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Abstract: Accurate, spatially explicit information about forest canopy fuel properties is essential
for ecosystem management strategies for reducing the severity of forest fires. Airborne LiDAR
technology has demonstrated its ability to accurately map canopy fuels. However, its geographical
and temporal coverage is limited, thus making it difficult to characterize fuel properties over large
regions before catastrophic events occur. This study presents a two-step methodology for integrating
post-fire airborne LiDAR and pre-fire Landsat OLI (Operational Land Imager) data to estimate
important pre-fire canopy fuel properties for crown fire spread, namely canopy fuel load (CFL),
canopy cover (CC), and canopy bulk density (CBD). This study focused on a fire prone area affected
by the large 2013 Rim fire in the Sierra Nevada Mountains, California, USA. First, LiDAR data
was used to estimate CFL, CC, and CBD across an unburned 2 km buffer with similar structural
characteristics to the burned area. Second, the LiDAR-based canopy fuel properties were extrapolated
over the whole area using Landsat OLI data, which yielded an R2 of 0.8, 0.79, and 0.64 and RMSE
of 3.76 Mg· ha−1, 0.09, and 0.02 kg·m−3 for CFL, CC, and CBD, respectively. The uncertainty of the
estimates was estimated for each pixel using a bootstrapping approach, and the 95% confidence
intervals are reported. The proposed methodology provides a detailed spatial estimation of forest
canopy fuel properties along with their uncertainty that can be readily integrated into fire behavior
and fire effects models. The methodology could be also integrated into the LANDFIRE program to
improve the information on canopy fuels.

Keywords: LiDAR; Landsat OLI; data integration; canopy fuel load; canopy cover; canopy bulk
density; megafires

1. Introduction

Forest fuels, the organic matter available for fire ignition and combustion, are an essential
component of fire management activities [1]. Accurate, spatially explicit information on forest fuels is
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required by fire behavior and effects models used in fire management decision support systems, such
as BehavePlus Fire Modeling System, FlamMAP, or First Order Fire Effects Model (FOFEM).

Fire suppression policies adopted during the last century and demographic factors like rural
abandonment have led to fuel accumulation and spatial homogenization of forest fuels that can
unintentionally foster extreme fire events exceeding the recovery capacity of the ecosystems and
reducing their resilience [2]. Moreover, these megafires can adversely change fundamental processes of
energy exchange, water fluxes, and nutrient and carbon cycling [3]. Although historically rare,
megafires are becoming more frequent worldwide, regardless of socio-economic and ecological
conditions or fuel types [3]. Climate change projections indicate their frequency and intensity are
expected to further increase as a result of longer and drier fire seasons [4].

Canopy fuels are particularly important in assessing fire risk because they represent the fuel layer
supporting crown fire spread. Crown fires are more difficult to control than surface fires due to the
increase in the rate of spread, intensity, and spotting, and their effects are more severe and lasting
than surface fires [5]. Fuel properties commonly accepted to control crown fire spread are canopy
cover (CC), canopy fuel load (CFL), and canopy bulk density (CBD) [6]. Canopy cover is defined as
the proportion (0%–1% or 0%–100%) of the forest floor that is covered by the vertical projection of
the tree crowns. This parameter characterizes the horizontal continuity of canopy fuels which affects
the development and propagation of crown fires. CFL refers to the amount of fuel that is potentially
available for combustion, expressed in kg·m−2 or Mg·ha−1. It can be represented by the foliage
biomass [7–9] or by foliage plus the biomass of lichens, moss, and the proportion of small branches
that would be consumed in the flaming front [5,7]. CBD, the mass of available canopy fuel per unit
canopy volume (kg·m−3) that can burn in a crown fire, describes the density of the available canopy
fuel in the stand and determines the critical spread rate needed to sustain an active crown fire [5].

Remote sensing technology, particularly LiDAR, can provide accurate spatio-temporal
characterizations of forest canopy fuels due to their sensitivity to forest structure. LiDAR data collected
from terrestrial, airborne and satellite sensors have already been successfully used to characterize
canopy fuels [10–13]. For instance, CC has been accurately estimated using airborne LiDAR data in
a wide range of ecosystems [14,15]. CFL has also been successfully estimated from metrics derived
from the height distribution of the returns [12,13,16] given the correlation between vegetation height
and biomass. Since CBD is essentially a three-dimensional (3D) variable that requires a description of
the horizontal and vertical distributions of fuel through the canopy, the measurements of vegetation
structure provided by LiDAR have proven to be the most suitable to estimate CBD [8,11,12,17].
A further description of the use of LiDAR technology to characterize forest fuels can be found in
Gajardo et al. [18].

