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Abstract

Salmonella is a principal health concern because of its endemic prevalence in food and water supplies, the rise in incidence
of multi-drug resistant strains, and the emergence of new strains associated with increased disease severity. Insights into
pathogen emergence have come from animal-passage studies wherein virulence is often increased during infection.
However, these studies did not address the prospect that a select subset of strains undergo a pronounced increase in
virulence during the infective process- a prospect that has significant implications for human and animal health. Our
findings indicate that the capacity to become hypervirulent (100-fold decreased LD50) was much more evident in certain S.
enterica strains than others. Hyperinfectious salmonellae were among the most virulent of this species; restricted to certain
serotypes; and more capable of killing vaccinated animals. Such strains exhibited rapid (and rapidly reversible) switching to
a less-virulent state accompanied by more competitive growth ex vivo that may contribute to maintenance in nature. The
hypervirulent phenotype was associated with increased microbial pathogenicity (colonization; cytotoxin production;
cytocidal activity), coupled with an altered innate immune cytokine response within infected cells (IFN-b; IL-1b; IL-6; IL-10).
Gene expression analysis revealed that hyperinfectious strains display altered transcription of genes within the PhoP/PhoQ,
PhoR/PhoB and ArgR regulons, conferring changes in the expression of classical virulence functions (e.g., SPI-1; SPI-2
effectors) and those involved in cellular physiology/metabolism (nutrient/acid stress). As hyperinfectious strains pose a
potential risk to human and animal health, efforts toward mitigation of these potential food-borne contaminants may avert
negative public health impacts and industry-associated losses.
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Introduction

Salmonella enterica is a significant food-borne pathogen of humans

causing up to an estimated 1.3 billion cases of disease worldwide,

annually [1,2]. S. enterica is acquired via the fecal-oral route and is

comprised of six subspecies that are subdivided into more than

2500 serovars (serological variants) based on carbohydrate,

lipopolysaccharide (LPS), and flagellar composition [2]. S. enterica

infection can result in any of four distinct syndromes: enteroco-

litis/diarrhea, bacteremia, enteric (typhoid) fever, and chronic

asymptomatic carriage [2–4]. Many serovars infect both humans

and animals wherein the particular syndrome and disease severity

is a function of the serovar and host susceptibility [5,6].

Such host-susceptibility differences present a formidable chal-

lenge to the design of salmonellae control strategies for a number

of reasons: 1) Most infections of livestock are subclinical as

evidenced by the disparity between the frequency and diversity of

isolates from surveillance and clinical submissions [7–9]; 2) Some

isolates are capable of asymptomatic colonization and/or

persistence in a particular animal species while causing acute

disease in another animal species (e.g., different types or classes of

stock) [2–4]; 3) Although a diversity of serotypes are frequently

isolated from intensive livestock production systems, disease

outbreaks are often intermittent and associated with specific

serotypes [8–10]; 4) The capacity of salmonellae to survive and

proliferate in the environment provides a large dynamic reservoir

for infection of livestock and a vehicle for cross-contamination

from animal to human food products [11–14]. These factors are of

particular relevance to the global trend toward intensive livestock

production that favors fecal-oral pathogen transmission, and the

resultant increased risk of animal disease and contamination of

livestock-derived food products [8–10,15].

The diversity of salmonellae present on farms and feedlots, and

the potential for different serovars to possess an array of virulence

attributes, necessitates the use of broad prophylactic strategies that

are efficacious for many serovars simultaneously. An effective

approach for a number of years has been the therapeutic and

prophylactic administration of antibiotics to livestock, but this

option has become limited due to the emergence of multi-drug

resistant pathogenic strains that also present a bona fide risk to
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human health [1,9,16]. Vaccination is one of the best forms of

prophylaxis against the development of disease caused by

infectious agents. Although vaccination is generally highly specific

in the protection conferred in immunized hosts (protection is

limited to a specific strain or closely-related set of strains), recent

advancements have resulted in the development of vaccines that

elicit cross-protective immunity to multiple strains of the same

species [17–21]. However, currently available vaccines may elicit

limited protection against new pathogens that may express traits

that confer enhanced virulence or compromised host immunity.

The continuing emergence of new virulent strains associated

with an increased incidence and/or severity of disease has yet to be

explained. Insights have been derived from prior animal-passage

studies wherein virulence traits often are increased (reversibly)

following animal passage (e.g., accelerated colonization; hastened

morbidity/mortality; reviewed in [22–24]). For example, host

passage of Vibrio cholerae [25] and Citrobacter rodentium [26] results in

the transition to a hypervirulent state that is maintained for a

limited time after fecal shedding and may contribute to epidemic

spread of the organism [27]. Further, epidemiological evidence

indicates that animals can be infected by natural transmission (via

direct contact with infected animals) with a significantly lower

infectious dose than with organisms obtained from laboratory

culture (e.g., E. coli O157:H7 and S. Choleraesuis) [28–30].

However, many animal passage studies were performed on a

limited number of strains; often only a modest increase in

virulence was observed; multiple rounds of animal passage were

required; and did not address the prospect that animal passage

may lead to markedly increased virulence in some strains and hosts

but not others [25,26,31–39].

In this study, a collection of Salmonella clinical isolates was

screened for those that, following infection, exhibited a pro-

nounced increase in virulence relative to other passaged isolates.

Some salmonellae strains exhibited the hypervirulent phenotype

after in vivo passage, whereas others did not, indicating

intraspecies variation in the capacity for their development. The

resultant hyperinfectious strains were among the most virulent

salmonellae reported and were subsequently shown to be more

capable of infecting vaccinated animals.

Materials and Methods

Strains and media
Salmonella human clinical isolates were obtained from fecal and

blood samples derived from patients with gastroenteritis or

bacteremia, respectively; animal isolates were derived from

different outbreaks, individual cases, or surveillance submissions

to diagnostic laboratories [20]. Virulent S. Typhimurium reference

strain ATCC 14028 (CDC 6516-60) was used in all studies for

comparison. Unless otherwise specified, bacteria were derived

from stationary phase cultures aerated at 37uC containing either

Luria-Bertani (LB) medium [40] or low phosphate, low magne-

sium, pH 5.5 medium supplemented with 0.3% glycerol and 0.1%

casamino acids (LPM pH 5.5) [41,42].

Ethics statement
All animal experimentation was conducted following the

National Institutes of Health guidelines for housing and care of

laboratory animals and performed in accordance with Institutional

regulations after pertinent review and approval by the Institutional

Animal Care and Use Committee at the University of California,

Santa Barbara.

Virulence assays
Oral and Intraperitoneal Lethal Dose50 (LD50): The dose required to

kill 50% of infected animals was determined via the oral (via

gastrointubation) and intraperitoneal (i.p.) routes by infecting at

least 10 mice [43]. Salmonella test strains and wild-type S.

Typhimurium reference strain 14028 were grown overnight in

LB or LPM pH 5.5 medium. Bacterial cells resuspended in

0.2 ml of 0.2M Na2HPO4 pH 8.1 or 0.1 ml of 0.15M NaCl (for

oral and i.p. administration, respectively) were used to infect

mice, which were examined daily for morbidity and mortality up

to 3 weeks post-infection. The oral and i.p. LD50 for wild-type S.

Typhimurium reference strain 14028 is 105 and ,10 organisms,

respectively [43]. Competitive Index (CI): The CI value is the

relative in vivo recovery ratio of test strain/reference strain

obtained from target tissues after equivalent doses are co-

administered by i.p. infection [44]. Salmonella test strains were

grown overnight in either LB or LPM pH 5.5 medium; S.

Typhimurium reference strain MT2057 (a virulent derivative of

strain 14028) was grown in LB [43,44]. Bacterial cells were

resuspended in 0.15M NaCl and an equivalent dose (500

bacterial cells) of a test strain and S. Typhimurium reference

strain MT2057 was co-administered i.p. to at least 5 mice. Five

days post-infection, the bacterial cells were recovered from the

spleen of acutely infected animals. The CI value is the ratio of test

strain/reference strain recovered from the spleen divided by the

ratio of the input inoculum; bacterial cell number was

enumerated by direct colony count. S. Typhimurium reference

strain MT2057 (used in the CI studies) is a virulent derivative of

strain 14028, containing a Lac+ MudJ transcriptional fusion

which is used to discern it from other Salmonella that are

inherently Lac2. Note that the oral and i.p. LD50 (105 and ,10

organisms, respectively), as well as the i.p. competitive index, of

strain MT2057 are indistinguishable from that of the parental

wild-type strain, 14028 [43,44]. Six- to- eight week old BALB/c

mice were used in all virulence studies.

