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A B S T R A C T   

The COVID-19 pandemic has led to unemployment, school closures, movement restrictions, and social isolation, 
all of which are child abuse risk factors. Our objective was to estimate the effect of COVID-19 shelter in place 
(SIP) policies on child abuse as captured by Google searches. We applied a differences-in-differences design to 
estimate the effect of SIP on child abuse search volume. We linked state-level SIP policies to outcome data from 
the Google Health Trends Application Programming Interface. The outcome was searches for child abuse-related 
phrases as a scaled proportion of total searches for each state-week between December 31, 2017 and June 14, 
2020. Between 914 and 1512 phrases were included for each abuse subdomain (physical, sexual, and emotional). 
Eight states and DC were excluded because of suppressed outcome data. Of the remaining states, 38 introduced a 
SIP policy between March 19, 2020 and April 7, 2020 and 4 states did not. The introduction of SIP generally led 
to no change, except for a slight reduction in child abuse search volume in weeks 8–10 post-SIP introduction, net 
of changes experienced by states that did not introduce SIP at the same time. We did not find strong evidence for 
an effect of SIP on child abuse searches. However, an increase in total search volume during the pandemic that 
may be differential between states with and without SIP policies could have biased these findings. Future work 
should examine the effect of SIP at the individual and population level using other data sources.   

1. Background 

COVID-19 has had widespread health, social, and economic effects 
across US society. Families have faced a combination of challenges 
including increased unemployment or precarious employment, school 
closures, movement restrictions, and social isolation. Each of these 
disruptions is a risk factor for child abuse and neglect (jointly termed 
maltreatment) (Risk and Protective Factors [Internet], 2022). Early in 
the pandemic, UNICEF cautioned about secondary effects of the 
pandemic on children including neglect and limited parental care, and 
increased exposure to several forms of maltreatment including physical 
violence, sexual violence, and emotional maltreatment (Technical Note: 
Protection of Children during the Coronavirus Pandemic, 2020). Babvey 
et al. found that posts on the subreddits r/survivorsofabuse and r/abuse 

increased more than two-fold after shelter-in-place restrictions were 
introduced, indicating that abuse may have increased during this time 
(Babvey et al., 2021). 

At the same time, COVID-19 created challenges in systems for 
monitoring child maltreatment (Katz et al., 2021). Educational pro-
fessionals make up 21% of all child maltreatment referrals to Child 
Protective Services (CPS), thus school closures likely disrupted typical 
referral processes (Sciamanna, 2022). Likewise, reductions in routine 
pediatric care may have also decreased contact between healthcare 
mandated reporters and children. Thus, this period of increased familial 
stress and economic uncertainty may have been paired with decreased 
identification of child abuse (Welch and Haskins, 2020). 

Between March 19 and April 7, 2020, 45 states introduced partial or 
statewide shelter in place (SIP) policies to reduce infection transmission 
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(Mervosh et al., 2020). By April 2020, the United States (US) was 
experiencing its highest unemployment rates on record (National 
Employment Monthly Update [Internet], 2022; Unemployment Rates 
During the COVID-19 Pandemic [Internet], 2022). Previous research has 
found that economic policies or recessionary trends that decreased 
family income, created financial uncertainty, and increased unemploy-
ment were associated with increased self-reported physical abuse or 
emotional maltreatment and increased reports to CPS (Schneider et al., 
2017; Brooks-Gunn et al., 2012; McLaughlin, 2022a; McLaughlin, 
2022b; Kovski et al., 2021). In addition to these economic changes, SIP 
shifted family and community interactions, by increasing contact be-
tween household members and greatly reducing contact outside of the 
household. Such circumstances raised concerns about maltreatment, as 
risk factors (i.e., unemployment, parental stress, isolation/disconnec-
tion) for maltreatment increased (Abramson, 2020) but the ability to 
detect it decreased. Because of the challenges of measuring child 
maltreatment using CPS data during the COVID-19 pandemic, novel 
sources such as online search data merit consideration as alternative 
measures. Previously, Stephens-Davidowitz investigated how searches 
related to child maltreatment changed over the course of the Great 
Recession and found that places where CPS referrals went down had the 
largest increases in both child mortality and Google searches related to 
child maltreatment (Stephens-Davidowitz, 2013). We employed a 
similar approach with an objective of identifying the effect of state-level 
SIP policies during the COVID-19 pandemic on child maltreatment in the 
US. We used a difference-in-differences study design, a type of 
controlled pre-post design that estimates changes in searches related to 
child maltreatment after the introduction of SIP relative to states that 
did not undergo SIP at the same point in time (Strumpf et al., 2017). The 
major strength of the design is that it eliminates confounding from 
secular trends over time that are shared across states and from time- 
invariant risk factors for child abuse that vary across states. However, 
it requires a set of assumptions, such as parallel trends in the outcomes 
before the policy change across states that do and do not implement SIP, 
and that these parallel trends would have continued if SIP had not been 
implemented. We detail the method and our assessment of the as-
sumptions in the statistical analysis section. 