Most of the research on canopy fuel characterization with LiDAR data has been carried out using
airborne sensors focusing on fine spatial scales and small geographical extents; however, information
on forest fuels is required at multiple spatial scales in order to develop appropriate fire management
decision-making activities [1]. In addition, the temporal coverage with airborne sensors is limited
by cost of acquisition, which hampers the analysis of fuel dynamics. García et al. [11] demonstrated
the capability of the ICESat/GLAS spaceborne LiDAR sensor to estimate canopy fuel properties. In
the next few years, two spaceborne LiDAR missions are planned: the ICESat-2/ATLAS [19] and the
Global Ecosystem Dynamics Investigation (GEDI) [20]. These multi-beam profilers will provide a
dense sampling of the Earth’s terrestrial ecosystems, but they will not provide continuous coverage.
Therefore, in order to provide large-scale estimates of canopy fuel properties from satellite LiDAR
sensors or to extrapolate airborne LiDAR based estimates over larger geographical extents, it is
necessary to develop methods for the integration of LiDAR and satellite sensors that provide better
spatial coverage and temporal repeat frequency. In recent years, several studies have evaluated the
use of multispectral and radar data to spatially extrapolate some biophysical variables estimated from
LiDAR [21–23]. However, their potential to extrapolate LiDAR-based canopy fuel properties has not
been evaluated.
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Passive optical sensors, particularly Landsat, have been commonly used to estimate canopy fuel
properties. They generally rely on empirical relationships between field estimates and the spectral
information provided by the sensors [24,25]. The main limitation of passive sensors to characterize
fuels is their limited sensitivity to vegetation height and vertical distribution. Therefore, while these
studies successfully estimated CC, poorer results were obtained for CBD.

This research aimed at establishing a novel method for estimating important canopy fuel
properties to characterize fire behavior and fire effects by integrating post-fire LiDAR and pre-fire
Landsat OLI (hereafter termed Landsat) data. The specific objectives were to (1) estimate CFL, CC, and
CBD from LiDAR data over unburned areas, (2) extrapolate these LiDAR-based estimates over the
entire burned area based on a statistical approach using a Landsat image acquired shortly before the
fire, (3) quantify the uncertainty associated with each pixel, and (4) evaluate the relationship between
the variables estimated and the burn severity.

2. Materials and Methods

2.1. Study Area

The study site comprises the footprint of the 2013 Rim fire in the Sierra Nevada Mountains,
California, that burned more than 104,000 ha over the Stanislaus National Forest and Yosemite National
Park (Figure 1). The area presents rough topography with elevations ranging from 60 to 2400 m and
slopes of up to 90%. The fire burned through a mosaic of vegetation types that vary with elevation,
which included low-elevation grasslands, chaparral and foothill-oak woodland savanna habitat, mixed
conifer-broadleaf forests dominated by pines in the lower montane zone, and mixed conifer forests in
higher elevation areas dominated by firs. A more detailed description of the study site can be found in
Casas et al. [26].
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2.2. Field Data

Field data were collected in November 2014, one year after the LiDAR data acquisition. The time
gap between the field and the airborne campaign was short enough to avoid the effects of vegetation
growth in the canopy fuel estimates over the undisturbed vegetation, which was especially low due to
the ongoing drought. Sixty-five circular plots of 0.09 ha area (equivalent to the Landsat pixel resolution)
were distributed across the 2-km buffer zone around the fire perimeter. The plots were located following
a stratified random sampling scheme using a Landsat-based pre-fire vegetation map provided by the
US Forest Service. The strata were defined by vegetation type (coniferous, deciduous, and mixed
forests) and diameter classes (12.7–25.2 cm; 25.2–50.6 cm; 50.6–76 cm and >76 cm). In addition,
accessibility constraints were considered in the plot selection. The center of each plot was positioned
using a differential GPS. Differential corrections were then applied using the closest fixed antenna
yielding horizontal accuracy better than 0.5 m. These plots were the reference data to calibrate and
validate the models based on LiDAR data. For each tree with diameter at breast height (DBH) greater
than 10 cm, the species were identified and recorded, and the DBH was measured.

Crown fuel load was computed as the foliage biomass (FB), which was obtained using the
National Biomass Estimator Library (NBEL) developed by the Forest Management Service Center
(FMSC). The NBEL synthesizes published biomass equations for the US and also unpublished equations
developed by FMSC, which are stored, along with their associated metadata, in a SQLite database [27].
The equations used to estimate FB were functions of DBH and the tree height. The latter was estimated
from the measured DBH using equations compiled by [28].