Author Summary

Salmonellosis continues to compromise human health,
animal welfare, and modern agriculture. Developing a
comprehensive control plan requires an understanding of
how pathogens emerge and express traits that confer
increased incidence and severity of disease. It is well-
established that animal passage often results in increased
virulence; however, our findings indicate that the capacity
to undergo a pronounced increase in virulence after
passage was much more prevalent in certain Salmonella
isolates than in others. The resultant hyperinfectious
strains are among the most virulent salmonellae reported;
were restricted to certain serotypes; and were able to
override the immunity conferred in vaccinated animals.
The induction of hypervirulence was responsive to subtle
changes in environmental conditions and, potentially, may
occur in other salmonellae serotypes after passage
through certain hosts and/or exposure to certain environ-
mental variables; a response that may be common across
the microbial realm. Thus, management practices and
environmental conditions inherent to livestock production
have the potential to inadvertently trigger hypervirulence
(e.g., diet; herd size; exposure to livestock waste and/or
antimicrobials). From a farm management perspective,
careful consideration must be given to risk-management
strategies that reduce emergence/persistence of these
potential food-borne contaminants to safeguard public
health and reduce industry-associated losses.

Emerging Hyperinfectious Strains

PLoS Pathogens | www.plospathogens.org 2 April 2012 | Volume 8 | Issue 4 | e1002647



Screen for hyperinfectious strains
A collection of 184 Salmonella human and animal clinical isolates

[20] cultured in rich medium was screened for those that were

initially attenuated for virulence via the i.p. route of infection (103-

fold decreased i.p. CI; 10- fold increased i.p. LD50); that harbored

the virulence plasmid necessary for systemic disease [45,46]; and

that were competent for virulence via the oral route of infection

(oral LD50 of 105 cells). The 14 isolates that answered this screen

were subjected to oral animal passage whereby bacteria (109 cells)

derived from stationary phase cultures containing LB medium

were used to perorally infect mice. Five to seven days post-

infection, spleens were aseptically removed from acutely infected

mice, homogenized in 1 ml of 0.2M Na2HPO4 pH 8.1 (108 to

109 CFU/g of spleen), and used, without ex vivo growth, to infect

naı̈ve animals at doses equivalent to, and 10- to 100- fold lower

than, the oral LD50 of the same strain grown in LB medium (105

cells). Such animal passage resulted in the development of

hyperinfectious strains for all (14/14) isolates tested, as confirmed

by a 10- to 100- fold reduced oral and i.p. LD50 and a 103- to 104-

fold increased i.p. CI relative to the values attained after growth in

LB medium. Mice were examined daily following infection for

morbidity and mortality up to 3 weeks post-infection.

Cell culture
The murine macrophage cell line RAW 264.7 (ATCC TIB-71)

was obtained from the American Type Culture Collection,

Rockville, MD., and maintained in minimum essential medium

(MEM) supplemented with L-glutamine and 10% heat-inactivated

bovine growth-supplemented calf serum (HyClone Laboratories,

Logan, UT). Cells were grown in a humidified atmosphere of 5%

carbon dioxide and 95% air at 37uC in 75-cm2 plastic flasks

(Corning Glass Works, Corning, NY). Cultured murine macro-

phages (RAW 264.7) were harvested by scraping with a rubber

policeman and plated at a density of 2.56105 to 56105 cells/ml in

4 ml of culture medium in 35 mm-diameter, six-well dishes

(Corning) and grown for 24 h to approximately 80 to 90%

confluence (16106 to 56106 cells/well) (adapted from [47]).

Bacterial infection of cultured murine macrophages
Bacterial cells were used to infect cultured murine macrophage

(RAW 264.7) monolayers grown in cell culture plates (Corning) at

a multiplicity of infection (MOI) of 10:1 or 100:1. The bacteria

were centrifuged onto cultured monolayers at 1,0006g for 10 min

at room temperature, after which they were incubated for 30 min

at 37uC in a 5% CO2 incubator (t = 0 time point). The coculture

was washed once with cell culture medium and incubated for

45 min in the presence of gentamicin (100 mg/ml) to kill

extracellular bacteria, washed once with pre-warmed cell culture

medium, and incubated with gentamicin (10 mg/ml) to the time

points indicated (adapted from [48]).

Bacterial cytocidal activity assay
Macrophage (RAW264.7) cell viability following Salmonella

infection was quantified via a crystal violet dye retention assay in

96 well-plates adapted from references [49,50]. Bacteria derived

from stationary phase cultures containing either LB or LPM

pH 5.5 medium were used to infect cultured macrophage

monolayers (56104 to 16105 cells/well) at an MOI of 10:1 or

100:1 as described above. At 20 h post-infection, the monolayer

cultures were rinsed twice with PBS, and the adherent cells were

fixed and stained for 10 min with 0.2% crystal violet in 20%

methanol. Monolayers were washed three times with phosphate

buffered saline (PBS) to remove excess crystal violet. Dye retained

by the cells was released using a 50% ethanol/0.1% acetic acid

mixture, diluted 1:2 in PBS, and quantified by absorbance at

577 nm. High cytocidal activity is associated with low dye

retention and vice versa. Data given are representative absorbance

values derived from each condition performed in triplicate.

Standard error of triplicate means is ,20%.

Quantitation of macrophage cytokines post-infection via
qPCR analysis

Bacteria grown overnight in LB or in LPM pH 5.5 medium

were used to infect cultured macrophage (RAW264.7) monolayers

at an MOI of 10:1 in 6-well culture plates as described above.

Total RNA was prepared using the RNeasy Mini kit (Qiagen) as

specified by the manufacturer’s protocol. RNA concentrations

were determined spectrophotometrically. Reverse transcription

was carried out using 2 mg of total RNA with the Superscript

cDNA Synthesis Kit (Invitrogen) as per the manufacturer’s

protocol. qPCR was performed using iQ SYBR Green Supermix

(BioRAD) and an iQ5 real time PCR thermocycler (BioRAD). For

amplification of mouse genes, the primer pairs were those

described in the following studies: IFN-b [51]; IL-1b, IL-6 and

IL-10 [52]; iNOS and GAPDH [53]. Quantification of the qPCR

product was carried out using the iQ5 optical system software

(BioRAD). All target gene transcripts were normalized to that of

the GAPDH gene. The expression ratio value is the level of

transcripts obtained from infected relative to uninfected cells.

Transcriptome analysis
Bacterial RNA/cDNA preparation. Bacterial strains were

grown overnight with aeration at 37uC in LB broth, pelleted and

washed in 0.15M NaCl, and split without dilution into two

cultures containing either LB or LPM pH 5.5 medium. The

cultures were incubated with aeration at 37uC for 4 h after which

approximately 2.561010 cells were pelleted via centrifugation,

snap-frozen in an ethanol-dry ice bath, and stored at 280uC.

Bacterial cell pellets were lysed using Max Bacterial Enhancement

Reagent (Invitrogen) at 95uC for 5 min. Total bacterial RNA

($10 mg) was isolated using TRIzol Max Bacterial Isolation Kit

(Invitrogen), and purified with an RNAeasy MinElute kit with on-

column DNase digestion (Qiagen) (A260/280 ratio of $2.0 and an

A260/230 ratio of $1.5). Reverse transcription of total RNA was

carried out using Superscriptase II and random hexamers

(Invitrogen). After NaOH treatment to eliminate the RNA

template, single-stranded cDNA was purified with QIAquick

PCR MinElute purification kit (Qiagen).

Array design and hybridization. cDNA (1 mg) was sheared

for 10 min with 0.6 U of DNase I at 37uC (Promega, WI); and

labeled with a custom GeneChip DNA designed by B. C. Weimer

(UC Davis) in conjunction with Affymetrix Inc. (Santa Clara, CA).

Genomic DNA (50 ng) was labeled according to the Escherichia coli

protocol and hybridized onto custom Affymetrix DNA chips

containing probe sets designed for all the annotated coding

sequences (CDSs) and intergenic spaces of S. Typhimurium LT2

genome, resulting in 4,510 probe sets composed of 11 unique 25-

mer probe sequences per CDS. The chips were hybridized and

scanned at the Center for Integrated BioSystems (Utah State

University, Logan, UT), according to the manufacturer’s protocols

for E. coli. Hybridizations for each strain were performed in two

biological replicates.

Data normalization, visualization, and analysis. Gene

expression analysis was performed to identify bacterial gene

transcripts that were significantly altered in hyperinfectious strains

under LB versus LPM pH 5.5 conditions, and not altered, or

altered to the same extent, in a conventionally virulent strain. Raw

Emerging Hyperinfectious Strains
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probe-level intensities (.cel files) from all chips were background

corrected using the robust multichip average (RMA) method,

normalized using loess, and summarized using the Bioconductor

Affy package. The raw log2 gene-level Affymetrix expression

values were transformed to produce log2 LPM/LB ratio values for

conventionally virulent S. Typhimurium (ST), and hypervirulent S.

