounds can be derived in a similar manner. 

1.2.3. Stability in L 1 Norm. We note that the F, operator is stable in the L 1 norm. That 

is, if the L 1 norm of the difference between two solutions of the viscous Burgers equation is 

small at initial time, then the difference at later times will be no larger. It can be shown that 

this stability does not hold in any other V space (p > 1). The statement of the stability 

result follows. We refer the reader to the the paper of Kruzkov [33] for a proof of the result. 

1.2.4. Stability Theorem (Kruzkov [33] p. 239). Let u 0 and v 0 be bounded measurable 

function~ ~uch that II u 0 - v 0 II L 1 < oo. Then 

1.2.5. Bound on the Variation of F; u 0 • As a corollary of the stability result we observe 

that if the initial data u 0 is of bounded variation, then the solution F; u 0 at time t must also 

be of bounded variation. This can be seen by substituting v 0 (y) = u 0 (y +z) into Theorem 

1.2.4. Hence we have the result: 

.. 



.. 

.. 

.. 
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1.2.8. Theorem (Kruzkov [33] pp. 231-238). Let u 0 be a bounded and measurable June· 

tion such that II u 0 II 9V < oo. Then, 

We have indicated that Kruzkov proves Theorem 1.2.6 as a corollary of Theorem 1.2.4. In 

fact Kruzkov first proves Theorem 1.2.6 in a more general setting and then comments that the 

proof of Theorem 1.2.4 can be obtained in an analogous manner. 

1.3. lnviseid Burgers Equation. The inviscid Burgers equation is 

Ut + tU's = 0 1 U (X 1 t ) = U 0 (X ). (1.2) 

This equation is a one dimensional model for in viscid fluid flow. The velocity of a fluid parti-

cle at position x and time t is given by u (x ,t ). The trajectory, x (a,t ), of a fluid particle at 

position a at t = 0, satisfies the equation, 

% (a,t) = u (x (a,t ),t ). 

where · denotes differentiation with respect to time. The trajectories are commonly known as 

characteristic curves (see John [32], Bardos [2]}. For smooth initial data there exists a classical 

solution or equation (1.2) for a short time. 

1.3.1 Theorem (John [32] p. 18). Let the initial data u 0 E C 2(R) 6e given such that 

II u o II 801 < oo and II u o II 802 < oo. Then for t < II u o II B~ 11 the solution u ( r , t ) of equation 

(1.2), u given by the implicit formula 

u ( x , t ) = u 0 ( r - tu ( x , t )) 

II u (. ,t ) II L 00 ::; II u 0 II L ""' 

II u 0 II BDI 

II u (.' t ) II BDI ::; 1 - t II u 0 II BDI ' 

{1.3) 
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Proof. Ir u 0 is a smooth function, then the implicit function theorem implies that the above 

implicit equation has a smooth solution u (z ,t ), for It I < II u 0 II ;61• It is then a simple ·. 

matter to show that u satisfies (1.2). Ir we differentiate equation (1.3) with respect to z we 

find that 

u 0 '(z-tu(z,t)) 
Uz ( z , t ) = -----:-:----:--"77'" 

l+tu 0 '(z-tu (z ,t )) · 

Differentiating again we find tha.t 

uo "(z-tu (z ,t )) 
Uzz ( Z 't ) = 3 . 

[l+tu 0 '(z -tu (z ,t ))] 

The proof of the norm estimates now fqllows. 

1.3.2. The Weak Entropy Solution. We observe that the derivative of the solution given 

in Theorem 1.3.1 blows up in finite time if u 0 has any point with negative slope. It is possi-

ble to define a generalized notion of solution for equation (1.2) which includes solutions with a 

blow up in the derivative (solutions with discontinuities). we say that a bounded measurable 

function u (z ,t ), is a weak entropy solution of the inviscid Burgers equation for 0 ~ t ~ T, 

if for any constant a and any smooth function /{z ,t) 2: 0 which is supported in R X [0, T], 

T oo 

J j{lu -a lft +sgn(u -a)[~u 2 -~a 2]fz}dxdt ~0 
0 -<XI 

(1.4) 

and 

lim J I u (r ,t)- u 0 (z) I dz = 0 
t-o_, 

'• 
for all r > 0. 

The first expression above implies that a weak entropy solution of the inviscid Burgers 

equation satisfies the weak version of the differential equation ( 1.2). That. is, if u satisfies 
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(1.4), then it must also satisfy 

r oo 

J J[uft +.!..u 2f~Jdxdt =0. 
0 -oo 2 

(1.5) 

This can be show by substituting a = ~up ( u ) and a = in/ ( u ) into expression ( 1.4) . .. 
Equation (1.4) also contains an entropy condition which specifies the appropriate physi-

cally realistic solution of the weak inviscid Burgers equation. For a survey of equivalent for-

mulations of a general entropy condition see Bardos [2]. Here we have used the formulation 

used by Volpert [49], § 6.3, and Kruzkov [33], p. 220. 

We will now quote two results from Kruzkov's [33] paper. The first concerns the stabil-

ity in the L 1 norm of the weak entropy solutions with respect to changes in the initial data. 

1.3.3. Stability Theorem (Kruzkov [33], p. 223). Let u (z ,t) and v (z ,t) be weak 

entropy solutions satisfying equation (1.4), with initial data u 0 and v 0 respectively. Suppose 

that lu(z,t)I~M and lv(z,t)I~M almost everywhere in RX[O,T]. Then, for all 

r > 0 and t < T, 

r r+tM 

J 1 u ( x , t ) - v ( x , t ) 1 dx < J 1 u o ( x ) - v o ( x ) 1 dx. (1.6) 
-r -r-tM 

In addition, if II u 0 - v 0 II L 1 < oo, then II u (·,t)- v (·,t )II L 1 < oo and 

Just as the stability of the F, operator implies the boundedness of the variation of the func-

tion F, u 0 , so the stability of the solution operator of the in viscid Burgers equation implies the 

following result: 
• i 

1.3.4. Theorem. Let u 0 be a bounded and measurable function such that II u 0 II BY < oo. If 

u is a weak entropy solution of the inviscid Burgers equation with u 0 as initial data. then 

II u (-,t )II BY ~ II u 0 II BY. 
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Theorem 1.3.3 also implies that the weak entropy solution of the inviscid Burgers equation is 

unique. In addition, it follows that the domain of dependence of the solution is bounded. On 

the other hand Theorem 1.3.3 does not imply the existence of a solution to problem (1.4). The 

existence of a solution is guaranteed by the next result. 

1.3.5. Existence Theorem {Kruzkov [33], p. 237). The solutions u v(x ,t) of the viscous 

Burgers equation (equation (1.1 )), with viscosity constant v and initial data u 0 , converge as 

v-0, almost everywhere in R X [0, T] to a function u (:i: ,t ), which is a weak entropy solution 

of the invi4cid Burgers equation with the same initial data. The convergence also ezists in the 

L 1 sense on any compact set in R X[O,T]. 

1.3.6. Solution Operator. Theorems 1.3.3 and 1.3.5 together imply that for any bounded 

measurable initial data u 0 , there exists a unique weak entropy solution for the in viscid 

Burgers equation. We define A 1 u 0 to be that measurable and bounded solution of equation 

(1.4) with initial data u 0 • 

As A 1 u 0 is the point-wise limit of a sequence of bounded functions, we conclude from 

Theorem 1.2.2 that A 1 u 0 must be bounded and satisfy the following result: 

1.3.7. Theorem. Let u 0 be a bounded measurable function. Then fort ~ 0, 

1.3.8. Piecewise Smooth Solutions and Riemann's Problem. Suppose that u is a weak 

entropy solution of the inviscid Burgers equation, such that u is smooth except on a curve, 

f = { (s (t ),t) : t ER +}. 

Away from the curve f, the function u satisfies the differential equation u1 + uuz = 0. On 

the curve r the function must satisfy the Rankine-Hugoniot condition, 

.. 

.. 
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(1.11) 

and the entropy condition, 

(1.12) 

where uL is the left hand limit of u as we approach the point (s(t),t) and uRis the 

corresponding right hand limit. 

An important example of a piece-wise smooth solution of the inviscid Burgers equation is 

given by the solution of the Riemann problem for the inviscid Burgers equation. This problem 

consists of finding the unique weak entropy solution v (r ,t) for initial data v 0 (r) of the form, 

v o (r) 

if r > a 

where vk and vg are constants. The solution to the Riemann problem has two forms 

depending on the values of v 5 .and v g . 

1.3.9. The Shock Solution of Riemann's Problem. Suppose that vk > vg Then the 

solution of the corresponding Riemann problem is given by, 

v(r,t) if I [ L R J r < a +- v 0 + v 0 t, 
2 

The line 8 (t) =a +2.[vk + vC ]t is called a shock. 
2 

1.3.10. Rarefaction Wave Solution or Riemann's Problem. For the case of to/s < t 1 g I 

the solution of the Riemann problem is given by the function, 

v(.r,t) v/s if .r < a + tv fs , 

.r - a 
if a +tv fs < .r < a +tv§ I 
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if x > a +tv~. 

The solutions of the Riemann problem will be of particular importance when we describe our 

approximate advection operator in Chapter 3. In that chapter we will be studying the S<>lution 

of .the inviscid Burgers equation with initial data given by a step function in S . For that c~e •. 

the solution for small times can be constructed from the solutions of the individual Riemann 

problems associated with each discontinuity of the initial function. 

1.4. Probability Results. We will let ( 0, E, P ) denote a probability space consisting of a 

point set 0, a <7-algebra contained in the power set of n denoted E, and a probability measure 

defined on E given by P. A generic element of 0 will be denoted by w. The probability of an 

event E E E will be denoted by P(E). The ex.pected value of a random variable X (measur­

able function on measure space (0, E)) will be given by E [X]. For a given w E 0, a represen-

tative of a random variable X will be denoted by X I.,'· 

We present two probability results that will be used in the sequel. 

1.4.1 Theorem. Let X 1 , .. , Xm · be random variables and a 1 , .. , am be constants. Then, 

m m m 

P( I; X; > E a; ) ~ E P(X; > a; ). 
i=l i=l i=l 

Proof. Let the random variables x;. be defined on a common probability space ( n, E, P ). 

For any wE 0, 

m m 

L;x. I > E a; 
i =I "' i =I 

implies that X; I.., > a; for some i. Hence 

!01.,. 



·' 

~-· 
i 

' . ,, ' 
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m m m 

{ w E 0 : .~X 1.., > .~ ai } £ .U { w E 0 : X 1.., > ai } . 
•=1 •=1 •=1 

Consequently, 

"' "' m 
P( ~Xi > ~ ai ) S ~ P( Xi > ai ). 

i-1 i-1 i-=1 

1.4.2. Theorem (Chung [16] p. 42). Let Y ?: 0 be a random variable. Suppose a > 0. 

Then, 

00 

E[Y] S a~P( Y > ja ). 
i-0 

Proof. This result follows from an explicit calculation: 

00 

E [Y] S ~a (j +1) P(ia < Y < (j +1)a) 
i=O 

00 

S ~ a (i + 1) [ P( Y > ja ) - P( Y > (i + 1) a ) ] 
i=O 

00 

S a ~ P( Y > ja ) . 
. i-0 
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Chapter 2 

Fractional Step Algorithm with Exact Operators 

As stated in the introduction, we plan to prove the convergence of our random walk method 

by studying the behaviour of the random variable 

(2.1) 

where D~e and A~e denote the approximate diffusion and advection operators and SOu 0 is a 

step function approximation of the smooth data u 0 • 

In this chapter we will study the behaviour of the related 'exact' fractional step algo­

rithm. Namely, we will study the quantity 

(2.2) 

It is intuitively obvious that it would be impossible for the quantity {2.1) to converge to zero 

as n -+oo { nk < T ), if expression {2.2) did not converge to zero. Indeed, the proof of convero 

gence for our random walk method, in Chapter 5, uses the fact that expression (2.2) converges 

to zero. 

We obtain a bound on (2.2) by using a technique very similar to that used by Kruzkov, 

[33] p. 239, to show that the operator F~e is stable in the L 1 norm. We will use this technique 

to prove a general result {Lemma 2.1.1) which is then used to show (Theorem 2.1.3) that the 

error arising from one time step of the exact fractional step algorithm is of order k 2, where k 

is the time step. In Theorem 2.2.1 we then prove that the error for n time steps can be 

estimated by summing the estimates for each of the n individual fractional steps. Hence we 

show that the fractional step algorithm with n steps will have an error which is at most order 

nk 2
. For nk :5 T, the error will be of order k, which implies that•the exact fractional step 

algorithm converges. 

