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T
he smart grid refers to the modernization of the 
power grid infrastructure with new technolo-
gies, enabling a more intelligently networked 
automated system with the goal of improving 
efficiency, reliability, and security, while pro-

viding more transparency and choices to electricity cus-
tomers. A key technology being widely deployed on the 
consumption side of the grid is advanced metering infra-
structure (AMI).
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AMIs refer to the modernization of the electricity meter-
ing system by replacing old mechanical meters with smart 
meters. Smart meters are new embedded devices that pro-
vide two-way communication between the utility and the 
customer. These devices have advanced communication and 
computational capabilities, with the potential to enable new 
functionalities, such as improved service choices and trans-
parency. Distribution utilities (or distributors) using AMI for 
the monitoring and billing of electricity consumption can 
avoid sending their employees to read the meters on site. 
Importantly, AMIs provide several new capabilities, includ-
ing monitoring network-wide and individual electricity con-
sumption, faster remote diagnosis of outages (with analog 
meters, utilities learned of outages primarily by customer 
call complaints), remote disconnect options, and automated 
power restoration. AMIs also improve the customers’ access 
to their energy usage information (including the sources of 
electricity, renewable or otherwise) and promote the imple-
mentation of demand-response schemes.

The widespread deployment of smart meters, by neces-
sity, entails installing low-cost commodity devices in phys-
ically insecure locations [1], with an expected operational 
lifetime in the range of several decades. The cost of AMIs 
range from US$100 to US$400 per device, excluding instal-
lation and maintenance costs. Hardening these devices by 
adding hardware coprocessors and tamper-resilient 
memory might moderately increase the per-unit price of 
smart meters. However, this can significantly increase the 
distribution utility’s cost of deploying and operating mil-
lions of devices. Thus, creating a business case for improv-
ing the security of smart-grid deployments is a difficult 
task for most electric distribution utilities. Consequently, 
these additions are not considered cost-effective in practice 
and are not even recommended as a priority [2]. To realize 
the promise of trusted computing in smart embedded 
devices, new technologies need to be developed and 
deployed [3].

Detecting electricity theft has been traditionally 
addressed by physical checks of tamper-evident seals by 
field personnel and by using balance meters [4]. Although 
these techniques reduce unmeasured and unbilled con-
sumption of electricity, they are insufficient. Indeed, tam-
per-evident seals can be easily defeated [5], and although 
balance meters can detect that some customers are fraudu-
lent, they cannot identify the culprits exactly. Despite the 
security vulnerabilities of smart meters, the higher-resolu-
tion data collected by them is seen as a promising technol-
ogy that will complement traditional detection tools. They 
have clear potential to improve metering, billing and col-
lection processes, and the detection of fraud and unme-
tered connections.

Electricity theft in distribution networks
Historically, widespread energy theft is characteristic for 
developing countries, with theft of electricity reaching up 

to 50% in some jurisdictions [6]. Common methods of theft 
range from compromising the physical security of meters 
to directly connecting loads to electricity distribution lines. 
Default of payments has been a major problem, due to sub-
optimal levels of monitoring and enforcement. The lack of 
technology and insufficient distributor incentives were the 
major contributors to this problem.

Nontechnical Losses and Electricity Theft
In general, distribution utilities can incur nontechnical 
losses due to

»» actions of utility personnel or an operator, that is, 
administrative losses due to errors in accounting and 
record keeping

»» customer theft
»» customer nonpayment
»» theft by noncustomers.

The administrative errors can be strategic (that is, intentional) 
when made for the purpose of assisting customer theft.

For a distribution utility, the nontechnical losses (such 
as electricity theft, fraud, or uncollected/defaulted bills) 
contribute to costs. The customers who acquire electricity 
via stealing or defaulting on their bills obtain the electricity 
at zero or near-zero prices. Effectively, the electricity con-
sumption of these nonpayers is subsidized by the distribu-
tion utility and/or other customers, or in some cases, by 
subsidies from local taxes. Overall, the consumption of 
nonpaying entities is paid by the society at large.

The nontechnical losses can be recovered by some com-
bination of

»» imposing higher electricity tariffs on other (paying) 
customers

»» decreasing the profit margins of the distributor(s)
»» distributing the burden to the entire society, for 
example, by increasing taxes.

The actual means depend on the security and recovery 
technologies that are available to the distributor, how much 
the distributor invests in them, and the regulatory environ-
ment. When the distributor bears losses for a prolonged 
period of time and no regulatory resources exist to recover 
these losses, the distributor’s incentives and capabilities to 
invest in the network and its maintenance are jeopardized. 
Such underinvestment negatively affects the long-term effi-
ciency of distribution system. Thus, to improve efficiency 
of distribution systems, both technological and regulatory 
means to limit nontechnical losses are desirable.

Technological and Regulatory Solutions
In recent years, basic protective measures such as tamper-
evident seals and secure-link communications have been 
developed for AMIs. Still, they are not enough to prevent suc-
cessful attacks during the meter lifespan. Security researchers 
have recently identified cybervulnerabilities in smart meters 
[7], [8] and were even able to perform rogue remote firmware 
updates [9]. Notably, hacked smart meters have been used to 
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steal electricity, resulting in losses of millions for dollars for a 
single U.S. utility [10]. Malicious insiders and outside hackers 
with only a moderate level of computer knowledge are likely 
able to compromise and reprogram meters with low-cost tools 
and software readily available on the Internet. The report [10] 
also predicts and conjectures with medium confidence that as 
smart grid deployments continue, the cyber theft of electricity 
will also rise. The most likely reasons for this rise are the 
lower costs of intrusion and high overall financial benefit for 
both hackers and customers.

Still, in regulated environments, new investments 
required for the effective deployment and enforcement of 
technological solutions is possible only when the necessary 
institutional and regulatory measures are enacted. Exam-
ples of required institutional measures include prosecution 
of fraudulent customers, publicizing violations for sharper 
public scrutiny, increasing customers’ awareness that elec-
tricity theft is an identifiable offense, and disconnecting 
customers for fraud or debts and reconnecting their service 
only after the remittance of the required payments. Exam-
ples of regulatory measures include fixing skewed tariff 
structures, providing coordination and transparency in 
distribution operations, and creating mechanisms to 
improve investments in security upgrades.

AMI-enabled Anomaly Detection
Distribution utilities are collecting fine-grained data from 
their networks, devices, and customers and are developing 

the analytical capabilities for improved situational aware-
ness [11]. Meter data management (MDM) vendors are pro-
viding analytical services to the utilities to turn their data 
into actionable information; see Figure 1. An important 
MDM service is called revenue assurance. It provides data-
analytics software to identify suspected electricity theft 
through the detection and isolation of abnormal consump-
tion trends [12]. Such anomaly detection schemes can become 
a cost-effective tool to complement the use of balance meters 
(which are still necessary to detect theft through unauthor-
ized connections to the power distribution lines) and physi-
cal checks of tamper-evident seals by utility personnel.

Thus, the MDM system is emerging as a focus of many 
AMI deployment projects for three reasons. First, it can be 
easily retrofitted with an existing distribution infrastruc-
ture. Second, unlike other security technologies, it does not 
require the major capital investments needed by other 
security technologies such as balance meters. Third, the 
extra security provided by MDMs is a by-product. The 
main reason MDMs are popular is because they add value 
due to their data storage and processing capabilities.