Bovismorbificans (SB) and S. Choleraesuis (SC) strains.

Subsequently, log2 LPM/LB ratio data were loaded into the

CLC Genomics Workbench and further normalized (CLC bio,

Cambridge, MA); and the log2 LPM/LB ratio statistical

differences between conventionally and hypervirulent strains

were evaluated using the CLC Expression analysis module with

SB and SC grouped together. Two criteria were used as a cutoff to

identify the genes that were significantly altered in hyperinfectious

strains under LB versus LPM pH.5.5 conditions, and not altered,

or altered to the same extent, in a conventionally virulent strain;

i.e., at least a 2-fold expression change in SB, SC or ST; and a 0.05

false discovery rate (FDR) when comparing log2 LPM/LB ratios

values for SB and SC versus ST. Heat maps were generated from

the resultant list of genes using The Institute for Genomic

Research MultiExperiment Viewer (MeV), version 4.7 [54].

Unsupervised data analysis was performed in MeV using

hierarchical clustering (HCL) [55] modules. All expression

experiments were done in two biological replications.

Statistical analyses
Mouse disease susceptibility. The disease susceptibility in

vaccinated mice infected with hyperinfectious and conventionally

virulent salmonellae was determined by comparing the proportion

of mice surviving virulent challenge using Chi-square (Epicalc

2000 version 1.02, 1998 Brixton Books).

Bacterial cytocidal activity. Cytocidal activity of

hyperinfectious and conventionally virulent salmonellae upon

infection of cultured macrophages was subjected to analysis of

variance in GenStat (13th edition, VSN International Ltd, Hemel

Hempstead, UK) using a model that had serotype, media, and

dose as the main effects. The change in cytocidal activity of

hyperinfectious strains (S. Choleraesuis x3246 and S.

Bovismorbificans 158) was individually contrasted to the change

in cytocidal activity of reference S. Typhimurium strain 14028 at

each dose level according to the following ‘a priori’ contrast:

cytocidal activity of the hyperinfectious serovar grown in LB

medium minus the cytocidal activity grown in LPM medium

versus the cytocidal activity of S. Typhimurium 14028 grown in

LB medium minus the cytocidal activity of S. Typhimurium 14028

grown in LPM.

Innate immune cytokine response. Differences in gene

expression displayed by infected relative to uninfected murine

macrophage values were analyzed using residual (or restricted)

maximum likelihood (REML) analysis (Genstat, 13th Edition, VSN

International Ltd, Hemel Hempstead, UK). A single variate,

repeated measures model was fitted for the factors media,

organism and time. The Wald chi-square test was used to

determine significant individual effects and interactions between

factors. Differences between the individual means were

determined by calculating an approximate least significant

difference (LSD), using predicted model-based means. Predicted

means are those obtained from the fitted model rather than the

raw sample means, as predicted means represent means adjusted

to a common set of variables, thus allowing valid comparison

between means. A difference of means that exceeded the

calculated LSD was considered significant. For all statistical

analyses, a significance level (P) of less than 0.05 was considered to

be statistically significant.

Gene expression analysis. A description of the

transcriptome statistical analysis is provided in the previous

Materials and Methods section under data normalization,

visualization, and analysis.

Results

Screen for Salmonella strains that exhibit a pronounced
increase in virulence following infection relative to other
animal-passaged isolates

A collection of 184 Salmonella clinical isolates was obtained from

fecal and blood samples derived from human patients with

gastroenteritis or bacteremia; and from animal isolates derived from

different outbreaks, individual cases, or surveillance submissions to

diagnostic laboratories [20]. These isolates were cultured in rich (LB)

medium and screened for those that i) were attenuated for virulence

via the i.p. route of infection (103-fold decreased i.p. CI; 10-fold

increased i.p. LD50); ii) harbored the virulence plasmid necessary for

systemic disease [45,46]; and iii) were competent for virulence via the

oral route of infection (oral LD50 of 105 cells). The fourteen isolates

that answered this screen were grown overnight in LB medium and

used to perorally infect mice. Five to seven days post-infection,

bacteria derived from spleens harvested from the resultant acutely

infected animals were used, without ex vivo growth, to orally infect

naı̈ve animals at doses equivalent to, and 10- to 100-fold lower than,

the oral LD50 of the same strain grown in LB medium (105 cells). The

prior in vivo passage resulted in the development of hyperinfectious

strains for all (14/14) isolates tested, as evidenced by a 10- to 100- fold

reduced oral and i.p. LD50 and a 103- to 104- fold increased i.p. CI

relative to the values attained after growth in LB medium (Table 1).

These isolates comprise some of the most virulent salmonellae strains

reported (i.e., oral LD50 of 103 organisms). In contrast, although in

vivo passage of other clinical isolates exhibited increased virulence

traits after murine passage (increased colonization; decreased time to

morbidity/mortality)- a phenomenon shown previously [39] and

recapitulated here, none (0/7) exhibited a marked change in LD50 or

CI value relative to that attained after in vitro growth. This was also

the case for conventionally virulent Salmonella reference strain 14028.

Taken together, these data indicate that the 14 hyperinfectious

Salmonella strains are considerably more virulent than other animal-

passaged clinical isolates (100-fold decreased LD50); and the display of

increased virulence traits by bacterial strains after murine passage

does not necessarily equate to hypervirulence.

Intraspecies variation in the development of
hyperinfectious salmonellae strains

Most cases of human and livestock salmonellosis are caused by

one Salmonella subspecies, termed S. enterica subsp. enterica [9,56–59].

Here we examined whether there was variation within subsp. enterica

serovars in the capacity for the development of hyperinfectious

strains following murine passage. Our data show that the

hypervirulent phenotype was much more evident in some subsp.

enterica serovars (S. Bovismorbificans [11/11]; S. Choleraesuis [3/3])

(serogroups C2-C3 and C1, respectively), than others (S. Typhi-

murium [0/52]; S. Dublin [0/8]; S. Enteritidis [0/7]) (serogroups B,

D, and D, respectively) (P,0.01). These data suggest that, following

murine infection, Salmonella serovars exhibit intraspecies variation in

the development of hyperinfectious strains.

Hyperinfectious salmonellae exhibit distinct colonization
kinetics relative to that of other animal passaged isolates

To determine the spatio-temporal nature of the development of

hyperinfectious strains, the kinetics of host tissue colonization was

Emerging Hyperinfectious Strains
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followed throughout the infective process. Upon oral infection,

hyperinfectious S. Choleraesuis x3246 grown in LB medium

exhibited a pronounced lag in colonization of mucosal tissues and

visceral organs and did not attain the high bacterial load exhibited

by the same strain after murine passage (open versus closed boxes;

Figure 1). In contrast, conventionally virulent Salmonella reference

strain 14028 grown in LB medium did not display the pronounced

lag in colonization exhibited by S. Choleraesuis x3246 (open

circles versus open boxes). Further, although murine-passaged S.

Typhimurium 14028 exhibited increased colonization (open

versus closed circles) as has been observed with Salmonella and

other enteric pathogens [25,26,39,60], its passage did not result in

the high bacterial load exhibited by murine-passaged S. Choler-

aesuis x3246 at late stages of infection (closed symbols), nor was it

associated with the pronounced decrease in LD50 associated with

hyperinfectious strains after passage (Table 1). These data indicate

that hyperinfectious strains undergo a switch from a less-virulent to

hypervirulent state following a pronounced lag during the infective

process, and the resultant hyperinfectious strains are much more

virulent than other animal-passaged clinical isolates.

Hyperinfectious salmonellae can be isolated under
defined conditions in vitro, and adopt distinct virulence
states depending on prior growth conditions

Next, we questioned whether strains that exhibited the

hypervirulent phenotype in vivo also had the capacity to enter

the hypervirulent state under defined conditions in vitro. Efforts

were initially focused on conditions reported to reflect that of the

macrophage phagosome, a principal organelle in which salmonel-

lae reside during infection [61,62]; such conditions are character-

ized by low phosphate, low magnesium and mildly acidic medium

(LPM pH 5.5) [41,42]. Growth of S. Choleraesuis x3246 and S.

Bovismorbificans 158 in LPM pH 5.5 medium resulted in the

recovery of hyperinfectious strains similar to those obtained after

murine passage, as evidenced by a 100- fold reduced oral LD50

and a 104- fold increased i.p. CI value relative to that obtained

after growth in LB medium (Table 2). Further, the degree of

virulence exhibited by the hyperinfectious strains was exquisitely

sensitive to prior growth conditions resulting in low-, medium-,

and high- virulence states as evidenced by the varied i.p. CI values

exhibited in the four media tested (LB; LPM pH 5.5; LPM

pH 7.0; minimal medium pH 5.5). In contrast, growth of

conventionally virulent S. Typhimurium reference strain 14028

in LPM pH 5.5 conditions did not result in a pronounced increase

in virulence relative to LB medium, nor was the degree of

virulence markedly dependent on prior growth conditions as

evidenced by similar i.p. CI values in the four media tested. These

data indicate that the hypervirulent phenotype can be fully

recapitulated in vitro, and hyperinfectious strains are capable of

adopting widely disparate virulence states depending on growth

conditions. Such variability was not observed with conventionally

virulent S. Typhimurium 14028.

