
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Approximate and Stochastic Circuit Design With Improved Accuracy and Efficiency

Permalink
https://escholarship.org/uc/item/3646d2qf

Author
Yu, Shuyuan

Publication Date
2023

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3646d2qf
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

RIVERSIDE

Approximate and Stochastic Circuit Design With Improved Accuracy and Efficiency

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering

by

Shuyuan Yu

March 2023

Dissertation Committee:

Dr. Sheldon Tan, Chairperson
Dr. Shaolei Ren
Dr. Daniel Wong

Copyright by
Shuyuan Yu

2023

The Dissertation of Shuyuan Yu is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I wish to express my thankfulness to all the people who gave me the support and help

through the whole five years of my PhD studies.

First and foremost, I want to express my deepest appreciation to my advisor

Dr. Sheldon Tan for his guidance and help these years. His precious research experience,

theoretical knowledge and kind mentorship is invaluable to my PhD research and future

work.

I would also like to thank the committee members, Dr. Shaolei Ren and Dr.

Daniel Wong for their suggestions and directions to my research when I started to explore

the research fields at the very beginning.

Besides, I really feel grateful to all the other members in the VLSI Systems and

Computation Lab: Hengyang Zhao, Chase Cook, Zeyu Sun, Han Zhou, Shaoyi Peng, Sheriff

Sadiqbatcha, Jinwei Zhang, Wentian Jin, Yibo Liu, Liang Chen, Mohammadamir Kavousi,

Maliha Tasnim, Chinmay Raje, Jincong Lu, Sachin Sachdeva, Subed Lamichhane for their

collaboration and support in the projects during my PhD studies. Without the company

of yours, it will be really hard time to go through these years in a foreign country.

The content of this thesis is reprinted or rewritten from the following published

materials:

• Yu, Shuyuan, Yibo Liu, and Sheldon X-D. Tan. “COSAIM: Counter-based stochastic-

behaving approximate integer multiplier for deep neural networks.” 2021 58th ACM/IEEE

Design Automation Conference (DAC). IEEE, 2021. (Chapter 2)

iv

• Yu, Shuyuan, and Sheldon X-D. Tan. “Scaled-CBSC: scaled counting-based stochastic

computing multiplication for improved accuracy.” Proceedings of the 59th ACM/IEEE

Design Automation Conference. 2022. (Chapter 2)

• Yu, Shuyuan, Yibo Liu, and Sheldon X-D. Tan. “Approximate divider design based

on counting-based stochastic computing division.” 2021 ACM/IEEE 3rd Workshop

on Machine Learning for CAD (MLCAD). IEEE, 2021. (Chapter 3)

• Yu, Shuyuan, Maliha Tasnim, and Sheldon X-D. Tan. “HEALM: Hardware-Efficient

Approximate Logarithmic Multiplier with Reduced Error.” 2022 27th Asia and South

Pacific Design Automation Conference (ASP-DAC). IEEE, 2022. (Chapter 4)

• Yu, Shuyuan, and Sheldon X-D. Tan. “PAALM: Power Density Aware Approximate

Logarithmic Multiplier Design.” Proceedings of the 28th Asia and South Pacific Design

Automation Conference. 2023. (Chapter 5)

v

To my parents for all the support.

vi

ABSTRACT OF THE DISSERTATION

Approximate and Stochastic Circuit Design With Improved Accuracy and Efficiency

by

Shuyuan Yu

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, March 2023

Dr. Sheldon Tan, Chairperson

Approximate computing enables efficient trade-off among accuracy, area, latency

and power for more efficient error tolerant applications implementation such as machine

learning and multimedia workloads. Those workloads are heavily dominated by the arith-

metic operations and hence designs of hardware-efficient approximate arithmetic units have

been intensively investigated recently. However, most of the existing works lack the sys-

tematic configurability for accuracy vs. area/power/latency trade-off. This thesis merges

several works into designs of fast approximate arithmetic units with improved accuracy and

hardware efficiency. The first work proposes a new counter-based stochastic-behaving ap-

proximate integer unsigned multiplier and scaling method with improved counting efficiency

for many emerging error tolerant application workloads such as deep neural networks, mit-

igating a long-standing issue of the stochastic computing that small inputs usually lead to

large error. The second work proposes a novel counting-based SC divider with accelerated

counting process and improved accuracy to easily interface with the existing stochastic or

binary logic. The third work focuses on improving the accuracy and the hardware efficiency

vii

of the conventional approximate logarithmic multiplier at the same time with a novel error

compensation scheme. Last but not least, the forth work mitigates an important prob-

lem that approximated designs might lead to unwanted higher temperature and related

reliability issues due to the increased power density and proposes a power density aware ap-

proximate logarithmic multiplier design which can reduce the power density of the original

approximate logarithmic multiplier design with no accuracy loss.

viii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Approximate Multiplication . 1
1.2 Stochastic Computing (SC) . 3

1.2.1 SC Multiplication . 3
1.2.2 SC Division . 4

1.3 Related Works . 5
1.3.1 SC Multiplication . 5
1.3.2 SC Division . 7
1.3.3 Approximate Logarithmic Multiplication 8

1.4 Contributions . 9
1.5 Organization of This Thesis . 11

2 Counter-Based Stochastic-Behaving Approximate Integer Multiplier De-
sign and Scaling Technique 12
2.1 Review of State of Art Works . 12
2.2 Proposed Counter-Based Approximate Multiplier 16

2.2.1 The Proposed Accelerated Counter-Based Multiplication 16
2.2.2 The Circuit Design for the Proposed COSAIM Multiplier 17

2.3 Proposed Scaled SC Multiplication Approach 19
2.3.1 Scaled Counting-Based SC Multiplication Method 19
2.3.2 Hardware Design and Optimization 22

2.4 Experimental Results and Discussions . 24
2.4.1 Experimental Setup . 25
2.4.2 Performance Evaluation . 26
2.4.3 An Image Processing Application Evaluation 29