Related Work
Early research on the detection of electricity theft focused on 
the role of a set of trusted balance meters and looked at elec-
tricity consumption traces to check the accuracy of meters 
[13]. Subsequently, the rise of smart meters and the possibility 
of high-frequency data collection by distribution utilities mo-

tivated the study of security of indi-
vidual meters. Here, the focus was on 
the detection of abnormal electricity 
traces that are highly correlated with 
electricity theft. This work used a va-
riety of machine-learning techniques, 
including support vector machines 
and extreme learning machines to 
identify  suspicious  energy  traces  
[14]–[16]. More recent work has em-
phasized the need to consider con-
sumption data anomalies as part of a 
diagnostic system, with the aim of 
enabling sensor fusion at the scale of 
an electricity distribution network, 
and reduce false positives [17]. An-
other new line of research focuses on 
explicitly modeling the objective of an 
adversary, whose goal is to steal elec-
tricity and yet evade the diagnostic 
system [18]. Here new metrics are pro-
posed for evaluating a class of theft 
detection schemes in the presence of 
powerful attackers who can bypass 
these schemes. A broader picture of 
the electricity theft problem can be 
found in a recent survey article [19].
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Figure 1  Centralized meter data management (MDM). When electric utilities deploy 
advanced metering infrastructures, they also need to deploy an MDM system in their back 
end to manage smart meter data storage and analytics (for example, forecasting and anom-
aly detection). One of the key services offered by popular MDM vendors is called revenue 
assurance, where data analytics software is used by the utility on the collected meter data 
to identify possible electricity theft situations and abnormal consumption trends. Leverag-
ing MDM systems to collect indicators of electricity theft is a cost-effective way to comple-
ment the use of balance meters and personnel physically checking tamper-evident seals 
and reporting reprogramming or tampering attempts.
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Focus of the Article
The goal of this article is to develop a model that allows 
investigating distributor monitoring choices when custom-
ers are strategic, and a known fraction of consumers 
engages in stealing. This model allows finding jointly opti-
mal choices of distributors and customers, under the impo-
sition of only mild (aggregate) requirements on distributor 
information about customer preferences.

More broadly, this article develops a game-theoretic 
framework that explicitly models the adversarial nature of 
the electricity theft problem. The model considers both 
pricing and investment decisions by the distribution utility 
(that is, the distributor) who faces a population with both 
genuine and fraudulent customers. All customers derive 
identical utility from using electricity (preferences) but face 
different costs. The genuine customers pay their entire bill. 
They choose how much to consume (equal to the amount 
billed), depending on their preferences and the price of 
electricity. The fraudulent customers choose two amounts: 
1) the amount for which they will pay (as genuine ones do) 
and 2) the amount that they will steal. The second choice 
depends on the probability of detection and on the amount 
of fine that they pay if detected.

The probabilistic rate at which fraud is successfully 
detected depends on the diagnostic scheme implemented 
in the distributor’s MDM system. In particular, the perfor-
mance of a diagnostic scheme is governed by the received 
operating characteristic (ROC) curve (that is, the relation-
ship between the probability of detection and the probabil-
ity of false alarm). The probability of detection depends on 
two factors. First, it depends on the amount of electricity 
stolen (the probability increases with the amount stolen) 
and, second, on the level of investment made by the dis-
tributor to monitor fraud. More investment by the distribu-
tor increases the probability of detection. The distributor 
chooses how much to invest in fraud monitoring and the 
price per unit quantity of billed electricity.

This article considers the two environments: the unreg-
ulated monopoly and perfect competition. In both cases, 
the game is a leader-follower game, in which the distribu-
tor (leader) chooses first, given a known fraction of fraudu-
lent customers. The article computes equilibria for both 
cases (games) and compares the level of effort for unregu-
lated monopoly and perfect competition. In both games, 
customers make their choices after they learn the pricing 
(tariff) and distributor level of investment in monitoring 
fraud. The distributor’s operational costs are affected by 
the level of investment in fraud monitoring, in addition to 
the traditional cost of providing the total quantity of elec-
tricity demanded by the population. Thus, the distributor’s 
revenue function aggregates the revenue generated from 
billed electricity and the expected fines collected from 
fraudulent customers (when detected). The distributor’s 
profit, that is, revenue net costs, depends on both the level 
of investment and the per unit price offered to customers. 

The chosen level of investment and the customers’ equilib-
rium consumption levels determine the diagnostic scheme’s 
operating point on the ROC curve and hence the distribu-
tor’s efficiency in recovering costs by monitoring and col-
lecting fines. For a given distributor choice of price and 
level of investment, the customers’ response functions are 
derived. Finally, the optimal choices for the case when the 
distributor is an unregulated monopolist are compared 
with the choices in the case of perfect competition. 
Although perfect competition is seldom achieved in elec-
tricity distribution systems, it offers a standard benchmark. 
The case of regulated monopolist is also briefly introduced. 

The results indicate that for environments with a 
monopolist distributor, the fraudulent customers are likely 
to steal more electricity (in equilibrium) as the distributor’s 
level of effort in monitoring and enforcement decreases. 
The stealing level also increases as the per-unit usage 
charge of electricity increases or the fine exercised by the 
distributor decreases. For a given marginal cost of monitor-
ing and fixed fraction of fraudulent customers, the distrib-
utor’s equilibrium profit increases with level of investment. 
For cases when optimal investment levels are lower, the 
monopolist distributor chooses a higher per-unit price of 
electricity. Such cases are relevant when the level of invest-
ment is constrained by limits on the false alarm rate.

The distributor’s collection efficiency in equilibrium 
shows interesting behavior. Specifically, for lower (respec-
tively, higher) values of fines, the collection efficiency of the 
distributor increases (respectively, decreases) with his level 
of investment. This indicates the necessity of certain regu-
latory impositions that can enable socially desirable levels 
of collection efficiency. The framework presented in this 
article can be used to compare the optimal level of invest-
ment for different regulatory regimes and to design mecha-
nisms to improve the distributor incentives to implement 
socially optimal monitoring choices.

Although this article does not deal with attack models 
that have been tested on real AMIs, the proposed game-the-
oretic framework is motivated by practical attack models, 
such as rigging the electricity consumption signal via cyber 
(reprogramming) or cyberphysical means (such as installing 
a rigged smart meter). Clearly, in response to such threats, 
the distributor can employ diagnostic schemes to find the 
fraudulent customers. The proposed game-theoretic frame-
work can help analyze equilibrium customer and distributor 
choices in scenarios where the assumptions on customer 
utilities and distributor’s profit function are applicable.

Modeling Customer Preferences
Let { , , }n1N f=  denote the population of customers that 
are served by the distributor. All customers belong to the 
same socioeconomic class and thus have the same valua-
tion or preference of electricity consumption. However, the 
security level of individual meters varies across the popu-
lation. For simplicity, assume that each customer has a 
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meter that is either of low or high security. Customers whose 
meters have low (respectively, high) security levels are 
respectively referred as type-f (respectively, type-g) cus-
tomers. On one hand, the meters of type-f customers posses 
certain security vulnerabilities and/or configuration 
defects that can be exploited for economic gain. Thus, 
type-f customers are more likely to steal electricity. When 
they are successful in stealing, the distributor does not 
fully recover the cost of the electricity used and incurs non-
technical losses. On the other hand, the meters of type-g 
customers are harder to exploit, either because of the due 
care taken during their manufacturing and installation 
process, or due to the customers’ lack of technological 
knowledge required to exploit the high-security-level 
meters. Each type-g customer fully pays for the electricity 
consumed. Thus, type-f and type-g customers can be called 
“fraudulent” and “genuine,” respectively.

