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Todd Evan Hopkins
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Ecology

The Physiological Ecology of Bat Rays,
Muyliobatis californica, in Tomales Bay, California.

ABSTRACT

I tested the hypothesis that temperature, salinity, and dissolved
oxygen influence the distribution and abundance of elasmobranchs
(sharks, skates, and rays) in Tomales Bay, California. I captured
elasmobranchs monthly (September 1990-April 1992) on longlines set in the
bay. A Poisson regression under generalized least squares was used tc
determine that temperature and salinity were the most important factors
determining the distribution and abundance of the three most commonly
captured species; bat ray, Myliobatis californica, leopard shark, Triakis
semifasciata, and brown smoothhound shark, Mustelis henlei. Females of
all three species were more abundant than males throughout the bay, and
were most abundant in the warmer more saline inner bay. All three
species left Tomales Bay in late fall as water temperatures in the bay
dropped below 10-120C, and returned in early spring after temperatures
rose above 10°C.

The oxygen consumption of bat rays, Myliobatis californica, was

determined at 8, 14, 20, and 26°C. Mean, standard, mass-independent
metabolic rates (MO2 in mg Og°kg-0.67¢h-1) of unacclimated rays at each
temperature were significantly different from one another. MO2 was

extremely temperature sensitive from 20-26°C (Q19 = 6.62), and moderately
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sensitive at the upper (20-26°C: Q1g = 1.85) and lower (8-14°C: Q19 = 2.23)
temperature ranges.

The effects of four temperatures (8, 14, 20, 26°C) on blood oxygen
equilibrium curves of the bat ray, Myliobatig californica, was investigated.
Blood oxygen equilibrium curves at all temperatures were hyperbolic
(n59 < 2), with high affinity (low Psp), large Bohr factors (@ = -0.45 to -0.52),
high blood oxygen carrying capacity (CBO2 = 6.8 to 9.06), and very large non-
bicarbonate buffering capacity (B =1-14.25 to -16.43). CBOg, @, and 53 are
among the largest measured in a poikilothermic elasmobranch. Affinity
decreased with increasing temperature except at 26°C. The affinity shift at
26°C and a concomitant 25% drop in CBOg at this temperature suggests a
hemoglobin heterogeneity. Blood oxygen equilibrium curves were
temperature insensitive between 8+14°C and 20-26°C and most sensitive
between 14-20°C, the temperature irange in which bat rays are most
commonly found in Tomales Bay. Bat rays appear capable of tolerating
anoxia and hypercapnia (low Psg, nsg, and high ), and sustaining high
activity levels (high CBOg, @, and B) by virtue of their unique hematological

characteristics.
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Introduction.

Elasmobranchs are fundamentally different from teleosts in their life
history, behavior, and physiology (Hoenig and Gruber 1990, Pratt and Casey
1990, Nelson 1990). They are slow growing, late maturing, have long
gestation periods, produce few young, and attain a large body size (Hoenig
and Gruber 1990). While less abundant in most systems than teleosts, they
forage near the top of the food chain (Compagno 1990) and may account for
a significant portion of the total biomass in a system (e.g Horn 1980,
Recksiek and McCleave 1973). In addition, they may segregate by sex and
by size on both local and regional scales (Pratt 1979, Castro 1983). Many
species use bays and estuaries for part of the year and depart during the
winter months (Steven 1932, Bearden 1959, Jensen 1965, Struhsaker 1969,
Sage et al. 1972, Snelson and Williams 1981, van der Elst 198 1, Smith and
Merriner 1987, Rousset 1990). Previous studies on elasmobranchs have
shown that temperature and salinity play a role in their distribution (Smith
and Merriner 1987, Struhsaker 1969, Funicelli 1975, Sage 1972, Bearden
1959, Snelson et al. 1988, Snelson et al. 1989, Rousset 1990) but the effects of
these environmental factors has not been quantified.

From a physiological standpoint, temperature, salinity, and
dissolved oxygen should, alone or in concert, influence the distribution of
elasmobranchs. The majority of nearshore elasmobranchs are ectothermic
and changes in the environmental temperature are rapidly transferred to
the body of the animal where nearly every physiological process is affected
(Prosser and Heath 1991). Furthermore, elasmobranchs use various end
products of nitrogen metabolism as osmotically active solutes to maintain

themselves hyperosmotic to their environment (reviewed by Perlman and
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Goldstein 1988), but they are unable to maintain this balance in the face of
decreased salinities (reviewed by Pang et al. 1977). Thus, their
physiological niche (Spotila et al. 1989) is constrained along these axes.
Finally, seasonal or diel dissolved oxygen depressions (hypoxia) are
common in shallow bays and estuaries (Loesch 1960, Taft et al. 1980, Day et
al. 1989) and constitute an important physical disturbance to aquatic
communities (Coutant 1985, Kennedy 1990, Breitburg 1992). Unfortunately,
hypoxia adaptations in elasmobranchs are complex and can be altered over
several time scales (e.g. hours, days, months; Jensen 1991) so that no clear
patterns exist (Johansen and Weber 1976, Butler and Metcalf 1988).

The bat ray, Myliobatis californica, is a large, common, benthic
predator which forages in shallow mudflats and seagrass beds in bays and
estuaries from southern Oregon to the Gulf of California (MacGintie 1935,
Talent 1985, Ferguson and Cailliet 1990, Love 1991). Rays are active
swimmers (Dubsky 1974, McEachran 1990) and are found in large numbers
from April through November in Tomales Bay, California (Ridge 1963, Love
1981) when the temperatures in the bay range from 10°C at the mouth to
26°C in the slightly hypersaline mudflats of the inner bay (Smith et al. 1991)

Tomales Bay is a 20 km long straight basin which averages 1.4 km in
width and 3 m in depth formed by the intersection of the San Andreas fault
with the northern California coastline (Hollibaugh et al. 1988). The bay
watershed covers about 570 km2 and is almost entirely rural, with a
population of about 10,000 persons and 20,000 cows (Smith et al. 1991). The
bay is hydrographically simple and has been divided into two parts based on
chemical and physical characteristics (Hollibaugh et al. 1988, Smith et al
1991). The outer bay (12 km2) is mostly fine sand and has 6 km2 of dense

seagrass beds. The inner bay (16 km2) has extensive intertidal and shallow
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subtidal mudflats covered with macroaglae and 1 km2 of seagrass beds
(Ridge 1963, Spratt 1989)(Figure 1). Longitudinal gradients of hydrographic
variables are large relative to lateral and vertical gradients, and vertical
stratification is weak and episodic (Smith et al. 1991). Exchange of water
between the inner and outer bay during summer is near zero, and the
inner bay tends to be 2-6°C warmer and 1-3 ppt more saline than the outer
bay at this time of year (Ridge 1963, Smith et al. 1991). Mixing is greatest in
winter due to increased yunoff and the inner/outer bay temperature
gradient disappears. Inner bay salinity is largely a function of runoff from
Lagunitas Creek, while Walker Creek has little impact on the salinity of the
outer bay.

The simple hydrography of Tomales Bay, and the abundance of bat
rays found in this bay allowed me to combine field and laboratory work to
examine hypotheses about effects of temperature on bat ray metabolism
(chapter 1) and blood-oxygen binding (chapter 2) and to study the
importance of temperature, salinity, and dissolved oxygen on their

distribution and abundance in the bay (chapter 3).
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The Effect of Temperature on Oxygen Consumption

of the Bat Ray, Myliobatis californica.

Abstract.

The oxygen consumption of bat rays, Myliobatis californica, from
Tomales Bay, California was determined at 8, 14, 20, and 26°C. Mean,
standard, mass-independent metabolic rates (MOg in mg Ogekg-0.67eh-1) of
unacclimated rays at each temperature were significantly different (p <
0.05) from one another. MOg was extremely temperature sensitive from 20-
26°C (Q10 = 6.62), and moderately sensitive at the upper (20-26°C: Q1 = 1.85)
and lower (8-14°C: Q19 = 2.23) temperature ranges.