Finally in the third section we investigate the behaviour of the a:Jgorit.hm as v - 0. 

'· 

I • 
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2.1. Accuracy of Fractional Step Algorithm for One Time Step. We proceed with the 

estimation of the accuracy of one time step of the exact fractional step method by first proving 

·the following L 1 norm estimate for the solution of a second order parabolic differential equa-

tion. The proof is essentially identical to Kruzkov's {[33], p. 239) proof of stability for the 

operator Fit: • 

2.1.1. Lemma. Let 11 and T be positive, a ,b E d(1R X [0, T]) and w 0 E C3{.1R ) such that 

llwoiiLoo<oo, llwoiiL,<oo, llw 0 ll 80,<oo, llaiiLoo<oo andllbiiL 1<oo. Then the solution, 

in the region R X [0, T ], of the equation 

w1 + ( aw ). + b == vw .. ' 
w (z ,0) = Wo (z) (2.3) 

satisfies 

00 00 too 

J lw{z,t)l dz < J I Wo (z) I dz + J J 1 b (z ,s) 1 dzds 
-oo -oo 0 -oo 

for 0 :::; t < r·. 

Proof. First note that the conditions on a ,b and w 0 guarantee the existence of a unique 

solution of equation {2.3), such that II w II L oo and II Wz II L"" are bounded {see Oleinik and Kruz-

kov [39] Theorem 14 together with Kruzkov [33] p. 237). 

Let us choose an arbitrary smooth bounded function g (z ,s) on 1R X [0, T ], which has 

compact support. If we multiple equation (2.3) by g and integrate over the region R X [O,t], 

_then integration by parts implies that 

00 t 00 

J w (z ,t )g (z ,t) dz - J J Lg (x ,s) w (x ,s) dxds (2.4) -
-oo 0 -oo 

00 too 

J w 0 (x)g(x,O) dz- J J g(x,s)b(x,s) dxds 
-oo 0 -oo 

where Lg = g1 + ag, + vg:u. We want to extend this.result to the case of smooth functions 

g which decrease exponentially to zero as I x I tends to infinity. Specifically, we want to 
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show that (2.4) holds for functions g which satisfy the condition that there exist constants 

I x I > c 3· Let us suppose that a given function g satisfies such a relation. For a given 

parameter R >0, let '7 denote a smoothed version of the characteristic function for the region 

[-R ,R ]. That is, '7 = tP*X[-R ,R I• where ,Pis a smooth positive function with support in [-1,1] 

whose integral equals one, X[-R ,R 1 is the characteristic function of the region [-R ,R ], and • 

denotes convolution. Expression (2.4) implies that 

We note that the term · 

00 t 00 

I wg '71, -t dx - I I Lg qw dxds 
-co 0 -co 

too 

- I I [wa '7a - 2vwa '7a - vw '1aa ]g dxds 
0 -oo 

00 too 

= I Wo g '1l,=o dx -I I g qb drds. 
-co 0 -co 

[ wa '1a - 2vwa '1z + VW '1za] 

(2.5) 

is bounded and has support contained in two compact regions centered about the points -R 

and R . Here we have used the fact that II w II L oo and II Wz II L 00 are bounded (see the remark at 

the beginning of the proof). Since g is assumed to decrease to zero as I x I approaches 

infinity, it follows that 

too 

lim I I [wa '1z - 2vw.r '1z + vw '1zz ]g drds = 0. 
R-oo 0 -co 

Obviously g '1 convergences pointwise to the integrable function g, as R - oo. Hence the 

Lebesque dominated convergence theorem can be applied to expression (2.5) to show that g 

satisfies (2.4) provided L"g is integrable. 

For a > 0, let t/1° be a smooth approximate delta function with compact support. 

Specifically, for a smooth positive function, '1/.•, with support contained in [-1 ,1], we define t/.•0 

by the relation 

.. 
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Now choose an r > 0 and let .8 (z) = sgn( w (z ,t)) for z E[-r ,r] and 0 otherwise. Define p 

= t/J01•,8. Note that ,ac' has compact support. Let g 01(z ,t) be the unique bounded solution of 

.. linear parabolic equation Lg 01 = 0 in R X [O,t], with initial conditions g01(z ,t) = ,ac'(z ), 

where we note that we are solving backwards in time. The uniqueness and existence of the 

solution g 01 is given by Friedman [24] (p. 25 and p. 29). Using the compactness of the support 

of the initial data g 01(z ,t) it is possible to show that g 01 decreases to zero exponentially as 

I z I -oo (see Kruzkov [33], lemma 4). Hence expression (2.4) is satisfied with g replaced by 

Now the maximum principle (Friedman [24] p. 34) implies that for 0 :::; s < t, 

(2.6) 

Hence equations (2.4) and (2.6), together with the assumptions that II wo II L 1 and II b II L 1 are 

finite, imply that 

00 too 

I w (z ,t )g 01(z ,t) dz I < I I wo (z) I dz + I I I b (z ,s) I dzds. 
-oo -oo 0 -oo 

The function .8 is a bounded measurable function and so it follows that ,ac'(z) converges to 

.8(x) for each Lebesque point, z, of the function .8 (Kruzkov [33], p. 221). The set of Lebesgue 

points of .8 has zero measure and so ,ac' converges to .8 pointwise almost everyWhere on R . 

That is, g01(x ,t) converges to {3 (r) pointwise almost everywhere on lR. Hence, it follows 

from the Lebesque dominated convergence theorem that 

00 too 

I I w (z ,t) I dz :::; I I w 0 (x) I dx + I I I b (x ,8) I dxds. 
-r -oo 0 -oo 

Finally the lemma is concluded by applying the monotone convergence theorem as r -+oo. 

In the next lemma we will prove a technical result that will be of use in the proof of 

Theorem 2.1.3. 



2.1.2. Lemma. Let I ,g E C1(R ). 

{i} If II I II L'"' < oo and II g II BV < oo, then 

IIDe!Dtg -Drfg IIL1 ~-2(vt) 1 12II/IIL""IIgllsv· 

(ia) If II/IIL1 < oo and II g 11 801 < oo, then 

Proof. Let us introduce the notation 
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and observe that D1 = G 2ve •, that is, D1 is equivalent to convolution by_ the function G 2vt. 

In addition, observe that 

00 

I G 2vd r -y 2) dy 2 = 1. 
-oo 

Hence, 

00 00 00 

= J I I I G2vt(r-yt)G2ve(r-y2)f(y!)g(y2) 
-oo -oo -oo · 

- G 2ve (z -y t)G 2vt (z -y2)/(y t)g (y t)dy 1dy2l dx 

00 00 00 

- J I J JG2vt(r-y,)G2vt(r-Y2)/(y,)[g(y2)-g(y,)]dy,dy2ldr. 
-oo -oo -oo 

That is, we have 

(2.i) 

00 00 00 

I I I I Gzve(x-yt)Gzve(r-yz)f(yl)[g(yz)- g(yt}]dy!.dYzl dx. 
-oo -oo -oo 

Let us suppose that the condition in ( i) holds. Then we can use the integral form of the mean 

value theorem to bound the second term in expression (2.i) by the quantity 

•. 
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..... 

loooooo 
11/IIL"" I I I I G2vt(z-ydG2u,(z-Y2) I !1-r!11l I g.,(yl+8(y2-YI)) I dy1dy2dxd8 

0 -oo -oo -oo 

00 00 

~ IIJIILoollgiiBV I I G2vt(YI}G2vt(Y2} I Y<rY1I dy1dY2 
-oo -oo 

= (s~x
12

lllll L ooll g II BV ~ 2(vt )11211 I II L ooll g II BY 

which proves the first part of the lemma. Note that we have used the result 

oo oo 1 
(Bvt )1 2 

I I G 2vt (y I)G 2ul (Y2) I !1-rY I I dy ldY2 = 1/2 
-oo-oo 1r 
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which is obtained by an explicit calculation in which we make a change of variables and inter-

change the order of integration. 

Let us suppose that the condition in ( ii) holds. The differential mean value theorem 

shows that (2.7) is bounded by 

00 00 00 

II g II BDl I I I G 2udz -y dG 2vt (z -y2) I /(y 1) I I Yz-Y 1 I dy 1dy2dx 
-oo -oo -oo 

00 00 

~ 11/IIL~IIgllsol I I G2vt(YI)G2udY2) I Yr-Y1I dy1dY2 
-oo -oo 

This completes the proof of Lemma 2.1.2. 

2.1.3. Theorem. Let vo ~ C 2(R) ~uch that llvo II 801 < oo, j = 0,1,2 and II Vo II BY < oo. 

Let 0 ~ k ~ ~~~ v0 IIB"61 and 11 > 0. Then 
2 

where 

and 
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Proof. We will show that the function 

w (X It ) = Fi tl 0 (X ) - Dt At tl 0 (X ) 

satisfies an equation of form (2.3). This will allow us to apply Lemma 2.1.1 and so obtain an 

estimate of the L 1 error for one step of the fractional step algorithm. The main part of the 

proof involves estimating the L 1 norm of the function b (x ,t) (see equation (2.8)). Lemma 

2.1.1 will be used to obtain an estimate of the size of b . This leads to a problem of estimating 

quantities of the form 

II De I De g - Dt I g II L 11 

which can be estimated using Lemma 2.1.2. 

We will first introduce some notation. Let v"(x ,t) = Fi v0 (x) and 

v ( x , t ) = At v 0 ( z ). Using the notation introduced in the last lemma, we write the function 

De A 1 v 0 as G 2~~t •v . Then 

w ( x , t ) = v"( x , t ) - G 2llf • t1 ( x , t ) . 

Since v (x ,t) is a solution of the invicsid Burgers equation, it follows from. Theorem 1.3.1 that 

the solution is smooth for 0 ~ t ~ .;11 v0 II B~1 • Since v" satisfies the viscous Burgers equation 

and G 2llf (x ), as a function of x and t, satisfies the diffusion equation, it follows that for 

0< t <..!..11 Vo II sbl• the function w satisfies 
2 

w1 + (aw)z + b = VWu , w(x,O) = 0 

where 

1 ' 
a = 2" [ v " + G 2111 * v ] 

and 

(2.8) 

•. 
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Theorems 1.2.2 and 1.3.1, together with the smoot~ness of the diffusion operator imply that 

a ,bE C3(1R) and that II a II L ""~ oo. Hence, Lemma 2.1.1 implies that 

"' 00 

llw(·,k)IIL 1 ~ J J I b(x,t) I dxdt (2.9) 
0 -oo 

provided the right hand side is finite. 

It follows from Lemma 2.1.2 ( i) (with f = "• and g = v ) that 

00 

J I b(x,t) I dx ~ 2(vt)112llvll 802llvllsv-
-oo 

Since 0 < t < 1..11 " 0 II ;i," it follows from Theorem 1.3.1 that the functions v , "• and v.. are 
2 

defined and satisfy 

In addition by Theorem 1.3.4 we have that 

(2.11) 

Hence we conclude that 

00 

J lb(x,t)l dx $16(vt)112llvoll 802llvollsv 
-oo 

and so by expression (2.9) we have that 

While this result is sufficient to show that the exact fractional step algorithm converges, 

it is possible to obtain a sharper result by a closer examination of b . We will use another 

00 

application of Lemma 2.1.1 to obtain a better estimate for the size of J I b (x ,t) I dx for 
~ 

0 S t S k . We first observe that in the region 1R X [O,k] the function b satisfies the equa-

tion 

b1 +(ab). + c =vbzs , b(r,O)=O (2.12) 

with 
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where 

c 1 = 2li{G 2vt •v~ )(G 2vt *Vzz) 

C3 = [(G 2vt *V )2(G211t *Vzz)- G211t •v 2vzz ]. 

Expression (2.10) implies that the L 1 norm of the quantity c 1 satisfies the following esti-

mate: 

00 

I I c1(x,t) I dx :=:; 2viiG211t*v~IIL1IIG2vt*tlzziiLoo 
-«) 

:::; 16vll v o II av II v o II 802· 

Estimates for the L 1 norms of c 2 and c 3 can be obtained by using Lemma 2.1.2. 