Let N Nf 1  and \N N Ng f=  denote the sets of these 
customer types, and let m  be the fraction of type-f custom-
ers, that is, | | / | .|N Nfm =  The distributor (a monopo-
list) knows the fraction m  but cannot distinguish between 
type-f and type-g customers. An estimate of m  is

	 ,Q
Q

T

U
m = � (1)

where QU  denotes the total unrecovered quantity due to 
stealing by type-f customers when the level of investment 
in monitoring fraud is negligibly small, and QT  is the total 
quantity of electricity provided by the distributor. To 
reduce the stealing losses, the distributor deploys a diag-
nostic scheme and has to incur the costs of monitoring (for 
distinguishing between fraudulent and genuine custom-
ers) and enforcement (for recovery of money from custom-
ers who are successfully detected as fraudulent).

Genuine Customers
Suppose that each type-g customer has the utility function

	 ( ) T( ) [Secure AMIs],U u q qg g g= - � (2)

where the function ( )u $  (assumed to be same for customers) 
satisfies ( ) ,u 0 0=  ( ) ,u q 0>l  and ( ) ,u q 0<m  that is, there is a 
decreasing marginal utility of electricity consumption. If 
the distributor offers a tariff schedule ( ),T $  a type-g cus-
tomer chooses the expected quantity qg  and pays ( )T qg  to 
the distributor. Assume ( )T $  is increasing in .qg  In general, 
the distributor can offer a nonlinear tariff schedule. The 
customer surplus is

	 ( ) ( ) ,q T qmaxv u
q

g g g
0g

/ -
$
6 @ � (3)

and the first-order-condition is ( ) ( ) .q T qu 0g g- =l l  Consider 
a two-part tariff schedule given by T( ) .q pqAg g= +  Here A  
is a fixed charge that can be interpreted as a connection fee, 
and p  is constant per unit price (usage charge). For the pur-

pose of analytical derivations, this article assumes that cus-
tomer preference is given by a square-root function 

( ) .q qu 2g g=  Under this assumption, the chosen consump-
tion and optimal surplus of a type-g customer becomes

	 ( ) , ( ) .q p
p

p p Av1 1
g g2= = -) c m � (4)

The customer surplus decreases as the distributor charges 
more per unit price .p  Of course, the fixed charge A  is con-
strained by ( ) .A p< 1-  Since ( ),n 1Ng m= -  the total quan-
tity of electricity consumed by genuine customers is

	 ( )
( )

.Q p
p

n 1
g 2

m
=

-
� (5)

Fraudulent Customers
Consider the following utility function for each type-f customer

( ) ( ) , [Insecure AMIs],U q q T q q F qu f
B

f
S

f
B

f
S r

f
S

f D ,t= + - - ^ ^h h
� (6)

where ( )u $  and ( )T $  are same as in (2), q f
B  and ,q f

S  respec-
tively, denote the expected billed and stolen (or unpaid) 
quantities for a type-f customer, , q f

S
D ,t ^ h is the probability 

that a fraudulent customer is detected when distributor’s 
level of investment in monitoring of fraud is ,R, ! +  and 

( )Fr $  is the fine schedule exercised by the distributor upon 
successful fraud detection. Consistent with common prac-
tice of regulating distributors, the ( )Fr $  schedule is increas-
ing in q .f

S  It is fixed by a regulating entity and is known to 
all customers and the distributor. The probability of detec-
tion increases with ,  and .q f

S  If the stolen electricity q f
S  

were perfectly detectable, the customer would pay F qr
f
S^ h 

to the distributor. However, under imperfect detection, the 
distributor only recovers for , q q qf

S
f
S

f
S

D , 1t ^ h  via fine (in 
expectation), and the remaining quantity is stolen. The cus-
tomer surplus is

	 ( ) ( ) , ,q q q q F qTmaxv u
,q q

f
B

f
S

f
B

f
S r

f
S

f D
0 0f

B
f
S

,/ t+ - -
$ $

^ ^h h6 @ � (7)

and the first-order conditions (FOCs) are

( ) ( ),

( ) , .

q q T q

q q q F q

u

u
q f

B
f
S

f
B

q f
B

f
S

q f
S r

f
S

D

f
B

f
S

f
S

2

2 2 ,t

+ =

+ =

l

^ ^h h
6
6 6

@
@ @

That is, a small increase in total quantity ( )q q qf f
B

f
S= +  con-

sumed by a type-f customer generates a marginal surplus 
( )qu fl  equal to marginal payment ( )T q f

Bl  (respectively, 
expected marginal fine , q F qq f

S r
f
S

Df
S2 ,t ^ ^h h6 @ for a small 

increase in the billed (respectively, stolen) quantity.
Again consider a two-part tariff schedule ( )T q A pqf

B
f
B= +  

and a similar fine schedule .F q p qFr
f
S

f f
S= +^ h  Assuming 

square-root customer preferences ( ) ,q qu 2f f=  the FOCs 
imply that quantities q f

B  and q f
S  satisfy
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, , , .q p q p q p q
p

qF 1
2f

S
f q f

S
f f

S
f
B

f
S

D Df
S, 2 ,t t+ + = = -^ ^h h6 6@ @ � (8)

Thus, all customers have the same average total consump-
tion, that is,

	 .q q q q
p
1

f f
B

f
S

g 2= + = = � (9)

This results from the assumption that each customer’s val-
uation of the total quantity of electricity does not depend 
on customer type, that is, ( )u $  is the same for both type-g 
and type-f customers. For the case when, upon detection, 
the fraudulent customer pays a fixed fine F  that is much 
larger than ,p qf f

S  that is, ( ) ,F Fr $ .  the FOCs (8) simplify to

	 , , .q
p

q
p

qF
1

q f
S

f
B

2 f
S

Df
S2 ,t = = -^ h6 @ � (10)

Diagnostic scheme
The distributor employs a diagnostic scheme that requires 
a level of investment .R, ! +  The cost of stolen electricity is 
partially recovered by imposing the predetermined fine 
schedule on the customers who are correctly diagnosed to 
be fraudulent. Specifically, the expected fine collected from 
a type-f customer is , ,q F qf

S r
f
S

D ,t ^ ^h h  where the probability 
of detection , q f

S
D ,t ^ h is a property of the diagnostic scheme 

employed by the distributor.
Due to the inherent variability of meter measurements 

received from genuine and fraudulent customers, a high 
value of , q f

S
D ,t ^ h also entails a high probability of false 

positive (or false alarm), denoted as .Ft  The statistical deci-
sion theory models this tradeoff between Dt  and Ft  values 
as the ROC curve. That is, a diagnostic scheme with higher 

Dt  will result in a higher ,Ft  and vice versa. Let Dt  be con-
cave increasing in .Ft  It is reasonable to expect that the 
probability of false alarm Ft  increases as the distributor 
increases investment ,  in monitoring of fraud, that is, 

( ) [ , )0 1F , !t  is increasing in .R, ! +  Furthermore, assume 
( )F $t  to be a continuously differentiable and invertible 

function, and ( ) .0 0Ft =

Note that ,  models the distributor’s level of effort in mon-
itoring and enforcement for a fixed diagnostic scheme. Thus, 
,  can be viewed as the distributor’s willingness to act on the 
alerts of the diagnostic scheme by investigating customer 
meters and/or their communication with the centralized 
MDM system for security compromises. It is important to 
note that, in the current game-theoretic framework, a higher 
level of ,  does not imply a better diagnostic performance.