Tomales Bay is a long shallow bay divided into a warm, slightly
hypersaline inner bay with extensive intertidal and subtidal mudflats, and
a colder more oceanically influenced outer bay which contains mostly fine
sand substrate and dense seagrass beds. Our MOg data, coupled with
preliminary data from an ultrasonic tracking study, suggests that bat rays
may behaviorally thermoregulate; foraging in the warm prey-rich inner

bay, and using the cooler outer bay as a thermal refuge.
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The bat ray, Myliobatis californica, is a common inhabitant of bays
and estuaries from Oregon to the Gulf of California (Love 1991). Rays are
active swimmers (Dubsky 1974, McEachran 1990) and are found in large
numbers from April through November in Tomales Bay, California (Ridge
1963, Love 1991) when the temperatures in the bay range from 10°C at the
mouth to 26°C in the slightly hypersaline mudflats of the inner bay (Smith
et al. 1991, Hopkins personal observation). Telemetered bat rays have been
tracked moving between the inner and outer bay, traversing temperature
differences of 4.5°C over a period of several hours (Hopkins unpubl.).

Behavioral thermoregulation in fishes is widespread (reviewed by
Reynolds and Casterlin 1979, Noakes and Baylis 1990) and the seasonal
onshore and offshore movements of many skates and rays are well
documented (Gunter 1945, Bearden 1959, Struhsaker 1969, Sage et al. 1972,
Talent 1985, Smith and Merriner 1987, Snelson et al. 1988, Yoklavich et al
1991). Virtually all nearshore elasmobranchs, like the bat ray, are
ectothermic. For most aquatic ectotherms, metabolic rate, and therefore
oxygen demand varies directly with environmental temperature (Schmidt-
Nielsen 1983). Respiratory metabolism (oxygen consumption) is a sensitive,
non-invasive indicator of overall physiological status which can be used to
quantify how rapidly oxygen and energy are used (Cech 1990). Increased
oxygen consumption is equated with an elevated cost of homeostasis (Fry
1974, Schreck 1990). Because our field data indicated that bat rays may be
responding to environmental temperatures we wished to quantify the
respiratory metabolism sensitivity of unacclimated bat rays to a range of
temperatures (e.g. 8, 14, 20, and 26°C) characteristic of their habitats in
Tomales Bay in order to better understand the potential energetic cost to the

rays of inhabiting various thermal environments.
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Materials and Methods.

Fish Collection and Holding. - Rays were captured by beach seine in
Tomales Bay (15°C and 33 ppt) and transported to the University of
California, Bodega Marine Laboratory. They were kept without food in an
outdoor, shaded, circular 8,000 L tank, with flowing seawater (14 +1°C and
33 +1 ppt) for 5 days. Experimental animals ranged in disc width from 65-
75 cm (mean 72.2), and mean live body mass was 5.042 kg (range 4.326-
6.814).

Respirometry. - The oxygen consumption of rays was determined by flow-

through respirometry (Cech 1990) using a system of solenoids controlled by
a sprinkler timer (Toro EL-12+) which sequentially shunted part of the
outflowing water from a single respirometer or from an inflow line, for 17
min every 2 hr, past a Nester oxygen electrode (model 617034), which was
connected to a Nester oxygen meter (model 8500). The oxygen meter output
was plotted on a Soltec 310 chart recorder. Flow rates were measured by
timed collection of water from the total outflow of a respirometer. Qxygen
content of the outflowing water was never allowed to drop below 70% of
saturation.

Six rays were placed into 65 L ray-shaped plexiglass respirometers
which were 90% submerged on a large water table (2.4 m wide x 4.6 m long
x 38cm high). The tops of the respirometers were covered with black plastic
and the room lights were kept off so that only indirect light (natural
photoperiod) entered the room. We used a sequential temperature design

wherein rays were placed into the respirometers and allowed to acclimate
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for 12 h. Then the temperature was altered by 0.5°C/h for 6 h until it
reached the new experimental temperature, the fish were again allowed to
adjust for 12 h, and their oxygen consumption recorded for 12 h. Then tthe
cycle of temperature change, adjustment, and oxygen consumption |
recording was repeated. Thus, once rays were put into the respirometers
their oxygen consumption was measured in the following temperature
sequence: 14, 8, 14, 20, and 26°C. Experimental temperatures were
maintained within +0.3°C.

An electronic temperature relay controlled the addition of warm
(28°C) or cold (6°C) aerated seawater (33 ppt) to a continuous flow (60-80 L/h)
of ambient 14°C seawater in a central 250 L mixing tank. Water from the
mixing tank was pumped into a second 250 L tank and then up to an
insulated 40 L cooler, with an overflow standpipe, suspended 1.5 m above
the water table to provide a constant pressure head for flow to the \
respirometers. Water quality was maintained by the continuous seawater
flow and by two filters in the second mixing tank with cartridges which
removed particles > 25 um and were changed twice daily. During the |
temperature changes the water table was siphoned of any particulate |
matter which had accumulated.

Standard metabolism (Fry 1974) was determined from the mean of
the two lowest MOg values recorded over the 12 h measurement period (2000
to 0800 hr). Standard mass-independent metabolism (Heusner 1984, 1985)
or MOg in mg O2°kg-0-670h-1 was calculated from:

MOg2 = (Ozin - Ogout)e(VWe60)e(M.¢.67), where:

Ogin = inflowing water [O2] in mg/L
Ogout = outflowing water [O2] in mg/L

Vw = water flow in L/min
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Mb = live body mass of fish in kg.

~
pd

Standard MOg at the experimental temperatures were compared

using a repeated measures analysis with Bonferroni post-hoc tests.
Standard MOg at the 14°C(initial) was compared to that at |

14°C(experimental) using a paired t-test. All statistics were performed

using PC-SAS version 6.04. Q1g, a measure of temperature sensitivity, was

calculated as specified in Schmidt-Nielsen (1983).

Results.

Standard, mass-independent MOg of bat rays increased with
increasing temperature (Figure 1), and all means were significantly
different from one another (all p < 0.05) with the exception of the |
140°C(initial) and 14°C(experimental) values (t-test, p > 0.88). Thus, the
experimental protocol (14°C to 8°C to 14°C) had no significant effect on
standard MOg within this temperature range. Q1g analysis showed that
MOg sensitivity was greatest between 14°C and 20°C (Q1g = 6.52) and
moderate at the upper (20-26°C:Q1¢ = 1.85) and lower temperatures
(8-14°C:Q10 = 2.23). The overall Q10(8-26°C) was 3.00.

Discussion.
Bat ray oxygen consumption increased with increasing temperature
(Figure 1), although the magnitude of the increase between 14°C and 20°C

(Q10 = 6.81) was surprising because bat rays are most abundant in Tomales

Bay from April to October when the temperatures in the bay are in this
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range (Ridge 1963, Love 1991, Smith et al. 1991). Temperature sensitivity for
8-14°C (Q10 = 2.23) and 20-26°C (Q19 = 1.85) ranges were similar to that seen
in other fishes, that is, near 2.0 (Cameron 1989).

Few studies have measured skate or ray oxygen consumption at
more than one temperature, and we found none which had used
unacclimated fish. Du Preez et al. (1988) studied the effects of temperature
on the oxygen consumption of bullrays, Myliobatis aquila, acclimated to 10,
15, 20, and 25°C, using a similar semi-automated respirometry system
(Marais et al. 1976). They found a less temperature dependent response
(Figure 1); increasing temperature increased MOg with the overall Q19 (10-
250C) = 1.87

| (Du Preez et al. 1988). Bullray MO2 at 10 and 15°C was close to that of bat
| rays at 8 and 14°C, however, bullray MOg increased slowly with a continued
increase in temperature (15-20°C:Q19 = 1.36, 20-25°C:Q1¢ = 2.54).

Several studies have shown that acclimation results in a metabolic
compensation which yields smaller MOg2 differences between temperatures
and thus lower Q19 values (see reviews by Fry 1974, Hochachka and Somero
1974, Johnston and Dunn 1987, Burggren and Roberts 1991). We used
unacclimated rays to determine the effects of the relatively abrupt
temperature changes observed in the field on the bat rays' standard MOas.
In contrast, Du Preez et al. (1988) acclimated bullrays by altering
temperature 1°C/24 h and holding the fish at the desired temperature for 8
days prior to oxygen consumption measurements. Both bat rays and
bullrays are specialized for active swimming (McEachran 1990), seasonally
comm'on nearshore, and forage for benthic invertebrates in shallow bays
and estuaries (Ridge 1963, van der Elst 1981, Love 1991) where they are

likely to experience large temperature fluctuations. Because the autecology
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of these rays is very similar the differences in their MO2 response to
temperature are likely the result of the bullray's acclimation to
experimental temperatures.

