UC Irvine
ICS Technical Reports

Title
Crosslinking in parallel

Permalink
https://escholarship.org/uc/item/36b369mi

Author
Asuri, Hari S.

Publication Date
1992

Peer reviewed

eScholarship.org

Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/36b369mr
https://escholarship.org
http://www.cdlib.org/

ARetryE <
=
67
¢z
A6 ‘?l—ﬁ;

Crosslinking in Parallel

Hari S. Asuri *t
Technical Report 92-93
September, 1992

ABSTRACT

A crosslink is a double link established between the two entries of an edge
in an adjacency list representation of a graph. Crosslinks play important
roles in several parallel algorithms as they provide constant time access
between the two entries of an edge; the existence of crosslinks is usually
assumed. We consider the problem of establishing crosslinks in a crosslink-less
adjacency list for graphs that belong to a class of graphs called the linearly
contractible graphs, and show that cross-links can be established optimally in
O(log nlog* n) time using a CREW PRAM and optimally in O(logn) time
using a CRCW PRAM for such graphs.

* Department of Information and Computer Science, University of California at Irvine,
Irvine, CA 92717. ,

! The support of the National Science Foundation under Grant CCR 89-12063 is
gratefully acknowledged. '

Crosslinking in Parallel

Hari S. Asurit
Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92717

1. Introduction

The use of an adjacency list representation for a graph (particularly if it is sparse *),
saves space, amongst other advantages. In parallel graph algorithms (for sparse and dense
graphs) an adjacency list representation helps to quickly access successive neighbors of a
vertex from within its adjacency list. The adjacency list representation of an undirected
graph contains two copies of an edge, say e = (v,w), with one entry each in the adjacency
lists of vertices v and w. Since both the entries represent the same edge, computations
done on one copy may have to be reported to the other copy so that incorrect or needless
computations on the second copy can be avoided. If the graph is represented using an
adjacency matrix structure, accessing the entry for the second copy is trivial. However, with
an adjacency list representation, such an information transfer may require more than O(1)
time unless there is an easy way to access one copy from the other. Crosslinks provide such
easy access.

A crosslink is just a pointer stored with an entry of an edge to the other copy of an edge.
We will hereafter call the two copies partners of each other. Crosslinks provide constant time
access between partners. Crosslinks have been used in sequential algorithms (for example,
see [CNS81]) to.achieve better running times. Several parallel algorithms use crosslinks to
achieve optimality, and in some parallel algorithms existence of crosslinks helps in avoiding
concurrent memory access. Fundamental algorithms such as the computation of Euler tours
([TV85]) use the crosslinks to achieve fast running times. Many parallel algorithms take
as input an adjacency list representation of a graph and assume the existence of crosslinks
in the input. In this paper, we consider the problem of establishing crosslinks in an
adjacency list input that does not already have crosslinks. We consider the class of linearly
contractible graphs ([Hage90]) and show that for such graphs, crosslinked adjacency lists
can be constructed optimally in O(lognlog* n) time using a CREW PRAM and optimally
in O(logn) time using a CRCW PRAM. ’ .

! The support of the National Science Foundation under Grant CCR 89-12063 is gratefully acknowledged.
* We will say that a graph is sparse if the number of edges is linear in the number of nodes of the graph.

1

2. Preliminaries

Let G = (V, E) be an undirected graph with V| = n and |E| = m. The vertices are
numbered from 1 to n. Following Hagerup ([Hage90]), we say a class G of graphs is linearly
contractible if for all graphs G = (V, E) in G,

a) |[E| = O(|V]), and
b) every minor of G is also in G.

In particular, if (a) can be replaced by |E| < c|V|, we will say § is linearly contractible with
parameter c. '

Hereafter, we will only consider linearly contractible classes of graphs. Notice that
planar graphs and bounded genus graphs in general are examples of classes of linearly
contractible graphs.

We will assume that the input is a set of doubly-linked adjacency lists, one for each
vertex v € V, where an adjacency list for v contains one entry for each one of the edges
incident on v, stored in no particular order. We assume that the numbers of both endpoints
of an edge are stored in its entry in an adjacency list. (If not, the number of a vertex can
be propagated through the entries of its adjacency list very easily.) Since the entries in
an adjacency list are assumed to be stored in no particular order, for an edge e = (v, w),
finding the partner of the entry w in v’s adjacency list may require a sequential search for
an entry for v through the entries in w’s adjacency list. This can be avoided if crosslinks
can be established.

