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ABSTRACT OF THE DISSERTATION

Fair Rate Assignment in Interference

Limited Multi-hop Networks

by

Mustafa Arisoylu

Doctor of Philosophy in Electrical Engineering

(Communication Theory and Systems)

University of California San Diego, 2006

Professor Tara Javidi, Chair

Professor Rene L. Cruz, Co-Chair

In this study, we consider two types of interference limited multi-hop networks.

The first type is a micro-buffered multi-hop networks, whereas the second type is

a CDMA based multi-hop wireless access network.

Micro-buffered networks are high speed packet switched networks, and consist

of either nodes with no buffering or nodes with limited buffering such that there

is no specific collision resolution mechanism inside the core. Packet losses inside

the core are dealt with using end-to-end or edge-to-edge coding techniques. In

this study, we discuss the rate allocation problem for a micro-buffered high speed

network.

First the classical slotted aloha type protocols with exponential backoff are

examined and it is observed that such mechanisms may result in unfair rate allo-

cations.

Next, we consider weighted α-proportional , weighted max-min and hierarchi-

cal max-min fair rate assignments. Simple distributed algorithms achieving these

notions of fairness by exchanging local information are discussed. It is found that

weighted max-min fair information rate allocation assigns information rates to each

xi



flow in the same group inversely proportional to their weights. Furthermore, we

also show that hierarchical max-min fairness can be achieved in a micro-buffered

network if and only if weighted max-min fairness among the flows is ensured.

Secondly, the problem of end-to-end weighted max-min fair rate assignment in

a two-channel multi-hop CDMA wireless access network is discussed. We show

that end-to-end weighted global max-min fairness (hierarchical as well as flow-

based) can be achieved by a simple extension of mac-layer fairness. In particular,

we show that weighted end-to-end flow-based as well as hierarchical global max-

min fairness can be simply insured if and only if weighted mac-layer max-min and

weighted transport-layer max-min fair rates are achieved. The same results can

easily be shown to be valid for more general wireless networks, which will be briefly

discussed in this study as well.

In addition, we discuss a mac-layer algorithm, MAC − α − G algorithm, that,

with careful choice of parameters, not only provides weighted α-proportional fair-

ness at the mac layer, but also leads to end-to-end weighted global max-min fairness

(both flow-based and hierarchical) with an appropriate higher-layer protocol (i.e.

weighted transport-layer max-min fair protocol).
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1

Background on Rate Assignment

In this chapter, the basics on the problem of rate assignment are discussed. In

particular, in a multi-hop network, max-min and weighted α-proportional fair rate

assignments are defined and examined.

A network (V, L) is assumed to consist of sets of nodes, V , and directed links,

L. A link l ∈ L is an ordered pair of nodes (i.e. l = (t, r)) and is said to be

directed from the node t (transmitter node) to node r (receiver node). In other

words, a link l = (t, r) is a direct logical connection from node t to node r. Each

link l is assumed to have capacity Cl which defines the information rate it can

carry directly from the transmitter node to the receiver node.

A flow f , on the other hand, can also be considered as an ordered pair of nodes

such that f = (s, d) where s is called the source node and d is called the destination

node. Unlike a link, a flow can traverse multiple links and nodes from the source

node to the destination node. The rate of a flow f = (s, d) , Rf , is the information

rate received by the destination node d which is originated from node s. A path

setup algorithm (e.g. routing or bridging) assigns each flow a path beginning from

the source node to the destination node.

Let Tl be the aggregate flow rate on link l such that

Tl =
∑

all sessions f traversing link l

Rf (1.1)

and let Cl denote the capacity of link l.

1



2

A general constraint on the flow rates is that

Cl ≥ Tl ∀ l ∈ L Rf ≥ 0 (1.2)

This set of equations also define the feasibility region of the flow rates, that

is any flow rate vector (a vector whose elements are the rate of the flows in the

network) that satisfies the above equations is called a feasible rate vector.

In general, the problem is to assign rates to certain entities in the network

such as flows or links such that a well defined notion of fair policy is ensured.

In this chapter, as an introduction to the fair rate allocation concept, we mainly

consider networks where the link capacities are independent of each other and fixed

and the information rate of the flows are conserved at each link as the flow rate

vector satisfies equation (1.2). A good example for such networks is classical wired

networks with sufficient buffering at the nodes. However, as we will examine in the

following chapters, one or both of these assumptions may not hold for interference

limited multi-hop networks. For instance, in chapter 2 even though the link rates

are assumed to be fixed, the information rates of each flow are not conserved at each

link, in fact the information rate may multiplicatively decrease with the number of

links traversed. In addition to that, in chapter 3, link rates are not independent of

each other in interference limited wireless networks, and they are related through

a capacity formula.

The details for such interference limited networks and the related capacity

formulations are discussed in the related chapters.

In the following sections, classical definitions of the Max-Min and Alpha-

Proportional fair rate assignments are defined and some examples are presented.

1.1 Max-Min Fair Rate Assignment

First, let us give definitions for weighted max-min fairness.

Definition 1: A vector of rates R is weighted max-min fair with weight

vector, W , if it is feasible and for each flow i, rate of the flow (e.g. flow or link)

i, Ri, can not be increased while maintaining feasibility without decreasing Rj for
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some flow j for which RjWj ≤ RiWi. As a special case, when Wi = 1 ∀i, the vector

R is said to be max-min fair [2].

Definition 2: Given a feasible rate vector R, link l is said to be a weighted

bottleneck link with respect to R for a flow f traversing link l if Tl = Cl and

WfRf ≥ WpRp for all sessions p traversing link l.

In [2], a simple centralized algorithm is given to compute the max-min fair rates

in a wired network. On the other hand, there are several studies in the literature

designing distributed algorithms to compute the max-min fair rate allocation [7,

10, 11]. In all these studies, the link rates are assumed to be independent of each

other and fixed.

The weighted max-min fair rate assignment that we have discussed above en-

sures the fair rate assignment on individual flows. However, in real life various

other types of fair rate assignments may be necessary. For instance, in a typical

residential area community network application, each resident accesses the Inter-

net over a multi-hop access network. In such scenarios each resident would like to

utilize a fair share of the available network bandwidth regardless of the number

of flows they utilize. In that sense a more general fairness policy can be neces-

sary such that first the fair rate allocation is ensured among the residents (that is

among some subset of flows) and then for each resident (that is within the same

subset of flows) a certain fairness can be ensured among the flows belonging to

that resident.

Considering such scenarios, as in [21], we define a hierarchical mac-min fair

rate allocation as follows.

Definition 6: Let Ma be the set of flows belonging to subgroup a such that
⋃

a Ma = F and Ma

⋂
Mb = ∅ ∀a, b : a 6= b. Let D be the rate vector where the ath

element denotes the aggregate information rate of subgroup a : Da =
∑

i∈Ma
Ri.

Lastly, let Ha denote the vector of rates of the individual flows belonging to Ma.

A vector of flow rates, R, is said to be weighted hierarchical max-min fair

with a weight vector Z, and a vector of vectors V = (V1, V2, ...VT ), where T is

the number of subgroups, and Va is the weight vector for subgroup a such that

Va = (Va,1, Va,2...Va,La
) (where La is the number of flows in subgroup a), if first the
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vector, D, is weighted max-min fair with weight vector Z and the rate vector for

flows in each subgroup a, Ha, is weighted max-min fair with weight vector Va.

More formally, a vector, R, is said to be weighted hierarchical max-min fair

with a weight vector Z, and a vector of vectors V = (V1, V2, ...VT ), if it is feasible

and if for each flow, i ∈ Ma, the rate, Ri, can not be increased, while maintaining

feasibility without decreasing Rj for some flow j ∈ Mb for which Vb,jRj ≤ Va,iRi

when a = b or ZbDb ≤ ZaDa when a 6= b. When all the weights are all equal to 1,

the rate vector R is called Hierarchical Max-Min fair as similarly defined in [21].

1.2 Utility Based Fair Rate Assignment

In this section, we examine a fair rate allocation policy where each flow has a

utility function of its rate. The policy in question maximizes the sum of all the

individual utility functions in the system.

Let R be the rate vector such that Ri denotes the rate of flow i and U(x) be

the utility function.

The utility based fair rate assignment policy (maximizing the sum of individual

utility functions) targets to solve the following optimization problem:

Maximize:
∑

i

U(Ri) s.t. the feasibility constraint on flows (1.3)

Based on the utility function various fairness policies can be ensured. In the

next section, we discuss weighted alpha proportional fair rate assignment where

by appropriate choice of the parameters of the utility function, different fairness

policies can be ensured.

1.2.1 Weighted Alpha-Proportional Fairness

The optimization problem for weighted Alpha-Proportional fairness is
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Maximize
∑

i

U(Ri) =
∑

i

−
1

gi

(−ln(giRi))
α (1.4)

Subject To: Feasibility Constraints

where gi is a weight associated to the flow (e.g. flow, link) (i).

If all the weights (i.e gis) are equal to 1 then the fairness policy is called Alpha-

Proportional fairness, in addition if α = 1, then as defined in [8] the policy is called

Proportional fairness. As can easily be seen, for proportional fairness the utility

function for each flow is just a logarithmic function.

In the following chapters, we examine two types of multi-hop interference lim-

ited networks. The first type is a collision based multi-hop micro-buffered high

speed network, while the second type is a CDMA based multi-hop wireless access

network.



2

Rate Assignment in

Micro-Buffered High-Speed

Networks

As the transmission speed in the core network increase substantially, the cost

of transmitting a bit in the core is effectively decreasing. However, the cost of

buffering and processing a bit inside the core does not follow the same trend, due

to the electronic bottleneck in buffering and processing.

In the literature, there are various studies on buffer sizing for the routers in the

core networks. For instance, in [36]-[39], the buffer size is proposed to be set to a

small value (e.g. 10 to 20 packets), at the cost of a small amount of bandwidth

utilization. Authors claim that this decrease in link utilization is worth considering

for future all-optical routers due to the very high transmission rates in optical lines.

The speed of current buffers implemented in the electronic domain are not able

to match the transmission bandwidth offered by optical transmission. Moreover,

it is not clear that commercial optical buffers will be available in the foreseeable

future.

The end-to-end argument for communication networks is one of the main design

criterions in the current and possibly future network architectures [12]. The main

idea in this argument is that the functions in the network should be performed

at the possible highest layer, that is , any task that can be performed in an end-

6



7

to-end (or edge-to-edge) manner should be performed at the end hosts (or edges).

In today’s networks, due to the growing asymmetry in the speed of transmission

and the processing in the core, electronic buffering at the network layer makes it

difficult to utilize the transmission capacity.

In this study, we study micro-buffered networks [1], where instead of resolving

packet contention by using buffering at intermediate nodes, forward error cor-

rection is used at the end nodes. In particular, we study the problem of rate

assignment in micro-buffered networks.

The problem of rate assignment has been studied in many contexts so far. For

classical packet switching networks with buffers, the max-min fair rate assignment

policy is defined in [2] as a fair rate allocation scheme. A well known central-

ized algorithm to compute the max-min fair rate allocation is given in [2]. Many

distributed algorithms have been proposed to achieve the max-min fair rate assign-

ment [7, 10, 11]. In each of these studies, the nodes in the network are assumed

to have enough buffer space to avoid packet drops as long as the total arrival rate

is less than or equal to the link rate. The notion of proportional fairness is intro-

duced in [8] where each user has a logarithmic utility as a function of its rate. This

fairness policy maximizes the sum of individual utility functions.

In this study, we focus on the problem of rate assignment in a micro-buffered

network. We first discuss classical slotted aloha protocols with exponential back-

off. It is observed that some flows may be assigned zero rates due to the asymme-

try in collision sets. Next, we consider several fairness criterions, such as weighted

α-proportional fairness, weighted max-min fairness, and hierarchical max-min fair-

ness. In our micro-buffered network, a max-min fair information rate allocation

assigns any two users in the same contention group the same information rate, al-

though these two flows may not contend with each other. A contention group cor-

responds to a connected component in the contention graph between flows. More

generally, in the weighted max-min fair case, each flow in the same group is as-

signed a rate that is inversely proportional to the related weight. Furthermore, we

show that a hierarchical max-min fair rate information rate assignment is achieved

if and only if weighted max-min fairness with a certain weight vector among the
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flows is ensured. Related distributed algorithms using only local information are

proposed to achieve the various notions of fairness we study. For instance, an

MIMD-α − G algorithm is proposed to ensure not only weighted α-proportional

fairness, but also to ensure weighted max-min and hierarchical max-min fair rate

assignments with the appropriate choice of parameters.

Simulation results of the distributed algorithms on example networks are demon-

strated. The results indicate that max-min fair information rate assignment can

be significantly under-utilize the network resources. On the other hand, while

slotted aloha utilizes the network resources efficiently, it has a potential to exhibit

unfair rate allocation. Unlike these two schemes, the proportional and α- propor-

tional fair rate assignment policies exhibit better performance by achieving higher

network throughput than max-min fair case, according to a well-defined fairness

criterion. Moreover, a hierarchical/weighted max-min fair rate allocation is also

shown to be achieved by the related algorithms.

The rest of the chapter is organized as follows. In Section 2, sample optical

infrastructures for micro-buffered networks are discussed. Various rate assignment

policies are examined in Section 3. Some discussions and example networks are

presented in Section 4, and finally Section 5 concludes the chapter.

2.1 Network Models

In this section, we discuss physical and analytical models for micro-buffered

optical networks. We describe first the underlying optical network architecture

and then give some examples that have already been proposed in previous studies.

In this study, we consider the case of bufferless nodes in the core such that if two

packets arrive at a node for the same output link simultaneously, the packets will

be simply added to each other without further processing. The potential collisions

are allowed and no action is taken to avoid collisions at the node. However the

flow control mechanism can adjust the overall transmission rate (both coding rate

and transmission rate) with respect to collision measures in the network. As can

be seen in the Figure 2.1, packets A and B destined to the same outgoing link are
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just added to each other without any collision avoidance mechanism.

B A

B A

A

B
B

A

Routing &
Address 
Recognition

Summer

Figure 2.1 General structure of a switch in micro-buffered high speed optical
networks

In this section, we discuss three sample network models that can be considered

in the context of micro-buffered networks. The first model is simply Wavelength

Division Multiplexing (WDM) based, the second model is Optical Burst Switching

(OBS) based and in the third model a packet synchronized all optical network

model will be described.