Tomales Bay is a thermally heterogenous environment, 20 km long
by 1.4 km wide, which averages 3 m in water depth, and has a channel with
a maximum depth of about 20 m. It is divided into two parts based on
chemical and physical characteristics, a 12 km2 outer bay which is mostly
fine sand and 6 km2 of dense seagrass beds, and a 16 km2 inner bay which
has extensive intertidal and shallow subtidal mudflats but only 1 km2 of
seagrass beds (Ridge 1963, Spratt 1989, Smith et al 1991). Exchange of water
between the inner and outer bay during summer is near zero, and the
inner bay tends to be warmer by 2-6°C and more saline, by 2 ppt, than the
outer bay at this time of year (Ridge 1963, Smith et al 1991). Rays in this
study were captured in August 1991 when the temperature difference
between the inner (19.4°C) and outer bay (14.9°C) was 4.5°C, and shallow
mudflat areas were occasionally as warm as 26°C (Hopkins personal
observation). During this same time period we tracked several telemetered
rays moving from the inner to the outer bay late in the day and returning to
the inner bay early the next morning, a round trip distance of about 16 km
(Hopkins unpubl.). If rays are preferentially foraging in the warmer (i.e.
20°C) inner bay, as Ridge's (1963) data suggest, then they may reduce their
respiratory metabolic cost 216% by retreating to the cooler outer bay after
foraging where temperatures were about 14°C (Figure 1).

Our data indicate that the standard, mass-independent MOg of bat
rays is extremely sensitive to temperature between 14°C and 20°C, and only
moderately sensitive between 8°C and 14°C, or between 20 and 26°C. This

finding, coupled with preliminary data from an ultrasonic tracking study
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suggests that bat rays may behaviorally thermoregulate; foraging in the
warm prey-rich inner bay, and using the cooler outer bay as a thermal
refuge. We plan a more detailed ultrasonic tracking study to test our

hypothesis.
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Figure 1. Mean (+ 1 SE) standard, mass-independent oxygen consumption
rates (mg O2°kg-0-67eh-1) of six bat rays determined in the following
sequence: open circle, 14(initial), solid circles, 8, 14, 20, 26°C. All means
are significantly different (p < 0.05) except the two 14°C values (p > 0.89).
Open squares are values for a 5 kg bullray calculated from Du Preez et al.

(1988).
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Temperature Effects on Blood-Oxygen Equilibria in the Bat Ray,
Myliobatis californica.

Abstract.

We studied the effects of four temperatures (8, 14, 20, 26°C) on blood
oxygen equilibrium curves of the bat ray, Myliobatig californica, a vagile,
seasonally abundant, benthic elasmobranch common to bays and estuaries
along the eastern Pacific coast. Blood oxygen equilibrium curves at all
temperatures were hyperbolic (n50 < 2), with high affinity (low P5(), large
Bohr factors (@ = -0.45 to -0.52), high bloed oxygen carrying capacity (CBOg =
6.8 to 9.06), and very large non-bicarbonate buffering capacity (B = -14.25 to
-16.43). CBO2, ¥, and B are among the largest measured in a
poikilothermic elasmobranch. Affinity decreased with increasing
temperature except at 260C. The affinity shift at 269C and a concomitant
25% drop in CBO2 at this temperature suggests a hemoglobin
heterogeneity. Blood oxygen equilibrium curves were temperature
insensitive between
8-149C and 20-26°C and most sensitive between 14-200C, the temperature
range in which bat rays are most commonly found in Tomales Bay,
California. Bat rays appear capable of tolerating hypoxia and hypercapnia
(low P50, n50, and high 8), and sustaining high activity levels (high CBO?2,

@, and B3) by virtue of their unique hematological characteristics.
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Introduction.

The bat ray, Myliobatis californica, is a large benthic predator which
commonly forages in shallow mudflats and seagrass beds in bays and
estuaries from southern Oregon to the Gulf of California (MacGintie 1935;
Talent 1985; Ferguson and Cailliet 1990; Love 1991). Bat rays are abundant
in Tomales Bay, California, during mosi of the year when bay temperature
ranges between 14 and 240C, but leave the bay during the winter months
(November-February) when water temperatures drop below 109C (Ridge
1963; Smith et al. 1991).

During a telemetry study of bat ray movements in Tomales Bay, we
tracked several rays moving from the shallow inner bay to the deeper outer
bay late in the afternoon, and returning to the inner bay early the next
morning (Hopkins unpublished). The temperature difference between
these areas of the bay was often greater than 50C. Because the resting
metabolism of bat rays is highly temperature sensitive between 14 and 200C
(Hopkins and Cech 1993), we hypothesized that the rays might be
thermoregulating; foraging in the inner bay, and using the outer bay as a
temperature refuge (Hopkins and Cech 1993). However, diel movements of
fishes in shallow bays has also been shown to be due to recurring (often
nightly) oxygen depressions (Hubbs Baird and Gerald 1967, Saint-Paul and
Soares 1987, Breitburg 1992).

Tomales Bay is 20 km long by 1.4 km wide and averages 3 m in depth
(Smith et al. 1991). The inner reaches of Tomales Bay, an area of 16 km<,
has a 1 km?2 seagrass bed and extensive intertidal and subtidal mudflats
covered with benthic macro and microalgae (Spratt 1989; Smith et al. 1991).

In aquatic habitats respiration by plants, bacterial decomposition, and
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invertebrate respiration can remove a significant amount of oxygen from
the overlaying water (Goldman and Horne 1983). Seasonal or diel dissolved
oxygen depressions (hypoxia), while undocumented in Tomales Bay, are
common in shallow bays and estuaries (Loesch 1960; Taft et al. 1980; Day et
al. 1990) and constitute an important physical disturbance to aquatic
communities (Coutant 1985; Kennedy 1990; Breitburg 1992). Thus, the
movements of bat rays in Tomales bay may have been the result of an
avoidance of areas of nightly oxygen depression.

The purpose of this study was to examine the blood-oxygen binding
characteristics of bat rays to determine if inherent physiological
limitations, such as a heightened sensitivity to hypoxia or temperature

changes, might account for their diel movements in Tomales Bay.

Material and Methods.
Collection and holding.

Seven bat rays (mean disc width 60.3 cm, range 50-80 cm, mean
weight 5.30 kg, range 4.66-9.09 kg) were captured by hook and line in
Tomales Bay at temperatures of 11.8 to 13.8°C and 33 ppt salinity. Only rays
with superficial hook wounds were transported to the University of
California, Bodega Marine Laboratory and held in a circular, shaded, 8,000
L outdoor tank, with flowing aerated seawater (11 +1°C and 33 +1 ppt) for 2

weeks.
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Cannulation.

Fish were anesthetized in 300 mg/L 3-aminobenzoic acid ethyl ester
(MS-222) until spiracular ventilation ceased and then placed on an
operating table (Reinecker and Ruddell 1974) with recirculating, aerated
seawater with 50 mg/L MS-222 over their gills. The lighter anesthetic dose
during surgery decreased recovery time. A 17 gauge needle was inserted
through the skin on the ventral side of the tail, about 3 cm anterior to the
origin of the dorsal fin, and a PE-50 cannula with a beveled tip was inserted
through the needle and several cm into the dorsal aorta. Cannulae were
filled with heparinized saline in a ratio of 1,000 international units (IU)
sodium-heparin to 10 ml elasmobranch saline (Hoar and Hickman 1983),
and secured by suturing to the skin. Mean surgery time, including
anesthesia, was 22 minutes. Rays were placed individually in covered 210 L
circular tanks with aerated, flowing seawater (11 +1°C and

33 +1 ppt) and allowed to recover for 2.5 days.

Blood sampling and hematological analyses.

An initial 0.8 ml blood sample was taken from each ray to determine
blood gas and hematological conditions at 110C. PO9, PCO2, and pH were
measured with a Radiometer PHM 73 analyzer and thermostated electrodes
(E5046, E5036, and G297/K497 respectively). Blood lactate was determined
enzymatically (Yellow Springs Instruments (YSI) model 27 analyzer),
hematocrit (Hct) by centrifugation at 10,400 x G for 3 min, and hemoglobin
concentration ([Hb]) by the cyanmethemoglobin method (Sigma kit #525-A).
The remaining blood was centrifuged (5 min at 3,800 x G) and the plasma
aspirated and frozen for later analysis of: urea (colorimetrically, Sigma kit

#535), glucose (enzymatically, YSI model 27 analyzer), osmolality (vapor
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pressure, Wescor 1500B), Cl- (coulometric titration, Radiometer CMT 10),
Nat+ and K+ (photometrically, Instrumentation Laboratories 343 flame

photometer).

Tonometry.