Another effect of the distributor’s level of investment 
can be a better diagnostic scheme. In this case, a higher 
level of ,  will improve the tradeoff between the probability 
of missed detection 1 Dt-^ h and probability of false alarm 

,Ft  that is, as ,  increases, the ROC curve will shift toward 
left. The models presented in this article do not consider 
this effect. See “Practical Evaluation of Electricity Theft 

Detection Schemes” for a discussion on the evaluation of 
different electricity theft detection schemes.

Detecting Electricity Theft
A practical implementation of the diagnostic scheme is out-
lined below. The distributor collects a time series of elec-
tricity consumption measurements yt

i  reported by the thi  
customer’s meter, where i N!  and { , , } .t K1 f!  Here K  
denotes the number of time intervals in one billing cycle. 
For simplicity, the time interval between subsequent mea-
surements, ( ),y yt

i
t
i

1-+  is assumed to be fixed and known a 
priori. Assume that the meter measurements yt

i  are inde-
pendent and drawn from identically distributed random 
variables, , , ,Y Yi

K
i

1 f  where yt
i  is the realization of the 

random variable .Yt
i  Under this assumption, the reported 

meter measurements are independently and identically 
distributed (iid). Let the probability density function (pdf) 
of meter measurements, ,yt

i  of type-g (respectively, type-f) 
customers be denoted by fg  (respectively, f f ). For the given 
customer preferences, the expected value of Yt

i  for a type-g 
(respectively, type-f) customer is qg  (respectively, q f

B ); see 
Figure 2. Consider the two simple hypotheses

: , , , [ ] ,

: , , , [ ] ,

q

q q

H Y Y f Y

H Y Y f Y

E

E

g

f
B

g

g g

f f

i
K
i

t
i

i
K
i

t
i

1

1

iid

iid

f

f 1

+

+

=

=

where qg  and q f
B  satisfy (4) and (8), respectively. The likeli-

hood-ratio test takes the form

	
( )

( )
,

f y

f y

f

g

t

K
t
i

t

K
t
i

H

H
1

1 g

f
U c

=

=

%
%

� (11)

where fg  (respectively, f f ) denotes the pdfs of meter mea-
surements yt

i  of type-g (respectively, type-f) customers, 
and c  reflects the distributor’s tradeoff between the prob-
ability of missed detection 1 Dt-^ h and the probability of 
false alarm .Ft  The diagnostic scheme employed by the 
distributor uses the previous K  meter measurements and a 
threshold value x  to detect fraudulent customers. That is, a 
customer i  is classified as fraudulent if ,y <

t

K

t

i

1 x
=
/  and 

Fraudulent

Genuine

q

f(q)

qgqb
f

qs
f

tF

tD

x

Figure 2  The computation of detection probability Dt  and false 
alarm probability .Ft



72  IEEE CONTROL SYSTEMS MAGAZINE »  FEBRUARY 2015

Practical Evaluation of Electricity Theft Detection Schemes 
 significant practical challenge for designing accurate elec-

tricity theft detectors is dealing with an adversarial environ-

ment where the attacker can design fake electricity consumption 

traces that will not be detected by the detector.

In the game-theoretic formulation proposed in this article, 

the fraudulent customers (attackers) choose qf
S  such that the 

marginal payment for a small increase in the billed quantity of 

electricity is equal to the expected marginal fine for the small 

increase in ;qf
S  see FOCs (8). This holds for the case when cus-

tomer valuations for total electricity consumed are the same for 

fraudulent and genuine customers. Essentially, the choice of 

qf
S  determines how different the distribution of meter measure-

ments sent by type-f customers will be from the distribution of 

measurements sent by type-g customers.

An alternative problem formulation is to find a distribution of 

compromised meter measurements that maximizes the quantity 

of stolen electricity subject to the constraint that individual me-

ter measurements will be undetected with high probability. This 

is the basis of recent work [18], where electricity traces of 108 

residential customers were obtained and analyzed from a real 

AMI deployment. 

The design of an optimal attack signal was based on the adver-

sarial model that maximized stolen electricity without being detect-

ed. In other words, the probability that a compromised meter mea-

surement would be detected by any of these algorithms is negligibly 

small. However, to remain undetected, the attacker must place a cap 

on the maximum amount of electricity that can be stolen.

A new performance metric was proposed in [18]. Here, in con-

trast to traditional ROC curves, the detection scheme’s perfor-

mance was evaluated based on how the distributor’s total loss 

due to undetected attacks, including the loss of revenue from net 

stolen electricity, varies with the probability of false alarm. Fig-

ure S1 provides a comparison of five detection schemes accord-

ing to this performance metric. Experimental results indicate su-

perior performance of ARMA-GLR, as it is the test that minimizes 

the amount of stolen electricity among all possible undetected at-

tacks. Additionally, [18] addresses issues related to concept drift 

(the fact that the statistical distribution of electricity consumption 

changes with time) and with training data set poisoning attacks 

(where the attacker can feed a profiling algorithm malicious data).

The anomaly detection schemes proposed in [18] should be 

used as part of a more comprehensive electricity theft detection 

system. A limitation of this approach is the assumption of the ad-

versary model, where the fraudulent customers continue to use 

electricity as genuine customers but will try to send lower meter 

readings to the utility to minimize their payments. This model, 

however, does not cover an attacker that increases electricity 

consumption but sends signals corresponding to their previous 

consumption. This type of attack can be detected by adding new 

balance meters and having frequent site inspections.

Some recent research has also focused on improving the 

privacy of electricity customers [20], [21]. The idea of these 

schemes is to shape the electricity usage signal to prevent infer-

ences that can be made with nonintrusive load monitors [22]. It 

is still not clear if any of these systems will ever see a significant 

deployment; however, because these schemes do not change 

the total consumption of electricity, the game-theoretic frame-

work presented in this article can still be applied to analyze equi-

librium customer choices.

Figure S1  The performance evaluation of several detection 
schemes: auto-regressive moving average with a generalized 
likelihood ratio (ARMA-GLR) test, a simple average consumption 
test, the nonparametric cumulative sum (CUSUM) algorithm, an 
exponential weighted moving average (EWMA) detector, and an 
outlier detection algorithm called local outlier factor (LOF).
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genuine otherwise. Figure 2 illustrates the resulting prob-
abilities Dt  and Ft

	 ( ) , ( ) .f y dy f y dyD f gF
0 0

t t= =
x x# # � (12)

For the purpose of analytical tractability, assume that 
the meter measurements received by the distributor for 
type-g and type-f customers follow exponential distribu-
tions with parameters /q1 g  and / ,q1 f

B  ,q qg f
B2  respectively,

	 ( ) , and ( ) .exp expf y q q
y

f y
q q

y1 1
g ft

i

g g

t
i

t
i

f
B

f
B
t
i

= - = -e eo o � (13)

Admittedly, the assumption that the meter measurements 
for type-g (respectively, type-f) customers are iid exponen-
tially distributed with parameters /q1 g  (respectively, /q1 f

Bh 
might not be consistent with real-world consumption pat-
terns. However, this assumption greatly eases the develop-
ment of analytical expressions for the equilibrium choices 
of the distributor and customers and helps to highlight the 

A
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interplay between the diagnostic scheme’s performance 
and the customers’ optimal choices.