2.1.1 Model 1:

In this section, we consider WDM based wavelength routed networks. In WDM

networks, bandwidth is allocated by one wavelength at a time leading to a coarse

granularity. No two flows passing through the same link can be assigned the same

wavelength. However when we approach the same architecture in the context of

micro-buffered WDM networks, for any destination, multiple flows sharing the

same links can be assigned the same wavelength.As can be seen in the Figure

2.2, all three flows may use the same wavelength. There is no change in the

network elements and all the switching and transmission equipment is the same as

in classical WDM networks. Any packet simultaneously entering the same outgoing

port are simply added and the collisions are compensated with appropriate end to

end coding techniques.
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P3

DESTINATION

Figure 2.2: A sample topology for wdm-based micro-buffered networks

2.1.2 Model 2:

This model is based on Optical Burst Switching (OBS). In an OBS network,

the data and the control signals are separated within the core network. A control

packet precedes a data burst and is processed electronically to configure the optical

switches on the path. There is an offset time between the control packet and the

data burst which is long enough to let the control packet configure the switches

along the path before the data burst arrives. The data burst is then switched

in an all optical manner without any electronic processing. For this architecture,

many burst reservation (JET) and scheduling schemes (LAUC, LAUC-VF)and

contention resolution algorithms (Wavelength conversion, deflection routing...etc)

have been proposed.

In the context of micro-buffered networks, these mechanisms (scheduling, res-

olution..etc.) within the core network are avoided. In this technique, the control

packets configure the switches without any scheduling and contention resolution.

The colliding bursts (or packets) are just added in the switch.

The switch in question just changes its state with respect to the configuration

data obtained from the control packets for each burst. A simple two hop example

can be seen in Figure 2.3 (a). As can be seen in the figure, burst A and burst

B arrive at switch i (i=1,2) at times t(i)1 and t(i)2 respectively for which the

switches were configured by the data packets beforehand. And assume that burst
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A will leave the switch at time t(i)3 where burst B leaves at time t(i)4 where

t(i)1 < t(i)2 < t(i)3 < t(i)4.

Figure 2.3 (b) and (c) indicates the states of switches throughout the time.

With such a technique, each packet traverses through its own path even though

the information on the packet may be lost due to a collision.
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t(i)3         t(i)4         t(i)2         t(i)1         

STATE 2

STATE 3

STATE 1

Burst A

Burst ABurst B

Burst B

Burst A

Burst B

(b)

(a)

(c)

Figure 2.3: A sample topology for obs-based micro-buffered networks

In this model, we assume a routing protocol that ensures that any two flows

throughout their entire path can contend not more than once. For instance, short-

est path routing ensures this condition.

2.1.3 Model 3:

This model is based on an all optical self routing scheme which requires packet

level synchronization at each switch. In this section, we first describe a sample

routing scheme and then an example compatible optical switch.

A Sample All Optical Routing and Addressing Scheme:
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One of the challenging functions to be designed is the routing in all optical

domain. We are interested in a self routing scheme, which is also capable of

multicast and multi-path routing.

In [15], authors discuss a novel self routing and addressing scheme for all optical

packet switched networks with arbitrary topologies. This addressing scheme leads

to a source routing algorithm where the header of a packet includes the information

on the end to end path (link by link) that the packet is supposed to traverse. A

single bit in the address field indicates whether the packet traverses a single link

in the network or not.

Assuming a network with N nodes and L links, each address field of a packet is

composed of 2L bits such that each output link (port) of a node in the network has

a one to one correspondence with a bit in the address field. The address field of a

packet has N sub-fields (a sub-field for each node), such that in the ith subfield,

there are n(i)− 1 bits where n(i)− 1 is the number of outgoing links from node i.

The addressing scheme in question is as follows. When node j receives a packet

destined to node i, it only checks the jth subfield of the address field. If all the bits

in the jth subfield are zero then the packet is destined to node j, (i = j). On the

other hand, if there exist a single bit location, xth bit, set to 1 then node j forwards

the packet to the xth outgoing link.That is, when a node receives a packet, it just

checks the related field in the header and sends the packet to an outgoing link

(port) whose bit location is set to 1. The details of the routing protocol can be

seen in [15]. So in this case only single bit processing is necessary and the authors

claim that such a scheme is deployable with the current all optical technology.

Extended All Optical Routing and Addressing Scheme:

The above routing scheme is discussed for unicast flow routing, however it can

easily be modified to support a micro-buffered network architecture as well as

multi-path and multi-cast routing.

Let again N and L be the number of nodes and links in the network. Assuming

bidirectional links there are 2L input output ports needs to be defined. As can be

seen in Figure 2.4, each packet has an address field of 2L + N bits where there

are still N subfields each with b(i) + 1 = n(i) bits. In this scheme, instead of
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Figure 2.4: An example addressing structure

having only one bit set to 1 in a subfield, there can be multiple 1s. So each node

receiving the packet will check all the b(i) + 1 = n(i) bits in the related subfield

and then send the packet to the outgoing links of which bit locations are set to 1

simultaneously. There is an extra bit location in each subfield, (nith bit) which

is for the node itself. In other words if that bit is set, the node decides that the

packet is also destined to it. In Figure 2.4, the packet not only is destined to node

i but also is forwarded to the 1st, 2nd and jth outgoing links simultaneously.

A source node can set multiple bits in each subfield such that multicast or

multipath routing can easily be supported.

A Sample All Optical Self Routing Switch Architecture:

In the following paragraphs, to implement this routing scheme, a sample switch-

ing structure requiring 2-bit processing in each parallel stage is considered. There

are many potential switching structure that can be considered to implement the

above routing scheme. In [15], authors give examples of the switching architectures

described in [18] and [19] to implement their routing scheme. On the other hand,

in [16] a self routing switching infrastructure has been proposed such that the pulse
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interval addressing scheme has been adapted in their switching infrastructure. In

this chapter, we will discuss the one in [16] to implement such a routing scheme.

Basically, the switching structures discussed in [16] and in [15] are similar to each

other.

1:k splitters Active Stg k:1 Combiners

1

2

M−1

M

1

k

1

k

k

1

M

M−1

2

1

(a)

(b)

Active Stage Active Stage (Multicast)

Figure 2.5: A sample switching architecture for micro-buffered optical networks

In summary, the switch in question [16] consists of three main stages (see Figure

2.5) , a passive splitter and combiner at the input and output respectively and an

active stage implemented in the middle by directional couplers. This switching

structure is nonblocking in the strict sense, so there is no collisions of two packets

destined to different outgoing links. (e.g. a simple banyan network structure

suffers from the internal blocking problem.) In the same paper, the active stage

is proposed in detail for the case of the pulse interval addressing scheme of [17].

This switch structure can also be designed for multicast and multipath routing

purposes which is also briefly discussed in the paper.

In either case (unicast, multicast) each active stage has two input and two
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output ports. Receiving a packet header an active stage checks the related address

field and decides whether the bits corresponding to the two outgoing links are set

or not. If only one of them is set then the packet will be switched to the correct

outgoing link, however if both of the bits are set then the packet is sent to both of

the output ports. So in this case, all we need is at most 2-bit processing at each

active stage for multicast and multipath routing.

A Micro-buffered Approach:

In this section, the extended all optical routing scheme and the sample optical

switch are assumed in the context of a micro-buffered network architecture.

As we have mentioned previously, we do not propose any collision resolution

algorithm within the network. All the colliding packets are assumed to be combined

(i.e summed) at the collision point. In case of a time slotted system such that the

packet headers arrive only at the boundaries of a time slot, collisions generate

multicast or multi-path like packet headers having potentially multiple 1 entries

in the address field for each outgoing port (see Figure 2.6). This is basically due

to the simple summer (combiner) structure at the switch discussed above.

Thus in case of a collision, the packet header includes the union of the all the

routing information available in the colliding packets and seems like a multipath or

multicast routing packet header. Therefore, the collisions do not affect the routing

of the packet and do not lead to unpredictable routing of the packets throughout

the network.

1 0 0 1

1 0

1 0 1

1 0

1

Figure 2.6 Two colliding packet header, generating a new header containing both
path information

Figure 2.7, represents a case where packets A and B collide at node i and leave

the outgoing link number 1 simultaneously. Path of packet A traverses outgoing

link 1 of node j, whereas path of packet B goes through the outgoing link 2 of node
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j. Since the packet header includes both path information, when the summed

version of the packet headers arrives at node j, the incoming packet is sent to both

outgoing links using the switching described in Figure 2.5.

Such a scheme requires packet-level synchronization which requires a careful

design of the fiber lengths in the network design level. In the literature there

are many studies for packet level synchronization in many different contexts such

as deflection routing [13]. Deflection routing functions properly if packets are

aligned since the packet headers should be compared ”on the fly” assuming no

optical buffering to correct asynchronous arrivals of packets. On the other hand,

asynchronous models are also considered [40].

2

3

31

2

1

1  0  0 1  0  0

i j

1
2 3

1 2 3

i

1 0 0

Packet A

Packet B

Packet AB

Packet AB

Packet AB

Packet header with two
fields for nodes i and j.

Each bit has a one to one 
correspondance with an 
output link at the node

Outgoing link/port
numbers for each node

i j

1  0  0 1  0  0

i j

1  0  0

i j

1  0  0

i j

1  0  0

i j

1  0  0

i j

0  1  0

1  1  0

1  1  0

1  1  0

Figure 2.7 Two colliding packet header, generating a new header containing both
path information

The extended self routing scheme that we have discussed has also a similar

constraint to that discussed above such that any two flows i and j should contend

no more than once with each other throughout their paths to the destination. In

addition to that, any two contending flows are assumed not to traverse the same

nodes after they are separated. As an example, shortest path routing satisfies both

these conditions. Our constraint is closely related to the constraint in [15].

In the next section, the rate assignment problem for these models is discussed.
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Some well known rate assignment policies will be described, analyzed, simulated

and the corresponding results are compared.

2.2 Rate Assignment Problem

We consider both synchronous and asynchronous systems depending on the

network model used (Model 1 and 2 are asynchronous and Model 3 is synchronous).

Time is assumed to be slotted in both cases and each user transmits within the

boundaries of its own slots. The slot lengths (or correspondingly packet lengths)

are assumed to be the same for all users, but the relative phase may be random in

models 1 and 2. Moreover, we assume that each user i has always a packet to send

(i.e. fully backlogged case) and transmits a packet in a slot with a probability Pi

independent of other slots. In fact assuming Bernoulli sources is not necessary in

this context, considering the capacity discussions in [4]. Each packet is assumed

to be routed as described in the previous sections. Whenever two or more packets

contend for the same output link, the information in the overlapped regions of the

packets are assumed to be lost. Any capture effect is not considered in this model.

Let Ii be the information rate of flow i (or the capacity of the channel that flow

i experiences) and X(i) be the set of flows that are directly contending with flow

i from source node to destination node. The relationship between the information

rates and the transmission rates defining the capacity region is as follows

Ii = Pi

∏

j∈X(i)

(1 − Pj) (2.1)

The above result is a multi-hop extension of the result presented in [4] where

all the flows contend with each other (that is X(i) = F ∀i, where F is the set of

all flows), where for any flow i, Ii = Pi

∏
j 6=i,j∈F (1 − Pj).

In [4], the capacity of a single hop contention channel (Figure 2.8 (a)) with-

out feedback is considered. The capacity region for both synchronous and asyn-

chronous case is explicitly defined and shown that the capacity regions for both un-

synchronized and synchronized case are shown to coincide. In the network model,
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each flow is assumed to have arbitrary delay to a single destination (e.g. a base

station).

Our model can be considered as a cascaded channel model of [4] where as can

be seen in Figure 2.8, at step k, flow i contends with the flows in the set X(i, k).

Flow i sees an equivalent contention channel where each flow it contends with has

some arbitrary delay to the destination node which is the same channel model

described in [4].

X(i,1)
X(i,2) X(i,3) X(i,k)

Pi

X(i)

Pi

(b)

(a)

Figure 2.8 Channel Models (a) Single Hop; Each flow contends with each other (b)
Path of Flow i, and at each hop it contends with a different set of flows.

So if X(i) =
⋃k

z=1 X(i, z), then the two channels seen by flow i in Figure 2.8

(a) and (b) are the same. Overall, the difference is that, in [4], each flow sees the

same contention channel whereas in our case, each flow may experience a different

contention channel with respect to the path it takes.

The network model 1 (i.e. the WDM model) has the same channel model as

in [4], since each flow contends with all other flows to the destination. However,

the network models 2 and 3 have exactly the same channel model described in

equation (2.1).
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In this study, we are interested in developing local rules where user i uses

P n+1
i = Hi(P

n
i , gn

i ) where gn
i = (P n

j |∀j ∈ X(i)). Here n denotes the iteration

number.

In the following sections, certain rate assignment policies (aloha with exponen-

tial backoff, weighted α-proportional fair, weighted max-min fair) are examined.

Algorithms, achieving related fairness policies are proposed and examined via anal-

ysis and simulations.

2.2.1 Classical Slotted Aloha with Exponential Backoff

In this section, we examine the classical slotted aloha techniques with expo-

nential backoff in the context of our model. We first describe the classical slotted

aloha with exponential backoff where each user contends with all other users.

We assume that each user is always backlogged, i.e. the full buffer case. In

other words, each user has always something to transmit. Next, we assume ternary

feedback (Idle, Success, Collision) where after each slot, each user is informed about

the current state of the network. A collision occurs if there exist multiple packet

transmissions at a time slot, and a successful transmission is achieved only if one

of the users transmits a packet. Moreover, if no packet is transmitted in a time slot

then the time slot is considered as being an idle slot. Since each user is full buffered

and is able to get the ternary feedback, each user can be assumed to have the same

transmission rate for each slot (assuming the initial rates are all the same).

P1

P2

P3

Figure 2.9 Example network in flow domain. Each curve represents a flow and any
two intersecting curves represents contention

Let P (n) be the transmission rate (i.e probability of transmission) of a user

in the system for time slot n, and let Pmax and Pmin denote the maximum and
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Figure 2.10 Transmission rates of each flow in slotted aloha with exponential
backoff

minimum transmission rates that are allowed by the system such that the entire

system is a truncated system in terms of the allowable transmission rates. Moreover

each user is assumed to start the transmission with a rate Pmax at the first time

slot. Each user adjusts its transmission rate for the next slot with respect to

feedback from the previous slot as follows. Unless otherwise specified, we assume

that Pmax = 1 and Pmin = 0.

Here P (n + 1) is updated such that

P (n + 1) = Max(Pmin, P (n) × q1) If collision at slot n

P (n + 1) = Min(Pmax, P (n)/q2) If slot n is idle

P (n + 1) = P (n) If success at slot n

where q1, q2 are called the collision and idle coefficients

and are less than 1.

The whole system can be modelled using a discrete Markov model; however, in

this study we only would like to focus on the overall behavior of the aloha system

in question. As can be understood from the above model, the entire system (when
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q1 = q2 = q) reaches equilibrium where the probability of idle, (1−P (n))N ≈ e−G,

equals the probability of collision, 1 − (1 − P (n))N − NP (n)(1 − P (n))N−1 ≈

1 − e−G − Ge−G, where G ≈ NP (n) is the offered load and N is the number of

users in the system (see appendix A.1 ). Equilibrium is reached at G = G∗ ≈ 1.14

or P (n) = G∗

N
in the system above where q1 = q2 = q. In other words, each user

in such a system tries to keep the offered load in the system at G∗ (see appendix

A.1). In [20], authors engineer the collision and idle coefficients such that the

overall throughput is maximized (i.e. G∗ = 1).

