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Abstract  

Metformin, widely used as first-line treatment for type 2 diabetes, exists primarily as a 

hydrophilic cation at physiological pHs.   As such, membrane transporters play a substantial role 

in its absorption, tissues distribution, and renal elimination. Multiple organic cation transporters 

are determinants of the pharmacokinetics of metformin, and many of them are important in its 

pharmacological action, as mediators of metformin entry into target tissues. Further, a recent 

genomewide association study (GWAS) in a large multi-ethnic population implicated 

polymorphisms in SLC2A2, encoding the glucose transporter, GLUT2, as important 

determinants of response to metformin.  Here, we describe the key transporters associated with 

metformin pharmacokinetics and response.  
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Introduction 

Metformin is among the world’s most widely prescribed drugs, and is used primarily for 

the treatment of type 2 diabetes (T2D). Metformin and its structurally related analog, phenfomin, 

are derivatives of guanidine, which was discovered in the extracts of the plant Galega officinalis 

(French Lilac) in the 1920s1.   Metformin improves peripheral and liver sensitivity to insulin, 

reduces glucose production in the liver, increases insulin-stimulated uptake and utilization of 

glucose by peripheral tissues, decreases appetite, and causes weight reduction2.  In recent 

years, new indications for metformin use in clinical practice have emerged. In particular, a 

number of studies have shown that metformin can positively influence multiple cardiovascular 

disease risk markers, including improvement of serum lipid profiles and modulation of 

inflammatory markers, and possibly reduce risk for cancer2-5.  

 Metformin is an oral agent. With a pKa of 11.5 and a low logP value, -1.43, metformin is 

mostly ionized at physiological pHs6.  Thus, rapid passive diffusion of metformin through cell 

membranes is unlikely. Excretion of unchanged metformin in the urine is its major mode of 

elimination, and metabolites of the drug have not been identified6.  In addition to filtration in the 

kidneys, the drug is eliminated by active tubular secretion.  According to the Biopharmaceutics 

Drug Disposition Classification System (BDDCS)7, metformin, with its high solubility and poor 

metabolism, belongs to Class 3, suggesting that absorptive transporters are necessary for 

intestinal absorption  to overcome its poor permeability.   Furthermore, the large apparent 

volume of distribution of metformin indicates significant tissue uptake8-10. Thus, transporters 

appear to play important roles in the absorption, distribution and elimination of metformin. Many 

studies have shown that metformin is a substrate of various polyspecific organic cation 

transporters, which are important determinants of pharmacokinetics, including OCT1 

(SLC22A1), OCT2 (SLC22A2), OCT3 (SLC22A3), MATE1 (SLC47A1), MATE2 (SLC47A2), 

PMAT (SLC29A4), and OCTN1 (SLC22A4)11-16 (Fig. 1.1, Table 1).  In addition, a recent study 
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showed that metformin is a substrate of the thiamine transporter, THTR-2  (SLC19A3)17, which 

may play a role in its intestinal absorption and renal re-absorption.  

In the last 50 years, more than 100 publications have performed or discussed metformin 

pharmacokinetics studies, which Kajbaf et al. have listed and discussed in the recent review18. 

The highly variable metformin pharmacokinetic parameters may be due to variation in dose size, 

dose form, subject ethnicity, genetics, study design, sample size, and analytic methods. Here, 

we summarize the major properties and pharmacokinetic parameters of metformin (Table 2). In 

terms of pharmacodynamics, a GWAS indicated that the glucose transporter 2, GLUT2 

(SLC2A2) has a significant impact on metformin response19.  That is, genetic polymorphisms of 

SLC2A2 were associated at genomewide level significance with glycemic response to the drug 

in 8,000 patients with T2D.   

Clearly transporters are critical in both the pharmacokinetics and pharmacodynamics of 

metformin.  In fact, in part based on elegant mechanistic drug-drug interaction studies carried 

out in the Sugiyama laboratory, regulatory agencies recommend that metformin be used as a 

probe drug in both in vitro and in vivo studies to evaluate potential drug-drug interactions that 

involve the renal drug transporters, OCT2 and MATE126-29.  Though candidate gene studies 

implicate genetic polymorphisms in many of the pharmacokinetic transporters in the disposition 

of metformin, a large study in type 2 diabetic patients, failed to identify significant associations 

between genetic variants in metformin pharmacokinetic transporters and glycemic response to 

the drug30.  These interesting, but seemingly contradictory studies, will be discussed in this mini-

review, which summarizes our current understanding of metformin transporters, and highlights 

the transporters that play a role in metformin pharmacokinetics and pharmacodynamics 

including those that mediate clinically important drug-drug interactions involving metformin.  
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Transporters involved in metformin intestinal absorption 