2. Methods 

2.1. Exposure 

We linked COVID-19 SIP data from Boston University and the New 
York Times to outcome data measured using the Google Health Trends 
API. We abstracted the dates that states introduced SIP from a database 
maintained by Boston University, along with information reported by 
the New York Times (Mervosh et al., 2020; Raifman et al., 2021). Both 
sources assembled dates based on state-issued health mandates, execu-
tive orders, and local news reports (Mervosh et al., 2020; Raifman et al., 
2021; Tracking COVID-19 Policies [Internet], 2020). 

2.2. Outcome 

The volume of searches for child abuse was obtained from the API 
(Health Trends API Getting Started Guide [Internet], 2022; Stocking and 
Matsa, 2017). To identify search terms potentially used by children who 
experienced abuse, we reviewed qualitative literature on children 
reporting maltreatment (Lavi and Katz, 2016; Williams, 2017; Jackson 
et al., 2015; Foster and Hagedorn, 2014; Foster, 2017; Katz and Barnetz, 
2014; Brennan and McElvaney, 2020) and validated scales for self- 
report of child maltreatment (Felitti et al., 1998; Bernstein et al., 
1994). We then created search terms generally following the format 
“perpetrator” + “verb” + “me/my” (or “their” for sexual abuse), where 
perpetrator included an individual from a list of common abuse perpe-
trators and “verb” was the action against the child. For quality control, 
we searched each term in a Google Chrome incognito window and 

discarded terms that recovered results not related to the specified child 
abuse domain (Masta et al., 2017). The final search terms encompassed 
three domains: physical abuse, sexual abuse, and emotional maltreat-
ment. We attempted to create accurate search terms for neglect, but 
these terms uncovered many unrelated searches and were discarded. 

Supplementary material 2 contains the final list of search terms. We 
included between 914 and 1512 abuse phrases for each abuse sub- 
domain (e.g., physical: “mom hit me,” emotional: “stepfather yells as 
me,” sexual: “uncle makes me touch their”), incorporating various 
spellings and tenses. In an effort to capture searches indicative of child 
abuse incidence, the majority of the search terms contained the words 
“me” or “my” combined with a caretaker perpetrator, to prioritize 
searches made by children about an abuse experience. Additionally, we 
included the term “child abuse hotline” to capture children or caregivers 
looking for this resource. We also investigated the term “signs of child 
abuse”; however, it returned low search volume, and may be more likely 
to be searched by individuals interested in learning about child abuse 
rather than by children experiencing abuse or witnesses, so we discarded 
it. 

Google maintains a random sample of all Google searches that can be 
queried by researchers using the API (Masta et al., 2017). When a query 
is performed, a random sample of the overall sample is pulled for the 
requested geography and time frame. From this second sample, the API 
returns a scaled proportion equal to the number of searches for the 
specified search terms as a proportion of total searches multiplied by a 
constant (10 million) (Health Trends API Getting Started Guide 
[Internet], 2022). We used the Google Health Trends API to query the 
volume of Google searches performed that contained words matching 
each of the phrases in the list of abuse search terms, as a proportion of 
total searches performed. For the main analysis, we pulled state-level 
data for each week between December 31, 2017 and June 14, 2020. If 
the number of searches is below a threshold (not made public by Google) 
it is suppressed by the API leading to missing data (returned as zeroes), 
an issue that was more common for smaller states (Masta et al., 2017). 
To reduce missingness and improve search volume stability, we pulled 
ten random samples (Masta et al., 2017). Our final measure was the 
average of non-missing values from the random samples for each state- 
week. States with >55% of their data missing were excluded. 

