Lawrence Berkeley National Laboratory
Recent Work

Title
CONVERGENCE OF A RANDOM WALK METHOD FOR THE BURGERS EQUATION

Permalink
https://escholarship.org/uc/item/36d4f050

Author
Roberts, S.

Publication Date
1985-10-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/36d4f05b
https://escholarship.org
http://www.cdlib.org/

e
i)

LBL-20276C

Lawrence Berkeley Laboratory

e LAWREN
UNIVERSITY OF CALIFORNIA
. « x B A VRNV
Physics Division oy

™~ ”’-C-NTS SECT'O’\’
Mathematics Department

CONVERGENCE OF A RANDOM WALK METHOD
FOR THE BURGERS EQUATION

S. Roberts | %, ;
(Ph.D. Thesis) i g S30

TWO-WEEK LOAN COPY:’ <
: ’ﬂﬁ,,-
This is a Library Circulating COPy”?j;ﬁ%;

‘ T
~ which may be borrowed for two'we

&

= ke

October 1985

~

Prepared for tne U.S. Department of Enerqy under Contract DE-AC03-76SFO0C98

v - 1Al

"
1

91 eg

i



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



LBL-20276

CONVERGENCE OF A RANDOM WALK METHOD
FOR THE BURGERS EQUATION!

Stephen Roberts

‘Department of Mathematics
and
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

October 1985

Ph.D. Thesis

Supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. Depart-
ment of Energy under contract DE-AC03-765F00098.



Convergence of a Random Walk Method
foe the Burgers Equation

.Stephen Gwyn Roberts

Abstract

Iﬁ this paper we consider a random walk algorithm for the solutioﬁ of Bﬁrgers’ equation. The
algorithm uses the method of fractional éteps, Thé non-linear advection term of the equation
is solved by advecting ‘fluid’ particles in a velocity field induced by the particles. The
diffusion term of the equation is approximated by adding an appropriate random perturbation
to the positions of the particles. Though the algorithm is inefficient as a method for solving
Burgers’ equation, it does model a similar method, the random vortex method, which has been

used extensively to solve the incompressible Navier-Stokes equations.

The purpose of this paper is to demonstrate the strong convergence of our random walk
method and so provide a model for the proof of convergence for more complex random walk

algorithms; for instance, the random vortex method without boundaries. We are able to show

that the expected value of the L! norm of the error of our method is of order —II/T(In(m )3,
: m

where m is the number of particles that generate the solution, proﬁded the time step of the

method is proportional to _lT/T In addition, we show that the probability of the L! error
m .

being greater than a constant multiple of the expected value of the error, decreases exponen-
tially as the constant tends to infinity. Consequently, the expected value of the error provides

a reliable estimate for the error expected in any particular numerical run of our method.

Finally, we remark that this work provides the first proof of convergence in a strong
sense, for a random walk method for a problem in which the related advection equation is

non-linear.
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Introduction

In this paper we will study a stochastic numerical method for éolving the Burgers equation

u + uy, =vu, ,u(z,0)=1ug(z): _ (0.1)

This equation was advanced by Burgers [8] as a one dimensional model for the Navier-Stokes

equations. An interesting survey of many of the properties of this equatioﬁ is provided by
Burgers [9]. |

The numerical method that we present, though impractical as a method for solving

Burgers’ equation, does model a similar method, the random vortex method (Chorin [11}),

which has been used extensively to solve the incompressible Navier-Stokes equations.

Our numerical method will be a fractional step method. The method of fractional steps
is discussed in Richtmyer and Morton [41], § 8.9, and in the fine survey paper, Chorin et. al.
[15]. For a more theoretical account of fractional step methods and product formulas in gen-

eral, we refer to Chernoff [10].
The first step of our method approximates the solution of the inviscid Burgers equation
4 +uu, =0 ,u(z,0)=1uqy(z) - (0.2)
We suppose that the gradient of the solution is approximated by a collection of particles so

that

m
u, = E 68. S

=1

where z; signifies the position of each particle, ¢; denotes the strength of each particle and §,

denotes the delta function concentrated at the point z;. The solution of (0.2) is obtained by
allowing the positions of the particles to move with a velocity induced by the step function

solution generated by the particles.

In the second fractional step we solve the diffusion equation

y = vy, ,u(z,0)= ;40 (z) . (0.3)



by utilizing the correspondgnce between the probability distribution of the position of a parti-
cle undergoing a random walk and the solution of the diffusion equation as discussed in Ein-
stein [21], Feller [23], Chorin and Marsden [i4], and Chorin [11]. In essence, the diffusion is
simulated by randomly perturbing the positions of the particles that generate the numerical
solution. We notice that the statistical errors of our method are greatly reduced since our
numerical solution is obtained by integrating the functipn approximated by the particles. In
random walk methods it is zﬁva.ntageous to move particles which approximate the gradient of

“the solution instead of particles which approximate the solution itself.

The random vortex method, [11], is also a fractional step method; the first step involves
advecting a collection of ‘vart;ex particles’ using an approximation of the Euler equations; the
second step diffuses the particles as in our method. If boundaries are present, it is necessary to
add an additional fractional step in which particles are created on the boundary so as to
satisfy the boundary conditions. This method has proved to be a practical tool in the study of
incompressible fluid flow; see for instance Laitone [34], Stansby and Dixon {45], Sung et. al.
(46], Teng {47] and Van der Vegt and Huijsmans [48].

Similar ‘random walk’ methods have been developed to solve other problems which con-
tain diffusion (see Ghoniem and Sherman [26]). A random vortex sheet method has been
developed to solve the Prandtl boundary layer equation (Chorin [12]). A combination of the
random vortex method and the the random vortex sheet method has been used to study tur-
bulent combustion (see Ghoniem et. al. [25] and Oppenheim .and Ghoniem [40]). In addition,
random walk methods have been developed for the solution of scalar reaction advection
diffusion equations (see Brenier (6], (7], Chorin [13] and Hald [27]). In all of these methods, the
diffusive part of the equation is solved by applying a random walk technique to a set of parti-

cle positions (Brenier (7] uses a pseudo random walk technique).

The usefulness of these random walk methods depend on the following facts:
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(1) If the Reynolds number-for the equation is large (v small), then it may be computation-
ally too expensive to use a standard finite difference scheme to solve the equation. Ran-
dom walk methods produce little, if any numerical diffusion. Consequently, the compu-

tational labour for these methods are essentially independent of the Reynolds number.

(2) The analogy between a random walk method and the underlying physical process usually

justifies the good qualitative behaviour of these methods.

The convergence of these methods have still to be proved in a comi)letely satisfactory
sense. Marchioro and Pulvirenti [36] have shown that the two dimensional random vortex
method converges weakly to a solution of the Navier-Stokes equations. In Benefatto and Pul-
virenti [4], it is shown that a similar result holds for the random walk solution of the Prandtl
boundary layer equation. From a numerical standpoint we would prefer the convergence to
occur in one of the standard norms and we also need to have some idea on the rate of conver-

gence of the method.

Hald [28] has proved the strong convergence of a random walk method for a coupled sys-

"tem of diffusion equations with boundary. This is the first proof of convergence of a random

walk method in which particles are created at the boundaryb to satisfy the boundary condi-
tions. Hald [27] has also proved the strong convergence of a method for solving a reaction
diffusion equation. Unfortunately his method does not readily generalize to equations with
advection. Brenier (7] has generalized Chorin’s [13] reaction diffusion method to the case of
scalar reaction advection diffusion equations. His method is very similar to our method for the
Burgers equation, in that particles are moved via the action of the velocity field generated by
the particles and the diffusion is simulated by adding random perturbations to the particle
positions. The approximation of the reaction step of his equation is undertaken by changing
the strengths of the particles in an appropriate way. Brenier has been able to prove the L!
convergence of a modified version of his method in which the diffusion algorithm is solved

using a deterministic ‘random walk’ algorithm.



In this paper we prove the strong convergence of our random walk method, in an
appropriate probabilistic sense, and provide an estimate of the rate of convergence. This is
the first proof of convergence of a random walk method, in a strong sense, for an advection

diffusion equation in which the advection equation is non-linear.

In the rest of this chapter we will give an outline of our proof of convergence. To facili-
tate this discussion we will first introduce some notation and at the same time define more pre-

cisely our numerical method.

We will use the notation F;, A, and D, to denote the solution operators for the equa-
tions (0.1), (0.2) and (0.3) respectively, i.e., F; is the solution operator for the full equation, A,
is the operator associated with advection, and D, is associated with diffusion. We will denote
the operators that approximate the advection and the diffusion operators by A, and D,, where
we understand that these operators depend on the spatial parameter h, which denotes the

maximum absolute strength of the particles that generate the numerical solution.

For initial data u, , time step ¥ and sﬁatial parameter A, the numerical approximation

of F,, ug is obtained as follows:

Step 1.. In the initial step of the algorithm one approximates the smooth data vy with a
step function S%u, (see Section 1.1) which is generated by m particles with positions X;°

(X;?, =0) and strengths ¢;, § = 1,..,m, such that |¢|= h. The initial step function

approximation is then given by

Sug(y) = uk + LH(y-X% ¢

i =]

where u{ is the limit of ¥, at minus infinity and H denotes the Heaviside function (defined

L)

in Section 1.1).



Step 2. Given particles at positions X;’, we evolve the positions of the particles so that
their motion approximates the flow of particles in the exact velocity field. Specifically, the
new particle positions X; 7 *1/2 are given by

X It = g (k)

where z; (¢) solves the evolution equation

dz; (t)
dt

= 8;(z:(t ),-r2m (t))

~ with initial conditions z; (0) = X; 7. The function s;(z,..,2,, ) gives the value of the velocity
field generated by the m particles at position z;. The definition of s; is chosen to approxi-
mate the behaviour of the exact entropy solution. If two or more particles form a discon-
tinuity which would correspond to a shock satisfying the entropy condition for the exact equa-
tion, then s; is defined so all of those particles will be moved with a common veloci'ty given by
the correct shock velocity. On the other hand, if the particles are part of a discontinuity
which would naturally form into a rarefaction wave, then the particles are made to fan out in

such a way as to approximate the exact rarefaction wave.

To denote that the approximate advection operator actually operates on particle posi-

tions, we will use the notation
Xk ( Xli 1°°) Xm j ) = ( le+l/2 1y Xm j+l/2 )'
In addition, we will also use the notation

Sj+x/2“o(y)= “(l)' + EH(SI-X';"“/'Z)S'-' =A~k [1'5,‘,74‘,,11'50110(,,).

i=1
to denote the step function generated by the random variables X; ’ *!/2. Here we are using the
notation A to denote an operator on particle positions or alternatively an operator on step
functions. For both cases we implicitly require that we have a collection of generating parti-

cles.



Step 3. We must now solve the diffusion step. To the position of the particles we add a ran-
dom component. Let B;7*!, § = 1,.,m be an independent collection of normally distributed
random variables such that E [B; ’*!] = 0 and Var[B; /*'] = 2vk . Then the new positions of

the particles are given by

X'_j+l=}£,j+l/2+Bij+l

and the new numerical approximation is given by

o m . ~ ~ . )

S*ug(y)=1u§ + L H(y-X"") ¢ = (D A ) 'S u0 (v)
f =1 .

Step 4. Finally, we set § =3 +1 and go back to Step 2 ifJ" <mn.

Our numerical approximation for F,; u, is then given by
™m
S*ug(y)=1uf + L H(y-X*) g = [Di A]" S u0 (v)
i =1
Our convergence results, as contained in Theorems 5.4.2 and 5.4.3, can now be stated

explicitly. If the time step k satisfies k = v'/2h 1/4 then for any a > 1,

P(I| Fuwo = [Di A" Suo Il s > Msah /4(In(1/h))) (0.4)
S Mch %aln(l/h )2
and
E [l Fuuo = [Di A4]* S0 [l 1)< Croh 4(In(1/A ). (0.5)

The constants that appear in these results and the constants that will be introduced in the rest

of this chapter will depend on v, uy and T = nk, unless s'tated otherwise.

The choice of the L ! norm as a measure of the error is determined by the existence of
stability results in this norm, for all of the operators under consideration, and lack of such

results in any other Lebesgue norm.

The derivation of statements (0.4) and (0.5) is accomplished in five stages, the final one

being a synthesis of the preceding stages. Three of the stages consist of analyzing the



accuracy of steps 1, 2 and 3 of the numerical method. That is, analyzing the accuracy of the

operators S°, 4; and D; .

The first stage involves studying the accuracy of the exact fractional step algorithm,
namely, tixe fractional step algorithm in which [D, A;|* is used to approximate F,,. Note
that we are using the exact operators D, and A;. It would be foolhardy to hope that a frac-
tional step algorithm using random walks would converge if the corresponding exact fractional
step algorithm did not convergence. In Theorem 2.2.1 we show that the use of the method is

justified, when we show that

| Fuuo — [De A]® uo Il 1< Conk?. (0.6)
This result is not only a justification, it is also an integral part of the proof of convergence for
our random walk algorithm. By considering the exact operators, we are able to use standard
tools of analysis to obtain an estimate on the interaction of the advection and diffusion parts

of the fractional step algorithm.

The derivation of expression (0.6) is based on the one step estimate

| A vo "[DkAk]”O”LlS Cok? (0.7)

where v = Fj uo for j =0,..,n-1. Expression (0.6) follows from (0.7) by using a simple A
triangle inequality argument.

It is interesting to note that the constant C, has a v"! dependence, which can be verified

by letting v, be a travelling wave solution of the viscous Burgers equation (see section 2.3).

On the other hand, numerical experiments indicate that

”F.& Vo — [Dk Ap ]" Yo ”LxS Cz'k2
where C;/ — 0 as v — 0. Hence, the interaction of the errors over a number of time steps pro-
duce an error which is smaller than that predicted by our simple analysis, based on one time
step. Beale and Majda (3] have studied the corresponding exact fractional step algorithm for

the incompressible Navier-Stokes equation. They have shown that the constant C,, for the



one step error of their problem, tends to zero as v — 0. This difference in behaviour between
the fractonal step algorithm for the Burgers equation and the corresponding algorithm for the
Navier-Stokes equation can be attributed to the existence of a priori bounds on the derivatives
of the solution of Euler’s equations (see Beale and Majda (3], McGarth [37]) compared to the
existence of a priori bounds on the derivative of | the solUtioﬂ_of Burgers’ equation \;rhich

depend on vL.

Having completed the analysis of the exact fractional step algorithm, it is then necessary
to study the accuracy of the operators $°, A; and D. ‘In Section 1.1 we define the operator

S? and show that

| $%u, -"0”1_1$th- ' (0.8)
The advection operator is studied in Chapter 3, where it is shown that

r

| Ax S uo - Ax 5 ug |l 1< Cohk. (0.9)
We note that Brenier [6] uses a simplier method to move his particles during the advection.
step. Even though his method converges and, as k¥ — 0, produces numerical results similar to
those obtain with our method, we found it ne‘cessary, for the-proof of convergence of our ran-
dom walk method, to use an approximate advection operator which was more accurate during

each time step.

In Chapter 4 we develop the tools to show that for o > 1,

P(l Dy 872 ~ D, 57-2uq || L, > Mgah/¥(In(1/h))? ) (0.10)
oin(1/4)1 |
< MA? (1/4)-
and
E || Dy 57" 2ug - D, S7V2uq |l 1] < Ch3(In(1/h))% | (0.11)

The proof of these results is based on the observation that D $7~/2u (y) can be represented
as a sum of bounded random variables. We use a result due to Hoeflding ([30], Theorem 1) to

show that for any fixed y € R the follo'v.ving strong result (Theorem 4.3.4) holds.



