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Abstract

Aim: Seasonally dry tropical forest (SDTF) of the Caribbean Islands (primarily West

Indies) is floristically distinct from Neotropical SDTF in Central and South America.

We evaluate whether tree species composition was associated with climatic gradi-

ents or geographical distance. Turnover (dissimilarity) in species composition of dif-

ferent islands or among more distant sites would suggest communities structured by
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speciation and dispersal limitations. A nested pattern would be consistent with a

steep resource gradient. Correlation of species composition with climatic variation

would suggest communities structured by broad-scale environmental filtering.

Location: The West Indies (The Bahamas, Cuba, Hispaniola, Jamaica, Puerto Rico,

US Virgin Islands, Guadeloupe, Martinique, St. Lucia), Providencia (Colombia), south

Florida (USA) and Florida Keys (USA).

Taxon: Seed plants—woody taxa (primarily trees).

Methods: We compiled 572 plots from 23 surveys conducted between 1969 and

2016. Hierarchical clustering of species in plots, and indicator species analysis for

the resulting groups of sites, identified geographical patterns of turnover in species

composition. Nonparametric analysis of variance, applied to principal components of

bioclimatic variables, determined the degree of covariation in climate with location.

Nestedness versus turnover in species composition was evaluated using beta diver-

sity partitioning. Generalized dissimilarity modelling partitioned the effect of climate

versus geographical distance on species composition.

Results: Despite a set of commonly occurring species, SDTF tree community compo-

sition was distinct among islands and was characterized by spatial turnover on climatic

gradients that covaried with geographical gradients. Greater Antillean islands were

characterized by endemic indicator species. Northern subtropical areas supported dis-

tinct, rather than nested, SDTF communities in spite of low levels of endemism.

Main conclusions: The SDTF species composition was correlated with climatic vari-

ation. SDTF on large Greater Antillean islands (Hispaniola, Jamaica and Cuba) was

characterized by endemic species, consistent with their geological history and the

biogeography of plant lineages. These results suggest that both environmental filter-

ing and speciation shape Caribbean SDTF tree communities.

K E YWORD S

beta diversity, Caribbean, community composition, seasonally dry tropical forest, species

turnover, tropical dry forest, West Indies

1 | INTRODUCTION

The West Indies, the islands of the Caribbean Basin, share a fasci-

nating geological and biogeographical history that has resulted in

complex distributions of terrestrial organisms (Iturralde-Vinent &

MacPhee, 1999; Santiago-Valentin & Olmstead, 2004). These islands

constitute a global biodiversity hotspot (Maunder et al., 2008), and

have experienced major prehistoric (e.g. Steadman et al., 2005,

2015) and historic (Dixon, Hamilton, Pagiola, & Segnestam, 2001)

human impacts on that biodiversity. Terrestrial plant communities in

the West Indies include most major tropical habitats, from mangrove

to cloud forest (Dinerstein et al., 1995). The West Indian terrestrial

vegetation comprises a seed plant flora with 71% endemism (Ace-

vedo-Rodr�ıguez & Strong, 2008, 2012), a value that increases to

77% for woody species in its dry forests (DRYFLOR et al., 2016).

We focus on seasonally dry tropical forest (SDTF), also known as

tropical dry forest. SDTF has been called the most threatened

tropical forest community, both globally (Gillespie et al., 2012; Miles

et al., 2006) and in the West Indies (Banda-R, Weintritt, & Penning-

ton, 2016), owing to its history of extensive human disturbance

(Murphy & Lugo, 1986). We define SDTF as closed-canopy tropical

and subtropical forests typically found in frost-free areas character-

ized by low and seasonal availability of moisture, where annual rain-

fall is less than ca. 1800 mm with a 3–6-month dry season receiving

<100 mm per month (Lugo, Medina, Trejo-Torres, & Helmer, 2006).

SDTF is distinguished from tropical savanna by its closed tree

canopy and lack of fire, and from tropical rain forest, with which it

shares few species, by its deciduous to semi-deciduous canopy,

shorter stature, and lesser vertical complexity. SDTF is often found

on fertile soils, and in the West Indies it is usually found at low ele-

vation on the lee side of mountainous islands or in coastal zones

(DRYFLOR et al., 2016).

The tree flora of the SDTF biome in the Neotropics has a shared

evolutionary and biogeographical history (Dexter et al., 2015). In a
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recent study evaluating SDTF diversity across the entire Neotropics,

the West Indian (“Antillean”) subregion was identified as floristically

distinct (DRYFLOR et al., 2016). Subregional patterns have previ-

ously been identified in continental Neotropical SDTF (Neves, Dex-

ter, Pennington, Bueno, & Oliveira Filho, 2015). A better

understanding of variation in SDTF species composition and its dri-

vers within the West Indies may further identify floristically distinct

subregions—patterns of diversity useful for understanding biogeo-

graphical processes and setting regional conservation targets.

An analysis of SDTF tree species composition in just three Carib-

bean archipelagos (Bahamas, Puerto Rico, US Virgin Islands) sug-

gested similarity in dominant species composition across that portion

of the West Indies in spite of the differences in geologic history

(Franklin, Ripplinger, Marcano-Vega, Freid, & Steadman, 2015), leav-

ing open the question of whether SDTF shows distinct subregional

composition within the islands of the Caribbean Basin. Using data

compiled from almost 600 forest inventory plots or relev�es, record-

ing over 650 woody plant taxa from 11 countries (22 individual

islands) across the West Indies, we addressed the following research

questions:

1. What are the patterns of tree species composition in Caribbean

SDTF?