Table 1. Comparison of virulence states between hyperinfectious salmonellae and other clinical isolates following laboratory
culture and animal passage.

In vitro passageb In vivo passageb

Straina Serovar Oral LD50
c i.p. LD50

c
Competitive
indexd Oral LD50 i.p. LD50

Competitive
index

Hyperinfectious strains

x3246 S. Choleraesuis 105 102 3.061024 103 ,101 6.2

3 S. Choleraesuis 105 102 ,3.061024 104 ,101 0.6

(03)-6339 S. Choleraesuis 105 102 ,3.061024 103 ,101 2.4

58 S. Bovismorbificans 105 102 ,3.061024 104 ,101 3.0

158 S. Bovismorbificans 105 102 ,3.061024 103 ,101 1.5

208 S. Bovismorbificans 105 102 ,3.061024 103 ,101 1.8

Other clinical isolates

Lane S. Dublin 105 ,101 0.6 105 ,101 0.4

4973 S. Enteritidis 105 ,101 1.3 105 ,101 9.0

F98 S. Typhimurium 105 ,101 0.5 105 ,101 0.8

UK-1 S. Typhimurium 105 ,101 2.4 105 ,101 0.7

14028 S. Typhimurium ref. strain 105 ,101 0.8 105 ,101 4.6

aAll (184) Salmonella human and animal isolates tested were recovered from different outbreaks or individual cases submitted to diagnostic laboratories, or from
surveillance submissions of on-farm healthy animals [20]. Eighty-one of these strains harbored the virulence plasmid necessary for systemic disease [46] but exhibited an
i.p. virulence defect in a mouse model of typhoid fever; of these isolates, 14 were virulent by the oral route of infection. Conventionally virulent S. Typhimurium
reference strain 14028 was used in all studies for comparison.
bIn vitro/in vivo passage. In vitro passage. Bacteria derived from overnight stationary phase cultures containing LB medium were used to infect BALB/c mice via the oral
or i.p. route of infection as described in Materials and Methods. In vivo passage. Bacteria (109 cells) derived from stationary phase cultures containing LB medium were
used to orally infect mice. Five to seven days post-infection, bacteria derived from spleens harvested from acutely infected animals (108 to 109 CFU/g of spleen
determined by direct colony count) were used, without ex vivo growth, to infect naı̈ve mice via the oral or i.p. route of infection as described in Materials and Methods.
cLD50 virulence assay. The dose required to kill 50% of infected animals (LD50) was determined via the oral (via gastrointubation) and i.p. routes by infecting at least 10
mice as described in Materials and Methods.
dCompetitive Index (CI) virulence assay. An equivalent dose (500 bacterial cells) of a test strain and a Lac+ derivative of S. Typhimurium reference strain 14028 (MT2057)
was co-administered i.p. to at least 5 mice; the CI value is the ratio of test strain/reference wild-type strain recovered from target tissue (spleen) divided by the input
ratio [28] as described in Materials and Methods.
doi:10.1371/journal.ppat.1002647.t001
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The induction of hypervirulence is rapid and rapidly
reversible, and does not require vigorous bacterial cell
growth

Targeting of the actin cytoskeleton during infection by the

Salmonella SpvB cytotoxin promotes intracellular survival, host cell

cytotoxicity, and bacterial dissemination [63,64]. To understand

the mechanistic nature of switching between less-virulent and

hypervirulent states, the kinetics of hypervirulence and Salmonella

cytotoxin (SpvB) production were assessed upon transfer from

nonpermissive (LB medium) to permissive (LPM pH 5.5 medium)

conditions for the hypervirulent phenotype. Transfer of S.

Choleraesuis x3246 from LB to LPM pH 5.5 medium resulted

in a rapid transformation from the virulence-attenuated to the

hypervirulent phenotype, as evidenced by a 104-fold increase in

i.p. CI value 6- to 8- cell generations (cell doublings) post-transfer

(Figure 2). This was accompanied by a 50-fold increase in SpvB

production within 1- to 2- cell generations post-transfer (Figure 2;

inset A). SpvB production was also stimulated in S. Typhimurium

14028 upon transfer from LB to LPM pH 5.5 medium, as was

shown previously after bacterial entry into macrophages and

epithelial cells [65]. However, the resultant protein levels were 8-

fold less than that of S. Choleraesuis x3246 (Figure 2; inset B).

Further, since SpvB production in S. Choleraesuis x3246

occurred more rapidly than that observed for virulence upon

media shift, the full impact of cytotoxin levels on virulence is

either delayed and/or other virulence factors are necessary for

the hypervirulent phenotype. Upon subsequent transfer from

LPM pH 5.5 medium back to LB medium, the hypervirulent

phenotype and associated cytotoxin production was rapidly

reversible to a less-virulent state, as evidenced by a 500-fold

decrease in i.p. CI value and a 30-fold reduction in SpvB within

four generations, and a further return to levels exhibited by

parental cells after 20- to 40- cell generations. The rapid and

rapidly reversible nature of the hypervirulent phenotype suggests

that a non-mutational mechanism controls the switching between

less-virulent and hypervirulent states.

Table 2. Comparison of virulence states between hyperinfectious and conventionally virulent salmonellae following growth under
defined laboratory conditions.

Oral LD50 i.p. CI

Straina Serovar LB LPM pH 5.5 LB LPM pH 5.5 LPM pH 7.0 Minimal pH 5.5

x3246 S. Choleraesuis 105 103 3.061024 5.0 9.661024 5.261022

158 S. Bovismorbificans 105 103 ,3.061024 1.3 1.361021 8.661022

14028 S. Typhimurium ref. strain 105 105 0.8 2.5 0.8 3.6

aBALB/c mice were orally or i.p. infected with hyperinfectious S. Choleraesuis x3246, S. Bovismorbificans 158 or conventionally virulent S. Typhimurium reference strain
14028 derived from stationary phase cultures containing either LB; low phosphate low magnesium (LPM pH 5.5) [41,42]; or minimal E medium [40] supplemented with
0.2% glucose and 0.1% casamino acids, at the pH indicated. Oral LD50 and i.p. competitive index (CI) virulence assays were performed as in Table 1.
doi:10.1371/journal.ppat.1002647.t002

Figure 1. Comparison of host site colonization between hyperinfectious and conventionally virulent salmonellae following
laboratory culture and animal passage. BALB/c mice were infected orally (107 CFU) with hyperinfectious S. Choleraesuis x3246 (boxes) or
conventionally virulent S. Typhimurium reference strain 14028 (circles). These bacterial cells were derived from either stationary phase cultures
containing LB medium (open symbols); or after in vivo passage (closed symbols), whereby 5 to 7 days post- oral infection, spleens were aseptically
removed from acutely infected mice, and used, without ex vivo growth, to orally infect naı̈ve animals. PP, Peyer’s Patches; MLN, mesenteric lymph
nodes; CFU, colony forming units. The symbols below the zero CFU value represent the number of mice in which the bacterial load was below the
limits of detection: PP, MLN, spleen ,40 CFU; Liver ,20 CFU.
doi:10.1371/journal.ppat.1002647.g001
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We then examined whether induction of the hypervirulent

state can occur in the absence of rapid bacterial cell growth by

transferring, without dilution, stationary-phase bacterial cells

grown in LB into LPM pH 5.5 medium. It is anticipated that

such a media shift allows for little or no bacterial cell division

since overnight growth in LB medium results in a final cell

density that is 5-fold greater than that obtained in LPM pH 5.5

medium (56109 CFU/ml versus 16109 CFU/ml, respectively).

Transfer of hypervirulent strains S. Choleraesuis x3246 and S.

Bovismorbificans 158 from LB to LPM pH 5.5 medium, without

dilution, resulted in a rapid transformation from the less-virulent

to hypervirulent state as evidenced by a 500- to 1000- fold

increase in i.p. CI value within 4 h post-transfer (Table 3). No

measurable increase in CFU (56109/ml) or optical density

(OD600) was observed over the 10 h time course in permissive

medium (LPM pH 5.5), suggesting little or no bacterial growth is

required for the induction of hypervirulence. Conventionally

virulent Salmonella reference strain 14028 showed no marked

increase in virulence after media switch. Taken together, these

data indicate that the induction of hypervirulence is rapid and

rapidly reversible, and does not require vigorous bacterial cell

growth.