Blood (78 ml) from 4 individuals was pooled with 1,000 IU
sodium-heparin in a large flask. Samples of the well-mixed, pooled blood
were immediately taken to determine nucleoside triphosphate (NTP)
(enzymatically, Sigma kit #366-UV), lactate, Het, and [Hb). Blood was
loaded into two glass rotating tonometers (Hall 1960) or kept on ice for 20-40
min before being loaded into a second pair of tonometers. Tonometers were
situated in a temperature-controlled water bath at 8, 14, 20 or 26 + 0.20C.
Tonometer pairs received either humidified air from an air pump and
humidified N2 from a cylinder (low PCO2 curves) or humidified gas
mixtures (1% CO2 with balance either air or N2) from Wiisthoff gas mixing
pumps (high PCO2 curves). Blood was equilibrated for 30-40 min, after
which samples of oxygenated and deoxygenated blood were withdrawn
from the tonometers and mixed in a gas-tight glass syringe with a mixing
bead (technique reviewed in Wells and Weber 1989). A Lex-02-Con
(Lexington Instruments) was used to verify the 02 content (CBO?9, in
mmol/L) of oxygenated (100% saturation) and deoxygenated (0% saturation)
pools. PO2 was measured for each mixture, and pH was measured for
each 50% mixture. Several lactate measurements were made on
tonometered blood while curves were being constructed to ensure that there
was no significant metabolic acidosis, e.g. in the deoxygenated tonometers.
From time of sampling to completion of a pair of oxygen equilibrium curves

required less than 2 hr.
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Bohr factor (@), was calculated from @ = ALog P50/ApH. The
apparent heat of oxygenation, (AH, in kcal/mol), was calculated using a
form of the van't Hoff equation:

AH = 4.578°(ALog P50/(A1/T)*1000), where P50 is from low PCO2 curves in
kPa and T is temperature in °K (Wyman 1964; Powers et al. 1979). Whole
blood non-bicarbonate buffer value

(8 in mmol HCO3-°pH unit-1L-1, or slykes) was calculated from:

3 = ATHCO3-V/ApH. [HCO3"] was calculated using pH and PCO2 data in the
Henderson-Hasselbalch equation (Davenport 1974) with constants for
elasmobranchs published by Boutilier, Heming, and Iwama (1984). Hb
subunit cooperativity (n50) was determined from the slope of Log (y/100-y)
versus Log p, where y = percent saturation between 10 and 90%, and p =
POg2 in kPa (Riggs 1970; Jensen 1991). Root effect was calculated as the
percent loss in CBO2 between a low and high PCO2 pair.

A Pearson's correlation coefficient matrix was constructed for all
measured and calculated variables to test for significant effects at the p <
0.05 level. Linear least squares regression was used to relate temperature
and pH. Statistical tests were performed with SYSTAT 4.0 (Wi]kinson'
1988).
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Results.

Resting, in yivo, blood gas and hematological characteristics of bat
rays (Table 1) were similar to those of other cannulated elasmobranchs;
Squalus (Lenfant and Johansen, 1966), Dasyatig (Cameron, Randall, and
Lewis 1971), Scyliorhinus (Butler and Taylor 1975), Torpedo (Hughes and
Johnston 1978), Negaprion (Bushnell et al. 1982), Raja (Graham, Turner,
and Wood 1990), and Triakis (L.ai, Graham, and Burnett 1990), with the
exception that blood urea and osmolality levels were low for an
elasmobranch acclimated to full seawater (33 ppt), and [Hb] was high, The
low [lactate] and [glucose] (Table 1) indicated a negligible secondary stress
response (Wedemeyer, Barton and McLeay 1990) and that these fish had
recovered from surgery. Thus, blood from these fish was suitable for
constructing O2 equilibrium curves indicative of bat rays in the wild.

The P50, @, and CBO2 of both low PCO2 and high PCOg2 curves were
greatest at 200C, where corresponding pH values were lowest (Table 2).
NTP, [Hb], and B were similar across all temperatures. AH was greatest
between 14 and 20°C indicating a greater sensitivity to Hb-O2 loading and
unloading in this range as compared to the relative temperature
independent binding at 8-149C and 20-26°C ranges. Increasing PCOg,
from 0.03 to 1.01 kPa, significantly decreased blood pH (negative correlation,
p < 0.01) and increased P5( (positive correlation, p < 0.01) at each
temperature.

Blood oxygen dissociation curves (Figure 1,A-D) were approximately
hyperbolic (n50 < 2) with low P50's, large CBO9, 8, and &, and negligible
Root effects (Table 2). Lactate measurements of tonometered blood never

exceeded 1.0 and 1.2 mmol/L in 0.03 and 1.01 kPa PCO2 respectively, which
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was close to that of in vivo measurements from resting fish (Table 1). While
Root effect was significantly negatively correlated with temperature (p <
0.05), no other correlations between temperature and any variable in Table 2
over the 8-260C range were significant. Dafré and Wilhelm (1989)
considered a Root effect of < 10% to be insignificant and we will follow their
convention. In addition, neither regression slope relating pH and
temperature was significantly different from 0 (p > 0.1 for 0.3 kPa PCOg9,
and p > 0.03 for 1.01 kPa PCO2).

Discussion.
Temperature Effects.

Although fish acclimate their Hb-O2 binding abilities to warmer
temperatures in several ways, the results are due primarily to alterations
in allosteric phosphate cofactors and [Hb] (reviewed in Powers 1980; Weber
and Wells 1989). In our study, rays were captured and held at about 11°C,
and Hct, [Hb], and NTP were constant; thus our results are free of
complicating acclimatory changes and reflect the sum of the molecular and
cellular effects of temperature on bat ray red blood cell O9 binding.

In ectotherms, an acute temperature rise decreases O9 affinity
directly due to the exothermic nature of Hb-oxygen binding, and indirectly
due to the associated pH decrease (reviewed in Johansen and Weber 1976;
Weber and Jensen 1988). Bat ray blood O2 binding was temperature-
independent (low AH) in the 8-14 and 20-26°C ranges, but showed a similar
temperature effect to that of other fishes between 14-200C (Table 2,3, Powers
1980). Bat rays are most abundant in Tomales Bay from April to November,
when temperatures are typically between 14 and 24°C (Smith et al. 1991)

and it is in this temperature range that bat rays show their greatest change
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in resting O2 uptake/0C;(14-200C:Q10 = 6.52 (Hopkins and Cech 1993). Thus,
between 14-200C bat rajys appear to sacrifice O2 uptake ability (by decreasing
affinity) in order to increase O9 offloading ability to supply metabolically
active tissues.

Blood Og2 affinity in bat rays tended to drop with increasing
temperature with one exception, the 20-260C range. Blood pH at both PCO2
levels fell between 0.02-0.04 pH unit/9C between 8 and 20°C and then
increased 0.01 pH unit/0C between 20-269C (Table 2) a trend which mirrored
that of affinity. In addition, the large (25%) drop in CBO2 between 20 and
260C may be an indication of a decrease in the functional ability of a
hemoglobin fraction to carry O2 at elevated temperatures. Because NTP,
[Hb] and Het were constant across temperatures, we suspect that a Hb
heterogeneity may be responsible for this reverse trend.

A functional Hb heterogeneity extends the range of conditions under
which the composite pigment executes its 02 transporting and other
functions, thus enlarging the habitable environment and serving changing
physiological needs (Weber 1990). Hb heterogeneity is common among
teleosts (Brittain 1991) and has been documented in several elasmobranchs
(Anderson et al. 1973; Bonaventura, Bonaventura, and Sullivan 1974;
Pennelly et al. 1975; Brittain et al. 1982; Weber, Wells, and Rossetti 1983).
Thus, the presence of a high affinity Hb, functional at elevated
temperatures would preserve the bat ray's ability to withstand hypoxia and
to supply increased metabolic demands at warmer temperatures. We
suspect that two Hbs are present; one which was dominant in the 8-200C
range, and another with a higher affinity, which was dominant at 26°C,

although we have only indirect evidence for this hypothesis.
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Ecological Implications.