2.3. LiDAR Data and Processing

The LiDAR data used in this study were collected on November 2013 by the National Center for
Airborne Laser Mapping (NCALM) using an Optech Gemini Airborne Laser Terrain Mapper (ALTM)
instrument that recorded up to four returns per pulse along with their intensity. The site was flown at
a mean elevation of 2200 m above sea level, with a maximum scan angle of ±14◦ and a nominal 50%
overlap between flight lines, resulting in an average point density of approximately 20 points·m−2.
The vendor provided the classified point cloud in binary LAS 1.4 format, as well as a 1-m digital
elevation model (DEM) that was used to normalize the height of each return. Additionally, the DEM
provided with the LiDAR data was resampled to 30 m using the average of all pixels included within
the 30-m cell, and the slope and aspect were computed for each pixel. Subsequently, a set of metrics
(Table 1) were derived from the height distribution of canopy returns (by applying a height threshold
of 2 m) to describe the canopy structure and distribution of fuels within it. These metrics have been
found to be related to different canopy fuel properties [8,13,16].

In addition to the height information, the intensity values of each LiDAR return were also used
after normalizing them to a standard range [29]. This correction eliminates the effect of path length
variations on the intensity of the returns, mainly caused by the rough topography of the area. Next, a
set of metrics (Table 1) previously used to estimate aboveground biomass were computed [29]. Canopy
cover was estimated as the ratio of the canopy energy to the total energy [14,29]. Typically, a correction
factor of 2 is applied to the intensity of the ground returns to account for the differences in reflectance
between canopy and ground at the wavelength of the LiDAR system [15,30]. However soil type or the
presence of duff and litter affect this correction factor significantly, thus making it site-dependent. The
accurate correction factor was not available for this study site and therefore it was not applied.

Additionally, the canopy reflection sum (CRS) [31] and the density-weighted canopy reflection
sum (DWCRS) were computed [29], which accounts for the point density variation throughout the
study site resulting from topography or scan angle.

Finally, pseudo-waveforms from the LiDAR returns were constructed for each plot [32,33] and the
height of the median energy (HOME), the height/median ratio (HTRT) [34], the mean canopy height
(MCH), and the quadratic mean canopy height (QMCH) were computed from the canopy height
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profile (CHP) [35]. Moreover, the coefficient of variation of the CHP and the area under the canopy
wave were computed to describe the amount of canopy material and its vertical heterogeneity [33,36].

Table 1. LiDAR metrics derived from the height and intensity distributions of the returns.

Height Label Intensity Label Pseudo-Waveform Label

25th Percentile H25 25th Percentile intensity I25 Height of Median Energy HOME
50th Percentile H50 50th Percentile intensity I50 Height to median ratio HTRT
75th Percentile H75 75th Percentile intensity I75 Mean Canopy Height MCH

90th Percentile H90 90th Percentile intensity I90
Quadratic Mean
Canopy Height QMCH

99th Percentile H99 99th Percentile intensity I99
Coefficient of Variation

of the CHP CVCHP

Mean height Mean_h Mean intensity Mean_i Area Under Canopy
Waveform AUCW

Standard deviation Std_h Standard deviation intensity Std_i
Canopy depth CD_h Coefficient of Variation CV_i

Kurtosis Kurt_h Range of intensities Range_i
Skewness Skew_h Skewness Skew_i

Coefficient of Variation CV_h Kurtosis Kurt_i
99th–50th percentile H99-H50 Canopy Cover CC_i

99th–25th percentile H99-H25
% of intensity

accumulated at H25
%Int_H25

90th–50th percentile H90-H50
% of intensity

accumulated at H50
%Int_H50

90th–25th percentile H90-H25
% of intensity

accumulated at H75
%Int_H75

Canopy Cover CC_h % of intensity
accumulated at H90

%Int_H90

% of intensity
accumulated at H99

%Int_H99

Canopy Reflection Sum CRS
Density Weighted Canopy

Reflection Sum DWCRS

2.4. Landsat Data and Processing

A cloud-free orthorectified Landsat reflectance image (path/row: 043/034), acquired on 30 July
2013 was selected to estimate the canopy fuel properties. The image downloaded from the USGS Earth
Explorer web site (http://earthexplorer.usgs.gov/; accessed on 21 August 2015) had been processed
using the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) atmospheric
correction (Masek et al., 2006). Radiometric calibration of the images involved (1) transformation of
digital number values to at-sensor radiance based on published calibration coefficients, (2) correction
to Top-Of-Atmosphere (TOA) reflectance, and (3) atmospheric correction using the 6S radiative transfer
model. Further description of the methodology can be found in Masek et al. [37].

To ensure appropriate spatial alignment between the different datasets used, the Landsat image
was co-registered with the LiDAR intensity image using ground control points (n = 31) and a linear
transformation model, yielding an RMSE = 0.55 pixels.