P( | Dy S7%y) - D, 573y )| > mh§) < 2exp(-26°m ).
This estimate can be extended to obtain L ® estimates in any bounded interval. The L!
" result, (0.10), then follows by noting that there exists a bounded interval, outside of which the

L ! error is very small, with large probability.
In Chapter 5 we show that the random variable

| Favo = [Di Al Suoll L,

is less than or equal to

| Fuuo - [De Ae]* ug "Lx , (0.12)

+luo - S%uoll s ‘ (0.13)

+ LAy - A S0l L0 (0.14)
i=1 _

+ 2Dy 5 2ug - D, 77200l 0. (0.15)

To obtain this estimate we need to make extensive use of the stability of the operators D, and
A, . The convergence proof is concluded by comparing expressions (0.6) and (0.8)-(0.11) with
expressions (0.12)-(0.15). With appropriate restrictions placed on h, the convergence results

(0.4) and (0.5) then t;ollow.

We conclude this introduction with a review of the organization of this paper. In
Chapter 1 we introduce some notation and results that are used in the rest of the p#per.
Chapter 2 contains our analysis of the exact fractional step algorithm which shows that the
use of a fractional step algorithm for Burgers equation in justified. In Chapter 3 we define and
study our approximate advection operator and in Chapter 4 we prove the L ! norm conver-
gence of the random walk approximation to the solution of the diffusion equation. Finally, in
the fifth chapter we bring together the results of the preceding chapters to complete the proof

of convergence of our method.
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Chapter 1

Preliminary Results

In this chapter we will introduce some of the notation and general results that will be used in
the rest of the paper. The first section will concentrate on general definitions and results per-
taining to the space of 'step functions on which our approximation c%perators will be defined.
Section two will contain the properties of the solution of the viscous Burgers equation that will
be peeded. Section 3 contains similar results pertaining to the inviscid Burgers equation.

Finally, in Section four we state some results from probability theory that are of use.

1.1. Definitions and Notation. The Heaviside function is defined to be the function

H(z) = 1 ifz >0,

= 1/2 ifz =0,
= 0 ifz <O0.

Related to the Heaviside function is the sgn function, which is defined by the following rela-

tionship.
sgn(z) = 1 ifz >0,
= 0 ifz =0,
= -1 ifz <0

We will say that a function u is constant in a neighbourhood of infinity if there exist con-
stants R >0, u* and u® such that
u(z) = ul forz <-R,

= .uR forz > R.
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1.1.1. Pseudo-norms. We denote the set of functions with continuous j** derivatives by

C/'(R). For u€ C/(R ) we let
" u " BD! = " asj“ " Lo
For a locally integrablé function u , the variation of u is defined to be
lullgv =g%|zl"_{° |u(z+2)-u(z)] dz

If u€ C!(R) and constant in a neighbourhood of infinity then

lullew =Mlo,ull .
This follows from the fact that
-] o 1 .
[ alerz)-vw(@) g < [T (202) | dbdz =lu,lly.
-00 z ’ -0 O

1.1.2. The Set of Step Functions S. . For a given 2 > 0, we let S denote the step func-
tions with a finite number of discontinuities, each with a step size a multiple of A . We will
regard an element of S as being generated by a set of particles. For each s € S we can find

two finite sequences {z; };™, and {; },™., such that |¢;| = &, so that s can be written,

(r)=o" + DH(y-=)s.
i

For convenience, we think of' the function 8 € S as being generated by the set of m particles
with positions z; and strengths ¢; . It should be noted that this description is not unique, since
it is possible that z; = z;, 1547

We observe that the variation norm of an élement of S can be estimated by the follow-
ing sum:

m
Nellsv < .-Vé. lsil,

with equality if z; = z; implies sgn(¢; ) = sgn(¢;) forall /1,5 = 1,..,m.
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1.1.3. Approximation of Smooth Functions by Step Functions. In Chapters 3 and 4
we will define our approximate advection and diffusion operators. They will be defined to
operate on the positions of a collection of particles which generate elements of S. Hence the
first step of our algorithm is to approximate smooth dat';a, €g , by step \functions S%%4 in S

and consequently define a corresponding set of generating particles.

Definition of S°. Let the initial data up € C(R) be constant in a neighbourhood of
infinity. Let A > O be given so that A divides g -uf. We will define the step function
5%, in the following manner. Consider the set
E={y€R:uo(y)-uo(-0)¢hAZ}

where Z is thé set of integers. We will suppose that tg -is Dot a constant and so E is non-
empty. Since v, is a continuous function wi:icl_x is constant in a neighbourhood of infinity
and h divides u} - u®, it follows that the set E is. a union of open intervals contained in
some compact set. Hence there exist two sequences of distinct points {a; };e s and {b; };e; (J

countable, possibly infinite) such that a; < b; for all ¢ € I and

E = U(a,- ,b.‘ ).
) i€l
In addition, we may suppose that a; < a; implies that b; < a; (This implies that the sets
(a; ,b;) are disjoint; see figure 1.). We define the step function S%u, by specifying a set of

generating particles. The positions of the particles are given by

1
{z. }=1 = {;(“j'*'bj) tug (b;) # 4o (a5}
The corresponding strength of the i particle is given by
G = uo(b;)-uo(a;)
where' j satisfies z; = %(a,- +b;) and we note that |ug(b;) - ug(a;)| = h. The step

function S%uq is then given by
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Sug(y) = uk + S H(y-z) g

i=1
Since the function uq is of bounded variation, it follows that there exist only a finite number
of intervals (a;,b;) such that wug (b;) 7 4o (a;). This implies that S%, is well defined.
Hence the function S% 0 is generated by m particles at distinct positions z;, { = 1,‘..,m each
with strength of absolute size A. We observe that the above discussion holds even if the set
{7:uo(b;) 7 uo(a;)} is empty. In that case

S? o (y) = ué.

The error introduced by approximating a function u, by S%u, is estimated in the fol-

lowing theorem.

1.1.4. Theorem. Let ug € C!(R) be constant in a neighbourhood of infinity such that
ug(y)=1ué,fy <-R andug(y) = u®, iy >R. Let h divide u§ - uf . Then S%,
is generated by a collection of m particles with strengths ¢ such that |g| =h,

mh < ““o”sv and

I $%6 - uoll 1 < Cih,

where C, = 2R .

Proof. Since S%, is a step function with a finite number of discontinuities, we have, by

section 1.1.2,

1% lley = X lwo(s;)-uol(s;)l

Jisg (b,) 7* ug (‘,)

b}
= S luo(8;)-uo(e,)| =31 [ 8,0 (z)dz |

o0
| Qs uq(z)]| dz < f | 0, u0(z) | dz = |lugllav.
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Hence the first part of the theorem holds, since mh = || S%, lgy. To prove the second state-
ment we observe that by definition | S%q(y)-uo(y) | < h,for all y€ E. On the other

hand, if y ¢ E, then S%uq(y) = uo (y). The theorem now follows since E C [-R,R].

1.2 Viscous Burgers Equation. We denote the solution operator for the viscous Burgers

equation,

u + uy, = vu, ,u(z,0)=uy(z), (1.1)
by F,. The existence and uniqueness of a classical solution of this equation is guaranteed by
standard results from the theory of second order quasilinear parabolic equations (see Friedman

[24] or Oleinik and Kruzkov [39]). An explicit formula for the solution of (1.1) also exists:

1.2.1. Theorem (Hopf [31), Cole [17]). If the initial data uo for equation (1.1) satisfies

[uo(8)d €= 0(z?), for large |z |, then the solution of the viscous Burgers equation is given
? :

by the ezplicit formula,

' _ ¢x (:t r‘)
u(z,l)-——2u —-;m)—,
where
1 b 2
#(z,t) = W_{o%(z-y) exp(- 4{4 )dy
and

#oly) = exp(-5 [uo ()4 €)

0

Using this explicit form it is possible to obtain special solutions of the viscous Burgers equation
given specific initial data. Chapter 4 of Whitham [50] gives a good survey of such specific
solutions. We will use Theorem 1.2.1 to obtain estimates for the BD’ norms of the solution of

the viscous Burgers equation in terms of the initial data.
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1.2.2. Theorem (A priori Bounds). Let ug € CYR ) be constant in a neighbourhood of

tnfinity. Then
IF ol o < Muolly o
1
I Fuollgps < —{ullwollgps + luoll % 1,

4
”F; uO”BD2 S 7[ V2l|u0|lBD2+ V”u()“Loo”uOHBDl'{" “uO ”300 }

Sketch of Proof. We will use the explicit formula for F, uy given in Theorem 1.2.1. Since,

soly) = expl-g; [u0 ()4 €)

0 2V

"(y) = [ozud (v) - 5u0(v)] 4uly)

and

3 1
éo'" P . I + — u i
W) =[gmud (W) + Tuo(v)ud(y) - 55ud"(v) ] doly
We substitute these expressions for ¢y , ¢y’ and ¢y’ into the integral expressions for ¢ and
its derivatives to obtain

16:(5,) 1 < 5lluoll wtoly),

s (v.0) | < [zlwoll 2+ 5l v lgpi 4uly)

and -

1
b (0.1 < ol 2+ Zllwol Mol + ol wo g ol
The normed estimates are now easily obtained. As an example we will derive the bound on

the quantity || F, u g || DI
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! ¢:x(y ,t)¢(y :t)- ¢:2(y nt) l
¢y .t)

18, Fuo(y)| <2v
< 2w (Ll uoll 2m + o llan + 205l wo Il 2]
= gt telu= T g, %o leo PR

1 .
S “;[V““o ”BDI + ” Yo “Lzoo]

Hence

1
“F; Yo “BDX S 7[”“ %o ”BD‘ + ”uo ”L2°°]

The other bounds can be derived in a similar manner.

1.2.3. Stability in L ! Norm. We note that the F; operator is stable in the L ! norm. That
is, if the L ! norm of tae difference between two solutions of the viscous Burgers equation. is
small at initial time, then the difference at later times will be no larger. It can be shown that
this stability does not hold in any other L? space (p > 1). The statement of the staBility

result follows. We refer the reader to the the paper of Kruzkov [33] for a proof of the result.

1.2.4. Stability Theorem (Kruzkov [33] p.. 239). Letuy and vy be bounded measurable

functions such that || uy — vy | L < oo. Then

“E vy - Fp vo"Lx < I Yo - Yo “Lx~
1.2.5. Bound on the Variation of F; u3. As a corollary of the stability result we observe
that if the initial data uy is of bounded variation, then the solution F; uy at time ¢ must also
be of bounded variation. This can be seen by substituting vy (y) = uo (y +2) into Theorem

1.2.4. Hence we have the result:
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.1.2.8. Theorem (Kruzkov [33] pp. 231-238). Let vy be a bounded and measurable func-

tion such that || ug || gy < o0. Then,

NFuolley < lluollsv.

We have indicated that Kruzkov proves Theorem 1.2.6 as a corollary of Theorem 1.2.4. In
fact Kruzkov first proves Theorem 1.2.6 in a more general setting and then comments that the

proof of Theorem 1.2.4 can be obtained in an analogous manner.

1.3. Inviscid Burgers Equation. The inviscid Burgers equation is

u + vy, =0, u(z,t) = ug(z) (1.2)
This equation is a one dimensional model for inviscid fluid flow. The velocity of a fluid parti-
cle at position z and time ¢t is given by u (z,t). The trajectory, z (a,t), of a fluid particle at
position a at t = 0, satisfies the equation,
z(a,t) == u(z(a,t)t).
where * denotes differentiation with respect to time. The trajectories are commonly known as
characteristic curves (see John (32}, Bardos [2]). For smooth initial data there exists a classical

solution of equation (1.2) for a short time.

1.3.1 Theorem (John (32] p. 18). Let the snitial data ug € CYR) be given such that

lluollgpy < o0 and |l ug|lgne < o0. Then for ¢ < [lug |l g3. the solution u(z,t) of equation

(1.2), €8 given by the implicit formula

u(z ,t)=1ug(z - tu(z,t)) (1.3)
and salisfies
lu ()l e S Nuoll w

” Uo ” BD!

o <
lu(. )”BDl-—l—_tm’
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“ Up ” BD2?

e (t) lgpe < :
BD? [1 -t “ Yo IIBDI]3

Proof. If u, is a smooth function, then the implicit function theorem implies that the above
implicit equation has a smooth solution u(z,t), for [t| < | uo IIB'I;,. It is then a simple
matter to show that u satisfies (1.2). If we differentiate equation (1.3) with respect to z we

find that

ug'(z-tu(z,t))
1+tug'(z-tu(z,t))’

U, (1‘ N ) =
Differentiating agai.n we find that

%o "(2‘ ~tu (z,t))
[14+tug'(z-tu (z,t))* |

Y‘zs(zvt) =

The proof of the norm estimates now follows.

1.3.2. The Weak Entropy Solution. We observe that the derivative of the solution given
in Theorem 1.3.1 blows up in finite time if u, has any point with negative slope. It is possi-
ble to define a generalized notion of solution for equation (1.2) which includes solutions with a
blow up in the derivative (solutions with discontinuities). We say that a bounded measurable
function u (z,t), is a weak entropy solution of the inviscid Burgers equation for0 < t < T,

if for any constant a and any smooth function f{z ,t) > 0 which is supported in R X [0,T],

T o
J [{lw-alfe +ogn(u-a)=u?-2a%/f,}dzdt >0 (1.4)
0 —o “ “
and
!in})f |.u(z,l)—u0(z)| dr =0
forall r > 0.

The first expression above implies that a weak entropy solution of the inviscid Burgers

equation satisfies the weak version of the diflerential equation (1.2). That is, if u satisfies
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(1.4), then it must also satisfy

r

oo
[ [fufe + luzf,] dzdt = 0. (1.5)
0 -o00 2 -
This can be show by substituting a = sup (u') and ¢ = inf(u ) into expression (1.4).

Equation (1.4) also contains an entropy condition which specifies the appropriate physi-
cally realistic solution of the weak inviscid Burgers equation. For a survey of equivalent for-
mulations of a general entropy condition see Bardos [2]. Here we have used the formulation

used by Volpert {49], § 6.3, and Kruzkov {33}, p. 220.

We will now quote two results from Kruzkov’s {33] paper. The first concerns the stabil-

ity in the L ! norm of the weak entropy solutions with respect to changes in the initial data.

1.3.3. Stability Theorem (Krﬁzkov [33], p. 228). Let u(z,t) and v(z,t) be weak
entropy solutions aati.sfi;ing cquation (1.4), with initial data uy and vy respectively. Suppose
that |u(z,t)| <M and |v(z,t)| <M almost everywhere in R X[0,T]. Then, for all
r >0andt <T,

r+tM

[lu(z.t)-v(z,t)]| dz < [ |uo(z)-vo(z)] dz (1.6)
~r -r-tM
In addition, if ||uy - vy ”L, < oo, then [u(-t)-v(t )HL, < oo and
”"(')t)- v('rt )”LX _<_ ”"0 - vYg ”Ll-
Just as the stability of the F; operator implies the boundedness of the variation of the func-

tion F; ug , so the stability of the solution operator of the inviscid Burgers equation implies the

following result:

1.3.4. Theorem. Letu, be a bounded and measurable function such that | u, lev < o0. If

u 18 a weak entropy solution of the inviscid Burgers equation with uy as tnitial data, then

lu(,t)llev <lluollsy.
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Theorem 1.3.3 also implies that the weak entropy solution of the inviscid Burgers equation is
unique. In addition, it follows that the domain of dependence of the solution is bounded. On
the other hand Theorem 1.3.3 does not imply the existence of a solution to problem (1.4). The

existence of a solution is guaranteed by the next result.