We expected that composition would be the least distinctive

(would consist of a nested subset of species found elsewhere) in low

elevation areas, young islands and areas at the climatic margins of

the tropics (northern Bahamas, Florida), and most distinctive (greater

species turnover among locations) in geologically old and complex,

large islands of the Greater Antilles where 30–50% of plant species

are island endemics. Nestedness is expected when there is a steep

gradient in resource supply with strong environmental filtering at

one end of the gradient (Chase & Leibold, 2003) and has also been

attributed to dispersal limitations in archipelagos (Lomolino, 1996).

Alternatively, a non-nested pattern dominated by turnover in species

composition among all sites across space would occur if dispersal

limitation, as well as speciation, was important and therefore the “lo-

cal” (subregional) species pool contributed strongly to the commu-

nity. This integrated time-area effect, with larger, older areas having

accumulated more species (Fine & Ree, 2006), could be manifested

as distinct SDTF composition in the three subregions with different

geological histories (Greater Antilles, Lesser Antilles, Bahamian Archi-

pelago).

2. How much variation in species composition among sites (species

turnover across space) is related to geographical distance among

sites, environmental gradients (Austin, 1985), or both?

Ecological communities are assembled from a regional species

pool through the processes of speciation, biotic and abiotic filtering

(selection), and dispersal (Vellend, 2010; Zobel, 1997). We expected

variation to be related to geographical distance if community compo-

sition has been strongly affected by dispersal limitations and

speciation (island endemism) (e.g. Gillespie et al., 2013; Ibanez et al.,

2018; Pennington, Lavin, & Oliveira-Filho, 2009), especially within

large, old islands in the Greater Antilles. Alternatively, the amount of

environmental variation across the study region suggests that com-

positional variation may also be related to environmental filtering

(Franklin et al., 2013; Toledo et al., 2012). If there is environmental

filtering of a region-wide species pool, for example, for species that

can tolerate a strong dry season (Markesteijn, Poorter, Bongers, Paz,

& Sack, 2011), and poor dispersal has not been a factor limiting dis-

tributions, then species composition would be weakly structured by

geographical distance. Here, we pursue both research questions by

synthesizing data from 23 studies of SDTF throughout the West

Indies.

2 | MATERIALS AND METHODS

2.1 | Study area and species composition data

Caribbean SDTF occurs most often on limestone (carbonate) sub-

strates. From a tectonic perspective, Cuba and the Bahamian Archi-

pelago lie on the North American plate, whereas all other sampled

islands lie on the Caribbean plate, which is moving eastward relative

to the adjoining North and South American plates (Meschede &

Frisch, 1998). The Puerto Rico Archipelago and the Virgin Islands are

found on the same microplate that moves somewhat independently

(Hippolyte, Mann, & Grindlay, 2005) and they share biogeographical

affinities (Acevedo-Rodr�ıguez & Strong, 2008). Complex interactions

during the Cenozoic (mostly large-scale strike-slip faulting) at both

the northern and southern boundaries of the Caribbean plate have

deformed the diverse bedrock formations on the Greater Antillean

islands (Cuba, Hispaniola, Jamaica and Puerto Rico + Virgin Islands,

Keppie, 2014). In contrast, the Bahamian islands and southern Flor-

ida are tectonically stable, geologically very young and consist exclu-

sively of carbonate bedrock (Mylroie & Mylroie, 2013; Randazzo &

Jones, 1997). The Lesser Antillean island arc, represented in our

dataset by Guadeloupe, Martinique and St. Lucia, is the result of late

Cenozoic subduction of Atlantic Ocean crust at the eastern margin

of the Caribbean plate (Meschede & Frisch, 1998).

Species occurrences or abundances within sampled locations

(sites) were compiled from 23 published and unpublished datasets

(Table 1; Supporting Information Appendix S1 Table S1) spanning 11

regions—islands or archipelagos—across the West Indies (Figure 1a).

One region is continental—the south Florida peninsula—but we will

refer to islands or archipelagos for simplicity. We include data from

Florida (USA) and Providencia (Colombia) because, although not con-

sidered biogeographically part of the West Indies (Acevedo-

Rodr�ıguez & Strong, 2012), they represent the northern and western

limits of STDF in the Caribbean Basin and allow us to build a region-

wide understanding of species composition. Furthermore, south Flor-

ida and the Keys are part of the Caribbean Biodiversity Hotspot

(Maunder et al., 2008). Sites were located from 13° to 26° N and

61° to 85° W. Elevations ranged from sea level to 884 m and med-

ian site elevation was 38 m.
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Data were from ecological surveys or forest inventories between

1969 and 2016, and most consisted of stem diameter measurements

at a standard height (1.3–1.45 m) for woody or arboreal taxa of seed

plants identified to species level (in a very few cases to morphos-

pecies, genus or family) in fixed-area plots. For multi-stemmed indi-

viduals, all stems above the diameter threshold were measured and

each stem was treated as an observation in our study. Two studies

recorded cover or Braun-Blanquet importance values for different

height strata, and one recorded species presence/absence (Table 1).