Sequentially, it is quite easy to establish crosslinks. We can in fact do it in linear time
using bucketsort. We first form a list of records, with one record for each edge entry, where
a record for an edge entry (v, w) will have the smaller of the two numbers v and w first,
followed by the larger one. Now, we bucketsort the list of 2n entries first on the smaller
number. Then, we bucketsort the resulting list on the second number. In the resulting sorted
list, all partners are placed next to each other and therefore crosslinks can be established
easily. This procedure takes O(n) time.

In parallel however, we do not know of an integer sorting algorithm that sorts deter-
ministically using linear work (none was known at the time of writing this paper). The
best known deterministic integer sorting method uses O(n log log n) work ([BDHPRS89)).
Randomized parallel algorithms that do linear work are known ([Hage91] and [RR89]);
however, these algorithms do not apply in our case as they consider more restricted input
cases. A second option is to use O(n?) space to establish crosslinks, and this method takes
only O(1) time using O(n) processors. For sparse graphs, the second method still uses
O(n?) space, and one would prefer to eliminate the use of extra space. In this paper, we give
optimal deterministic algorithms to establish crosslinks in certain sparse graphs, namely,
linearly contractible graphs. We remark that in case of bounded degree graphs, the problem
can be solved fairly trivially. In Section 3 below, we give an algorithm to establish crosslinks,
that takes O(lognlog” n) time using O(n/log nlog* n) processors on a CREW PRAM. In
Section 5, we give a CRCW PRAM algorithm that takes O(log n) time using O(n/log n)
processors. Neither of these two algorithms uses more than O(n) extra space.

3. A Parallel Algorithm for Establishing Crosslinks using a CREW PRAM

Our method is based on an alternative sequential method for estabiishing crosslinks in
an adjacency list representation. Algorithm 1 establishes crosslinks sequentially.

Algorithm 1: Sequential Algorithm for Crosslinks
Input: An adjacency list representation A of a graph G and a parameter ¢

1. For each entry w in the adjacency list of each remaining vertex v do

1.1 scan through the first 4¢ elements in the adjacency list of w and find the entry for v; (If w’s
adjacency list has less than 4c elements, scan through all of them.) '

1.2 establish crosslinks between the two entries;
1.3 remove both entries from the corresponding lists;
endfor;
2. Remove all vertices which have empty adjacency lists;
3. If there are no more vertices remaining, go to 4; else, go to 1;

4. Replace the removed entries in their respective adjacency lists;

Theorem 1: Algorithm 1 establishes crosslinks in the adjacency list A of G € G (where G
represents a linearly contractible class of graphs) in O(n) time.

Proof: In step 1, we scan through each entry in each one of the adjacency lists and we
establish crosslinks whenever we find a short list to search in. Assuming that we will have a
short list to search in every time we execute step 1, at least one of the lists is emptied each
time and hence, after a number of executions of step 1, A becomes empty. Since the entries
that are removed are those for which crosslinks are established, when the algorithm stops,
all crosslinks will have been established.

Let Go = G,G1,Gs,...,Gi be the sequence of graphs produced during successive
iterations of step 1, where G} represents the empty graph. Let G; = (ViyEi),for 0 < i < k.
Since every Gj is a subgraph of G, |E;| < c|V;|. Hence, at least |Vil/2 vertices of G; must
each have degree at most 4¢. In other words, during each iteration of step 1, we are not only
guaranteed to find vertices with small degree, but the number of such vertices is at least
one half of the number of vertices remaining in the graph during that iteration. Therefore,
[Vi| € n/2' and |E;| < cn/2'. Hence, it suffices to perform O(log n) iterations of step 1 to
process the entire graph. The number of operations performed during iteration ¢ is O(|V}|)
and hence, using a simple recurrence relation, we can see that the time taken by Algorithm 1
is O(n).