Metformin is primarily taken orally as the hydrochloride salt, in a tablet form.  After oral 

administration, metformin is slowly absorbed from the proximal small intestine 

(duodenum)10,31,32.  An inverse relationship was observed between the dose ingested and the 

relative absorption. That is, a greater fraction of metformin is absorbed after lower doses than 

after higher doses9. Specifically, the bioavailability (F) of metformin is reduced from 86% to 42% 

after oral doses of metformin ranging from 250 mg to 2000 mg9. Though bioavailability for 

most drugs is determined by absorption and metabolism in the gastrointestinal tract as 

well as hepatic metabolism, because metformin is not metabolized its bioavailability is 

determined primarily by intestinal absorption. These data, which suggest that metformin 

absorption is mediated by a saturable absorption process9,14,33, are consistent with a major role 

of intestinal influx transporters in the oral absorption of metformin.  

To date, several transporters have been implicated in metformin intestinal absorption.  

The plasma membrane monoamine transporter (PMAT; SLC29A4), identified in 2004, accepts 

structurally diverse hydrophilic organic cations as substrates, such as 1-methyl-4-

phenylpyridinium (MPP+), tetraethylammonium, serotonin, dopamine, epinephrine, 

norepinephrine, guanidine, and histamine34,35.  In immunofluorescence studies36, Xia et al. 

showed that PMAT is primarily targeted to the apical membrane of polarized epithelial cells . 

Kinetic studies indicate that metformin has an apparent Km of 1.32 mM for PMAT14, which is in 

the range of other organic cation transporters (Table 1). In addition, PMAT-mediated metformin 

uptake rate versus concentration is sigmoidal, with a Hill coefficient >2 and is greatly stimulated 

by acidic pHs.  The finding that metformin’s uptake rate is greater at pH 6.6 than at pH 7.4, is 

consistent with intestinal physiology. For example, the pH in the intestinal lumen can be as low 

as 614. These data suggest that the naturally acidic environment in the intestinal lumen can 
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serve as a driving force to promote PMAT-mediated uptake of metformin.  

Transporters in the SLC22 family also appear to play a role in metformin intestinal 

absorption.  The organic cation transporters, OCT1 (SLC22A1) and OCT3 (SLC22A3), are 

expressed in the small intestine, and metformin is an excellent substrate of both transporters 

(apparent Km of 1.47 mM for OCT1 and 1.10 mM for OCT3) (Table 1).  OCT3 is localized to the 

brush border membrane of enterocytes, and appears to play a role in metformin absorption.  

Using genetically engineered mice, Chen et al. showed that Oct3 deletion significantly reduced 

the bioavailability of metformin15. After oral doses, a significantly lower bioavailability was 

observed in Oct3 knockout mice compared with wild-type mice at a dose of 50 mg/kg 

metformin15. These data suggested that OCT3 plays an important role in metformin absorption 

in vivo.  OCT1 is localized to the basolateral membrane of the enterocyte, and is suspected to 

play a major role in metformin absorption by mediating its flux across the basolateral membrane 

of enterocytes to the portal circulation37,38. 

Carnitine/organic cation transporter (OCTN1; SLC22A4), another transporter within the 

SLC22A family, was also previously shown to be involved in metformin absorption13. OCTN1 

localizes to the apical membrane of enterocytes in the small intestine of mice and humans. In 

vitro experiments show that OCTN1 mediates the uptake of metformin in human embryonic 

kidney 293 cells transfected with the mouse OCTN1 gene though the uptake of metformin is 

much lower than the uptake of the typical substrate [3H] ergothioneine (ERGO). The study 

suggests the possible involvement of OCTN1 in the intestinal absorption of metformin13. 

Additionally, Han et al. demonstrated that the serotonin reuptake transporter (SERT; 

SLC6A4) transports metformin with a Km of 4 mM in vitro24.   Paroxetine, a selective serotonin 

reuptake inhibitor (Ki = 0.8 nM for SERT)39, inhibited OCT1-, 2-, 3-, and SERT-mediated 

metformin uptake in single transporter-expressing cell systems with IC50 values of 1.0 ± 0.2 µM, 
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11.9 ± 1.2 µM, 6.4 ± 1.3 µM, and 6.0 ± 0.6 nM, respectively.  Further, SERT appears to 

contribute to metformin uptake across the apical membrane in Caco-2 cell monolayers24. These 

data suggest that SERT may contribute to the intestinal absorption of metformin.  