To adjust for the possibility of the outcome measure changing in 
response to changes in the total number of searches during the pandemic 
(COVID-19: How Cable's Internet Networks Are Preforming. Metrics, 
Trends, and Observations, 2022), we conducted a sensitivity analysis 
using a normalized outcome. More information about the normalized 
outcome is contained in the supplementary material 1. A detailed 
description of the process we followed to use Google search terms is 
included elsewhere (Neumann et al., unpublished data, 2022). 

2.3. Statistical analysis 

We used a difference-in-differences design to estimate the extent that 
changes in child abuse search volume after the introduction of SIP 
policies were greater (or less) in states that introduced SIP in a given 
week vs. those that did not in that same week (Angrist and Jörn-Steffen, 
2022). For each week that SIP was introduced, “treated” states were 
those with the policy and “untreated” states were those without. 

We regressed the child abuse search volume as a function of: 51 in-
dicators for calendar week; 2 indicators for calendar year; 41 indicators 
for included state; 82 interaction terms between state and year to cap-
ture state-specific time trends; and indicators for week since SIP, where 
the reference group represented no SIP in a given state-week, and time 
before or after SIP was coded as indicators for each of the ten weeks 
before SIP (leads), the week of SIP's introduction, and the ten weeks after 
SIP (lags). We included lead effects as negative controls and rejected 
models that detected leads. We hypothesized that any effects of SIP 
would occur in the 2.5 months after its introduction, and did not esti-
mate effects beyond ten weeks to limit confounding introduced by 
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changes over a longer period. The coefficients for the treatment terms 
(time before or after the policy change) are the estimated additional 
changes in child abuse search volume in states with SIP net of the change 
over the same week in states not introducing SIP. Robust standard errors 
were specified to account for the clustering of data over time within 
states, and we applied analytic weights for state average population size 
in 2018 and 2019 from the American Community Survey (ACS De-
mographic and Housing Estimates [Internet], 2022a; ACS Demographic 
and Housing Estimates [Internet], 2022b). 

The difference-in-differences design assumes that: i) pre-policy 
trends in child abuse were parallel in treated and untreated states and 
would have continued to be parallel in the absence of the policy/inter-
vention, ii) that there are no unmeasured time-varying confounders (i.e., 
no factors that varied within states over time affecting child abuse that 
also affected which states introduced the policy), and iii) that there are 
no other changes at the time of the policy change that affect the outcome 
differentially in states introducing and not introducing SIP. We plotted 
trends of the outcome in the time period before SIP was introduced and 
visually compared treated and untreated state trends to assess the 
plausibility of the parallel trends assumption. As a robustness check, we 
conducted a falsification test, repeating the analysis with the SIP dates 
shifted to occur in 2019 and adding an additional year of pre-period 
outcome data (Lipsitch et al., 2010). 

We ran six post-hoc sensitivity analyses to address concerns that 
arose during data exploration. First, we noticed a reduction in the per-
centage of state-weeks with suppressed outcome data returned by the 
Google Health Trends API from the pre- to post-policy periods, partic-
ularly in states with small populations. At the same time, the magnitude 
of the search volume in these states decreased, suggesting that the 
outcome was “detecting” lower search volumes, which would previously 
have been below the suppression threshold. We were concerned that this 
pattern might result from an increase in total searches, whereby even if 
the absolute number of child maltreatment searches were increasing (to 
push above the suppression threshold) it would appear as a decline in 
the outcome (abuse searches as a proportion of total searches). Thus, we 
re-ran the models, restricting the data by dropping nine states that had 
any missing outcome data. Second, we also ran a more restrictive 
sensitivity analysis on the 15 states (dropping 27 states) with no change 
in missingness/suppression of the outcome variable in the two months 
before vs. two months after SIP's introduction. 

Third, we recoded the exposure to stop counting weeks since SIP 
once the SIP policy ended within each state. Fourth, we created an 
exposure defined by level of restrictiveness: one level that indicates 
more restrictive SIP enforcement and the other that indicates less 
restrictive enforcement (compared with no SIP). Bans that do not strictly 
enforce movement or only applied to a subset of the population (e.g., 
those who are at increased risk from Covid, those over the age of 65, 
etc.) were encoded as less restrictive, and all other bans were coded as 
more restrictive. Fifth, we removed the interaction between state and 
year from the analysis. 