The first version of the parallel algorithm that we propose is a simple parallelization of
Algorithm 1. We assume that each entry in A has been allocated a processor. We then
execute step 1 in parallel, i.e., processor py,y allocated to entry e = (v, w) on v’s list searches
through w’s adjacency list for the entry ¢’ = (w,v). We let Pv,w search through no more
than the first 4c entries of w’s adjacency list. If py,, finds €' within the first 4c entries,
then the crosslinks between e and ¢’ are immediately established. If not, Po,w Will wait to
establish the crosslinks during a later iteration. Since several processors may need to read
through a list simultaneously, we allow concurrent reading. After establishing crosslinks

3

I

between e and €', py ,, marks the two entries for deletion. The time spent by any processor

Po,w is O(1) as only a constant number of entries are searched in w’s list. After an execution

of step 1, a list compaction is performed on the entire set of adjacency lists (by combining) |

them into a single long list) and the marked items are spliced out. List compaction can |

be done in O(logn) time. Step 1 is then iterated until there are no more vertices left to

process. After O(logn) iterations, all crosslinks would have been established (from the proof

of theorem 1) and we just replace the removed elements in the reverse order in which we

removed them back in the adjacency lists by retracing the compaction steps. Alternatively,

we can maintain two copies of the adjacency list representation (say, A and B), and during

the algorithm, we can establish crosslinks in B and splice out elements from A. By doing

this, we do not have to place the removed elements back in A (i.e., we can eliminate step 4),

as at the end, B will have the adjacency list with the crosslinks.
|
|

The problem with the above method is that it under-utilizes too many processors and
takes too much time. As given, the number of processors used is O(n) and the time taken is
O(log® n) because, though we spend constant time in the searching part of step 1, we spend
O(log n) time for the compaction during each execution of step 1 and there are O(logn)
iterations of step 1. We note, however, that since the size of the graph decreases by at least
a half after each execution of step 1, and since the number of operations performed during
each iteration of step 1 is linear in the size of the graph, the total number of operations
performed is O(n). After the first iteration, the number of idle processors is more than one- |
half and this number increases with every iteration. We wish to reduce the time consumed
as well as the number of processors used in the parallel algorithm. '

There are two major issues to be addressed while trying to improve the parallel algorithm
mentioned above:

(1) After each iteration of step 1, at least a constant fraction of entries are marked.

Deleting all of them will require a list compaction which will require O(logn) time. ‘
Hence, we have to delete only some of the marked entries each time. Also, to ensure |
that we perform only O(log n) iterations of step 1, we must make sure that we delete at |
least a constant fraction of the marked entries each time. |

(2) If we use o(n) processors, then we should address the problem of reallocating the
processors to the remaining entries such that the load on the processors is balanced.

We first handle the problem of selecting at least a constant fraction of the marked
entries for deletion by finding a large subset of the marked entries that can be independently
deleted. When two successive entries in an adjacency list have to be deleted at the same
time, since the entries are allocated to different processors, there is a need for conflict
resolution. To enable conflict-free, constant time deletion, we select, from the set D of
entries marked for deletion, a set I of entries that are nonadjacent. The splicing out process
now takes only O(1) time (this is because for any two consecutive marked entries, only one
of them is deleted and there are no conflicts among processors). Further, we find a large
I such that |I| = Q(|D|). Hence, we can still splice out a constant fraction of the total
number of entries in A during each iteration of step 1, and the total number of operations
performed during the entire algorithm is still O(n). There are two ways to compute a large
set I of nonadjacent entries:

(a) we can use deterministic coin tossing ([CV86] and find an O(1) ruling set using
O(log*® ») time and O(n) processors, or

(b) we can use list ranking to rank consecutive entries and choose the odd (even)
numbered entries using O(log n) time and O(n/ log n) processors.

Using O(n) processors and the first method to compute the set I , we get a parallel
algorithm that runs in O(lognlog* n) time. Although the processor-time product would
then be O(nlognlog* n), the total number of operations performed is still O(n) as the size
of the graph still decreases by a constant factor during each iteration.