We would like to consider the performance of slotted aloha systems in micro-

buffered network model. In this model, as described in equation (2.1), each user i

sees a possibly different set of flows as the contenders, X(i).

First, we still can assume the ternary feedback. Each user i gets a feedback

about the channel which is formed by the flows in X(i) and the flow i itself. Let

Xh(i) be the set which is equal to the union of X(i) and i. Briefly there exist a

collision for user i if multiple transmissions occur in Xh(i), and a success occurs

if only one of the flows in Xh(i) transmits. Finally, an idle slot corresponds to

the case that none of the flows in Xh(i) transmits in that slot. Again the system

reaches equilibrium (for q1 = q2 = q) when for each user i, the probability of

idle
∏

j∈Xh(i)(1 − Pj) ≈ e−
∑

j∈Xh(i) Pj = e−Gi equals the probability of collision

1−
∏

j∈Xh(i)(1−Pj)−
∑

j∈Xh(i) Pj(
∏

k∈Xh(i),k 6=j(1−Pk)) ≈ 1−e−Gi −Gie
−Gi where

Gi =
∑

j∈Xh(i) Pj . Having slotted aloha with exponential backoff mechanism, each

user will again try to keep the offered load on the channel it experiences around

G∗ (see the appendix A.1).

Using the above idea, a distributed rate allocation algorithm targeting the same

equilibrium point in a multi-hop environment can be considered where each user

is assumed to get feedback from the intermediary nodes on its path. Instead of

a ternary feedback, only the load, G, on the entire path could be provided. The

overall load on the channel (path) seen by user i is simply the sum of all loads on

the outgoing links on the path. And assume that each user is imitating the slotted

aloha model described above such that if the overall load exceeds G∗ then the user

cuts its transmission rates exponentially otherwise if the load is less than G∗ then
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increase the transmission rates. Finally, if the load is close to G∗ then it just keeps

the same rate.

Potential Unfairness:

Such schemes (either with ternary feedback or not) have a great potential of

cutting off the rates of some users in certain possible situations. They roughly try

to achieve the following conditions for steady state behavior
∑

i∈Xh(i) Pi = G∗ ∀i.

For instance, consider a simple case where there are three users 1, 2, 3 in the network

as in Figure 2.9. The contention sets are such that X(1) = 2, X(2) = 1, 3 and

X(3) = 2. The objectives of each user is to achieve P1 + P2 = G∗ ≈ 1.14,

P1 + P2 + P3 = G∗ and P2 + P3 = G∗. Assume that the initial rates are Pmax

for all users and as time elapses each user tend to decrease their rates to satisfy

the above conditions. User 1 and 3 tend to stop decreasing their rates roughly

until the conditions P1 + P2 = G∗ and P2 + P3 = G∗ are satisfied respectively.

However, user 2 will still see a load equals P1 + P2 + P3 which is greater than G∗.

Therefore, user 2 will continue to decrease its rate, P2. As P2 decreases, this time

user 1 and 3 will increase their rates in order to keep their channel load around

G∗. Eventually, P1 and P3 both converge to 1, (Pmax), and P2 converges to 0,

(Pmin). We performed a simulation for the network in Figure 2.9 using the ternary

feedback available to each user after each time slot. The simulation result can be

seen in Figure 2.10. The same conclusion can be reached for the case where the

load is fed back, instead of ternary feedback per slot.

Motivated by the problems with this approach, we attempt to develop rate

allocation schemes based on certain fairness criteria.

2.2.2 Weighted Alpha-Proportional Fairness

The proportional fair rate allocation [8] aims to maximize the sum of utilities

of all the users in the network. The utility function for each user is assumed to be

a logarithmic function of its rate.

We now generalize this model, to incorporate weights associated with each flow.

Let U(Ii) = − 1
gi

(−ln(giIi))
α be the utility of user i as a function of the information
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rate where gi is the weight associated to flow i. We have

U(Ii) = −
1

gi

(−log(giIi))
α = −

1

gi

(−log(giPi

∏

j∈X(i)

(1 − Pj)))
α (2.2)

A rate assignment {Ii} is said to be weighted α-Proportional fair if it maximizes

the aggregate utility function U =
∑

i U(Ii). Note that α = 1 corresponds to the

proportional fair case, whereas as α approaches infinity the system converges to

the weighted max-min fair rate assignment (see proof in appendix A.4). Therefore,

a general weighted α-proportional fair rate assignment can be considered as a

compromise between proportional-fairness and weighted max-min fairness.

Fortunately, the negative utility function above for an arbitrary α can be shown

to be a convex function of the transmission rates (e.g. Pi) where 0 ≤ Pi ≤ 1. The

proof can be found in the appendix A.2. Therefore, the problem of maximization

of the the sum of individual utilities is a convex programming problem.

We use the gradient projection method [3] to solve the above optimization

problem, with the updates

P n+1
k = Hn+1

k (P n
k , gn

k ) = [P n
k + θn ∂U

∂Pk

]+ (2.3)

where n denotes the iteration number and [f ]+ denotes projection on the set

0 ≤ Pi ≤ 1∀i which is equal to max(0,f) in this case and

∂U

∂Pk

=
α

gkPk

(−log(gkIk))
α−1 −

α

1 − Pk

∑

j∈X(k)

(
1

gj

)[−log(gjIj)]
α−1 (2.4)

Equation (2.4) becomes negative (positive, zero) when Pk is less than (greater

than, equal to) fk(~P ) where ~P = (P1, P2, . . . , P|F |) and

fk(~P ) = (1 +
∑

m∈X(k)

(
gk

gm

)(
log(gmIm)

log(gkIk)
)α−1)−1 (2.5)

Given any arbitrary ~P vector initially, at each iteration n each user k computes

the value of fk(~P ) and compares this value with the current transmission rate
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P n
k . Thus each user increases its rate P n

k if fn
k > P n

k or decreases if otherwise.

In order to implement the algorithm in a distributed way, each user k must learn

the value of gjIj for j ∈ X(k). This can be done by having each user (flow) j

send its transmission rates Pj to all other users it contends with. Each user j can

then calculate its information rate Ij , and subsequently send the value of gjIj to

all other users it contends with. We assume the existence of a control channel to

facilitate these information exchanges.

The whole rate control scheme, which we call MIMD-α −G, can be written as

follows for user k:

MIMD-α − G Algorithm

STEP1: Initially start with an arbitrary transmission rate.

STEP2: At iteration n

IF fn
k > P n

k then

Increase Pk (e.g. P n+1
k = min{P n

k × β, 1})

ELSE

Decrease Pk ( e.g. P n+1
k = P n

k × q)

where β > 1 and q < 1 are appropriate step size constants.

It is interesting to note that in [6], the number of neighbor’s neighbors (second

hop neighbor information) is required for the distributed algorithm to calculate

rates for mac layer fairness. In our case, we need only the direct contender infor-

mation to calculate the rates for end to end fairness.

Here α can be set by the system designer such that as the value of α increases the

smaller flows are getting higher priority and the system is converging to weighted

max-min fair state (see the discussion on the convergence in the appendix A.4).

One of the advantages of this scheme is that, as we will also discuss later, by

adjusting α one can trade off the total network utilization and the fairness among

the flows.

THEOREM: For the case of α = 1 and all weights equal to 1, (i.e. Propor-

tional Fair Case) the optimum value of Pk is given by
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Pk = (Xk + 1)−1 (2.6)

where Xk is the cardinality of X(k).

Remark: It is interesting to note that for the case where all flows contend

with each other (as in classical aloha models), we have Xk = N − 1. Thus the

proportional fair transmission probability for all users is 1
N

, which is the same value

known to maximize system throughput.

In the next section, we will discuss rate allocation for weighted max-min fair-

ness.

2.2.3 Weighted Max-Min Fairness

First, let us give a formal definition of max-min fairness.

Definition 1: A vector of rates R is weighted max-min fair with weight

vector, W , if it is feasible and for each flow i, the rate of flow i, Ri, can not be

increased while maintaining feasibility without decreasing Rj for some flow j for

which RjWj ≤ RiWi. As a special case, when Wi = 1 ∀i, the vector R is said to

be max-min fair [2].

Definition 2: Let F be the set of flows (which is called a group) with the

property that if a flow i ∈ F then any flow j ∈ X(i), j ∈ F . In other words, if

any flow i is in a group then all the flows contending with this flow are also in the

same group. However, in order to be in the same group any two flows do not have

to contend directly at the same link, for instance if flow i is contending with flow

j at a node in the network and if flow j is contending with flow k at any other

node then all the three flows are in the same group even though flows i and k do

not directly contend at any node in the network.

Fact 1: A weighted max-min fair rate assignment with weight vector W and

rate vector R assigns the rates to each flow in the same group such that RiWi =

RjWj ∀i, j ∈ F . Note that as a special case, the max-min fairness rate assignment

(Wi = 1, ∀i) assigns the same rate to all the flows in the same group.
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PROOF:. Assume by contradiction that there exists a vector of information rates,

I′, which is weighted max-min fair in the information rate with weight vector

W , and there exists some flows i and j in the same group that do not satisfy

the condition I′iWi = I′jWj i, j ∈ F . Without loss of generality assume that

I′iWi < I′jWj. Even though flow i and j may not contend directly (i.e i /∈ X(j)),

since they are in the same group there exists a set of flows fj,i = (f1, ....fM) such

that f1 ∈ X(j) and fM ∈ X(i) and fa ∈ X(fa+1) (∀a : a = 1, 2..., M), otherwise

flows i and j would not be in the same group. Decreasing the transmission rate

of flow j, Pj, will increase the information rate of flow f1. Then decreasing the

transmission rate of f1 till the information rate of f1 is equal to I′f1 (original value)

will increase the information rate of f2. And one can continue this process until

the transmission rate of flow fM is decreased and the information rate of flow i is

increased. By this way, one is able to increase the information rate of a flow i, I′i,

by only decreasing I′j for some flow j for which I′iWi < I′jWj which is a clear

contradiction to the definition of weighted max-min fairness.

This result agrees with the result in [14] where the authors claim that max-min

fair rate assignment results in equal rates in a multi-hop adhoc wireless network

where all the nodes are able to hear each other and there is no clustering. The

model in [14] assumes that all wireless links contend (interfere) with each other.

However in our case, max-min fair rate assignment still results in equal information

rates even any two flows in the same group do not directly contend with each other.

Fact 2: A vector of flow information rates, I, is weighted max-min fair with

weight vector W , if it is achievable (i.e. in the capacity region) and it is the

maximal among vectors E such that WiEi = WjEj for all ∀i, j ∈ F . (Similarly,

Ei = Ej ∀i, j ∈ F for max-min fair case.) (A vector, V , is maximal (or on the

boundary of the capacity region ) when there is no other vector, D, of which

elements are not less than those of V and at least one is strictly greater).

The proof of this fact is a direct result of Fact 1 and the definition of weighted

max-min fairness.
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2.2.4 Weighted Max-Min Fair Rate Assignment

In this section, we discuss two approaches to compute the max-min fair infor-

mation rates in a distributed manner.

Approach 1 (Weighted α-Proportional Fairness) :

The MIMD − α − G algorithm described in the previous section is proposed

to achieve weighted max-min fair information rate allocation where the value of α

is assumed to be sufficiently high.

Approach 2:

In this approach, we use the method described in [5] which is based on a duality

method. The capacity model in [5] for a multi-hop adhoc network is similar to our

model. We simply extend the formulation for weighted max-min fairness as in [5],

where only max-min fairness is examined.

Basically, in this method, the original weighted max-min fair problem (which

is a non-convex problem) is converted into a convex programming problem. Using

convex duality and again the gradient projection method, a distributed algorithm

for computing max-min fair information rates is described.

Using Fact 2, the original problem for max-min fair rate computation is reduced

to the problem of maximization of the minimum weighted information rate. That

is,

Maximize X ; s.t. X < giPi

∏

j∈X(i)

(1 − Pj) ∀i (2.7)

This problem is equivalent to the following problem, the details of which can

be found in the appendix A.3.

Minimize
1

2

∑

i∈F

n2
i (2.8)

Subject to ni − ln(gi) − ln(Pi) −
∑

j∈x(i)

ln(1 − Pj) < 0 ∀i ∈ F (2.9)

ni ≤ nj nj ≤ ni ∀i ∈ F and ∀j ∈ X(i) . (2.10)
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The objective function is convex and the functions in the constraints form a

convex set. So the problem is a convex programming problem.

The Lagrangian for the above problem is

L(P, n, λ, µ) = 1/2
∑

i∈F

n2
i +

∑

i∈F

λi(ni − ln(gi) − ln(Pi) (2.11)

−
∑

j∈X(i)

(1 − Pj)) +
∑

i∈F

∑

j∈X(i)

(ni − nj)µi,j

We can apply convex duality, which implies that there is no duality gap.

The dual function is D(P, n) = MinP,nL(P, n, λ, µ) and the dual problem is

maxµ,λD(P, n)

After minimizing the Lagrangian function we have the following results.

P ∗
k = (1 + λ−1

k

∑

m∈X(k)

λm)−1 n∗
k = [−λk −

∑

m∈X(k)

(µk,m − µm,k)]
− (2.12)

where [x]− = min(0, x)

The dual problem can be solved using the gradient projection method, i.e.

λn+1
i = [λn

i + θn ∂D

∂λi

]+, µn+1
i,j = [µn

i,j + θn ∂D

∂µi,j

]+ (2.13)

where [f ]+ is again turns out to be max(0, f) and

∂D

∂λi

= ni − ln(gi) − ln(Pi) −
∑

j∈X(i)

ln(1 − Pj),
∂D

∂µi,j

= ni − nj . (2.14)

The control plane of the previous approach, where transmission probabilities

and weights of direct contenders are exchanged between users, is also necessary for

this approach.

2.2.5 Weighted Hierarchical Max-Min Fair Rate Assign-

ment

In this section, we discuss a fairness policy that ensures weighted max-min

fairness first among some subgroups of flows and then among the individual flows in
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each subgroup. There may be several occasions where such a policy is required. For

instance, this may arise in a network where there exists entities (e.g. corporations)

owning some set of flows in the network and each entity would like to have a fair

share of the overall network bandwidth. As a special case, in the case of multi-path

routing between each source destination (S-D) pair, fairness can be required first

among the S-D pairs and then among the individual flows of each S-D pair.

For simplicity, throughout this section we assume that all the flows in F are in

the same contention group. If this is not the case, the results in this section apply

to each contention group.

Definition 3: Let Ma be the set of flows belonging to subgroup a such that
⋃

a Ma = F and Ma

⋂
Mb = ∅ ∀a, b : a 6= b. Let D be the rate vector where the ath

element denotes the aggregate information rate of subgroup a : Da =
∑

i∈Ma
Ii.