Substituting (13) into the likelihood-ratio test (11), and 
taking the logarithm on both sides, yields the simplification

	 ,yt
i

H

Ht

K

1

g

f
U x

=

/ � (14)

where : / / .lnq q q q q qg f
S

g f
S

g f
S K

x c= -^^ ^ ` ^h hh h j  Under the 
assumption (13), Dt  and Ft  become

, .exp exp
q q1 1D

f
B

g
Ft

x
t

x= - - = - -c cm m

For a given ,,  the threshold x  can be expressed as a func-
tion of ( )F ,t

	 ( ) ( ) .( )lnq 1g F, ,x t=- - � (15)

Using this expression, the probability Dt  can be expressed as

	 ( , ) [ ( )] [ ( )] ,q 1 1 1 1D f
S

F

q

F qq p1
1g

f
S

f
B 2, ,,t t t= - - = - - -

e eo o � (16)

where the second equality follows from (9). Equation (16) 
represents the ROC curve of distributor’s diagnostic scheme.

Figure 3 plots the ROC curve for different fractions 
/ .q qgf

S  Note that when the stolen quantity is negligible 
,q 0f

S
"^ h  the diagnostic scheme uses random guessing 

,D F"t t^ h  and as the quantity of stolen electricity reaches 
close to the average consumption ,q qf

S
g"^ h  fraud is 

detected with almost certainty .1D "t^ h  

Optimal Choices of Type-f Customers
For given distributor choices of price p  and level of invest-
ment ,,  the optimal response of type-f customers can be 

derived from (16) and (10). The following definition is intro-
duced for notational convenience

.
q
q

qp1
1

f
B
g

f
S2/a =

-

Combining the ROC curve (16) with FOCs (10) provides 
that a  satisfies

	 ( ( )) ( ) ,ln Fp1 1 1
F F

2 , ,a t t- - =-a ^ h � (17)

from which the closed-form solution

	 ( , ) ( ( ))

( ( ))
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ln
W

p
F

1

2 2
1 1

F
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F

,
,

,

a
t

t

=
-

-
-e o

� (18)

can be derived. In (18), W  is the product logarithm function. 
It is defined as the inverse function of ( ) .f W WeW=  As an 
alternative to (18), Table 1 lists nonlinear equations that can 
be solved to obtain ( , )p ,a  for given , ,F p  and ( ) .F ,t

Assume a square-root customer preference function 
( )u q q2f f=  and a fixed fine schedule ( ) .F Fr $ .  Then, for 

any chosen ( )F ,t  (or, equivalently, ,) and per unit price p  of 
the distributor, the optimal consumptions q f

S  and q f
B  of the 

type-f customers are

	 ( , )
( , )

, ( , ) ( , ) ,q p
p p

q p
p p

1 1 1 1
f
B

f
S

2 2,
,

,
,a a

= = -c m � (19)

where ( , )p ,a  is given by (18). The optimal surplus of a 
type-f customer becomes

	 ( , ) ( , ) ( ) .v p p p A F F p1 2 1 1 ( , )
f F

p,
,

,
a

= - - + + -) ,ac ^ ^m h h � (20)

Note that when the level of investment is negligible ( ),0",  
the ability of a diagnostic scheme to detect fraud is reduced  
(p 0F "  and 0D "t ) and type-f customers’ stolen quantity 
increases (q qf

S
g"  and q 0f

B
" ). For this case, (20) simplifies to

( , ) ,v p p A0 2
f = -) c m

which is greater than the type-g customer surplus ( );v pg
)  

see (4).
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Figure 3  Received operating characteristic curves ( Dt  versus  
Ft ) for different levels (that is, / %q q 100f

s
g # h of stealing by type-f 

customers.

Table 1  ( , )p ,a  for different ( )F ,t .

( )F ,t Equation to solve for a

0.1 . .expFp 0 105 9 4902a a- =^ h
0.25 . .expFp 0 287 3 4762a a- =^ h
0.50 . .expFp 0 693 1 4422a a- =^ h
0.75 . .expFp 1 386 0 7212a a- =^ h
0.90 . .expFp 2 302 0 4342a a- =^ h
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Figure 4 provides contour plots for a range of fractions, 
( , )/ ( ),q qp pf

S
g,  using the FOC (17). The x-y coordinates 

respectively reflect the distributor’s investment levels ,  
(represented by the corresponding false alarm rates ( )),F ,t  
and the usage charge p  (scaled by regulator chosen F ). For 
a given ( )F ,t  (respectively, Fp ), the type-f customers steal 
less as p  (respectively, ,) increases. That is, fraudulent cus-
tomers are likely to steal more as the distributor’s level of 
investment in monitoring decreases, or as the usage charge 
or fine increases. Note that the contour plots entail no 
information on the distributor’s optimal choices of p  and .,  
As explained later, the distributor will choose p  and ,  to 
maximize profit, given the customers’ best responses.

Finally, since ,nN f m=  the total consumption by fraud-
ulent customers becomes

	 ( ) .Q p
p
n

f 2
m= � (21)

From (5) and (21), the total quantity provided by the dis-
tributor is

( ) ( ) ( ) .Q p Q p Q p
p
n

T g f 2/ + =

Under the stated assumptions, ( )Q pT  does not depend on m  
or ,,  and decreases with .p  The total stolen (or unrecov-
ered) quantity is

	 ( , ) ( , ( , )) ( , ),Q p n q p q p1f
S

D f
S

f
S, , ,,tm= -^ h � (22)

where ( , ( , )) ( , )p p q pq1 D f
S

f
S , ,,-^ h  is the unrecovered quan-

tity from a type-f customer. The distributor’s collection effi-
ciency can be expressed as

	 ( , ) ( )
( , )

,p Q p
Q p

1
T

f
S ,

, /h - � (23)

where Q f
S  is given by (22). Note that as ,0",  the entire con-

sumption of fraudulent customers is unrecovered by the 
distributor .Q Qf

S
f"^ h  For this case, the quantity QU  in (1) 

can be computed as

	 : ( , ) ,Q Q p
p
n0U f

S
2
m= = � (24)

and the collection efficiency achieves its minimum value 
( , ) .p 0 1h m= -

Distribution of Meter Measurements
The analysis presented in this article is also extensible to 
other parametric assumptions on the pdfs of meter measure-
ments. For example, consider a more realistic assumption 
that the probability density function of meter measurements 
of type-g (respectively, type-f) customers follow a normal 
(Gaussian) distribution with mean parameter qg  (respec-
tively, q f

B ), and known variance, .0>2v  Again, the assump-
tion q q 0> >g f

B  distinguishes the two distributions. The 
likelihood ratio test for this case is similar to (14), but with 
the threshold value / ( ) / ,lnq K q q 2ndf ndff

S
g f

S2x v c= + -^ ^h h  
where ndfc  is the parameter that governs the tradeoff 
between Dt  and Ft  for the case of a normal distribution. 
After solving for the value of ndfx  in terms of ( )F ,t  the ROC 
curve can be expressed as

	 ( , ) ( ) ,q K
q

1 1Q QD f
S f

S

F

2
1, ,

v
tt = - - --e c ^m ho � (25)

where ( ) : / /expz u du1 2 2Q
u z

2r= -
$
^ ^h h#  is the tail proba-

bility of the standard normal distribution (mean zero and 
unit variance). The Q  function is invertible. Equation (16) 
can be replaced by (25) for normally distributed meter mea-
surements; however, this case is not pursued further in this 
article for the sake of brevity.