4. Reducing the Processors and Reallocation

We reduce the processors to O(n/log nlog* n) while maintaining the running time at
O(log nlog* n) by employing Cole and Vishkin’s technique of accelerating cascades (see
[CV86], [CV86a] and [CV86b]). Our technique is quite similar to one used in an earlier
paper by Chrobak and Eppstein ([CE91]). We compute the crosslinks in three phases. In
the first two phases, we have fewer processors than thé“éntries in the list. After the first
two phases, the number of processors equals the number of entries and we use the algorithm
described in the previous section during the third phase. The third phase, therefore, takes
O(log nlog* n) time. During the first two phases, each processor is allocated a set of entries
to process and each processor sequentially processes these items. For every iteration during
phases I and II, the size of the graph decreases by a constant factor. To balance the load

on the processors, we periodically perform processor reallocation. We describe the first two
phases below.

At the start of phase I, we have O(n/log nlog* n) processors and O(n) entries. Hence
each processor is allocated O(lognlog* n) entries. The entries are first allocated to the
processors as follows: we first combine all the adjacency lists into a single long list L (we
merely link the end of A, to the front of A,41, for 1 < v < n). We list rank L and place the
entries in L in an array C in positions indexed by their ranks in L. We divide the entries
in C into groups of O(lognlog* n) consecutive entries and allocate the i-th such group to
processor p;. During the course of the algorithm, during reallocation, we simply compact
C (to get rid of the deleted entries) while maintaining the relative order of the remaining
entries and allocate groups of consecutive entries to processors. We note that by doing
this, we ensure that there are at most two entries per processor pi with a neighbor in its

adjacency list allocated to a different processor. This is important for resolving conflicts, as
we will see shortly.

We run O(log* n) iterations of the algorithm during phase 1. After each iteration, we
reallocate the processors among the remaining entries. The total time involved in phase [is
O(log nlog* n). Table 1 describes the various parameters involved during phase I. During
each iteration in phase I, each processor performs some sequential work (i.e., simply processes
the entries allocated to it sequentially). During this sequential processing stage, any entry
that needs to be spliced out can be spliced out in constant time provided the neighbors of the

“entry are both allocated to the same processor as the entry itself. Otherwise, there may be a
need for symmetry breaking, which is achieved (after the sequential stage) by a routine that

5

finds a large set of nonadjacent entries among the remaining marked entries; this routine can

be executed in O(logn) time (using method (b) mentioned in the previous section) during

each iteration in phase I because there are at most O(1) entries per processor that may ‘
require conflict resolution. The sequential work decreases exponentially with the number

of iterations as the number of entries allocated to each processor decreases exponentially

with the number of iterations, and the rest of the work involves O(log n) time during each
iteration. When summed over the O(log* n) iterations, the time for the sequential part
converges to O(log nlog* n) and hence the total time (not including the time for processor
reallocation) amounts to O(log nlog* n). '

Iteration #Entries #Entries/Processor Processing Time Reallocation Time
1 cin c2lognlog” n c3lognlog® n+ cslognlog* n+
calogn celogn
2 canfk (c2lognlog® n)/k (calognlog® n)/k+ (cslognlog® n)/k+
cqlogn celogn
o
0
0
i+1 | en/kt (c2lognlog™ n)/k (calognlog” n)/ki+ (cslognlog® n)/ki+
cqlogn celogn
o
o
o
After
O(log® n)
iterations | ¢in/log"n chlogn chlognlog* n ctlognlog n
(total time) (total time)

Table 1 : Shows allocation of entries to processors and the times involved during phase I.

€1, €2, €3, €4, Cs, g, k, ¢}, ¢h, c5, and ¢} are constants.

The values shown are all upper bounds.

Processor reallocation is done by compacting the array C' (mentioned two paragraphs
ago) using a simple prefix sum computation. The prefix sum computation involves a
sequential computation part (i.e., where each processors performs some sequential work on
its allocated entries), followed by a parallel computation part. The time for the sequential

6

part decreases with the size of the graph and hence sums up to O(log nlog* n) and the parallel
computation part takes O(logn) time each time. During phase I, processor reallocation
time is done after every iteration and takes O(log nlog* n) total time.