Recently, Liang et al. demonstrated that thiamine transporter 2 (THTR-2; SLC19A3), the 

main transporter for intestinal thiamine absorption, transported metformin with a Km of 1.15 mM 

in cells stably expressing human THTR-2. The uptake mechanism for human THTR-2 was pH 

and electrochemical gradient sensitive17.  In particular, at low pH’s metformin uptake by THTR-2 

was enhanced.  These data suggest that THTR-2 contributes to the intestinal absorption of 

metformin, and may be a target for metformin-nutrient interactions. Taken together, a number of 

transporters have involved in metformin intestinal absorption. However, the relative 

contribution of individual transporters to intestinal absorption is not clear at this point, 

and will depend upon their expression levels and kinetic properties. Further information 

on regional expression of transporter proteins in the intestine on both basolateral and 

apical surfaces and well-constructed PBPK models are needed.  

Transporters involved in metformin tissue distribution 

In humans, the volume of distribution (Vd) of metformin has been reported to range from 

63 to 276 L after intravenous administration. After oral administration Vd /F estimated during 

multiple dosing with 2000 mg metformin daily is approximately 600 L8,10,40. The large Vd 

indicates significant tissue uptake of metformin and suggests that membrane transporters may 

be major determinants of the tissue distribution of metformin.  In fact, in a previous study of the 

pharmacokinetics of metformin, we observed a lower oral volume of distribution (Vd/F) in the 

individuals carrying reduced function alleles of OCT1 (R61C, G401S, 420del, or G465R), an 

important hepatic transporter41. 
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OCT3 also plays a role in metformin tissue distribution. The transporter is detected in 

almost all tissues and is expressed at high levels in adipose tissue, lung, prostate, and skeletal 

muscle in humans and rodents42,43. Further, OCT3 is expressed in the blood brain barrier, 

placenta, and salivary glands42-44.  Using the Oct3 knockout mouse model, Chen et al. showed a 

2-fold decrease in the apparent volume of distribution of metformin in knockout compared with 

wildtype mice after intravenous doses of metformin15. Similar results were observed in another 

published study44. Consistent with its reduced volume of distribution, metformin tissue-to-plasma 

ratios were significantly lower in the liver, muscle, and adipose tissue in knockout mice, 

indicating an important role of OCT3 in tissue distribution15. Additionally, recent whole-body PET 

imaging study in humans showed that 11C-metformin was primarily taken up in the liver, kidney, 

urinary bladder, and to a lesser extent in the salivary glands, skeletal muscle, and intestines45. 

Mechanistic studies in mice showed that 11C-metformin uptake in the kidney and liver increased 

in the presence of the MATE-selective inhibitor, pyrimethamine, suggesting an important role of 

MATEs in the pharmacokinetics of metformin27. Taken together, data from animal and human 

studies demonstrate that metformin has a broad tissue distribution and that transporters play an 

important role in the distribution of the drug.  

Transporters involved in metformin renal elimination 

The major clearance pathway of metformin is renal elimination6,8,10.  As noted earlier, 

metformin is cleared in the kidney by both filtration in the glomerulus and tubular secretion.   

The estimated population mean renal clearance (CLR) of metformin is 507 ± 129 mL/min in 

healthy adults and diabetic patients with good renal function, consistent with active tubular 

secretion6. Metformin is a substrate of several organic cation transporters expressed in the 

kidney. OCT2 (SLC22A2) is mainly expressed on the basolateral membrane of renal tubule 

cells, where it mediates entry of metformin into the tubule cells and, together with MATE1 

(SLC47A1) and MATE2 (SLC47A2), mediates the secretion of metformin into urine29,46-48.    
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A number of drug-drug interaction studies have demonstrated a role for MATE1 in 

metformin renal elimination28,29,49,50. An elegant in vitro and in vivo studies from the Sugiyama 

laboratory, clarified previously confusing data. That is, his research group determined that the 

H2-receptor antagonist, cimetidine, previously thought to be an OCT2 inhibitor, reduced 

metformin renal clearance by inhibiting MATEs predominantly29.  Further, pyrimethamine, an 

antimalarial drug and a selective inhibitor of MATEs (over OCT2) reduced metformin renal 

clearance28,51,52. Surprisingly, in a recent study of the effect of the H2-receptor antagonist, 

famotidine on metformin pharmacokinetics, there was some evidence that the renal clearance of 

metformin increased after famotidine53, consistent with the drug inhibiting a re-absorptive 

transporter for metformin in the kidney. Though speculative, the transporter may be THTR-2, as 

discussed previously, because of its role as a re-absorptive transporter50.  In addition to drug-

drug interaction studies, which have provided mechanistic information on the transporters 

involved in metformin renal elimination, human genetic studies have contributed immensely to 

our understanding of transporters involved in metformin renal elimination. In particular, in 

candidate gene studies in healthy volunteers, SLC22A2 and SLC47A1/SLC47A2 

polymorphisms have been associated with changes in the pharmacokinetics and/or 

pharmacodynamics of metformin54-56.  