Lastly, let Ha denote the vector of rates of the individual flows belonging to Ma.

A vector of rates, I, is said to be weighted hierarchical max-min fair with

a weight vector Z, and a vector of vectors W = (W1, W2, ...WT ), where T is

the number of subgroups, and Wi is the weight vector for subgroup a such that

Wa = (Wa,1, Wa,2...Wa,La
) (where La is the number of flows in subgroup a), if first

the vector, D, is weighted max-min fair with weight vector Z and the rate vector

for flows in each subgroup a, Ha, is weighted max-min fair with weight vector Wa.

More formally, a vector, I, is said to be weighted hierarchical max-min fair

with a weight vector Z, and a vector of vectors W = (W1, W2, ...WT ), if it is feasible

and if for each flow, i ∈ Ma, the rate, Ii, can not be increased, while maintaining

feasibility without decreasing Ij for some flow j ∈ Mb for which Wb,jIj ≤ Wa,iIi

when a = b or ZbDb ≤ ZaDa when a 6= b. When all the weights are all equal to 1,

the rate vector I is called Hierarchical Max-Min fair as similarly defined in [21].

Fact 3: A weighted hierarchical max-min fair rate assignment with Z and W as

described above assigns aggregate rates to each subgroup such that ZaDa = ZbDb

∀a, b, and assigns rates to each individual flow belonging to the same subgroup

such that Wa,iIi = Wa,jIj ∀i, j ∈ Ma ∀a.

Proof. Assume by contradiction that a vector information rates, I, is weighted

hierarchical max-min fair with Z and W , but there exists two subgroups Ma and
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Mb such that ZaDa < ZbDb. Assume there exist two flows fa ∈ Ma and fb ∈ Mb.

Considering the proof for Fact 1, one can increase Ifa
as well as Da with only

decreasing Ifb
as well as Db which contradicts with the definition of hierarchical

fairness.

In addition to this, again by contradiction assume that I is weighted hierarchical

max-min fair with Z and W , but in a subgroup k there exist at least two flows

i ∈ Mk and j ∈ Mk such that Wk,jIi < Wk,jIj . The situation results in the same

contradiction as in the proof of Fact 1.

Fact 4: A vector of flow information rates, I is weighted hierarchical max-

min fair with Z and W as defined above, if it is achievable (i.e. in the capacity

region) and corresponding D vector is the maximal among vectors, E, such that

ZaEa = ZbEb ∀a, b and given the D vector, for each subgroup a, the related vector

Ha is the maximal among the vectors, Ba, such that Wa,iB
a
i = Wa,jB

a
j ∀i, j ∈ Ma.

(It is a direct result from the previous fact on hierarchical fairness.)

Let Q be the weighted rate of each subgroup utilizes such that Q = ZaDa ∀a

where the weighted hierarchical fairness policy with Z and W is enforced. Then

the aggregate rate that the subgroup a utilizes will be Q

Za
, whereas the rate of flow

i, Ii in the same subgroup will be C
Wa,i

where C is the weighted rate of each flow

in subgroup a that is C = Wa,iIi. From the definition of Da, Da =
∑

i∈Ma
Ii,

∑
i

C
Wa,i

= Q

Za
.

Therefore, the rate of each flow i ∈ Ma can be written as Ii = Q

ZaWa,i(
∑

i
1

Wa,i
)

Let s(i) denote the subgroup to which ith flow belongs and let

Ka,i = ZaWa,i(
∑

i
1

Wa,i
).

Let G be the vector such that

G = ((Ks(1),1), (Ks(2),2), (Ks(3),3), ......(Ks(|F |),|F |)) where |F | is the number of all

flows.

(Considering the above discussion, we can safely say that any weighted hierar-

chical max-min fair vector of flow rates, I, satisfies the condition IiGi = IjGj .)

Theorem: A vector of flow rates, R, is weighted hierarchical max-min fair

with Z and W , if and only if it is weighted max-min fair with weight vector G.
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Outline of The Proof: Assume by contradiction I is weighted hierarchical max-

min (then IiGi = IjGj) but not weighted max-min with weight vector G, which

implies that I is not maximal (otherwise it would be weighted max-min) which

contradicts the definition of weighted hierarchical max-min. Conversely, assume I

is weighted max-min with G, but not weighted hierarchical max-min with Z and

W , then either the conditions described in Fact 4 on element of vectors D and Has

do not hold, or the vectors are not maximal. In either case there is a contradiction

to the definition of weighted max-min fair rates with vector G (e.g. Fact 4).

2.3 Discussions and Examples

We simulated various different scenarios and compared the performances of

slotted aloha, α-proportional and max-min fair rate allocation policies.

2.3.1 Example 1

Our first example network can be seen in Figure 2.11 which represents an

asymmetric example in terms of the contention channels such that flow k contends

with N flows each of which does not contend with any other flow.

P1

P2
P3

PN

Pk

Figure 2.11 Example network in flow domain. Each curve Represents a flow and
any two intersecting curves represents contention

We simulate the network with N = 5 using both our MIMD-α − G algorithm
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and approach 2 (in both cases, the weights are all equal to 1). Figures 2.12 and 2.13

show the resulting information rates of the flows along time for MIMD − α − G

and approach 2 respectively. As can be seen in both figures, in agreement with the

max-min fair discussion in the previous sections, the information rates converge to

the same equilibrium point.

Next, we perform simulations using slotted aloha model and as expected slotted

aloha eventually assigns Pk = 0 and Pi = 1 ∀i = 1...N . Figure 2.10 represents the

result for N = 2.

Next, we compute the total information rate (i.e. sum of the individual in-

formation rates) of the system for the slotted aloha, proportional and max-min

fair cases. Figure 2.14 indicates the total information rates versus N . As can be

seen in the figure, as N increases, total capacity for slotted aloha increases linearly

since Ik always converges to zero and all other information rates converge to one

(except N = 1). On the other hand, max-min fairness allocates the same informa-

tion rate to all the flows, and as N increases the total information rate increases

slightly. Proportional fairness in this example not only gives non-zero information

rates to each flow with respect to a well-defined fairness measure but also keeps

the utilization of the network much higher than max-min fair case does.
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Figure 2.12: First example network, (MIMD-α)
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Figure 2.13: First example network, (Approach 2 —- Max-Min Fair)

In order to see the further total capacity performance of slotted aloha, α-

proportional fair algorithm, (i.e. the MIMD-α − G algorithm with equal weights)

, and the max-min fair rate computation algorithm (using approach 2 with equal

weights), we generate random collision based networks for increasing number of

flows from 10 to 50 and we compare the total information rates. As can be seen

in Figure 2.15, slotted aloha has the highest total information rate for all the

scenarios; however, at least 60% of the flows end up with zero transmission rates.

Another interesting result to observe is that as α increases MIMD-α−G algorithm

generates smaller total capacity for the same network. For all the cases as α

increases, the results of both MIMD − α − G and Approach 2 for max-min fair

case gets very close to each other. So α in MIMD-α −G can be set by the system

administrator considering the tradeoff between the fairness and the total network

utilization.

Furthermore, Figures 2.16 and 2.17 show the rate of each flow when hierarchical

fairness (or Weighted Max-Min Fairness) is enforced via MIMD−α−G algorithm

(i.e. Approach 1) and Approach 2 respectively. All the weight elements in vectors

Z and W are set to 1. The network topology in Figure 2.11 is considered where

N = 5. Flow k and 1 are in the first subgroup while flow 2 is the only flow in the
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Figure 2.14: Total capacities for first example network

second subgroup and finally flows 3,4,and 5 are in the third subgroup. The weight

vector, G, is as follows G = [2, 2, 1, 3, 3, 3] and the resulting rate vectors (from

both approach) is approximately as follows: I = [0.12, 0.12, 0.24, 0.08, 0.08, 0.08]

and the corresponding D and H vectors are as follows: D = [0.24, 0.24, 0.24],

H1 = [0.12, 0.12], H2 = [0.24], H3 = [0.08, 0.08, 0.08]. As can be seen, by this

policy, the max-min fairness is first ensured among the subgroups and then within

each subgroup.

Next, we set the weights in the vectors, Z and Wis to some values other than

all equal to 1, such as Z = [3, 2, 1] and W1 = [2, 1] W3 = [1, 2, 3]. Since the second

subgroup has only one flow, W2 is skipped. The corresponding weight vector, G,

becomes as follows, G = [9, 9/2, 2, 11/6, 11/3, 11/2]. Figures 2.18 and 2.19 indicate

the weighted hierarchical max-min fair flow rates via MIMD − α − G algorithm

(i.e. Approach 1) and Approach 2 respectively. The resulting rate vectors (from

both approach) is approximately as follows: I = [0.06, 0.12, 0.27, 0.30, 0.15, 0.10]

and the corresponding D and H vectors are as follows: D = [0.18, 0.27, 0.55],

H1 = [0.06, 0.12], H2 = [0.27], H3 = [0.30, 0.15, 0.10].



35

10 15 20 25 30 35 40 45 50
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Total Capacity For Random Networks

Number of Flows

To
ta

l C
ap

ac
ity

+−−+−−+ Proportional 
o−−o−−o MIMD Alpha=2 
x−−x−−x MIMD Alpha=5 
>−−>−−> MIMD Alpha=40
<−−<−−< Max−Min App2

S.Aloha                                                  
Tot.Cap.    |  4.3 | 3.2 | 5.6 | 5.7 | 6.1 | 7.4 | 9.9 | 5.2 |  9.8 |
# of Flows |  10  | 15  | 20  | 25  | 30  | 35  | 40  |  45 | 50   |   

Figure 2.15: Total capacities for random networks

2.3.2 Example 2

Let H be the contention matrix representing which flow contends to which flow.

The matrix H is symmetric and a 1 at location i, j indicates that flow i and flow

j contends with each other somewhere throughout their paths.

As the next step, we have generated a random scenario for a 10 flow network.

The randomly generated H matrix with 10 flows is as follows.

(F low1) 0 1 0 1 1 1 1 0 1 1

(F low2) 1 0 1 1 0 1 0 1 1 1

(F low3) 0 1 0 1 1 1 1 1 0 1

(F low4) 1 1 1 0 0 1 0 0 0 0

(F low5) 1 0 1 0 0 0 0 0 0 0

(F low6) 1 1 1 1 0 0 0 1 1 0

(F low7) 1 0 1 0 0 0 0 1 0 1

(F low8) 0 1 1 0 0 1 1 0 1 0

(F low9) 1 1 0 0 0 1 0 1 0 1

(F low10) 1 1 1 0 0 0 1 0 1 0

Figures 2.21 2.22 2.23 2.24 indicates the information rates of the 10 flows ob-

tained by simulating the MIMD-α algorithm (i.e. MIMD −α−G : Gi = 1∀i) for
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Figure 2.16: Hierarchical Max-Min Fair Rates Approach 1

different values of α from 1 to 40. In Figure 2.25, the information rates assigned

with respect to Approach 2 of Max-Min fair rate computation are available. Ini-

tially all the flows are assigned their proportional fair rates. As can be seen in

Figure 2.21, α is set to 1 which corresponds to the proportional fair case.

In Figures 2.22-2.24, it can easily be seen that as α increases from 1 to 40

the information rates are getting closer to each other which is consistent with the

discussion in the previous sections such that max-min fairness (as α increases)

gives equal rates to all the flows in the same group.

Moreover, the 10 flow network is also simulated with the slotted aloha scheme

and the rate assignment over time is plotted in Figure 2.20. Six of the flows (with

flow numbers 1,2,3,6,7,9) are assigned zero transmission rates, while other flows

transmission rates converge to one. By examining the H matrix above, one can

easily interprets the resulting rate assignment considering the discussion in the

slotted aloha section.

Furthermore, Figures 2.26 and 2.27 exhibit the information rates of each flow

when hierarchical fairness (or Weighted Max-Min Fairness) is enforced via MIMD−

α − G algorithm (i.e. Approach 1) and Approach 2 respectively. All the weight

elements in vectors Z and W are set to 1. The weight vector, G, is as follows
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Figure 2.17: Hierarchical Max-Min Fair Rates Approach 2

G = [4, 4, 4, 4, 2, 2, 3, 3, 3, 1], that is the first 4 flows belongs to subgroup 1, the

next 2 flows belongs to the second subgroup, and flows 7,8,9 belongs to the sub-

group 3, and last flow forms the subgroup 4 by itself. The resulting rate vectors

(from both approach) is approximately as follows:

I = [0.04, 0.04, 0.04, 0.04, 0.08, 0.08, 0.053, 0.053, 0.053, 0.16] and the correspond-

ing D and H vectors are as follows: D = [0.16, 0.16, 0.16, 0.16], H1 = [0.04, 0.04,

0.04, 0.04], H2 = [0.08, 0.08], H3 = [0.053, 0.053, 0.053] and H4 = [0.16]. As can

be seen, by this policy, the fairness is first ensured among the subgroups and then

within each subgroup.

Next, we set the weights in the vectors, Z and Wis to some values other than

all equal to 1, such as Z = [2, 1, 4, 3] and W1 = [1, 2, 2, 3] W2 = [2, 3] W3 = [1, 2, 2].

Since the second subgroup has only one flow, W4 is skipped. The corresponding

weight vector, G, becomes as follows, G = [14/3 ,28/3,28/3,14, 5/3, 5/2,8,16,16,3].

Figures 2.28 and 2.29 indicate the weighted hierarchical max-min fair flow rates

via MIMD-α −G algorithm (i.e. Approach 1) and Approach 2 respectively. The

resulting rate vectors (from both approach) is approximately as follows:

I = [0.072, 0.036, 0.036, 0.024, 0.2, 0.137, 0.042, 0.021, 0.021, 0.111]

and the corresponding D and H vectors are as follows:
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Figure 2.18: Weighted Hierarchical Max-Min Fair Rates Approach 1

D = [0.168, 0.337, 0.084, 0.111],

H1 = [0.072, 0.036, 0.036, 0.024],

H2 = [0.2, 0.137],

H3 = [0.042, 0.021, 0.021],

H4 = [0.111].

2.4 Conclusion (Micro-Buffered Networks)

In this chapter, we first discussed an architecture, micro-buffered networks, for

future high-speed networks. In this architecture, there is little or no buffering at

switching nodes, and packet contentions result in collisions which are resolved by

use of end-to-end forward error (erasure) codes. Related routing and addressing

schemes were discussed and compatible switch architectures were examined.

We focused on the rate assignment problem in micro-buffered networks. First,

we examined a distributed rate assignment scheme based on slotted aloha with

exponential back-off. We found that in the case of asymmetric network examples,

slotted aloha with exponential backoff may lead to highly undesirable rate alloca-

tions such that some flows may end up with zero information rates. This motivated
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Figure 2.19: Weighted Hierarchical Max-Min Fair Rates Approach 2

us to consider various fairness criteria, namely weighted α-proportional fairness,

weighted max-min fairness (which is a limiting form of weighted α-proportional

fairness), and hierarchical max-min fairness. We found that max-min fairness may

lead to inefficient rate allocations, and that α-proportional fairness can provide a

good compromise between efficiency and fairness. We examined simple distributed

algorithms that result in a α-proportional fair rate assignment. Finally, we showed

that hierarchical max-min fairness can be achieved by a weighted max-min fair

rate assignment.