00 

I I c ~ x , t ) I dx 
-«) 

< 211 (G 2vt •v )(G 2vt •v~ )2 - (G 2vt •v~ )(G 2vt •vv,. )II L 1 

+ 211 (G 211f •v,. }(G 2vt •vv,.)- G 2vt •v ( v,. ?II L 1 

The first normed quantity can be estimated as follows: 

II (G 2vt •v )(G 2vt •v,. )2
- (G 2vt •v,. )(G 211t •vv,. )II L 1 

:=:; II G 2vt •v,. II Looll (G 2vt *V )(G 2vt •v,.)- G 2v1 •vvJ> II L 1 

Here we have used Lemma 2.1.2 (i ), with I= Vz and g = v , to bound the quantity 

II (G 2vt •v )(G 2vt *tlz)- G 2v1 •vv,.ll L I· 

(2.13) 

In addition, we have have used expressions (2.10) and (2.11) to bound the norm quantities at. 

time t , in terms of the initial data v 0·• 

If we use condition ( ii) of Lemma 2.1.2 with I= vv.. and g = v .. , then we conclude 

that 
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II {G :WI *Vz ){G 2vt *VVz) - G 2vt *" { Vz )
211 L 1 

:S 2(vt )
112

11 Vzz II L ooll ""z II L 1 :S 2(vt )11211 "zz II L""ll VII L ooll "z II L 1 

:S 16{ vt )11211 V o II ao2ll "0 II L ooll V o II BY · 

00 

J I c i r , t ) I dr 
-oo 
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. {2.14) 

Similarly' we can use condition (i) or Lemma 2.1.2, with I= ""zz and g = " ' to show that ·. 

00 

J I c3{r,t)_l dr :S 32(vt)112llvollavllvoii 80JivoiiLoo· 
-oo 

Results (2.13), (2.14) and {2.15) imply that for 0 :S & :S .!..II Vo II B~l 
2 

00 

J I c (r ,a) I dr 
-oo 

Lemma 2.1.1, together with the fact that 6 satisfies equation {2.12) implie.s that 

00 too 

J I b (r ,t) I dr < J J I c (r ,& } I drds 
-oo 0-oo 

Ir we substitute this result into expression (2.9} then we conclude that 

II w (· ,k )II L I 

:S 8vkzll "o II BV II "o II 802 + 5v112k 51211 "o II av [ 411 "o II 80JI "o II L"" +II "o II io1] 

which concludes the proof of the theorem. 

(2.15) 

2.2. Convergence or the Fractional Step Algorithm. The preceding result estimates the 

error arising from one time step. For n time steps, the error can be estimated by summing the 

errors from each individual time step. 
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2.2.1. Theorem. Let u 0 E C2(R ) 8Uch that II u 0 II BDJ < oo, for i - 0,1,2 and 

II u o II BY < oo. Then for n E Zl+ and 0 < k < ; (II u o II {co + 1.1 II u o II BDI)-1, 

where' 

Cz = 
90 II U o II BY [vZII u o II BD2 + vii U o II L coli U 0 II BDI + II U 0 II C co] v 

Proof. We will prove this result using induction. Let us assume that 

(2.16) 

We must then show that 

IIF(i+l)k uo- [DkAk]i+1uo !1 1 1 :=:; Cz{.f+l)k 2
. 

The triangle inequality and the L 1 stability of the operators D1 and A1 (Theorem 1.3.3) imp!)• 

that 

IIF(i+l)kuo -[D.cAk]i+1uoll 1 1 

::: II F!i+t)k u 0 - [Dk Ak ]Fik u 0 II L I 

+ IIFik uo - [DkAk]i uo !1 1 1· 

If we let tJ o = ~·, u 0 , then expre!!!!ion (2.18) can be written as 

We can use Theorem 2.1.3 .to estimate this quantity, since by Theorem 1.2.2 we have 

Consequently,· for 0 :=:; k S ; (II u o II C co + vii u o II BD1t
1 

(2.1i) 

(2.18) 

(2.19) 



35 

Using the apriori bounds obtained in Theorem 1.2.2 we conclude that 

.. 
Since k ~ ; II v 0 II L~' we have that 

.,. 

' 

Finally, using. the fact that k · ~ .;11 v 0 II ;£,1, we find that 

Combining these estimates we conclude .that 

(2.20) 

Note that if i = 0, then v 0 = u 0 , and we have 

which shows that the initial proposition of our induction hypothesis is true. 

Now, if we compare {2.18) with {2.20) and {2.16) with {2.19), we conclude that if 

then 

Hence our induction proof is complete. 

2.3. Behaviour or the Algorithm for small II. In this section we will study the behaviour 

of the exact fractional step algorithm for one time step as 11- 0. Specifically, we will investi-

gate the actual behaviour of the error for one time step when the initial data is given by a 

steady state solution of the viscous Burgers equation. With such a choice of initial data we 

are able to give an explicit formulation for the error produced in one time step. Let, 
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The function /.,_is a steady state solution of the viscous Burgers equation with diffusion con-

stant 11 and so F, /., = /., (F depends on 11). The error produced by one time step of the exact 

fractional step algorithm is given by 

Let g v(x ,t) = A 1 fv(x ). Now for t < 1, g 1(x ,t) satisfies the implicit equation for the 

solution of the inviscid Burgers equation with initial data / 1 (see Theorem 1.3.1). That is, 

Hence, for t < 11 

g 1(r ,t) = /1(z - tg 1(r ,t )). 

zt z t.zt 
9!(-,-) = /1(--- 91(-,-)) 

II II II II II II 

% t 
= fv(x - tg 1( -,-)). 

II II 

The function g 1( ..:...,.!... ) solves the implicit equation for the inviscid Burgers equation with ini-
11 II 

tial data /.,(z) and so g v(x ,t) = g 1( ..:...,.!...). 
II II 

If we substitute this result into the equation for e v,t and make a change of variables, 

then we obtain 

00 

I t t 
=II I /1(z)- Gztjv* 9 1(.r ,-)I dx = 11h (-) 

- II II 

where 

00 

h (a)= I I /1(x)- G2 • • g 1(x ,a) I dx. -
From Theorem 2.1.3. we conclude e., 1 is of order t 2 as t - 0. Consequently, h (a ) 

must be of order a 2 as a -0 and so c v.t =::; Ct 2, where C - oo as 11 - 0, provided t < 11. 

Hence, the small 11 behaviour of the one step error as obtained in Theorem 2.1.3 is consistent 
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with the actual error obtained with the specific initial data / 11• 

On the other hand, for a fixed time step k the error of the fractional step algorithm 

tends to zero as v - 0. To see this, observe that there exists a constant B such that, 

Theorem 1.3.5 implies that 

The stability of the diffusion and transport operators can then be used to show that 

IIF..tuo -[D•A•]•uoiiL' 

:S IIF..tuo -AuuoiiL,+ nB lluollev(2vk)112 

Hence the error of the fractional step algorithm tends to zero as v - 0 (at least) if the size of 

the time step is fixed. 
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Chapter 3 

The Approximate Advection Operator 

The purpose of this chapter is to describe our approximation advection operator. That is, the 

operator with which we approximate the solution of the inviscid Burgers equation. The opera-

tor will be defined in terms of the evolution of the positions of a set of particles. In Section 

3.1 we will define an evolution equation for these particles which approximates the way in 

which particles would flow under the influence of the exact velocity field. The accuracy of the 

method is then discussed in Section 3.2 where it is shown that the error in the L 1 norm is 

bounded by a quantity of order h , where h is the absolute strength of each particle. Finally 

in Section 3.3 we generalize our definition to encompass initial data which is stochastic in 

nature. Specifically we define our approximate advection operator for particles whose initial 

positions are described by random variables. 

3.1. Definition of Method. We assume that our initial data 8 E S is generated by m 

basic particles with initial positions {z.- };'=.. 1 and strengths {S".- }/~ 1 with ls-.-1 = h, such that 

'" 
8 (y) = 8 L + ~ H (y-r.-) S";. 

i=1 

The definition of the numerical method is obtained by specifying the evolution of the positions 

of these particles. 

We first observe that for small times, the weak entropy solution of the inviscid Burgers 

equation with step functions as initial data can be obtained by splicing together the Riemann 

problem solutions (see sections 1.3.8-1.3.10) associated with each discontinuity considered 

separately. 

We define the strength of the discontinuity of the step function 8 E S at the particle 

position z.- by 
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[&]; =&(z;+O)-s(z;-0)= E ~i· 
j:z

1 
=z; 

Hence [s]; is the tot'al strength of all the particles positioned at z;. 

The solution to the Riemann problem takes two distinct forms depending on the sign of 

the discontinuity, one being a shock solution, the other a rarefaction wave. Hence the way in 

which the i til particle is transported by our approximate operator will be determined by the 

sign of the quantity [s];. 

For particles that form a negative discontinuity (particles with [&]; negative), we want 

the trajectories of the particles to coincide with the shock that occurs in the exact solution. 

This is accomplished by moving all or the particles that generate a specific negative discon-

tinuity with a common velocity given by the Rankine-Hugoniot condition Cor that discon-

tinuity. Consequently, if[&]; ~ 0, we define the velocity or the itA particle to be, 

This implies that 

Sj = 8 L + E ~i + ..!.. E ~i . 
j:z

1
<z,. 2 i·z =z 

&j = 

• 1 • 

"(:,- 0) + "(:, + 0) 

2 

(see figure 2) which is the velocity given by the Rankine-Hugoniot condition. 

(3.1) 

Suppose that a· positive discontinuity is generated by q + p particles with positive 

strength, and p particles with negative strength, where qh is the strength of the discontinuity 

and p is some non-negative integer. We will allow the trajectories of the first q particles with 

positive strength to fan out in such a way as to approximate the exact rarefaction solution. 

The other 2p particles will be given a common velocity and allowed to evolve together. 

Hence, if[&]; > 0, we define the velocity of the itll particle as follows: 

If ~i > 0 and 

E ~j < [s]; 
j $_i:z

1 
=z, .r

1 
>0 

(3.2) 
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(condition for being in the group of particles that will approximate the rarefaction fan) then 

8j = 8 L + E ~i + E ~i + ..!.. ~ ... 
i:~1 <~, i<i:~1 =:r,,,1 >0 2· 

(3.3) 

If on the other hand ~i < 0 or ~i > 0 and condition (3.2) does not hold, then the velo-

city of the i 11 particle is given by 

8; = 8L + E ~i + [8]; = 8(:r;+O) 
j::rJ <z, 

(3.4) 

(see figure 3). 

Note that 8; depends both on the ordering of the particles (relative to the index i ) and 

on the ordering of ·the particle positions. 

The positions of the particles at a later time t , denoted :r; ( t ), are then given by ·the 

equation 

:r;( t ) = :r; + t 8; . (3.5) 

(see figures 2 and 3) provided t satisfies the condition that for all i and i with :r; < Xj, we 

have that :r;( t) :5 :r; ( t ). That is, we use equation (3.5) to evolve the particle positions until 

such time as the trajectories of two particles, initially at distinct positions, have intersected 

(see figure 4). Let us denote the time of first intersection by t 1• We conclude, from the 

definition of the velocities 8; , that the step function generated by the particles at time t 

(0 < t < t 1) is composed of positive discontinuities generated by distinct particles with posi-

tive strength and by groups of particles with common position and accumulated strength 

which is non-positive. We will refer to these groups of particles as numerical shocks. The 

strength of a numerical shock is given by the quantity 

E ~i 
j::r

1 
(I )-z, (t.J 

whe~e the i 1
• particle is any one of the particles forming the numerical shock at time t. We 

note that the strength of each numerical shock is non-positive. In addition, if the i 1
" particle 

satisfies the condition 
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E ~j ::::: o 
j :s

1 
(t )=s, (I) 

then that particle is contained in a numerical shock. 

For 0 < t < t 1, let us observe the following facts; 

(1) The distance between two adjacent discontinuities of positive strength mcreases as t 

increases (see figure 5). 

(2) The distance between a positive discontinuitity and an adjacent numerical shock will 

only decrease with time if the strength of the numerical shock is less than or equal to 

-2h (see figure 6). 

(3) We conclude from (1) and (2) that at time t 1
, the accumulated strength of the particles 

intersecting at a point must be non-positive. Hence at time t 1, at each point of intersec-

tion, numerical shocks and positive discontinuities join to form one numerical shock. So 

at time t 1 the sum of the number of numerical shocks and the number of discontinuities 

of size h decreases. 