1.3.5. Existence Theorem (Kruzkov [33], p. 237). The solutions uv*(z ,t) of the viscous
Burgers cquatio‘n (equation (1.1)), with viscosity constant v and tinitial data u, , conve}ge as
v—0, almost evc}ywhcrc in R X[0,T] to a function u(z,t), which is a weak cntr:opy solution
of the inviscid Burgers cquation with the same snitial data. The convergence also ezists in the

L ! sense on any compact set in R X[0,T].

1.3.8. Solution Operator. Theorems 1.3.3 and 1.3.5 together imply that for any bounded
measurable initial data ugy, there exists a unique weak entropy solution for the invisci'd
Burgers equation. We define A, u‘0 to be that measurable and bounded solution of equation
(1.4) with initial data u, .

As A, ugy is the point-wise limit of a sequence of bounded functions, we conclude from

Theorem 1.2.2 that A, uy must be bounded and satisfy the following result:

1.3.7. Theorem. Letu, be a bounded measurable function. Then fort > 0,

A uoll oo < luoll e

1.3.8. Piecewise Smooth Solutions and Riemann’s Problem. Suppose that u is a weak

entropy solution of the inviscid Burgers equation, such that u is smooth except on a curve,

F={(s(t)t): teR *}. -
Away from the curve I', the function u satisfies the differential equation u, + vy, = 0. On

the curve I' the function must satisfy the Rankine-Hugoniot condition,
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é(t)=-§[uL + ug) (1.11)

and the entropy condition,
g Sé(t) < u (1.12)
where uy is the left hand limit of v as we approach the point (s(¢),t) and ug is the

corresponding right hand limit.

An important example of a piece-wise smooth solution of the inviscid Burgers equation is
given by the solution of the Riemann problem for the inviscid Burgers equation. This problem
consists of finding the unique weak entropy solution v (z ,t) for initial data v, (z ) of the form,

volz) = 9§ if z <a,
= ol if z>a

where v& and v® are constants. The solution to the Riemann problem has two forms

depending on the values of v} and v ¥

1.3.9. The Shock Solution of Riemann’s Problem. Suppose that v4 > vf. Then the

solution of the corresponding Riemann pfoblem is given by,
v(z,t) = vk ifz<a+i[v{,‘+v§]t,

= of if:t>a+é[v6‘+v§]t.

Theline s(t)=a +%[vé’ + v® ]t is called a shock.

1.3.10. Rarefaction Wave Solution of Riemann's Problem. For the case of v§ < ¢§,

the solution of the Riemann problem is given by the function,

v(iz,t) = vk if 2 < a+tvl,

z -a .
= t if a+tvf <z <a+tvf,
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= vg if z>a+t0f.

The solutions of the Riemann problem will be of particul;r importance when we describe our
approximate advection operator in Chapter 3. In that chapter we will be studying the solution
of ’the inviscid Burgers equation with initial data giveﬁ by al step function in 8§ . For that ;aée ’
the solution for small times can be constructed from the solut,‘ions of the ‘individu'al Riemann

problems associated with each discontinuity of the initial function.

1.4. Probability Results. We will let ( Q, Z, P ) denote a probability space cohsisting of a
point set (2, a o-g.lgebra contained in the power set of {1 denoted L, and a probability measure
defined on ¥ given by P. A generic élement of £ will be denoted by w. The probability of an
event E € T will be denoted by P(E). The efpecped value of a random variable X (measur-
able function on measure space ({2, L)) will be given by E [X]. For a given w € Q, a represen-

tative of a random variable X will be denoted by X lw'._

We present two probability results that will be used in the sequel.

- 1.4.1 Theorem. LetX,,., X, be random variables and 8y ,., an be constants. Then, '

P(YLX > Ya) < BP > a).

f=1 f=1 f=1

Proof. Let the random variables X; be defined on a common probability space ( 2, Z, P ).
For any w € (Q,

ZX.'|u > iai.

V=1 =1

implies that X; | > & for some 1. Hence
W
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{weﬂ:inw> ia.-}_g O{wEQ:X|w>a,- }-

§=1 § =1 =1

Consequently,

=] =] f=1

PS> o) < P(X% > & )

1.4.2. Theorem (Chung [18] p. 42). Let Y 2 0 be a random variable. Suppose a > 0.

Then,

E[Y] < af)P(Y > ja ).

§=0

Proof. This result follows from an explicit calculation:

E[Y] < $a(i+1)P(ja < ¥ < (j+1)a)

J=0

< Pa(i+)[P(Y > jo )-P(Y > (j+1)a )]

;=0

< aiP( Y > ja ).

< jem0
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Chapter 2

Fractional Step Algorithm with Exact Operators

As stated in the introduction, we plan to prove the convergence of our random walk method

by studying the behaviour of the random variable

| Fo wo ‘[D~kzk]'5°“o"u | (2.1)
where D, and A, denote the approximate diffusion and advection operators and S%, is a

step function approximation of the smooth data u, .

In this chapter we will study the behaviour of the related ‘exact’ fractional step algo-

rithm. Namely, we will study the quantity

| Fewo = [De Ac]™ w0l 1 | (2.2)
It is intuitively obvious that it would be impossible for the quantity (2.1) to converge to zero
as n —oo (nk < T), if expression (2.2) did not converge to zero. Indeed, the proof of conver-
gence for our random walk method, in Chapter 5, uses the fact that expréssion (2.2) converges

to zero.

We obtain a bound on (2.2) by using a technique very similar to that used by Kruzkov,
[33] p. 239, to show that the operator F} is stable in the L ! norm. We will use this technique
to prove a general result (Lemma 2.1.1) which is then used to show (Theorem 2.1.3) that the
error arising from one time step of the exact fractional step algorithm is of order k2, where k
is the time step. In Theorem 2.2.1 we then prove that the error for n time steps can be
éstim_ated by summing the estimates for each of the n individual fractional steps. Hence we
show that the fractional step algorithm with n steps will have an error which is at most order
nk? For nk < T, the error will be of order k, which implies that the exact fractional step

algorithm converges.

Finally in the third section we investigate the behaviour of the algorithm as v — 0.
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2.1. Accuracy of Fractional Step Algorithm for One Time Step. We proceed with the

estimation of the accuracy of one time step of the exact fractional step. method by first prbving

“the following L ! norm estimate for the solution of a second order parabolic differential equa-

tion. The proof is essentially identical to Kruzkov’s ([33], p. 239) proof of stability for the

operator F .

2.1.1. Lemma. Let v and T be positive, a b € C3(R X[0,T]) and wo € CIR ) such that
| w, |IL°°<°°’ | wo ||L1<oo, It wo i 5D <0, || a ]|L°°<oo and || b ||L1<oo. Then the solution,

in the region R X [0,T], of the equation

w + (aw), + b =vw,, , w(z,0)= wo(z) (2.3)
satisfies
0 -] t oo
[ lw(zt) dz < [ |wo(z)| dz + [ [ |b(z,8)] dzds
-00 ~00 0 -~ .

Joro0 <t <T.

Proof. First note that the conditions on a,b and w, guarantee the existence of a unique

solution of equation (2.3), such that || w|| Lo and || w, ”L°° are bounded (see Oleinik and Kruz-

kov [39] Theorem 14 together with Kruzkov [33] p. 237).

Let us choose an arbitrary smooth bounded function g{z,s) on R X[0,T ], which has

compact support. If we multiple equation (2.3) by ¢ and integrate over the region R X[0,t],

then integration by parts implies that

o0 t o
fw(zl) fngza ) w(z,s) dzds (2.4)
~00 . 0 -0 . . .
. oo t oo
= [wo(z)g(z,0)dz - [ [ g(z.,8)b(z,8) dzds
~00 0 -oc0
where Lg = g, + ag, + vg,,. We want to extend this result to the case of smooth functions

g which decrease exponentially to zero as |z| tends to infinity. Specifically, we want to
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show that (2.4) holds for functions ¢ which satisfy the condition that there exist consiants
c,e0,63 > 0 such that |g(z,8)| < ejexp(-colz|) for ‘(z ) € R X[0,t] such that
{z| > e3. Let us suppose that a given function g satisfies such a relation. For a given
parameter R >0, let n denote a smoothed version of the characteristic function for the region
[-R,R]. Thatis, n = ¥rxpp R} Where ¢ is a smooth bositive function with support in [-1,1]
whose integral equals one, x|_g g| is the characteristic function of the region (-R ,R], and =
denotes convolution. Expression (2.4) implies that

| o t

fwg r]L_‘ dr - f ng nw dzds | ' (2.3)
0 -0 i .

-0

t oo .

= f f [wa N: ~ 20W, 1, - vw '733]9 dzds

0 -0

-] ¢

o0
== fwo gnl'=0 dz - f f gnb dzds.
0 -

-~00

We note that the term’

(wan, -2vw,n, + vwn,,|

is bounded and has support contained in two compact regions centered about the points —-R
and R . Here we have used the fact that || w]| L and | w, ||L(,° are bounded (see the remark at
the beginning of the proof). Since g is assumed to decrease to zero as |z | approaches

infinity, it follows that

t
lim f f[wa N: = 20w, n, + vwnglg dzds = 0.
R—00y ‘o )

Obviously ¢ n convergences pointwise to the integrable function ¢, as R — oco. Hence the
Lebesque dominated convergence theorem can be applied to expression (2.5) to show that g

satisfies (2.4) provided Lg is integrable.

For a > 0, let ¥® be a smooth approximate delta function with compact support.
Specifically, for a smooth positive function, ¥, with support contained in {-1,1], we define ¢

by the relation _
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or) = Lyt
| #le) = T L)
Now choose an r > 0 and let §(z) = sgn(w (z,t)) for z €[~r ,r] and 0 otherwise. Define 5*

= ¢%fB. Note that 8 has compact support. Let ¢%(z,t) be the unique bounded solution of

‘linear parabolic equation Lg® =0 in R X [0,t], with initial conditions g%(z,t) = £*(z),

where we note that we are solving backwards in time. The uniqueness and existence of the

solution ¢ is given by‘ Friedman [24] (p. 25 and p. 29). Using the compactness of the support

of the initial data ¢%(z,t) it is possible to show that .g" decreases to zero exponentially as
|z | —oo (see K;'uzkov [33], lemma 4). Hence expression (2.4) is satisfied with g replaced by
a ' '

g .

Now the maximum principle (Friedman [24] p. 34) implies that for0 < s < ¢,
| g (z )| < sup g%z )] <||ﬂ°l|Loo_ (2.6)

Hence equations (2.4) and (2.6), together with the assumptions that Il w, IIL, and || b ||L, are

finite, imply that

| fw(z t)g(z,t)dz | < f lwo(z)]| dz +.£f | 6(z,8)| dzds.

The function § is a bounded measurable function and so it follows that %(z) converges to
B(z ) for each Lebesque point, z, of the function 8 (Kruzkov [33], p. 221). The set of Lebesgue
pointsA of f has zero measure and so 8% converges to 4 pointwise almost everywhere on R .
That is, ¢z ,t) convérges to B (z) pointwise almost everywhere on R . Hence, it follows

from the Lebesque dominated convergence theorem that

Jlw(z,t)| dz < [ |wo(z)]| dz +£f | b(z,8)| dzds.

Finally the lemma is concluded by applying the monotone convergence theorem as r —ooc.

In the next lemma we will prove a technical result that will be of use in the proof of

Theorem 2.1.3.
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2.1.2. Lemma. Letf,g€ C(R).
(i) If ”f"Loo < oo and ”gllgv < oo, then

WD, fDig -Difg s < 2w) £l Loll g llmv

(v) If ”f”Lx < oo and ”9”3131 < o0, then

|D.fDig -Dfyg ”Ll < 2(vt )1/2”/”L1”9“8D1‘

Proof. Let us introduce the notation

Ga (2) = —trexp(-2)
et (47wt )2 Pt
and observe that D, = G, *, that is, D, is equivalent to convolution by the function G ,,, .

In addition, observe that

o0
f Gou(z-yy) dy,=1.

Hence,
ID.fDig ~Difg l s =11Ganu*/Gourg -Gae*(fg)ll
= _ZI _E-ng(z‘yl)th (z-y2)f (¥1)g (v2)
=G (z-y1)G o (z-y2)f (v1)g (¥ l)‘dyjldy2 | dz
= £| £_EG2m(z‘y1)G2ut(3'll2)f(y1)[9(y2)‘9(?1)]@1@2]d-"-'-
That is, we have ' -

|D.fDg -Dfg "Ll ‘ (2.7)
= [ 1 [ [ Galz-9)Gou(z-y2)f(y)lg(v2) - 9 (v))]dy,dy2 | dz.

Let us suppose that the condition in (¢} holds. Then we can use the integral form of the mean

value theorem to bound the second term in expression (2:7) by the quantity
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vl o oo oo
A1, = {f f szm(z—yx w(2-92) | yy1 | | 9. (v1+60(yo-v,)) | dy dy,dzdd

< ||f||Lao”9||Bv f fczw(yl)sz(yz)leyl | dy1dy,

_ (sut)?
==

Il el gliay < 2(we) 270l el g llav

which proves the first part of the lemma. Note that we have used the result

[ = B~ o] (8 t)l/.z
f f Gow (¥1)G ot (y2) | yz-y1 | dy dy, = 7172
-0 =00

which is obtained by an explicit calculation in which we make a change of variables and inter-

change the order of integration.

Let us suppose that the condition in (if) holds. The differential mean value theorem

shows that (2.7) is bounded by

o0 00 oo
”9”391 f f fczut z-y1)Gou(z-y2) | f(y) | | yry1 | dy,dyods
-0 =00 =0

[~ - B -]

< ||f”1_x"9||BDxf fG2v¢(yl)G2u¢(y2) | yo-y1 | dy1dy,
-00 =00

S 2(”‘ )1/2”/ ”L 1” [ ” BDI'

This completes the proof of Lemma ‘.é.l.‘.!.

2.1.3. Theorem. Letvg€ CQ(R) such that || v ”BD! < oo, 5 =0,1,2 and || vy || v < o0.
Leto < k < 4 vollges andv > 0. Then
2

| Fivo - DeAxvoll < By k% + Bok®?

where

Bx=81’“"o”Bv””o“BDz’

and
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32 == 51/1/2” Vo ”BV[ 4” Yo ”BD2” Yo ”L°° + “ Yo “Ble ]

Proof. We will show that the function

w(z,t)=Fvg(z)-D A vo(z) |
satisfies an equation of form (2'.3). This will allow us to apply- Lemma 2.1.1 and so obtain an
.estimate of the L! error for one step of the fractional step algorithm. The main part of the
proof involves estimating the L ! norm of the fun;:tion b(z,t) (see equation (2.8)). Lerﬁma

2.1.1 will be used to obtain an estimate of the size of b. This leads to a problem of estimating

quantities of the form

»

"D,ngg "D!fg”Llr

which can be estimated using Lemma 2.1.2.