Plot size ranged from 28 to 1000 m2, with most falling between 100

and 500 m2. In total, measurements of almost 46,000 stems and

3,000 species-in-sites (abundance or occurrence) were compiled, and

then stem diameter data were filtered to about 35,000 individuals

≥5 cm (corresponding to the largest minimum diameter in all but one

of the datasets; Table S1, Table 1). While we refer to tree species

for simplicity in this paper, the data include palms (Arecaceae), arbo-

real cacti (Cactaceae) and woody taxa typically taking a shrubby form

if they had at least one stem ≥5 cm in diameter.

Multivariate analyses were conducted using both species relative

abundance (Importance Value calculated from averaging relative

basal area and relative stem density, or from cover or Braun-Blan-

quet values) and the presence/absence. The results were very similar

and so we emphasize results based on the presence/absence, allow-

ing an additional dataset from Hispaniola and a total of 637 sites to

be potentially included for the analysis. After sites with zero compo-

sitional Jaccard distance were eliminated (required for multivariate

ordination based on a dissimilarity matrix), 572 sites remained. Most

(54) of the eliminated sites were monospecific plots from the large

US Forest Service’s Forest Inventory and Analysis (FIA) (Gray, Bran-

deis, Shaw, McWilliams, & Miles, 2012) dataset for Puerto Rico and

the US Virgin Islands, and their removal helped to improve the even-

ness of sampling across the region.

Most data were collected during the last two decades and their

site locations were recorded using a hand-held global positioning

system (GPS) in the field (Table S1). For datasets acquired in earlier

decades, geographical coordinates were assigned from site maps and

descriptions using Google Earth (Table S1). Our environmental vari-

ables consist primarily of 1-km resolution climate data that are spa-

tially autocorrelated over long distances. For the Cuba data, only a

general description of the sample location was given and these have

TABLE 1 Summary of community composition data sources for woody taxa in Caribbean Seasonally Dry Tropical Forest (STDF)

Region Archipelago Island/Location # stems ≥5 cm Sites Citation

Bahamian Archipelago Bahamas Abaco, Eleuthera 4220 42 (Franklin et al., 2015)

Bahamian Archipelago Bahamas N. Andros 3203 12 (I. K. Smith & Vankat, 1992)

Bahamian Archipelago Bahamas Cat, Eleuthera, San Salvador 6061 71 (Daniels, 2016)

Bahamian Archipelago Bahamas Crooked Island 1739 17 J. Franklin, unpublished

Greater Antilles Cuba Dry forest sXp 1339 31 (Borhidi, 1991)

Greater Antilles Hispaniola Los Haitises 105 1 Gentry plot (mobot.org)

Greater Antilles Hispaniola Sierra Martin Garcia sXp 1130 35 (Garc�ıa et al., 2007)

Greater Antilles Hispaniola Sierra Martin Garcia 644 11 J. Franklin, unpublished

Greater Antilles Jamaica Bossue 27 2 D. Kelly, unpublished

Greater Antilles Jamaica Broom Hall, Round Hill 1257 4 (Kelly et al., 1988)

Greater Antilles Jamaica Hellshire Hills 684 12 (McLaren, McDonald, Hall, & Healey,

2005)

Greater Antilles Puerto Rico Mona Island 310 8 (Rojas-Sandoval et al., 2014)

Greater Antilles Puerto Rico Mona Island sXp 660 46 (Melendez-Ackerman et al., 2016)

Greater Antilles Puerto Rico Northeast Puerto Rico 306 3 (Gould, Gonz�alez, & Carrero Rivera, 2006)

Greater Antilles Puerto Rico Dry forest 1369 113 FIA; (Franklin et al., 2015)

Lesser Antilles Guadeloupe Grand-Terre 642 6 (Imbert & Portecop, 2008)

Lesser Antilles Martinique Martinique 257 16 (Vennetier, 2015)

Lesser Antilles St Lucia St Lucia 826 21 (Gonzalez & Zak, 1996)

Lesser Antilles US Virgin Islands Dry forest 1077 90 FIA; (Franklin et al., 2015)

South Florida and Keys Florida Florida Keys 1773 9 (Ross, O’Brien, & Flynn, 1992)

South Florida and Keys Florida Key Largo, Florida Keys 1632 23 (Ross, Carrington, Flynn, & Ruiz, 2001)

South Florida and Keys Florida South Florida and Keys 2995 23 (Gillespie, 2005)

SW Caribbean San Andr�es, Providencia

and Santa Catalina

Providencia 1155 60 (J. Ruiz et al., 2005)

Sites correspond to the number of sites used in the present study. # stems ≥5 cm is the number of tree stems ≥5 cm diameter at a standard height (1.3

–1.45 m) included in the present study. sXp indicated species in plot abundance or presence data (rather than individual stem measurements).

FIA = data from US Forest Service Forest Inventory and Analysis (Gray et al., 2012; O’Connell et al., 2014). For more details see Table S1.
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the lowest precision (we estimate 10 km), introducing some noise to

the analysis.

2.2 | Environmental data

Bioclimatic (“Bioclim”) variables (Nix & Busby, 1986) at 1-km spatial

resolution were acquired from worldclim.org (Hijmans, Cameron,

Parra, Jones, & Jarvis, 2005). These data only cover terrestrial areas

and thus excluded the small island of Providencia, where we calcu-

lated bioclimatic variables (one value for all sites) using local climate

records that featured average but not maximum and minimum

monthly temperatures (Jorge Ruiz & Molano-Gonz�alez, 2017).