The text of this section is in part a reprint of the material as it appears in The

Proceedings of the 43th Annual Allerton Conference on Communication, Control,

and Computing, pp. 124–126, Sept. 28–30 2005. The dissertation author was the

primary researcher and the author, and the co-authors, Professor Rene L. Cruz

and Professor Tara Javidi listed in this publication supervised the research which

forms the basis for this section.
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Figure 2.20: Second example network, (Slotted Aloha)
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Figure 2.21: Second example network, (MIMD-α)
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Figure 2.22: Second example network, (MIMD-α)
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Figure 2.23: Second example network, (MIMD-α)
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Figure 2.24: Second example network,(MIMD-α)
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Figure 2.25: Second example network,Approach 2 – Max-Min Fair
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Figure 2.26: Hierarchical Max-Min Fair Information Rates Approach 1
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Figure 2.27: Hierarchical Max-Min Fair Information Rates Approach 2
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Figure 2.28: Weighted Hierarchical Max-Min Fair Rates Approach 1
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Figure 2.29: Weighted Hierarchical Max-Min Fair Rates Approach 2
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End-to-End and Mac-Layer Fair

Rate Assignment in Interference

Limited Wireless Access

Networks

Multi-hop wireless access networks, with their easy and cost effective deploy-

ment and reconfigurability features, are getting attention for many potential appli-

cations as the last mile solution. The potential applications of multi-hop wireless

access networks include public safety, military and community access networks. In

community network projects, a high capacity gateway providing Internet connec-

tion is located in the neighborhood and the residents are able to reach internet over

a multi-hop wireless access network. Similarly, in public safety and military appli-

cations, in order to cooperate and coordinate the operations, the first responders

and military personnel use wireless access networks.

Multi-hop wireless access mesh networking technology is still to overcome many

important challenges to be widely deployed. These challenges range from range

and capacity limitation of the wireless links to secure and fair resource allocation.

These issues are being addressed and studied by researchers both at industry [32]

and academia [35, 21].

45
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Furthermore, leveraging high statistical multiplexing gains in a residential envi-

ronment, multi-hop wireless and wired access networks are recently introduced for

peer-to-peer resource sharing to Internet access such that each individual is able

to utilize the fair amount of the peak bandwidth available to the entire community

(e.g. neighborhood) [33]. For example, each resident having a broadband access

(i.e. DSL) is able to utilize not only his/her own connection bandwidth but also

those of his/her neighbors connections over a multihop wireless or wired access

network [33].

In [35], authors propose a multi-hop wireless mesh architecture using 802.11

protocol utilizing two wireless cards on each node in the network. In contrast in

this chapter, we focus on multi-hop CDMA or UWB based wireless access networks.

Via power/interference management, we seek to provide fair rate assignment over

wireless (multi-access) channels. The literature on mac-layer fairness is rich (see

[34, 6, 5, 27, 28, 25]). While [34, 6, 5, 27, 28]) address the fairness issues at

the mac layer over a single-hop network, [27] extends this to multi-hop scenario

ignoring flow-based end-to-end fairness. Our study complements these works as

it concretizes the relationship between mac-layer fairness and end-to-end fairness.

Furthermore, [25] discusses the joint rate control and scheduling problem, and [26]

examines joint congestion and medium access control both for multi-hop wireless

networks in the context of aggregate utility maximization. In both papers, the

joint problem is shown to be decomposed into two protocol layers and can be solved

individually. Our work, on the other hand, specifically discusses that global max-

min fair rate assignment problem (via joint transport rate and mac-layer control)

decomposes such that it can be solved as independent fair rate assignment problems

in each layer.

The main contributions of this study can be summarized as follows:

End-to-end (flow-based and hierarchical) global weighted max-min fairness can

be achieved if and only if both weighted transport-layer and weighted mac-layer

max-min fairness are ensured with appropriate weights. (The weight for each link

for mac-layer fairness is a function of the weights associated to each flow.)

The remainder of this chapter is organized in the following manner: In section
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2, the network model is discussed. Section 3 discusses the rate assignment problem

and provides the main result of the study on mac layer vs. end-to-end fairness.

In section 4, a weighted mac-layer fair algorithm is discussed. Section 5 includes

discussions and examples. Finally, Section 6 concludes the chapter.

3.1 Network Models

In this section, we mainly describe a 2-channel CDMA type network model for

which the main results of the chapter is presented. Furthermore, briefly, we discuss

a general single-channel network model for which the main results of the study still

apply.

3.1.1 Network Model 1

We consider a multi-hop access network which is formed by wireless client

devices and the Access Points (APs). Each client associates to one of the APs and

the APs form a mesh network together. There is also a gateway access point which

provides internet connectivity. The clients are able to communicate with each other

and access the Internet through this access network. We consider a Infrastructure

Basic Service Set (IBSS) type architecture which is comprised of an AP and the

client devices that associate to that AP. Clients are not able to communicate with

each other over a direct link. They first need to send the information to the AP

that they associate as in the case of 802.11 IBSS.

Each AP is considered to be a wireless bridge such that the packets are for-

warded in layer 2 throughout the entire access network. The spanning tree protocol

is used [23] to form a loop free topology where the learning bridge algorithm works

well [23]. There are many recent papers considering loop free topologies [35] for

multi-hop access networks.

In the spanning tree protocol, participating nodes first choose a root node and

find the shortest path to the root using a distance vector type algorithm. Then

each node includes some of its ports (links) in the spanning tree while the others

are blocked in order to prevent loops in the network. In our case the gateway is
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assumed to be the root of the tree topology. The details of the algorithm can be

found in [23].

The optimum spanning tree protocol for wireless and wired networks are also

considered in many research papers [31, 29]. These issues are beyond the scope of

this thesis. However, these problems can also be coupled with the rate assignment

problem and are considered as future work.

Each node in the network (APs and clients) is able to utilize a single transmitter

and a receiver. Both transmitter and the receiver can be tuned to 2 non-overlapping

channels. Thus each node is assumed to transmit and receive simultaneously over

these 2 non-overlapping channels where the inter-channel interference is neglected

(Figure 3.2). The logical connections between a node and its AP or between two

adjacent APs is called a link. Let L = L1

⋃
L2 denote the set of directional links

in the network where L1 and L2 are the set of links tuned to channel 1 and 2

respectively. Any link l ∈ L can also be represented by the transmitter node i and

the receiver node j such that l = (i, j). As the case with CDMA networks, each

link is given a code. In other words, the links tuned to the same channel have the

ability to be active simultaneously.

It is assumed that the root node in the spanning tree allocates one of the

channels to downlink and the other to uplink and advertises it to its neighbors and

each AP can easily decide on the channel assignment on the up and downlinks.

The spanning tree protocol can also be modified for the channel setup. On the

other hand, each client device associating to one of these APs learns the channel

allocation from the corresponding AP and sets the channels accordingly.

A DHCP server is available in each AP such that it is able to assign a unique

address to each wireless client. In a LAN environment with multiple DHCP servers,

there are mechanisms that ensure the unique address assignment [41]. We assume

that the spanning tree protocol is used to form the loop free topology. The learning

bridge concept and spanning tree protocol can be found in [23].

In this work, we assume that all nodes in the network are able to hear each

other.

We also consider the capacity of each wireless link as a linear function of the
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related signal to interference noise ratio (SINR)(e.g. the low signal to noise ratio

regime).

Xi,j = B
Pi,jGi,j∑

m,n 6=i,j Pm,nGm,j + γ
(3.1)

where Xi,j is the capacity of link i, j and i and j are the end nodes of the link.

B is the bandwidth allocated for the related channel, Pi,j is the power transmitted

on link i, j and Gi,j is the attenuation constant such that Pi,jGi,j is the received

power at the receiving end of link i, j, and γ is the ambient noise power.

Each link i, j has a power budget such that

0 ≤ Pi,j ≤ Pmaxi,j (3.2)

On the other hand, a flow is defined to be a logical connection between any

mobile client device and the gateway, or between any two mobile client devices.

Let F denote the set of all flows in the network. We assume that the routing

determines a unique matrix Ψ = [Ψp,l]|F |×|L|, Ψp,l = 1 if p ∈ Fl=(i,j) otherwise it is

0 where Fi,j denotes the set of flows traversing link (i, j).

The rate of flow p, Rp, is the information rate that the related source node

conveys to the destination node.

The rate of link l = (i, j) should be greater than or equal to the aggregate rate

of flows that are traversing the link such that

Ti,j =
∑

p∈Fi,j

Rp ≤ Xi,j, Rp ≥ 0 ∀p ∈ F (3.3)

We assume a transport layer protocol, given the link rates, that assigns the

rates among the end-to-end flows. It is assumed that each flow has infinite demand.

Independent of the end-to-end flow rates, we also assume a mac-layer protocol that

sets the link capacities with respect to equation (3.1.)
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3.1.2 Network Model 2

In this model, we assume a multi-hop wireless access network where still each

node is able to hear each other. In other words, each link interfere with all other

links in the access network. There exist a single channel that is used by all the

links in the network. Routing or bridging or any other path setup mechanism is

assumed. The capacity of each link, l = (i, j), Xl=(i,j) is assumed to be a strictly

increasing function of the average transmitted power ATPi,j which is equal to

Pi,j × Si,j, where Si,j is roughly the fraction of time that the link i, j being used.

The notion of average transmitted power can describe perfectly scheduled networks

as in [24] or any other mechanism like 802.11 or a CDMA type multi-hop network.

On the other hand, the link rate Xi,j is assumed to be a strictly decreasing function

of the average transmitted powers of all other links (e.g. ATPm,n ∀ (m, n) 6= (i, j)).

The feasibility region for flow rates is the same as in network model 1.

3.2 Rate Assignment Problem

In this section, end-to-end global (flow based as well as hierarchical) and mac-

layer rate assignment policies and the relationship between them are discussed.

3.2.1 Definitions

First, we introduce the following definitions.

Definition 1: A vector of rates R is weighted max-min fair with weight

vector, W ,if it is feasible and for each flow i, the rate of flow i, Ri, can not be

increased while maintaining feasibility without decreasing Rj for some flow j for

which RjWj ≤ RiWi. As a special case, for Wi = 1 ∀i, vector R is said to be

max-min fair [2].

Definition 2: A feasible vector of link rates, X is said to be (weighted)

mac-layer max-min fair if the link rate vector, X, belongs to Y defined as:
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Y = {(.., Xi,j, ..) : Xi,j = B
Pi,jGi,j∑

m,n 6=i,j Pm,nGm,j + γ
,

0 ≤ Pi,j ≤ Pmaxi,j} (3.4)

and is (weighted) max-min fair.

Definition 3: A vector of end-to-end flow rates, R, is said to be (weighted)

transport layer max-min fair, given fixed routing matrix Ψ and link rate vector,

X,, if R belongs to VX as defined:

VX = {(.., Rp, ..) :
∑

p∈Fi,j

Rp ≤ Xi,j ∀(i, j) ∈ L,

Rp ≥ 0 ∀p ∈ F} (3.5)

and is (weighted) max-min fair.

Definition 4: Given a routing matrix, Ψ, a vector of end-to-end flow rates

is said to be end-to-end global flow-based max-min fair, if the flow rates are

chosen from set S: S =
⋃

∀X∈Y VX and is max-min fair.

Unlike the transport-layer fairness, in global fairness the link rates are not

assumed to be given. In our wireless access network the capacity of a link is

a function of the other link capacities, therefore in order to enforce the global

fairness we need to compute both the link rates and the flow rates. In Figure 3.1,

a sample network with two flows are shown. A max-min fair protocol is assumed

to be running in the transport layer. It can be seen that different power allocations

among the links leads to different transport rates. For instance, the transmit power

allocation vector

P = [100mw; 100mw; 100mw; 100mw; 100mw] with bandwidth, B = 10MHz

and γ = 1mw, and distance d = 5meter leads to link rate vector

X = [4.4Mb.s|8Mb.s|6.9Mb/s|7.35Mb/s|18Mb/s]

and transport rate vector

R = [2.2Mb/s|2.2Mb/s],

whereas the transmit power vector
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P = [100mw|100mw|20mw|100mw|100mw] leads to the link rate vector

X = [6.9Mbs|8Mb/s|1.3Mb/s|7.3Mb/s|18Mb/s] lead to a transport rate vector

R = [1.3Mb/s|5.6Mb/s]. As can be seen in this example, having a transport-

layer max-min fair protocol does not ensure the end to end global fair rate alloca-

tion. Therefore, both the link rates and the transport rates should be set jointly

to achieve end-to-end global fairness.

AP1 AP2 AP3

Ch1

Link3

Link1 Ch1 Link4 Ch1

Link5

Ch2

Link2 Ch2

Flow 1

Flow 2

1C

Client Device AP1 Access Point1C

2C

3C

Figure 3.1: First example network

Definition 5: Given a feasible vector of flow rates, R, we say that link l = (i, j)

is a weighted bottleneck link with weight vector W with respect to R for a flow

p traversing link l , if Ti,j = Xi,j and RpWp ≥ RqWq for all the flows q traversing

link l. If all the weights are equal to 1 then link l is said to be a bottleneck link

as in [2].

3.2.2 Weighted End-to-End Flow-Based Global Max-Min

Fairness: Main Result

In this section, we establish a relationship between mac-layer and end-to-end

global fair rate assignments in the discussed access network. We show weighted

fairness at the mac-layer and weighted max-min fairness in the transport layer

ensure end-to-end global weighted max-min fairness per flow, and vice versa. To

prove this we need the following facts.
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Fact 1: Weighted mac-layer max-min fair rate assignment in our network with

weight vector W and rate vector X assigns the rates to each link tuned to the

same channel such that XlWl = XdWd ∀l, d ∈ Li : i = 1, 2. Note that as a special

case mac-layer max-min fairness (Wl = 1, ∀l) assigns the same rate to all the links

[14].

Proof. Assume by contradiction that link rate vector X is weighted max-min fair

with weight vector W . However, without loss of generality there exist two links

in the same channel, l1 and l2 such that Wl1Xl1 > Wl2Xl2. If we decrease the

transmitted power over link l1 then the capacity of l2 will increase which will

contradict by the definition of the (weighted) max-min fair rate allocation.

Fact 2: A vector of link rates X is weighted mac-layer max-min fair with

weight vector W if it is achievable (i.e. in the capacity region) and it is the

maximal among vectors E such that WlEl = WdEd for all ∀l, d ∈ Li : i = 1, 2.