We will first introduce some notation. Let wv¥z,t)=F vy(z) and
v(z,t) = A, v (z). Using the notation introduced in the last lemma, we write the function

D, A vy as G, *v. Then

w(z,t)=1v"z,t)-Gausv(z,t)

Since v (z,t) is a solution of the invicsid Burgers equation, it follows from Theorem 1.3.1 that
the solution is smooth for 0 < ¢t < %H vo |l gp1- Since v satisfies the viscous Burgers equation
and G,,,(z), as a function of z and ¢, satisfies the diffusion equation, it follows that for

o<t <%I| vo |l B.I;" the function w satisfies

w + (aw), + b =vw,, , w(z,0)= (2.8)

where

a =—;-[v"‘+Gg,,,tv]

and

b = [(G 2t *V )(G oy v, ) - G'lut s(ve, )]
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- Theorems 1.2.2 and 1.3.1, together with the smoothness of the diffusion operator imply that

a,b € C¥IR ) and that || a "L°°S' oo. Hence, Lemma 2.1.1 implies that

k o
bkl < f [ 18(z.t)| dudt | (2.9)
0 -oo :

provided the right hand side is finite.

It follows from Lemma 2.1.2 (1) (with f = v, and g = v ) that
o«

[ 18(z,t)] dz <2wt) Aol gl vl sy

-0

Since 0<¢ <-;—I| voll B‘é,, it follows from Theorem 1.3.1 that the functions v, v, and v,, are

defined and satisfy

"v”Loo S "’)0 ”Loo » ”v”BDl _<. 2“”0 ”BD" ’ ”'JIIBD2 S 8” Yo ”BD2~ (210)

In addition by Theorem 1.3.4 we have that
lvllev <llvellav. (2.11)

Hence we conclude that

oo

f l b(z ’t) l dz S 16(”‘ )l/zllvOIIBD’.’HvOHBV
-0
and so by expression (2.9) we have that

lw (k)M < 10072632 v || gpall vo ll sy
While this result is sufficient to show that the exact fractional step algorithm converges,

it is possible to obtain a sharper result by a closer examination of . We will use another

o

application of Lemma 2.1.1 to obtain a better estimate for the size of f | b(z,t)] dz for
-0

0 <t < k. We first observe that in the region R X [0,k ] the function b satisfies the equa-

tion

by +(ab), + c =wb, , b(z,00=0 (2.12)

with
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e =-Goy*%v , ¢ =c¢,+cqg+ ¢35

where

€1 =2U(G g #v, (G 201 *v;; )
e2=2[(G o *v (G *v:)* - Gy *v (v, )7
¢3 = [(G o *v)%(C o 955 ) - Gope 2020, .
Expression (2.10) implies that the L ! norm of the quantity ¢, satisfies the following esti-

mate:

o0

f ]cl(:r,t)l dz S 2V"G2,,¢ *v3”L1“G2yt *Vss ”L°° (213)

< 164 Vo Il BV" Vo I BD?

Estimates for the L ! norms of ¢, and ¢ 3 can be obtained by using Lemma 2.1.2.

[ ledz,t)| dz

— 2” (G 2ut ¥V )(G oyt ¥V, )2 - (G out *¥V; )(G out ¥V, )” L!

+ 2” (G 2ut *Vs )(G 2ut *v"z) -G out *¥V (vz )2”1_1

The first normed quantity can be estimated as follows:

“ (G out *V )(G ot *Vz )2 - (G 2wt ¥Vz )(G 2ut ¥VV; )” L!
5 " G 2ut ¥V, ”Loo" (G 2t *V )(G 2ut ‘v:) - G2ut *VY, “L 1
< 2wt ) Al v, Nl Pucll v ll o < 8t )2l wg N goall w0 Il v -

Here we have used Lemma 2.1.2 (1), with f= v, and g = v, to bound the quantity
(G vt 29 )(G 200 295 ) = G oue #v0, ”L,x-

In addition, we have have used expressions (2.10) and (2.11) to bound the norm quantities at

time ¢, in terms of the initial data vq .

If we use condition (1) of Lemma 2.1.2 with f= vv, and ¢ = v,, then we conclude

that
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(G g0 %, )(G 20t %00, ) — G g #v (v, )3 L1
< 20t ) v, | ol oo, Ml 3 < 2008) A v [l M ol call 2 1

< 16(vt )!/2” Vo “ BD2“ Vo “Loo“ Vo ”BV .

Consequently
w N . . .v
S dedz,t)] dz - (2.14)
oo A
< 16(vt )4 vo lav [2ll vo ll gpall vo ll Lo + N w0 | 4.
Similarly, we can use condition (i) of Lemma 2.1.2, with f= vv,, and g = v, to show that
o0
f | 63(3 ot )I dz S 32(”‘ )’/2” Yo " BV” Yo " BD2” Yo ” L o°* (2.15)
-00

Results (2.13), (2.14) and (2.15) imply that for0 < s < %ll voll oo

oo

[ le(z,8)] dz

-0

< 16Ul vo llav il vo ll gpe + 16(vs )3l vo llav [4ll vo ll grell vo ll L + T vo Il g1l

Lemma 2.1.1, together with the fact that b satisfies equation (2.12) implies that

-f | b(z,t)]| dz 5{[ | e(z,8) ]| dzds

< 16ut[lvo llavll wo ll g + 1142t g [l [ ll wo ll gpall ol o + Tvo I 550 ).

If we substitute this result into expression (2.9) then we conclude that
" w (rk )”L 1

< vkl vo llavll vo ll oz + 502k %3 wo lav [ 4ll vo ll gl vo ll Lo + [l w0 ll g1 ]

which concludes the proof of the theorem.

2.2. Convergence of the Fractional Step Algorithm. The preceding result estimates the

error arising from one time step. For n time steps, the error can be estimated by summing the

errors from each individual time step.
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2.2.1. Theorem. Let uo€ CHR) such that |l u, ”BDJ < 0, jdr Jj = 012 and
||u0 ||9v < oo. Thenforn€Z* and0 < k < g—(”uo ”L2°° + u|[u° ”BDI)-I’
| Facwo — [DeAp]® uoll 1 < Conk?.
where
90 - 3‘
02 = T" Uo ”BV[Vzll uO ”BD2 + V” uO ”L°°“ Yo ”BDl + ” %o ”Lw]

. 4 . * ) ’
+ =llwollov[llwoll Zw + vl wo ll gpil %

Proof. We will prove this result using induction. Let us assume that
N Fuo = [DiAr) woll 1 < Cojk®. (2.16)
We must then show that
I K; +1)k ¥o - (Ds Ak]jﬂ“o Il L?! < Cz(f‘*‘l)kz-

The triangle inequality and the L ! stability of the operators D, and A, (Thedrem 1.3.3) imply

that
I Fsene o = [De A ) ug I s ' (2.17)
S Fjsnpevo - (D AxlFpuoll s (2.18)
+ | Fpuo = [De AL woll o o (2.19)

If welet vy = Fj, u,, then expression (2.18) can be written as

| Fve = [De Axlvoll .

We can use Theorem 2.1.3 to estimate this quantity, since by Theorem 1.2.2 we have

0<k < Zlluoll e + vllwollgn)” < Zllvollgh

Consequently, for 0 < k < Z(llwoll w + udl wo ll )"

| Fivo - [Dy Axlvoll
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< [8udl vo ll gpo + 20(vk )2l wg | gpall vo Il L oo + 8(k )/ v | 250 Nl v Il sy £2.

Using the apriori bounds obtained in Theorem 1.2.2 we conclude that

32, 4
8”””0 ”BD2 S 7[”2”“0 ”BD2+ V”"O "Lco”uo ”BD‘ + ”"0 ”L3°° ]

Since k < %ll vo || %, we have that

’ 58
20(vk )/¥ v || gell vo ll | 0 < 7[V2|| o ll gpz + Ul woll Lol w0 llgpi + w0l P |-

Finally, using the fact that k¥ < é” v ||B‘é1, we find that

4 .
S 41/1/2” Uo " 3/2 < _l./-[” uo " Lzoo + V” uO " BD]]3/2'

S(Uk )1/2" Vo ” BD! =

2 .
BD!
Combining these estimates we conclude that

| Fvo - [DeAx]voll 1 < Cok® : (2.

[

(354

(=]
~

Note that if ;7 == 0, then v; = u4, and we have

| Feuwo = [DeArluoll € Cak?

which shows that the initial proposition of our induction hypothesis is true.

Now, if we éompare (2.18) with (2.20) and (2.16) with (2.19), we conclude that if

| Fwo - [DeAr)iwoll 1 < Caoj k2

then

N Koo = (D Al Plug I < Cof5 +1)k2
Hence our induction proof is complete.
2.3. Behaviour of the Algorithm for small v. In this section we will study the behaviour
of the exact fractional step algorithm for one time step as v — 0. Specifically, we will investi-
gate the actual behaviour of the error for one time step when the initial data is given by a
steady state solution of the viscous B.urgers equatio;l. With such a choice of initial data we

are able to give an explicit formulation for the error produced in one time step. Let,
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_cz/u

1
Mz) =

+e/v
The function f, is a steady state solution of the viscous Burgers equation with diffusion con-
stant v and so F, f, = f, (F depends on v). The error produced by one time step of the exact

fractional step algorithm is given by

eyt = "F;fu_ DtAtfu ”Ll .
Let g {z,t)=A,f(z). Now fort < 1, g4(z ,t) satisfies the implicit equation for the

solution of the inviscid Burgers equation with initial data f; (see Theorem 1.3.1). That is,

91(3 rt) = fl(z -ty l(z rt))'

Hence, for ¢t < v
z t z t .,z
91(7:7)"‘/&“} - y-g‘(y’y))

;= jl/(z - tg 1(37;

Nl

))-
The function gl(i-,i-) solves the implicit equation for the inviscid Burgers equation with ini-
v' v
tial data f(z) and so g [z ,t) = ¢ 1(2—,t—).
v'v

If we substitute this result into the equation for ¢,; and make a change of variables,

then we obtain

t
7:";)” L! v

et = "fx(;) ~Goe * 91( '
= v [ 1A(2) - Gapur 92, 2) | dz = vk ()

where

h(a)= [ |f{z)-Gauv gi(z,0) ] dx.

From Theorem 2.1.3. we conclude ¢, is of order t* as t — 0. Consequently, A (a)
must be of order a® as a —0 and so e < Ct?, where C — oc as v — 0, provided t < v.

Hence, the small v behaviour of the one step error as obtained in Theorem 2.1.3 is consistent
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with the actual error obtained with the specific initial data f,.
On the other hand, for a fixed time step k the error of the fractional step algorithm

tends to zero as v — 0. To see this, observe that there exists a constant- B such that,

| Dy vo - vo "Lx < B |lvo llpv(2vk )l/2~
Theorem 1.3.5 implies that
}‘i_x.r(x’ | Fxuo - Amuoll,, =0.
The stability of the diffusion and transport bperators can then be used to show that
| Faruo = [De Ae]*uoll s
S Fuuvo - A uo "Lx + nB |l ug [l gv (2vk )"/
Hence the error of the fractional step algorithm tends to zero as v — 0 (at least) if the size of

the time step is fixed.
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Chapter 3

The Approximate Advection Operator

The purpose of this chapter is to describe our approx-i\mation advection operator. That is, the
operator with which we approximate the solution of the inviscid Burgers equation. The opera-
tor will be defined in terms of the evolution of the positions of a set of particles. In Section
3.1 we will cieﬁne an evolution equation for these particles which approximates the way in
which particles would flow under the influence of the exact velocity ﬁeld. The ac.:curacy of the
xﬁethod is then discussed in Section 3.2 where it is shown that the error in the L! norm is
bounded by a quantity of order A, where & is the absolute strength df each particle. Finally
in Section 3.3 we generalize our definition to encompass initial data which is stochastic in
_nature. Specifically we define our approximate advection operator for particles whose initial

positions are described by random variables.

3.1. Definition of Method. We assume that our initial data s € S is generated by m
basic particles with initial positions {z; },.; and strengths {¢; },"-, with |¢i| = h, such that

s(y) =t + SH(y-z) 6.

=1

The definition of the numerical method is obtained by specifying the evolution of the positions

of these particles.

We first observe that for small times, the weak entropy solution of the inviscid Burgers
equation with step functions as initial data can be obtained by splicing together the Riemann
problem solutions (see sections 1.3.8-1.3.10) associated with each discontinuity considered

separately.

We define the strength of the discontinuity of the step function s € S at the particle

3
position z; by
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[6]i =8(zi+0)-s(z-0)= Y ¢;
) j:zl =z
Hence [s]; is the total strength of all the particles positioned at z; .

The solution to the Riemann problem takes two distinct forms depending on the sign of
the discontinuity, one being a shock solution, the other a rarefaction wave. Hence the way in
which the ¢** particle is transported by our approximate operator will be determined by the

sign of the quantity [s];.

For particles that form a negative discontinuity (particles with [s]; negative), we want
the trajectoi'ies of the particles to coincide with the shock that occurs in the exact solution.
This is accomplished by moving all of the particles that generate a specific negative discon-
tinuity with a common velocity given by the Rankine-Hugoniot condi.tion for that discon-
tinuity. Consequently, if [s]; < 0, we define the velocity of the ¢** particle to be,

& =8t + Y c,+— X o (3.1)

13<3 J:=:

This implies that

8(z,-0)+ a(z,+0).
2

i
(see figure 2) which is the velocity given by the Rankine-Hugoniot condition.

Suppose that a pos'itive discontinuity is generated by ¢ + p particles with positive
strength, and p particles with negative strength, where gh is the strength of the discontinuity
and p is some non-negative integer. We will allow the trajectories of the first ¢ particles with
positive strength to fan out in such a way as to approximate the exact rarefaction solution.
The other 2p particles will be given a common velocity and allowed to evolve t,ogethér.

Hence, if [s]; > 0, we define the velocity of the ** particle as follows:

If ;. > 0and

) i < (sl (3.2)

5 _<_i::] =1.(, >0
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(condition for being in the group of particles that will approximate the rarefaction fan) then
1 .
s =s"+ ¥ ¢+ Py S5+ oS- (3.3)
j::, <z, 5 <c':sl =3,.(, >0 . 2 )
If on the other hand ¢; < O or ¢ > O and condition (3.2) does not hold, then the velo-

city of the ¢** particle is given by

v 8,'=8L+ E Si +[8],‘=8(§.‘,~+O)
j:zj<zI

(see figure 3).

Note that s; depends both on the ordering of the particles (relative to the index ¢) and

on the ordering of -the particle positions.

The positions of the particles at a later time ¢, denoted z;(t), are then given by -the

equation

r(t)=1z; + ts;. . (3.5)
(see figures 2 and 3) provided ¢ satisfies the condition that for all ¢ and j with'z; < zj, we
have that z;(t) < z;(t). That is, we use equation (3.5) to evolve the particle positions until
such time as the trajectories of two particles, initially at distinct positions, have intersected
(see figure 4). Let us denote the time of first intersection by t!. We conclude, from the
definition of the velocities s;, that the step function generated by the particles at time ¢
(0 < t < t')is composed of positive discontinuities generated by distinct particles with posi-
tive strength and by groups of particles with common position and accumulated sﬁrength
which is non-positive. We will refer to these groups of particles as numerical shocks. The
strength of a numerical shock is given by the quantity

$i

;':x] (t)=z, (‘.)

th

where the 1 particle is any one of the particles forming the numerical shock at time t. We

A

note that the strength of each numerical shock is non-positive. In addition, if the ¢** particle

satisfies the condition



j:zp(t)=1(t)

then that particle is contained in-a numerical shock.
For0 < t < t!, let us observe the following facts;

(1) The distance between two adjacent discontinuities of positive strength increases as t

increases (see figure 5).