The 19 bioclimatic variables provided by worldclim.org describe

seasonal and annual averages of precipitation and averages and

extremes of temperature based on long-term means of monthly val-

ues. They tend to be correlated, and a subset was initially selected

based on their relevance to SDTF distribution (DRYFLOR et al.,

2016; Murphy & Lugo, 1986) and our ability to calculate them for

Providencia. We selected annual mean temperature and precipita-

tion, mean temperature of the warmest and coldest quarters, tem-

perature seasonality and precipitation of the wettest and driest

months (Table 2). These were further examined for multicollinearity,

which led to precipitation of the wettest month being eliminated

from some analyses (Table 2).

Elevation values were extracted from NASA’s Shuttle Radar

Topography Mission (STRM) 90-m resolution data. Elevation is con-

sidered an indirect gradient (Austin, 2002), strongly related to tem-

perature (via the lapse rate), and precipitation (orography), but we

included it because it can serve as a proxy for finer scale climate

variation than is available from the Bioclim 1-km data.

2.3 | Analyses

Hierarchical agglomerative clustering using Jaccard distance and

Ward’s linkage (Peet & Roberts, 2013) was applied to species pres-

ence/absence data for 572 sites and 649 taxa to identify patterns of

tree species composition in Caribbean SDTF (question 1). Differ-

ences among clusters were tested using analysis of variance based

on 999 permutations (PERMANOVA, Anderson, 2001). Patterns of

similarities and differences among groups identified by clustering,

and their distribution with respect to environmental gradients, were

visualized using indirect ordination based on non-metric multidimen-

sional scaling (NMDS, Clarke, 1993). Indicator species analysis

(Dufrêne & Legendre, 1997) identified species characteristic of the

groups of sites identified by hierarchical clustering. The multivariate

vegetation analyses used are robust to variations in forest plot sizes

ranging from 50 to 1000 m2 (Otypkov�a & Chytry, 2006), encompass-

ing most of the range found in this study. We were able to use

Importance Value (IV) and stem density (from the plots where those

were measured) to evaluate patterns of species frequency versus

abundance within and among groups defined in the multivariate

analyses.

The degree of correlation between climate predictor variables

and geographical coordinates was calculated. Principal components

analysis was applied to the bioclimatic variables for the sites and

then analysis of variance was used to evaluate whether climatic dif-

ferences were due to sites belonging to different islands/archipela-

gos. Beta diversity (compositional dissimilarity among sites) was

partitioned into nested and turnover components (question 1) using

the R package ‘betapart’ (Baselga & Orme, 2012). We assessed the

importance of climate versus geographical distances between sites

85 W 80 W 75 W 70 W 65 W 60 W

15 N

20 N

25 N

85 W 80 W 75 W 70 W 65 W 60 W
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25 N

Ward Clusters
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Florida Keys

The Bahamas

Cuba

Hispaniola

Jamaica
Puerto Rico

US. Virgin Islands

Martinique

Guadeloupe

St. Lucia
Providencia

0 200 400 km
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Distance
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F IGURE 1 a) Map of site locations showing group membership and b) cluster dendrogram resulting from Ward’s hierarchical clustering of
Jaccard distance matrix among 554 sites based on the species presence/absence showing relationships among groups (using the same colour
scheme for group as in (a)). Note that in (a), at this map scale individual sites are not always visible and one symbol may represent tens of
nearby sites (see Tables 1 and S2)
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in explaining dissimilarity in species composition (question 2) using

generalized dissimilarity modelling (GDM, Ferrier, Manion, Elith, &

Richardson, 2007) applied to the same Jaccard community distance

matrix (appropriate for beta diversity studies, Legendre & C�aceres,

2013) used in our clustering and ordination analyses. A reduced set

of bioclimatic predictors (Table 2) was used; because elevation

represents an indirect gradient, and precipitation of the wettest

month (Pwet, bio13) was correlated with mean annual precipitation

(MAP, bio12; r = .89), we dropped these two variables from the

GDM. GDM was implemented using the R package “gdm” (Manion,

Lisk, Ferrier, Nieto-Lugilde, & Fitzpatrick, 2016). We compared the

variance explained by different models computed with both climate

and geographical distance as predictors versus models with only cli-

mate or only geographical distances as predictors (Legendre, 2008).

The importance of each variable in driving compositional dissimilar-

ity was calculated from the curves produced by GDM (functions

showing how beta diversity varies with each environmental and

geographical predictor while holding all other variables constant) by

summing the coefficients of the partial regressions (Fitzpatrick

et al., 2013).

Analyses (clustering, NMDS, analysis of variance, GDM, variance

partitioning) were repeated aggregating taxa to the genus level as a

first-order approximation of the functional, rather than taxonomic,

similarity of sites, assuming that plant species in the same genus

share similar traits and ecological requirements, and play similar roles

in the community. Detrended correspondence analysis (DCA, Hill &

Gauch, 1980), a form of indirect ordination, was also performed for

both species and genus data in order to compare their relative

amount of turnover (compositional dissimilarity) in terms of ordina-

tion axis length (in units of standard deviation of species turnover).

We expected that less turnover of genera would reflect greater

functional similarity of TDF throughout the West Indies as compared

to the species-level analysis which reflects more local patterns of

speciation and endemism. Multivariate community analyses were

performed using the R packages ‘vegan’ (Oksanen et al., 2011) and

labdsv (Roberts, 2012). All analyses were done using R 3.3.3 (R Core

Team, 2017) (script provided in Supporting Information

Appendix S2).