In addition to the Landsat spectral bands B2-B7, the vegetation signal was enhanced by computing
the Normalized Difference Vegetation Index (NDVI) [38], the Normalized Difference Infrared Index
(NDII) [39], the Enhanced Vegetation Index (EVI) [40], and the Visible Atmospherically Resistant
Index (VARI) [41]. The Tasseled Cap Transformation (TCT) was also calculated [42] using the
coefficients derived by Baig et al. [43] and then the Tasseled Cap Angle (TCA) and Tasseled Cap
Distance (TCD) [44] were computed from the TCT Greenness and Brightness components. These
components are informative for describing forest structure [45–48]. TCA is responsive to vegetation
cover and its gradient, and TCD is related to vegetation composition and structure [49]. Table 2
provides detailed information about the spectral metrics computed from the Landsat data.

http://earthexplorer.usgs.gov/
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Table 2. Spectral indices and band transformations applied to the Landsat OLI imagery.

Spectral Index Formulation Parameters

NDVI =
(

ρNIR−ρR
ρNIR+ρR

)
ρR: Reflectance in the red spectral region
ρNIR: Reflectance in the near infrared spectral region
ρSWIR: Reflectance in the shortwave infrared spectral
region (either 1 or 2, which are in the 1.7–1.9 µm or
2.1–2.5 µm region, respectively
G: Gain factor. Value = 2.5
C1 & C2: Coefficients of the aerosol resistance term.
Values = 6 & 7.5, respectively
L: Soil-adjustment factor. Value = 1
ρB: Reflectance in the blue spectral region
ρG: Reflectance in the green spectral region
TCG: Tasseled Cap Greenness
TCB: Tasseled Cap Brightness

NDII =
(

ρNIR−ρSWIR
ρNIR+ρSWIR

)
EVI = G

(
ρNIR−ρR

ρNIR+C1×ρR−C2×ρB+L

)
VARI =

(
ρG−ρR

ρG+ρR−ρB

)
(TCA) = arctan

(
TCG
TCB

)
(TCD) =

√
TCB2 + TCG2

∆NBR **

NBRpre f ire − NBRpost f ire

where NBR* is computed as:(
ρNIR−ρSWIR2
ρNIR+ρSWIR2

)
* NBR: Normalized Burn Ratio; ** ∆NBR: Differenced Normalized Burn Ratio.

Finally, the Landsat-based pre-fire vegetation map provided by the US Forest Service was
reclassified into three vegetation types: conifers, deciduous, and mixed forest. These auxiliary layers
were used in subsequent statistical analyses.

2.5. Canopy Fuel Properties Estimation from LiDAR Data

This study considered fuel load as the foliage biomass, computed using a non-linear regularized
Least-Squares Support Vector Machine (LS-SVM) as implemented in the LS-SVMlab Toolbox developed
by De Brabanter et al. [50] for Matlab [51]. This approach attempts to find the optimal loss function by
solving a set of linear equations as an approximation for the quadratic programming problem, reducing
the high computational burden associated with solving the quadratic programming problem. As usual
with SVM-based techniques, non-linear modeling was achieved via the so-called “kernel trick,” using
a Gaussian radial basis function (RBF) kernel. The RBF kernel is controlled by its bandwidth (h)
and regularization parameter (γ) that defines the contribution of the training data error in the loss
function to be minimized. These two parameters were calculated by a commonly used grid search
with a five-fold cross validation.

Given the large number of metrics derived from the LiDAR data, feature selection becomes
an important task, not only for processing time reasons but also for generalization performance
and interpretability reasons [52]. Therefore, this study performed feature selection using three
different methods including a stepwise regression approach, an evolutionary algorithm, and an expert
knowledge based model. The latter method selected only two variables that potentially described
the 3D structural characteristics of the canopy, namely H50 and AUCW. Further details on the feature
selection and the LS-SVM approach used to estimate CFL can be found in García et al. [53].

The data from the field campaign were used to calibrate and validate the SVR model based on the
features (metrics) derived from the LiDAR data. Approximately 70% of the plots were used for model
calibration and 30% for independent validation.

CBD was estimated following García et al. [11]. In short, the relative canopy height profile was
computed from the pseudo-waveforms generated for each plot and the previously estimated CFL was
proportionally distributed through it, obtaining a canopy fuel vertical profile (FVP). The FVP was
subsequently smoothed by applying a 3-m running-mean filter, and the maximum of the smoothed
FVP was accepted as the CBD estimate. Figure 2 describes the method.

Finally, CC was estimated as the ratio of the number of canopy to all returns within a given area.
All types of returns (first, last, and intermediate) were used in these computations.
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2.6. Canopy Fuel Properties Extrapolation Using Landsat Data

Extrapolation of canopy fuel properties to the inner part of the burned area, prior to the occurrence
of the megafire, was based on features derived from the Landsat image, using the LS-SVM approach.
LiDAR-based canopy fuel properties were used as reference data. A random selection of >500 plots
(pixels) was carried out based on the histograms of the LiDAR-derived fuel properties to ensure
that full range of canopy fuel values was sampled. Approximately 60% of the sample was used for
calibration and the remaining 40% was used as independent sample for validation purposes.