It is important to note that, for both exponential and 
normal distribution assumptions, the type-g (respectively, 
type-f) customers influence the distributions of their meter 
readings only by choosing the mean parameters of the pdf, 
which characterizes their consumption patterns. In other 
words, under the stated assumptions, the customers’ 
choices only influence the mean parameter. They do not 
alter the form or high-order moments of the probability 
distribution of meter measurements. Extensions such as 
relaxing these assumptions on customer choices and 
including a broader class of meter distributions in the cur-
rent game-theoretic framework are a part of future work.

Optimal Surplus of Type-g Versus Type-f Customers
Consider combinations of distributor choices p and ,  for 
which the optimal surplus of a type-f customer vf

)  exceeds 
the type-g customer’s optimal surplus ,vg

)  given that both 
types of customers respond optimally. It is expected that 
such combinations of p and ,  favor higher levels of electricity 
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Figure 4  Isolines of different levels of stealing by type-f custom-
ers, that is, contour plots of , /q p q pf

s
g,^ ^h h for 30, 40, 50, 60, and 

70%. Environments with lower ,  and p  are likely to result in higher 
levels of stealing.
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theft. In other words, a favorable condition for a type-f cus-
tomer to remain fraudulent is

	 .v vf g$) ) � (26)

Customers are indifferent between types when .v vf g=) )  
Using (4) and (20), condition (26) becomes

	 ( , ) ( , ) ( ) .Fp p Fp p1 1 1( , )
F

p, , , $a a t- + - ,a^ ^h h � (27)

Figure 5 marks the type-f customers’ favorable region of 
fines and investment levels [that is, condition (26) holds] for 

.2 5a =  (that is, q f
S  is 60% of qg ), and for .3 0a =  (that is, q f

S  
is 66.6% of qg ), given that both types of customers respond 
optimally to the distributor’s choices. The points of inter-
section of the contour plots for 60% and 66.7% stealing 
levels (similar to Figure 4) with the corresponding favor-
able regions are also depicted. It can be checked that when 

( . , . ),2 275 3 05!a  there exists at least one distributor choice 
of ( , )p ,  such that the FOC (17) and condition (27) are satis-
fied; this corresponds to q f

S  in the range 56–67% of .qg  Note 
that although the consumer types are assumed to be fixed 
in the current model, in reality, they could switch between 
the types, and if for a given fine level, the distributor’s 
investment level is in type-f customers’ favorable region, 
more stealing is expected.

Other Extensions for Modeling Customer Preferences
While the proposed game-theoretic model considers a pop-
ulation of only two customer types (type-f and type-g) and 
identical customer preferences ( ),u $  the analysis presented 
here is extensible to a more general case of multiple secu-
rity levels and heterogeneous customer preferences. The 
following two generalizations can be pursued within the 
current framework.

1)	 The distributor faces a detection problem where there 
are multiple customer types with the same prefer-
ence and, thus, the same expected total consumption. 
The set of customer types is { , , },l1L f=  where 

.l 2>  This set covers the range of AMI security levels 
that are deployed in the population. For each L,j !  
the size of N j  is known to the distributor. Let jm  
denote the fraction of j-type customers in the total 
population: / .N Nj jm =  Then, .1

j j
L
m =

!
/  Analo-

gous to (2) and (6), type-j customer chooses qj  and qS
j  

to maximize the objective

	
( ) ( ) ( , ) ( )

Security level ,
U u q T q q q F q

j
j j j j

S
D j

S
j
r

j
S,t= - - -

6 @ �
(28)

where ( )Fj
r $  denotes the fine schedule for customers 

with meter security level j .L!
2)	 In addition to the AMI security levels, the customers 

also differ in their preferences of consuming electricity. 
Here the population N  can be subdivided into subpop-
ulations or categories , , ,N Nm1 f  where each category 
Nk  consists of customers with identical preferences 

( )uk $  (for example, the same socioeconomic class). How-
ever, the preferences, and thus the expected total con-
sumption, differ across categories. The distributor can 
determine preference type of each customer based on 
known parameters (such as demographics and electric-
ity profiling of the household). Similar to (28), a cus-
tomer with AMI security level j L!  and preferences 

( )uk $  chooses total consumption qjk  and stealing quan-
tity qS

jk  to maximize the objective

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 

Favorable Region Boundaries, that is, 
in the Region Below the Boundary:
Type-f Customer Welfare > Type-g
Customer Welfare

Isolines for Type-f
Customers’ Level of Stealing

F
p

tF(,)

60%

67%

Figure 5  Isolines of 60% and 67% stealing levels and favorable 
regions in which type-f customers obtain higher surplus, relative to 
type-g customers. For .F 1 1p 2  and . ,0 265F , 1t ^ h  the (solid-
boxed) isoline for 60% stealing level is inside the region bounded 
by the dashed-boxed line, that is, the region where type-f custom-
ers obtain higher surplus, relative to type-g customers. The cor-
responding ranges for 67% stealing level, that is, the intersection 
of the (solid-oval) isoline with the (dashed-oval) favorable region 
boundary, are .F 0 9p 2  and . .0 34F , 1t ^ h

The proposed game-theoretic framework is motivated by practical attack 

models, such as rigging the electricity consumption signal via cyber 

(reprogramming) or cyberphysical means.
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u q T q q q F q

e

Ujk k jk k jk jk
S

D jk
S

j
r

jk
S,t= - - -
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where ( )Tk $  denotes the tariff schedule for customers 
with preferences ( ) .uk $

Modeling the Costs of the  
Distribution Utility

Monopolist Distributor
For the quantity QT  provided by the distributor, let reve-
nue ( , )R p ,m  be the total revenue, when tariff schedule 

( )q pqT Af
B

f
B= +  is offered and fine schedule ( )Fr $  is imple-

mented to recover the quantity ( , )n q qf
S

D f
S,m t  from fraudu-

lent customers. Here the notation ( , )R p ,m  emphasizes the 
dependence of revenue on the distributor’s choice for the 
variables p  (the per unit price) and ,  (the level of fraud 
monitoring) when facing nm  fraudulent customers. The fol-
lowing analysis considers ( )qF Fr

f
S =  (that is, p 0f . ). The 

total revenue is the sum of revenues generated from genu-
ine and fraudulent customers

( , ) ( ) ( , )

( ) ( , ) .

R p n n q q

n pq p pq q

A p A p
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A F

1 1 1
f
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m m t

t
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= + + - +
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^
c

h
m

6
; ;E

@
E

� (30)

There are several different costs that the distributor pays. 
These costs include detection, monitoring, and recovery 
costs, that is, the costs of collecting fines. Consider the fol-
lowing two main operational costs to the distributor:

i)	 For providing the electricity to meeting the total 
demand QT  in each billing period, the distributor 
faces the cost ( ),C QT  where C  is an increasing func-
tion of .QT

ii)	 For a level ,  of investment in fraud monitoring, the 
distributor faces a cost ( ),,W  where ( ) .0>,Wl

The following costs are not included in the current 
model:

iii)	the cost of deploying secure AMIs to ensure that a 
fraction ( )1 m-  of the population is type-g customers 
and the cost of security upgrades of insecure AMIs of 
type-f customers

iv)	the cost of false alarms which penalizes the distribu-
tor for higher false positive rates.