3 | RESULTS

3.1 | Biogeography of community composition

Clustering based on Jaccard distance calculated from the presence/

absence of species, cut at a multivariate Ward’s distance of 2,

yielded 14 groups of sites (Figure 1b) that were significantly differ-

ent (R2 = .41; F = 29.9; p = .001). Clusters consisted primarily of

sites within archipelagos or nearby archipelagos (Figure 1; Figure 2

vs. 3; Table S2), although some clusters overlapped (Fig. S1). The

most distinct was cluster 8 (most sites from Providencia). Island/

archipelago explained 30% of the variation in the community dis-

tance matrix (PERMANOVA; F = 24.2, p = .001).

The SDTF in the West Indies is characterized by several species-

rich plant families including Fabaceae, Myrtaceae (see also Acevedo-

Rodr�ıguez & Strong, 2012), Polygonaceae, Rhamnaceae and Sapin-

daceae (Table 3). Indicator species analysis (Table 3; Table S3)

revealed the following patterns: Northern Caribbean groups 1, 2

(Cat, Eleuthera, and San Salvador islands), and 6 (Crooked Island) are

clusters of Bahamian sites characterized by Coccothrinax argentata,

Vachellia choriophylla and Bursera inaguensis respectively. Northern

Caribbean group 3 (Florida Keys and Bahamas) has Piscidia piscipula,

Metopium toxiferum and Coccoloba diversifolia as indicator species,

while group 5 (Abaco, Andros and Eleuthera in the Bahamas, Florida

peninsula, Florida Keys, Jamaica) is characterized by Exothea panicu-

lata, Sideroxylon salicifolium and Lysiloma sambicu. Indicator species

for Northern Caribbean groups include few endemics (Table S3).

Group 4 includes 102 sites from throughout the region (47 from

Puerto Rico but others from Cuba, Guadeloupe, Jamaica, Providen-

cia, Crooked Island) with Maytenus laevigata and Pictetia aculeata

(West Indian endemics) as characteristic species, although neither

Indicator Values nor p-values are strong (i.e. not >.1 or <.01 respec-

tively) for species associated with this group (Tables 3, S3). Lesser

Antillean group 10 (Martinique, St. Lucia, with a few sites from the

Greater Antilles) had Lesser Antillean (Tabebuia pallida) and West

Indian (Coccoloba pubescens) endemics as indicator species. Group 8

includes 53 of 58 sites from Providencia (and two sites from the

Greater Antilles), with Vachellia collinsii and Campomanesia sp. as

indicators.

TABLE 2 Bioclimatic and geographical variables analysed and
their ranges of values for the 572 West Indian sites analysed

Abbreviation (bio) Variable Range

MAT (bio1)* Annual Mean Temperature 21.0–27.4°C

CV_T (bio4)* Temperature Seasonality

(Coefficient of Variation)

7.8–33.1

Twarm (bio10)* Mean Temperature of

Warmest Quarter

22.1–28.6°C

Tcold (bio11)* Mean Temperature of Coldest

Quarter

19.2–25.0°C

MAP (bio12)* Annual Precipitation 164–2026 mm

Pwet (bio13) Precipitation of Wettest

Period (month)

33–336 mm

Pdry (bio14)* Precipitation of Driest

Period (month)

2–98 mm

alt ‘Altitude’ (elevation above

sea level)

0–884 m

lat Latitude 13.3° to

26.4°N

long Longitude 60.9° to

84.5°W

bio# is the Bioclim variable name (used in worldclim.org).

*Predictors used in generalized dissimilarity modelling (GDM). Bioclimatic

variables were from worldclim.org. Elevation from NASA Shuttle Radar

Topography Mission (STRM) 90 m data downloaded using the getData()

function in the R package raster. Latitude and longitude were from GPS

data recorded for each site or, if not available, approximated using meth-

ods described in Table S1.
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Large Greater Antillean islands tend to be distinctive in their

composition. Group 7 includes 20 of the 30 sites from Cuba, group

11 includes 12 of the 16 sites from Jamaica, and Group 9 includes

44 of 46 sites from Hispaniola, each characterized by many high

indicator value species, including endemics (Table 3; Table S3).

Group 12 comprises sites from Mona (in the Puerto Rico Archipe-

lago) and the main island of Puerto Rico with Coccoloba microstachya

and other West Indian endemics as indicators. Two groups (13, 14)

that characterize “novel ecosystems” sampled mainly in Puerto Rico

and the US Virgin Islands (Table S2), were dominated by non-native

and invasive tree species—Leucaena leucocephala (Wolfe & Van

Bloem, 2012) and Melicoccus bijugatus in group 13, and Vachellia far-

nesiana and Prosopis pallida in group 14.

Twelve of the 20 most frequently recorded native species

occurred in eight or more of the 14 groups (Table S4). Dry forest

specialist Bursera simaruba was the most widespread species, and

was often abundant (as measured by IV or stem density) or even

dominant in sites where it was recorded (see also Lugo et al.,

2006). Bourreria baccata, Krugiodendron ferreum, Amyris elemifera

and Eugenia axillaris also were widespread and moderately abun-

dant (occurring in 9–12 groups, 17–26% of sites, with 0.01–0.09

average IV). Coccoloba diversifolia, Metopium toxiferum, Swietenia

mahagoni and Lysiloma latisiliquum were moderately widespread

and abundant (7–8 groups, 11–20% of sites, 0.09–0.16 IV;

Table S4).