(Similarly, El = Ed for the max-min fair case.) (A vector, V , is maximal when

there is no other vector,D, of which elements are not less than those of V and at

least one is strictly greater). The proof of this fact is a direct result of Fact1 and

the definition of (weighted) max-min fairness.

Fact 3: End-to-end flow-based global weighted max-min fair rate assignment

with weight vector W and flow rate vector R assigns the flow rates such that

RiWi = RjWj ∀i, j ∈ F . Note that if all the weights are the same then the rate

assignment in question assigns the same rates to each flow in our access network.

Also note that each flow in our network utilizes both the channels. The proof for

all the weights equal to 1 has the same logic as in [14].

Proof. By contradiction assume that the vector of flow rates, R, is end-to-end flow-

based global weighted max-min fair with weight W , but that, there exist two flows

i and j such that WiRi > WjRj . Let Zi and Zj be the set of links that flow i and

j traverses respectively. The following steps can be performed while maintaining

feasibility for some value of δ and ǫ.
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(1) Decrease Ri by δ

(2) ∀l ∈ Zi \ Zj ; Decrease Xl by δ

(e.g. by decreasing Pl)

(3) Increase Rj by ǫ

(Second step increases the link rates, Xl : l ∈ Zj \ Zi)

By this way, the value of Rj is increased without decreasing any other flow

rate of which weighted value is already smaller than or equal to WjRj which is a

clear contradiction to the end-to-end global flow-based weighted max-min fair rate

allocation.

Fact 4: If a feasible flow rate vector, R, is end-to-end global flow-based

weighted max-min fair with weight vector W then there exists a channel, i, such

that with respect to R, each flow has a weighted bottleneck link, l (with W ), tuned

to channel i and each such link l (i.e ∀l ∈ Li) is a weighted bottleneck link (with

W )for some flow in the network and the link rate vector of channel i is maximal.

Proof. Part a) Assume by contradiction that the vector of rates, R, is end-to-end

global flow-based weighted max-min fair with weight vector W but there exists at

least one link on both channels (i.e. l1 ∈ L1 and l2 ∈ L2) which are not weighted

bottleneck for any flow with respect to R, that is, Tli < Xli ∀i. Let llb be the set of

all weighted bottleneck links (for some flows). So decreasing the capacity of l1 and

l2 (e.g. decreasing the transmitted power) will increase the capacity (dedicated by

the mac layer ) of all the links in llb. The rates of all the flows, for which the links

in llb are bottleneck links, can be increased while maintaining feasibility which

clearly contradicts the end-to-end global weighted max-min fair definition.

Part b) Furthermore, assume by contradiction again that R is end-to-end

global flow-based weighted max-min fair with vector W but there exist two flows

f1 and f2 such that the former one does not have any bottleneck on any link tuned

to channel j (e.g. j = 2) and the latter one does not have any bottleneck link on
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channel c (e.g. c = 1). Let Lnkfk
a be the set of links tuned to channel a that flow

fk traverses.

From Fact 3, we know that end-to-end global weighted max-min fairness assigns

rates to all the flows inversely proportional to their weights in our access network.

So for any link l ∈ Lnkf1

j , Xl < Tl and for any link l ∈ Lnkf2
c , Xl < Tl for otherwise

those links would be bottleneck links for f1 and f2 respectively. The rest of the

proof is the same as part (a).

The proof for maximality of the link rate is relatively easy, since if the link

rate vector X is not maximal then there should be some other link rate vector X′

which has strictly larger link rates as its elements, and this latter link rate vector

can result in a flow rate vector R′ which is greater than R in all elements which

again contradicts with the global weighted max-min fair definition.

Now we provide the main result of this section.

Let W be the weight vector with which R (the flow rate vector) is end-to-end

global flow-based weighted max-min fair.

Let N denote a vector such that

N = ((n1)
−1, ..., (nl)

−1, ...(n|Lb|)
−1) where nl =

∑
f∈Fl=(i,j)

(Wf )
−1 and Fi,j denotes

the set of flows traversing link (i, j) and |Lb| is the number of bottleneck links.

Theorem 1: In our access network, end-to-end flow-based global weighted

max-min fair rate allocation, R, with weight vector W can be achieved if and

only if transport-layer weighted max-min fairness with weight vector W and the

weighted mac-layer max-min fairness with weight vector N (among the resulting

bottleneck links with respect to R) are ensured.

Proof. We first show that end-to-end flow-based global weighted max-min fairness

with weight vector W leads to weighted mac-layer max-min fairness with weight

vector N and transport-layer weighted max-min fairness with weight vector W .

Note that throughout the proof, the links discussed are the weighted bottleneck

links with weight vector W as defined in Definition 5.

First, we can easily show that if a vector of flow rates R is end-to-end global

flow-based weighted max-min fair with W then it is also transport-layer weighted
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max-min fair with W . The proof follows easily by contradiction. Assume that

the vector R is global weighted max-min fair but not transport-layer weighted

max-min fair with the same weight vector. Then there should exist a flow i, of

which rate Ri can be increased without decreasing Rj for some flow j for which

WiRi ≥ WjRj , which is also a contradiction to the end-to-end global flow-based

max-min fairness.

Next, by contradiction assume that the vector of end-to-end flow rates, R, is

both end-to-end global weighted max-min fair and transport-layer weighted max-

min fair with W but the corresponding link capacity vector, X, is not weighted

max-min fair with weights N .

The end-to-end global flow-based weighted max-min fair rate assignment as-

signs rates to each flow inversely proportional to their weights,i.e. WqRq = WpRp =

r ∀p, q ∈ F (see Fact3). In the presence of end-to-end weighted max-min fairness,

the resulting aggregate flow rate traversing link l = (i, j), Tl, will be

Tl =
∑

p∈Fl
Rp =

∑
p∈Fl

(Wp)
−1r = r × nl.

Since we are discussing the bottleneck links then

Tl = Xl = r × nl ∀l ∈ B.

It can easily be seen that the link capacities satisfy the condition in Fact 2 for

weighted fairness such that Xi,jNi,j = Xa,bNa,b where Ni,j denotes the element of

vector N corresponding to link i, j.

However, by contradiction we have assumed that the vector X is not weighted

max-min fair with weight N , so according to Fact 2, vector X can not be maximal,

for otherwise it would be the weighted max-min fair rate.

Therefore, one can increase all the link rates in the network and this increase can

be easily mapped into an increase in all the end-to-end flow rates which contradicts

with the end-to-end global weighted max-min fair rate assumption that we had in

the beginning. Thus, we have shown so far that if a vector of flow rates is end-

to-end flow-based global weighted max-min fair with W then it is also transport-

layer weighted max-min fair with W , and the corresponding vector of link rates is

weighted mac-layer max-min fair with weight vector N .

Conversely, if we assume that the link rate vector X is weighted max-min fair
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with weights N and we assume transport layer weighted max-min fairness with

weight vector W , then all the flow rates will be assigned inversely proportional to

their weights. By contradiction assume that the end-to-end flow rate vector R is

not weighted max-min fair with W globally. Then it is possible increase all the Ris

without decreasing any of them (since we know that end-to-end flow-based global

max-min fairness indeed assigns rates to all the flows inversely proportional to the

corresponding weights). This actually requires an increase in all the link rates

inversely proportional to their link weights which contradicts with the weighted

mac-layer max-min fair assumption.

(This theorem is valid for both network model 1 and network model 2.)

This result is interesting in the sense that there is small interaction between the

mac layer and the transport layer. The only information that the mac layer needs

to know is the sum of the inverse weights of the flows that are passing through

(For Wi = 1∀i, that is the max-min fair case, the only information to be passed to

the mac-layer is the number of flows passing through). Then the weighted max-

min mac-layer scheme with appropriate weights and with a weighted max-min fair

transport protocol leads to a weighted fair flow rate allocation in the end-to-end

and global manner.

In the next section, we discuss hierarchical global weighted max-min fairness

which can be achieved by end-to-end flow-based global weighted max-min fairness

with appropriate choice of the system parameters.

3.2.3 End-to-End Hierarchical Weighted Max-Min Fair Rate

Assignment

Although flow based weighted max-min fairness is the classical way of studying

the fairness problem, in the real world different fairness variations may appear.

Considering a community network application as in [33] where each IBSS be-

longs to a resident, each resident participating the access network would like to

have a fair share of the overall bandwidth which is set according to what they pay

for their Internet access speed. In an access network where end-to-end flow based
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weighted max-min fairness is enforced, a resident utilizing a higher number of con-

nections will have a higher share of the overall bandwidth with respect to the ones

having a smaller number of connections. By enforcing hierarchical fairness each

resident is ensured a fair share of the network bandwidth first and then within the

same IBSS the fairness among the flows can be enforced.

Therefore, in our network, one of the interesting fairness criterion may be a

hierarchical fairness such that fairness is first ensured among the Infrastructure

Basic Servive Sets (IBSS) (i.e among the set of flows utilized by different IBSSs)

and then among the individual flows in the same IBSS.

Definition 6: Let Ma be the set of flows belonging to subgroup a such that
⋃

a Ma = F and Ma

⋂
Mb = ∅ ∀a, b : a 6= b. Let D be the rate vector where the ath

element denotes the aggregate information rate of subgroup a : Da =
∑

i∈Ma
Ri.

Lastly, let Ha denote the vector of rates of the individual flows belonging to Ma.

A vector of flow rates, R, is said to be weighted hierarchical max-min fair

with a weight vector Z, and a vector of vectors V = (V1, V2, ...VT ), where T is

the number of subgroups, and Va is the weight vector for subgroup a such that

Va = (Va,1, Va,2...Va,La
) (where La is the number of flows in subgroup a), if first the

vector, D, is weighted max-min fair with weight vector Z and the rate vector for

flows in each subgroup a, Ha, is weighted max-min fair with weight vector Va.

More formally, a vector, R, is said to be weighted hierarchical max-min fair

with a weight vector Z, and a vector of vectors V = (V1, V2, ...VT ), if it is feasible

and if for each flow, i ∈ Ma, the rate, Ri, can not be increased, while maintaining

feasibility without decreasing Rj for some flow j ∈ Mb for which Vb,jRj ≤ Va,iRi

when a = b or ZbDb ≤ ZaDa when a 6= b. When all the weights are all equal to 1,

the rate vector R is called Hierarchical Max-Min fair as similarly defined in [21].

Fact 5: Using similar arguments for mac-layer and end-to-end flow based max-

min fair rate assignment policies, it can be claimed that such a hierarchical fairness

policy leads to the aggregate flow rates for each IBSS such that ZaDa = ZbDb ∀a, b.

Again using the same argument, we can claim that each flow belonging to the same

IBSS have rates as follows, Va,iRi = Va,jRj ∀a and ∀i ∈ Ma.

Proof. By contradiction assume that a vector of flow rates R is hierarchical weighted
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max-min fair; however, there exits at least two groups of flows a and b of which

total rates, Da and Db are such that ZaDa > ZbDb. Let there exist two flows

i ∈ Ma and j ∈ Mb. Considering the proof for Fact 3, one can increase Rj as well

as Db with only decreasing Ri as well as Da which contradicts the definition of

hierarchical fairness.

In addition to this, again by contradiction assume that R is Hierarchical weighted

max-min fair, but in a group k there exist at least two flows i ∈ Mk and j ∈ Mk

such that Vk,iRi < Vk,jRj . The situation results in the same contradiction as in

Fact 3.

Fact 6: A vector of flow rates R is hierarchical weighted max-min fair with

Z and V as defined above, if it is achievable (i.e. in the capacity region) and

corresponding D vector is the maximal among vectors, E, such that ZaEa = ZbEb

∀a, b and given the D vector, for each subgroup a, the related vector Ha is the

maximal among the vectors, Ba, such that Va,iB
a
i = Va,jB

a
j ∀i, j ∈ Ma. (It is a

direct result from the previous fact on hierarchical fairness.)

Let Q be the weighted rate of each subgroup (e.g. resident) utilizes such that

Q = ZaDa ∀a where the weighted hierarchical fairness policy with Z and V is

enforced. Then the aggregate rate that the subgroup a utilizes will be Q

Za
, whereas

the rate of flow i, Ri, in the same subgroup will be Ri =
Va,jRj

Va,i
∀i. From the

definition of Da, Da =
∑

j∈Ma
Rj =

∑
i∈Ma

Va,jRj

Va,i
= Q

Za
.

Therefore, the rate of each flow i ∈ Ma can be written as Ri = Q

ZaVa,i(
∑

i
1

Va,i
)

Let s(i) denote the subgroup to which ith flow belongs and let

Ka,i = ZaVa,i(
∑

i
1

Va,i
).

Let W be the vector such that

W = ((Ks(1),1), (Ks(2),2), (Ks(3),3), ......(Ks(|F |),|F |)) where |F | is the number of

all flows.

(Considering the above discussion, we can safely say that any weighted hierar-

chical max-min fair vector of flow rates, R, satisfies the condition RiWi = RjWj .)

Theorem 2: End-to-end hierarchical global weighted max-min fairness with

Z and V can be achieved if and only if end-to-end flow-based global weighted

max-min fairness with weight vector W is ensured.
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Proof. Assume by contradiction R is weighted hierarchical max-min (then RiWi =

RjWj) but not end-to-end global flow-based weighted max-min with weight vector

W . This implies that R is not maximal (otherwise it would be end-to-end global

flow-based weighted max-min) which contradicts the definition of weighted hier-

archical max-min. Conversely, assume R is end-to-end global flow-based weighted

max-min with W , but not weighted hierarchical max-min with Z and V , then

either the conditions described in Fact 6 on element of vectors D and Has do not

hold, or the vectors are not maximal. In either case there is a contradiction to the

definition of weighted max-min fair rates with vector W .

Corollary:Using the results above, it can easily be seen the a vector of flow

rates R is hierarchical weighted max-min fair, if and only if it is transport layer

weighted max-min fair with weight vector W (as defined above) and weighted mac-

layer max-min fair with weight vector N , where the lth element of vector N , Nl,

equals (
∑

f∈Fl
(Wf )

−1)−1

We have seen that both hierarchical and flow-based global weighted max-min

fair rate allocations can be achieved if and only if weighted max-min transport layer

and weighted max-min mac layer fairness policies are enforced with appropriate

weights.

In the next section, we would like to propose a mac-layer scheme that is able

to achieve the weighted mac-layer max-min fairness we are looking for.

3.2.4 Mac-Layer Algorithm Ensuring End-to-End Global

and Mac-Layer Fairness

In this section, we discuss a mac-layer algorithm that enforces mac-layer weighted

α-proportional and mac-layer weighted max-min fair rate assignments.

As we discuss in the previous sections (i.e. Theorems 1 and 2), with appropri-

ate weights, the mac-layer weighted max-min fair rate assignment results in link

capacities such that with appropriate higher layer mechanisms (i.e. (weighted)

max-min transport layer protocol), end-to-end (flow based and hierarchical) max-
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min fairness is achieved globally. In addition to this, considering Fact 4, that is,

all the links tuned to a single channel are bottleneck links for all the flows in the

network, all we need to have is a mac-layer scheme that ensures weighted mac-layer

fairness among the links tuned to the same channel.