2.5 Summary . 30

ix

3 A Counting-Based Stochastic Computing Division 32
3.1 Review of Correlation Based SC Division 32
3.2 Proposed Counting-Based SC Division Design 34
3.3 Experimental Results and Discussions . 38

3.3.1 Experimental Setup . 38
3.3.2 Hardware Performance . 39
3.3.3 Error Behavior . 40
3.3.4 Comparison in an Image Processing Application 42

3.4 Summary . 44

4 HEALM: Hardware Efficient Approximate Logarithmic Multiplier With
Reduced Error 46
4.1 Approximate Logarithmic Multiplier . 46
4.2 Proposed Hardware-Efficient Approximate Logarithmic Multiplier 48

4.2.1 HEALM With Truncation Adder: HEALM-TA 49
4.2.2 HEALM With Set One Adder: HEALM-SOA 58

4.3 Experimental Results and Discussions . 60
4.3.1 Experimental Setup . 60
4.3.2 Performance Evaluation . 61
4.3.3 An Image Processing Application Evaluation 65

4.4 Summary . 67

5 PAALM: Power Density Aware Approximate Logarithmic Multiplier De-
sign 69
5.1 Power Density Increase in the Approximate Logarithmic Multiplier Design . 69
5.2 Proposed Power Density Aware ALM . 70

5.2.1 Power Density Aware Logarithmic Multiplication 70
5.2.2 The Error Compensation Scheme . 75

5.3 Experimental Results and Discussions . 76
5.3.1 Experimental Setup . 76
5.3.2 Performance Evaluation and Comparison 79
5.3.3 Evaluation on CNN Application . 81
5.3.4 Evaluation on Image Processing Application 83

5.4 Summary . 84

6 Conclusions 85
6.1 Counter-Based Stochastic-Behaving Approximate Integer Multiplier Design

and Scaling Technique . 85
6.2 A Counting-Based Stochastic Computing Division 86
6.3 Hardware Efficient Approximate Logarithmic Multiplier With Reduced Error 87
6.4 Power Density Aware Approximate Logarithmic Multiplier Design 88

Bibliography 89

x

List of Figures

1.1 Conventional SC multiplication. 3

2.1 The CBSC multiplication design. 13
2.2 (a)The absolute error distribution of the counting-based SC method; (b)The

relative error distribution of the counting-based SC method. 14
2.3 4-bit approximate multiplication example. 17
2.4 COSAIM design. 18
2.5 The data tuple including the scaling and the binary terms. 20
2.6 An 8-bit example to show the minimum promised value of the binary term. 21
2.7 The Scaled-CBSC/COSAIM method. 21
2.8 (a) The output value of the original CBSC kernel components. (b) The

output value of the optimized CBSC kernel components with the maximum
number of the scaling bits. 22

2.9 The structure of the optimized CBSC kernel with the maximum number of
scaling bits. 23

2.10 The mean error and standard deviation of 8-bit Scaled- CBSC multiplication
approach. 27

2.11 The mean error and standard deviation of 16-bit Scaled- CBSC multiplication
approach. 27

2.12 The absolute relative error distribution of Scaled-CBSC with different num-
ber of scaled bits: (a) M = 0; (b) M = 1; (c) M = 2; (d) M = 3. 28

3.1 CORDIV design diagram. 33
3.2 CORDIV method input SN bit-streams with different bit distribution: (a)

Quotient result with appropriate bit distribution. (b) Quotient result with
extreme bit distribution. 34

3.3 (a) The proposed CBDIV method. (b) The proposed CBDIV design. (c)
The optimized CBDIV design. 36

3.4 Latency and delay comparison among CBDIV and other dividers with differ-
ent output value ranges (7-bit precision): (a) Average latency. (b) Average
delay of the whole process. 41

xi

3.5 Error behavior of CBDIV and other dividers with different output value
ranges (7-bit precision). 42

3.6 Error behavior of CBDIV with different precision. 43

4.1 The design of approximate log-based multiplier. 47
4.2 HEALM design: mantissa summation in ALM design replaced with an error

compensated approximate adder. 49
4.3 (a) The error behavior of ALM (8×8). (b) The error behavior of the fractional

part of ALM in an power-of-two interval. 50
4.4 (a) A 7-bit truncation adder (TA) example. (b) A 7-bit set one adder (SOA)

example. 51
4.5 (a) The error behavior of ALM-TA with k = 4. (b) The error behavior of

ALM-TA with k = 4 doing average operation in each block. (c) The error
compensation pattern for HEALM-TA with k = 4. 53

4.6 (a) The error behavior of ALM-SOA with k=4. (b) The error behavior of
ALM-SOA doing average operation in each block. (c) The error compensation
pattern for HEALM-SOA with k=4. 54

4.7 The mantissa summation unit of HEALM-TA-S design with k = 4: (a) The
exact summation part with no error compensation. (b) The exact summation
part improved with a single error coefficient, replacing the HA with an FA. 57

4.8 Comparison of HEALM with baseline and state of art works. 64

5.1 (a) The power, area distribution and power density of each component in
the ALM design; (b) The power, area distribution and power density of each
component in the PAALM design . 71

5.2 The conventional ALM design . 72
5.3 The power density aware ALM design . 74
5.4 The set one LOD (SO-LOD) unit structure 76
5.5 The power density aware ALM design with error compensation 77
5.6 The absolute error bias values of 8-bit and 16-bit error compensated PAALM

for different k values . 81
5.7 CIFAR10 dataset inference accuracy based on different approximate multipliers 82

xii

List of Tables

2.1 Hardware performance comparison of Scaled-CBSC with other state of art
works. 25

2.2 PSNR (dB) for images after DCT-iDCT using CBSC multiplications. 30

3.1 Hardware performance for SC and fixed-point dividers. 38
3.2 PSNR for contrast stretch application using SC dividers 44

4.1 Error metrics and hardware performance comparison for the 8-bit multipliers. 62
4.2 Error metrics and hardware performance comparison for the 16-bit multipliers. 62
4.3 PSNR (dB) for images after DCT-iDCT using logarithmic multipliers. . . . 66

5.1 8-bit multipliers power density (synthesized using EDK 32nm standard cell
library [11]) . 70

5.2 Design metrics for the 8-bit logarithmic multipliers with the same throughput 78
5.3 Design metrics for the 16-bit logarithmic multipliers with the same throughput 79
5.4 PSNR (dB) for images after DCT-iDCT using logarithmic multipliers . . . 84

xiii

Chapter 1

Introduction

1.1 Approximate Multiplication

Approximate computing enables efficient trade-off among accuracy, area, latency

and power for more efficient error tolerant applications implementation such as machine

learning and multimedia workloads [49, 37, 19, 18, 44, 16, 26, 27, 25, 7, 42, 50, 12, 13].