Feature selection was limited to a stepwise regression approach due to the unfeasibility of
applying the evolutionary algorithm over this large dataset, as well as the lack of a priori knowledge
of what spectral variables were related to the CFL, as these variables are not directly related to foliage
biomass [53]. After applying stepwise regression using all Landsat metrics, the correlation between the
selected variables was evaluated, and whenever a pair of variables showed the absolute value of the
correlation coefficient >0.7 we selected the one more strongly correlated with the dependent variable.

2.7. Model Performance and Error Assessment

The performance of the SVR models was evaluated using the coefficient of determination (R2),
the adjusted coefficient of determination (R2-adj), the root mean square error (RMSE), and the relative
root mean square error (RRMSE). The extrapolation of the canopy fuel properties to the entire study
area was based on a two-step regression approach: first, LiDAR-based estimates were obtained
for each canopy fuel property, and second, a LiDAR-Landsat model was fitted to map the canopy
fuel properties over the whole study area. The errors in each model, denoted by RMSELiDAR and
RMSELandsat, respectively, propagated to the final estimates. Therefore, to calculate the overall error
(variance) of the two-step canopy fuel estimators (i.e., σ2

model) we assumed the error of the individual
steps to be independent, which leads to σ2

model = RMSE2
LiDAR + RMSE2

Landsat. A comprehensive
analysis of error propagation would require considering other sources of error, such as remote sensing
measurement error, sensor noise, or field measurement error. However, information on other sources
of error was not available for this study, and thus these components of the error were considered
negligibly small compared to the error due to modeling.

In the case of the CFL, LiDAR-based estimates were evaluated against our field-based CFL
estimates. As for the CBD, we could not estimate it from the field measurements. However, several
studies have found no statistically significant differences between LiDAR-derived and field-based
canopy profiles [13,54,55]. Therefore, we assumed that the error of the derivation of the FVP was
negligible, and thus the main source of error for CBD computation from LiDAR data resulted from
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the estimation of CFL. Likewise, although CC was not measured in the field, numerous previous
studies have demonstrated that CC can be accurately estimated from LiDAR data. For example,
Morsdorf et al. [15] reported an RMSE of 0.18 using only first returns; Hopkinson and Chasmer [14]
also reported a mean error less than 0.2 in CC estimation from LiDAR data across multiple ecozones.
Using these values as reference for the LiDAR-based CC estimates and an uncertainty of 18% was
assumed. With regards the second step, all Landsat-based canopy fuel properties were validated
against the LiDAR-based estimates.

Furthermore, the 95% confidence interval for each predicted variable was computed for each pixel
using a bootstrapping pairs approach with 500 samples. Resampling techniques such as bootstrapping
can be used to estimate confidence intervals as well as the variance or the standard error (square root
of the variance) of the estimator and are well suited for non-parametric model approaches [56–58].

3. Results

3.1. Estimation of Canopy Fuel Properties from LiDAR Data

Table 3 shows the results of the SVR models developed to estimate CFL using the metrics selected
by each of the feature selection algorithms. The models based on the metrics selected by stepwise
regression and the genetic algorithms showed overfitting issues when applied to the independent
validation datasets, with a decrease of R2 by 21% and 54% and an increase of RRMSE by 27% and 30% ,
respectively. The expert knowledge-based SVR model showed higher stability over the training and
validation data, ensuring its applicability and generalization. This model yielded an R2 of 0.87 and
0.81, and an RRMSE of 30.4% and 33.68% for the calibration and the validation datasets, respectively.
Therefore, this model was used to generate the LiDAR-based CFL map for the study area. Figure 3
shows the scatter plot of the LiDAR against the field estimates of CFL. CC and CBD were not validated
against field data since these variables were not measured in the field. Nevertheless, the accuracy of
the estimation for these variables from LiDAR data is sufficient to be used as reference data for the
Landsat estimates, as demonstrated in other studies [14,15,59].
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Table 3. Features selected and SVR-model accuracies obtained by each feature selection algorithm
to estimate canopy fuel load (CFL). The first line corresponds to the calibration dataset, the second
line corresponds to the validation dataset, and the third line (in bold) correspond the accuracy for the
combined datasets.