(2) Thg distance between a positive discontinuitity and an adjacent numerical shock will
only decrease with time if the strength of the numerical shock is less than or equal to

-2h (see ﬁgure’ 6). |
(3) We conclude from (1) and (2) that at time ¢!, the accumulated strength of the particles
intersecting at a point must be non-positive. Hence at time t!, at each point of intersec-
" tion, numerical shocks and positive discontinuities join to form one numerical shock. So
at time ¢! tfhe sum of the number of numerical shocks and the number of discontinuities

of size h decreases.

We will extend our definition past time ¢! by using an inductive argument. Suppose
that the positions, z; (¢), of our particles are given for 0 < t < t', where / is an integer

greater than or equal to one. In addition suppose that for 0 < ¢t < t!

z S5 > 0,

sz (t)=2(t)
can only hold if z;(t) = z;(¢) implies that { = j. That is, we suppose that the positive
discontinuities of the step functions generated by the particles at any time 0 < t < t' are of

strength A and are generated by distinct particles.,

Let z! = z;(¢t') and let &' be the correponding step function

sl(y) =t + T H(y-z)) ¢

f=]

Let the velocity of the particle with position z; be defined as follows:
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8|'l= GL + ‘ 2 S.J + - E fj ' (3.6)

Note that equations (3.3) and (3.4) reduce to equation (3.6) since we are assuming that the

]

positive discontinuities of the function s' are generated by individual particles.

Let -

! l ’

N - z' —z'

' = min{t! + 24— 2z} > zfand s/ > s} }. - (37
LIS 8; —dj

If there does not exist an ¢ and 5 such that z} > z!and 8! > a} then we let ¢!t = c0. We
observe that ¢! +! > ¢! (provided t' is finite). This follows from the fact that there exists a

bound on the magnitude of the velocities s/.

Now for ¢! < t < t'* we define z; (t) to be
n(t)==z'+ (t-t" )ai. (3.8)
Observe that for any ¢ and j such that z/ < z/, we have that £ (¢) < z;(t) for
t! <t < t¢'*'. In addition, if ¢t'*! is finite, then there exist an ¢ and j such that ! < z}
and z; (t'*Y) = g; (¢! ). Hence t'*! gives the time of first intersection of the trajectories
zi(t)fort > tt,
e <t <t then equation (3.8) can be rewritten in the form,

(t)=1z + f‘j(‘j“ —ti)sd (- 1! )3.-'1 | (3.9)

This reformulation allows us to estimate the maximum displacement that a particle can

receive via this algorithm. In particular, equation (3.9) implies that for ¢! < ¢t < ¢!*}
- Tzt -z | < toup |of] S t(]s"] + mh). (3.10)

Notice that the maximum displacement of a particle depends only on the initial data and on

the time ¢ .

The description of the evolution of the particles will be complete provided we can show

that sup (t')is infinite. In fact we can show that there exists an [ such that t'*!' = co. Fact
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(3) can be sho;vn to hold for all intersection times t'. Hence, at each time ¢', the sum of the
number of numerical shocks and the number of discontinuities of strength & decreases. As
there are only a finite number of particles, these events can only occur a finite number of
times. So there must exist a time t' after which no more interactions occur. Hence

t!*! = oo for some [, as required. Note that since sup (t') is infinite, we conclude that
. . {

expression (3.10) holds for any t > 0.

We now use the above evolution operator to define the approximate advection operator

as follows:

A (21002 ) = (24(t),1Zm (2 ) . (3.11a)

We will also denote the step function generated by the particles with positions z (¢) by

Zs(p)=1b + LHy -n(t) s (3.11b)

=1

Hence, we will regard A, as either an operator on step functions, or as an operator on particle
positions, but we will always assume that there is an underlying set of generating particles on

which A, is defined.

We remark that the operator A, satisfies the semi-group property relative to the variable

t. That is, if 7, 7, > 0, then for any step function s € S

Xﬁ Z.,za = Xﬁ"g" (3-12)

Remark. Brenier [6] has discussed a method which is similar to our method, for the case of
reaction advection equations. His method applied to the inviscid Burgers equation involves
moving positions of a set of generatihg particles by associating to each particle the velocity
s =8t + Y ¢+ )Y §,‘+LS'.'
j::]<z' j<|'::}=xI 2
for all i. Let us denote his approximation operator by B;. It is an easy exercise to show that

if s is a step function with a single discontinuity of negative strength then there exists a con-
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stant C, which is independent of the size of the strengths of the particles, such that

A e -EUIILLZCL (3.13)
On the other hand, using a compactness argument similar to the argument found in

Crandall and Majda [20], Brenier [6] is able to show that for nk = T

31_1};" Ayt - Bs l,,=o. _ (3.14)
‘There is no conflict between (3.13) and (3.14) as the operator B, does not satisfy the semi-
group property.

We do not use Brenier method to solve the advection equation since our proof of conver-
gence for the full random method needs an approximate advection operator which is accurate
enough to allow us to add the n ex:rérs from each time step and still obtain a quantity which
converges to zero as n — oo (nk = T). Obviously equation (3.14) implies that this is not
possible using Brenier’s meﬁhod. It should be noted though, that both methods produce simi-

lar numerical results as n — oco. .
3.2. Accuracy of the Method. We will now study the accuracy of the operator A .

3.2.1. Theorem. Suppose we have m particles with initial positions {z; },.; and strengths

{¢i }i1 such that |¢;| = h. Let s €S be given by

s(y) = st + f}H(y— i) S
s =1

Then Jor tZO,

Ace - Aol s < Coht (3.15)

where Cy = Zhm .
4

The operators A, and A, propagate information at a finite velocity (see equation {3.10} and

the remarks following Theorem 1.3.4.). Since s is constant in a neighbourhood of infinity, it



45

follows that for any given ¢ >0, there exists R>0 such that A,s(y)=ﬁ',s(y) for

|y| > R. Hence the quantity A, s - X, sl L1 is deﬁned and bounded.

We will prove the theorem by first proving the following lemma.
3.2.2. Lemma. As in Theorem 3.2.1, aubpoaé that m particles are given with snitial posi-
tions {z; };™~, and strengths {¢; },™, such that |¢;| = h. Then for any step function, s, gen-

erated by these particles, we have

A s -4 < 1hme
| Ao At"ILl_‘ m

for0 <t < t! where

z, -2

t! = min{ :z; > z; and & > 8; } (3.16)

. 8 — 8
where the quantitics s; defined in ezpressions (3.1), (3.3) and (3.4) and the quantity t' is

‘equated to oo if the conditioning in (3.16) is vacuous.

Note that ¢! is the time of first intersection of the trajectories z;(t) as discussed in Section

3.1.

Proof of Lemma. To prove the lemma we will make use of the following facts.

lfl_llf:llAf‘ - A 6”1.‘ =0

lim”zﬂ, -/Z't‘s”Ll =0

. '_“ -
for r,t> 0. Theorem 1.3.3 allows us to bound the quantity [|As - A, s|| Lt by
Ils - A8 ||L,. The weak entropy solution of the inviscid Burgers equation converges in
L, to its initial data as t — O (see Section 1.3.2) and so it follows that
lf—llifn—-O“ s - A jr-t| 8 " L= 0.

so we conclude that the first limit is correct. The second limit follows directly from the con-

struction of the approximate operator. It follows that



46

| Acs - Aall . (3.17)

1s continuous in ¢ .

The lemma will be proved if we can show that the set

E={tefot!]:|As —ZT"”LI < -i-hzmr foral0 <7<t}

is nonempty, closed and open in [0,t']. It is evident that E is non-empty (0 € E) and closure

follows from the continuity of the function given in expression (3.17).

It remains to show that E is open. Without loss of generality we may suppose that
t€EE and t < t!. We want to show that there exists a § > 0 such that 7€ E for all

|7-t]| < 6. Without loss of generality we may suppose that t <r<t-+$6, since r€ E for

r<t. Now,
|l Ars - Al s
SlA Ae -A Asll s o (3.18)
+ A Ars - A Asll s | (3.19)

The operator stability of A,., (Theorem 1.3.3), together with the assumption that t € E
and the fact that || A, s — A, s || L1 is a continuous function of ¢, implies that
lAA s - AA s,
< ”Az s —/Tt s "Ll < -:—hzmt.
The normed quantity (3.19) can be estimated by observing two facts.

(1) Using the nomenclature of Section 3.1 we have that the step function A, s is generated
by numerical shocks and positive discontinuities of size A which are generated by dis-

tinct particles.

(2) Given the step function A, s, there exists a §>0 so that for 0 < 7~ ¢ < §, the function
A, A, s has an explicit formulation in terms of shock waves and rarefaction waves (see

figure 7). In other words, § can be chosen so that for t < r < t + 6 the solution of the
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inviscid Burgers equation with initial data A4, s at ‘initial time’ ¢, is composed of non-

interacting elementary waves (shock and rarefaction waves) (see sections 1.3.8-1.3.10).

The difference between the function A,;A;s and A,_, A4 s is simply the difference
between representing a number of small rarefaction waves of height & with positive discon-
tinuities of the same height, situated at the avérage position of the rarefaction wave (see figure

8). These small rarefaction waves have width (r-t)h at time r. Hence the L! norm error
due to each discontinuity with positive st;ength will be %h Ar-t). If N is the number of
discontinuities with positive strength then we have
"Am-czta —Xf—t;{; ’"L‘
< %h”N(r—t) < fh?m (-t).
Hence we conclude that there exist a § > 0 such that
e - Zall s SThPmr

fort < r <t + 6 This shows that E is open and that the lemma is true.

Proof of Theorem 3.2.1. We will use Lemma 3.2.2 together with an induction argument to
show that expression (3.15) is true for all ¢ >0. This will of course imply that the theorem is

true.

Our induction hypothesis is that

Hage - Zysll s < <h2me! © . (3:20)

where t! is one of the intersection times defined inductively in Section 3.1 (see equation (3.7)).

Let us suppose that t € [t!,t'*!]. The lemma implies that

A, i _':rt-t“zt"”Ll < %"2"‘(‘ -th). (3.21)
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Here we have applied the lemma to the step function Xt,a. In addition we have made the

observation that the time t' defined in equation (3.16) for particles initially generating the
function X‘,a is equal to t'*! ¢! where t'*! and ¢t' are defined in equation (3.7) for parti-

cles generating & . Consequently,

"AM —Xtalle
<A, A8~ A‘_‘lﬁ;la ”Lx + ”A,_,IZ,M - Z,_,MT,IG .
1,0
< —h*mt
_ 4
where the first normed quantity is estimated using the stability of A (see Theorem 1.3.3)
together with assumption (3.20); the second quantity is estimated using (3.21). The proof is

completed by observing that Lemma 3.2.2 implies that the initial induction hypothesis, (3.20)

for{ =1, is true.

3.3. Definition for Random Initial Data. In general the initial data for the appro#imate
advection operator will consist of step functions generated by a set of particles whose positions
havev been obtained ‘as representatives of tandom variables. Consequently the approximate
advection operator must be defined for random initial data. ’Suppose we hav¢ m random vari-
ables, X; ,{ = 1,...,m defined on a probability space (2, £, P ). We will consider a collec-
tion of m particles with strengths ¢; such that |¢;| = & and with initial positions given by
t-h(e random variables X, For a given constant s %, the step function generated by these par-
ticles is given by

S(y)=sr + DH(y - X) & (3.22)

P=1
where we have used upper case S to emphasize that S(y) is a random variable. For any ran-

dom step function S, defined by a,relationship of the form (3.22), we will denote a representa-

tive of S, for a given w € (1 by Sl . That is, we define _
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S| =et + DHE-X| ) s

i=1
We will define the exact and approximate transport operators for initial data S by
requiring that for any w € Q2
' A'_S|W=A'(S|w ),
and
A,S|U=A,(S|“ )
In other words, we define our operators, for random data S, by using our previous definitions
for each representative of S. To emphasize that A; actually maps particle positions, we will

also use the dual notation

‘Z;(Xll")Xm )lw=‘2'¢(Xl| 'Xmlw)

LA ]
w

where 4, (z, ,.., x,,,.) is defined by equation (3.11a).

Since the estimate of accuracy of the operator A, obtained in Theorem 3.2.1 depends
only on the number and the strength of the particles and not on their positions, we conclude
that a similar estimate of accuracy holds for the case of random initial data. In particular, we

have the following:

3.3.1. Theorem. Suppose we have m particles with random initial positions {X;},2, and
strengths {¢; };~, such that |¢;| = h. Let S be random initial data generdted by these parti-

cles. Then for t >0,
A S - A Sl < Caht

where C; = Zhm .
4
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Chapter 4 -

The Random Walk Operator

To approximate the diﬂ’usion.in Burgers eqﬁaiion we will use the well known correspondence
between the probability distribution of the position of a bmticle undergoing a random walk
and the solution of the diffusion equation (see Lamperti [35], Ch. 4, Arnold [1]). To utilize this
correspondence we recall that a step function s € 8 can be considered as being generated by a
collection of particles with positions z; and strengths ¢;, such that
a(y)=1sl + ‘ilH(y— i) G-
i=
If the positions z; of the particles are perturbed by appropriate gaussian random variables, n;,

then the above correspondence allows us conclude that the perturbed function

st + YH(y-zi-n)
i=1

approximates the solution of the diffusion equation in some probabilistic sense. The exact

sense is described in section 4.3 and in Theorems 4.5.1 and 4.6.1.

It should be noted that the standard random walk method for solving the diffusion equa-
tion involves first approximating the initial data by a measure of the form

' Zm: 60’ 6:.

V=1
where 6,I denotes a delta function supported at the point z; and & € R . The positions z; are
then perturbed by the random variables, 5;, so that the above correspondence can be used to

show that the measure
m

2 f.' 6:. +9,

Q=1
approximates the solution to the diffusion equation in some weak sense. Unfortunately this

method introduces large statistical errors. Our method of solution is equivalent to integrating

the solution obtained using the standard method with the initial data given by the measure
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m
2 5:, Si-
=1
It is plausible that the solution obtained by our method has less statistical error, since our
solution is obtained 'by integration, which is an averaging process (see Cpurant, et. al. [18],
Hammersley and Handscomb (29]). A similar improvement in the accuracy of a random walk
method is obtained in the random vortex method, in which case the vorticity is described by a
measure and the velocity is obtained by integrating the vorticity with a smooth weight func-
tion (see Chorin [11], Roberts [42]). The moral is that the statistical error is reduced if we ran-
domly walk particles which carry strength corresponding to the gradient §f the function

instead of the function itself.

4.1. Definition of the Rando£n Walk Operator. We will now give the precise definition
of the random walk operator. We note that in general the randé)m walk operator will need to
operate on data which has been derived from the application of our numerical method over an
arbitrary number of time steps. Consequently the random walk operator must be defined for
random initial data. As in Section 3.3, we consider the initial positions of the particles to be
given by m random variables, X; ,{ =1,..,m defined on the probability spéce
( Ql', L, , P, ). We will suppose that the strengths of the particles satisfy |¢;| = h. Let
B; ,i=1,..,m, be a collection of m independent normally distributed random variables,
defined on a probability space ( Q;, £, , P; ), such that E [B;] = 0 and Var[B;| = 2vk. We
will regard the randomo variables X; and B;, 1 =1,..,m as being defined on the product proba-
bilicy spaée (2, %0, T, XZ;, P;XP; ), and hence regard the B;.random variables as being
independent of the X; random variables. We will denote a generic element of ; by w,, an

element of {2, by w, and an element of 0, X, by (w;,ws).