Studies in genetically engineered mice have complemented and extended human 

genetic and drug-drug interaction studies focused on metformin.   In an Oct1/2 double-knockout 

mice, metformin clearance is reduced substantially and secretion is totally abolished in the 

double knockout mice.  Further, the volume of distribution is reduced 3.5-fold in the double 

knockout mice57. Similarly, Mate1 knockout mice exhibit a 2-fold increase in systemic exposure 

to metformin as compared to their wildtype counterparts, presumably as a result of reduced 

renal clearance of the drug.48 In addition, lactic acidosis, a severe adverse effect of metformin, 

is associated with increased metformin exposure.  Reduced MATE function has been shown to 
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cause elevations in metformin concentrations, which represents a risk factor for metformin-

induced lactic acidosis58. Collectively, the data suggest that OCT2, MATE1 and MATE2 play 

critical roles in the renal secretory clearance and toxicity of metformin.   

Transporters involved in metformin pharmacologic action 

In terms of pharmacodynamics, studies in mice have demonstrated important roles for 

organic cation transporters. In particular, the liver is a major site of action for metformin, which 

reduces hepatic glucose production1,3,32. OCT1 and OCT3 are expressed on the sinusoidal 

membrane of hepatocytes and play a major role in the uptake of metformin from blood into the 

hepatocytes59.  In 2002, elegant studies from the Sugiyama group showed that OCT1 is 

responsible for the hepatic uptake and intestinal distribution of metformin60,61  Further, reduced 

hepatic metformin concentrations have been shown to affect metformin response in mice62. In 

particular, the hepatic accumulation of metformin was significantly greater in wildtype mice than 

in Oct1 knockout mice after a single oral dose of the drug. Consistent with its lower 

accumulation, the activation of AMP-activated protein kinase (AMPK), a biomarker of metformin 

action, was substantially reduced in livers from Oct1 knockout mice. Metformin significantly 

reduced fasting plasma glucose levels by more than 30% in wildtype mice fed high-fat diets but 

not in the Oct1 knockout mice59.   

In addition to OCT1, OCT3 plays a role in the pharmacologic effects of metformin.  

Again, studies in genetically engineered mouse study have strongly suggested that metformin 

has therapeutic effects in peripheral tissues.  For example, metformin treatment significantly 

reduced blood glucose AUC after an oral glucose tolerance test in wildtype but not Oct3 

knockout mice15.   Correspondingly, phosphorylated AMPK and expression levels of the insulin-

sensitive glucose transporter, GLUT4, increased in adipose tissue in response to metformin in 

wildtype mice, but to a much lesser extent in Oct3 knockout mice15. Interestingly, Lee et al. 
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demonstrated that OCT3 is highly expressed in salivary glands and plays a role in metformin 

accumulation in salivary glands, which may induce taste disturbances associated with the 

drug44. These data suggest that OCT3 plays a major role in the uptake of metformin into 

multiple tissues, thereby modulating the therapeutic and toxicological effects of metformin 

peripherally. 

In terms of metformin pharmacologic action, human genetic studies associating 

transporters and glycemic response have shown complex and somewhat contradictory results 

41,54,63-65, which may due to differences in study design, sample size, and different end-point 

measurements.  Recently, in a large meta-analysis in almost 8,000 patients with T2D, Dujic et 

al. showed that polymorphisms in transporters involved in metformin pharmacokinetics 

(SLC22A1, SLC22A2, SLC22A4, SLC47A1, and SLC47A2) have no significant impact on 

glycemic response to the drug30. Though transporters clearly play a role in metformin 

pharmacokinetics, and indeed genetic polymorphisms in various transporters may modulate the 

pharmacokinetics of metformin, they do not appear to be critical to the pharmacodynamics of 

the drug in diabetic populations.  Recently, in a large human genome-wide association study 