Feature Selection Selected Variables R2 R2-adj
RMSE

(Mg·ha−1)
RRMSE

(%)

Stepwise H50 Std_i CCi
0.96 0.96 1.68 17.02
0.75 0.70 4.34 44.52
0.91 0.89 2.37 24.17

Evolutionary AUCW Range_i %Int_H75 Veg Type
0.72 0.69 4.41 44.54
0.18 −0.05 7.27 74.53
0.58 0.50 5.15 52.34

Expert Knowledge AUCW H50

0.87 0.86 3.01 30.40
0.81 0.79 3.28 33.68
0.85 0.84 3.08 31.25

3.2. Canopy Fuel Properties Estimation from Landsat Data

The final model selected to estimate CFL included the Landsat OLI reflectance bands 2–6, the NDII,
and the elevation and slope derived from the DEM. The model used to estimate CC was based only
on the shortwave infrared (band 6), and the model selected to estimate CBD included the brightness
and wetness components of the TCT as well as the elevation obtained from the DEM. Table 4 shows
the performance of the SVR models used to extrapolate the canopy fuel properties using Landsat
data. Figure 4 shows the scatter plots of the Landsat-based versus the LiDAR-based estimates, and the
spatial distribution of the extrapolated canopy fuel properties is shown in Figure 5 (top row).

Table 4. Features selected and SVR-model accuracies obtained for each fuel property. The first line
corresponds to the calibration dataset, the second line corresponds to the validation dataset, and the
third line (in bold) correspond the accuracy for the combined datasets. For CFL the RMSE is expressed
in Mg·ha−1 and for CBD is kg·m−3. CC is expressed as proportion.

Variable Metrics Selected R2 R2-adj RMSE RRMSE (%)

CFL B2–B6, NDII, Elevation, Slope 0.85 0.85 3.24 31.04
0.72 0.71 4.43 41.80
0.80 0.79 3.72 35.37

CC B6
0.79 0.79 0.09 18.88
0.78 0.78 0.10 19.40
0.79 0.79 0.09 19.09

CBD Brightness, Wetness, Elevation 0.66 0.65 0.03 36.71
0.60 0.60 0.03 37.23
0.64 0.63 0.03 36.92

CFL and CC were estimated with similar accuracy and CBD was the variable estimated with the
lowest accuracy. In general, low values were overestimated and high values were underestimated,
especially for CBD, for which saturation of values above 0.15 kg·m−3 was observed.
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3.3. Uncertainties of the Estimates

The combined uncertainty of the estimates was computed using the RMSE of the models
developed at each step (Section 2.7) using the complete reference dataset, i.e., the 65 plots for the
LiDAR model and the 514 pixels for the Landsat model. This resulted in an overall RRMSE of 47.64%
for CFL, 26.24% for CC, and 46.73% for CBD.

Figure 5 (bottom row) shows the uncertainty of the extrapolated canopy fuel properties. Different
patterns are observed among the variables. CC showed the lowest uncertainty with most of the
area having values < 20%. The largest uncertainties corresponded to low CC values, some of which
had estimated CC values < 10%. For CFL and CBD, similar patterns are observed, with the largest
uncertainty values primarily occurring in areas of low CFL and CBD, respectively. However, larger
uncertainty was observed for CFL than for CBD.
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3.4. Relation between Canopy Fuel Properties and Burn Severity

This study explored the impact of the estimated canopy fuel properties on the fire effects by
computing the correlation between each of them and the differenced normalized burn ratio (∆NBR)
used to estimate the burn severity [60]. To untangle the influence of the canopy fuel properties at
different burned severities, the ∆NBR index was grouped into the three burn severity levels of the
severity map provided by the US Forest Service.

All canopy fuel properties showed a moderate correlation with the ∆NBR index within each burn
severity level except for the low severity (Table 5). The strength of the correlation increased with the
level of burn severity. With regards the correlation of each variable with ∆NBR, CC had the strongest
correlation, followed by CBD and CFL.

Table 5. Correlation between ∆NBR grouped into low, moderate, and high levels and the canopy fuel
properties derived at each spatial resolution.

Burn Severity Level CFL CC CBD

Correlation

low −0.14 0.04 0.01
moderate 0.13 0.34 0.24

high 0.26 0.59 0.31

4. Discussion

4.1. Canopy Fuel Properties Estimation from LiDAR Data

The two automatic feature selection algorithms yielded models for CFL estimation that showed
overfitting problems, particularly the evolutionary algorithm. Overfitted models have lower
generalization capability (predictive power) and thus can produce unreliable results when applied to
data that were not used for training. The model based on expert knowledge feature selection used
variables that provided a description of the canopy height (H50) and the amount of canopy material
within the plot (AUCW). AUCW was strongly correlated with the canopy cover (r = 0.95, p < 0.001),
thus also providing information about the horizontal distribution of the vegetation. This model showed
similar performance for the calibration and validation datasets and therefore, no overfitting issues.