For a given constant s%, the initial step functions generated by these particles are given

by
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S(y)=6"+‘2H(y—X-)s‘e- , (4.1)

i=1
The position of each particle after one time step will be given by the .random variables
Y, =X; + B (4.2)
where Y, is a random variable on the product space ( ;X £, XZ;, P;XP; ). The ran-

dom walk operator, defined with respect to the random variables B, , is given by the mapping
Di(X1n X )=(Y1, Y ) | (4.3a)
As in the case of the A, opera.t,o.r, we will also use the notation

BiS(y)=ob + LH(-Y) s  (4.3b)

fel
to denote the step function generated by the random Yariables Y;.

The numerical approximation is given by one representative of the random step funétion
D, S, which is equivalently given by one representative of the random variables. Y;. Hence
the numerical approximation is given by

a”-i-f:H(y—Y.-

]

I(ul.u,j) S

for st_e (wy,wo) € Q;XQy. Computationally the numbers ’Y,-'|(w1'w2) are given by
z; +(2vk )‘/2 &;, where the numbers §; are derived from a standard normal ranaom numberl
generator and the numbers z; are representatives of the random variables X;, provided by the
numerical approximation at the previous time step of the scheme. |

4.2. Conditional Expectations and Probabilities. To simplify the analysis of the
méthod we find it convenient to introduce the following notation. 4Let, ¥ be a random variable
on the probability space ( Qx*ﬂg , Z1XZ,, PyXP;), such that E[|¥]|] < co. Fubini’s

Theorem (Rudin [44], p. 150) implies that

B V] = [ 1L ¥y Pl o) | Pi 4o (49)
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If we let

Ez[‘l’”wx = "{2 \Ill(ul,w,) P2( dw2) . (4.5)
ahd

El[\y“w2 - f{x ¥ Py( dw,)
then Fubini’s Theorem also implies that E, and E, are random variables on 2, and 2, respec-
tively. We note that the random variables E; and E, are closely to the conditional expecta-
tions E (¥ | £,X 2] and E (¥ | Q;XE;]. For the definition of conditional expectations see

Arnold [1] or Chung [16]. It is easy to see that
Ez[‘l’]lwl =E[¥] ExXQzll(wlva
El[\I’”«J =E [\I’ I lez:?]l(w ""2)
, 2 e
almost everywhere on the spaces {2, and 2,.

Equations (4.4) and (4.5) imply that
| E(¥] —E[E(¥] | =E [E¥]]. (46)
We can use the preceding results to obtain an alternative formulation for quantities of the
form P(\Il > 5), where § € R . Let us introduce the notation
P¥ > 6) = Ef{ H(¥ -6)].
Here P,(¥ > §) denotes a random variable on ;. Equation (4.6) then implies that
P(¥ > 8) =E[Py(¥ > §)]. (4.7)

Finally the quantity Pg(\l’ > 6) can be calculated using relationship (4.5). Namely,

Py(¥ > 6)| =Py we: W|Mw2) >6) - (4.8)

wy
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4.3. Point-wise Accuracy. Suppose that we have a random step function S. The solution

of the exact diffusion equation with S as initial data, denoted D, S, is defined by the relation

Dk S |U1 = Dk (S Iul)

for w, € ;. That is, the solution of the diffusion equation for random initial data is defined in

terms of the standard definition for each representative.

We will show that E,[ D, S(y)] = Dy S(y). This can be interpreted to mean that on
the average the random walk algorithm approximates the solution of the diffusion equation

with initial data provided by the numerical method at the previous time step.

"To calculate E;[ D, S ], we first observe that
EJH(y-Y:)] = [H(y - X; - B| ) Po{d w)
a2,

1 < 22 .
—.-W.Lﬂ(y - X; —z)exp(—4uk)dz =D,H(y - X;).

Here we have been able to equate the integral over {2; to an integral over R, since we know

that the random variables B; are normally distributed. We conclude that

Eo[H(y - ¥;)] = DH (y-X;). | (4.9)
Consequently,
E D S(y)] = + LE[H(-Y)]s
(=]
. — oL+ Y DHE(y-X) 5 = DiS(y)
§ =1 .
as required.

It is still important to estimate the accuracy of the random walk algorithm. We will first
use Chebyshev’s i.neq;xality to estimate the error in approximating D, S{y ) by a representative
of D, S(y). In Theorem 4.3.4 we use a result due to Hoeffding (30] to show that the term 1/a°

in Theorem 4.3.1 can be replaced by a term of the form exp(-a®).
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4.3.1. Theorem. Suppose that the initial data S for the random walk operator is gencraied

by particles all with strengths of absolute size h. Then for a fizedy € R
CP(1DeS(y)-DiS(y)| > Cih'fa) < 1/0P,

for any a > 1, where C; = %(mh )2,

Proof. Chebyshev’s inequality (Feller [23] p. 151) states that for a > 1

P(|®-E.[0] | > aVar[8]'/?) < 1/
where © is a random variable on a probability space (2, £, P). Using the results of section
4.2, it can be shown that Chebyshev’s inequality implies that if ¥ is a random variable on
0, X Q, then V

Py( | ¥ - E[¥] | > aVar[¥]'/?) < 1/a2 (4.10)
This result is obtained by substituting into Chebyshev’s inequality, the random variable © on

5, given by 6| = ‘III where w; is held fixed.
Wy (wyuwg)

We will apply result (4.10) to the random variable ¥ = D, S(y). We recall from the previous

discussion that
E¥] =D, S(y). (4.11)
To estimate the variance of ¥ we observe that for a fixed w,

iH(y —x —Bl')gl'

i=1

is a sum of independent random variables on the spacé 2,. Consequently
Var,[¥] = Y Vary[H(y - X; - B;)] ¢* ~ (4.12)
im=1
The equality follows from the fact that the variance of a sum of independent random variables

is equal to the sum of the variances of the individual random variables. The individual terms

in the sum can be estimated in the following manner.
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Var(H(y - X; - B;)] (413)
=P B <y-X)[1-PB <y-X)] S =

Equations (4.12) and (4.13) together imply that

Var[¥] < - Ly = —mh"’ =Gy h. A (4.14)

==

By applying equation (4.10) to ¥, together with the estimates for the expectation and variance

obtained in expressions (4.11) and (4.14), we conclude that

P | DcS(y)-D:S(y)| > Cyh'/%a) < 1/c?
Equation (4.7) can then be used to show that _
P(IDS(y)-DeS(y)| > Cih'a) < 1/a%
which completes the proof.
The result just obtained depends on the use of Chebyshev’s inequality. A much stronger

result can be obtained by using the following result due to Hoeflding and its simple conse-

quence, Corollary 4.3.3.

4.3.2. Theorem (Hoeffding {30], Theorem 1.). If Z,,..., Z, are m independent ran-
dom variables such that 0 < Z; < 1, i=1,..,m, then for 6> 0,
( EZ —-—ZE[Z])&)Sexp(—‘ZSzm).
l=-l V=]
4.3.3. Corollary. Let the randizm variables Z; « = 1,....m be defined as in Theorem 4.3.2.
Then,

P(l—EZ ——2E[Z] | >6)<2 exp (-26°m ).

-] t-m]

To prove this corollary we apply Hoeflding’s result to the random variables Z; and 1 - Z;,

1t =1,..,m.
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We will now use Corollary 4.3.3 to obtain a strengthening of Theorem 4.3.1.

4.3.4. Theorem. Suppose that the initial data S for the random walk operator is generated

by particles with strengths ¢; such that i = k. Then for any fized y€ R and § > 0O,

Py |DiS(y)-DuS(y)| > mhé) < 2exp(-26°m)

and so
P(1Di5(y)-DiS(y)| > mhs) < 2 exp(-26m).

If we let 6==a m~'/2, then this theorem implies that for any step function generated by particles
4 :

with stengths equal to h,

P(|DiS(y)-D:S(y)| > Cséh 12) < 2 exp(-207)
where Cg = (mh )/2. This estimate will also be true if the strengths of the particles are equal
to ~h . Now, if the strengths of the particles satisfy |¢;] = h, then we can consider the ini-
tial data as being the sum of two functions, one with particles all of negative strehgth, the
other with particles all of positive strength. The triangle inequality together with Theorem

4.3.4 applied to these two functions then implies that

P(|DiS(y)-DeS(y)| > 2Csah'/?) < 4 exp(-207).

Obviously this bound is superior to the bound obtained using Chebyshev’s inequality.

Proof of Theorem. Without loss of generality we may assume that the limit at minus

infinity of S is zero (8% = 0). For a fixed w, € Q,, let us define m independent random vari-

~

ables on (1, by

Z =H(y-X|, -B)

Note that Z; depends on w, and y and satisfies 0 < Z; < 1. In addition we observe that

Lhsy) =13z
m =

and
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—D,,S = ——-E E,[Z;]

§=]

where we have used the fact that the strengths of the particles are all equal to A. If we apply

Corollary 4.3.3 to the random variables Z; then by equation (4.8) we have that

Py |DS(y)-DeS(y)| > mhé) < 2exp(-26°m).

Equation (4.7) then implies that

P(15iS(y)-DiS(y)| > mhs) < 2 exp(-26m).

4.4.'A Condition on the Initial Distribution of the Particles. = We have obtained
results regarding the point-wise behaviour of the random walk operator. To obtain a conver-
"gence proof f.or the full numerical method it is necessary to obtain an estimaté of the L!
behaviour of the random ;ava.lk operator. This will be possible if the following assumption is

made about the probability distribution of the random variables X; .

4.4.1. Assumption. Let the time step k, the diffusion constant v and the the random varf-
ables X, , 1,..,m be given. Let B; , i=1,..,m be any collection of m independent narmally
distributed random variables satisfying E [B;] = 0 ar;d Var(B;] = 2vk, such that {X; , B; },~,
18 an independent set of random variables. We assume that the random variables X; satisfy the
condition that there exist constants K >0 and T >0 (t'm;cpcndcnt of the B; random variables ),

such that for alla > 0,

P(X > K+d) < 0(——;——-

T)x/z) ' P(‘\’i < —K—a) < d)(_

— )

(2vT /2

and

P(X; + B; >K+a)$d>(—(+)m-) , P(Y + B <-K-0) < &(-————)
w 2

where,

3 2

P(r) = —l—?fexp(—%) dy..

(21" %
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Remark. Since Assumption 4.4.1 deals only v;vxth the probability distribution of the random
variables X; and X; + B;, it follows that thg assumptlon w1ll hold if conditions (4.15) and
(4.16) are true for any one partxcular choice of""random variables B; . Consequently, the ran-
dom variables X; introduced in Section 4.1 wx'fl satlsfy Assumption 4.4.1 if there exist con-
stants K and T such that condition (4.15) holds Tor the X; random variables and condition

(4.16) holds for the random variables Y; = X; + B defined in equation (4.2).
%
Assumption 4.4.1 is intended to capture the behaviour of random variables X; 7'/
5 ° T PEe . .
which represent the positions of the particles that generate our numerical approximation
A, [D: X‘, ]7-1. In Theorem 5.2.1 we show that the random variables X; #<1/2 satisfy Assumption
4.4.1 with K =R + [ || u6 ||L°° + mk |sk and T = 7k, where R is the size of the support

of the set containing the particles at time zero.

4.5. L! Error Analysis. We can now study}"tﬁg?brobability distribution of the L ! norm of

the error of the random walk operator.

.

4.5.1. Theorem. Let k be the time step. Let t;xc tnitial data S be generated by m particles

with initial positions given by random vartablcs‘:X,. ;- §=1,...,m which salisfy Assumption 4.4.1,

r

with constants K >0 and T >0. Let the at}cngtha of the particles have absolute size b < 1/3.

Then fora > 1,

N e

( ID.S -D.S “ >t M ah l/z(ln(l/h ))2)

<M h%afn(l/b) -1

where the constants M| and M, are defined a

M, =8 (mh)?K + su'T W4 + (2vT )2 mh,
M, =8 (mk )172 + 16mh.
The exponential bound on the probability dxstnbuuon éf-the L ! norm of the error is of crucial

importance in the subsequent proof of convergence:of our numerical method. It allows us to
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sum the errors at each time step and still obtain a bound on the probability distribution of the

overall error which is exponentially small.-for large errors.

The proof of the theorem will be‘.ibased on the following lemma. Notice that in this

lemma the strengths of the particles generating the solution are assumed to be equal to A .

4.5.2. Lemma. Let the initial data'S: be generated by m particles with strengths ¢; -that
satisfy ¢; = h, and with random c'hitial_:positions X; which satisfy Assumption 4.4.1 with con-

stants K > 0and T > 0. Forr >K and 6 > 0,

(¢} P(|D.s -D, S | y > 2rmh (6 + m™/%) < 4mY2exp(-26°m ),

L Y-7,r
.. b5t ’ ‘ T l -K
(s52) P( \D:S -D. S ”L‘(-m—r) > = l/)2 mh exp( (;6 T) ))
(2uT p2 ("'K
and
. V —T 1/2 —K i
(i) P(I5, S -D, S IIL,(' > (uwv)2 mh exp(-{ - T) ))

(”z/T)‘/2 ex (r-K)?
<.4 K vp( T

Proof of the Lemma. We will first prove statement (i ) of the lemma. Let us define

: - (y)=1DS(y)-DiS(y)|.
The function ¢(y) defines a random variable on (2, X, which gives a measure of the point-
wise error at the point y. Since all of—the particles are assumed to have equal strength, &, it
" follows that D; S (y )|( and D, S(y )I are monotonically increasing functions of y. Hence

fory € [a,,a9,

DiS(y)-DyS(y) < D S(a2) - Dy S(ay)

_ﬁﬂm— S(az) + Dy S(as) - Dy S(ay)
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< ¢(a2) + Dy S(ag) - Dy S (ay).
(see figure 9). Similarly

D;S(y)-D,,S(y)Z—e(a,)+D,,S(a,)—D,,S(a2).

Consequently, for y € [a,,a4],

| DvS(y)- Dy S(y)| < max(e(ay),e(as))+ DiS(az)-DiS(ay).

We conclude that

| D¢ —-D"S"L’lnv!d (4.17)

< (ag-a;) max( €(a,), e(az) ) + Dy S(az) - Di S(a,)].
As in the proof of Theorem 4.3.4 we now consider the random variables in expression (4.17) as

random variables on , for each fixed w, € Q,. For each such w, € Q; we can choose a

sequence of points a;, 1 =1,....Ng, wherevNo < 2m!/2 such that
-r = a; < 65 <...< N, =T,
and
D‘. S(G,‘+1) - Dk S(a,-) _<_ hm 1/2.
This follows from the fact that the range of D; S is contained in the interval [sL,sL +mh]

and that Dy S(y )Iw , for each fixed w; € Q,, is a smooth monotonic function of y (see figure
H

10).