At the start of phase II, the number of entries remaining is O(n/log* n). During each
iteration, every processor works on the entries allocated to it sequentially and the time for
this sequential part decreases with the size of the graph. During the sequential part, each
processor establishes crosslinks, wherever possible, in its allocated entries and deletes entries
that can be deleted without conflicts. After the sequential part, as in phase 1, a large set
of nonadjacent entries among the deletable entries with conflicts is found (this time, using
method (a) mentioned in the previous section). Since the number of entries in conflict is
O(1) per processor, the time spent in finding the large set of nonadjacent entries is O(log* n)
per iteration. We run O(loglogn) iterations of the algorithm during phase II. During
each iteration, the graph size decreases by a constant factor and hence after O(loglog n)
iterations, the number of entries decreases from O(n/log* n) to O(n/logn log* n) equaling
the number of processors.

Processor reallocation is a little difficult in phase II as compared to phase I. We cannot
perform the prefix computation during each of the O(loglog n) iterations of phase II
because this will result in a total time of O(lognloglogn) which is beyond our bound of
O(log nlog* n). Hence, we perform only O(log* n) processor reallocations at carefully chosen
intervals such that the total time used is still O(log nlog* n). Table 2 shows the parameters
involved in the first few iterations of phase II and suggests our idea. We explain the details
briefly now.

During the first iteration of phase II, we reallocate the entries among the processors. We
will call this the 0-th reallocation. After the first iteration of phase II, we have O(n/k log* n)
remaining entries, for some constant &' > 1. We now run b iterations of the algorithm
without performing any processor reallocations, where b is a constant such that 1 < b < &'.
Then, we compact C' and perform processor reallocation. The number of remaining entries
at this time is O(n/k' log* n). The next reallocation is performed after b° iterations of the
algorithm run without any processor reallocation. In general, the (¢ + 1)-th reallocation
is performed b% iterations after the ith reallocation, where t; is a tower of b's with a
height equal to i. (If b is not an integer, then we perform [(b%)] iterations.) During each
iteration, the number of unmarked entries decreases by a factor of &'. Hence, after the i-th
reallocation, there will be O(n/k" log* n) items left in the adjacency lists. It is easy to see
that after O(log® n) reallocations (i.e., when the height of the tower t; is O(log* n)), the
number of entries left equals the number of processors. Each reallocation takes O(logn)
time and hence the total time for reallocations is O(log n log*). '

The number of entries sequentially processed per iteration by each processor between
the i-th and (¢ + 1)-th reallocations is O(logn/k'%), which is also the time required to
process these entries. The time required to find the large set of nonadjacent entries among
those with conflicts is O(log* n) per iteration. However, b iterations are performed during
this interval without any reallocation and therefore, the time involved between the i-th
and (i + 1)-th reallocations is O(b% logn/k'% + b'log*n). Since we perform O(log* n)
reallocations in phase II (actually, we perform the reallocations until ¥"% = O(logn))

7

and because b < k', the time take
reallocations is O(log nlog* n).

n by the part of the algorithm including the time for

') #Entries per Processing Reallocation
Iteration #Entries Processor- Time Time

1 ' din/log* n dzlogn d3logn+ dslogn+
dylog*n dslogn

2 din/(k' log* n) (d2logn)/k' d3 logn/k'+ -

- dylog*n

o

o

o

b+1 din/(k'log’ n) (d2 log n) /¥’ dslogn/k'+ dslogn/k' +
dslog*n dglogn
b+2 din/(k" log® n) (d2logn)/k" d3 logn/k"+ -
' dylog*n

o

o

o

B 4+b+1 | din/(k*log* n) (dzlogn)/k" dslogn/k"+ dslogn/k"+
dylog’n dslogn
¥ +b+2 | din/(k"® log" n) (d3 log n)/k™° dslogn/k""+ dslogn/k""+

dylog*n dglogn

o

o

o

Table 2 shows what happens during a few iterations of phase II. d,,d3, ds, ds,ds, and dg are

constants. b,k > 1 are constants and b < k.

5. A Faster CRCW PRAM Algorithm

In the previous algorithm, the graph size decreases by a constant factor after each
iteration and hence O(logn) iterations are sufficient to completely process the graph.
However, processing within each iteration takes more than constant time and hence the
total time turns out to be O(lognlog™* n). If we are able to perform the computations within
each iteration in O(1) time and if we can reallocate the processors quickly, then we can get
a better running time. Since prefix sum computations can be performed in sublogarithmic
time ([CV86] and [RR89]) using a CRCW PRAM, the processor reallocation part seems
possible. We show here how the main algorithm can be performed so that the total time
used is O(logn) and how this can be combined with a prefix sum computation method
using a CRCW PRAM for processor reallocation so that we can perform crosslinking in 4

_in O(log n) time optimally.