Those workloads are heavily dominated by the multiplication operations and hence design

of hardware-efficient multiplier has been intensively investigated recently. The primary goal

of the approximate multiplier design is to reduce the power and area for the least accuracy

loss.

Multipliers are one of the most energy-hungry units. Area and the energy efficient

multiplier design is paramount important for efficient processing of many machine learn-

ing and image processing workloads which require intensive multiply-accumulate operation

(MAC) for matrix/tensor based operations [43]. In addition to the error-resilient nature,

studies show that these workloads are robust to reduction in the precision of the arithmetic

1

operations. 16-bit fixed point is demonstrated to be sufficient for training neural networks

with no loss in classification accuracy [14]. 8-bit precision is sufficient for inference with

minimal accuracy error loss[48]. Based on the aforementioned studies, a number of approxi-

mate multiplier designs have been proposed recently [24, 4, 36, 47, 46, 15, 34, 38, 39]. Those

approximate multipliers employ some ad-hoc truncation or reduction methods or mathe-

matically formulated approximation schemes. Most of the existing methods, however, lack

the systematic configurability for accuracy vs. area/power/latency trade-off.

On the other hand, a class of approximate multipliers that are mathematically

formulated include logarithmic multipliers, which convert multiplication into only shift and

addition operations. Due to the inherent approximate nature of logarithmic operation and

the easy accuracy manipulation of the resulting addition, the area, latency and power can

be traded off at the cost of accuracy. The logarithmic multiplier was originally proposed

by Michelle [31]. Since then, many approximate logarithmic multipliers (ALM) have been

proposed to improve Michelle’s work [38, 30, 3, 39]. Most of those methods focused on how

to reduce and compensate the errors introduced in the piece-wise approximation of the log

function, which tends to cause negative errors.

Recently Ansari et al. [3] developed an approximate scheme to make the error

distribution more balanced (double sided errors) for the ALM method. Saadat et al. [39]

further introduced a general error compensation technique, called REALM, using an analyt-

ically generated error reduction factor lookup table for different regions of input operands.

The benefits of this method are that it can generate more balanced errors by design and

provide configurable design trade-off between area and precision. However, this method use

2

one lookup table for all the truncation configuration in the approximate addition, which

may lead to large errors especially for low precision cases.

1.2 Stochastic Computing (SC)

Stochastic computing (SC), which is an important branch of approximate com-

puting, is a promising low-cost, error-resilient alternative to the conventional binary based

computing. Compared to binary design, SC is shown to have better error resilience, progres-

sive trade-off among performance, accuracy and energy, as well as cheap implementation of

complex arithmetic operations.

1.2.1 SC Multiplication

Figure 1.1: Conventional SC multiplication.

Fig. 1.1 shows the conventional SC multiplier, where the number or stochastic

number (SN), is represented by a bit-stream, whose signal probability, or frequency of bit

‘1’, determines its value. Naturally, the value is defined in the range [0, 1], called unipolar,

or over [−1, 1], called bipolar. For instance, in Fig. 1.1, the number X represents 4/8 as we

have four bit ‘1’s in the bit-stream of 8 bits. One of the major benefits for SC is that many

arithmetic operations such as multiplication can be simply implemented by AND operation

3

(or XNOR gate for bipolar) as shown in this figure. SC multiplication has been applied

to error-correcting codes [32], image processing [26], and recently deep neural networks

(DNNs) [20, 41, 40, 17].

However, SC multiplication’s simple hardware implementation suffers from sev-

eral drawbacks: first, traditional SC takes 2N cycles to deal with N -bit precision inputs

(as shown in Fig. 1.1), which can be much larger than binary logic especially when N is

large. So SC multiplication is still more suitable for applications which don’t require high

accuracy. Second, the accuracy of SC multiplication process requires the randomness of

two bit-streams (ideally with zero correlation) in addition to the length of bit-stream. As

a result, many research works have been proposed to develop high-quality random number

generators (RNGs) that exhibit zero or close to zero correlation, including low-discrepancy

sequences [28, 29], bit scrambling methods [35, 21].

1.2.2 SC Division

In traditional binary arithmetic, division is somewhat more complex than multi-

plication, but broadly similar circuits can be used for both operations, e.g., combinational

arrays or sequential shift-and-add/subtract circuits [22]. This is not the case for stochas-

tic division, however. No practical combinational divider for SC is known, and sequential

division relies on iterative add/subtract structures that loosely resemble binary dividers,

e.g., ADDIE-based dividers [10], which are examined later. Recalling the divide-by-zero

problem of binary division, the restricted [0, 1] range of SC is also problematic because

the quotient PX1
/PX2

approaches ±∞ as the divisor PX2
goes to zero. Depending on the

4

implementation, the results of both binary and SC division can lie between zero and the

largest representable number.

During the past several decades, many SC division approaches have been proposed.

These approaches can be briefly divided into three kinds: designs which require independent

input bit-streams, designs which require highly correlated input bit-streams, and designs

which have no requirement on the bit-stream dependence or correlation. In early time, the

accuracy of almost all SC circuits depends on having input SNs that are uncorrelated, i.e.,

statistically independent. Recent studies showed that the SC division could be performed

much more efficiently when the two input bit-streams were highly correlated so the division

could be approximated by computing the conditional probability of the two streams [5,

51]. To mitigate the different correlation requirements between traditional SC division, a

translation module (called skewed synchronizer) was introduced to resolve this problem at

the cost of higher area overhead [51].