Costs iii)–iv) can be readily introduced in the current 
model. Their inclusion will likely change the equilibrium 
results. Still, the results presented here can be justified for 
environments when iii) can be considered as a sunk cost or 

a subsidy by the regulator and iv) is relatively small, that is, 
when the distributor does not have to pay a high penalty 
for false positives.

For the sake of simplicity, consider linear cost of provid-
ing ( ) , ,C Q cQ c 0>T T=  and a linear cost of monitoring 
fraud ( ) ,n, ,}W =  where .0>}  The average (per customer) 
profit for an unregulated monopolist is
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where the superscript m  on rm  emphasizes the monopolist 
profit. The problem of choosing optimal ( , )p ,  that maxi-
mizes the distributor’s profit becomes

	

( ) ( ) ( ( , )

( , ( , ))) ,
subject to ,
the ROC curve of diagnostic scheme,

and ( ) ( ), the optimal customer response
( ), ( , ), ( , ),

, , nonnegative customer valuations.
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(32)

The optimization problem (32) can be solved by ignoring 
the constraints initially, but verifying them ex post. The 
distributor FOCs with respect to p  and ,  are

	 ( ) ( ) ( , ) ( , ( , )) ,cp q p pq p F q p 0p g p f
S

D f
S2 2 , , ,m t- + - + =^ ^h h � (33)

	 ( , ) ( , ( , )) .pq p F q p 0f
S

D f
S2 , , ,m t }- + - =, ^ h � (34)

Taking into account the optimal customer responses, these 
FOCs can be simplified. In particular, rewriting FOC (33) 
and using the FOC for type-f customers (8)
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(35)

Thus, in equilibrium, the price p)  is determined solely by 
customer preferences. With a monopolist distributor, the 
price reflects a monopolistic markup ( )c c.p- =  From (4), the 
optimal total consumption for a type-g or type-f customer is

.
c

q q
p
1

4
1

g f 2= = =) )
)

In recent years, basic protective measures such as tamper-evident seals  

and secure-link communications have been developed for AMIs.
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Next, substituting p)  into (17),

	
( )

( ( ))
( ) .

c cln
q F1 4

1
1 2

1c

f
S

F q
F2 2

1 4
1

f
S2,

,
t

t
-

-
- =-

- ^ h � (36)

Similarly, the distributor FOC (33) (with respect to ,) can be 
simplified using (8)
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where the notation ( , )1 $ $2  indicates a partial derivative 
with respect to the first argument. From (16),
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Solving (36) and (37) gives equilibrium q f
S)  and .,)  In fact, 

q f
S)  can be expressed as
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A reasonable model of a differentiable and increasing func-
tion ( )F $t  is
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+
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For this model of false alarm probability (see Figure 6),
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The optimal q f
S)  and q f
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where the monopolist distributor’s optimal level of invest-
ment ,)  satisfies
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where / ./b } m  In summary, (4) and (18)–(19) characterize 
the customers’ optimal choices ,qg  and ,q qf

B
f
S  for a given 

distributor choice , ,p ,^ h  and (35)–(41) characterize a monop-
olist distributor’s optimal choices , .p ,) )^ h

Figure 7 shows equilibrium choices ,p ,) )^ h of a monopo-
list distributor for .F 2 0=  and different values of .b  For a 
given b  (that is, the ratio of }  and m ), the distributor 
chooses a higher per unit price p)  for lower levels of invest-
ment ,)  in fraud monitoring. This conclusion also holds for 
other values of .F  The optimal profit ,pm ,r ) ) )

m ^ h (net A) of 
the distributor also increases with ,D ,t )^ h  as shown in 
Figure 8. That is, for a given b  (ratio of }  and m ), the dis-
tributor’s profit increases with level of investment ,)  in 
fraud monitoring. Figures 7 and 8 also show that for fixed 
F  and a chosen ,D ,t )^ h  the monopolist distributor prefers 
higher p)  as b  increases (that is, }  increases or m  decreases). 
These observations are consistent with the price-setting 
behavior of a profit-maximizing monopolist.
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It is instructive to study how the distributor’s collection 
efficiency h  [see (23)] varies with different equilibrium choices 

, .p ,) )^ h  Figure 9 (respectively, Figure 10) shows ,p ,h ) )^ h versus 
F ,t )^ h for different values of b  when the fixed fine .F 0 5=  

(respectively, .F 2 0= ) and the fraction of type-f customers is 
. .0 5m =  Interestingly, the collection efficiency h  versus F ,t )^ h 

shows different behavior for different fine levels. In particu-

lar, for lower values of ,F  the collection efficiency h  increases 
with .,)  In contrast, for higher values of ,F h  decreases with 

.,)  This behavior can be partly explained from the fact that the 
ratio /q qf

S
g
))

 (where q pg
2

=) ) -^ h ) evolves differently with 
respect to F ,t )^ h for low and higher values of .F  In addition, 
for fixed F  and chosen ,D ,t )^ h  the efficiency h  decreases as b  
(or equivalently, }) increases.

Regulation of Electricity Distribution Utilities

E lectricity is delivered to the customers by distribution utilities 

(or distributors), which are firms operating as regulated mo-

nopolists. Each distributor is an exclusive franchise. It is sub-

jected to tariff and performance regulations by the public utility 

commission (or regulator). The principles for tariff regulation are 

broadly similar across different utilities [23]. Ideally, the regula-

tor would like to achieve operational efficiency to ensure reliable 

delivery at the lowest cost, dynamic efficiency to meet future de-

mand, and consumption efficiency to ensure the lowest prices 

subject to cost recovery of maintenance and provision of short-

term cost and long-term investment by the distributor [24], [25].

The design of regulatory requirements would be an easy task if 

the regulator were perfectly informed about the distributor’s costs 

and the customer demand [26]. In reality, the distributor has an 

informational advantage over the regulator about both aggregate 

customer demand and its own operational costs; see Figure S2. 

In such cases, the regulatory design can become extremely subtle 

and fragile to changes in the regulator’s assumptions about the 

distributor’s efficiency and costs. There exists a well-developed 

body of work dedicated to designing optimal regulatory policies for 

a monopolistic distributor who has privileged information about its 

own technological capabilities and customers’ demand and when 

the regulator has well-defined intertemporal commitment pow-

ers [27]. Here the regulator is not subject to a time-inconsistent 

optimal policy. However, such a normative analysis assumes that 

the imperfectly informed regulator perfectly knows the structure of 

the regulated environment and has a formal model of information 

asymmetry between the regulator and the distributor.

In practice, the precise nature of information asymmetry and 

the full set constraints that affect the regulator and the distributor 

are not known a priori. Hence, “well-designed” regulatory policy 

must be robust, that is, it must perform “reasonably well” under 

broad conditions, although such a policy may be suboptimal in 

each particular case [28]. Two main regulatory regimes have 

been adapted for distribution utilities: i) rate of return (dominant 

regime in the United States) and ii) price cap (dominant regime 

in European Union and developing countries).

Below each regime is outlined briefly. This article considers 

an average revenue constraint imposed by the regulator, which 

is an example of price-cap regulation.