Sixth, recent economics literature has shown that implementing 
difference-in-differences designs with two-way fixed effects models and 
a binary indicator variable for a policy change can lead to biased esti-
mates under certain conditions (Callaway and Sant’Anna, 2020; Baker 
et al., 2022). Using multiple indicators to model dynamic changes dur-
ing the post-policy period, as we have done, partially addresses these 
concerns. However, to ensure robustness to the biases recently identi-
fied, we also ran models using the method proposed by Callaway and 
Sant'anna (Callaway and Sant’Anna, 2020). These models did not point 
to different findings. 

Python 2.7 was used to query the Google Health Trends API, R 4.0.5 
and Stata 16.1 were used to clean, visualize, and perform the statistical 
analysis. 

2.4. Ethics approval and patient and public involvement 

This study was exempt from approval by the institutional review 
board because it is not considered human subjects research. Patients or 
the public were not involved in the design, or conduct, or reporting, or 
dissemination plans of our research. 

3. Results 

Eight states (Alaska, Delaware, Montana, North Dakota, Rhode Is-
land, South Dakota, Vermont, Wyoming) and DC were excluded because 
of complete or high rates of suppression by the Google Health Trends 
API. Of the remaining 42 states, 38 introduced a SIP policy between 
March 19, 2020 and April 7, 2020 and 4 states (Arkansas, Iowa, 
Nebraska, Utah) did not (Fig. 1). 

States that introduced SIP had on average larger populations, higher 
median incomes, were less rural, voted republican in lower proportions, 
and were more racially and ethnically diverse than states that did not 
introduce SIP (Table 1). Trends in child abuse search volume in SIP and 
non-SIP states appeared parallel between January 2018 and February 
2020, supporting the plausibility of the parallel trends assumption 
(Supplemental Fig. S2). 

Searches related to emotional and sexual abuse contributed the most 
to child abuse search volume, followed by searches related to physical 
abuse. Searches of “child abuse hotline” contributed least to the measure 
(Supplemental Fig. S3). 

Fig. 2 displays SIP-related changes in child abuse search volume, 
where each estimate is interpreted as the change in the volume of the 
outcome (at a specified week before or after the introduction of SIP vs. 
earlier weeks) experienced by states that introduced SIP net of the 
changes experienced over the same time period by states that did not 
introduce SIP. As expected, no differences were detected in the weeks 
preceding the policy change. Weeks 5–7 after the policy change had 
small estimated increases in the outcome, and weeks 8–10 had estimated 
decreases, though most confidence intervals overlapped the null. The 
model passed the falsification test, and did not detect pre- or post-policy 
changes when fictitious 2019 dates were used for SIP's introduction 
(Fig. S4). 

Compared to the main analysis, analysis of the normalized outcome 
showed point estimates for the post-policy period shifted downward, 
most notably for weeks 8–10 after the policy change (Fig. S5). These 
point estimates are consistent with a reduction in child abuse search 
volume for those weeks. The model that excluded 9 states with the most 
missing data resulted in nearly identical results as the main model 
(Fig. S6). The model that excluded 27 states and kept states with no 
discernible change in the proportion of missing data did not detect an 
effect of the policy change on the outcome, though only a shorter post- 
policy period could be investigated (Fig. S7). The model that incorpo-
rated SIP end dates into the analysis detected lead effects and was 
rejected from further consideration (Fig. S8). Less restrictive SIP policies 
were introduced in 5 states (Connecticut, Georgia, Kentucky, Oklahoma, 
and Texas) and the remaining states were encoded as having more 
restrictive policies. This analysis did not support a relationship between 
either policy strength and child abuse search volume (Fig. S9). The 
analysis that removed state-year interaction terms detected policy ef-
fects in the lead period so it was not considered for interpretation 
(Fig. S10). 