We will extend our definition past time t 1 by using an inductive argument. Suppose 

that the positions, :ri ( t ), of our particles are given for 0 ::5 t ::5 t 1 
, where I is an integer 

greater than or equal to one. In addition suppose that for 0 < < t 1 

E ~j > o, 
i:s

1
(t )=s,(t) 

can only hold if 'Zj ( t) = 'Zi ( t) implies that i = j. That IS, we suppose that the positive 

discontinuities of the step functions generated by the particles at any time 0 < < t 1 are of 

strength h and are generated by distinct particles .. 

Let z/ = z; ( t 1 ) and l~t ~ 1 be the correponding step function 

... 
~I (y) = ~ L. + E H (y -z/) ~i. 

i-1 

Let the velocity of the particle with position z/ be defined as follows: 
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.I L "' I "' 8; = 8 + LJ ~i + - LJ ~i . 
j:s}<s/ 2 j:s}=s/ 

(3.6) 

Note that equations (3.3) and (3.4) reduce to equation (3.6) since we are assuming that the 

positive discontinuities of the function s 1 are generated by individual particles. 

Let 

I I 
I I I Z i - Z; I I I I 

t + = ~i~ { t + I I : Xj > X; and 8; > 8 j } . 
I ,J 8j - Bj 

(3.7) 

If there does not exist an i and j such that z} > z/ and 8/ > s} then we let t 1 
+l = oo. \Ve 

observe that t 1+1 > .t 1 (provided t 1 is finite). This follows from the fact that there exists a 

bound on the magnitude of the velocities s/. 

Now for t 1 < t < t 1+ 1
, we define z; (t) to be 

:r;(t) = x; 1 + (t-t 1 )8;'. (3.8) 

Observe that for any i and j such that z/ < z}, we have that r.- ( t) :5 z; ( t ) for 

t 1 < t :5 t 1 +I. In addition, if t 1 +I is finite, then there exist an i and j such that z/ < x} 

and z;( t I +I) = Xj ( t I +I). Hence t I +I gives the time or first intersection or the trajectories 

z;( t ) for t > t 1 ~ 

If t 1 < t < t 1 +I, then equation (3.8) can be rewritten in the form, 

1-1 

x;(t)=:r; + E(ti+l_ti)8/+(t -t 1 )s/ 
i=l 

(3.9) 

This reformulation allows us to estimate the maximum displacement that a particle can 

receive via this algorithm. In particular, equation (3.9) implies that for t 1 < t :5 t 1 +I, 

(3.10) 

Notice that the maximum displacement of a particle depends only on the initial data and on 

the time t. 

The description of the evolution of the particles will be complete provided we can show 

that sup ( t 1 
) is .infinite. In fact we can show that there exists an I such that. t 1 

+I = oo. Fact 
I 
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(3) can be shown to hold for all intersection times t 1 • Hence, at each time t 1 , the sum of the 

number of numerical shocks and the number of discontinuities of strength h decreases. As 

there are only a finite number of particles, these events can only occur a finite number of 

times. So there must exist a time t 1 after which no more interactions occur. Hence 

t 1 +I = oo for some l, as required. Note that smce 3Up ( t 1 ) is infinite, we conclude that 
I 

expression (3.10) holds for any t ;::::: 0. 

We now use the above evolution operator to define the approximate advection operator 

as follows: 

(3.11a) 

We will also denote the step function generated by the particles with positions z; ( t ) by 

m 

Ac 8 ( y ) = 3 L + ~ H ( y - z;( t )) S"i. (3.1lb) 
i=l 

Hence, we will regard A, as either an operator on step functions, or as an operator on particle 

positions, but we will always assume that there is an underlying set of generating particles on 

which A, is defined. 

We remark that the operator A1 satisfies the semi-group property relative to the variable 

t. That is, if r 1, r2 > 0, then for any step function 8 E S 

(3.12) 

Remark. Brenier [6] has discussed a method which is similar to our method, for the case of 

reaction advection equations. His method applied to the inviscid Burgers equation involves 

moving positions of a set of generating particles by associating to each particle the velocity 

3; = 3 L + ~ S"j + ~ ~j + ; S"i 
j:6

1
<z, j<i:61 =6, 

for all i . Let us denote his approximation operator by B1 • It is an easy exercise to show that 

if 3 is a step function with a single discontinuity of negative strength then there exists a con-
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stant c, which is independent of the size or the strengths of the particles, such that 

(3.13) 

On the other hand, using a compactness argument similar to the argument found in 

Crandall and Majda [20], Brenier [6] is able to show that for nk = T 

lim II Au 6 - B~t"s II L 1 = 0. 
•-oo (3.14) 

There is no conflict between (3.13) and (3.14) as the operator B1 does not satisfy the .semi-

group property. 

We do not use Brenier method to solve the advection equation since our proof or conver-

gence for the full random method needs an approximate advection operator which is accurate 

enough to allow us to add the n errors from each time step and still obtain a quantity which 

converges to zero as n- oo (nk = T). Obviously equation (3.14) implies that this is not 

possible using Brenier's method. It should be noted though, that both methods produce simi-

lar numerical results as n - oo. 

-
3.2. Accuracy ot the Method. We will now study the accuracy of the operator At . 

3.2.1. Theorem. Suppose we have m particles with initial positions { x; };~ 1 and strengths 

{S"; };'=.. 1 nch that I S"i I = h . Let s E S be given by 

Then for t .2:0, 

I 
where c3 = -hm 

4 

m 

6 (y) = 6 L + E H (y -X;) S"i. 
i=l 

(3.15) 

The operators A 1 and It propagate information at a finite velocity (see equation (3.10) and 

the remarks following Theorem 1.3.4.). Since 6 is constant in a neighbourhood of infinity, it 
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follows that for any given t >0, there exists R >0 such that A, s (y) =A, s (y) for 

I y I > R . Hence the quantity II A1 s - A1 s II L 1 is defined and bounded. 

We will prove the theorem by first proving the following lemma. 

3.2.2. Lemma. As in Theorem 3.2.1, suppose that m particles are given with initial posi-

tions {X; };'==1 and strengths {S"; };'==1 such that IS"; I = h . Then for any step function, s , gen-

erated by these particles, we have 

.II . - II 1 2 A 1 8 - A, s L 1 < -h mt - . 
for 0 ~ t < t 1 where 

%· -% 
t 1 = ~~·~{ J. 

1 

• X > X and S > S } . i i i j 
I ,J Sj - 8 1 

(3.16) 

where the quantities s; defined in expreuions (3.1), (3.3) and (3.4) and the quantity t 1 is 

equated to oo if the conditioning in (3.16) ~ vacuous. 

Note that t 1 is the time of first intersection of the trajectories x; ( t ) as discussed in Section 

3.1. 

Proof of Lemma. To prove the lemma we will make use of the following facts. 

limll Ar! - A, s II L 1 = 0 
~-~ 

for r,t 2: 0. Theorem 1.3.3 allows us to bound the quantity II A..s -A, s II L 1 by 

II 8 -A lr-tl s II L 1• The weak entropy solution of the inviscid Burgers equation converges m 

L1!t to its initial data as t- 0 (see Section 1.3.2) and so it follows that 

lim II s - A jr-11 s II L 1 = 0. 
jr-11- 0 

so we conclude that the first limit is correct. The second limit follows directly from the con-

struction of the approximate operator. It follows that 
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(3.17) 

is continuous in t . 

The lemma will be proved if we can show that the set 

is nonempty, closed and open in [O,t 1]. It is evident that E is non-empty (0 E E) and closure 

follows from the continuity of the function given in expression (3.17). 

It remains to show that E is open. Without loss of generality we may suppose that 

t E E and t < t 1• We want to show that there exists a 6 > 0 such that T E E for all 

I r-t I < 6. Without loss of generality we may suppose that t < r< t +6, since T E E Cor 

T $ t. Now, 

II~" -~IIL1 

$ II A,_, A, " - ~-1 A, 8 II L 1 

+ II ~-1 A, 8 - A:_, A, 8 II L 1• 

(3.18) 

(3.19) 

The operator stability of~-' {Theorem ~.3.3), together with the assumption that tEE 

and the fact that II A 1 a - A1 all L 1 is a continuous function of t , implies that 

The normed quantity (3.19) can be estimated by observing two facts. 

( 1) Using the nomenclature of Section 3.1 we have that the step function A, s is generated 

by numerical shocks and positive discontinuities of size h which are generated by dis-

tinct particles. 

(2) Given the step function A1 a , there exists a 6>0 so that for 0 < r- t < c, the function 

A~_1 A1 a has an explicit formulation in terms of shock waves ana rarefaction waves (see 

figure 7). In other words, c can be chosen so that for t $ r < t + 6 the solution of the 
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inviscid Burgers equ'ation with initial data A1 8 at 'initial time' t , is composed of non-

interacting elementary waves (shock and rarefaction waves) (see sections 1.3.8-1.3.10). 

The difference between the function .A,-_1 A1 8 and A:.-t ~ 8 is simply the difference 

between representing a number of small rarefaction waves of height h with positive discon-

tinuities of the same height, situated at the average position of the rarefaction wave (see figure 

8). These small rarefaction waves have width ( T- t )h at time T. Hence the L 1 norm error 

due to each discontinuity with positive strength will be ~h 2( r- t ). If N is the number of 
4 

discontinuities with positive strength then we have 

Hence we conclude that there exist a 8 > 0 such that 

for t < r < t + 8. This shows that E is open and that the lemma is true. 

Proof ot Theorem 3.2.1. We will use Lemma 3.2.2 together with an induction argument to 

show that expression (3.15) is true for all t >0. This will of course imply that the theorem is 

true. 

Our induction hypothesis is that 

(3.20) 

where t 1 is one of the intersection times defined inductively in Section 3.1 (see equation (3.i)). 

Let us suppose that t E [t 1 ,t 1+1J. The lemma implies that 

''A A- A- A- II < 1 h 2 (t- t 1 ). 
I -II I I 8 - I -t I I I 8 L I - 7 m (3.21) 
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Here we have applied the lemma to the step function X, 1 8 • In addition we have made the 

observation that the time t 1 defined in equation (3.16) for particles initially generating the 

function X,, a is equal to t 1+1
- t 1

, where t 1+1 and t 1 are defined in equation (3.7) for parti-

cles generating 8 • Consequently, 

where the first normed quantity is estimated using the stability of A (see Theorem 1.3.3) 

together with assumption (3.20); the second quantity is estimated using (3.21). The proof is. 

completed by observing that Lemma 3.2.2 implies that the initial induction hypothesis, (3.20) 

for I = 1, is true. 

3.3. Definition for Random Initial Data. In general the initial data for the approximate 

advection operator will consist of step functions generated by a set of particles whose positions 

have been obtained ·as representatives of random variables. Consequently the approximate 

advection operator must be defined for random initial data. Suppose we have m random vari-

abies, X; , i = 1, ... ,m defined on a probability space ( n, E , P ). We will consider a collec-

tion of m particles with strengths ~i such that I ~i I = h and with initial positions given by 

th,e random variables X; . For a given constant a L , the step function generated by these par-

ticles is given by 

"' s (y) = 8 L + E H (y - X;) ~i (3.22) 
i =-1 

where we have used upper case S to emphasize that S (y) is a random variable. For any ran-

dom step function S, defined by a,relationship of the form (3.22), we will denote a representa-

tive of S, for a given w E n by S I..,· That is, we define . 
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m 

s I (y) = 8L + EH (y -X; I ) ~i 
"" i==l w 

We will define the exact and approximate transport operators for initial data S by 

requiring that for any w E 0 

and 

In other words, we define our operators, for random data S, by using our previous definitions 

for each representative of S. To emphasize that A1 actually map~ particle positions, we will 

also use the dual notation 

At ( x1 , .. , Xm )I..,= .A, ( X11.., , .. , Xm I..,) 

where A1 (r 1 , •• , Zm) is defined by equation (3.lla). 

Since the estimate of accuracy of the operator ~ obtained in Theorem 3.2.1 depends 

only on the number and the strength of the particles and not on their positions, we conclude 

that a similar estimate of accuracy holds for the case of random initial data. In particular, we 

have the following: 

3.3.1. Theorem. Suppose we have m particle& with random initial positions {X; };':,1 and 

&trengths {~; };~ 1 such that I~; I = h. LetS be random initial data generated by these parti-

cles. Then for t ~0, 

1 
where c3 = -hm .. 