1.3 Related Works

1.3.1 SC Multiplication

SC multiplication usually consists of 3 parts: (1) stochastic number generators

(SNG) which convert the N -bit binary inputs to the 2N -bit stochastic numbers (SN); (2)

SC multiplication core, usually an AND or NOR gate which is corresponding to unsigned

multiplication or signed multiplication; (3) a counter which converts the product SN to

binary form back again if needed.

5

As the computing accuracy of SC multiplication is determined by the SN quality,

in other words, the SNG. And the SNG also costs much more area and power than the SC

multiplication core. Existing works mainly focused on how to design more area efficient

and high quality SNGs, like: Halton sequence generator [2], LFSR (linear feedback shift

register) [1], LD (low discrepancy) sequence generation [33].

Among these works, a recent work proposed by Sim [40], named counting-based

SC (CBSC) multiplication achieved not only better accuracy but also a smaller latency by

introducing an finite state machine (FSM) based SNG with counting scheme. To further

improve the computing latency of CBSC method, work in [6] exploits the symmetric prop-

erties of the deterministic bit stream pattern so that one can start the counting process

from either the end or the beginning of the SN bit-stream depending on the value of the

weight to reduce the clock cycles needed.

These aforementioned works indeed helped reduce the latency, but the long-standing

low accuracy issue for small numbers for SC still remains. Basically this is due to the in-

trinsic SC multiplication property that two N -bit inputs for SC multiplication still generate

N -bit output product instead of 2N -bit output.

To mitigate this issue, Zhou in [53] has proposed a scaled population (SP) arith-

metic concept. This method indeed improved the error metrics in the “small” range by

inserting bit ‘1’s into the input SN bit-stream. But SP method still suffers from a few

problems like: difficult to interface with the binary logic; requiring complicated design to

reduce random fluctuation errors; hard to represent the scaling term; and contradiction

6

between the low bit ‘1’ density favor of SC addition and the high bit ‘1’ requirement of SC

multiplication.

1.3.2 SC Division

Traditional SC division follows Gaines’ design [10], in which an up-down counter

is used to reach an equilibrium when two SN numbers, x1,SN and x2,SN · pz,SN are equal.

Then pz,SN = x1,SN/x2,SN . So it needs SC multiplication for x2,SN · pz,SN . Gaines’ design

was proved to take long time to converge [5] and required both the dividend and the divisor

to be uncorrelated. A recent work proposed by Temenos [45] mitigated these issues by using

a deterministic FSM-based stochastic division design (DFSM-DIV), which did not require

the independence between the input SN bit-streams. However, DFSM-DIV still required at

least 3 orders of magnitude (102) clock cycles to converge in average and could not achieve

much accuracy improvement.

Another idea, which is correlation based, made improvement in a different way.

Correlated division, or CORDIV, proposed by Te-Hsuan [5] explored the fact that division

could be computed as the conditional probability of two SN numbers: PX1|X2
. This work

proved that with highly correlated input SN bit-streams, CORDIV could obtain much more

accurate results when compared with Gaines’ design [10]. But the accuracy of CORDIV

method depends on the quality of input SN bit-streams.

Specially designed SNGs shown in Fig. 3.1 [5] has been proved that could mitigate

this problem. However, the accuracy still depends on the distribution of bit ‘1’ in input SN

bit-streams. Adding skewed synchronizer could improve accuracy, but was still not accurate

enough, especially in certain output value ranges [51].

7

Besides, all these SC-based division designs suffered from accuracy varying among

different output value ranges and the problem of large latency, taking 2N cycles to finish the

process with inputs whose corresponding binary precision are N -bit, which is an intrinsic

shortcoming of SC implementation. Furthermore, the energy consumption is also high when

the inputs and outputs are in binary form to interface with other computing parts in typical

image process application [8].

1.3.3 Approximate Logarithmic Multiplication

Earlier approximate unsigned integer multiplier designs often involved ad-hoc

based approximations, such as recursive multipliers [24] which consist of 2×2 multiplication

blocks, simplification of Wallace tree [4], simplifying partial product generation/summation [36,

47, 46], others used a smaller multiplier by extracting m-bit fragment from the N -bit pre-

cision inputs. Such as [15, 34].

Among these methods, many recent approximate multipliers are developed based

on the classic approximate logarithmic multiplier proposed by Mitchell, also called ALM,

as it shows good overall performance and has flexibility for trade-offs among area, power

and accuracy [31].

To further improve the accuracy of the ALM method, several derivative works

have been proposed by means of different error compensation mechanisms. For instance,

the MBM design tried to add a fixed single error-correction term to the final result [38].

This was further improved by the LeAp multiplier, which added different error coefficients

to the fraction parts based on the value ranges of the results [9]. The REALM multiplier

design further improved the compensation scheme by using a lookup table to store M ×M

8

coefficients / factors forM×M partitions of input ranges with some hardware resource over-

heads [39]. These works indeed improved the error metrics of the approximate logarithmic

multiplication without incurring too much resource overheads.

One important observation is that the ALM design will become less effective in

reducing area and power when the precision of inputs decreases. Ebrahimi et al. [9] re-

cently showed that 32-bit ALM can have more area and power reduction than 16-bit ALM.

However, low precision operation is important as emerging machine learning workloads can

be performed (at least for inference) using low precision operations. For instance, 16-bit

fixed point is demonstrated to be sufficient for training neural networks with no loss in

classification accuracy [14]. 8-bit precision is sufficient for inference with minimal accuracy

loss[48].

Some previous works [3, 30] tried to do further area reduction by replacing the

exact adder with an inexact one. Since the exact adder unit is the bottleneck of the ALM

critical path and occupies large area, this idea does help in area saving. But the inexact

adder also introduces extra error, and the error can become quite significant especially in

the 8-bit case.