This study did not evaluate the accuracy of our LiDAR-based CC estimates against field estimates
since no measurements were collected during our field campaign. Nevertheless, LiDAR technology
has been convincingly demonstrated to provide direct, physically based, and accurate canopy cover
measurement, on its own [14,15]. Furthermore, validation of CC from LiDAR data is usually based on
estimates from hemispherical photographs (HP), which are subject to uncertainties due to illumination
conditions during photo acquisition and processing (filtering, thresholding, zenith angle range used in
the CC estimation, etc.). These factors, if not carefully addressed, might produce large errors. Therefore,
the reference CC data to validate Landsat OLI estimates can be derived from LiDAR over much larger
areas than using field methods, thus allowing the benefits of large samples for modeling.

It was assumed that the error of the LiDAR-based CBD estimates mainly resulted from the CFL
model error. This assumption is supported by other studies showing no statistically significant
differences between canopy profiles derived from LiDAR data and those from the field [54,55].
Although the canopy profiles were derived from pseudo-waveforms, the very high point density of
LiDAR data (20 points m−2) guaranteed having more than the minimum number of returns necessary
to derive acceptable pseudo-waveforms [33]. Furthermore, the LiDAR-based canopy profiles provided
a more realistic representation of the canopy fuel distribution than the one that would be obtained by
using limited field measurements and describing the shape of the crown using a cylindrical or conical
shape as commonly done.
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4.2. Canopy Fuel Properties Estimation from Landsat Data

Although passive sensors are less sensitive to structure than active sensors, it is possible to relate
the spectral information to structural characteristics of the forest [61]. Thus, the correlation between the
spectral information contained in the Landsat bands and structural properties of the canopy, including
biomass and CC, have been demonstrated over different forest types [48,62]. The models used to
estimate the canopy fuel properties also included the NDII as well as the brightness and wetness
components of the TCT. Spectral indices including the shortwave infrared have been proved to have
higher sensitivity to high LAI values [63,64], whereas TCT components have shown their suitability
to infer information on stand age and forest structure [45,46,48], particularly for mature and old
growth stands.

The three canopy variables were estimated accurately, with R2 ranging from 0.66 (CBD)
to 0.85 (CFL) and RRMSE ranging from 18.88% (CC) to 36.71% (CBD) for the calibration datasets. CBD
was the variable for which the model performed the worst, as was expected given the limited capability
of multispectral sensors to represent the vertical distribution of the canopy fuels. However, the CBD
estimates showed better accuracy than those obtained in other studies using passive multispectral data.
For instance, Falkowski et al. [24] reported R2 from 0.06 to 0.47 and RMSE from 0.0485 to 0.052 kg·m−3

using ASTER data. A higher R2 of 0.60 was reported by Erdody and Moskal [65] using aerial imagery.
Based on Landsat data, R2 between 0.33 and 0.55 has been reported by Palaiologou et al. [25] and
Pierce et al. [66], respectively. With regards to CFL, this study was also able to obtain better accuracy
than previously reported. Thus, Erdody and Moskal [65] obtained R2 = 0.67, although the relatively
poor spectral information of their data (green, red and near infrared) and the fact that no ancillary data
was used has to be born in mind.

Out of the three canopy variables estimated, CC is the one that is usually estimated with
the highest accuracy using passive data. R2 of 0.68 and 0.67 were reported for Landsat data by
Palaiologou et al. [25] and Pierce et al. [66], respectively. Better results were reported for ASTER by
Falkowski et al. [24], with R2 from 0.08 to 0.77 and RMSE from 16.56% to 32.35%.

The higher accuracy for estimating canopy fuel properties in our results could stem from the
use of different modeling approaches, differences in the spatial and spectral information of the data
used, as well as the different reference data used to validate the results. Whereas the published
studies discussed above were generally based on multiple linear regressions, this study used an SVR,
a non-parametric approach that can better capture complex non-linear relationships between the
dependent and the explanatory variables [59]. In addition, spectral indices were used based on bands
sensitive to the water content, which are more sensitive to high LAI and biomass values, thus reducing
the saturation effect. Pierce et al. [66] used a non-parametric random forest approach with similar
variables to the ones we used here. The higher uncertainties of their estimates could result from the
difference between the plot size (500 m2) and the area covered by a Landsat pixel (900 m2), as well as
the different type of reference data used to validate the results. They used hemispherical photographs,
while for this study LiDAR-based estimates were used.

4.3. Uncertainty Analyses

The final errors of our estimates, after the error propagation of our two-step approach, were
RMSECBD = 0.033 kg·m−3 (RRMSECBD = 46.73%); RMSECFL = 4.82 Mg·ha−1 (RRMSECFL = 47.64%);
RMSECC = 0.20 (RRMSECC = 26.24%). Despite the high combined high error obtained for CFL and
CBD, the accuracy of these results is better than those reported by other studies. This study did not
account for possible errors in the allometric equations and thus made an implicit assumption that the
field estimates are ground truth. This assumption is common to other studies, but more efforts should
be devoted in the future to account for this source of error in order to fully characterize the uncertainty
of the canopy fuel products.