The blood of bat rays has comparatively high affinity, a large Bohr
factor (@), blood O2 carrying capacity, non-bicarbonate buffering capacity
(8), and a low cooperativity (Tables 2,3, Figure 1). Among teleosts, high
affinity, hyperbolic blood O2 binding curves and large 8 values are
associated with hypoxia and hypercapnia tolerance (Wood, McMahon, and
McDonald 1977; Johansen and Weber 1976; Powers 1980). Conversely,
reduced affinity, large Bohr factor, and high blood Og carrying capacity are
typical of active poikilothermic teleosts (Satchell 1991). The situation is not
as clear in elasmobranchs however, as species with widely differing aerobic
scopes show similar blood O2 characteristics (Table 3, Tetens and Wells
1984). By teleostean standards then, bat rays appear well adapted for
hypoxia and hypercapnia (low P50 and n50, high B), and high activity levels
(high CBO2 and large @). In fact, the blood O2 carrying capacity, Bohr
factor, and whole blood 3 are among the largest recorded for a
poikilothermic elasmobranch (Table 3).

Bat rays are seasonally common in bays and estuaries where they
prey upon benthic infauna in shallow (often < 1 m) mudflats or eelgrass
beds (Karl and Obrebski 1976; Love 1991). In a telemetry study in Morro
Bay, California, Dubsky (1974) tracked a bat ray moving an average of 0.74
km/hr and frequenting the shallow parts of the bay, "...where hovering and
short bursts of speed were observed."(Dubsky 1974, pg. 27). This behavior
pattern and movement rate is similar to that of telemetered bat rays in
Tomales Bay (Hopkins unpublished), and to that of the cownose ray,
Rhinoptera bonasus, in the Chesapeake Bay (Macl.ean 1981; Smith and

Merriner 1985, 1987).
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The cownose ray (family Rhinopteridae) is a morphologically and
ecologically similar species which also forages in intertidal mudflats and
eelgrass beds (Orth 1975; Smith and Merriner 1985, 1987). Both cow nose
rays and bat rays have a unique ball and socket joint connecting their
pectoral fins to the vertebral column (McEachran 1990) which contributes to
their unique swimming mode (Heine 1990). In addition, both species
outmigrate during the winter months (Ridge 1963; Love 1991) and the long
range migrations of the cownose ray are well studied (Smith and Merriner
1987). Although the winter movements of bat rays are undocumented,
large schools have been sighted near the Channel Islands off southern
California (Odenweller 1975; Hall 1990; Love 1991).

Because both bat rays and cownose rays actively forage in shallow
areas where the possibility of encountering elevated temperatures and
hypoxia is high, and may migrate long distances during parts of the year, it
is not surprising that their blood-oxygen binding characteristics are a
similar (Scholnick and Mangum 1991). Furthermore, the high blood
buffering capacity and the large Bohr factor seen in bat rays supports the
hypothesis of Dobson et al. (1986) that a high blood buffering capacity is an
important strategy for extending muscle performance. However, a scaled-
up blood buffering capacity requires an increased pH sensitivity of Hb for
releasing 092, otherwise 02 delivery to the tissues during exercise will be
compromised. Thus, a large Bohr factor would facilitate O2 delivery from
the blood to the aerobic muscles for a small change in blood pH during
exercise.

While our blood O2 binding data are an instantaneous sample of a
system which can be altered over various time scales (Jensen 1991); the

hematological characteristics of bat rays are sufficient to allow activity in
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reduced oxygen conditions over a broad temperature range, to sustain
metabolically or environmentally produced hypercapnia, and to undertake
long-term aerobic activity such as migrations. Thus, we reject our
hypothesis that the diel movements of bat rays in Tomales Bay were solely
due to limitations in their ability to reversibly bind oxygen and carbon

dioxide, or tolerate mild hypoxia.
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Table 1. Mean in yivo arterial blood and plasma characteristics (standard

error in parentheses) from seven cannulated, resting rays acclimated to

110C and 33 ppt.

PaO2 (kPa) 11.66 (1.35)
PaCO2 (kPa) 0.08 (0.01)
pH 7.929 (0.04)
Hect (%) 19.31 (1.02)
Hb (mg/dL) 5.81(0.35)
Nat (mmol/L) 239.0(8.16)
K+ (mmol/L) 3.61(0.26)
Cl- (mmol/L) 242.3 (5.61)
Osm (mOsm/kg) 747.0 (23.82)
Urea (mmol/L) . 269.8 (11.45)
Lactate (mmol/L) 0.74 (0.15)
Glucose (mg/dL) 103.5 (22.69)
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Figure 1. Bat ray blood-oxygen equilibrium curves at 8, 14, 20, and 26°C
with 0.03 kPa PCO2 (circles), and 1.01 kPa PCO2 (triangles).
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The Influence of environmental variables on the distribution and

abundance of three elasmobranchs in Tomales Bay, California.

Abstract.

Using monthly longline samples over a 20 month period I tested the
hypothesis that temperature, salinity, and dissolved oxygen affect
elasmobranch distrib ution and abundance in Tomales Bay, California. I
used a Poisson regression under generalized least squares and found that
temperature and salinity were the most important factors determining the
distribution and abundance of the three most common elasmobranch
species, bat ray, Myliobatis californica, leopard shark, Triakis
semifasciata, and brown smoothhound shark, Mustelis henlei. Females of

all three species were more abundant than males throughout the bay, and
were most abundant in the warmer more saline inner bay. All three
species left Tomales Bay in late fall as water temperatures in the bay
decreased < 10-12°C, and returned in early spring after temperatures
increased > 10°C. Three out of 432 bat rays tagged in Tomales Bay were
recaptured, all within 1 km of their tagging location despite having been at
large for 103-583 days.
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Introduction.

Abiotic factors such as temperature, salinity, and dissolved oxygen,
are important in determining the distribution and relative abundance of
temperate bay and estuarine fishes (Gunter 1961, Kinne 1964, Recksiek and
McCleave 1973, Allen and Horn 1975, Hoff and Ibara 1977, Weinstein et al.
1980, Allen 1982, Mulligan and Snelson 1983, Onuf and Quammen 1983,
Coutant 1985, Kennish 1990, Loneragan et al. 1986, 1987, Yoklavich et al.
1991, Pearson 1989, Cyrus and Blaber 1992, Breitburg 1992). However, most
studies have focused on teleosts and have largely ignored elasmobranchs
(sharks, skates, and rays).

Elasmobranchs are fundamentally different from teleosts in their life
history, behavior, and physiology (Hoenig and Gruber 1990, Pratt and Casey
1990, Nelson 1990). They are slow growing, late maturing, have long
gestation periods, produce few young, and attain a large body size (Hoenig
and Gruber 1990). While less numerous in most systems than teleosts, they
forage near the top of the food chain (Compagno 1990) and may account for
a significant portion of the total biomass in a system (e.g Horn 1980,
Recksiek and McCleave 1973). In addition, they may segregate by sex and
by size on both local and regional scales (Pratt 1979, Castro 1983). Many
species use bays and estuaries for part of the year and depart during the
winter months (Steven 1932, Bearden 1959, Jensen 1965, Struhsaker 1969,
Sage et al. 1972, Snelson and Williams 1981, van der Elst 1981, Smith and
Merriner 1987, Rousset 1990). \

Previous studies on elasmobranchs have implied that temperature
and salinity play a role in their distribution (Smith and Merriner 1987,
Struhsaker 1969, Funicelli 1975, Sage 1972, Bearden 1959, Snelson et al.
1988, Snelson et al. 1989, Rousset 1990) but the effects of these environmental
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factors has not been quantified. From a physiological standpoint,
temperature, salinity, and dissolved oxygen should, alone or in concert,
influence the distribution of elasmobranchs. The majority of nearshore
elasmobranchs are ectothermi¢ and changes in the environmental
temperature are rapidly transferred to the body of the animal where nearly
every physiological process is affected (Prosser and Heath 1991).
Furthermore, elasmobranchs use various end products of nitrogen
metabolism as osmotically active solutes to maintain themselves
hyperosmotic to their environment (reviewed by Perlman and Goldstein
1988), but they are unable to maintain this balance in the face of decreased
salinities (reviewed by Pang et al. 1977). Finally, seasonal or diel dissolved
oxygen depressions (hypoxia) are common in shallow bays and estuaries
(Loesch 1960; Taft et al. 1980; Day et al. 1989) and constitute an important
physical disturbance to aquatic communities (Coutant 1985; Kennedy 1990;
Breitburg 1992). Hypoxia adaptations in elasmobranchs are complex and
can be altered over several time scales (e.g. hours, days, months; Jensen
1991) so that their general response to this factor are highly variable
(Johansen and Weber 1976, Butler and Metcalf 1988).

The purpose of this study was to establish the relative importance of
temperature, salinity, and dissolved oxygen in determining the distribution
and abundance of the three most common elasmobranchs in temperate

Tomales Bay in northern California.