4. Discussion 

In this study, we found evidence consistent with no association of SIP 
with child abuse search volume. Using a normalized outcome, findings 
indicated a reduction in search volume associated with SIP in weeks 
8–10. These findings were contrary to our hypothesis of an increase in 
child abuse due to SIP. SIP orders may have had no impact on child 
abuse on average. The impact of the pandemic on family life is likely 
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Fig. 1. Child abuse search volume before and up to ten weeks after the introduction of shelter in place policies (yellow shaded area). (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
Eight states (Alaska, Delaware, Montana, North Dakota, Rhode Island, South Dakota, Vermont, Wyoming) and DC were excluded. Of the remaining states, four did not introduce shelter in place policies (Arkansas, Iowa, 
Nebraska, and Utah). Child abuse search volume is more variable and has a higher average magnitude in states with smaller populations. Because the API suppressed data below an unknown threshold, it is possible that for 
smaller states only the right-hand side of a distribution of search volumes is returned by the API where the data is above the threshold. For example, in New Hampshire, the data is more variable in the upwards direction 
and appears bounded at a lower value. The bound appears to move downward shortly before shelter in place is introduced, possibly as a function of changing total search volume. Thus, we don't recommend comparing the 
magnitude of the outcome across states. 
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different according to economic factors, such as essential work status, 
remote work options, and accumulated wealth. It may be that some 
families experienced reductions in stress (and downstream reductions in 
abuse) that outweighed increases in stress and abuse experienced by 
other families (Palsson et al., 2020). However, children with previous 
adverse childhood experiences including household violence or wit-
nessing caregiver intimate partner violence may have been at higher risk 
during SIP, and the effects of these experiences may accumulate and 
compound (Bryce, 2020). In another study, we found that searches for 
child abuse and child-witnessed intimate partner violence increased 
during the COVID-19 pandemic in the US overall (Riddell et al., 2022). 
Combined with this study, this may suggest that an increase in child 
abuse occurred during the COVID-19 pandemic, and is not isolated to 
states that introduced SIP. 

Although Google searches are challenging to analyze, more tradi-
tional measures of child abuse pose challenges that warrant use of 
nontraditional measures. For example, a CDC analysis of emergency 
room visits for child maltreatment over the pandemic found that visits 
for child maltreatment were much lower in weeks 11–24 of 2020 (weeks 
beginning March 8–June 7) compared to the same weeks in 2019 
(Swedo et al., 2020). Yet the number of severe visits that resulted in 
hospitalization was similar to 2019. At the same time, the total number 
of child emergency visits greatly decreased, demonstrating a large 
reduction in healthcare-seeking behavior during the pandemic. Thus, it 
is difficult to determine from healthcare utilization data whether child 
maltreatment truly decreased, or if maltreatment detection decreased 
because caretakers were less likely to seek medical care and only came to 
the hospital in the most severe cases. Likewise, two studies of CPS re-
ports found that allegations of child maltreatment in New York City 
dropped between 29% and 52% (depending on report source) during the 
first three months of the pandemic and by 27% in Florida during the first 
two months of the pandemic (Rapoport et al., 2021; Baron et al., 2020). 
Thus, detection of maltreatment using hospitalizations and CPS reports 
appear to have been heavily affected during the pandemic, making it 
difficult to know whether rates of child maltreatment had changed using 
traditional measures. On the other hand, a recent study examining texts 
and calls to the hotline Childhelp increased following school closures and 
SIP mandates, suggesting that maltreatment may have increased during 
this time (Ortiz et al., 2021). 

One recent study used Google Trends data (as opposed to the Google 
Health Trends API) to study child maltreatment during the COVID-19 
pandemic (Riem et al., 2021). The authors estimated total maltreat-
ment searches by multiplying the returned measure by an estimated 
number of desktop Google searches per day (only available for the two 
most recent months at the time of abstraction), and found that 28 out of 
the 33 abuse-related search terms considered increased during lock-
down in “many countries worldwide” (Riem et al., 2021). This is in 
contrast to this study's results, though the studies have many differences 
(e.g., geographic scope, large difference in number of search terms 
considered, focus on SIP vs. pandemic overall). 