After an iteration in the main algorithm, the following happen:

(1) For a constant fraction of the vertices, we would have established crosslinks for all
the entries in their adjacency lists and we do not have to process these vertices again
for the rest of the algorithm if we can remove all their entries immediately.

(2) For a constant fraction of the rest of the entries in .4, we would have established
crosslinks and marked the entries for deletion from their respective adjacency lists.

In the sequential algorithm, we removed all the marked entries immediately, and we
were then left with a smaller graph on which we ran the algorithm again. In parallel,
removing the marked entries of the type mentioned in (1) above is easy but removing all
the marked entries of the type mentioned in (2) above at once takes O(log n) time and in
the previous parallel algorithm, we found a large subset of such marked entries such that
the chosen subset can be deleted at once. This reduced the running time of our algorithm
from O(log?n) to O(lognlog* n), but still cost us a factor of O(log* n) over the preferred
O(log n) running time.

Call a nonempty adjacency list A[v] active, if the number of unmarked entries on that
list is < 4c. Since G € G, and since all the subgraphs produced during the algorithm are
subgraphs of G, a large fraction of the nonempty adjacency lists remaining in the graph are
active during any iteration. A list that was not active during one iteration may become
active during the next iteration because of the marking (or deletion) of a sufficient number
of its entries. To be able to process the entire graph in O(log n) iterations, we should make
sure that the number of active lists during an iteration is more than a constant fraction of
the number of remaining nonempty adjacency lists. As for those lists that don’t become
active in the current iteration, we can delay the deletion process for some or all of their
entries until these lists are about to become active. Since a list that is about to become
active will have less than 4c unmarked entries in it (no matter what the original number of
entries), we can determine, in O(1) time, if a list is about to be active or not. To do this,
we allocate an array of size 4c + 1 to each adjacency list. Let us consider the case when
we have allocated one processor per entry. Then, each processor allocated to an unmarked
entry attempts to write into these 4c + 1 locations, one location at a time. Conflicts are
resolved arbitrarily. Processors that fail to write in a location will attempt to write in the
next location, until all locations have been written in. Hence, after 4c + 1 attempts, if all

9

the locations have been filled, the size of the list must be larger than 4c and hence the list is
not active. If no more than 4c locations are filled, then the list becomes active. Using O(n)
processors, this procedure takes just O(1) time and hence using O(n/logn) processors, it
takes O(logn) time provided entries are allocated among the processors properly. We use
Algorithm 2 to solve the cross-linking problem.

Algorithm 2: Parallel CRCW Algorithm for Crosslinks Using O(n/logn) Processors
Input: An adjacency list representation A of a graph G and a parameter ¢
Main: '
1. List rank the set of all adjacency lists treating it as a single long list; copy the set of adjacency lists
into an array C such that an entry with rank i is placed into location C[i];

2. Allocate the entries in the array C evenly to the O(n/logn) processors such that each processor gets a
set of consecutive entries in the adjacency lists /* if the number of entries is less than the number of
processors, we allocate one processor per entry*/

3. For each processor p do
For each entry e = (v, w) allocated to p do /* w is an entry in the adjacency list of v */
3.1 if the adjacency list of w has size < 4c then scan through the list and find the entry for v;
3.2 establish crosslinks between the two entries;
3.3 mark both the entries for removal;
endfor;
4. call Subroutine Cleanup to remove marked entries and compact the array C;

5. If there are no more lists to consider, place back the deleted entries in the exact reverse order in which
they were deleted; else go to step 2;
end Main;

Subroutine Cleanup:
for each remaining vertex v let L, be an array of size 4c + 1 attached to v’s adjacency list;
1. for each processor p do

for each entry (v, w) allocated to the processor do If the entry is marked, and if there are no conflicts,
delete the entry; else if the entry is not marked, repeatedly attempt to write entry into the next available
location in L, until a successful write is achieved or all 4¢ + 1 locations of L, have been written into;

2. for all vertices v where L, has at least one unwritten location do:
2.1 sort the entries in L, according to their rank in the original adjacency list of v;
2.2 From the adjacency list of v, splice out any entries between consecutive entries in L,;

3. using a prefix sum computation algorithm, compact the array C to contain just the undeleted entries;
/* This step is not necessary if the number of entries is no more than the number of processors */

end Subroutine Cleanup;

Theorem 2: Algorithm 2 establishes crosslinks in the adjacency lists A of a linearly
contractible graph G in O(log n) time using O(n/ log n) processors.