Figure 2. Comparison of the degree of virulence and cytotoxin production in hyperinfectious salmonellae following media shift to
permissive conditions for hypervirulence. The degree of virulence and Salmonella SpvB cytotoxin [63,64] production were assessed as a
function of growth under conditions that were permissive (LPM pH 5.5 medium) or non-permissive (LB medium) for the hypervirulent phenotype.
Insert A. Hyperinfectious S. Choleraesuis x3246 grown in LB medium was transferred to LPM pH 5.5 medium for 10 cell generations (cell doublings);
subsequently, such cells were transferred back into LB medium for 40 cell generations. Bacterial cells were obtained from, and maintained in,
exponential phase cultures diluted periodically such that the cell number was constant at each sampling point. Cell aliquots at the time points
indicated were assessed for virulence via i.p. competitive index (CI) virulence assays in two independent experiments (open and closed circles) and for
SpvB cytotoxin production (representative sample). SpvB cytotoxin was evaluated via whole cell protein extracts corresponding to ,76107

Salmonella cells subjected to SDS-PAGE, and transferred to PVDF membrane. Insert B. Conventionally virulent S. Typhimurium reference strain 14028
and hyperinfectious S. Choleraesuis x3246 grown in LB medium were transferred to LPM pH 5.5 medium for 6 cell generations; SpvB cytotoxin was
evaluated via whole cell protein extracts corresponding to ,26107 Salmonella cells subjected to SDS-PAGE, and transferred to PVDF membrane.
Membranes were probed with Salmonella rabbit anti-SpvB (Don Guiney, UCSD), and an infrared (IR) dye-conjugated donkey anti-rabbit
immunoglobulin G (IRDye 800CW, Li-Cor Biosciences) was used as secondary antibody. Signal was detected using an Odyssey IR imaging system (Li-
Cor Biosciences).
doi:10.1371/journal.ppat.1002647.g002

Table 3. Comparison of virulence states between
hyperinfectious and conventionally virulent salmonellae
following transfer from nonpermissive to permissive
conditions for the hypervirulent phenotype.

Virulence (i.p. CI)

Time post-transfer (h)

Straina Serovar 0 1 2 4 8 10

x3246 S. Choleraesuis 0.0003 0.002 0.008 0.148 0.568 0.570

158 S. Bovismorbificans ,0.0003 0.015 0.028 0.296 0.592 0.813

14028 S. Typhimurium ref.
strain

1.14 1.49 1.49 1.68 1.63 1.93

aHyperinfectious S. Choleraesuis x3246 and S. Bovismorbificans 158 as well as
conventionally virulent S. Typhimurium reference strain 14028 were grown
overnight in LB medium. The stationary-phase cells were transferred without
dilution, into permissive conditions for the hypervirulent phenotype (LPM
pH 5.5 medium). Virulence was assessed as a function of time (h) post-transfer
to LPM pH 5.5 medium via i.p. competitive index (CI) virulence assays as in
Table 1.
doi:10.1371/journal.ppat.1002647.t003
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Environmental conditions that confer a growth
advantage to hyperinfectious salmonellae in vivo are
associated with a growth disadvantage in vitro

Expression of virulence functions that confer hypervirulence

during the infective process may be deleterious to growth outside

of the host. Thus, we questioned whether environmental

conditions that conferred a growth advantage to hyperinfectious

strains in vivo are associated with a growth disadvantage in vitro

relative to conventionally virulent Salmonella. Hyperinfectious S.

Choleraesuis x3246 and conventionally virulent S. Typhimurium

reference strain 14028 were grown in competition under

conditions that were either permissive (LPM pH 5.5 medium) or

nonpermissive (LB medium) for hypervirulence. An equivalent

dose of both Salmonella strains (56107 CFU/ml) were co-cultured

in either LPM pH 5.5 or LB medium following prior growth

individually in the same medium. S. Choleraesuis x3246 was

outcompeted in the mixed population to a far greater extent in

LPM pH 5.5 medium than in LB medium (Figure 3). These data

indicate that growth under environmental conditions that fully

recapitulate the hypervirulent state obtained after in vivo passage

is detrimental to bacterial fitness in vitro- suggesting the possibility

that virulence functions favorable for in vivo growth are

unfavorable ex vivo.

The induction of hypervirulence is associated with an
increased capacity to provoke macrophage cell death
relative to conventionally virulent strains

Salmonella infection of macrophages provokes a caspase-

mediated proinflammatory cell death program, termed pyroptosis

[49,66,67]. Here we examined whether hyperinfectious salmonel-

lae are associated with an increased capacity to initiate

macrophage cell death versus conventionally virulent strains.

Hyperinfectious strains (S. Choleraesuis x3246 and S. Bovismor-

bificans 158) and conventionally virulent S. Typhimurium

reference strain 14028 were grown under conditions that were

permissive (LPM pH 5.5 medium) or nonpermissive (LB medium)

for hypervirulence, and used to infect RAW264.7 murine

macrophage cell cultures at a multiplicity of infection (MOI) of

10:1 or 100:1. A crystal violet dye retention assay was used to

assess the degree of Salmonella cytocidal activity within cultured

macrophages, measured spectrophotometrically 20 h after infec-

tion [49,50]; high cytocidal activity is associated with low dye

retention and vice versa. Infection with hyperinfectious strains (S.

Choleraesuisx3246and S. Bovismorbificans 158) resulted in a dose-

dependent increase in cytocidal activity after prior growth in LPM

pH 5.5 relative to LB medium (2.8-fold and 1.5-fold, respectively;

MOI of 100:1; Table 4). In contrast, infection with conventionally

Figure 3. Comparison of growth rates between hyperinfectious and conventionally virulent salmonellae grown under in vitro
conditions that are permissive for hypervirulence. An equivalent dose of hyperinfectious S. Choleraesuis x3246 and conventionally virulent S.
Typhimurium reference strain 14028 (56107 CFU/ml) were co-cultured in either permissive (LB; open boxes) or nonpermissive (LPM pH 5.5 medium;
closed boxes) conditions for the hypervirulent phenotype, following prior growth individually in the same medium. Cell aliquots were sampled for
CFU at the cell generation (cell doubling) indicated. Bacterial cells were obtained from, and maintained in, exponential phase cultures diluted
periodically such that the cell number was constant at each sampling point. The in vitro competition index is the relative ratio of test strain/reference
wild-type strain recovered from the co-culture divided by the input ratio. The values represent the relative ratio of S. Choleraesuis/S. Typhimurium
obtained from 3 independent cultures with the standard error bars designated.
doi:10.1371/journal.ppat.1002647.g003
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virulent S. Typhimurium reference strain 14028 resulted in a dose-

dependent decrease in cytocidal activity after prior growth in LPM

pH 5.5 medium relative to LB (2.5-fold; MOI of 100:1). The

differences in cytocidal activity between hyperinfectious strains

grown in LB versus LPM pH 5.5 relative to that observed with S.

Typhimurium 14028 were statistically significant (P,0.05). Taken

together, these data establish that hyperinfectious strains are

associated with an increased capacity to provoke macrophage cell

death relative to conventionally virulent strains; the induction of

cytocidal activity occurs in a dose-, media-, and strain- dependent

fashion.

Infection of cultured macrophage cells with
hyperinfectious strains is associated with an altered host
innate immune cytokine response

Recognition of conserved pathogen associated molecular

patterns (PAMPs) by host-cell pattern recognition receptors

(PRRs) activates signaling pathways leading to the stimulation of

the innate immune response, characterized by the production of

cytokines and interferon system gene products and their potent

antimicrobial actions [68–72]. To understand the mechanistic

basis of hypervirulence, we examined whether infection of cultured

RAW264.7 macrophage cells with hyperinfectious strains is

associated with an altered innate immune cytokine response. For

this analysis, we assessed the relative transcript levels of cytokine

and interferon (IFN) system genes known to be induced during

Salmonella infection including; the type I IFN system gene, IFN-b
[50,53]; the inflammatory and acute phase response genes,

interleukin-1 beta (IL-1b) and IL-6 [53,73–76]; inducible nitric

oxide synthase (iNOS), a known target of IFN and cytokine

signaling required for resistance to Salmonella infection [53,77–79];

and IL-10, an inhibitory modulator of the inflammatory response

[74,75,80,81]. Hyperinfectious strains (S. Choleraesuis x3246 and

S. Bovismorbificans 158) and conventionally virulent S. Typhi-

murium reference strain 14028 were grown under conditions that

were permissive (LPM pH 5.5 medium) or nonpermissive (LB

medium) for hypervirulence, and used to infect cultured

RAW264.7 murine macrophage cells. At 2, 5 and 8 h post-

infection, RNA was derived from cultured cells and used to assess

relative cytokine transcript levels in infected versus uninfected

cells. Three salient observations were made (Figure 4): 1) Although

reduced induction of all cytokine transcripts tested was observed

upon infection with both hyperinfectious and conventionally

virulent strains grown in LB versus LPM pH 5.5 medium

(P,0.05), only hyperinfectious strains exhibited significant re-

duced stimulation of IFN-b, IL-1b, and IL-6 transcript levels at the

2 h infection time point (2.5- to 3.5- fold; P,0.05). 2) The reduced

stimulation of IL-1b and IL-6 exhibited by hyperinfectious strains

at the 2 h time point was followed by a 14- to 30- fold induction at

the 8 h time point. 3) Hyperinfectious strains exhibited signifi-

cantly reduced stimulation of IL-10 relative to S. Typhimurium

14028 irrespective of LB or LPM pH 5.5 growth conditions

(P,0.05); such reduced stimulation was most pronounced at later

infection time points (i.e., 10-fold at t = 8 h under LPM pH 5.5

conditions). These data indicate that hyperinfectious strains confer

altered kinetics/magnitude of the innate immune cytokine

responses that coordinate bacterial clearance via stimulation of

signaling receptors and resultant cellular activation and the

induction of effector mechanisms; e.g., Toll-like receptor recog-

nition/signaling; inflammasome activation; myeloid cell recruit-

ment; and T cell activation [82–84].