Study Organisms.
I focused our analysis on thelthree most commonly captured
elasmobranchs in northern California bays, the bat ray (Myliobatis

californica), the brown smoothhound shark (Mustelus henlei), and the
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leopard shark (Triakis semifasciata) (Herald and Ripley 1951, Herald et al.
1960, Karl 1979, Talent 1982, Talent 1985, Armor and Hergesell 1985,
Pearson 1989, Love 1991, Herbold et al. 1892)

Bat rays.

Bat rays range from Oregon to Baja California, and forage for clams,
crabs, shrimps, and the echiuroid worm Urechis caupo in sand or mud
substrates (MacGintie 1935, Ridge 1963, Karl 1979). Bat rays are viviparous
and 50% of all females are mature at a disc width (DW) of 88 ¢m and all
females studied by Martin and Cailliet (1988a) over 100 cm DW were
sexually mature. Males are fully mature by 68 cm DW. Gestation lasts 9-12
months and 2-12 young (DW 22-30 cm) are born in spring or summer
(Martin and Cailliet 1988a). Females can live at least 24 years and attain a
DW of 183 cm, while males can live at least 6 years and reach a DW of 100
cm (Martin and Cailliet 1988b). Large schools of bat rays have been sighted
off southern and central California (Odenweller 1975, Hall 1990, Love 1991).

Brown smoothhound sharks.

Brown smoothhounds range from Coos Bay, Oregon, south to the
Gulf of California (Love 1991). They consume mainly crabs, shrimp and
small fish, and are very abundant in San Francisco Bay (Herald et al. 1960,
Russo 1975, Talent 1982, Herbold et al. 1992). They frequent nearshore
waters during spring and summer and move offshore during winter
(Compagno, 1984). Brown smoothound females mature between 1 and 4
years of age and females give birth to 1-8 young which are about 20 cm T,
(Yudin and Cailliet 1990, Love 1991). Females mature between 51-63 cm TL,

live 13 years, and can reach 100 cm TL. Males mature between 52-66 cm
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TL, can live 7 years, and can reach 90 cm TL (Yudin and Cailliet 1990,
Compagno 1984).

Leopard sharks.

Leopard sharks range from Oregon to Baja California including the
Gulf of California and are the most studied California nearshore shark
(Cailliet 1992). They eat crabs, shrimp, clam siphons, fish, and small
sharks and rays (Russo 1975, Talent 1976). Females mature between 11-21
years of age (100-129 cm TL), live about 30 years (Ackerman 1971, Smith and
Abramson 1990) and can reach 200 cm TL. Gestation takes about 12 months
and females produce 3-11 young which are born during spring and

summer (Love 1991). Males mature between 76-120 cm TL.

Study Site.

Tomales Bay is a 20 km long straight basin which averages 1.4 km in
width and 3 m in depth formed by the intersection of the San Andreas fault
with the northern California coastline (Hollibaugh et al. 1988) (Figures 1,2).
The bay watershed covers about 570 km?2 and is almost entirely rural, with a
population of about 10,000 persons and 20,000 cows (Smith et al. 1991). Most
runoff enters from the two major streams in the eastern and southern
portion of the watershed. The larger of the streams (Lagunitas Creek)
enters the southern end, while the second (Walker Creek) enters along the
east side of the bay, about 5 km from the mouth (Figure 1).

The bay is hydrographically simple and has been divided into two
parts based on chemical and physical characteristics (Hollibaugh et al.
1988, Smith et al 1991). The bottom of the outer bay (12 km?2) is mostly fine
sand and has 6 km? of dense seagrass beds. The inner bay (16 km?2) has
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extensive intertidal and shallow subtidal mudflats covered with
macroaglae and 1 km? of seagrass beds (Ridge 1963, Spratt 1989)(Figure 1).
Longitudinal gradients of hydrographic variables are large relative to
lateral and vertical gradients, and vertical stratification is weak and
episodic (Smith et al. 1991). Exchange of water between the inner and outer
bay during summer is near zero, and the inner bay tends to be 2-6°C
warmer and 1-3 ppt more saline than the outer bay at this time of year
(Ridge 1963, Smith et al. 1991). Mixing is greatest in winter due to
increased runoff and the inner/outer bay temperature gradient disappears.
Inner bay salinity is largely a function of runoff from Lagunitas Creek,

while Walker Creek has little impact on the salinity of the outer bay.

Materials and Methods.
Data Collection. :
Sharks and rays were collected by longlines fished monthly from
September 1990 through April 1992 at stations located 2 ki apart in
Tomales Bay (Figures 1,2). A longline consisted of a 9.53/ mm diameter
braided polypropylene mainline 34 m long anchored at both ends with 20 m
float lines attached to each anchor. Each longline held about 20 gangions
which were spaced 1.2 m apart. Each gangion consisted of a heavy-duty
stainless steel quicksnap with 1/0 swivel, 0.5 m of 41 kg test coated stainless
steel leader, another 1/0 swivel and a 0.8 m leader ending/in a 12/0 Mustad
Kirby hook. Longlines were baited with 1-2 squid (Loligo sp.) per hook and
set soon after dawn and fished on the bottom for 4-6 hr. Iisampled the inner
and outer bay with about equal intensity (e.g. outer bay, 3ilongline

stations/km?; inner bay, 3.2 longline stations/km?2). \
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I recorded: location, start and finish times for setting and hauling
operations, number of hooks fished, and tide height and stage (rising,
falling, slack) as determined from published tide tables, for each longline
set. The sex and characteristic length (TL or DW) of all captured sharks
and rays was recorded. All sharks were immediately released, while bat |
rays were tagged prior to release with a numbered spaghetti tag (Floy FT-4 |
lock-on) placed through a hole made by passing a 17 gauge hypodermic |
needle through the chondrocranium 2 cm proximal to the spiracle on the
ray's right side. Sharks or rays which broke the gangion or dislodged the
hook after being brought alongside were counted as a catch and noted as a |
"lost" fish.

Vertical profiles of temperature, salinity, and dissolved oxygen \
concentration were recorded from surface to bottom at 1 m intervals at each |
longline station using a Hydrolab Surveyor II approximately 24 hr prior to

longlining.

Modeling.

The fbllowing variables were considered for our model: location
(inner/outer bay), season 1 = January-March, season 2 = April-June,
season 3 = July-September, season 4 = October-December, tide stage, and \
the mean inner bay and outer bay values for: tide height, number of hooks
fished, number of sharks or rays captured (males and females combined), |
and set time. Mean temperature and salinity were calculated from vertical |
transect data using values recorded 1 m off the bottom. Dissolved oxygen
was not included in the model as concentrations in the bay never fell below |
75% of air saturation, a level not considered stressful for bat rays or leopard |

sharks (Chapman 1986, Lai et al. 1990, Hopkins, unpublished)(Figure 3). |
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I used a Poission regression under generalized least squartes to
construct our model of bat ray distribution and abundance because the
mean number of rays captured was approximately normally distributed
and encompassed a small range of values. I used Akaike's information
criterion (AIC) (Akaike 1969), Cp, and r2adj (Neter et al. 1985) as selection
criteria to determine the best main effects model without interaction terms
using all possible subsets. Interactions were added to the resulting main
effects model individually, and each new model was re-evaluated using
these same criteria. These selection criteria either increase or decrease as
variables are added to the model allowing one to determine the most
powerful model (one which best describes the data) using the least number
of variables and interaction terms. Normality of the final model residuals
was tested using a Shapiro-Wilk statistic (Shapiro and Wilk 1965), and a
normal scores plot (Neter et al. 1985)

The large number of low or zero catches of leopard and brown
smoothhound sharks prohibited us from using this approach in
constructing models for these species. Instead, we fit the model derived for
bat rays using generalized least squares with Poisson error terms and
calculated asymptotic confidence intervals (Neter et al. 1985).

Modeling and statistical work was performed using PC-SAS version
6.04 with significance judged at the 0.05 level. An analysis of variance
(ANOVA) was used to detect differences in the size of males and females of
each species based on capture location. A chi-square test for goodness of fit
(X2) was used to determine if, for a given species, equal numbers of each

sex were captured in the inner and outer bay.
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Results.
Longline catch.

A total of 257 bat rays, 80 brown smoothhound sharks,

66 leopard sharks, four angel sharks (Squatina californica), three sevengill
sharks (Notorynchus cepedianus), three spiny dogfish (Squalus acanthias),
two soupfin sharks (Galeorhinus galeus), two thornback rays
(Platyrhinoidis triseriata) and one white sturgeon (Acipenser
fransmontanug) were caught. No teleosts were captured. Bat rays
comprised 62% of the catch by numbers, leopard sharks and brown
smoothhound sharks made up 19% and 16% respectively, and the
remaining elasmobranchs (grouped) made up 8% of the total longline
catch. Since our sampling effort was similar in both parts of the bay our
catches in each area are directly comparable.