Consider the function on 2, X2, given by

€ = max ;lﬁ‘,S(a;)—D,,S(a;H = max da)

i=1,..No mh i=1,.Nog mh

For each w, € 0, and so each choice of the g;’s, it is obvious that £ is a random variable on
{1,. On the other hand it is not at all obvious whether it is possible to choose the points a;, as
functions of w,, such that £ is a random variable on 2, XQ,. Fortunately we only need £ to

be a random variable on (1, for each fixed w;.
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We observe that equation (4.17) can be used to show that

IBis - Dl

N1
= Y ID.5-D S|

i=1

L l[" 18 +l]

Nt
< Y (61— a;)[mh €+ Dy S(a;41) - Di S(a; ).

i=1-
< 2rmh [€ + m/?).
Since, for each fixed w;, € 2, £ is a random variable on {2,, it follows that
P15, S - DIl > 2rmh [6+ m~/7])
< Py 2rmh [§ + m™V? > 2emh [§ + m /7))
=Py(£> ) _
We will use Theorem 4.3.4 to estimate this last expression. Observe that for a fixed w; € O,

P (&> 6)

=Py | D.S(a;)- D S(a;)| > mh§ for some ;)

Ny
< YPy | DiS(e;)~Di S(a;)| > mhé)

i=1
< 2Ngexp(~282m ) < 4m/Zexp(-26°m ).
Combining the last m‘»vo series of calculations, we see that
P,(I|D,S - DS ”L‘[-'.'l > 2rmh [6 + m‘l/z]) (4.18)
< 4mY2%exp(-26°m ).
Notice that the function £ was only used as an intermediate to obtain estimate (4.18). Now
we have a conditional estimate on the random variable || 5‘, S - D, S|IL Yor r)? and so we can

use equations (4.7) and (4.8) to show that

P(IID,S - DSl o, ,, > 2rmh (6 + m™/7))

< 4mY3exp(-26°m).
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This completes the proof of the first part of the lemma

Proof of Statements (¢5.) and (¢¢,). We will only prove statement ( i _) and note that. the
proof for statement (if,) follows in a similar way. We recall that Y; = X; + B; for
appropriate normally distributed random variables B;. For a given r > K we will consider
the set £ C Q,X, given by

E=(X"J)n YY)

=]

= {(wy,w) : X; |(u,.u?) €EJ,T; I(u,.wg €J foralli =1,.m}

where J is the interval [—%(r +K )?%(r +K).
Let

L=suwplDs -

L Y-o00,~r}"
We want to show that

{||D',,S—-D,,SHL,(_°°'_')>> L}yCE® (4.19)
where E¢ denotes the compiement of E, and the notation {W€&€I} represents the set
{ (wy,wg) : \Pl(ul,wzje I}, where ¥ is a random variable on ;X and [ is an 'interv:al con-
tained in R . 4

Expression (4.18) will hold if we can show that

<L} - (4.20)

l('wv" ) -

E C{lIbs-Dsl,

For (w,ws) EE,and y < -r

H(y - Y; I(Ul'%)) =0

for t = 1,..,m which in turn implies that

Dls(y)l(upw =at.
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Consequently, for (w;,ws) E E,

DS - D. S|

L Y-oco0,-r)

SUBS = o2l gy + 106 = %l
<swplDs —otll =L

This shows that relation {4.20) holds, and so it follows that expression (4.19) is true.

Expression (4.19) implies that

P(IDiS - DSl y 0y > L) SP(E). __ (4.21)

The proof of the lemma will be completed once we show that

L < i_l_mh exp(-{=K) = T %)),

and

. (2uT)‘/2A (r-K)?
P(E )S m r-K p( 16T )

Statement (4.22) depends on the observation that for (w;,w;) € E, we have —é(r +K) <
X; and so the monotonicity of D, H (y ) as a function y implies that
DH(y - X) < DH(y + S(r+K)).
Consequently, for (w;,ws) € E
0< D,S(y)-s* <mhD,H(y + %(r-i-K))
and so
” Dk -8 “ L l(—oo,—r ) . . (4-24)

5mh“D,,H('+%(r+K))” =mh”DkH”L !

(o0 (K =r))

L Y—0,-7)

Here we have made a simple translational change of variables to the last normed quantity.

We observe that Dy H (y) = &( )andso

(2vT )2
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e
(8‘,1-)1/2

| 4.25
”DkH”Lr(—oo,—;-(K-r)) (2uT)1/2 f ¥(y) (4.25)

. We will now estimate this integral quantity. Suppose z < 0, then

fd>(y) y = l/,‘,f z- z)exp(—) dz

(2r

2

1 Y 22 1 z
< '('2—;)*,/;_{0‘1 exP("2—) dz < Wexp(-?)-

If we set z = (SKW and apply this estimate to equation (4.25), we conclude that
v
(vT)2 (r-K)
1Dy gy S Een-LEE)

and so by equation (4.24) we have that

(z/T)V2

—' 1/2

r-K)zj

L ——mh exp( (16uT

as required.
Finally we must estimate.the probability measure of the set E°. Let I, be the interval
(—oo,——( +K)) and let I, be the interval (— ( +K ),00). The random variables X; satisfy

Assumption 4.4.1, with constants K >0and T > 0, and so for ¢ > 0, the random variables

X; satisfy condition (4,15) and the random variables Y; = X; + B; satisfy condition (4.16).

If we set a = —(r +K ), then we have that
2

P(E¢) = P( UK“ YUX; NI u Y1) u YTl (1))

[

< 2P < ~2(r +K)) + P(X; > ~(r+K))

§ o=

+ DIP(Y < ~—(r+K)) + P(Y; > -=(r +K))

§ =1

H

L(K-r)
< 4m P

(wT)2 ~  (r-K)
("VT)W)— K exp( 160 T )
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where the last inequality follows from the standard estimate (see Feller [22] p. 175)

forz < 0.

We have now shown that estimates (4.22) and (4.23) hold. The conclusion of the proof is

obtained once these estimates are substituted into equation (4.21) to produce

- (v ) (r =K
P(|D, S - D, S”Ll(-oo,—r) > /2 mh.exp( 16vT ))
. 1/2 _ 2
S 4mi2i1—‘l-—exp(_.(.1._ﬂ).

r-K

Proof of the Theorem 4.5.1. We will now use Lemma 4.5.2 with an appropriate choice of
r and & to prove Theorem 4.5.1 for the case of monotonic initial data; that is, data generated
by particles with equal strengths. Specifically, let us assume that the strengths of the particles

satisfy ¢; = h . Let us introduce the.following notation.
ay =4(mh)'}K + (80T )% a A/¥In(1/h))?,

ap= T2 o RV /h )R

1/2

aln(l/ll)-

’

by = 4(mh)/%®

-‘-1(1/5 -1
by — a(mh a2

Now let r = (80T )%a'%n(1/h) + K, and 6§ = a'/?m~"/2n(1/A ) and observe that

) 2rmh [6 + m™/% < ay, (4.26)
(U;—/);/?mh exp(—%ﬁ) < ay, (4-27)-
4m V2exp(-26°m ) < b,, (4.28)
4m(2uT21/2 exp =K )2) < b, (4.29)
r-K 16vT
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In all of these estimates we make use of the fact that o > 1, In(1/h) > 1 and & < 1.
Expression (4.26) is a simple estimate which uses the’ elementary fact that cd +¢ < ¢ [d +¢]

if d,e > 0andc¢ > 1. Expressions (4.27) and (4.29) follow from the calculation .

g N

aln{1/h)
exp(- .

(r'K )2 < l . Y — %
2KT) < exp( [Laln(1/ n(h) ) = h ’
the last inequality depending on the fact that a In{1/h)>1and A < 1. Expression (4.28) fol-

lows from the calculation

1

exp(—262m ) = exp([2aln(1/h )]ln(h )) —_ h‘%m(l/h) S A 2aln(1/l;-).

where we use the fact that ia In(1/h) < 2a In(1/h) and that & < 1.
Estimates (4.26)-(4.29) and the results of Lemma 4.5.2 imply that

P( ”ﬁ'ks -DkS”Ll(_,'r) > al) S bl:
P(I1D.S - D Sl g,y > 82) < b2,

P(| Dy s - D S| ) > az) < by

LYr,0

An application of Theorem 1.4.1 and the triangle inequality then implies that

P(I15,S - D, Sl .\ > o, + 202)
<P(IBs-D.Sl,y.,, > o)
+P(IDi 5 - DSl sy > 82)
+P(1D:S = De Sl v, o > 62)
< by + 2b,.
The constants M, and M, defined in the statement of the theorem satisfy the condition that

. 1 1 lc:ln(l/h)-l .'
@)+ 22, < ;M,a AY¥(n(1/h))* and b, + 2b, < ;Mgh 2 . We conclude that if all

of the particles have strength equal to &, then

HH@S-msM,>§MmMﬂwumﬁ (4.30)
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1
s éM,Zh ?aln(l/h )—l.

It is easy to see that equation (4.30) also holds if the numerical solution is generated by parti-

cles, all with strength equal to -4 .

Let us suppose that § is generated by particles which have strength of absolute size &,

but may be of different sign. For this case we can write § == 5} + S, where

S(y) =o'+ TH(y-X) s,

§, =4

and

Sy(y) = EHU—X-‘)Q'

s, =-h

We observe that

D.S =D,5+D,5,

DS =D, 5+ D S
Let M} and M} denote the constants defined in the statement of the theorem for the step
functions S;, ¢=1,2, and let M, and M, be the corresponding constants for S. Since the
number of particles generating S; and S, are less than or equal to m, it follows that ‘]W}' < M;
for i,7=1,2. We can complete the proof of Theorem 4.5.1 by applying Theorem 1.4.1

together with equation (4.30) to the monotonic initial data S, and S, to show that
P(IID:S - D SHl v > Miah(In(1/4))?)

< P( szll D, Si - D, sill . > é‘?u, ah V2(In(1/k )2 )

V=1 1 =1

< BP(ID:Si - DiSillyu > —M{ ah¥in(1/k))?)

=]

2 . laln(l/h)--l -l—oln(l/h)-l
< ST AMih? < Moh? .
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4.8. Expected Value of the Error. We can now use Theorems 1.4.2 and 4.5.1 to estimate
the expected value of the L ! error of the random walk algorithm. The following result implies
that the random walk algorithm produces an error in L ! which has an expected value of order

at most k'/%(In(1/h ))?, provided the initial particle positions satisfy Assumption 4.4.1.

4.6.1. Theorem. Let k be the time step. Let S be generated by particles with snitial poss-
‘tions given by random vartables X;, ¢ =1,...m which satisfy Assumption 4.4.1, with constants
K >0 and T >0. Let the strengths of the particles have absolt;tc size h, where h < 1/10.
Then,

E[IID:S - DSl 1 ]< CohV¥(In(1/h))

where

Ce = (8 (mh)3K + (8vT)V3 + (2wT)V* mh ] (L + 8 (mh)"/% + 16mh ].

Proof. We will apply Theorem 1.4.2 with

Y =||Dks _5#5"1‘1

and

a = M h'(In(1/h))2
Using the estimates obtained in Theorem 4.5.1, with § = a, we conclude that,
E(IDis - Disll,))
< MaY(n(1/8))? Y P(IIDeS - D S|l L > M R YH(In(1/8)) )
J=0
. o 1ji(1/4)-1
< MAVIn(1/h))2 1+ My k% ] (4.31)
j=1

where we have used the fact that

P(ID.s -Disll,,>0) <1
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Since A < 1/10, we can easily show that
Lin(i/a)-1-
he <z
5
and

h%muh)< 2

Consequently, we conclude that -

1
1., —In(1/k }-1 1

00 h;: in(1/A)-1 _ h? < 25 h'g-ln(l/")‘l <

E 1 - -

i=1 _ 23

We can use this estimate to obtain a bound for the quantity (4.31) which in turn implies that
E(IIDs - Diall i) < MihM¥(in(1/R))? (1 + M. .
The theorem is concluded by obsex;ving that

Co = Ml[l + A{Q].
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Chapter 5

Convergence of the Numerical Method

In this chapter we will bring together the results of the last 4 chapters to produce a proof of
convergence for our overall numerical method. We will show that the expected value of the
'L! norm of the error tends to zero, for an appropriate choice of dependence between time-step
k and spatial discretation parameter, k. If k = v!/241/4 then Theorem 5.4.3 allows us to

assert that

E [l Fuuo - [Di Ak ]" S%uoll 1) < CiohV4(In(1/k))* (5.1)
where n is any positive integer satisflying nk < T and C,; is a constant that depends only on
the diffusion constant v, the final time T and the initial data uy . In Theorem 5.4.2, under

the same conditions on h, k¥ and n, we prove that for any o > 1,

P( | Fus Yo ~ [51: /Tk]" 5% ”L_l > Mgah 1/.4(1’1(1/'l ))2 ) (5.2)

< Mok %aln(l/b)-?
S My

where the constants M3 and M, depend on v, T and u,. From estimate (5.2) we conclude
that as the parameter h decreases, the probability that the L! error is greater than a constant
multiple of A '/*(In(1/A ))? becomes exponentially small as the constant tends to infinity.. This

is an important result from a numerical stand point.

5.1. Description of the Numerical Method. We will now give a complete description of
our method in terms of the random variables X;’ and X; i+1/2 3nd the corresponding random

step functions S'~'uy (y ) and S/ *1/2u (y), introduced in the introduction.

The first step of our algorithm consists of producing an approximation of the smooth
data u, by a step function S, generated by m (say) particles with initial positions

z; , ¢+ = 1,..m, and strengths ¢; of absolute size A, as defined in section 1.1.3.
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The algorithm is then defined in terms of the random variables which describe the posi-
tions of these particles after each step of the fractional step algorithm. We will define these
random variables inductively. Let us denote the random variables which describe the initial

positions of the particles by

X'=z
for 1 = 1,..,m, where we suppose that these random variables are defined on a probability

space ( 2y, £, Py ). Of course the ‘random variables’ X;° are just constants.

Suppose that the positions of the particles at the end of the j* fractional step are

described by random variables X; ¥, which are deﬁneq on the product probability space

(lé;lﬂl ’ xéoz‘ ’ zr;IoP‘ )
The first ha.lf of the next fractional step is associated with solving the advection equation.
The random variables X; ¢ *'/2, which denote the positions of t,h'e particles after this half step
are given by the equation
(XP*12 ., X, 1 41/2) - A(X{ a Xn?)
(see section 3.3 for the definition of 4, ). Notice that the X; 7 +1/2 random variables are defined

on the same probability space as the X; / random variables.

Let us now chose a set of m independent normally distributed random variables, B; 7 *!,
¢ = 1,.,m, defined on the probability Space (941,541, Pj4 ), such that E [B;7*] =0
and Var|B;’*!] = 2uvk. The random variables X;’*! which describe the particle positions at
the end of the j +1 fractional step are obtained by applying the random walk operaior to the
X;7+12 random variables. Specifically, the random variables X; /*! are defined on the pro-

duct space

and are given by
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(leﬂ vy Xom 7+l ) — 51:( X1j+l/2 yooy X j+1/2)
where the operator D is defined with respect to the random variables B; 7*! (see section 4.1

for definition of D, ). Equivalently,

X, it = X, 7 41/2 4 B;- i+l

for:i =1,.,m.
The random step functions which describe the numerical approximation at each step of
the algorithm are defined as follows:

STuo(y) = DA Suo(y) = uk + SH-X7) &

-1
and

.

Sty (y) = A (D, A ) SCuo (y) = uf + LH-X" g

=1

for j a non-negative integer.