Gene expression analysis of Salmonella hyperinfectious
strains

Gene expression analysis was performed to identify bacterial

gene transcripts that were significantly altered in hyperinfectious

strains under LPM pH 5.5 versus LB conditions, and not altered,

or altered to the same extent, in a conventionally virulent strain.

We established that transfer of hypervirulent strains from LB to

LPM pH 5.5 medium resulted in a transformation from the less-

virulent to hypervirulent state within 4 h post-transfer (Table 3)

before proceeding with additional observations. S. Choleraesuis

x3246 and S. Bovismorbificans 158 were grown overnight in LB

medium and transferred, without dilution, to LPM pH 5.5

medium. At 4 h post-transfer, RNA was derived from bacterial

cells and used to assess relative transcript levels in cells grown in

LPM versus LB via hybridization to a custom Salmonella Affymetrix

Genechip (see Materials and Methods). Microarray analysis revealed

that, 4 h post-transfer from LB to LPM pH 5.5 medium,

hyperinfectious strains displayed distinct transcriptional responses

versus those observed in a conventionally virulent strain (Figure 5;

Table S1). At least 3 distinct classes of differentially-regulated

genes are represented, including those under the control of the

PhoP/PhoQ regulatory system, a global regulator of Salmonella

virulence [62,85–87]; the PhoR/PhoB regulatory system involved

in nutrient (phosphate) stress [88,89]; and the ArgR regulatory

system involved in arginine metabolism including acid stress [90–

94] (Table 5). Although differential regulation of these genes was

observed in both hypervirulent and conventionally virulent strains

following transfer from LB to LPM pH 5.5 medium, the degree to

which gene expression is altered differs significantly between them.

For example, several representative genes show a higher level of

induction in hypervirulent strains relative to conventionally

virulent strains (mgtBC; Mg2+ transport [PhoP/Q]; phoB; PO4
22

transport [PhoR/B]; argA; artJ; arginine metabolism [ArgR]).

Table 4. Comparison of hyperinfectious and conventionally
virulent salmonellae cytocidal activity upon infection of
cultured macrophages.

Cytocidal activity (A577)a

LB LPM pH 5.5

MOI

Strain Serovar 10 100 10 100

x3246 S. Choleraesuis 0.561 0.261 0.297* 0.094*

158 S. Bovismorbificans 0.246 0.226 0.286 0.151*

14028 S. Typhimurium ref. strain 0.328 0.102 0.560 0.251

aHyperinfectious S. Choleraesuis x3246 and S. Bovismorbificans 158 as well as
conventionally virulent S. Typhimurium reference strain 14028 were derived
from stationary phase cultures under permissive (LPM pH 5.5 medium) or
nonpermissive (LB medium) conditions for the hypervirulent phenotype.
Cultured RAW264.7 murine macrophage cells were infected with bacteria at a
multiplicity of infection (MOI) of 10:1 or 100:1 At 20 h post-infection,
macrophages were stained with crystal violet, and bacterial cytocidal activity
was quantified spectrophotometrically (577 nm) as described in Materials and
Methods; high cytocidal activity is associated with low dye retention. Data given
are representative absorbance values derived from each condition performed in
triplicate. Standard error of triplicate means is ,20%.
*Designates statistical significance for changes in cytocidal activity of
hyperinfectious strains grown in LB versus LPM pH 5.5 medium relative to that
found with reference strain S. Typhimurium 14028. Cytocidal activity was
analyzed using analysis of variance; the change in cytocidal activity of the
hyperinfectious S. Choleraesuis and S. Bovismorbificans were individually
contrasted to the change in cytocidal activity of S. Typhimurium 14028 at each
dose level. A significance level (P) of less than 0.05 was considered to be
statistically significant.
doi:10.1371/journal.ppat.1002647.t004
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Conversely, other PhoP/Q activated genes show a lower level of

induction (pagK; sifB; SPI-2 effectors) or repression (rtsA; SPI-I

activator) in hypervirulent strains relative to that found in

conventional virulent strains. Increased induction of virulence

functions involved in cellular physiology and metabolism (mgtBC;

phoB; argA) in combination with repression of SPI-1 virulence

Figure 4. Comparison of cytokine transcript levels in cultured macrophages infected with hyperinfectious and conventionally
virulent salmonellae. Innate immune cytokine transcript levels were examined from cultured RAW264.7 murine macrophages infected with
hyperinfectious S. Choleraesuis x3246, S. Bovismorbificans 158 or conventionally virulent S. Typhimurium reference strain 14028 grown under
permissive (LPM pH 5.5; dotted lines) or nonpermissive (LB; solid lines) conditions for the hypervirulent phenotype. (A) IFN-b; (B) IL-1b; (C) IL-6; (D)
iNOS; (E) IL-10. Bacterial cells derived from stationary phase cultures containing either LB or LPM pH 5.5 medium were used to infect cultured RAW
264.7 murine macrophage cells as described in Materials and Methods. The bacteria were centrifuged onto cultured monolayers at 1,0006 g for
10 min at room temperature, after which they were incubated for 30 min at 37uC in a 5% CO2 incubator (t = 0 time point). The coculture was washed
once and incubated for 45 min with gentamicin (100 mg/ml) at 37uC in a 5% CO2 incubator, washed once with pre-warmed cell culture medium, and
incubated with gentamicin (10 mg/ml) to the time points indicated (2, 5 and 8 hr). Total RNA was isolated from infected cultured RAW 264.7 murine
macrophage cells, and from mock-infected controls as described in Materials and Methods. RNA samples were analyzed by reverse transcription and
real-time qPCR for: IFN-b; IL-1b; IL-6; iNOS; and IL-10 expression as described in Materials and Methods. Relative target gene transcripts were
normalized to the level of the GAPDH gene, relative to the average of the normalized values obtained for uninfected RAW 264.7 cells. Values given
were obtained from triplicate wells SE ,22%. Although reduced stimulation of all cytokine transcripts tested was observed upon infection with both
hyperinfectious and conventionally virulent strains grown in LPM pH 5.5 medium relative to that exhibited in LB medium (P,0.05), only
hyperinfectious strains exhibited a significant reduced stimulation of IFN-b, IL-1b and IL-6 transcript levels at the 2 h infection time point (2.5- to 3.5-
fold; P,0.05). *Designates statistical significance for those measures that are specific to hypervirulent strains after growth in LPM pH 5.5 medium
relative to that exhibited in LB medium (P,0.05).
doi:10.1371/journal.ppat.1002647.g004
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functions involved in invasion after bacterial entry into host cells

(repression of the hilA activated SPI-1 regulatory cascade via rtsA

down-regulation; phoB up-regulation [reviewed in [95]]) may

increase the capacity of hypervirulent strains to undergo in vivo

adaptation.

Infection with hyperinfectious salmonellae leads to
increased killing of vaccinated animals

Salmonella live attenuated vaccines that contain mutations in the

DNA adenine methylase (dam) confer cross-protective immunity

against virulent challenge with heterologous Salmonella strains in

murine, avian, and bovine models of salmonellosis [19,96–99].

Here, we assessed whether growth of hyperinfectious strains under

permissive conditions for hypervirulence (LPM pH 5.5 medium)

leads to increased killing of vaccinated animals. Mice immunized

with a dam mutant vaccine were more susceptible to infection with

hyperinfectious strains grown under LPM pH 5.5 versus LB

medium in four of five hyperinfectious S. Choleraesuis and S.