Previous studies that have looked at exposures that affect income 
related to child maltreatment referrals have some relevance to our 
findings. One possible mechanism through which SIP might affect child 
abuse is stress due to SIP-related employment cuts and ensuing financial 
hardship. McLaughlin found that state-level increases in cigarette taxes, 
sales taxes, and the price of gasoline were associated with higher child 
maltreatment referral rates (McLaughlin, 2022a; McLaughlin, 2022b). A 
recent study by Kovski et al. found that state-level increases in earned 
income tax credits were associated with fewer reports of child neglect 
(Kovski et al., 2021). These studies suggest that policies that decreased 
income led to increases in child maltreatment, and that the inverse is 
also true. However, these studies rely on CPS reports. CPS data pose 
unique challenges because state funding of CPS varies both across states 
and within states over time. Of particular concern during the pandemic 
is the possibility that recessionary budget cuts can lead to reduced in-
teractions with mandated reporters as well as CPS workforce and 

protocol changes that may lead to spurious appearance of changes in 
maltreatment that do not reflect the true underlying incidence. This 
concern is demonstrated in a previous study that found that places most 
affected by the Great Recession had the largest reductions in child 
maltreatment referral rates but that these places had the largest in-
creases in child mortality and child maltreatment-related Google 
searches (Stephens-Davidowitz, 2013). These findings are consistent 
with the possibility that referrals to CPS decreased during the Great 
Recession while maltreatment incidence actually increased. Two studies 
of the effects of decreased consumer confidence during the Great 
Recession on self-reported maltreatment by mothers also estimated in-
creases in maltreatment (Schneider et al., 2017; Brooks-Gunn et al., 
2012). Thus, exposures like the Great Recession and the COVID-19 
pandemic that may directly affect reports to CPS pose challenges to 
using these data to measure abuse. 

This study has several strengths. This study created a metric for child 
abuse search volume based on a comprehensive set of thousands of 
searches that children who experienced abuse or witnesses may perform. 
Search terms were informed by qualitative literature, and tested to 
ensure their validity in leading to child abuse-related sites. Importantly, 
the specific searches we performed should not be sensitive to media 
coverage of child abuse cases, which is often a concern with Google 
search analyses (Cervellin et al., 2017). We pulled multiple samples to 
improve measure stability and reduce missingness. Lastly, we used a 
quasi-experimental design that eliminates confounding from variables 
that differ across states and confounding from variables that change over 
time. 

This study also has several limitations. First, Google searches related 
to child abuse is a proxy measure for child abuse incidence and future 
research should investigate how the measure tracks with other measures 
of abuse such as emergency room hospitalizations related to abuse and 
calls to the hotline Childhelp. While there are no studies validating this 
specific measure, a recent study found that seasonal peaks in Google 
searches for domestic violence tracked with peaks in police calls for 
domestic violence in Finland, suggesting that Google searches may 
provide important insights on the incidence of violence (Koutaniemi and 
Einiö, 2021). Second, while SIP policies may vary at levels smaller than 
the state, such as the county or city level, Google search data is not 
available at these smaller scales. Third, a key assumption of the 
difference-in-differences design is that no risk factors for the outcome 
change at the time of SIP implementation in treated states but not in 
untreated states. SIP policies were introduced at a period of unprece-
dented change to daily life; our effect estimates may therefore be 
capturing the effect of SIP combined with these other changes (e.g., 
school closures, unemployment). If these changes were all downstream 
of SIP, then we may have estimated a total effect of SIP and downstream 
changes rather than SIP in isolation. Another concern is related to evi-
dence that internet usage changed markedly during the pandemic 
(COVID-19: How Cable's Internet Networks Are Preforming. Metrics, 
Trends, and Observations, 2022), possibly due to remote work and 
schooling, changes in how individuals connect with family and friends, 
and increased interest in news coverage related to the pandemic, among 
others (Koeze and Popper, 2020). If total search volume increased, then 
the same (or even increases in the) in number of child abuse related 
searches could translate into decreases in relative search volume when 
taken as a proportion of total searches. Further, if there was a greater 
increase in total searches in treated vs. untreated states, this could 
spuriously create the appearance of a SIP-related decrease in child abuse 
that is actually due to changes in total search volume. Normalization is 
designed to eliminate this bias, insofar as the absolute number of 
searches for the normalizing term (here, “and”) do not change with SIP. 
However, if SIP was associated with increased searches of the normal-
izing term, then normalization cannot remove this bias and may exac-
erbate it. Google does not give access to the total search volume, and 
methods to estimate total search volume involve untenable assumptions. 
Finally, child abuse search volume only reflects the subgroup 
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performing searches and does not capture changes among children not 
performing searches, such as those with limited internet access, and 
those very young. 

