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Two-Dipole Magnetic-Field Density Functional Theory

Christopher J. Grayce
James Franck Institute, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637

Robert A. Harris*
Department of Chemistry, University of California, Berkeley, California 94720

Received: August 30, 1994®

We show that, by constructing a magnetic-field density functional theory for the response of many-electron
systems to the magnetic field generated by two magnetic dipoles, one can calculate the orbital portion of the
indirect spin—spin coupling, nuclear magnetic shielding tensor, and diamagnetic susceptibility of any such
system.

Introduction
The lowest order response of many-electron systems to weak

magnetic fields is the natural purview of the physical chemist.
Indeed, all nuclear magnetic resonance experiments measure

just this object, and the wealth of equilibrium and dynamical
information obtained thereby is well-known.

But the lowest order response of a closed-shell electronic
system to a magnetic field is second order in the field,1 and
this makes its theoretical calculation less straightforward than
the calculation of lowest order responses to, for example, electric
fields. The trouble is illustrated by the perturbation-theory
expression for the lowest (second) order change in ground-state
energy caused by a weak magnetic field B,

E?\B2) =( O',(0)

2c2i=i
Ia2w o(0) +

-,(0)
1

*
—   ,·· ( ,) + A(r,->Pi
2c tí 0(1)(B)) + c.c. (1)

where atomic units are used and only the orbital response is
considered, p, is the momentum operator for the ;th electron,
and A(r) is the vector potential. To calculate the second term
on the right-hand side of eq 1, the “paramagnetic” contribution
to the energy, requires finding |0(1)(B)), the first correction to
the zero-field ground electronic eigenstate |0(0)). This is a time-
consuming task.2-5

Equation 1 conforms to the general principle that finding
second-order responses requires finding the perturbation of the

ground state to first order. But actually this general principle
can—in principle—be evaded for magnetic responses.6 That is,
the second-order change in the energy due to a weak magnetic
field can be calculated from knowledge of only the unperturbed
ground state. (In fact, one does not even need the entire ground-
state wave function but only the ground-state density.)

The evasion proceeds by way of magnetic-field density
functional theory, which is defined more explicitly in ref 6, and
the price of the evasion is that an explicit method of calculation
to arbitrary accuracy—i.e. the equivalent of eq 1—is not yet
known, although there are a number of approximate methods.7-13
What we wish to show here is that constmction of only an

incomplete magnetic-field density functional theory, that which
can predict the responses of an electronic system to only one
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specific form of magnetic field, would have wide utility.
Specifically, if one constructs a magnetic-field density functional
theory for the magnetic field caused by two magnetic dipoles,
one can calculate the orbital portion of the indirect spin—spin
couplings, nuclear magnetic shielding tensors, and diamagnetic
susceptibilities for any electronic system with only the zero-
field ground-state density.

Two-Dipole Magnetic-Field Density Functional Theory
We have shown in earlier work that the ground-state

electronic energy £ of a many-electron system in the presence
of a magnetic field can be written as a functional £[ , ] of the

magnetic field B(r) and the ground-state electronic density  ( ).6
We made the comment in ref 6 that there was no obvious
purpose in regarding B(r) in the functional £[ , ] as an

independent variable. But this is not quite true. Suppose we
make a functional expansion of £[ , ] about the function B(r)
= 0 for a closed-shell system,

£[ , ]=£0[ 0,0] +

f d3r dV B(r>
 2 

óB(r)<5B(r')
•B(r') + ... (2)

B—0

where   ( ) is the ground-state density in the absence of the
field. Note that this expansion is made with respect to only
the explicit dependence of £[ , ] on B(r). There is also an

implicit dependence of £[ , ] on B(r), because  ( ) itself
depends on B(r). But to order B2 this implicit dependence of
£ is proportional to the first variation of £ with respect to  ( ),
and the variational theorem requires this variation to vanish for
the correct ground-state density. Note also the lack of a term
in eq 2 that is first order in B. This is a consequence of our

assumption of a closed-shell ground state and the reason why
we must go to second order to obtain the lowest order magnetic
response of such systems.

We define a generalized susceptibility kernel as the coefficient
of the fields in the second term of eq 2,

F[r,r';  0]
 2 

óB(r)óB(r') s—o
(3)

F is a second-rank tensor.
£[ , ] depends only on  ( ) and B(r). It does not depend

explicitly on the potential (due typically to the nuclei) that the
electrons find themselves in. Thus it is called “universal” and
need be constructed only once for all possible many-electron
systems. F is also “universal” in the same sense. In addition,
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however, since the functional derivative defining it is evaluated
at B(r) — 0, F is independent of B(r) and can only depend on
the unperturbed (5 = 0) ground-state density   ( ). Thus,
remarkably, knowing F, a function of two variables (r and r')
and a functional of one (  ( ")), would allow the calculation of
any orbital second-order magnetic response of any many-
electron system from knowledge of only the unperturbed
ground-state electronic density.

Unfortunately we don’t know F exactly, and constructing
good approximations to it is a difficult task. Furthermore, an

approximation to F would generally have to be constructed
directly for each specific form of B(r), since the general behavior
of £[ , ] with B(r) is unknown. As we pointed out in ref 6,
this is not a fatal drawback, simple because the variety of forms
of B(r) that are of wide interest is not large. In fact the magnetic
responses most often measured are just those to a constant field
and/or one or two magnetic dipoles.