Male and female bat rays arrived in Tomales Bay in early spring and
were present throughout the bay until late fall although females were
always more common than males (Figure 4). Significantly more males and
females were captured in the inner bay (X2, P < 0.003 for each) although the
males and females captured in the outer bay were significantly larger
(greater DW) than those captured in the inner bay (ANOVA, P < 0.02,

P < 0.001, respectively, Figure 5).

No leopard sharks were captured during December, January or
February in either 1990/1991 or 1991/1992 (Figure 6). Both sexes were more
abundant in the inner bay (X2, both P < 0.003) but we found no differences in
the TL of each sex in the inner and outer bay (Figures 6,7). Both males and
females entered the bay in spring and female abundance in the inner bay
peaked in August 1991, after which the numbers of both sexes declined
(Figure 6).
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Brown smoothhound sharks were common in Tomales Bay only
during spring and late summer (Figure 7). Females were most abundant
in the inner bay (X2, P < 0.001) and we found no significant difference in the
abundance of males by capture location; nor was there a difference in the
size of each sex based on capture location (Figure 7,8).

The sevengill sharks, thornback rays, and soupfin sharks were
captured in the inner bay, the white sturgeon and spiny dogfish were
captured in the outer bay, and angel sharks were equally divided between

the inner and outer bay.

Tag Returns.

432 bat rays were tagged between August 1990 and April 1992; 257
during monthly longline surveys and 175 during other operations in the
bay. Only three fish were recaptured as of January 1993. The rays were at
large for 106, 359, and 583 days each (sex and DW at release were: male, 81
cm; female, 114 cm; and male 72 cm, respectively). All were recaptured
within 1 km of their tagging location in Tomales Bay. Unfortunately,
anglers did not record disc widths from recaptured rays so we were unable

to estimate growth rates.

Modeling.

The best model predicting the distribution and relative abundance of
bat rays in Tomales Bay accounted for 77% of the variation in our data
(Table 1, Figure 9). The main effect terms in this model were (in
decreasing order of importance) temperature, saiinity, season 1, season 3,
location, set time, and season 2. Eight interaction terms were judged

important by our selection criteria (Table 1).
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Mean bat ray catches for the outer bay in November 1991 and the
inner bay for September 1990, December 1990, and July 1991 fell outside the
95% confidence intervals of our model (Figure 10). Every fall, during
October-November, the horizontal gradient of temperature and salinity in
Tomales Bay breaks down as the inner bay water density exceeds that of the
outer (Smith et al. 1991). Since the timing of this event differs from year to
year, and we used only an average temperature and salinity for each month
to predict the mean catch, the fault may lie in our data rather than with the
model. September 1990 was our first sampling period and it is likely that
we were less efficient in baiting and setting the longlines, as evidenced by
the low catch in the outer bay as well (Figure 10). The model may have
over-estimated the predicted mean catch for December 1990 because salinity
of the inner bay remained higher during this January than it did in any
year between 1988 and 1992 (Figure 3). I have no explanation for the
discrepancy between the actual and predicted inner bay catch for July 1991.

The bat ray model, when fitted to data for leopard and brown
smoothhound sharks, described 72% of the variation in the leopard shark
data and 65% of the variation in the brown smoothhound data (Tables 1, and

Figures 10,11).

Discussion.

Temperature and salinity are the most important environmental
factors determining the distribution and abundance cf bat rays in Tomales
Bay (Table 1). In addition, the good fit of the bat ray model to the brown
smoothhound and leopard shark data indicates that the factors which
influence bat ray distribution and abundance in Tomales Bay also affect

these species (Figures 10,11). While the importance of environmental
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variables in the distribution and abundance of teleosts is well known
(Kennish 1990), this is the first rigorous test focusing on nearshore
elasmobranchs.

Season 1 (January-March) and season 3 (July-September) were also
important factors in our bat ray model, but their importance may be
inflated somewhat due to the relationship between salinity and
temperature. Late in season 1 (March) in 1991 and 1992, the temperature in
both parts of the bay began rising, and salinity in the inner bay increased
steadily (Figure 3) and the first and second highest catch of bat rays
occurred. During season 3 the inner bay temperature remained
consistently above that of the outer bay, and the inner and outer bay
salinities diverged, as the inner bay became slightly hypersaline. Also,
during July-September 1991 the catch of bat rays in the inner bay declined
steadily, while outer bay catches increased slightly (Figure 4).

Location also played a significant part in our bat ray model.
However, temperature and salinity are incorporated into the definition of
location (inner and outer bay, Smith et al. 1991) and since they are
important in our model, it is not surprising that location is also important.

Dissolved oxygen was not used in our model because it was always
well above stressful levels (Chapman 1986, Lai et al. 1990, Hopkins,
unpublished)(Figure 3). Our sampling protocol would not have allowed us
to detect short-term oxygen depressions, such as those occurring nightly or
lasting only a few days, or those restricted to small areas of the bay. Oxygen
depressions are widespread phenomena (Loesch 1960, Taft et al. 1980,
Coutant 1985, Day et al. 1990, Breitburg 1992) and while undocumented in
Tomales Bay, may nevertheless contribute to the distribution of

elasmobranchs in some systems.
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The composition of our longline catch was similar to that of the July
1975 shark tournament in Tomales Bay (Karl 1979). Our catch consisted of
62% bat rays, 19% leopard sharks, 16% brown smoothhounds and 3% other
species, while the 1975 shark derby catch was 59% bat rays, 14% leopard
sharks, 16% brown smoothhounds, 9% spiny dogfish, and 2% other species
(Karl 1979). Derby participants probably did not restrict their efforts to
inside Tomales Bay, as we did, and several local fisherman have told one of
us (T.E.H.) that spiny dogfish are commonly caught while fishing off the
mouth of Tomales Bay, but rarely captured inside the bay.

Few studies have been coniducted for long periods over broad
geographic ranges so that the true population sex ratio is unknown for
most elasmobranchs. To date, only Ridge (1963), de Wit (1975) and this
study have reported sex ratios from sampling programs lasting more than
one year in northern or central California. Published sex ratios for our
three target species have varied greatly (Table 2), most likely due to
differences in sampling techniques. Sampling in shallow bays is
hampered by biases associated with the collection techniques which vary
with season, life stage, and location (Pierce et al. 1990, Weinstein and Davis
1980, Horn and Allen 1985, Livingston 1987). Otter trawls and beach seines
can over-inflate the relative importance of small gear-susceptible species or
life stages, and underestimate the abundance of larger, faster life stages
(Yoklavich et al 1991). Gill nets, with several different-sized panels, may
capture a broad range of size classes, but are often fatal for sharks unless
fished with great care. In addition, gill nets may not capture rays unless
they become entangled by their dorsal spines (Talent 1985). Longlines are a
good alternative unless diets are to be studied because only foraging

individuals are captured. However, longlines will only capture certain size
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classes and more mobile species so that hook size and bait selection are
important considerations. Shark derbies typically yield a large number of
specimens but sex ratios are apt to be skewed because derbies are highly
localized, short-term collections, and participants are less likely ito report
smaller individuals. Finally, Russo and Herald (1968) took advantage of an
unusual occurrence, an elasmobranch kill of unknown cause, and
recorded data from 10,338 elasmobranchs during an 11 day period in San
Francisco Bay. Regardless of sampling bias, sex ratios are difficult to
interpret because many elasmobranchs have seasonal movement patterns
and school by sex or size, especially in spawning or nursery areas (Castro
1983, Compagno 1984).

Between 35% and 67% of the female bat rays captured in Tomales Bay
were sexually mature (50% mature at 88 cm DW, 100% are mature at 100
cm DW; Martin and Cailliet 1988a) and 63% of all males captured were
sexually mature (> 62 cm DW)(Figure 5). In comparison, only 8:12% of the
females and 27% of the males captured by Ridge (1963) were sexually
mature. Ridge (1963) also sampled throughout the year, and while his
sample size is 2.4 times larger than ours, most rays were supplied by
commercial gill-netters targeting smaller sharks so that his data may be
biased toward smaller less mature rays.