,.,, 



50 

Chapter 4 

The Random Walk Operator 

To approximate the diffusion in Burgers equation we will use the well known correspondence 

between the probability distribution of the position of a particle undergoing a random walk 

and the solution of the diffusion equation (see Lamperti [35], Ch. 4, Arnold [1]). To utilize this 

correspondence we recall that a step function 3 E S can be considered as being generated by a 

collection of particles with positions r; and strengths ); , such that 

m 

3 (y) = 3 L + E H (y -r;) ); . 
i-=1 

If the positions r; of the particles are perturbed by appropriate gaussian random variables, '7i , 

then the above correspondence allows us conclude that the perturbed function 

m 

a L + E H (y -r; -q;) ~~ 
i=l 

approximates the solution of the diffusion equation in some probabilistic sense. The exact 

sense is described in section 4.3 and in Theorems 4.5.1 and 4.6.1. 

It should be noted that the standard random walk method for solving the diffusion equa-

tion involves first approximating the initial data by a measure of the form 

where 6, denotes a delta function supported at the point z; and ~i E R . The positions z; are 
I 

then perturbed by the random variables, '7; , so that the above correspondence can be used to 

show that the measure 

approximates the solution to the diffusion equation in some weak sense. Unfortunately this 

method introduces large statistical errors. Our method of solution is equivalent to integrating 

the solution obtained using the standard method with the initial data given by the measure 
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It is plausible that the solution .obtained by our method has less statistical error, since our 

solution is obtained by integration, which is an averaging process (see Courant, et. al. [18], 

Hammersley and Handscomb [29]). A similar improvement in the accuracy of a random walk 

method is obtained in the random vortex method, in which case the vorticity is described by a 

measure and the velocity is obtained by integrating the vorticity with a smooth weight func-

tion (see Chorin [11], Roberts [42]). The moral is that the statistical error is reduced if we ran-

domly walk particles which carry strength corresponding to the gradient of the function 

instead of the function itself. 

4.1. Definition of the Random Walk Operator. We will now give the· precise definition 

of the random walk operator. We note that in general the random walk operator will need to 

operate on data which has been derived from the application of our numerical method over an 

arbitrary number of time steps. Consequently the random walk operator must be defined for 

random initial data. As in Section 3.3, we consider the initial positions of the particles to be 

given by m random variables, X; , i = 1, ... ,m defined on the probability space 

( nl ' El ' pI ). We will suppose that the strengths of the particles satisfy I~ .. I = h . Let 

B,. , i =1, .. , m , be a collection of m independent normally distributed random variables, 

defined on a probability space ( 0 2 , E2 , P2 ), such that E [B;] = 0 and Var[B;] = 2vk. We 

will regard the random variables X; and B;, i =1, .. ,m as being defined on the product proba-

bility space ( 0 1X02 , E 1 X~, P1XP2 ), and hence regard the B; random variables as being 

independent of the X; random variables. We will denote a generic element of 0 1 by w1, an 

element of Oz by Wz and an element of nl xn2 by (wl>w2)· 

For a given const~nt 6 L , the initial step functions generated by these particles are given 

by 
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m 

s (y) = & L + E H (y -Xi) ~i. 
i=l 

(4.1) 

The position of each particle after one time step will be given by the random variables 

(4.2) 

where Y; is a random variable on the product space ( 0 1 X02 , I:1 XI:2 , P 1XP2 ). The ran­

dom walk operator, defined with respect to the random variables B; , is given by the mapping 

1J. ( XI , .. , Xm ) = ( Y 1 , .. , Ym )• (4.3a) 

As in the case of the A 1 opera~t, we will also use the notation 

·m 

1JkS(y)=& 1 + L;H(y-Y;)~; (4.3b) 
i-1 

to denote the step function generated by the random variables Y; . 

The numerical approximation is given by one representative of the random step function 

15, S , which is equivalently given by one representative of the random variables Y; . Hence 

the numerical approximation is. given by 

. for some (w1,w2) E 0 1 X02. Computationally the numbers Y.·l are given by 
• I (wl,wzl 

Xj +(2vk )1
/

2 ei 7 where the numbers ei are derived from a standard normal random number 

generator and the numbers X; are representatives of the random variables Xi, provided by the 

numerical approximation at the previous time step of the scheme. 

4.2. Conditional Expectations and Probabilities. To simplify the analysis of the 

method we find it convenient to introduce the following notation .. Let 'II be a random variable 

on the probability space ( 01 X n2 ' El X E2 ' pI X p 2 ), such that E [ I"' ll < 00. Fubini 's 

Theorem (Rudin [44], p. 150) implies that 

( 4.4) 
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If we let 

(4.5) 

and 

EI[wJL.,
2 

= £ "'1(.., 1,..,~ P1( dwJ) 
1 

then Fubini's Theorem also implies that E1 and E2 are random variables on 0 2 and 0 1 respec-

tively. We note that the random variables E2 and E1 are closely to the conditional expecta-

tions E [w I E 1X02] and E [w I 01 X~]. For the definition of conditional expectations see 

Arnold [1] or Chung [16]. It is easy to see that 

E2l"'ll..,
1 

= E [w 1 ElxOdl!"'l'"'~' 

EJ[w]l..,
2 

= E [w I n1xE2ll(..,
1 
• ..,~ 

almost everywhere on the spaces 01 and 02. 

Equations (4.4) and (4.5) imply that 

(4.6) 

We can use the preceding results to obtain an alternative formulation for quantities of the 

form P( w > c), where c E R . Let us introduce the notation 

P2('1' >c)=~[ H ('II- 6} ]. 

Here P 2( 1{1 > c) denotes a random variable on 0 1. Equation ( 4.6) then implies that 

P(w >c)= E [ P2(w >c)]. (4.i} 

Finally the quantity P 2( 1{1 > c) can be calculated using relationship ( 4.5). Namely, 

(4.8) 
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4.3. Point-wise Accuracy. Suppose that we have a random step function S. The solution 

of the exact diffusion equation with S as initial data, denoted D~r S, is defined by the relation 

for WI E nl. That is, the solution of the diffusion equation for random initial data is defined in 

terms of the standard definition for each representative. 

We will show that ~[ lJ. S (y) ] = D~r S (y ). This can be interpreted to mean that on 

the average the random walk algorithm approximates the solution of the diffusion equation 

with initial data provided by the numerical method at the previous time step. 

· To calculate E2[ ~ S ], we first observe that 

1 oo z2 . -:---.-:::- f H (y -X - z) exp(--) dz = D~: H (y -X). 
( 411vk )112 -co ' 4vk ' 

Here we have been able to equate the integral over 0 2 to an integral over 1R , since we know 

that the random variables B; are normally distributed. We conclude that 

E2[ H (y - Y;)] = D, H (y -X;). (4.9) 

Consequently, 

m 

E2[ ~ S (y ) ] = a L + E E2[ H (y- Y;) ] ~i 
i-1 

m 

= a L + E D~: H (y -X;) ~i = D~e S ( y ) 
i=l 

as required. 

It is still important to estimate the accuracy of the random walk algorithm. We will first 

use Chebyshev's inequality to estimate the error in approximating D~e S(y) by a representative 

of IJ. S (y ). In Theorem 4.3.4 we use a result due to Hoeffding [30] to show that the term 1/ a2 

in Theorem 4.3.1 can be replaced by a term of the form exp(-a2
). 
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4.3.1. Theorem. Suppose that the initial data S for the random walk operator is generated 

by particles all with strengths of absolute size h . Then for a fixed y E 1R 

for any a > 1, where C4 = 2-(mh )1/ 2• 
2 

Proof. Chebyshev's inequality {Feller [23] p. 151) states that for a > 1 

P( I e- E.[e] I > aVar[e]'/2
) s 1/a2

• 

where e is a random variable on a probability space (0 , E , P). Using the results of section 

4.2, it can be shown that Chebyshev's inequality implies that if Ill is a random variable on 

( 4.10) 

This result is obtained by substituting into Chebyshev's inequality, the random variable e on 

02, given by e I = "'I ( I where Wt is held fixed. 
w2 wt,""21 

We will apply result ( 4.10) to the random variable Ill = iJJ: S (y ). We recall from the previous 

discussion that 

(4.11) 

To estimate the variance of Ill we observe that for a fixed w1 

"' E H (y - Xi - B;) ~i 
i=l 

is a sum of independent random variables on the space 0 2• Consequently 

m 

Vardllt] = :EVar2[ H (y -X; - B;)] ~r · (4.12) 
i-1 

The equality follows from the fact that the variance of a sum of independent random variables 

is equal to the sum of the variances of the individual random variables. The individual terms 

in the sum can be estimated in the following manner. 
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Var2[ H (y -X; - B;) ] (4.13) 

= P 2( B; < y - X. ) [ 1 - P 2( B; < y - X; ) ] < !.. . 
- 4 

Equations (4.12) and (4.13) together imply that 

(4.14) 

By applying equation ( 4.10) to 'It, together with the estimates for the expectation and variance 

obtained in expressions (4.11) and (4.14), we conclude that 

P ( I I=;' s ( ) · D s ( ) 1 > c4 h 112,) ~ 11,2 2 UJt Y-lt y ...... 

Equation (4.7) can then be used to show that 

which completes the proof. 

The result just obtained depends on the use of Chebyshev's inequality. A much stronger 

result can be obtained by using the following result due to Hoeffding and its simple· conse-

quence, Corollary 4.3.3. 

4.3.2. Theorem (Hoeffding [30], Theorem 1.). If Z 11 ••• , Z,. are m independent ran-

dom variable& &uch that 0 ::; Z; ~ 1, i =1, .. ,m, then for 6> 0, 

'1 '" 1 '" P( - ~ Z; - - ~ E [Z; I > 6) ~ exp(-2~m ). 
'" i-1. '" i-1 

4.3.3. Corollary. Let the random variable& Z; .j = 1, ... ,m be defined as in Theorem 4.3.2. 

Then, 

1 '" 1 '" P( I - E Z; - - E E [Z; I I > 6) ~ 2 exp(-2~m ). 
"' i -1 fft i-1 

To prove this corollary we apply Hoeffding's result to the random variables Z; and 1 - Z; , 

i = l, .. ,m. 
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We will now use Corollary 4.3.3 to obtain a strengthening of Theorem 4.3.1. 

4.3.4. Theorem. Suppose that the initial data S for the random walk operator is generated 

by particles with strengths ~i such that ~i = h . Then for any fixed y E R and o > 0, 

and so 

P( I~ S (y)- D~r S (y) I > mho) :5 2 exp{-2~m ). 

If we let o=a m -112, then this theorem implies that for any step function generated by particles 

with stengths equal to h , 

where C6 = ( mh )112• This estimate will also be true if the strengths of the particles are equal 

to -h . Now, if the strengths of the particles satisfy I~~ I = h , then we can consider the ini-

tial data as being the sum of two functions, one with particles all of negative strength, the 

other with particles all of positive strength. The triangle inequality together with Theorem 

4.3.4 applied to these two functions then implies that 

Obviously this bound is superior to the bound obtained using Chebyshev's inequality. 

Proof' of' Theorem. Without loss of generality we may assume that the limit at mmus 

infinity of s is zero (sL = 0}. For a fixed w1 En,, let us define m independent random vari-

abies on 0 2 by 

zj = H ( y - X; 1 - Bj ) . 
"'I 

Note that Z; depends on w1 and y and satisfies 0 :::; Z; :::; 1. In addition we observe that 

1 1 m 
-D.S(y) = -E Z; 
mh m i=l· 

and 
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1 1 m 
-D~r S(y) =- L; E2[Z,.] 
mh m i =I 

where we have used the fact that the strengths of the particles are all equal to h. If we apply 

Corollary 4.3.3 to the random variables Z; then by equation (4.8) we have that 

Equation ( 4.7) then implies that 

P( I D~r S (y)- D~r S (y) I > mh 6) ~ 2 exp(-2b'!m ). 

' 
4.4. A Condition on the Initial Distribution of the Particles. We have obtained 

results regarding the point--wise behaviour of the random walk operator. To obtain a conver-

gence proof for the full numerical method it is necessary to obtain an estimate of the L 1 

behaviour of the random walk operator. This will be possible if the following assumption is 

made about the probability distribution of the random variables X; . 

4.4.1. Assumption. Let the time IJtep k, the diffusion constant v and the the random vari-

ableiJ X.· , i =l, .. ,m be given. Let B; , i=l, .. ,m be any collection of m independent normally 

distributed random variables sati8fying E [B;] = 0 and Var[B;] = 2vk, such that {X; , B; }/== 1 

is an independent set of random variables. We assume that the random variables X.· satisfy the 
/ 

condition that there e:rist constants K >0 and T >0 (independent of the B,. random variables), 

neh that for all a > 0, 

P(X,. > K +a ) ::5 ~( a ) 
(2v T )112 

' 
P{X; < -K -a ) ::5 ~( a ) 

(2vT) 112 

and 

P(X,. + B,. > K +a ) < ~( a 12 ) , 
- (2vT) 1 

P(X,. + B,. < -K -a ) < ~( a ) 
- (2vT) 112 

where, 

6 ., 
1 -~(:r) = --., J exp(-L) dy. 