1.4 Contributions

The work presented in this thesis presents several contributions in approximate

arithmetic unit designs:

• A counter-based stochastic-behaving approximate integer multiplier (COSAIM) is pro-

posed based on a state of art counting-based SC multiplication. Instead of counting

9

the bit ‘1’ sequentially, we propose to compute the number of ‘1’ in the bit stream

using a simple formula for different positions in corresponding to the binary number,

which can significantly speed up the counting process and further lead to significant

clock cycle reductions with no additional accuracy loss.

• The state of art counting-based SC multiplication and the proposed COSAIM design

are further extended by introducing a scaling factor to the original frameworks. The

bit ‘1’ density in the bit-stream then is promised to be always large than 0.5 to

ensure sufficient accuracy for SC computing and the scaling factor is guaranteed to

be integer. Further more, the new scaled SC format is in the binary form and all

the operations like shifting is done in the binary format, which is much more efficient

than the bit-stream level operations.

• A new counting-based SC division design is developed based on a recent proposed

correlation division design and deterministic bit-stream generation. The new design

can be performed in a counting process, with reduced operation time and improved

accuracy.

• A novel hardware efficient approximate logarithmic multiplier, named HEALM, with

a novel error reduction scheme for low precision (8-bit to 16-bit) multiplication is

proposed. With different error coefficients lookup tables for each error compensation

or reduction case, the HEALM design shows better performance than previous works:

more accurate result with both reduced area and power.

• The problem that recently proposed approximate logarithmic multipliers (ALMs) can

actually lead to higher power density than the binary logic design with potential ther-

10

mal issues is demonstrated for the first time. And a power density aware approximate

logarithmic multiplier (PAALM) design is proposed. The PAALM design profiles the

switching activities of the existing ALM designs and try to reduce the high computing

switch activities based on equivalent mathematical formula at some costs of area so

that the power density can be reduced with no accuracy loss. PAALM can be viewed

as a way to trade-off some area overhead for power density reduction, which is however

necessary for reducing local hot spots and maintain the long-term reliability of chips.

1.5 Organization of This Thesis

The rest of this thesis is organized as follows: Chapter 2 introduces the proposed

counter-based stochastic-behaving approximate integer multiplier (COSAIM) design and

the scaled counting-based stochastic computing multiplication; Chapter 3 shows the details

of the proposed counting-based stochastic computing division; Chapter 4 demonstrates a

novel hardware efficient approximate logarithmic multiplier; and Chapter 5 shows a power

density aware approximate logarithmic multiplication design. Finally, Chapter 6 summa-

rizes the thesis.

11

Chapter 2

Counter-Based

Stochastic-Behaving Approximate

Integer Multiplier Design and

Scaling Technique

2.1 Review of State of Art Works

a recent work proposed by Sim [40], named counting-based SC (CBSC) multipli-

cation achieved not only the better accuracy but also the smallest latency by introducing

a finite state machine (FSM) based SNG with counting scheme. The CBSC multiplication

design is shown in Fig. 2.1. Fig. 2.1(a) demonstrates the FSM based SNG which generates

SN bit-stream in a deterministic way. Fig. 2.1(b) shows the concept of the CBSC multi-

12

Figure 2.1: The CBSC multiplication design.

plication. While Fig. 2.1(c) illustrates the CBSC multiplication method. Different from

the traditional SC multiplication, CBSC only requires one FSM-based SNG to convert one

of the two binary inputs, ex. x, into a bit-stream with deterministic pattern first. The

FSM-based SNG evenly distributes the xi−1, which is the ith bit of x, based on its binary

weight 2i−1. For instance, if i = 3, then x2 will appear 4 times in the resulting SN. Such SN

generation can be simplified and implemented by an FSM and a MUX. The FSM is actually

an up counter counts from 0 to 2N − 1, assuming x is N -bit. The MUX then outputs xi−1

based on the output value of the FSM.

If the SN bit-stream for the other input w is set to be series of ‘1’ followed by a

bunch of ‘0’ as shown in Fig. 2.1. As SC multiplication is simply AND operation, it is no

necessary to count the second half of the output bit-stream. So, the whole counting process

only requires w ·2N cycles to finish, which saves half latency in average. The authors used a

13

down counter to realize the idea. While w ·2N is used as the initial value, the down counter

decreases by one in each clock cycle. When it reaches “zero”, the process is terminated.

As a result, CBSC leads to a simpler design as one traditional SNG (typically using LFSR)

and the AND gate are removed in exchange of a down counter, which is much cheaper than

an SNG.

To further improve the computing latency of CBSC method, work in [6] exploits

the symmetric properties of the deterministic bit stream pattern so that one can start the

counting process from either the end or the beginning of the SN bit-stream depending on the

value of the weight to reduce the clock cycles needed. By exchanging the up counter which

is used to convert the product SN to binary form to an up/down counter. And the initial

value Init of the down counter is determined by the most significant bit (MSB) as (2.1).

Init =























w · 2N , w < 0.5,

2N − 1− w · 2N , w ≥ 0.5

(2.1)

The average computing latency is cut to 1/4 of the traditional SC multiplication.

Figure 2.2: (a)The absolute error distribution of the counting-based SC method; (b)The
relative error distribution of the counting-based SC method.

14

These aforementioned works indeed helped reduce the latency, but the long-standing

low accuracy issue for small numbers as shown in Fig. 2.2 for SC still remains. Basically this

is due to the intrinsic SC multiplication property that twoN -bit inputs for SC multiplication

still generate N -bit output product instead of 2N -bit output.

To mitigate this issue, Zhou in [53] has proposed a scaled population (SP) arith-

metic concept. This method indeed improved the error metrics in the “small” range by

inserting bit ‘1’s into the input SN bit-stream. As a result, the bit ‘1’ density of the SN

bit-stream is then raised to a certain level, like 0.7, for example. Since the SN value is

changed during the bit ‘1’ insertion process, the SP method introduced an exponent term

so that the scaled SN number will remain approximately the same. The resulting SP num-

ber is a 2-tuple including a scaling term and a SN term. But SP method still suffers from

a few problems. First, the method is still based on the traditional random-number based

SC scheme. The format is difficult to interface with the commonly used binary number

format, which is often required in the image processing and machine learning application.