Proof: We first discuss Subroutine Cleanup. As mentioned earlier, in constant time (with
O(n) processors), we can determine if a list is about to become active in the next iteration or
not. In Subroutine Cleanup, the entries in L, are filled up arbitrarily. We sort these entries
(step 2.1) according to their original ranks. It is now an easy task to remove any marked

10

entries in the adjacency list of v that are between consecutive entries in the sorted list L,.
As for the lists that do not become active in the next iteration, the number of unmarked
entries is larger than 4c. In such a list, we let each processor associated with the list, as it
traverses through the list of its allocated entries, splice out every entry that can be deleted
without a conflict. The marked entries that cause conflicts are those that are consecutive
in an adjacency list and are allocated to different processors. Because we allocate a set of
consecutive entries to each processor, there are only O(n/log n) such entries. We just don’t
delete any of these entries and leave them for later deletion. This will mean that processors
will have to perform extra work during each iteration by scanning through these entries as
well, but there will only be O(1) extra work each time, per processor.

* Processor reallocation is performed by compacting the array C of entries in the adjacency
lists to just contain the entries not deleted from .A. We mark the deleted entries with a 0
in C and the remaining entries with a 1. A prefix sum computation performed on these 0’s
and 1’s will be sufficient to compact C'. Prefix sum computation can be performed optimally
(on an array consisting of O(n) integers of O(logn) bits each) in O(logn/loglogn) time
on a CRCW PRAM [CV86]. We perform the prefix sum computation in two stages: in
the first (sequential) stage, each processor scans through its allocated entries in array C
and computes their prefix sums. We then calculate the prefix sums of the O(r/logn)
sums calculated from the first stage using the sublogarithmic algorithm [CV86]. After the
first stage, we have O(n/logn) elements for which we need to calculate prefix sums and
we have O(n/log n) processors, and hence the algorithm due to Cole and Vishkin can be
easily applied. We note that the processor reallocation needs to be performed only during
the first O(log log n) iterations of the algorithm as the number of entries remaining during
subsequent iterations will be O(n/log n).

Time: The number of entries in .4 to begin with is O(n). During each iteration, at least
half the remaining unmarked entries are marked. We will consider the time by considering
the algorithm in two stages. The first stage is when processor reallocation is performed, i.e.,
when the number of remaining entries is more than the number of available processors. The
duration of the first stage is O(log log n) iterations as during each iteration, at least half the
remaining entries are marked and almost all the marked entries (excepting O(1) entries per
processor) are deleted. The second stage is when no processor reallocation is required.

During the first stage, in iteration 4, each processor is allocated O(3; logn) entries and
step 3 of Main takes 0(71; logn) time. In Subroutine Cleanup, steps 1 and 2 take O(zl. logn)
time (note that all the L,’s together have O(3) entries). The prefix sum computation is
performed in two stages, the first stage of which is sequential (for each processor) and takes
O(3 logn) time and second stage takes O(log n/ log log n) time. The total time, therefore,
is:

11

O(loglog n)
(O(E logn) + O(log n/log log n))

1=1

O(loglogn) 1
= (Z 0(2—. logn)) + O(log n) = O(log n)

1=1

During the second stage, step 3 of Main and steps 1 and 2 of Subroutine Cieanup take
O(1) time during every iteration. This is because each processor is now allocated 0(1)
entries. Hence, the overall time of Algorithm 2 is O(log n). ' |

The algorithm for prefix computation due to Cole and Vishkin is rather complicated and
is not very practical. There is another algorithm due to Rajasekharan and Reif ([RR89))
that can perform prefix sums optimally using a CRCW PRAM in O(logn/ log log log n)
time. This is a simpler algorithm and is quite practical. The only problem with using this
algorithm directly is that since we have to perform prefix sums during the first O(log logn)
iterations of the algorithm, our algorithm will no longer be optimal. However, by using
a technique similar to the one used in the optimal O(log nlog* n) time CREW algorithm
described earlier, we can perform the prefix sums at only some selected intervals calculated
just like in the earlier case and achieve optimality.