(2Jr) 1
/-~ 2 



) .· 
Remark. Since Assumption 4.4.1 deals only"Wi~h the probability distribution of the random 

j,· 
variables X; and X; + B;, it follows that th.e ~umption will hold if conditions (4.15) and 

~ . . 
(4.16) are true for any one particular choice or"random variables B;. Coilsequently, the ran-.. 
dom variables X; introduced in Section 4.1 w.di ~atisfy Assumption 4.4.1 if there exist con­

stants K and T such that condition (4.15) hold/for the X.· random variables and condition 

(4.16) holds for the random variables Yi =X; :+ B~ defined in equation (4.2). 
:r; 

Assumption 4.4.1 is intended to captuf~ the behaviour of random variables X; i -l/2, 

·~ 
which represent the positions of the particles that generate our numerical approximation 

X., [lJ., X., J i -I. In Theorem 5.2.1 we show that the random variables X. j.:.tf?.' satisfy Assumption 

4.4.1 with K = R + [ II u 0 II L 00 + mk ] jk and T = jk , where R is th~1 
size of the support 

.. ··~~ . ·~ 

of the set containing the particles at time zero. 

4.5. L 1 Error Analysis. We can now stud/the j>robability distribution of the L 1 norm of 
f 

the error of the random walk operator. 
,..! ·:.· 

. .. 

4.5.1. Theorem. Let k be th'e time a[ep. ~t the initial data S be generated by m particles 
i ... ·.· 

with initial positions given by random variables:X; ·.i i =1, ... ,m which satisfy Assumption 4.4.1, 

with constants K >0 and T >0. Let the atre~·gths of the particles have' 'absolute size h < 1/3. 

Then for a > 1, 
' I 

·.~ .. · 

where the constants M 1 and M 2 arc defined as; 

M 1 = 8 (mh )112[K + (Sv,T )1/Zj + (2vT )112 mh, 
; 

I ..... 

M 2 = 8 (mliF2 + 16mh. 

The exponential bound on the probability dist~ibution 6Ltrhe L 1 norm of the error is of crucial 

importance in the subsequent proof of convergence. of 6>blr numerical method. It allows us to 
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sum the errors at each time step and still obtain a bound on the probability distribution of the 

overall error which is exponentially small for large errors. 

The proof of the theorem will be based on the following lemma. Notice that in this 

lemma the strengths of the particles gener~ting the solution are assumed to be equal to h . 

4.5.2. Lemma. Let the initial data S.' be generated by m particles with strengths ~i that 

satisfy ~i = h , and with random initial :positions X; which satisfy Assumption 4.4.1 with con-

stants K > 0 and T > 0. For r >K and 8 > 0, 

(i) P( II !Jil S - D11 S II L 1(-r,r) > 2rmh [c5 + m -l/2]) $ 4m 112exp(-20oZm }, 

- (vT)1
/ll ( (r-K)2

)) 
( ii _) P( II D11 S - D11 S II L •(-oo,-r) > 1f112 mh exp . 161.1 T 

(2vT )1
/
2 

( r -K )2 

< 4m . exp( ), 
- r-K 16vT 

and 

(vT)1
/
2 (r-K)2

)) 
P( lilY. s -D. s II L l(r,oo) > r/2 mh exp( 16vT 

. ("vT )1
/
2 

( (r -K )2 
). 

S 4m ~,. -K exp 16vT 

Proof of the Lemma. We will first prove statement (i) of the lemma. Let us define 

The function t(y) defines a random variable on 0 1 X~ which gives a measure of the point-

wise error at the point y . Since all of.the particles are assumed to have equal strength, h , it 

follows that D11 S (y )I and D,. S (y )I are monotonically increasing functions of y. Hence 
("'l·"'zl "'• 

fory E[a 11 az], 

D" S(y)- D,. S(y) S lJ,. S(az)- D" S(a J) 

S lJ" S (a 2) - D" S (a 2) + D" S (a 2) - D~t S (a J) 

. . . , 



61 

(see figure 9). Similarly 

~ S (y) - D• S (y) > - E( ad + D• S (a 1) - D• S (a 2). 

Consequently, for y E [a 1, a 2], 

We conclude that 

II.D.s -:-D.siiLll·~··~ (4.17) 

< (a ~a 1)[ max( E( a 1) , E( a 2) ) +. D• S (a 2) - D• S (at)]. 

As in the proof of Theorem 4.3.4 we now consider the random variables in expression (4.17) as 

random variables on 0 2 for each fixed w1 E 0 1• For each such w1 E 0 1 we can choose a 

sequence of points a;, i =1, ... ,N 0, where N 0 :S 2m 112, such that 

and 

D.S(a;+r)-D.S(a;) :S hm 112
• 

This follows from the fact that the range of D• S is contained in the interval [s L ,s L +mh] 

and that D• S (y) 1 , for each fixed w1 E 0 1, is a smooth monotonic function of y (see figure 
"'1 

10). 

Consider the function on 0 1 x02 given by 

e = max -
1
- I ~ s (a; ) - Dlr s (a; ) I - max 

i =l, .. ,N0 mh i=1, .. ,N 0 mh 

For each w1 e 01> and so each' choice of the a; 's, it is obvious that e is a random variable on 

0 2 . On the other hand it is not at all obvious whether it is possible to choose the points a;, as 

functions of w1, such that e is a random variable on 01 xo2. Fortunately we only need e to 

' be a random variable on 0 2 for each fixed w1• 



We observe that equation (4.17) can be used to show that 

Na-1 

< E (ai+1- a; )[mh e + Dlt: S(ai+1)- Dlt: S(a; )]. 
i=1· 

:::: 2rmh [ e + m -112]. 

Since, for each fixed w1 E nlt e is a random variable on 112, it follows that 

P2( II~ S - Dlt: SIlL lJ-r,rJ > 2rmh [cS + m-1/~ ) 

S P2( 2rmh [€ + m"'1/~ > 2rmh [cS + m-I/~) 

= P2( E > 0 ). 
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we will use Theorem 4.3.4 to estimate this last expression. Observe that for a fixed w1 E 111' 

P2( e > o) 

=P2(IlJ.s(a;)-D.S(a;)l > mh8 forsome a;) 

No 

S :E P 2( I Dlt: S (a; ) - Dlt: S (a;) I > mh 6 ) 
i=1 

< 2N 0exp(-202m) S 4m 112exp(-202m ). 

Combining the last two series of calculations, ·we see that 

P2( II Dlt: S - Dlt: S II L 1J-r,rJ > 2rmh [6 + m -l/9) 

:::; 4m 112exp(-202m ). 

( 4.18) 

Notice that the function € was only used as an intermediate to obtain estimate ( 4.18). Now 

we have a conditional estimate on the random variable .11 Dlt: S - Dlt: S II L 1(-r ,, )' and so we can 

use equations (4.7) and (4.8) to show that 

P( II Dlt: S - Dlt: S II L 1(-r ,r) > 2rmh [6 + m -I/Zj ) 

::; 4m l/Zexp(-2CZm ). 
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This completes the proof of the first part of the lemma 

Proof ot Statements (ii_) and (ii+). We will only prove statement (ii_) and note that the 

proof for statement ( ii +) follows in a similar way. We recall that Yi = Xi + Bi for 

appropriate normally distributed random variables Bi . For a given r > K we will consider 

m 

E = n .x,-r(J) n Y;-'(J) 
i-1 

where J is the interval [-~(r+K),~(r+K)]. 
2 . 2 

Let 

L = S'iJ' II D11 S - 8 L II L 1(-oo,-r )' 

We want to show that 

(4.19) 

where Ec denotes the complement of E, and the notation {WE/} represents the set 

{ (w1,w2): "'1(..,
1
,w:VE J}; where \II is a random variable on n,xn2 and I is an interval con­

tained in R. 

Expression (4.19) will hold if we can show that 

(4.20) 

for i = l, .. ,m which in tum implies that 



II fJ. S - D~c S II L 1(-co,-r) 

< IID~c S - 4 L II L 1(-co,-r) + II D~c S - 4 L II L 1(-oo,-r) 

~ Sllj II D~c_B -:- 4 L II L 1(-co,-r) = L. 

This shows that relation (4.20) holds, and so it follows that expression (4.-l9) is true. 

Expression ( 4.19) implies that 

The proof of the lemma will be completed once we show that 

(vT)1/2 ex (-(r-Kt)) 
L < 7r1/2 mh p 16vT ' 

and 
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(4.21) 

( 4.22) 

(4.23) 

Statement (4.22) depends on the observation that for (w1,w2) E E, we have -~(r +K) ~ 

X; and so the monotonicity of D, H (y) as a function y imp-lies that 

I . 
D,H(y -X;)~ D~cH(y + -(r+K)). 

2 • 

and so 

II D~c S - & L II L 1(-co,-r) ( 4.24) 

~ mh II D,. H ( · + .!..( r + K) }II L 1( _ l = mh II D~r H II 1 1 • • 
2 -co, ' . L (-oo.2{K -•)) 

Here we have made a simple translational change of variables to the last normed quantity. 

We observe that Di, H (y) = 4>( Y ) and so 
(2vT )112 · · 



.-

.. _,. 

K-. 
(8vT)1/2 

II Dlt H II L 1(-oo ..!.(K -r)) = (2vT )112 J 4>(y ) dy. 
'2 -oo 

. We will now estimate this integral quantity. Suppose x < 0, then 

6. 1 "' z2 J 4>(y) dy = ~ J (z -z )exp(-) dz 
-oo (2n') -oo 2 

1 "' z2 1 z 2 

< -·-J -z exp(--) dz < --exp(--). 
- (211")1/2 -oo 2 - (211")1/2 2 

K -r ) If we set x - --~ and apply this estimate to equation ( 4.25 , we conclude that 
(BvT )112 

(vT)112 
( (r-K)2

) 

II Dlt H II L 1(-oo,f(K -r)) S 1r1/2 exp 16v T 

and so by equation {4.24) we have that 

(, T )112 ( K )2 · ., { r- ) 
L S 1r1/2 mh exp 16v T 

as required. 
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(4.25) 

Finally we must estimate the probability measure of the set E • . Let I 1 be the interval 

(-oo,-..:_(r+K)) and let / 2 be the interval (..:_(r+K),oo). The random variables X; satisfy 
2 2 

Assumption 4.4.1, with constants K > 0 and T > 0, and so for a > 0, the random variables 

X; satisfy condition (4,15) and the random variables Y; =X; + B; satisfy condition (4.16). 

1 
If we set a = -(r +K ), then we have that 

2 

m 

P(E•) = P( U..\i-1{Id u x;-1(!2) u Y;- 1(Id u Y;-1(12)) 
i =-1 

S E [P(X; < _2.(r +K )) + P(X; > 2.(r +K ))] 
i-1 2 2 

m 

+ E [P( Y.· < _2.(r +K )) + P{ Y; > -2.(r +K ))] 
2 2 

2..(K -r) 1tn • ~ 
< 4m4>( 2 ) < 4m(2vT) -ex {-(r-h )·) 
- (2vT )1/ 2 - r -K P l6vT 
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where the last inequality follows from the standard estimate (see Feller [22] p. 175) 

-1 1 z2 

ct>(x )< ---exp(--) 
- % (211")1/2 2 

for x < 0. 

We have now shown that estimates (4.22) and (4.23) hold. The conclusion of the proof is 

obtained once these estimates are substituted into equation (4.21) to produce 

(II - II (vT)1/2 ( (r-K)2)) 
p Dl< S - Dl< S L 1(-oo,-r) > 11"1/2 mh exp 16vT 

(21/T )1/2 (r K )2 S 4m exp( - ). 
r -K 16vT 

Proof of the Theorem 4.5.1. We will now use Lemma 4.5.2 with an appropriate choice of 

r and o to prove Theorem 4.5.1 for the case of monotonic initial data; that is, data generated 

by particles with equal strengths. Specifically, let us assume that the strengths of the particles 

satisfy ~; = h . Let us introduce the following notation. 

a 1 = 4(mh )112[K + (8vT) 11~ o h 112(ln{1/h ))2
, 

(v~}2
112 

mh o h 112(ln(1/h ))2, 

"" 

.!oln(1/l )-1 
b 2 = 4( mh )h 2 . 