Second, it operates in the bit-stream level and requires complicated design to reduce random

fluctuation errors for random number generation, scaling and random-shuffling operations.

Third, it requires the bit ‘1’ density to be any given value such as 0.7, which can lead to no

integer number in the scaling term. Fourth, it uses the OR operation for SC addition, which

however favors the low bit ‘1’ density (small value) in the SC bit stream, and it contradicts

the high bit ‘1’ density requirement in the SC multiplication.

In this chapter, based on these state of art works, a counter-based stochastic-

behaving approximate integer multiplier, or briefly COSAIM, and a scaled counting-based

15

SC multiplication approach, Scaled-CBSC are proposed to reduce the computing latency

at the maximum level with minimum area overhead and mitigate the long-standing low

accuracy issues of SC.

2.2 Proposed Counter-Based Approximate Multiplier

In this section, we elaborate our proposed integer approximate multiplier: CO-

SAIM.

2.2.1 The Proposed Accelerated Counter-Based Multiplication

Suppose we have a stochastic number (SN) converted from a binary number x, x

is N -bit. The product of CBSC-MUL equals to how many times the bit ‘1’ appears in the

stochastic number bit-stream of x in the first w cycles, while w is the other input. So the

product of CBSC can also be represented as (2.2).

Product =
N−1
∑

i=0

Nxi
· xi (2.2)

Following the SN deterministic pattern of CBSC, xN−1, which is the most signifi-

cant bit (MSB), appears once every 2 cycles. Since the counting process stops at wth cycle,

then we can easily prove that NxN−1
equals to w/2. When w is even, there is no remainder

after w/2, we simply do 1-bit right shift operation to w to obtain w/2. But when w is odd,

we need to count one more cycle, then NxN−1
equals to ⌊w/2⌋+1. As w being odd or even

is determined by w0, then NxN−1
can be simply represented in the form of ⌊w/2⌋+ w0. In

the same manner, as xN−2 appears once every 4 cycles, NxN−2
equals to ⌊w/4⌋ + w1, and

finally arbitrary Nxi
can be calculated by (2.3).

16

Nxi
= ⌊w/2N−i⌋+ wN−1−i (2.3)

To further illustrate this, we walk through an example of the 4-bit multiplication

shown in Fig. 2.3.

Figure 2.3: 4-bit approximate multiplication example.

2.2.2 The Circuit Design for the Proposed COSAIM Multiplier

We show the structure of our proposed COSAIM design in Fig. 2.4. The proposed

design is composed of shift registers, AND Gates and adders. ⌊w/2N−i⌋ is realized by

simply using bit shifting operation. After added by wN−1−i, the number of xi is obtained.

As one bit multiplication is actually a simple AND operation, we use an AND Gate to

obtain the value of Nxi
·xi. Then to sum up Nxi

·xi together, we utilize an adder tree. The

number of the adder tree levels is actually also the number of the pipeline stages. Increasing

the number of the pipeline stages will increase the speed of the COSAIM design, but also

17

increase the required area at the same time. For N -bit inputs, if we use the largest possible

pipeline stages, the computation latency of the adder tree is of O(Log2(N)). That means

we can do latency reconfigurable design based on the input bit-width just like stochastic

computing. To achieve the highest computing speed, the number of of the adder tree stages

is compressed to one in Sec. 2.4.

Figure 2.4: COSAIM design.

18

2.3 Proposed Scaled SC Multiplication Approach

In this section, we present the details of our proposed scaled counting-based SC

(Scaled-CBSC) multiplication approach to mitigate the large errors for small number mul-

tiplication.

2.3.1 Scaled Counting-Based SC Multiplication Method

As shown in Fig. 2.2(b), SC multiplication will have very large relative error with

“small” inputs, especially in the range of [1/256, 15/256], due to the low bit ‘1’ density of the

input SN bit-stream, which is an intrinsic property of SC multiplication. So a simple idea

to improve the error metrics of SC multiplication is to avoid these “small” inputs, in other

words, increasing the bit ‘1’ density of the input SN bit-stream. Unlike SP method [53]

which inserts bit ‘1’ into the SN bit-stream, our proposed Scaled-CBSC multiplication

directly enlarge the binary number inputs, which is also equivalent to raising the bit ‘1’

density level of the SN bit-stream.

In the Scaled-CBSC multiplication, an N -bit binary number data is represented

by a ‘scaling-binary’ 2-tuple. The tuple consists of two parts, an M -bit scaling term and an

N -bit binary term. The data representation and how an N -bit binary number be converted

to 2-tuple {M,N} is shown in Fig. 2.5. Specifically the scaling term has M bits, the original

binary number is then divided into 2M partitions. To mitigate the SC multiplication error,

we want the binary term to be as large as possible to avoid the “small” inputs regions. So

the leading bit ‘1’ in the binary term, which is marked with red in Fig. 2.5, should appear in

the most significant partition. We then left shift N/2M bits, or one partition each time. The

19

Figure 2.5: The data tuple including the scaling and the binary terms.

value of the scaling term records number of times the shift operation being carried out. We

can easily derive that the maximum number of the scaling bits, or MMAX , equals to logN2 .

As the binary term will always promise the leading bit ‘1’ in the most significant partition.

Each partition consists of N/2M bits, and the least significant bit in the most significant

partition weights (1/2)N/2M . Thus it can be verified that after bit partition-based shifting

operations, the value of the binary term should be no less than (1/2)N/2M . We show an

8-bit example in Fig. 2.6. Since we use the binary term of the scaled data presentation as

the input of the CBSC kernel in our proposed Scaled-CBSC method (will be discussed later

in Sec. 2.3.2), our binary only representation is more compact than the SP format [53],

which is a mixed 2-tuple of bit-stream and binary numbers.