At the genus level (298 taxa in 569 sites), there was less overall

turnover and greater overlap among sites from different islands or

archipelagos. For example, a detrended correspondence analysis

(DCA) based on species data had greater eigenvalues and axis

lengths (in units of standard deviation of species turnover) than a

DCA of genera. DCA axis 1 length for species data was 7.6, while

for genus data it was 3.9 (eigenvalues 0.71 and 0.42 respectively). In

GDM there was less total variance explained in the genus-level dis-

tance matrix (34%) than at the species level (40%), and less overlap

of climate and geographical distance (27% for species, 14% for gen-

era). The general pattern of proportions variance explained by envi-

ronment versus geographical space is similar– 10% climate, 1%

geographical distance, 14% combined at the genus level. At the

aggregated taxonomic level, however, the Lesser Antillean sites (St.

Lucia, Martinique) clustered with those from Puerto Rico and USVI,

and from other Greater Antillean islands (Table S5). Also, the North-

ern Caribbean clusters were more central to the ordination, sharing

many genera with the other groups (Fig. S2).

Almost all variation in site environmental data (bioclimatic vari-

ables and elevation, Table 2) was explained by archipelago member-

ship (999 permutations; R2 = .95; F = 1082; p = .001). Higher

latitude Florida and Bahamas have greater temperature seasonality,

higher average temperature of the warmest quarter, and lower aver-

age temperature of the coolest quarter. Lower latitude Providencia

and St. Lucia have higher mean annual temperature and lower mean

annual precipitation. Easterly (less negative) longitude Puerto Rico

and the US Virgin Islands have higher average temperature of the

coldest quarter, lower temperature of the warmest quarter and

lower temperature seasonality. Hispaniola, Puerto Rico and US Virgin
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Islands include higher elevation SDTF sites (Figure 3; Fig. S3), the

highest being 884 m on the leeward side of Sierra Mart�ın Garcia,

Dominican Republic.

3.2 | Geographical and bioclimatic gradients

Essentially all variance in the compositional dissimilarity matrix was

attributed to species turnover among sites (99.6%) rather than

nested patterns of species composition in sites (Jaccard dissimilarity

based on the presence/absence) by beta partitioning. Most explained

variance in the dissimilarity matrix was explained by climatic dissimi-

larity (12%), or shared geographical distance and climate (27%) and

very little by distance alone (1%; Figure 4). Climate was strongly

geographically structured (Figure 3, Fig. S3). Precipitation of the dri-

est month and average temperature of the coldest quarter were the

climate variables most important in explaining variance in the dissim-

ilarity matrix (Table 4).

4 | DISCUSSION

A recent study of SDTF throughout the Western Hemisphere placed

Caribbean (Antillean) SDTF as distinct from dry forest in the conti-

nental Neotropics, characterized by a high proportion of endemic

tree species (DRYFLOR et al., 2016). We have further demonstrated

intraregional patterns of species composition in West Indian dry for-

ests, characterized by species turnover among archipelagos and

islands (e.g. Franklin et al., 2013; Ibanez et al., 2018). Turnover is

correlated with climatic variation, which in turn is strongly geograph-

ically structured (T. W. Smith & Lundholm, 2010) such that most

variation in climate is explained by archipelago.

Climate and climate + distance accounted for most of the (ex-

plained) variance in site compositional dissimilarity. A strong climate

signal would be expected if comparing wet and seasonally dry tropi-

cal forests in the region, as has been shown globally (Guan et al.,

2015). However, our study, like Neves et al. (2015), identified cli-

mate variation associated with SDTF variation within a Neotropical

subregion. Inter-site geographical distance explains very little addi-

tional variance. In other words, nearby SDTF sites on well-sampled

islands could be quite dissimilar owing to fine-scale environmental

heterogeneity. Spatial vegetation heterogeneity is not uncommon in

water-stressed environments including SDTF (Gerhardt & Hytteborn,

1992), especially in karstic settings (Zhang, Hu, & Hu, 2014). Within

our study region, for example, on Mona island the abundance of tree

species is associated with fine-scale soil nutrient variation (Melen-

dez-Ackerman et al., 2016). Furthermore, there are functional physi-

ological differences among species that are associated with soil

conditions including available moisture (Medina, Cuevas, Marcano-

Vega, Mel�endez-Ackerman, & Helmer, 2017).

While we found very little effect of distance alone on composi-

tion, suggesting that dispersal limitation is not important in shaping

SDTF composition, species composition differed among archipelagos,

a pattern that could be consistent with dispersal limitation (Franklin

et al., 2013). We are not able to completely isolate climate versus

distance effects in our study given the strongly geographically struc-

tured climate.
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TABLE 3 Indicator taxa for 14 vegetation groups in the West Indies established by clustering, and islands. Top five species with indicator
values (IV) >0.5 or, if none >0.5, the top three values are shown