Now let r = (8vT)112o 112ln(l/h) + K, and o = o 112m-112ln(l/h) and observe that 

2rmh [o + m - 112
] ~ a 1r 

(vT )1/2 ( r -K )2 
-'--:-7:---mh exp(- ) < a '2• r12 16vT - -

4m 112exp( -25-!m ) ~ b 1,. 
' 

4m(2vT)l/2ex ( (r-K)2) <b.,. 
r -K p 16v T - • 

(4.26) 

(4.2i} 

(4.28) 

(4.:29) 

.... 
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In all of these estimates we make use of the fact that a > 1, ln(1/h) > 1 and h < 1. 

Expression (4.26) is a simple estimate which uses the elementary fact that cd +e < c [d +e] 

if d , e > 0 and c > 1. Expressions ( 4.27) and ( 4.29) follow from the calculation 

(r K)2 1 .!.ain(l/h) 
exp( - ) < exp( [-aln(1/h )]ln(h)) = h 2 < h 112; 

16£1T - 2 . · -

the last inequality depending on the fact that a ln(1/h )>1 and h < 1. Expression (4.28) fol-

lows from the calculation 

.!.aln(l/h) 
exp(-2~m) = exp([2aln(1/h )]ln(h )) = h2<rln{I/l) ~ h 2 

• 

I 
where we use the fact that -a ln(l/ h) < 2cr ln(l/ h) and that h < 1. 

2 

Estimates (4.26}-(4.29) and the results of Lemma 4.5.2 Imply that 

P( II.D.s -D.siiL1(-r,r) > a1) ~ b!J 

P( II.D. S - DA: S II L 1(-oo,-r) > a 2) < b 2• 

P( II~ S - DA: S II L 1(r ,oo) > a 2) ~ b 2· 

An application of Theorem 1.4.1 and the triangle inequality then implies that 

P( II~ S - D• S II L 1 > a 1 + 2a 2) 

~ P( II ~ S - DA: S II L 1(-r ,r) > a 1 ) 

+ P( II D. S - D. S II L 1(-oo,-r) > a 2 ) 

+ P( lllJ. s - D. s II L 1(r ,oo) > a 2 ) 

The constants M 1 and M 2 defined in the statement of the theorem satisfy the condition that 

of the particles have strength equal to h , then 

(4.30) 
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1 .!.otn(l/h }-1 
< -Mzh 2 
- 2 

It is easy to see that equation ( 4.30) also holds if the numerical solution is generated by parti­

cles, all with strength equal to -h . 

Let us suppose that S is generated by particles which have strength of absolute size h , 

but may be of different sign. For this case we can write S = S1 + S2 where 

S1(Y) = "L + E H (y -X;) ~i' 
r,=• 

and 

S2(y) = E H (y -X; ) ~~ . 
r, --• 

We observe that 

Let Ml and M~ denote the constants defined in the statement of the theorem for the step 

functions S;, i =1,2, and let M 1 and M 2 be the corresponding constants for S. Since the 

number of particles generating S1 and S2 are less than or equal to m, it follows that Mj :5 Mi 

for i ,j =1,2. We can complete the proof of Theorem 4.5.1 by applying Theorem 1.4.1 

together with equation ( 4.30) to the monotonic initial data S1 and S2 to show that 

2 2 
:5 P( E II D., Si - ~ Si II L 1 > E .. 2..Mi ah 1/

2{ln{l/ h ))2 ) 
i=1 i-1 2 

2 1 . .!.otn(l/1)-1 ..!.otn(l/4 }-1 

:5 E -M2h 2 :5 M zh 2 

" i -=I "" 



4.6. Expected Value of the Error. We can now use Theorems 1.4.2 and 4.5.1 to estimate 

the expected value of the L 1 error of the rjllldom walk algorithm. The following result implies 

that the random walk algorithm produces an error in L 1 which has an expected value of order 

at most h 112(ln(1/ h ))2, provided the initial particle positions satisfy Assumption 4.4.1. 

4.6.1. Theorem. Let k be the time !tep. Let S be generated by particles with initial posi· 

lions given by random variables X,., i =1, ... ,m which satisfy Assumption 4.4.1, with constants 

K >0 and T >0. Let the strengths of the particles have absolute size h, where h < 1/10. 

Then, 

E [ II D~r S - D1r S II L 1 ] S Ceh 112(In(1/ h ))2 

where 

Ce = [8 (mh )112[K + (8vT ) 1 1~ + (2vT )112 mh] [1 + 8 (mh )112 + 16mh ]. 

Proof. We will apply Theorem 1.4.2 with 

and 

Using the estimates obtained in Theorem 4.5.1, with i =a, we conclude that, 

00 

S M 1h 112(ln(l/ h ))2 E P( II D1r S - D1r S II L 1 > jM 1h 
112(ln(l/ h )Y:! ) 

j=O 

oo .!. j lo(l/ A )-I 

SM 1h
112(Jn(I/hW [l+M2 Eh 2 

] 
j-1 

where we have used the fact that 

(4.31) 
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Since h < 1/10, we can easily show that 

.!.ID(l/ 4 )-1 4 
h 2 < 

5 

and 

1 
-ln(l/4) 2 

h2 < -. 
25 -. 

Consequently, we conclude that 

.!.ID(l/a }-1 
oo .!.jln(l/.i )-1 h 2 25 .!.iD(l/4 )-1 
"("" h 2 = --~- < -h 2 < 1. 
j~l .!.ID(l/a) - 23 -

1- h 2 

We can use this estimate to obtain a bound for the quantity ( 4.31) which in turn implies that 

The theorem is concluded by observing that 



·-
.... 
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Chapter 5 

Convergence or the Numerical Method 

In this chapter we will bring together the results of the last 4 chapters to produce a proof of 

convergence for our overall numerical method. We will show that the expected value of the 

.L 1 norm of the error tends to zero, for an appropriate choice of dependence between time-step 

k and spatial discretation parameter, h . If k = v 112h 11", then Theorem 5.4.3 allows us to 

assert that 

(5.1) 

where n is any positive integer satisfying nk :5 T and C10 is a constant that depends only on 

the diffusion constant v, the final time T and the initial data u 0 • In Theorem 5.4.2, under 

the same conditions on h, k and n, we prove that for any a > 1, 

.!.oln(1/ll )-2 
:5 Meh 2 

(5.2) 

where the constants M 3 and M 4 depend on v, T and u 0 • From estimate (5.2) we conclude 

that as the parameter h decreases, the probability that the L 1 error is greater than a constant 

multiple of h 114(1n(l/h ))2 becomes exponentially small as the constant tends to infinity .. This 

is an important result from a numerical stand point. 

5.1. Description or the Numerical Method. We will now give a complete description of 

our method in terms of the random variables X; i and X; i +l/2 and the corresponding random 

step functions Si -lu 0 (y) and Si +lf2u 0 (y ), introduced in the introduction. 

The first step of our algorithm consists of producing an approximation of the smooth 

data u 0 by a step function SOu 0 generated by m (say) particles with initial positions 

r; , 1 = l, .. m, and strengths~; of absolute size h, as defined in section 1.1.3. 
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The algorithm is then defined in terms of the random variables which describe the posi-

tions of these particles after each step of the fractional step algorithm. We will define these 

random variables inductively. Let us denote the random variables which describe the initial 

positions of the particles by 

x,.o =X;' 

for i = l, .. ,m, where we suppose that these random variables are defined on a probability 

space ( 0 0 , !:0 , P 0 ). Of course the 'random variables' X; 0 are just constants. 

Suppose that the positions of the particles at the end of the i'" fractional step are 

described by random variables X.· j, which are defined on the product probability space 

,.. j j 

( n n, , n I:, , n P, 
1 =o 1-o 1 =O 

The first half of the next fractional step is associated with solving the advection equation. 

The random variables X; i+l/2, which denote the positions of the particles after this half step 

are given by the equation 

(x i+l/2 X j+I/2)-A-(X; X; I , .. , m - II: I , .. , m 

(see section 3.3 for the definition of A1 ). Notice that the X; j +l/2 random variables are defined 

on the same probability space as the Xi i random variables. 

Let us now chose a set of m independent normally distributed random variables, B; j +I, 

i = l, .. ,m, defined on the probability space ( 0;+ 1 , !:;+1 , P ;+1 ), such that E [B; j+l] = 0 

and Var[B; j +I] = 2vk. The random variables X; i +I which describe the particle positions at 

the end of the j + 1 fractional step are obtained by applying the random walk operator to the 

X; i +l/2 random variables. Specifically, the random variables X; i +I are defined on the pro--

duct space 

j+l· j+l j+l 
( n n, , n E, , n P, ), 

,_, 1-1 ,_, 

and are given by 

· .. 

..... • 
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(x i+t X i+t)=D-(Xi+t/2 X i+t/2) I , .. , m lr I , .. , m 

where the operator D1r is defined with respect to the random variables Bi i +! (see section 4.1 

for definition of D1r ). Equivalently, 

X i+t =X i+t/2 + B· i+t 
I I I 

fori = 1, .. ,m. 

The random step functions which describe the numerical approximation at each step of 

the algorithm are defined as follows: 

m 

Si u 0 (y) = [D~cA~c]i SOuo (y) = u{; + l:H (y-Xii) ~i 
i-1 

and 

m 

Si +l/2u 0 (y) = A~c [D~r A1r ]i SOu o (y) = u {; + E H (y -Xi i + 112) ~i 
i =1 

for j a non-negative integer. 

5.2. A Property or the Distribution or the Particles. We will now show that the ran-

dom variables Xi i-112 satisfy Assumption 4.4.1. 

5.2.1. Theorem. Let u 0 E C2(.1R ) be constant in a neighbourhood of infinity, with variation 

contained in the set [-R ,R ]. For h > 0 such that h divides u {; - u g, suppose that m parti-

c/es generate the step function SOu 0 • Then, for a time step k and for a positive integer, j, the 

random variables Xi i-!12, satisfy Assumption 4.4.1, with constants 

and Ti = jk. 

Proof. The proof of this theorem involves showing that the displacement of a particle can be 

broken into two sums, one a pure random walk, the other bounded by a displacement due t.o 

the operator T . 



we observe that the random variables xi i -l/2 and xi i can be written in the form 

i -I i -l 
xi i-1/2 = E Bi' + E (Xi' +l/2- x;.' ) +xi o 

1=1 1=0 

and 

I 
Using the nomenclature of Sections 3.1 and 3.3, we recall that for a fixed w E II nP 

p=O 

X; I +1/2L = Xi (k ), 
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(5.3) 

(5.4) 

for i = l, .. ,m, where Xi (k) satisfies equation (3.9) with the initial conditions Xi (0) =Xi I lw· 

From expression (3.10) we conclude that 

(5.5) 

Since this is true for all choices of initial data z1 (0} = Xi 1 L• we conclude that 

(5.6} 

The assumption on u 0 , together with the properties of the SO operator (see Section 1.1), 

implies that the initial positions X.· 0 satisfy I Xi 0 I ~ R . If we substitute the estimate given 

in (5.6) into equations (5.3} and (5.4}, we then see that 

i -I i -1 

xi i -l/2 ~ E Bi I + jk [ II u 0 II L 00 + mh l + R = E Bi I + Ki 
1-1 1=1 

and 

xi i s t Bi I + jk [ II u 0 II L oo. + mh l + R - t Bi I + Ki 
1-1 1=1 

where K 1 = jk [ II u 0 II L oo + mh ] + R . 

i-1 j, . 
The quantities E Bi 1 and 1...J Bi 1 are sums of independent normally distributed random 

1-1 1-1 . 

variables with zero mean and variance 2vk and so are themselves normally distributed with 

mean zero and with variances of 2vk (j -1) and 2vkj respectively. Hence for a > 0 

. . 