The resulting Scaled-CBSC multiplication approach is shown in Fig. 2.7. The

Scaled-CBSC multiplication consists of two blocks. One is the simple M -bit binary sum-

mation to sum the scaling terms (green blocks in Fig. 2.7) of the two input tuples (x and

w) up. The other block is the CBSC kernel which is shown in Fig. 2.1. The inputs of the

20

Figure 2.6: An 8-bit example to show the minimum promised value of the binary term.

Figure 2.7: The Scaled-CBSC/COSAIM method.

21

Figure 2.8: (a) The output value of the original CBSC kernel components. (b) The output
value of the optimized CBSC kernel components with the maximum number of the scaling
bits.

CBSC kernel are the binary terms (red blocks in Fig. 2.7) of the two input data tuples.

The output product p is also a 2-tuple, but with a M + 1-bit scaling term and an N -bit

binary term. Furthermore, the Scaled-CBSC multiplication could be further extended to

Scaled-COSAIM with the CBSC kernel in Fig. 2.7 simply exchanged to COSAIM kernel

proposed in Sec. 2.2.

2.3.2 Hardware Design and Optimization

Assume a {M,N}-bit 2-tuple has the maximum number of the scaling bits MMAX ,

as mentioned in Sec. 2.3.1, the minimum value of the binary term should be 0.5. From

Fig. 2.8(a), we notice that if w is promised to be no less than 0.5, the computing latency

22

Figure 2.9: The structure of the optimized CBSC kernel with the maximum number of
scaling bits.

of the SC multiplication should be no less than 2N/2. And since the SN bit-stream of x is

“centrosymmetric”, the up counter output value at the 2N/2th clock cycle always equals to

x/2 + x[0]. So the counting process before the 2N/2 + 1th cycle is promised, which means

we don’t need to count the first 2N/2 cycles anymore. We can simply start the counting

process from the 2N/2 + 1th cycle with an initial value of x/2 + x[0] (x[N − 1 : 1] + x[0]).

Thus we can save 2N/2 clock cycles of the computing latency of CBSC method, which is

shown in Fig. 2.8(b).

With the maximum number of scaling bits, the minimum value of the binary term

of x equals to 0.5, which means the most significant bit (MSB) of x is bit ‘1’. Based on the

deterministic SN generation pattern of CBSC method, bit ‘1’ will appear once every two

clock cycles. So we can improve the up counter to count 2 bits (bit ‘1’ and an SN bit) at

a clock cycle, which will further reduce the computing latency. And since one of these two

bits is determined, we don’t need to use the FSM-based SNG to generate it. The N -bit

23

FSM could be shrunk to N − 1-bit. Note that as we count 2 bits at a cycle, the up counter

of the FSM will increase by 2 at each cycle, which is shown in Fig. 2.8(b).

To further improve the hardware performance of the Scaled-CBSC multiplication

approach, we try to optimize the CBSC kernel upon the original design under the case

of the maximum number of the scaling bits. By observing the 3rd and the 4th line in

Fig. 2.8(a), we notice that the output value of FSM in the SNG is just a reversal series of

the output value of the down counter before the SC multiplication terminates. This means

that when the FSM output value equals to the initial value of the down counter, the whole

counting process will be ended. So the down counter is not required anymore, we simply

remove it from the CBSC structure, thus further reduce the area and power of our proposed

scaled CBSC multiplication. We show the improved scaled CBSC multiplication structure

in Fig. 2.9. Note that since we don’t need to count the first 2N/2 cycles and count 2 bits at

each cycle now, the counting process should not be stopped when FSM < ⌊(w− 2N/2)/2⌋,

which is equivalent to FSM < w[N − 2 : 1]. For the odd number case, we need to count an

extra “half” cycle. In this case, as w is an odd number, w[0] = 1. We just need to add one

to the final output result. Finally, to combine the odd and even cases together, the output

result will be added by x[N − 1] · w[0] when the process stops. And since x[N − 1] = 1,

x[N − 1] · w[0] = w[0]. We show the optimization in Fig. 2.9.

2.4 Experimental Results and Discussions

In this section, we evaluate the performance of the proposed counter-based stochastic-

behaving approximate integer multiplier (COSAIM) and scaled counting-based stochastic

24

Table 2.1: Hardware performance comparison of Scaled-CBSC with other state of art works.

8-bit

M Area /µm2 Delay /ns ADP Power /µW Energy /pJ

CBSC [40] 0 487.96 215.04 104930 26.85 13.75

Improved CBSC[6] 0 657.72 130.56 85873 39.04 10.00

Scaled-CBSC
1 460.51 176.64 81344 22.60 11.57
2 483.38 176.64 85385 24.15 12.36
3 575.13 63.36 36440 32.50 4.16

COSAIM 0 660.77 2.05 1355 36.20 0.14

Scaled-COSAIM
1 692.29 2.07 1433 37.57 0.15
2 710.33 2.07 1470 38.34 0.15
3 707.79 2.07 1465 39.33 0.16

16-bit

COSAIM 0 2575.50 3.85 9916 163.95 0.66

Scaled-COSAIM

1 2622.00 3.87 10472 165.33 0.66
2 2691.13 3.88 10144 157.34 0.63
3 2700.53 3.87 10216 157.86 0.63
4 2655.55 3.88 10130 159.86 0.64

computing multiplication approach, named Scaled-CBSC multiplication under 8-bit and 16-

bit precision. We also compare the proposed approach against the original CBSC (counting-

based stochastic computing) multiplication baseline [40], and other state of art works with

the same precision.

2.4.1 Experimental Setup

To evaluate the performance of the proposed Scaled-CBSC multiplication and CO-

SAIM design, we first compare the error metrics and the hardware performance of Scaled-

CBSC and COSAIM with the original baseline version: the CBSC multiplication proposed

by Sim [40]. We also compare Scaled-CBSC multiplication with a state of art work: an op-

timized CBSC multiplication [6]. For the 16-bit Scaled-CBSC and COSAIM multiplication,

as CBSC multiplication will take 215 clock cycles in average to finish the multiplication,

25

which is too long and doesn’t make sense. We just demonstrate the results of COSAIM and

Scaled-COSAIM designs, which only require a single clock cycle to finish the process.