This study also assumed that the errors in CBD estimates resulted only from the estimation of CFL.
This assumption is supported by other studies showing no statistically significant differences between
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field-based and LiDAR-based canopy profiles and the very high point density used, which allowed
a detailed description of the vertical distribution of the fuels from the derived pseudo-waveforms.
Moreover, validation of this variable is challenging due to the difficulty in measuring CBD in the
field, with no standardized field methods and based on numerous assumptions of crown shape and
distributions of the fuel load through the crown. In the case of CC, accuracy values from the literature
were used for the LiDAR-based estimates, which were based on the comparison of LiDAR estimates
with HP. Although HP is a well-established method to indirectly measure CC, illumination conditions
during the acquisition and the processing of the photographs, can significantly affect the results.
In addition, uncertainties about the area covered by the photographs remain. Therefore, further efforts
are needed to fully characterize the accuracy of the canopy fuel products, which in some cases would
need refinement or development of new field methods. Terrestrial LiDAR systems have a proven
capability for characterizing canopy fuels [10,67], offering great potential as reference data for airborne
and satellite product validation.

A bootstrapping pairs approach was used to derive the uncertainty for each estimated fuel
property at the pixel level. The larger uncertainties were observed for lower canopy fuel properties
values, probably due to the higher within pixel heterogeneity of those pixels as a result of canopy gaps
and soil effects on the spectral signal. Canopy cover was the least uncertainty variable since passive
sensors can provide accurate characterization of the horizontal distribution of the canopy material.
CBD showed a clear saturation effect over 0.15 kg·m−3 due to the lower sensitivity of passive sensors
to the three dimensional arrangement of canopy elements, particularly for dense canopies.

4.4. Relation between Canopy Fuel Properties and Burn Severity

The three canopy fuel properties showed moderate correlation with the ∆NBR index at moderate
and high burn severity levels. At low burn severity levels, CC and CBD did not correlate with burn
severity and CFL presented a moderately negative correlation. This lack of correlation was expected
since tree crowns are not affected at low burn severity areas. CC was the variable with the strongest
correlation with ∆NBR, followed by CBD. Graham et al. [68] indicated the importance of reducing
the amount of fuel as well as its vertical and horizontal continuity for reducing fire severity. The
results support this statement, although they suggest that the horizontal distribution of the canopy
fuels is the most important variable determining burn severity. Nevertheless, the limited capability
of Landsat-based severity measures to capture actual damage caused by fire to the understory and
midstory vegetation in low and moderate severity areas [69] could bias the conclusions of this study,
since CC is measured more accurately by passive sensors.

The weakest correlation found for CFL can be explained by the fact that burn severity is a measure
of the relative fire damage, which can be the same for areas with different fuel loads. Our results
provide insights into the effect of canopy fuel properties on burn severity. However, other factors
affecting fire behavior such as fuel moisture or weather conditions should be considered in future
studies in order to reach more definitive conclusions. Furthermore, this study only considered canopy
fuel properties whereas the ∆NBR will also be affected by understory vegetation, particularly over
more open areas.

5. Conclusions

This research demonstrated how LiDAR-based canopy fuel properties can be extrapolated to
larger regions using Landsat data. The method, which relies on a two-step approach, exploits the
ability of LiDAR data to estimate canopy fuel properties with high accuracy (step 1) and the larger
spatial coverage and higher acquisition frequency of satellite data to accurately extrapolate the canopy
fuel properties over larger areas (step 2). In addition, the uncertainty of the estimates was provided at
the pixel level.

The proposed method to characterize forest canopy fuels is particularly relevant in two ways
for the Landscape Fire and Resource Management Planning Tools (LANDFIRE) program, which
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provides canopy fuel properties at 30 m resolution based on Landsat data. First, it proves how airborne
LiDAR data can be integrated with Landsat data to extrapolate accurate LiDAR-based canopy fuel
properties to provide improved continuous spatial information on canopy fuel properties over large
regions. Second, this extrapolation is based on Landsat data, which is the basic data source used
by the LANDFIRE program. Thus, airborne LiDAR data samples collected for instance by local
agencies or NASA’s G-LiHT could be used along with the Landsat archive data to characterize canopy
fuels regionally.

These results show improved performance against other studies based on Landsat data alone.
This is of considerable importance since the results of fire behavior and fire effect models depend on
the quality of the fuel products used as inputs. Moreover, improved, spatially explicit information
on canopy fuels is critical to making fire management and mitigation more effective and improving
ecosystem resiliency.

This paper also investigated the relation between burn severity and three important canopy fuel
properties, suggesting that the horizontal distribution of the canopy fuels had a higher effect on burn
severity than its vertical distribution.
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