,. 
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j-1 

P( X; i - 112 > a + K;) ~ P( E B; 1 + K; > a + K; ) 
1=1 

j -1 

= P( "' B; 1 > a ) = 4>( a ) IL::! (2v(j -l)k )1/2 

< 4>( a ) 
- ( '2v jk )1/2 

and 

P( X; i . > a + K ) ~ P( t B; 1 > a ) ~ 4>( . a ) 
1 -1 ('2v jk )112 • 

Similarly, we have that 

j-1 
X.i-1/2 > ""B-1 -K· 

I - LJ I J 
1-1 

and 

X; i > t B; I - K j 
1=1 

and so for a > 0 

P( X,· i - 112 < -a - KJ· ) _< 4>( a ) 
('2v jk )1/2 . 

and 

P( Xi < -a - K. ) < 4>( a ). 
' .J - (2v jk )1/2 

Hence the random variables X; i -112 satisfy Assumption 4.4.1 with constants K; and 

5.3. Accuracy of the Random Walk Operator. Theorem 5.2.1, together with the results 

of Theorems 4.5.1 and 4.6.1 allow us to study the accuracy of the diffusive step of our method 

for each fractional time step. Specifically we have the following result: 
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5.3.1. Theorem. Let u o E C2(1R ) be constant in a neighbourhood of infinity, with variat£on 

contained in the set [-R ,R ]. Let k be the time step, T be the final time, and let h be the spa-

tial parameter, such that h < 1/10. Then, for positive integers, j, such that jk :5 T and for 

a> 1 

(5.7) 

.!.oiD(1/ A )-1 
:5 M 4h 2 

, 

and 

(5.8) 

where si-112u 0 is the random &tep function generated by the random variables X; i-112 (see 

Section 5.1) and the constants M 3, M 4 and C8 are defined as follows: 

M 3 = 8 II u o II J~2 [R + T II u o II L oo + T II u o II BY + (8vT )112
] + (2vT )

112 II u o II BY, 

M 4 = 811 u0 IIJ{r2 + 1611 uo llav, 

Ca = M3[l + M.]. 

Proof. Theorem 5.2.1 implies that the random variables x;. i-112, satisfy Assumption 4.4.1, 

with constants Ki and Ti, where 

K; = jk [ II u o II L oo + mh ] + R 

and Ti = jk . Since h < 1/10, it follows from Theorem 4.5.1 that 

P{ II D, Si -112u o - f5, Si -112u o II L 1 > (5.9) 

[8 (mh )112[Ki + (8vTi ) 11~ + (2vT; )112 mh ]ah 112(ln(l/h )f) 

.!.oio(l/A)-1 
:5 [8 (mh )112 + 16mh ]h 2 

. 

Similarly, we find from Theorem 4.6.1 that 

E [ II Da Si -l/Zu o - f5, Si -l/Zu o II L 1 ] (5.10) 

·~ . 
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It is now a matter of simplifying the constants in expressions (5.9) and (5.10). This will 

be achieved by making use of the following observations: 

(1) mh ~ II u 0 II BV (from Theorem 1.1.4). 

(2) Ti = ik ~ T, where T is the final time. 

(3) Ki ~ R + [lluoiiLoo+lluollsv ]T. 

Hence we conclude that 

and 

8 ( mh )112[Ki + (8vTi )112
] + (2vTi )112 mh ~ M 3, 

8 (mh )112 + 16mh ~ M 4• 

8 (mh )112[Ki + (8vTi )112
] + (2vTi )112 mh] [1 + 8 (mh )112 + 16mh] ~ C8 . 

The proof of the theorem follows once these estimates are substituted into expressions (5.9) 

and (5.10). 

5.4. Convergence of the Numerical Method. In this section we will prove the conver-
-

gence results discussed in the introduction of this chapter. We will first rigorously show that 

the L 1 error of the method is bounded by a sum of terms which can be analyzed using the 

results of the previous 4 chapters. 

5.4.1. Theorem. Let u 0 E C2(1R ) be given initial data, constant in a neighbourhood of 

infinity, such that the variation of u 0 is supported in the set [-R ,R ]. Suppose the time step 

k ~ ~(II u 0 II Coo + vii u 0 II 801 )-1 and that the spatial parameter h > 0 divides u ~ - u C . Let 

T be the final time. Then for a positive integer, n, such that nk < T, 
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where the random step functions Si -l/2u 0 are defined in Section 5.1 and the constants are 

defined as follows: 

c~~ = .!.u u o 11 BY • 
4 

Proof. As we indicated in the introduction of this paper, the triangle inequality implies that 

the L 1 error 

is less than or equal to 

!IF,..uo- [D~Ak]"uoiiLl 

+II[DtAk]"uo -[D.cAk]"SOuoiiLl 

+ II[D~A~r]"S0uo -[.D;,.Ak]"SOuoiiLl· 

(5.11) 

(5.12) 

(5.13) 

Step 1. Expression (5.11) is just the error of the exact fractional step algorithm, as discussed 

in Chapter 2. An estimate for this quantity can be obtain via Theorem 2.2.1. Namely 

Step 2. A simple induction argument using the stability of the advection (see Theorem 1.3.3) 

and diffusion operators, together with the accuracy estimate of the SO operator contained in 

Theorem 1.1.4, shows that 
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Step 3. We notice that expression (5.13) is bounded by the sum of terms 

(5.14) 

and 

(5.15) 

for j = 1, .. ,n . The stability of the transport and diffusion operators can again be utilized to 

show that the terms (5.14) are less than or equal to 

II . I - . I II A~r s'- u o - A~r s'- u o L 1· 

This estimate together with the accuracy of the transport operator A~r as estimated m 

Theorem 3.3.1, implies that the terms given in (5.14} are bounded by .!.h 2mk ~ Since mh < 
4 

II u 0 II BY (see Theorem 1.1.4} we conclude that 

(5.16) 

:::: ~ II u 0 II BY hk. 

The stability results also imply that the terms given in expression (5.15) are bounded by 

the random variables 

(5.17) 

Hence expression (5.13} IS bounded by the sum of terms given m (5.16) and (5.17) for 

j = 1, .. ,n; that is 

• :::: ~ II u <i II BY nkh + E II D. si -I/Zu 0 - lJ. Si -l/
2

u 0 II L 1· 
i-1 

Step 4. Pooling the results of the last three steps we see that the proof of the theorem is 

complete .. 
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Remark. In the following convergence result we need to have the time step k and the spa­

tial parameter h satisfy the relation k = ,}12h 1/
4

• This requirement seems to be of a techni-

cal nature. The actual requirement, as observed in numerical experiments, seems to be of the 

form k < h 112• 

5.4.2. Theorem. Let u 0 E <;2("IR ) be given initial data, constant in a neighbourhood of 

infinity, such that the variation of u 0 is supported in the set [-R ,R ]. Suppose that h > 0 

divides u fJ - u C and that the time step k = v 112h l/4. Let T be the final time. In addition, 

nppose that 

h < min(-
1 

, ~(II uo ll{oo + vll uo 11ao'f4) 
- 10 16 

and that n is a positive integer such that nk < T. Then for a > 1 

with the constants M 6 and M 8 defined as follows: 

M 6 = C1 + T v-112[vCz + v112Cg + M 3] 

Me= Tv-112M 4 . 

where the constants At! 3 and M 4 are defined in Theorem 5.3.1, and the constants C1, C2 and C9 

are defined in Theorem 5.4.1. 

Proor. We first note that the conditions on k and h and the initial data u 0 imply that 

Theorems 5.3.1 and 5.4.1 are applicable. Theorem 5.4.1, together with Theorem 1.4.1, implies 

that 

P(IIF,..uo -[DkAt]•SOuoiiL' > 

C 1h + C2 nk 2 + Cgnkh + M 3n ah l/:!(ln(I/h )f) 

·-. . 
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II 

~ P( E II D, si -l/2u 0 - !5, Si -!f2u 0 II L I > M 3n ah l/2(ln(l/ h)? ) 
i=l 

II 
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-. ~ L;P(IID,.si-lf2uo -fJ,.si-l/2u 0 IIL' > M 3ah 112(ln(l/h))2 ). (5.18) 
i=l 

The terms of the sum in expression (5.18) can be estimated by using Theorem 5.3.1. Namely 

.!.oln(l/la }-I 
< M h 2 
- 4 

Hence we conclude that 

P( IIF,.. u0 - [D,.A,.] 11 SOuo IlL'> 

C1h + C2nk 2 + Cankh + M 3n ah 112(ln(l/ h ))2 
) 

.!.oln(l/ i }-1 
:S M 4 nh 2 

Since k = v 112h 114 and h < 1/10, we have 

and 

Our result now follows. Specifically 

P( IIF,..uo -[D,.A,.] 11 S0u0 IIL 1 > M 5ah 114(ln(1jh))2
) 

~ P( IIF,.. Uo - [4X.]" S0uo IlL,> c,h + C2n k 2 + Cgnkh + M3n ah l/2(ln(l/h ))2
) 

Remark. In a similar manner we can now estimate the L 1 norm error of our numerical 

method. 
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5.4.3. Convergence Theorem. Let u 0 E C2(R) be given initial data, constant in a neigh-

bourhood of infinity, such that the variation of u 0 iB supported in the set [-R ,R ]. Suppose 

that h > 0 divides u {; - u ~ and that the time step k = z}l2h 114• Let T be the final time. If 

h < min(-
1 

, ~(II uo IIL2
"" +,.,II uo 11 801)

4
) 

- 10 16 

and n iB a positive integer such that nk $ T, then 

where 

Cto = C1 + T ,_,-t/2[l/C2 + ,_,t/2Ce + Ca] ; 

the constant C8 being defined in Theorem 5.3.1, and the constants C 1, C2 and Cg being defined 

in Theorem 5.4.1. 

Proof. As in the previous theOrem, the conditions on k, h and u 0 guarantee that we can 

apply Theorems 5.3.1 and 5.4.1. Theorem 5.4.1 implies that 

" $ Clh + C2nk 2 + Cgnkh + :E E [II Dk si-l/2uo -lJk si-l/2uo II L I], 
j=l 

which, by Theorem 5.3.1, is less than or equal to 

C 1h + C2nk 2 + Cgnkh + C8nh 112(ln(l/h )t 

Since k = ,_,l/2h 114, nk < T, and ln(1/h) > 1 (h < 1), we conclude that o 

C 1h + C2nk 2 + Cgnkh + C8 nh 112(1n(l/h ))2 

< C h + C T ,_,tl2h 1/ 4 + C Th + C T ,.,-t/2h 114(1n(l/h ))2 
- I 2 . g 8 

Hence 

and so 

. -. 



' 
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E[IIFn~ruo -[~A,~,j"SOuoiiLl] $ C1oh 114(1n(l/h}?. 

This concludes the proof of the convergence of our numerical method. 
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figure 1 

Approximation of smooth data with a step function 

a j c 

figure 2 

Evolution of particles which form a negative discontinuity. (a) Initial discontinuity. (b) Parti­

clt' trajectories. (c) Step function solution at time t. 
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figure 3 

Evolution of 6 particles which form a positive discontinuity. (a) Initial discontinuity. (b) Par­

ticle trajectories (~ote that two particles are contained in the right most trajectory). (c) Step 

function solution at time t . 
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figure 4 

Intersection of particle trajectories. (a) Trajectories of particles. (b) Initial step function gen­

erated by particles. (c) Solution at time I 1
. (d) Solution at time 1~. 
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a b 

z z 

figure 5 

Distance between two particles with positive strength increases with time. 
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z r 

figure 6 

(a) !':o interaction between particle with positive strength and adjacent numerical shock of 

strength greater than -'2h. (b) Interaction possible between particles with positivr stren~th 

and numerical shock or strength less than -h . 
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figure 7 

(a) Step function Ar IJ • (b) Step functions .4:;._ 1 Xr .s and .4,_1 Xr .s . 

-. 
z 

I . 
,..., It 

figure 8 

Enlargement of one positivi.' stt>p and rarefaction wa\'l' shown in tigurf.' 7. Height of jump i:< h 

and width of rarefaction wave is (r -_ t-)h. 



93 

;········----------...---- ~S(y) 
• 

D~t S (y) 

)i 

' 

_ _...,_... ..... ·-·-----· ................ . 

figure 9 

Difference between smooth function D~t S (y) and the step function IJ. S (y) in the range 

, L + mh ----- ----············-------·----········· 

,L ••••• -·-·································· 

' ·' -R , R 

figure 10 

Points a; chosen so that Dt S(a;+t}- D• S(a;) ~ hm 112• 



. ~· 

This report was done with support from the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply approval or recommendation of the 
product by the University of California or the U.S. 
Department of Energy to the exclusion of others that 
may be suitable . 



• ~' 1' 

LAWRENCE BERKELEY LAB ORA TORY 
TECHNICAL INFORMATION DEPARTMENT 

UNIVERSITY OF CALIFORNIA 
BERKELEY, CALIFORNIA 94720 

~ 
'~"' # 

H _..-:::--~.., 