In this section, we begin with a discussion of a mac-layer weighted α-proportional

fair rate assignment. Next, we introduce a mac-layer algorithm, MAC − α − G,

which is a general mac-layer algorithm where with appropriate choice of parameters

α and G, not only mac-layer α-proportional fairness but also end-to-end max-min

(flow based and hierarchical) fairness can be achieved.

Mac-layer Weighted Max-Min Fair Rate Assignment (End-to-End Global

Fair Rate Assignment)

In this section, we discuss an approach to compute the weighted max-min fair

link rates in a distributed manner.

Definition 8: Similar to [8], we consider a generalization of proportional fair-

ness by considering a different utility function for each entity. A vector of rates,

R, is α-proportional fair if it maximizes the sum of the utilities when the utility

function for entity i is −(−ln(Ri))
α

Weighted α-Proportional Fairness Approach:

The overall optimization problem for weighted max-min fairness is

Maximize
∑

i,j

U(Xi,j) =
∑

i,j

−
1

gi,j

(−ln(gi,jXi,j))
α (3.6)

Subject To: 0 ≤ Pi,j ≤ Pmax (3.7)

where Xi,j is defined in equation (3.1) and gi,j is a weight associated to the link

(i, j) to ensure the weighted fairness.

CLAIM: The system trying to maximize the aggregate utility function U =
∑

i,j U(Xi,j) leads to a weighted α-Proportional fair rate assignment. Weights
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equal to 1 and α = 1 corresponds to the mac-layer proportional fair case whereas

as α goes to infinity the system converges to the weighted max-min fair rate as-

signment

Proof. The utility function for each link l, Ul(Xl) = − 1
gl

(−ln(glXl))
α for all 0 <

x < 1 and α ≥ 1 is an increasing function of Xl. The formulation above maximizes

the sum of the individual utility functions.

Assume an arbitrary rate assignment to any two links l1 and l2 with weights g1

and g2 respectively such that 0 < g1Xl1 < g2Xl2 < 1.

Then the ratio of the partial derivatives of each utility function with respect to

the corresponding link rate goes to infinity as α goes to infinity.
U ′l1(Xl1

)

U ′l2(Xl2
) =

g2Xl2

g1Xl1

(
ln(g1Xl1

)

ln(g2Xl2
))

α−1 → ∞ as α → ∞

For sufficiently large α, any increase in Xl1 and decrease in Xl2 will increase

the overall utility function. So the optimum value of this non-linear programming

problem satisfies the condition g1Xl1 = g2Xl2 for any two link l1 and l2, and since

the utility function is an increasing function of each link rate, the optimum value

should be a maximal rate vector. These two conditions are necessary and sufficient

conditions for weighted mac-layer max-min fairness as described in Fact 2.

The above problem is not a convex programming problem (CPP). Using the

change of variable Pa,b = eZa,b, the problem can be converted into a CPP such that

Yi,j = Zi,j + ln(gi,jWGi,j)− ln(
∑

k(e
Zm,nG(m, j)) + γ) is a concave function. (log-

sum-exp function is a convex function [22] and an affine composition of any such

function is also convex [22]). The constraint is also convex as 0 ≤ eZa,b ≤ Pmax.

In addition to that 1
gi,j

(−Yi,j)
α can be shown to be a convex function of the

logarithmic transmitted power strengths (e.g. Zi,j = ln(Pi,j)) where 0 ≤ gi,jXi,j ≤

1 and α ≥ 1. The proof can be found in appendix B.1.

We use the gradient projection method [3] to solve the above optimization

problem such that

Zn+1
i,j = [Zn

i,j + θn ∂U

∂Zi,j

]+ (3.8)
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where n denotes the iteration number and U is the sum of all utility func-

tions and [f ]+ denotes projection on the set 0 ≤ Pi,j ≤ P max
i,j ∀i which is equal to

min(max(0, f), P max
i,j ) and

∂U

∂Za,b

= α(
1

ga,b

)(−ln(ga,bX(a, b)))α−1−

∑

k,l 6=a,b

α
eZa,bGa,l∑

q,r 6=k,l e
Zq,rGq,l + γ

(
1

gk,l

)(−ln(gk,lXk,l))
α−1 (3.9)

fa,b = 1 −
∑

k,l 6=a,b

eZa,bGa,l∑
q,r 6=k,l e

Zq,rGq,l + γ
(
ga,b

gk,l

)(
ln(gk,lXk,l)

ln(ga,bXa,b)
)α−1 (3.10)

we can say that the equation (3.9) becomes negative when fa,b < 0 or vice

versa.

The above iterative algorithm based on gradient projection method corresponds

to a distributed algorithm that targets the weighted α-proportional fair rates (e.g.

asymptotically weighted max-min fair rates). Here we present a mac-layer algo-

rithm where the increase and decrease coefficients are assumed to be small enough

for convergence. The decision whether to increase or decrease the power is based

on the gradient projection method. Having the coefficients small enough, the gra-

dient projection method is shown to converge to one of the stationary points (the

point where the gradient is zero) [3]. Here since the problem is a CPP it has only

a single stationary point.

As a feedback mechanism we assume that each link in the network advertises

its weight, gi,j, its current capacity, and the power it receives from all other links

that it is able to hear.

However, in case of a static network where the wireless nodes know the exact

location of each other, the only information that is to be advertised by each link is

the associated weight value. Each wireless node is assumed to measure the received

signal strength from other links in the network and estimate easily all the received

signals at other nodes and the capacities of all the links in the network using

equation (3.1). In other words, each link, in a distributed manner, can compute
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equation (3.10) by only knowing the weights of the other links and measuring

the received signals from all other links and using the equation (3.1). Thus a

distributed algorithm only advertising the weight values can be designed based on

the above discussion in static multi-hop wireless networks.

Given any arbitrary initial power vector, P , at each iteration n, each link (a,b)

computes the value of fa,b(P )n and increases its transmit power, P n
k , if fa,b(P )n is

positive or decrease if it is negative.

The whole power control scheme which we call MAC-α−G for link a, b can be

written as follows.

MAC-α − G Algorithm

STEP1: Initially start with a random transmission power at each link.

STEP2: At iteration n

IF fn
a,b > 0 (or a positive threshold) then

Increase Pa,b (e.g. P n+1
a,b = P n

a,b + β)

ELSE IF fn
a,b < 0 (or a negative threshold) then

Decrease Pa,b (e.g. P n+1
a,b = P n

a,b − q)

ELSE Do not change Pa,b ( e.g. P n+1
a,b = P n

a,b)

where β and q are appropriate constants.

As mentioned previously, the mac-layer algorithm (i.e MAC-α−G) (providing

mac-layer max-min fairness with weight vector G) can be used with a weighted

transport layer protocol to ensure end to end global max-min fairness.

An alternative problem formulation and algorithm is discussed in the next

section.

Duality Approach:

The method used here is the same as in [5], where authors assume a simple

non-capture capacity model for multi-hop adhoc aloha networks and formulate the

mac-layer max-min fairness problem.
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Basically, in this method, the original (weighted) max-min fair problem is con-

verted into a convex programming problem. Using convex duality and again the

gradient projection method a distributed algorithm for computing weighted mac-

layer max-min fair rates is described.

Using Fact 2, the original problem for (weighted) max-min fair rate computa-

tion is reduced to the problem of maximization of the minimum link rate. That

is,

Maximize E (3.11)

s.t. E < gi,jXi,j ∀(i, j) ∈ L (3.12)

0 ≤ Pi,j ≤ Pmax ∀(i, j) ∈ L (3.13)

This problem is equivalent to the following problem and the details can be

found in appendix B.2.

Minimize
1

2

∑

a,b

(Ya,b)
2 (3.14)

s.t. Ya,b − ln(ga,b) − ln(W ) − Za,b − ln(Ga,b)

+ ln(
∑

m,n 6=a,b

eZm,nG(m, b) + γ) ≤ 0 ∀(a, b) ∈ L (3.15)

Ya,b ≥ Yc,d and Ya,b ≤ Yc,d ∀(c, d)(a, b) ∈ L (3.16)

The objective function is convex and the functions in the constraints form a

convex set. Thus the problem is a convex programming problem.

The Lagrange function for the above problem is

L(Z, y, λ) =
1

2

∑

i,j

(Yi,j)
2 +

∑

i,j

λi,j(Yi,j − ln(gi,j)

−ln(W ) − Zi,j − ln(Gi,j) + ln(
∑

m,n 6=i,j

eZm,nGm,j + γ))

+
∑

(a,b)

∑

(c,d)6=(a,b)

(Ya,b − Yc,d)µ(a,b),(c,d) (3.17)
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Convex duality applies, which implies that there is no duality gap; that is the

solution to the primal problem is the same as the solution to the dual problem.

The dual function is D(λ, µ) = MinZ,Y L(Z, Y, λ, µ) and the dual problem is

maxλ,µD(λ, µ)

After minimizing the Lagrange function we have the following results.

∂L

∂Yk,l

= 0 =⇒

Yk,l = [−λk,l −
∑

(m,n)6=(k,l)

µ(k,l),(m,n) − µ(m,n),(k,l)]
− (3.18)

∂L

∂Zk,l

= 0 =⇒

−λk,l +
∑

a,b6=k,l

λa,be
Zk,lGk,b∑

m,n 6=a,b eZm,nGm,b + γ
= 0 ∀(k, l) ∈ L (3.19)

The dual problem can be solved using the gradient projection method.

λn+1
i,j = [λn

i,j + θn ∂D

∂λi,j

]+ (3.20)

µn+1
(a,b),(c,d) = [µn

(a,b),(c,d) + θn ∂D

∂µ(a,b),(c,d)

]+ (3.21)

where [f ]+ is again turns out to be max(0, f) and

∂D

∂λi,j

= Yi,j − ln(gi,j) − ln(W ) − Zi,j − ln(Gi,j)

+ln(
∑

m,n 6=i,j

eZm,nGm,j + γ) (3.22)

∂D

∂µ(a,b),(c,d)

= Ya,b − Yc,d (3.23)

3.3 Discussions and Examples

In this section, we consider a single gateway access network where there are 3

Access Points and 5 client devices, as in Figure 3.2.
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Figure 3.2: First example network

The attenuation constant is modelled as Gi,j = d−n
i,j where di,j is the distance

between nodes i and j and n is assumed to be 2. Link capacities presented are

normalized between zero and one unit of capacity.

We first consider the following scenario where each link (l = (i, j)) is assumed

to have an infinite amount of traffic to transmit from the transmitter node i to

the receiver node j all the time. Each of the links are assumed to run the MIMD-

α−G algorithm where all the weights and α are all equal to 1 (mac-layer fairness

scenario).

The resulting rates of each link tuned to channel 1 are illustrated as the value

of α increases from 1 to 60 in Figures 3.3 and 3.4 respectively. As can be seen

in the figures as the value of α increases the capacities on each link converges to

the same value which is consistent with the max-min fair rate assignment fact (i.e.

Fact 1).

Next, we consider a traffic scenario where the wireless clients number 1,2,3 and

5 have infinite traffic demand to the outside world through the gateway node. Here

the end-to-end flow-based global max-min fair rate allocation and the end-to-end

hierarchical global fairness are examined.

Consider the end-to-end flow-based case: The link weight, gl=(i,j) for a link l is

as follows (1 over the number of flows traversing): For Channel 1, g1 = 1; g2 = 1;

g3 = 1; g8 = 1/4; g7 = 1; and for Channel 2, g4 = 1/3; g5 = 1;. Figure 3.5 and
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3.6 show the MAC-α − G allocations for large α (α = 60) such that link rates

converge to the weighted max-min fair rates in the mac layer with the weights

given above. The resulting link capacities are available in Figure 3.5 for channel

1 and in Figure 3.6 for channel 2 respectively. As can be seen, the capacities

assigned on each link are inversely proportional to the weights assigned to that

link (i.e. for channel 1 X=[0.0192,0.0196,0.0197,0.0216,0.0848] and for channel 2

X=[0.0992,0.0317]) which is consistent with Fact 1. In this case, channel 1 includes

the bottleneck links which assigns lower rate (0.02 unit capacity) to a single flow

than channel 2 does (0.03 unit capacity) in the presence of a max-min fair transport

protocol.

Here we see the need for hierarchical fairness. If such a network is deployed in

a community network where each AP is located in a residence, then a flow based

max-min fair rate assignment assigns to residence 1, 3 times the bandwidth (0.06

unit capacity) it assigns to residence 3 (0.02 unit capacity). This is not desirable

for such applications.

Instead, the hierarchical fairness model can be more appropriate to consider,

where each residence or AP has the fair share of the network capacity.

In the case of a hierarchical max-min fair rate assignment,we have the following

link weights. For Channel 1, g1 = 3; g2 = 3; g3 = 3; g8 = 1/2; g7 = 1;. For

Channel 2, g4 = 1; g5 = 1; In Figures 3.7 and 3.8 the corresponding rates for

links tuned to channel 1 and channel 2 are available respectively. Each IBSS (or

AP) is given around 0.0450 unit capacity, where each flow of IBSS1 (or AP1)

gets around 0.0150 unit capacity while single flow of IBSS3 (or AP3) gets 0.0450

unit capacity by itself. Channel 1 has all the weighted bottleneck links also in

this case, whereas channel 2 offers slightly higher link rates (i.e. for channel 1

X=[0.0153,0.0147,0.0148,0.0477,0.0938] and for channel 2 X=[0.0544,0.0545]).

Next, we consider two examples with different weight vectors. We consider

again the traffic scenario where the wireless clients number 1,2,3 and 5 have infinite

traffic demand to the outside world through the gateway node. The flows belonging

to each wireless client are numbered in ascending order with the number of each

wireless client. Here the end-to-end flow-based global weighted max-min fair rate
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Figure 3.3: Capacity, mac layer, alpha =1, channel 1

allocation and the end-to-end hierarchical global weighted max-min fairness are

examined.

In the next example, the flow rate vector, R, is required to be weighted hi-

erarchical max-min fair with weight vectors Z = [2, 3] and V1 = [1, 2, 3]. V2

can take any value since there is only one flow in that residence. Using Theo-

rem 2, R is also end-to-end weighted max-min fair with weight vector W which

is equal to W = [11/3, 22/3, 11, 3]. Considering Theorem 1, the link rate vec-

tor, X, is weighted mac-layer max-min fair with weight vector N . In this exam-

ple, N = [11/3, 22/3, 11, 3, 6/5] for the links tuned to channel 1 and N = [2, 3]

for the links tuned to channel 2. Figures 3.9 and 3.10 indicate the resulting

rates of each link tuned to channel 1 and 2 respectively (when each link run

the MAC-α − G algorithm). The link rate vector, X, turns out to be X =

[0.0288, 0.0144, 0.0096, 0.0379, 0.0908] for the links on channel 1 and X = [0.0652 ,

0.0412] for the links on channel 2. Assuming a weighted transport layer max-min

fair protocol with weight vector W , the links on channel 1 become the bottleneck

link as described in Fact 4. Then the flow rate vector R becomes R = [0.0288 ,

0.0144 , 0.0096 , 0.0379]. Furthermore, the rate vector, D, denoting the aggregate

rate utilized by each IBSS (or residence) becomes D = [0.0528, 0.0379]. As can be
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Figure 3.4: Capacity, mac layer, alpha = 60, channel 1

seen the elements of both vectors X, D and R are almost inversely proportional to

the elements of the vectors N , Z and W respectively as stated in Facts 1, 3 and 5.