5. Conclusions 

Overall, we did not find evidence supporting our hypothesis that SIP 
policies led to increased child abuse search volume. The challenges 
identified in all available sources of data on child abuse/maltreatment 

underline the importance for future work to use multiple measures of 
maltreatment/abuse with different strengths and weaknesses as a 
technique for triangulating evidence across multiple approaches to 
measure the outcome. Future work examining whether heterogeneous 
effects might underlie these results (e.g., if some families had reduced 
abuse while others increased) would be valuable. 

Fig. 2. Estimated effect of introduction of shelter in place on child 
abuse search volume. 
This figure shows the change in child abuse search volume in states 
introducing SIP in each of the 10 weeks before and after policy intro-
duction and in the week of the policy change compared with pre-policy 
weeks. These estimates control for shared time trends (on the month 
and year level), state-specific yearly trends, and additional changes 
experienced by states not introducing the policy over the same time 
period.   

Table 1 
Comparison of states introducing shelter-in-place policies with states not introducing shelter in place policies.  

Week of 2020 that shelter 
in place was introduced 

Week 12 (Mar 
15) 

Week 13 (Mar 22) Week 14 (Mar 29) Week 15 
(Apr 5) 

Total Across All States with shelter in 
place 

States without 
shelter in place 

States CA, IL, NJ, 
NY 

CO, CT, HI, ID, IN, KY, 
LA, MA, MI, MN, NH, 
NM, OH, OR, WA, WI, 
WV 

AL, AZ, FL, GA, KS, 
MD, ME, MS, NC, NV, 
OK, PA, TN, TX, VA 

MO, SC CA, IL, NJ CO, CT, HI, ID, IN, KY, LA, MA, 
MI, MN, NH, NM, NY, OH, OR, WA, WI, 
WV AL, AZ, FL, GA, KS, MD, ME, MS, NC, 
NV, PA, TN, TX, VA MO, SC 

AR, IA, NE, UT 

Number of States 4 17 15 2 38 4 
Average of State 

Populations, 
2018–2019 

20,140,104 5,019,139 8,778,809 5,622,980 8,126,681 2,818,844 

Sum of State 
Populations, 
2018–2019 

241,745,139 85,325,360 131,682,139 11,245,961 469,998,598 11,275,378 

% of Study Population1 50.2% 17.7% 27.4% 2.3% 97.7% 2.3% 
Population 

Characteristics       
Median Age2 38 39 39 39 39 36 
Median Income2 $73,038 $63,649 $59,353 $54,330 $62,451 $60,295 
% Rural34 8.5% 24.7% 26.9% 31.6% 24.2% 29.0% 
Educational 

Attainment2       

High school/GED 24.9% 28.4% 28.3% 28.3% 29.9% 28.1% 
Associate's Degree 7.8% 9.0% 8.4% 8.4% 8.9% 8.6% 
Bachelor's Degree 21.8% 19.5% 18.6% 18.6% 17.9% 19.3% 
Graduate/Professional 14.5% 12.1% 11.5% 11.5% 10.8% 12.1% 

Race/Ethnicity2       

Non-Hispanic Asian, 
Native Hawaiian, or 
Pacific Islander 

9.5% 5.8% 3.5% 1.9% 5.1% 2.5% 

Hispanic or Latino 
(any race) 

23.8% 11.1% 13.8% 5.0% 13.2% 9.6% 

Non-Hispanic Black 11.6% 7.2% 16.4% 19.0% 11.9% 6.2% 
Non-Hispanic White 52.4% 71.3% 62.4% 71.6% 65.8% 78.9% 
Other (includes one or 
more races) 

2.7% 4.5% 3.9% 2.7% 4.0% 3.0% 

Political Leaning       
Average % voted 
Republican in 2016 
Presidential Election 

36.9% 47.3% 50.0% 55.7% 47.7% 53.9%  

1 Based on the sum of state populations. 
2 American Community Survey 2019 5-year Survey, average of States in category. 
3 2010 Decennial Census Data, average of States in category. 
4 2016 election results from https://www.nytimes.com/elections/2016/results/president, average of States in category. 
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