(GWAS), Zhou et al. showed a strong association between SLC2A2 genetic variants and 

glycemic response to metformin (HbA1c reduction) in diabetic patients19. GLUT2 is highly 

expressed in the liver and plays an important role in glucose homeostasis66. The generally 

accepted role of GLUT2 in the liver is to take up glucose following meals and to release glucose 

into the blood during fasting. Previous studies have shown that one of the major actions of 

metformin is inhibition of hepatic gluconeogenesis. Though speculative, GLUT2, which is 

responsible for the last step (glucose release) in the gluconeogenesis pathway, may be a target 

of metformin. That is, metformin may reduce its function (or expression) resulting in reduced 

hepatic glucose output. Individuals with reduced function variants of SLC2A2 may be 

particularly sensitive to this effect and respond better. Further studies to understand the 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 12

underlying mechanism of GLUT2 in metformin action and genetic variants in GLUT2 on 

modulation of metformin action are warranted.  

Conclusion 

Clearly the available data today provide strong evidence that multiple membrane transporters 

are critical determinants of the absorption, disposition and pharmacologic action of metformin. 

Given that metformin is transported into different tissues by various transporters and has 

pharmacologic effects in the liver as well as in peripheral tissues, combined factors that 

modulate transport function including genetic polymorphisms, concomitant medications, and 

underlying disease may contribute to metformin response. Dr. Yuichi Sugiyama and his 

colleagues have contributed immensely to our understanding of the mechanisms of metformin 

transport. Their groundbreaking studies identifying OCT1 as the major liver transporter for 

metformin, together with their elegant studies focused on understanding the mechanisms of 

transporter-mediated drug-metformin interactions paved the way to our current understanding of 

the pharmacologic mechanisms of one of the world’s most widely prescribed drugs.  We look 

forward to new studies from his group and others applying computational methods to analyze 

and predict the complex pharmacokinetics and pharmacodynamics of metformin.  
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Figure Legend 

 

Figure 1.1. Diagram of major transporters involved in metformin disposition.  Arrows show the 

direction of transport that has been observed in in vivo studies in mammals.  
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Table 1. Summary of Metformin Transporters 

Transporter name Km 
(mM) 

Major Tissues Reference 

THTR-2 (SLC19A3) 1.15 Intestine and Liver Liang et al. 201517 
OCT1 (SLC22A1) 1.47 Liver and Kidney Kimura et al. 200520; Li et al. 

201121 
OCT2 (SLC22A2) 1.07 Kidney Choi et al. 200722 
OCT3 (SLC22A3) 1.10 Multiple tissues (liver, 

skeletal muscle, fat, 
and brain) 

Chen et al. 201515 

MATE1 (SLC47A1) 0.23 Kidney and Liver Chen et al. 200923 
MATE2 (SLC47A2) 1.05 Kidney Masuda et al. 200616 
PMAT (SLC29A4) 1.32 Intestine Zhou et al. 200214 

OCTN1 (SLC22A4) NA* Gastrointestinal tract Nakamichi et al. 201313 
SERT (SLC6A4) 4 Intestine Han et al. 201524 

* No Km was reported. Significant uptake in overexpressing cells compared to mock cells. 

* Table is modified from a previous publication17. 
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Table 2. Summary of Metformin Properties and Pharmacokinetic Parameters 

Parameters Values References 
Molecular weight (base free), g/mol 129.16 Graham et al., 20116 

logP -1.43 Graham et al., 20116 
pKa 2.8, 11.5 Graham et al., 20116 

Protein binding negligible  DrugBank 
Bioavailability (F), % 55 Graham et al., 20116 

Volume of distribution (Vd), i.v., L 63 to 276  Graham et al., 20116 
Apparent volume of distribution (Vd/F), 

oral, L 
~ 600 Graham et al., 20116 

Renal clearance (CLr), mL/min ~ 500 Graham et al., 20116; Gong et al., 
201225; DrugBank 

Apparent total clearance (CL/F), oral, 
mL/min 

~ 1140 Graham et al., 20116; DrugBank 

Plasma half-life (t1/2, plasma), h 5 to 6 Graham et al., 20116; Gong et al., 
201225; DrugBank 

Blood half-life (t1/2, blood), h 17 to 20 Graham et al., 20116; DrugBank 
Average plasma concentration at steady 

state, Cave, ss, mg/L 
1.4 Graham et al., 20116; DrugBank 

Therapeutic concentration, mg/L 0.129 to 
90 

Kajbaf et al., 201618 

* DrugBank (https://www.drugbank.ca/drugs/DB00331).  
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