What we wish to point out here, however, is that actually
the responses to all of these latter forms of B(r) can be
calculated from the F found by constructing £[ , ] to order B2
for just one particular form of B(r). This form is that of the
magnetic field caused by two nuclear magnetic dipoles,

B(r;/t1,^2) ~ «fMír.R,) + /i2*M(r,R2) (4)

M(r,R) = -

1
|

3(r — R)(r - R)

|r-R|3 |r-R|5
where 1 is the unit tensor and the two magnetic dipoles µ  and

µ  are located at Ri and R2, respectively.
Suppose we constructed by some (approximate) means £[ , ]

to order B1 for the field in eq 4. If we compared the result to
the right-hand side of eq 2, we could pick out F. This would
not generally be the full F because we presumably used
information about the form B(r) to calculate £. What we would
be picking out would really be F^, the pieces of F that couple
with B(r) when the latter is the two-dipole field given by eq 4.

Using F^) we could calculate the orbital magnetic response
of any electronic system to two magnetic dipoles. In particular
by using eq 4 and eq 2 one can show that the indirect spin-
spin coupling constant tensor is given by

to construct £[ , ] to second order for both fields. We may
use F^\ then, to also calculate—after supplying the zero-field
ground-state density—the magnetic shielding tensor   of a

nuclear spin magnetic dipole in any electronic system. By using
eq 6 in eq 2 this can be shown to be given by

 = fd3rdV M'(r,R1yF(“w[r,r';  0] (7)

 ' =__1 ,
3(r - R)(r - R)

Ir-R|- Ir-R|-

Finally, if we take the limit Ri — in eq 6, we arrive at a

field that is constant, and so F^ must contain all the
information necessary to construct £[ , ] for B(r) = B as well.
From F^ we may therefore also obtain the ordinary magnetic
susceptibility tensor   of any electronic system, which by
inserting B(r) = B into eq 2 can be shown to given by

-/ = fd3rd3/Fw[r,r';  0] (8)

As a final point we note that calculations using any of eqs 5, 7,
or 8 would be intrinsically gauge-invariant, since no separation
of the energy into diamagnetic and paramagnetic contributions
occurs and only observable quantities (density and magnetic
field) are used.

Conclusion

Magnetic-field density functional theory holds out the promise
of being able to calculate second-order magnetic responses from
the zero-order (field-free) electronic density. The present lack
of understanding of the general behavior of £[ , ] as a

functional of B(r) means approximations to the energy func-
tionals that enter such a theory must be constructed individually
for each form of B(r). What we have shown here is that
constructing an approximation to £[ , ] for only one type of
B(r), that due to two magnetic dipoles, allows the calculation,
for any electronic system, of indirect spin—spin couplings,
nuclear magnetic shielding tensors, and diamagnetic suscepti-
bilities. This lends particular attractiveness to the goal of
constructing an approximation to £[ , ] for the two-dipole
magnetic field.

J(R, -

R2) =

f d3r dV M(r,R1)*F(/i/<)[r,r'; Po]-M(r',R2) (5)

where we would need to supply   ( ), the zero-field ground-
state density of the system in question, in order to evaluate the
right-hand side.

But as promised we can get more than J out of F^. Suppose
we take R2 — in eq 4. The resulting magnetic field, to lowest
order in £2_1, is

   ^,  ) = ^-Mtr.R,) + B0 (6)

B„ = Pi
3R2R2j

which is the field due to a magnetic dipole and a constant
external field Bo, that is, the fields appearing in a nuclear
magnetic resonance experiment.

Since the B(r) in eq 6 is the first term in the expansion in
powers of £2_1 of the B(r) in eq 4, the energy £[ , ] for B(r)
given by eq 6 must similarly be given by the first term in the
expansion in powers of £2_1 of the energy £[ , ] for B(r) given
by eq 4. ¥<µµ> must therefore contain all the information required
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Note Added in Proof: Our theorem has been extended to
include the electron spin density coupled to a magnetic field.
Hence, we may determine the Fermi contact contribution to 7.14

Concerning Stuart Rice
The articles in this issue of The Journal of Physical Chemistry

constitute a collective birthday present for Stuart Rice. Like
Stuart’s scientific work, the research is eclectic in that most
aspects of physical chemistry are represented. Whether these

pieces of science are as audacious and imaginative and as

beautifully explicated as Stuart’s remains to be seen. I do not
want to write this afterward as a scientific critique. I want to
write about my history with Stuart. I have known him almost
my entire scientific life. Indeed, if it hadn’t been for him, I
might not have had a scientific life.

When I first heard of Stuart, I had been at the University of
Chicago about two quarters. The chairman of the chemistry
department had just given me a warning: I was not narrow and
deep in my scientific knowledge—I wasn’t even shallow and
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broad. I was about to be tossed out of graduate school. Stuart
had just arrived, preceded by a tidal wave of rumors of great
brilliance, as well as coming from, yes, Harvard—a theorist who
did experiments. It had, a little earlier, become eminently clear
that I too was to be a theorist, a theorist who carried out no

experiments. So I went to see Stuart. The first thing that
amazed me was that the blackboard had written on it a list of
all the important problems of physical chemistry. Was that list
a daily reminder of the problems Stuart needed to solve? Or
were they there for his future students to solve? Or was it some
mixture of both? The next thing that struck me was, yes, he
would let me work with him—take a risk. And I did. He did
too. I can say without exaggeration that Stuart Rice changed
my life. He gave me the opportunity to carry out independent
science. There were no lessons on “how” to carry out scientific
research, no “scientific method”, if you will, just doing it. I
did it. But while I was “doing it”, I felt enormous support,
interest, and active participation, and I was always'taken seri-
ously. Those feelings and their reality did not end with graduate
school. They have been an essential part of my entire life.

I wasn’t the only one.

Robert A. Harris
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