5.2. A Property of the Distribution of the Particles. We will now show that the ran-

dom variables X; /~1/2 satisfy Assumption 4.4.1.

5.2.1. Theorem. Let ug€ C¥R) be constant in a neighbourhood of infinity, with variation
contained in the set [-R ,R|. Forh > 0 such that h divides uf — uf , suppose that m parti-
cles generate the step function S°uy . Then, for a time atep k and for a positive integer, 5, the

a

random variables X; 7 7V/?, satisfy Assumption 4.4.1, with constants

K, =R + [|I"°|IL°°+ mh | jk

and T; = jk.

Proof. The proof of this theorem involves showing that the displacement of a particle can be
broken into two sums, one a pure random walk, the other bounded by a displacement due to

" the operator T .
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We observe that the random variables X; i-1/2 and X;? can be written in the form

. -1 -1
X"l/2=23."+12()§‘+1/2-)§‘ )+X,0 (5'3)
=1 =0
and
. ] -t ' :
Xi = LB+ DX )+ XO (5.4
‘ (=1 (=0 . :

. : !
Using the nomenclature of Sections 3.1 and 3.3, we recall that for a fixed w € HOQ,
p=

L+1/2) .
B U
for ¢ = 1,..,m, where z; (k) satisfies equation (3.9) with the initial conditions z; (0) = X;' ] .

W

From expression (3.10) we conclude that

|z(k)-2(0)| < k[lufl +mh] < k[lluoll w+ mhl. (5.5)

Since ‘tl'lis is true for all choices of initial data z; (0) = X;* lu, we conclude that

| G 72X | < k[lluoll o+ mh]. (5.6)

The assumption on ug , together with the properties of the S° operator (see Section 1.1),

implies that the initial positions X;° satisfy | X;°] < R . If we substitute the estimate given
in (5.6) into equations (5.3) and (5.4), we then see that

. i=1 i-1
X< VBt + jk[llugll o+ mh |+ R = ¥ B! +K;

la=] =1

and

. 1 - ’.
,X." S éB," + ]k[lluclle‘F mh ]+R == ZB"‘ +K’

(=1 =1
where K; = jk[{luoll o+ mh |+ R.
izl ] :
The quantities ZB,“ and 2 B;! are sums of independent normally distributed random
| =1 i == : '
variables with zero mean and variance 2vk and so are themselves normally distributed with

mean zero and with variances of 2vk (5 -1) and 2vkj respectively. Hence fora > 0
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. -1
P(Xi V2> a4 +K;)<P(YB' +K; >a +K;)

=1

i-1
=P(Y'B;! = P(-——2
(Za > =gt

< ¥(-——)

| (2vsk )P
and
P(X, >a +K)<P( B’ >a) < (-—2—).
(X4 >0+ K)SP(LB' >0) < otop)
Similarly, we have that -

){‘:.-1/2 Z §B‘l _KJ.

(=]

and

and sofora > 0

P(X." V2 < g - K.)< $(-—2
( s < a b ) — ( (lejk )1/2 )

.and

P(X7 < -0 -K;) S ¢-—s)

Hence the random variables X;’."/2 satisfy Assumption 4.4.1 with constants K; and

T.

;= Jk.
5.3. Accuracy of the Random Walk Operator. Theorem 5.2.1, together with the results
of Theorems 4.5.1 and 4.6.1 allow us to study the accuracy of the diffusive step of our method

for each fractional time step. Specifically we have the following result:
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5.3.1. Theorem. Let uy € C}IR) be constant in a neighbourhood of infinity, with variation
contained in the set (-R ,R]. Let k be the time step, T be the final time, and let h be the spa-

tial parameter, such that h < 1/10. Then, for positive integers, j, such that jk < T and for

a>1
P( Dy 5" %uy - D, Y 2ug |l s > MaahV*(In(1/h)) ) (5.7)
-l—aln(l/lt.)—l
< Mh? ,
and
E (|| D, 5" 2uy -~ D, S72uq || 1] < CghV*(In(1/4))?, (5.8)

where S92y, is the random step function generated by the random variables X; i1 (see
Section 5.1) and the constants M3, M, and Cg are defined as follows:
Ms=38luolld?[R + T llug l o+ T luollay + (84T)V7 + @vT) 2wl sy,

My=8lluoll 6% + 16l ug ll v,

Cg = M3[1 + AI4]

Proof. Theorem 5.2.1 implies that the random variables X; 7712 satisfy Assumption 4.4.1,

with constants K; and T;, where .
K; = jk[”uOHL,,-Jr- mh ]+ R
and T; = jk. Since & < 1/10, it follows from Theorem 4.5.1 that
P(l| D, S'"2uq - Dy ST Pugll 1 > (5.9)

8 (mh V3K, + (8vT; )3 + (2vT;)"? mhah/*(In(1/h ))* )

Lon(1/a)-1
< [8(mh)/? + 16mh |h 2 :

Similarly, we find from Theorem 4.6.1 that
E (D, §5ug - D, S7u, “Ln ] - (5.10)

< (8 (mh)\AK; + (8vT;)'/3 + (2wT; )2 mh| (1 + 8 (mh)'/2 + 16mh | h/*(In(1/h ).
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It is now a matter of simplifying the constants in expressions (5.9) and (5.10). This will

be achieved by making use of the following observations:
(1) mh <|lugllgy (from Theorem 1.1.4).

(2) T; = jk < T, where T is the final time.

(3) K; <R +[llugllyw+Nugllay ]T.

Hence we conclude that

8 (mh )1/2[1{,' + (SVT’- )1/2] + (2VTJ' )1/2 mh < M,,

8 (mh )2 + 16mh < M,,

and

8 (mh JV2(K; + (8T; )% + (20T, )2 mh | (1 + 8 (mh )2 + 16mh ] < Co.
"The proof of the theorem follows on‘ce these estimates are substituted into expressions (5.9)

and (5.10).

5.4. Convergence of the Numerical Method. In this section we will prove the conver-
gence results discussed in the introduction of this chapter. We will first rigorously show that
the L! error of the method is bounded by a sum of terms which can be analyzed using the

results of the previous 4 chapters.

5.4.1. Theorem. Let ug€ CYR ) be given initial data, constant in a neighbourhood of

infinity, such that the variation of ug s supported in the set [-R ,R|. Suppose the time step
k< —;—(“ ug | P + vl uo ”BD‘)—l and that the spatial parameter h > 0 divides ub — uf . Let
T be the final time. Then for a positive integer, n, such that nk < T,

” Fauo - [D‘k-:i‘b]. 50“0 “Lx

hod . ~ « '~
< Cih + Conk® + Conkh + Y 11D 5V 2ug - Dy STV 2ug || s

J=1
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where the random step functsons Sj'l/zuo are defined tn Section 5.1 and the constants are

defined as follows:
Cl = 2R,
90 2 3
Cﬁ = 7 ”“o ”BV[ “uO ”BD2+‘VI|u0 ”Lco”uOHBDl + ”“o ”Loo]
4 o
+ = luollav[lwoll fw + vl wo l goil*2,

1
C = ';”"OHBV~ '

Proof. As we indicated in the introduction of this paper, the triangle inequality implies that

the L ! error
| Farwo = [De Ai]™ S%uo |l

is less than or equal to

| Fag uo "[DkAk]”“o”Lx ' : (5.11)

+ 1 {De Ax]* wo - [Dy Ac]" SPuoll s (5.12)
+”_[DkAk]'souo'—[D;Ek]“souo”u- A (5.13)

Step 1. Expression (5.11) is just the error of the exact fractional step algorithm, as discussed

in Chapter 2. An estimate for this quantity can be obtain via Theorem 2.2.1. Namely

| Farwo = [DyAx]* uoll 1 < Conk?.

Step 2. A simple induction argument using the stability of the advection (see Theorem 1.3.3)
and diffusion operators, together with the accuracy estimate of the S° operator contained in

Theorem 1.1.4, shows that

I [De Ae " ug - [De A ]* So"o“Lx < ”“o -50“0”1,' < Cih
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Step 3. We notice that expression (5.13) is bounded by the sum of terms

| [De Ae]*~7 Dy Ae 8 ug ~ [De A" D A S Mugll 0 (5.14)

and
| (D Ak )*~7 Dy 8 ?ug ~ (D Ax]*™7 D 7 2u0 || (5.15)
for j = 1,..,n. The stébility of the transport and diflusion operators can again be utilized to

show that the terms (5.14) are less than or equal to
| Ak 57w~ Ay S Mg |l 0

This estimate together with the accuracy of the tramnsport operator A, as estimated in
Theorem 3.3.1, implies that the terms given in (5.14) are bounded by Tl{h %mk. Since mh <
| uo |l gv (see Theorem 1.1.4) we conclude that

| (D Ak )7 Dy Ay 8w - [Di Ae]* ™7 Dy Ay S Muo |l s (5.16)

1
< Lo llav it

The stability results also imply that the terms given in expression (5.15) are bounded by

the random variables

I Dy §72ug - D §72u || o (5.17)
Hence expression (5.13) is bounded by the sum of terms given in (5.16) and (5.17) for

7 =1,.,n; thatis
| {Ds Ae]® S%uq - (D Ak ]™ SCuoll o

1 N » 12 —
< Jlucllovnkh + 35 11D S ug - Dy S ug .

J=1

Step 4. Pooling the results of the last three steps we see that the proof of the theorem is

complete.
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Remark. In the following convergence result we need to have the time step k and the spa-
tial parameter h satisfy the relation k = 1*/24/*, This requirement seems to be of a techni-

cal nature. The actual requirement, as observed in numerical experiments, seems to be of the

form k < Y2

5.4.2. Theorem. Let ug€ C¥IR) be given initial data, constant in a neighbourhood of
infinity, such that the variation of uy 18 supported in the set [-R ,R]. Suppose that h > 0
divides v} - ul and that the time step k = vV/?hY4 Let T be the final time. In addition,

suppose that

b < min( L ,A-;%(]Iuo”f,,-*- Al uo llgpi)™®) -

and that n s a posttive integer such that nk < T. Then fora > 1

P( | Fuuo - [Di A ]* S%q |l 1 > Mgah4(In(1/h))?)

1 5
S Mch ;aln(l/h )——4—

with .thc constants Mg and M4 defined as Jollows:
Mg = C, + Tv'?uCy + v"/2Cy + M,
Me= TvVM,
where the constants My and M, are defined in Theorem 5.3.1, and the constants C,, C, and C,

are defined in Theorem 5.4.1.

Proof. We first note that the conditions on & and A and the initial data uy imply that
Theorems 5.3.1 and 5.4.1 are applicable. Theorem 5.4.1, together with Theorem 1.4.1, implies
that

P(- | Fue Uy - [5,,,71‘,,]“50:40 ”Lx >

Cih + Conk? + Cynkh + Mznah'*(In(1/h))?)
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SP(Y DS 2ug - D S Pug || s > Myn ahV¥(In(1/h))?)

i=1

- = S P Dy 55 2ug - D S5 2us || L1 > Maah Y(In(1/h))? ). (5.18)

5 =1
The terms of the sum in expression (5.18) can be estimated by using Theorem 5.3.1. Namely
P(| Dy 572 - D, S ugll 1 > Maah/*(In(1/k))* )

<M h%aln(l/h 1
—_— 4 -

Hence we conclude that
P( || Fu uo - [Di A, )" S%u “L‘ >
Cih .+ Cgnk? + Cynkh + Mgn ah¥*(In(1/h))?)

<M h-;-aln(l/h F1
— 4" .

Since ¥ = v'/?h'/* and A < 1/10, we have

Cih + Conk? + Conkh + Mgn ahV/3(In(1/h))* < Msah/*(In(1/h))?

and

-;-aln(l/h)-l -;-aln(l/k )-%'

M (nh < Mh

Our result now follows. Specifically
P(| Fuuo ~ (D Ac]* S%uo [l 1 > MsahV/4(In(1/A)))
< P(llFuue - (D A ]* S%uqll 1 > Cih + Con k* + Conkh + Myn ahV*(In(1/h))*)
1 1 &
—aln(1/A)-1 ;aln(l/h )——‘—

< M,nh? < M,h

Remark. In a similar manner we can now estimate the L ! norm error of our numerical

method.
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5.4.3. Convergence Theorem. Let ug€ C¥IR) be given tnitial data, constant in a neigh-
bourhood of infinity, such that the variation of uy ts supported in the set [-R ,R]. Suppose

that h > O divides % ~ u§ and that the time step k = v*/?h /4. Let T be the final time. If

1/
b < min(o, 2o (luo ll 2o + vl wo llp)™)

and n ts a positive integer such that nk < T, then
E[[F(nk)uo - Di A ]" S0l 1] < Croh!/*(in(1/h))?
where

Cw = Cx -+ TU.l/z[VCQ -+ Vl/zcg -+ Cg] H
the conatant Cg being defined in Theorem 5.3.1, and the constants C;, Cy and C; being defined

tn Theorem 5.4.1.

Proof. As in the previous theorem, the conditions on k, A and u, guarantee that we can

. apply Theorems 5.3.1 and 5.4.1. Theorem 5.4.1 implies that
E [ ”Fu o — [E;Xk]“ 50“0 "_Ll]

< Cih + Cynk? + Conkh + 3 E [l Dy 7 ug - Dy S5V 2ug |l 1],

i=1
which, by Theorem 5.3.1, is less than or equal to
Cih + Cynk? + Cynkh + Cgnh/*(In(1/h ))%.
Since k = v'/?AY4 nk < T,andIn(1/h) > 1 (k < 1), we conclude that -

Cih + Conk? + Cynkkh + Cgnh/*(In(1/h )}
< Cih + CoT VM Y4 4+ CyTh + CgT v 2R Y4 (In(1/h )
< [Cy + CoT VM2 + CyT + CoT v/ h*/‘(xn(l/A )2 = Cioh V4(In(1/k))?
Hence

Cih + Caonk® + Conkh + Cgnh'/*(In(1/k))* < Cyoh Y¥(In(1/h )}

and so



E(l| Fuuvo - (D 4" S%uoll 1] < Cioh¥*(In(1/h))%

This concludes the proof of the convergence of our numerical method.
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figure 1

Approximation of smooth data with a step function

figure 2

Evolution of particles which form a negative discontinuity. (a) Initial discontinuity. (b) Parti-

cle trajectories. (c) Step function solution at time ¢ .
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figure 3

Evolution of 6 particles which form a positive discontinuity. (a) Initial discontinuity. (b) Par-~
ticle trajectories (Note that two particles are contained in the right most trajectory). (c) Step

function solution at time ¢ .

i,

figure 4

Intersection of particle trajectories. (a) Trajectories of particles. (b) Initial step function gen-

erated by particles. (c¢) Solution at time t'. (d) Solution at time L=,
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figure 5

Distance between two particles with positive strength increases with time.

figure 6

(a) No interaction between particle with positive strength and adjacent numerical shock of
strength greater than -2 . (b) Interaction possible between particles with positive strength

and numerical shock of strength less than -4 .
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figure 7

(a) Step function A; s . (b) Step functions 4, 4, s and A, 4, s .

figure 8

Enlargement of one positive step and rarefaction wave shown in figure 7. Height of jump is A

and width of rarefaction wave is (r - t-}h .
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b.swy)

D, S(y)

figure 9

Difference between smooth function D; S(y) and the step function D, S(y) in the range

[alva2]"
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figure 10

Points a; chosen so that D, S (a;,,) - Dy S{a;) < hm 12,
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