Cluster Islands Species (Family) IV Probability

1 Cat, Eleuthera, San Salvador (Bahamas) Coccothrinax argentata (Arecaceae) 0.47 0.001

Casuarina equisetifolia* (Casuarinaceae) 0.35 0.001

Sabal palmetto (Arecaceae) 0.17 0.001

2 Cat, Eleuthera, San Salvador (Bahamas) Vachellia choriophylla W (Fabaceae) 0.37 0.001

Reynosia septentrionalis (Rhamnaceae) 0.24 0.001

3 Florida Keys, Eleuthera,
Andros, Cat (Bahamas)

Piscidia piscipula (Fabaceae) 0.42 0.001

Metopium toxiferum (Anacardiaceae) 0.24 0.001

Coccoloba diversifolia (Polygonaceae) 0.22 0.001

4 Puerto Rico; USVI; Cuba;
Guadeloupe; Jamaica; Providencia;
Crooked (Bahamas)

Maytenus laevigata W (Celastraceae) 0.09 0.009

Pictetia aculeata GA (Fabaceae) 0.05 0.042

Myrciaria floribunda (Myrtaceae) 0.05 0.042

5 Abaco, Andros, Eleuthera
(Bahamas); Florida;
Florida Keys; Jamaica

Exothea paniculata (Sapindaceae) 0.34 0.001

Sideroxylon salicifolium (Sapotaceae) 0.25 0.001

Lysiloma sabicu (Fabaceae) 0.21 0.001

Myrsine floridana (Primulaceae) 0.05 0.042

6 Crooked (Bahamas) Bursera inaguensis W (Burseraceae) 0.91 0.001

Guapira obtusata (Nyctaginaceae) 0.52 0.001

Thouinia discolor B (Sapindaceae) 0.51 0.001

7 Cuba Oxandra lanceolata GA (Annonaceae) 0.89 0.001

Zuelania guidonia (Salicaceae) 0.84 0.001

Cecropia peltata (Urticaceae) 0.77 0.001

Amyris balsamifera (Rutaceae) 0.77 0.001

Cedrela odorata (Meliaceae) 0.77 0.001

8 Providencia; Puerto
Rico; Cuba

Vachellia collinsii (Fabaceae) 0.71 0.001

Campomanesia sp. (Myrtaceae) 0.40 0.001

Euphorbia cotinifolia (Euphorbiaceae) 0.36 0.001

9 Hispaniola Senna atomaria (Fabaceae) 0.66 0.001

Pilosocereus polygonus (Cactaceae) 0.57 0.001

Guaiacum officinale (Zygophyllaceae) 0.49 0.001

10 Martinique; St. Lucia;
Jamaica

Tabebuia pallida LA (Bignoniaceae) 0.52 0.001

Coccoloba pubescens W (Polygonaceae) 0.42 0.001

Lonchocarpus punctatus (Fabaceae) 0.18 0.001

11 Jamaica Comocladia velutina J (Anacardiaceae) 1.00 0.001

Linociera sp. (Oleaceae) 0.98 0.001

Bauhinia divaricata H (Fabaceae) 0.76 0.001

Casearia sylvestris (Salicaceae) 0.76 0.001

Sarcomphalus laurinus J (Rhamnaceae) 0.74 0.001

12 Mona, Puerto Rico Coccoloba microstachya W (Polygonaceae) 0.69 0.001

Reynosia uncinata W (Rhamnaceae) 0.46 0.001

Stenostomum acutatum W (Rubiaceae) 0.35 0.001

13 Puerto Rico; USVI; Mona;
Providencia

Leucaena leucocephala* (Fabaceae) 0.29 0.001

Trema micrantha (Cannabaceae) 0.09 0.01

Melicoccus bijugatus* (Sapindaceae) 0.08 0.01

14 Puerto Rico; USVI Vachellia farnesiana* (Fabaceae) 0.50 0.001

Prosopis pallida* (Fabaceae) 0.34 0.001

Pithecellobium dulce (Fabaceae) 0.17 0.001

Endemic to B = Bahamas; C = Cuba; GA = Greater Antilles; H = Hispaniola; LA = Lesser Antilles; P = Puerto Rican Bank; J = Jamaica; W = West Indies;

* = non-native, USVI = U.S. Virgin Islands.
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Floristic distinctions within the West Indies are enhanced by

endemism in the three largest islands. One third to one half of the

seed plant species found there are endemic to Jamaica (32%), His-

paniola (42%) and Cuba (51%), compared to the Lesser Antilles

(14%), Puerto Rico and the Virgin Islands (14%), and the Bahamian

Archipelago (9%) (Acevedo-Rodr�ıguez & Strong, 2012). These pat-

terns are reflected in the tree communities of the SDTF where we

found similarities between the Bahamas and Florida, between the

Puerto Rican Bank (Puerto Rico + Virgin Islands) and the Lesser

Antilles, and even between these northern and southeastern subre-

gions (see also Franklin et al., 2015). The most distinctive floristic

expressions of SDTF, characterized by endemic indicator species,

were found on Hispaniola, Jamaica and Cuba. Providencia, far from

the other sampled islands, also supported distinct SDTF, although, as

previously shown, it has greater floristic affinities with the West

Indies than with Central America (J. Ruiz & Fandi~no, 2010; J. Ruiz,

Fandi~no, & Chazdon, 2005).

The subregional patterns found in this study are consistent with

the geological and biogeographical history of the West Indies. Much

of the current Greater Antilles has been continuously above water

since the Middle Eocene (Iturralde-Vinent & MacPhee, 1999), and so

is much older than the Lesser Antilles and the Bahamian Archipelago.

The Greater Antilles share part of their biogeographical history with

southern Mexico and Central America where cooling and drying may

have begun to shape modern plant communities in the Miocene and

Pliocene (reviewed in Santiago-Valentin & Olmstead, 2004). Indeed,

Pliocene climatic changes are thought to have shaped the biogeogra-

phy and distribution of SDTF plants throughout the Neotropics

(Linares-Palomino, Oliveira-Filho, & Pennington, 2011).