Bovismorbificans strains tested (P,0.05) (Table 6). The lone

exception is S. Choleraesuis x3246 to which the vaccine conferred

poor efficacy under either media tested, although a similar trend

was observed (P = 0.20). No change in protection was observed in

vaccinated animals following challenge with conventionally

virulent S. Typhimurium reference strain 14028 grown under

either media condition. These data indicate that hyperinfectious

salmonellae exhibit increased killing of vaccinated animals,

suggesting that immunized populations are more susceptible to

infection by strains bearing the hypervirulent phenotype.

Discussion

Salmonellosis is a principal health concern because of the

endemic prevalence of salmonellae in food and water supplies.

Recent estimates by the CDC and other sources indicate that

Salmonella infections cause 1.4 to 1.6 million foodborne illnesses in

the U.S. annually at an estimated cost of $2.6 to $14.6 billion

[100–104]. This health and economic burden will most likely

continue to expand due to increased multi-drug resistance and the

emergence of new strains that are associated with an increased

incidence and/or severity of disease [1,9,16]. Insights into the

emergence of pathogenic strains have come from animal-passage

studies wherein virulence traits are often increased (reversibly)

following infection (e.g., hastened colonization, morbidity, and/or

mortality; reviewed in [22–24]). Here we show that some Salmonella

strains are considerably more virulent after murine passage

relative to other isolates (100-fold decreased LD50); and the

display of increased virulence traits by bacterial strains after

passage does not necessarily equate to hypervirulence. Hyper-

infectious strains are among the most virulent salmonellae

reported, were restricted to certain serovars, and vaccination

conferred poor protection against infection. These strains pose a

potential risk to food safety as the parental isolates- from which

they were derived- originated from diseased livestock. Molecular

characterization of these strains may yield insights into the

emergence of hyperinfectious pathogens and the development of

intervention strategies for human and animal salmonellosis.

Our findings indicate that salmonellae exhibit intraspecies

variation in the development of hyperinfectious strains, as

evidenced by the increased likelihood of particular serovars

displaying the hypervirulent phenotype than others following

murine infection (S. Bovismorbificans [11/11] versus S. Typhi-

murium [0/52]). The hypervirulent phenotype was recapitulated

in vitro with strains adopting distinct virulence states actuated by

prior growth conditions, suggesting that the degree of virulence

Figure 5. Transcriptome analysis of hyperinfectious strains.
Gene expression analysis was performed to identify bacterial gene
transcripts that were significantly altered in hyperinfectious strains
under LPM pH 5.5 versus LB conditions, and not altered, or altered to
the same extent, in a conventionally virulent strain. Hyperinfectious
strains (S. Bovismorbificans 158 [SB] and S. Choleraesuis x3246 [SC]) and
S. Typhimurium reference strain 14028 [ST] were grown overnight in LB
medium, pelleted and washed in 0.15M NaCl, and split without dilution
into two cultures containing either LB or LPM pH 5.5 medium. The
cultures were incubated with aeration for 4 h, after which approxi-
mately 2.561010 cells were pelleted via centrifugation. RNA derived
from these bacterial cells was used to assess relative transcript levels in
bacterial cells via hybridization to a custom Salmonella Affymetrix
Genechip as described in Materials and Methods. Each of the 12
columns of the heat map represents an LPM/LB ratio with four pairwise
comparisons provided for each strain. Two criteria were used as a cutoff
to identify the genes that were significantly altered in hyperinfectious
strains (SB; SC) under LB versus LPM pH.5.5 conditions, and not altered,
or altered to the same extent, in a conventionally virulent strain (ST); i.e.,
at least a 2-fold expression change in SB, SC or ST; and a 0.05 false
discovery rate (FDR) when comparing log2 LPM/LB ratios values for SB
and SC versus ST. Heat maps were generated from the resultant list of
genes using The Institute for Genomic Research MultiExperiment
Viewer (MeV), version 4.7 [54]. All expression experiments were done in
two biological replications.
doi:10.1371/journal.ppat.1002647.g005
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exhibited by these strains can be modified significantly within

different hosts, during different infection states (sub-clinical versus

fulminate infection), or after exposure to certain environmental

variables. Thus, these strains may lead to disease under some

environs but not others [105] (e.g., varied levels of moisture, heat

stress, cell density, salts/nutrients). Consequently, in an outbreak

scenario, although knowledge of the strain serotype is useful

epidemiologically, it may have limited predictive value as to the

clinical disease outcome or whether protection will be provided by

vaccination.

The mechanistic basis for hypervirulence appears to be the

consequence of increased microbial pathogenicity accompanied by

microbe-mediated alterations in innate immune cytokine respons-

es in infected animals. This is evidenced by increased microbial

cytotoxin (SpvB) production, host tissue site colonization, and

cytocidal activity that may coexist in time with a delayed

proinflammatory IFN/cytokine response coupled with a dimin-

ished proinhibitory (IL-10) cytokine response over the entire

infection time course. This immune antagonism strategy is often

employed by viruses, interfering with multiple stages of the innate

immune response; e.g., disruption of pathogen recognition,

downstream signaling pathways, and subsequent repression/

inhibition of a number of innate immune responses [69,106–

108]. Altered innate immunity during the Salmonella infective

process can profoundly impact disease outcome as the bacterium

must strike a balance between initiating inflammatory responses to

Table 5. Bacterial gene transcripts that were specifically altered in hyperinfectious strains under permissive conditions for the
hypervirulent phenotype.

Gene number Gene symbol Log2 LPM/LB ratioa
Description

ST SB SC

PhoP/PhoQ

STM4286 lpxO 0.54 1.74 1.88 Lipid A modification [139].

STM3763 mgtB 1.74 4.34 4.40 Magnesium transporter; required for virulence [140].

STM3764 mgtC 2.18 5.13 5.34 Magnesium transport; required for intramacrophage survival and long term systemic infection [141].

STM2585 pagJ 4.26 20.27 0.24 SPI-2 effector; translocated to macrophage cytoplasm [142].

STM1867 pagK 3.12 1.47 0.61 SPI-2 effector; translocated to macrophage cytoplasm [142].

STM1862 pagO 0.67 1.71 1.89 Homology to pagO in Klebsiella pneumoniae drug/metabolite exporter [143].

STM0397 phoB 0.81 2.50 1.72 Response regulator of PhoR/B regulon; represses hilA activated SPI-1 effectors [140,144].

STM4315 rtsA 0.04 21.62 21.39 Activates hilA and downstream SPI-1 effectors; required for cell invasion [88,145].

STM1471 rtsB 21.16 0.72 20.03 Sensory histidine kinase; acts on PhoQ to control PhoP regulated genes [95].

STM1602 sifB 1.47 0.56 0.68 SPI-2 effector; translocated to macrophage cytoplasm [146].

STM0366 yahO 1.22 20.43 21.13 Modification of cell envelope [147].

STM0614 ybdQ 1.46 0.37 20.09 Universal stress protein [144].

PhoB/PhoR

STM4287 phnO 0.16 1.43 0.96 Regulator of phosphocarbonate breakdown [148].

STM0397 phoB 0.81 2.50 1.72 Response regulator of PhoR/B regulon; represses hilA activated SPI-1 effectors [140,144].

STM0320 phoE 0.03 0.87 1.26 Outer membrane pore protein induced in phosphate limiting conditions [149].

STM0384 psiF 1.34 20.40 20.23 Phosphate inducible starvation protein [148].

STM3854 pstB 0.74 2.12 1.81 High affinity phosphate transporter [148].

STM3857 pstS 0.81 3.08 2.38 Induced in macrophage; regulates hilA through phoB [89].

STM4226 yjbA 0.89 1.59 1.60 Induced during macrophage infection [150]; also known as psiE.

ArgR

STM2992 argA 0.51 2.71 3.50 N-acetylglutamate synthase [91].

STM4122 argB 0.56 1.64 2.74 Acetylglutamate kinase [91].

STM3468 argD 1.26 2.84 4.31 Bifunctional N-succinyldiaminopimelate-aminotransferase/acetylornithine transaminase protein [91].

STM3290 argG 20.17 1.54 1.24 Arginosuccinate synthase [91].

STM4123 argH 20.20 1.53 2.10 Arginosuccinate lyase [91].

STM4469 argI 0.36 2.05 3.19 Ornithine transcarbamylase [91].

STM0887 artJ 0.78 1.76 2.61 Arginine transport system component [91].

Other virulence-associated genes

STM4077 yneA 20.26 21.31 20.96 Involved in quorum sensing; encodes periplasmic receptor for AI-2 [151]; also called lsrB.

STM2084 rfbM 2.03 20.13 0.33 Involved in O-antigen synthesis [152]; also known as manC.

aThe log2 LPM/LB gene expression ratios values for conventionally virulent S. Typhimurium (ST), and hypervirulent S. Bovismorbificans (SB) and S. Choleraesuis (SC)
strains were determined as described in Materials and Methods.
doi:10.1371/journal.ppat.1002647.t005
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promote colonization while avoiding prolonged inflammatory

responses that damage host niches occupied by the microbe during

infection [109–111]. Further, since it is well-established that innate

immune responses stimulate the development of adaptive

immunity [68,112,113], elicitation of an altered IFN/cytokine

signature may contribute to the observed increased disease

susceptibility in vaccinated animals.