Rate of return versus  
price cap regulation
Under rate-of-return regulation, the distribution utility is given a 

prespecified a rate of return, and the tariff structures for the elec-

tricity are adjusted as the distributor’s cost changes to ensure that 

the distributor will be able to earn the authorized rate of return. 

Here, the regulator bears the onus of setting the prices and en-

sures that the rate of return does not deviate significantly from the 

target rate. Since the prices are directly linked to the distributor’s 

costs, the distributor lacks incentives to engage in cost-reduc-

ing activities. A classical example is the Averch-Johnson effect, 

which demonstrates that under the rate-of-return regulation, the 

distributor deviates from cost minimization. However, since the 

distributor faces a limited risk of expropriation of sunk invest-

ments by the regulator, upgrades to the distribution network can 

Figure S2  The players in regulated electricity distribution. A 
central issue in the regulation of distribution utilities is the pres-
ence of asymmetric information between the three entities 
affected the electricity distribution system: the regulator, dis-
tributors, and end customers.
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This article develops a game-theoretic framework that explicitly models  

the adversarial nature of the electricity theft problem.
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Perfect Competition
The optimal choices ,p ,) )^ h for the case when distributor is 
a monopolist are different than the optimal choices in case 
of perfect competition. Now consider a benchmark case of 
perfect competition, where the average per customer profit 
is zero, that is,

	 ( ) ( ) ( , ) ,A p c q p pq F q 0c
g f

S
D f

S, ,r m t }= + - + - + - =m ^ h � (42)

where the superscript c  on rm  emphasizes that the distrib-
utor’s operating environment is that of perfect competition. 
Let ( , )p ,@ @  denote the distributor’s choice of per unit price of 
electricity and investment level in fraud monitoring under 

perfect competition, respectively. The following set of con-
ditions lead to zero profit
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Note that these conditions are not the only ones that ensure 
zero distributor profit. With (16), and assuming ( )F ,t =

/ ,1, ,+  (44) can be rewritten as
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be sustained in this form of regulation. The investment incentives 

of the regulated distributor are especially important since the in-

frastructure upgrades (such as capacity expansion) and modern-

ization (such as AMI installations) require substantial costs.

Under price cap regulation, the tariffs rate of the distributor to 

customers could increase, on average, at a specified rate during 

a prespecified time. The specified rate is typically linked to the in-

flation rate and may fail to reflect the distributor’s short-term costs 

and/or profit. Typically, under a price cap regulatory regime, only 

average prices are controlled by the regulator, and the utility is 

given the flexibility to control the pattern of relative prices subject 

to predefined constraints. Since the tariff rates are specified for 

relatively long periods of time, the distributor has incentives to 

minimize its operating costs, and thus to operate efficiently.

Notice that a price cap does not directly provide incentives 

for long-term investments, such as distribution network up-

grades and reduction of nontechnical losses. Similarly, a price 

cap does not incentivize the distributor to choose optimal al-

location of service quality. To remedy this, additional require-

ments on service quality are frequently imposed. Still, the price 

cap regulation may fail to incentivize the distributor to invest in 

monitoring and enforcement efforts to reduce unbilled electricity 

(such as customer theft) at socially optimal levels.

When the pricing flexibility of price cap regulation is combined 

with the rewards (respectively, punishments) for performance im-

provement (respectively, deterioration) relative to the regulator’s 

benchmark, the resulting regime is termed performance-based 

(or incentive) regulation. Indeed, in the face of a rapidly changing 

technological environment and evolving customer preferences, 

the regulated electricity distribution industry is moving toward in-

centive regulation. The goal of incentive regulation is to improve 

distributors’ incentives by decoupling the regulated price structure 

from the need to know the exact operating and maintenance costs.

Regulated distributor
This article presents distributors’ optimal choices ,p ,^ h for the case 

of an unregulated monopolist and the case of perfect competition. 

This analysis can be extended to a regulated distributor who is 

subject to price cap or rate-of-return regulation. For example, the 

distributor could face an average revenue constraint imposed by a 

regulator, that is, with the tariff schedule T $^ h, fine schedule ,Fr $^ h  

and the investment level , in fraud monitoring. Then, the average 

revenue (per unit quantity) collected should be no more than a regu-

lator-specified price cap .p  The computation of average revenue de-

pends on audits and regulatory processes followed by the regulator.

The average revenue can be computed based on the total 

quantity QT  provided by the distributor or the quantity ,Q QT f
s-^ h  

which excludes the stolen quantity of electricity; see (22)–(23). 

In the later case, the regulator only accounts for the billed and 

recovered (via fines) quantity in setting the price cap for the dis-

tributor’s average revenue. Thus, two possible designs of an 

average revenue constraint are
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where the total revenue ,R p ,m ^ h is given by (30). Clearly, (S2) 

imposes a stricter regulatory imposition on the distributor. In the 

case of (S2), the regulator does not account for the fraudulent 

customers’ surplus resulting from the successfully stolen elec-

tricity .Qf
s  From the viewpoint of the distributor (respectively, 

regulator), the constraint (S1) [respectively, (S2)] is more de-

sirable because it eases (respectively, tightens) the regulatory 

constraint. Using (22) and (30), and for special case ,F Fr $ .^ h  

constraints (S1) and (S2) can be rewritten as
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When an average revenue constraint is imposed on the distributor, 

the regulated distributor’s optimal price pr  and level of investment in 

fraud monitoring r,  can be obtained by solving the constrained opti-

mization problem (32), subject to ROC curve (16), customer respons-

es (4) and (17)–(19), and the average revenue constraint (S1) or (S2).
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Next, substituting ( ) / ,1F , ,,t = +  into the fraudulent cus-
tomer’s FOC (17) gives
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Optimal ( , )p ,@ @  can be determined by feasible solutions of 
equations (45)–(46) for c,p =@  and given parameters , , ,A F }  
and .m  In particular, optimal q f

S@  (and hence, q f
B@ ) can be 

obtained as
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Substituting q f
S@  into (46) gives .,@

This completes the analysis of distributor choices when 
he is a monopolist or faces perfect competition. See “Regu-
lation of Electricity Distribution Utilities” for a discus-
sion  of environments when the distributor is a regulated 
monopolist.

An alternative formulation
A second game-theoretic model, which is not fully covered 
here, assumes that all customers have the same initial prefer-
ences (utility function) and that they make a decision to 
become fraudulent, or stay genuine, depending on the prob-
ability of detection and the fine they would face if caught.

Once the customers make their decisions about which 
type they will be (genuine or fraudulent), they could be 
viewed as if they are playing the game described in this 
article. Therefore, this second model could also be viewed 
as a leader-follower game, where relative to the first model, 
the customers have to make an additional decision, that is, 
to choose whether they will be honest or fraudulent.

For any fixed fine and detection probability, it is possible 
to determine what fraction of customers will be fraudulent 
in equilibrium. Thus, it is possible to jointly solve the prob-
lem of the distributor’s choice of security investment and 
find the corresponding fraction of customers that would 
choose to be fraudulent with a given security investment. 
Then, the problem becomes identical to the original formula-
tion. This allows the distributor to compute expected profit 
as a function of security investment. Next, if the distributor 
is a monopolist, it maximizes its profit and chooses the equi-
librium level of investment in monitoring fraud that achieves 
the highest profit.
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Historically, widespread energy theft is characteristic for developing 

countries, with theft of electricity reaching up to 50% in some jurisdictions.