As an additional example, for the same traffic demand, the values of the vectors

Z and V are changed as follows. Z = [1, 2] and V1 = [1, 4, 3]. V2 can take any

value since there is only one flow in that residence. Accordingly, the W vector

turns out to be equal to W = [19/12, 19/3, 19/4, 2]. The link weight vector N for

channel 1 is N = [19/12, 19/3, 19/4, 2, 2/3] and for channel 2 is N = [1, 2]. Again

Figures 3.11 and 3.12 shows the corresponding link rates achieved via the Mac-

α − G algorithm for both channel 1 and 2 respectively. The link rate vector, X,

turns out to be X = [0.038, 0.0092, 0.0123, 0.0308, 0.0950] for the links on channel

1 and X = [0.078, 0.038] for the links on channel 2. Assuming a weighted transport

layer max-min fair protocol with weight vector W , the links on channel 1 become

the bottleneck link as described in Fact 4. Then the flow rate vector R becomes

R = [0.038, 0.0092, 0.0123, 0.0308] Furthermore, the rate vector, D, denoting the

aggregate rate utilized by each IBSS (or residence) becomes D = [0.0595, 0.0308].

As can be seen the elements of both vectors X, D and R are almost inversely

proportional to the elements of the vectors N , Z and W respectively as stated in

Facts 1, 3 and 5.
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Figure 3.5: Capacity, e2e flow based, alpha =60, channel 1

As can be seen in both examples, using appropriate transport layer (weighted

max-min) protocols and the mac-layer (weighted max-min) protocols, fair resource

allocation (weighted max-min fair) can be ensured globally not only among indi-

vidual flows but also among the residents that may utilize several number of flows.

3.4 Conclusion (Wireless Access Networks)

In this chapter, we show that in our wireless access network, end-to-end global

fairness can be achieved via enforcing weighted mac-layer fairness. Particularly,

we show that end-to-end global (flow-based and hierarchical)weighted flow-based

max-min fairness is achieved if and only if transport-layer weighted max-min and

weighted mac-layer max-min fair rate assignments are ensured. This result suggests

that by designing intelligent mac-layer schemes, one can ensure end-to-end global

fairness while requiring small interaction among layers. Furthermore, we propose

a mac-layer algorithm to achieve weighted mac-layer fairness. Needless to say that

such mac-layer algorithms in conjunction with Theorem 1 and 2 can be used to

achieve end-to-end global fairness.

The text of this section is in part a reprint of the material as it appears in
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Figure 3.6: Capacity, e2e flow based, alpha = 60, channel 2
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Figure 3.7: Capacity, hierarchical, alpha = 60, channel 1
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Figure 3.8: Capacity, hierarchical, alpha = 60, channel 2
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Figure 3.9: Capacity, e2e weighted hierarchical based, alpha =60, channel 1
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Figure 3.10: Capacity, e2e weighted hierarchical based, alpha =60, channel 2
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Figure 3.11: Capacity, e2e weighted hierarchical based, alpha =60, channel 1
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Figure 3.12: Capacity, e2e weighted hierarchical based, alpha =60, channel 2
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Concluding Remarks

In this study, we consider fair rate assignment problem for two types of inter-

ference limited multi-hop networks.

First, a micro-buffered high-speed core network architecture is proposed. In

this architecture, there is no buffering at the switching nodes. Packet losses are

compensated by end-to-end or edge-to-edge forward error coding techniques. In

this model, flows experience a lossy path from the source node to the destination

node. A simple capacity formula relating the transmission rates to the information

rates is considered.

It is found that in a micro-buffered network, classical slotted aloha techniques

may end up with inefficient resource allocation such that some flows may end up

with zero transmission and information rates. Thus, we examine various fairness

policies for micro-buffered networks, such as weighted α-proportional, weighted

(flow and hierarchical) max-min fair rate assignments. The fairness policies are

compared with respect to total information capacity of the network, and fairness

features. For instance, the weighted max-min fair rate assignment is found to assign

information rates to each flow in the same group that is inversely proportional to

the assigned weights. In particular, max-min fair rate assignment assigns the same

information rates to the flows belonging to the same group, at the cost of lower

network utilization (i.e. total network information rate). On the other hand,

weighted α-proportional fairness result in higher total network information rate;

however, does not assign the same information rates to the flows.
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In addition, the relationship among these fairness policies are also examined. In

particular, it is found that weighted α-proportional fairness converges to weighted

max-min fairness as α increases. Moreover, weighted hierarchical max-min fair

rate assignment is achieved if and only if weighted max-min fair rate allocation

is ensured. Therefore, by tuning the policy parameters (e.g. weights and α in

a weighted α-proportional fairness policy, or weights in a weighted max-min fair

scheme), one can determine the trade off level between the fairness among the

flows and the total network information rate.

Finally, several algorithms are proposed for setting the transmission rates in

order to reach various fairness policies in the information rate domain.

Second, the problem of fair rate assignment in a two-channel CDMA based

wireless multi-hop access networks is examined. Fairness is defined for different

protocol layers. End-to-end global fair rate assignment problem is discussed. For

this purpose, the interaction between the mac-layer and the transport layer proto-

cols are studied. We found that the global max-min fair rate assignment problem

can be decoupled into two independent max-min fair rate assignment problems in

transport and mac layers. In particular, we show that end-to-end global (flow-based

and hierarchical) weighted max-min fairness is achieved if and only if transport-

layer weighted max-min and weighted mac-layer max-min fair rate assignments are

ensured. In addition to that, it is found that end-to-end global weighted hierar-

chical max-min fair rate assignment can also be achieved if and only if end-to-end

flow-based global weighted max-min fairness is ensured.

Thus, assuming an appropriate transport layer protocol (weighted max-min

fair transport protocol), a weighted max-min fair mac layer protocol is required to

achieve the global fairness objective. Therefore, a mac-layer algorithm is proposed

such that with appropriate choice of parameters it achieves not only weighted α-

proportional fairness in the mac-layer but also weighted mac-layer max-min fairness

as α increases.



Appendix A

Micro-Buffered Networks

A.1 Equilibrium Discussion For Slotted Aloha

We let the system run for a sufficiently long amount of time (M slots) after the

system reaches to equilibrium (if this is the case).So for any flow i, if the system

reaches to equilibrium at a point P ∗
i , then after M slots it should still be at that

point, in other words

P ∗
i × q

MP i
I

1 × q
−MP i

C

2 ≈ P ∗
i (A.1)

where P i
I = e−G∗

i and P i
C = 1−e−G∗

i −G∗
i e

−G∗

i are the idle and collision probabilities

at equilibrium and G∗
i is the equilibrium load at channel seen by the ith flow.

If q1 = q2 = q (as assumed in the related section) then the equilibrium is the

solution of P i
I = P i

C which is G∗
i = 1.14

In a single hop contention channel model where Pi = P and Gi = G for all

i, the overall system is optimized when we set G∗ = 1 since the total throughput

G∗e−G∗

is maximized. Then equation (A.1) becomes

ln(q1)

ln(q2)
= (e − 2) (A.2)

Thus, optimization of the system gives us a freedom to choose the collision and

idle coefficients with respect to a simple equation above. In this case, we assume
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that when there is a successful transmission in a slot, we do not change the rate,

however in [20], a more general equation among all three coefficients (collision,

idle, success) optimizing the system is found.

When we consider a micro-buffered network where the flows perform slotted

aloha with exponential backoff with q1 = q2 = q or any q1, q2 satisfying equation

(A.2), according to the analysis above, each flow will try to set the aggregate offered

load on the channel it sees, Gi =
∑

k∈X(i)
⋃

i Pk) to (G∗
i = 1.14 or 1 depending on

the system parameters.

A.2 The convexity of the Negative Utility Func-

tion for Max-Min Fair Case

−Ui(P ) = −U(Ii) = (−log(Pi

∏

j∈X(i)

(1 − Pj)))
α (A.3)

where P is the vector of transmission probabilities.

Lets define the following functions

g(P ) = −log(Pi

∏

j∈X(i)

(1 − Pj)) (A.4)

h(x) = xα; f(P ) = −Ui(P ) = h(g(P )) (A.5)

We are given that 0v ≤ P ≤ 1v where 0v and 1v are vectors of 0s and 1s. We can

easily find the bound on g(P ) which is a convex function such that 0 ≤ g(P ) ≤ ∞.

Furthermore, we know that h(x) is both convex and non-decreasing for x ∈ [0,∞]

First using the convexity of g and assuming a variable 0 ≤ θ ≤ 1

0 ≤ g(θPx + (1 − θ)Py) ≤ θg(Px) + (1 − θ)g(Py) ≤ ∞. (A.6)

Using the fact that h is non-decreasing on [0,∞]
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0 ≤ h(g(θPx + (1 − θ)Py)) ≤ h(θg(Px) + (1 − θ)g(Py)) ≤ ∞. (A.7)

Since h is convex on [0,∞],

0 ≤ h(θg(Px) + (1 − θ)g(Py)) ≤ θh(g(Px)) + (1 − θ)h(g(Py)) ≤ ∞. (A.8)

Combining last two equations

0 ≤ h(g(θPx + (1 − θ)Py)) ≤ θh(g(Px)) + (1 − θ)h(g(Py)) ≤ ∞ (A.9)

0 ≤ f(θPx + (1 − θ)Py) ≤ θf(Px) + (1 − θ)f(Py) ≤ ∞ (A.10)

which completes the proof.

A.3 Equivalence of the Problems

The idea here is the same as in [5], where you can find the same arguments

for max-min fair rate assignment for multi-hop adhoc aloha networks. Since the

capacity model for both networks are very similar, we have also added this approach

in our study.

The problem described in equation (2.7) can also be written as follows.

Maximize X (A.11)

s.t. ln(X) < ln(Pi) + ln(
∏

j∈X(i)

(1 − Pj)) ∀i (A.12)

Let n = lnX, then the problem turns out to be

Maximize n (A.13)

s.t. n < ln(Pi) +
∑

j∈X(i)

ln((1 − Pj)) ∀i. (A.14)
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Since n < 0, the objective function of the above problem can be translated to

1/2n2|F | where |F | is the cardinality of set of flows F.

Thus, it can easily be seen that the above problem with the minimizing objec-

tive is equivalent to the equation (2.10).

A.4 Convergence of Weighted Alpha-Prop Fair-

ness to Weighted Max-min Fairness:

Proof: The utility function for each flow i is Ui(Ii) = − 1
gi

(−ln(giIi))
α for all 0 <

giIi < 1, and α ≥ 1 is an increasing function of Ii. The problem formulation for

weighted Alpha-Proportional Fairness maximizes the sum of the individual utility

functions.

Assume an arbitrary rate assignment to any two flows f1 and f2 with weights

g1 and g2 respectively such that 0 < g1If1 < g2If2 < 1. Thus the ratio of the

partial derivatives of each utility function with respect to the corresponding link

rate goes to infinity as α goes to infinity, i.e.
U ′f1(If1

)

U ′f2(If2
) =

g2If2

g1If1

(
ln(g1If1

)

ln(g2If2
))

α−1 → ∞ as α → ∞

For sufficiently large α, any increase in If1 and decrease in If2 will increase the

overall utility function. Thus the optimum value of this non-linear programming

problem satisfies the condition g1If1 = g2If2 for any two flows, f1 and f2. Also

since the utility function is an increasing function of each link rate, the optimum

value should be a maximal rate vector. These two conditions are necessary and

sufficient conditions for a weighted max-min fair rate allocation as described in the

max-min fair section.



Appendix B

Multi-Hop Wireless Access

Networks

B.1 The convexity of the Normalized Negative

Utility Function

Proof. Note that

f(Xi,j(~Z)) = (−ln(gi,jXi,j(~Z)))α (B.1)

where

Xi,j(~Z) = B
eZi,jGi,j∑

m,n 6=i,j eZm,nGm,j + γ
. (B.2)

Let’s define the following functions:

g(~Z) = −ln(gi,jXi,j(~Z)) (B.3)

h(x) = xα; = f(~Z) = h(g(~Z)). (B.4)

Given that 0 ≤ gi,jXi,j ≤ 1 ∀(i, j), it can be easily be seen that 0 ≤ g(P ) ≤ ∞.

Furthermore, we know that g(P ) is a convex function and h(x) is both convex and

non-decreasing for x ∈ [0,∞].
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Assume that Zi,j and Zk,l are in domain f and 0 ≤ θ ≤ 1.

From the convexity of the function g, we have

0 ≤ g(θZi,j+(1 − θ)Zk,l) ≤

θg(Zi,j) + (1 − θ)g(Zk,l) ≤ ∞. (B.5)

Using the fact that h is non-decreasing on [0,∞], we have

0 ≤ h(g(θZi,j+(1 − θ)Zk,l)) ≤

h(θg(Zi,j) + (1 − θ)g(Zk,l)) ≤ ∞. (B.6)

From convexity of h on [0,∞], we have

0 ≤ h(θg(Zi,j)+(1 − θ)g(Zk,l)) ≤

θh(g(Zi,j)) + (1 − θ)h(g(Zk,l)) ≤ ∞. (B.7)

Combining last two equations

0 ≤ h(g(θZi,j+(1 − θ)Zk,l)) ≤

θh(g(Zi,j)) + (1 − θ)h(g(Zk,l)) ≤ ∞ (B.8)

0 ≤ f(θZi,j+(1 − θ)Zk,l) ≤

θf(Zi,j) + (1 − θ)f(Zk,l) ≤ ∞ (B.9)

which completes the proof.

B.2 Equivalence of the Problems

The problem described in equation (3.13) can also be written as follows:

Maximize E (B.10)

s.t. ln(E) < ln(gi,jXi,j) ∀(i, j) ∈ L. (B.11)
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Letting n = ln(E), the problem is equivalent to

Maximize n (B.12)

s.t. n < ln(gi,jXi,j) ∀(i, j) ∈ L. (B.13)

Assuming 0 < gi,jXi,j < 1 ∀i, j, n < 0,

the problem becomes

Minimize
1

2
n2 (B.14)

s.t. n < ln(gi,jXi,j) ∀(i, j) ∈ L. (B.15)

It can easily be seen that the above problem with the minimizing objective is

equivalent to the equation (3.16).
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