Gene expression analysis revealed that transfer from nonpermis-

sive to permissive conditions for the hypervirulent phenotype (LB

versus LPM pH 5.5 medium) resulted in distinct transcriptional

responses in hypervirulent strains that were not altered, or altered to

the same extent, in a conventionally virulent strain. Three major

classes of differentially-regulated genes were identified: those that

reside in the PhoP/PhoQ [62,85–87]; PhoR/PhoB [88,89]; or

ArgR regulons [92–94] that confer changes in the expression of

classical virulence functions (e.g., SPI-1 and SPI-2 effectors) as well

as marked changes in cellular physiology and metabolism (nutrient

and acid stress response). Such altered regulatory circuitry can

contribute in several ways to increased host cell intoxication,

immune evasion, and virulence exhibited by hyperinfectious strains.

1) SPI-1 and SPI-2 effectors are known to harbor potent

immunomodulatory properties resulting in altered host-cell signal-

ing and resultant innate immune cytokine responses [2,114]; down-

regulation of SPI-1 invasion genes upon bacterial entry (rstA; phoB)

may optimize survival/proliferation in the Salmonella containing

vacuole (SCV). 2) Altered physiologic and metabolic changes

(mgtBC; phoB; argA) are known to impact differences in species-

specific lifestyle/behavior; e.g., differential regulation of metabolic,

transporter, and motility functions in Bordetella spp. is thought to

increase the capacity of ex vivo adaptation of B. bronchiseptica [115].

Taken together, altered timing, magnitude, and localization of

bacterial gene expression can have profound effects on virulence

and host immune responses.

Intraspecies variation in the capacity to become hypervirulent

may be due to genes encoded by one serotype but not another

and/or altered expression of preexisting virulence functions.

Acquisition of the viaB locus in S. Typhi provides genes for Vi

capsular biosynthesis (tviBCDE) and a regulatory gene (tviA) that

alters expression of Vi antigen, flagella and the invasion-associated

type III secretion system in response to changes in osmolarity

[116,117]. Such altered expression results in reduced inflamma-

tory responses relative to non-typhoidal serotypes, and introduc-

tion of the viaB locus into S. Typhimurium reduces the

inflammatory response conferred by this pathogen [118]. Addi-

tionally, intraspecies variation in the capacity to become

hypervirulent may be due to differential expression (transcriptional

re-wiring) of preexisting virulence genes as is the case in cross-

species comparisons between BvgA/S regulatory circuit in B.

pertussis and B. bronchiseptica [115] and the PhoP/PhoQ regulatory

circuits in multiple Enterobacteriaceae [119,120]. Thus, intraspe-

cies variation in the capacity to become hypervirulent may be the

consequence of gene acquisition and/or altered expression of

preexisting virulence functions via alterations in principal

regulatory proteins; downstream regulatory proteins; and/or by

cis-acting alterations in target genes [121–124].

Our findings indicate that the phase-variable phenotypes

associated with Salmonella hyperinfectious strains are consistent

with a phenotypic modulation mechanism as switching between

virulence states was rapid and rapidly reversible (non-mutational);

did not require vigorous bacterial cell growth; and was responsive

to subtle differences in environmental signals resulting in multiple

virulence states. Consistent with this suggestion, environmental

conditions that stimulate/inhibit the BvgA/BvgS regulatory

system in Bordetella results in the expression of at least three

distinct phenotypic phases that are each associated with a unique

gene expression profile thought to play an explicit role in the

infectious cycle [125,126]. This provides a potential means to

rapidly adapt to disparate hosts/environments without undergoing

irreversible changes in the genome, and may contribute to the

maintenance of hyperinfectious strains in nature. Additionally,

other serotypes may potentially exhibit hypervirulence in response

to passage through certain hosts or exposure to certain

environments; and this response may be the case across the

microbial realm.

Molecular examination of hyperinfectious strains may provide

insights into i) differences in disease outcomes between closely-

related strains; ii) distinct outbreak scenarios that point to the same

infectious agent; iii) differences in vaccine efficacy between

laboratory versus clinical field trials due to the environmental

complexity of commercial livestock production systems; and iv) the

design of vaccines and therapeutic strategies to improve clinical

disease outcomes.

General implications
From a farm-management perspective, it is desirable to

understand the management and environmental events that lead

to hypervirulence in the context of the production system so that

risk management strategies can be implemented to prevent

disease. It has been established in livestock that host susceptibility

and shedding are dependent on management and environmental

events (herd size, adverse weather conditions, equipment failure,

labor issues, surface water management) that contribute to

compromised host immunity and increased pathogen exposure

[7,12,13,127–129]. Our studies suggest that livestock production

systems have the potential for management and environmental

events to alter pathogen virulence. That is, environmental

conditions inherent to livestock/feedlots (manure, fecal pack and

urine), the influence of diet (high and low protein, fiber, and fat),

and/or exposure to sub-therapeutic concentrations of antimicro-

Table 6. Comparison of disease susceptibility in vaccinated
mice infected with hyperinfectious and conventionally
virulent salmonellae.

Survivors/Total

Straina Serovar LB LPM pH 5.5

x3246 S. Choleraesuis 11/41 8/56

3 S. Choleraesuis 14/20 3/23*

158 S. Bovismorbificans 16/20 10/24*

174 S. Bovismorbificans 19/22 10/23*

225 S. Bovismorbificans 18/18 7/20*

14028 S. Typhimurium ref. strain 20/20 19/22

aBALB/c mice orally immunized with a live, attenuated dam mutant S.
Typhimurium 14028 vaccine [98]. Vaccinated mice challenged with a dose of
100 LD50 of hyperinfectious salmonellae derived from stationary phase cultures
under conditions that were permissive (LPM pH 5.5 medium) or nonpermissive
(LB medium) for the hypervirulent phenotype. Nonvaccinated control mice (25/
group) all died by day 21 post-infection. Conventionally virulent S.
Typhimurium reference strain 14028 was used in all studies for comparison.
*Designates statistical significance for the number of survivors obtained after
dam mutant Salmonella vaccinated animals were challenged with salmonellae
grown in LB medium versus LPM pH 5.5 medium. Statistical significance for
difference in proportions was calculated using Chi-square tests; a significance
level (P) of less than 0.05 was considered to be statistically significant.
doi:10.1371/journal.ppat.1002647.t006

Emerging Hyperinfectious Strains

PLoS Pathogens | www.plospathogens.org 13 April 2012 | Volume 8 | Issue 4 | e1002647



bials may also inadvertently trigger the induction of salmonellae

hypervirulence in livestock.

Epidemiological studies in livestock indicate that the pathoge-

nicity and persistence of S. Typhimurium variants range from

those that cause infections that are relatively mild and geograph-

ically limited, to those that cause small epidemics that circulate in

livestock and humans [130,131], to those that are multi-drug

resistant and have the capacity for pandemic spread and increased

human and animal disease [132,133] (reviewed in [134,135]).

Further, although it is common to find salmonellae on farms [7–9],

a given strain may not be significant from a disease or food safety

perspective. Thus, the development of a means to identify strains

that are likely to be virulent (or hypervirulent) would provide a

better measure of causality and food safety risk and may lead to

the identification of targets for immunoprophylaxis.

Such detection may be complicated by the fact that other

serotypes may potentially become hypervirulent in response to

passage through certain hosts or exposure to certain environments

(e.g., cow, pig, manure, surface water); and this response may be

prevalent in other pathogens. Thus, molecular characterization of

hypervirulence cannot be solely concluded on the basis of

culturing in rich media, and more efforts should be given to

determining virulence characteristics under more physiological

growth conditions and/or in animal models of infection. Of

potential benefit to therapeutic efforts are live-animal infection

model screens for virulence factors and antibiotics that target

microbial functions that confer a growth advantage in vivo relative

to that observed in vitro [136–138].

Future work will focus on the molecular basis of the emergence

of hyperinfectious salmonellae and the development of vaccines, as

well as dietary and environmental management strategies to

mitigate these potential food-borne contaminants before they

cause negative public health impacts and economic losses.

Supporting Information

Table S1 List of Salmonella differentially regulated
genes in hyperinfectious versus conventionally virulent
strains under permissive and nonpermissive conditions
for the hypervirulent phenotype. Gene expression analysis

was performed to identify bacterial gene transcripts that were

significantly altered in hyperinfectious strains under LPM pH 5.5

versus LB conditions, and not altered, or altered to the same

extent, in a conventionally virulent strain as described in Figure 5

legend and Materials and Methods.
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