6. Conclusion

We have presented optimal parallel algorithms for establishing crosslinks between the
two copies of each edge in the adjacency list representation of linearly contractible classes
of graphs. The first algorithm takes O(log n log* n) time using O(n/log nlog* n) processors
on a CREW PRAM. The second algorithm takes O(log n) time using O(n/ log n) processors
on a CRCW PRAM.

We remark that for bounded degree graphs, crosslinks can be established in O(1) time
using O(n) processors and hence in O(logn) time using O(n/ log n) processors by a simple
algorithm, where we perform just one iteration of the sequential algorithm for the linearly
contractible class of graphs presented in this paper. (Note that neither one of the class
of linearly contractible graphs and the class of bounded degree graphs is contained in the
other.)

Acknowledgemenfs

I would like to thank Prof. George Lueker very much for the immense help he provided
with this paper. Without him, this paper would not have been possible. I would also like to
thank Prof. David Eppstein and Prof. Marek Chrobak for useful suggestions and hints.

12

References

[BDHPRS89] P. C. P. Bhatt, K. Diks, T. Hagerup, V. C. Prasad, and S. Saxena. Improved

[Bren74]
[CNS81]

[CE91]

[CV386]

[CV86a)
[CV86b]

[CV86]

[GPS87]

[Hage90]
[Hage91]
[HCD87]
[LF80]

[RR89]

[TV85]

Deterministic Parallel Integer Sorting. Information and Computation, 94,

pages 29-47, 1991.

R. P. Brent. The Parallel Evaluation of General Arithmetic Expressions. J.
Assoc. Comput. Mach. 21, pages 201-206, 1974.

N. Chiba, T. Nishizeki, and N. Saito. A Linear 5-Coloring Algorithm of
Planar Graphs. J. Algorithms 2, 4, pages 317-327, 1981.

M. Chrobak and D. Eppstein. Planar Orientations with Low Out-degree
and Compaction of Adjacency Matrices. Theoretical Computer Science,
86:243-266,1991.

R. Cole and U. Vishkin. Deterministic coin tossing with applications to
optimal parallel list ranking. Information and Control, 70, pages 32-53, 1986.

R. Cole and U. Vishkin. Approximate parallel scheduling. Part I: The basic
technique with applications to optimal parallel list ranking in logarithmic
time. SIAM Journal on Computing, 17, pages 128-142, 1988.

R. Cole and U. Vishkin. Approximate parallel scheduling .2. Applications
to logarithmic-time optimal parallel graph algorithms. Information and
Computation, 92, pages 1-47, 1991.

R. Cole and U. Vishkin. Faster optimal parallel prefix sums and list ranking.
Information and Computation, 81, pages 334-352, 1989.

A. V. Goldberg, S. A. Plotkin, and G. E. Shannon. Parallel Symmetry-
breaking in Sparse Graphs. In Proceedings of the 19th Annual ACM
Symposium on Theory of Computing, pages 315-324, 1987. '

T. Hagerup. Optimal Parallel Algorithms on Planar Graphs. Information
and Computation, 84, pages 71-96, 1990.

T. Hagerup. Constant-Time Parallel Integer Sorting. Proceedings of the 23rd
Annual ACM Symposium on Theory of Computing, pages 299-306, 1991.

T. Hagerup, M. Chrobak, and K. Diks. Optimal 5-coloring of Planar Graphs.
SIAM Journal on Computing, 18, pages 288-300, 1989.

R. E. Ladner and M. J. Fischer. Parallel Prefix Computation. J. Assoc.
Comput. Mach. 27, pages 831-838, 1980.

S. Rajasekaran and J. H. Reif. Optimal and Sublogarithmic Time
Randomized Parallel Sorting Algorithms. SIAM Journal on Computing,
18, pages 594-607, 1989.

R. E. Tarjan and U. Vishkin. Finding biconnected components and computing
tree functions in logarithmic parallel time. SIAM Journal on Computing 14,
4, pages 862-874, 1985.

13