Biogeographical patterns based on plant phylogenies suggest that

many West Indian lineages have origins in Mexico and Central Amer-

ica, whereas others originated within the Caribbean region (Santiago-

Valentin & Olmstead, 2004). Overwater dispersal played an impor-

tant role in interchanges of plant taxa both between the continents

and among other land masses in the Caribbean Basin (Pennington &

Dick, 2010), predating the late Pliocene Central American isthmian

connection (O’Dea et al., 2016). Contemporary West Indian (Antil-

lean) dry forests also share the greatest number of species with dry

forests in Mexico and Central America/northern South America

(DRYFLOR et al., 2016; Linares-Palomino et al., 2011). When anal-

ysed at a higher taxonomic level, we found Lesser Antillean SDTF to

be similar to Greater Antillean, reflecting that the Lesser Antilles are

geologically young (lack of genus-level endemism) and that their flora

is largely Antillean rather than South American in origin (Acevedo-

Rodr�ıguez & Strong, 2012).

Contrary to our first prediction, we did not find that subtropical

northern Bahamas and Florida supported a depauperate (nested)

subset of Caribbean SDTF diversity. This is in contrast to nested pat-

terns found over smaller spatial extents in response to habitat frag-

mentation (Ross, Sah, Ruiz, Spitzig, & Subedi, 2016). While the

Bahamian archipelago is geologically young and does not support

high levels of seed plant endemism (Acevedo-Rodr�ıguez & Strong,

2012), we found that SDTF composition in this northern subregion

is distinct within the Caribbean Basin (Franklin et al., 2015), consis-

tent with the climatic differences found there (Figure 3; Fig. S3).

West Indian SDTF tree species that characterize this subregion may

be widely distributed but are not typical (indicators) of other subre-

gions (Table 3), suggesting environmental sorting on the climatic gra-

dient represented in our study (e.g. Table S3).

The high species turnover found in this study is driven by the

many less common species that are important within and restricted

to archipelagos or subregions. In contrast to broader scale Neotropi-

cal patterns (DRYFLOR et al., 2016), however, some widespread spe-

cies also are found frequently (in many sites) and across many

archipelagos or groups in the West Indies. These widespread “gener-

alist” species may be those that are best adapted to recover from

hurricane disturbance by coppicing, withstand seasonal drought and/

or tolerate edaphic extremes (Murphy & Lugo, 1986; Rojas-Sandoval

et al., 2014; Van Bloem, Murphy, & Lugo, 2003).

Future work is needed to better understand the effects of both

natural and human disturbance on patterns of Caribbean SDTF com-

position. Hurricanes are an important natural disturbance in the Car-

ibbean (Mumby, Vitolo, & Stephenson, 2011) driving forest dynamics

(Gannon & Martin, 2014; Tanner, Rodriguez-Sanchez, Healey, Hold-

away, & Bellingham, 2014), whereas continental Neotropical SDTF

experiences fewer hurricanes on average (Bullock, Mooney, & Med-

ina, 1995). Human disturbance includes forest clearing (Chazdon,

2014) and selective tree removal (Murphy & Lugo, 1986). Prehistori-

cally and historically, humans have greatly reduced populations of

F IGURE 4 Proportion of variance (% variation) in compositional
dissimilarity between sites (turnover or beta diversity) explained by
climate variables, geographical distance (1%), their shared variation
(climate+geogr dist), and unexplained variation, based on generalized
dissimilarity modelling (GDM) of Jaccard distance matrix from
presence/absence data

TABLE 4 Predictor variable relative importance (Importance) in
generalized dissimilarity model (GDM) based on Jaccard distance
matrix from species-in-sites presence/absence data. Variables as in
Table 2

Environmental variables Importance

Precipitation of Driest Period (Pdry) 0.14

Mean Temperature of Coldest Quarter (Tcold) 0.09

Mean Temperature of Warmest Quarter (Twarm) 0.05

Annual Mean Temperature (MAT) 0.03

Annual Precipitation (MAP) 0.03

Geographical (lat/long) 0.03

Temperature Seasonality (CV_T) 0.02
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birds and other vertebrate dispersers of SDTF seeds on islands (e.g.

Steadman, 2006; Steadman et al., 2005). In contrast with continental

SDTF where wind dispersal of seeds is common (Bullock, 1995; Pen-

nington, Prado, & Pendry, 2000), bird dispersal dominates Caribbean

SDTF (Ray & Brown, 1994). Disturbance history is undoubtedly an

important factor affecting site composition in our study but knowl-

edge of the disturbance history of sites included in our study was

very uneven among datasets and therefore, we could not directly

analyse disturbance as factor. We did identify some West Indian

SDTF tree communities that were dominated by non-native and

invasive species (see also Franklin et al., 2015).

Low similarity and high turnover across space in this study sug-

gest that conservation areas should range across West Indian coun-

tries and subregions in order to protect SDTF diversity (DRYFLOR

et al., 2016). Our study provides unprecedented detail on the bio-

geography of woody SDTF species in the West Indies, supporting

conservation and restoration decision-making in the region, but also

highlighting data gaps. At the 2013 Caribbean Foresters Meeting,

the National Forests Inventories Working Group noted that their

most recent forest inventories were over 20 years old, and some

Caribbean islands have never conducted a national forest inventory

(Marcano-Vega et al., 2016). SDTF in the West Indies is in a critical

state (Banda-R et al., 2016) and there is an urgent need for region-

ally coordinated forest inventories and monitoring.
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