Ninety-five percent of the female brown smoothhounds captured in
Tomales Bay were sexually mature (> 63 cm TL, Figure 8)(Compagno 1984).
During April-May 1991 and September-October 1991, when most of the
females were captured, many were gravid and several gave birth/to 5-10
near-term or full-term young while on the boat. Males, while much less
common than females, were most abundant in April-May 1991, and all

were sexually mature (> 66 cm TL, Figure 7). A 90 cm TL male was
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captured during October 1991 in the inner bay (15 km from the mouth)
which increases the maximum recorded size for a male of this species by
10.5 cm (Yudin and Cailliet 1990).

Of the 66 leopard sharks captured 15% of the females (>100 cm TL)
and 80% of the males (> 76 cm TL) were sexually mature (Smith and
Abramson 1990)(Figure 8). The paucity of reproductive age females has
been noted previously (Smith and Abramson 1990, King and Cailliet,
unpublished), and may be due to an increase in commercial and recreation
fishing pressure (Smith and Abramson 1990, Cailliet 1992).|

Female rays captured in the outer bay were significantly larger than
those captured in the inner bay (anova, P < 0.001). Several studies of teleosts
have demonstrated ontogenetic shifts in thermal preference such that older
individuals tend to prefer cooler temperatures (Magnuson et al. 1979,
McCauley and Huggins 1979, Coutant 1985, Kennish 1986). /It is possible
that larger rays prefer the cooler deeper water near the mouth of Tomales
Bay. There is some evidence that bat rays behaviorally thermoregulate
(Hopkins unpublished). During June and July 1991 several telemetered
rays were tracked moving from the inner to the outer bay late in the day and
returning to the inner bay early the next morning, a round trip distance of
about 16 km (Hopkins unpublished). I have hypothesized that the rays may
be thermoregulating or avoiding nightly hypoxia (Hopkins and Cech 1993).

Bat rays, brown smoothhounds, and leopard sharks tend to move out
of bays and estuaries during winter months (Compagno 1984, Ridge 1963),
although winter outmigrations are less common in southern and central
California bays where winter temperatures are warmer and salinities are
less variable. All three species left Tomales Bay sometime between late

November and early February in each year of this study. Hopkins
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(unpublished) used bat rays with implanted ultrasonic transmitters and
showed that they are not present in Tomales Bay during the winter months.
Five of five rays with transmitters disappeared in late-November 1990 when
inner bay temperatures were between 10-12°C, and reappeared in early
February 1991, about a week after the inner bay rose above 10°C (Hopkins,
unpublished data). How far any of these species travel during their
outmigration, and what occurs during these movements (e.g. mating) is
unknown.

Karl (1979) found that of 90 rays tagged in June 1975, one was
captured two weeks later in Tomales Bay, and two were captured in San
Francisco Bay, 25 km south, one month later. Smith and Abramson (1990)
found that leopard sharks tended to move out of San Francisco Bay during
fall and winter; one tagged individual was recaptured 140 km south in
Elkkhorn Slough, California. Talent (1985) mentions that a leopard shark
tagged in Elkhorn Slough was later captured in San Francisco Bay and
Compagno (1984) reported that a tagged brown smoothound migrated 160
km in three months. Of the 432 bat rays tagged during this study, only
three were recaptured (as of January 1993). All three rays were recaptured
within 1 km of their tagging location in Tomales Bay. This suggests that
bat rays may possess the ability to return to specific areas within Tomales
Bay on a yearly basis.

In conclusion, temperature and salinity are important factors
determining the distribution and abundance of the most common
elasmobranchs in Tomales Bay. Because physical factors in nearshore
environments fluctate on a daily, seasonal, and yearly basis, and little is
known about the influence of biotic factors (e.g. competition, predation)

which can limit an elasmobranchs ability to occupy its entire physiological
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niche, elasmobranch distributions in nearshore habitats are best delineated
by abiotic factors (Roughgarden and Diamond 1986, Huey 1991, Dunson and
Travis 1991).
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Table 1. Parameters and goodness of fit criteria for models of distribution |
and relative abundance of three elasmbranchs in Tomales Bay, California.

Parameter Bat Ray Leopard Brown \
Shark Smoothhound
Intercept 16.7493 -11.4120 9.6878
Temperature (Temp) -2.3000 0.5622 -0,8009
Salinity (Sal) -0.6006 0.2597 -0.2442
Location (Loc) 1.7282 0.8913 -0.7483
Set Time 0.7233 0.4101 -0.1186
Season 1 -6.4487 2.1820 -3,1906
Season 2 3.0970 3.7788 6.0185
Season 3 3.0891 -5.7729 -0,7478
Temp*Salinity 0.0732 -0.0153 0.0300
Temp*Salinity*Season 1  0.0187 -0.0042 0.0068
Temp*Salinity*Season 2 -0.0065 -0.0074 -0,0122
Temp*Salinity*Season 3 -0.0082 -0.0101 0.,0015
Temp*Salinity*Location -0.0055 -0.0024 ~ 00012
Temp*Sal*Loc*Season 1 -0.0019 -0.0004 0 0.0004
Temp*Sal*Loc*Season 2 -0.0001 -0.0009 -0,0008
Temp*Sal*Loc*Season 3 -0.0006 -0.0009 0.00002
r2 0.77 0.72 0.65
r2adj 0.61
AIC -0.40
Cp 8.88
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Table 2. Sex ratios for three species of elasmobranchs from bays and
estuaries in northern and central California.

Species Male:Female N Capture method Source

Bat Ray
1:4.5 33 longline, rod-reel 1
1:4.2 257 longline 2
1:2.0 2960 derby 3
1:1.2 422 derby 4
1:1.1 adult 621 gill net, rod-reel 5
1:1 ? shark kill 6
1:0.6 embryo 10 gill net, rod-reel 5

Brown Smoothhound

1:4.5 492 shark kill 6
1:4.3 80 longline 2
1:2.3 131 trawl 7
1:2.2 & longline, rod-reel 1
1:0.3 872 longline 1
Leopard Shark
1:2 156 longline, rod-reel 1
1:1.6 ? derby 1
1:1.6 66 longline 2
1:1 ? shark kill 6
1:1 92 trawl 7
1:0.9 1194 derby 3
1:0.9 948 longline 8

1/Ebert 1986, 2/this study, 3/King and Cailliet unpublished, 4/Karl
1979, 5/Ridge 1963, 6/Russo and Herald 1968, 7/deWit 1975,
8/Smith and Abramson 1990.
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Figure 1. Map of Tomales Bay, California showing station locations (km

from the bay mouth). Outer bay is stations 1-4, inner bay is stations 5-9.
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Figure 2. Tomales bay depth profile and sampling stations.
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Figure 3. Tomales Bay temperature (A), salinity (B), and dissolved oxygen
(C) September 1990-April 1992. Dashed lines are bay outer bay values and
solid line represents inner bay values. Temperature data are daily average
bottom temperature at the mouth (km = 0) and the inner bay (km = 12).
Salinity data are from the same stations, but taken about every 2 weeks.
Dissolved oxygen data are average outer and inner bay values from monthly
vertical transects. Temperature and salinity data are unpublished data

from S. Smith and J. Hollibaugh (U. HI and SFSU, respectively).
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Figure 4. Mean outer Bay (A) and inner bay (B.) catches of bat rays (males
closed circle, females open triangle), September 1990-April 1992.
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Figure 5. Length frequency of male (hatched) and female (solid) bat rays

captured in outer (A) and inner (B) Tomales Bay. N in parentheses.
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Figure 6. Mean outer Bay (A) and inner bay (B) catches of leopard sharks
(males closed circle, females open triangle), September 1990-April 1992.
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Figure 7. Length frequency of male (hatched) and female (solid) leopard

sharks captured in outer (A) and inner (B) Tomales Bay. N in parentheses.
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Figure 8. Mean outer Bay (A) and inner bay (B.) catches of brown
smoothhound sharks (males closed circle, females open triangle),

September 1990-April 1992,
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Figure 9. Length frequency of male (hatched) and female (solid) brown
smoothound sharks captured in outer (A) and inner (B) Tomales Bay. N in

parentheses.
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Figure 10. Actual catch (closed circles) and predicted catch (open triangles)
with model 95% confidence limits for bat rays captured between September

1990 and April 1992.
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Figure 11. Actual catch (closed circles) and predicted catch (open triangles)
with model 95% confidence limits for leopard sharks captured between

September 1990 and April 1992.
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Figure 12. Actual catch (closed circles) and predicted catch (open triangles)
with model 95% confidence limits for brown smoothhound sharks captured

between September 1990 and April 1992.
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