All the aforementioned multipliers are implemented in Verilog HDL and synthe-

sized with Synopsys Design Compiler using EDK 32nm standard cell library [11] as single-

cycle designs. For fair comparison, the power and energy consumption of all the aforemen-

tioned multipliers are measured under the same working frequency (250MHz).

For the error metrics evaluation, we developed behavioral simulation models for the

listed multipliers with all the possible number of scaling bits in MATLAB and measured the

accuracy using 1 million random inputs uniformly distributed over the set {0, 1, ..., (2N−1)},

(N = 8, 16). The errors are reported with respect to the exact results. The error metrics

used to report the error behavior includes: mean error (mean of the absolute value of

the error) and standard deviation. Note that both of the improved versions of the CBSC

method and the proposed COSAIM design only do improvements on the computing latency

and the hardware performance (area/power/energy), and the error metrics keeps the same

as the CBSC baseline. Thus for the error metrics, we just compare our proposed Scaled-

CBSC/COSAIM multiplication with the original CBSC baseline.

2.4.2 Performance Evaluation

We show the error metrics for CBSC and Scaled-CBSC multiplication with 8-bit

and 16-bit in Fig. 2.10 and Fig. 2.11, respectively. Note that the original CBSC method

26

Figure 2.10: The mean error and standard deviation of 8-bit Scaled- CBSC multiplication
approach.

Figure 2.11: The mean error and standard deviation of 16-bit Scaled- CBSC multiplication
approach.

can be treated as Scaled-CBSC with ‘0’ scaling bit, which is shown at the leftmost location

in Fig. 2.10 and Fig. 2.11.

Fig. 2.10 shows that with 3 scaling bits, the Scaled-CBSC multiplication can im-

prove the mean error and the standard deviation upon the CBSC baseline by up to 46.6%

and 30.4%. Fig. 2.11 shows that with 4 scaling bits, Scaled-CBSC multiplication can im-

prove the mean error and the standard deviation upon the CBSC baseline by up to 50.3%

and 34.9%. Furthermore, from Fig. 2.12, we can see that with scaling bits, Scaled-CBSC

27

Figure 2.12: The absolute relative error distribution of Scaled-CBSC with different number
of scaled bits: (a) M = 0; (b) M = 1; (c) M = 2; (d) M = 3.

can improve the relative error profile of the original CBSC significantly. With 1, 2, 3 scaling

bits, Scaled-CBSC can reduce the maximum relative error from 100% to 51.6%, 5.8% and

1.8%, respectively.

We demonstrate the hardware performance of the Scaled-CBSC multiplication

and COSAIM design, comparing them with the CBSC baseline and a state of art work in

Table 2.1. M is the number of scaling bits we used in the multiplication. By observing

Table 2.1, we can see that with 8-bit precision, Scaled-CBSC can improve the delay upon

the CBSC baseline by up to 70.5% with 17.9% area overheads, and improve the ADP (area-

delay product) and energy consumption upon the CBSC baseline by up to 65.3% and 69.7%,

28

respectively; and improve all the four metrics (area, delay, ADP, energy) upon the state

of art work by 12.6%, 51.5%, 57.6% and 58.4%, respectively, with 3 scaling bits. For 8-bit

COSAIM design, though it will introduce some area overheads, it can significantly improve

the delay, ADP and total energy consumption by 99.0%, 98.7% and 99.0%, respectively.

2.4.3 An Image Processing Application Evaluation

Now, we show how the proposed Scaled-CBSC multiplication approach compare

to state of art methods in a multimedia application. Discrete cosine transformation (DCT)

is a commonly used lossy image compression method. The quality of the compressed images

is usually evaluated using metrics such as PSNR (peak signal noise ratio) and higher PSNR

value represents better image quality. We implement the proposed Scaled-CBSC multi-

plication approach with different number of scaling bits in the DCT-iDCT (inverse DCT)

workloads, and compare with the CBSC baseline on five example images, considering both

8-bit and 16-bit precision. As mentioned before, M = 0 represents the CBSC baseline. We

show the results of image compression in Table 2.2. For 8-bit precision, we can see that 1 or

2 scaling bits will not improve the image quality much. With 3 scaling bits, Scaled-CBSC

can improve the image quality of 5.9dB in average upon the CBSC baseline. For 16-bit

precision, 1 scaling bit can improve the image quality of 16.8dB in average, and 2 scaling

bits are enough to achieve the best image quality improvement. Here “INF” in Table 2.2

represents “infinity large”, which means the final output image is completely the same as

the input with no quality loss. To make a complementary, COSAIM design will not be

demonstated due to the same error behavior as the baseline.

29

Table 2.2: PSNR (dB) for images after DCT-iDCT using CBSC multiplications.

8-bit

M Lena Boat Barbara House Pepper Avg. (dB)

0 32.24 31.57 32.70 31.95 32.62 32.22

1 32.43 31.77 32.93 32.17 32.93 32.45

2 32.47 31.85 33.04 32.32 33.03 32.54

3 38.17 37.92 38.58 37.80 37.97 38.09

16-bit

M Lena Boat Barbara House Pepper Avg. (dB)

0 78.23 76.08 77.54 77.32 74.99 76.83

1 INF 91.52 96.30 93.29 93.29 93.60

2 INF INF INF INF INF INF

3 INF INF INF INF INF INF

4 INF INF INF INF INF INF

2.5 Summary

The work in this chapter proposes a new counter-based stochastic-behaving ap-

proximate integer unsigned multiplier, COSAIM for many emerging machine learning hard-

ware implementation. COSAIM is an accelerated design of recently proposed counter-based

stochastic multiplier. As a result, it still keeps the advantages of stochastic computing

such as built-in progress reconfigurability for progressive performance-accuracy trade-off.

The work in this chapter also proposes a novel scaled counting-based stochastic computing

multiplication design, named Scaled-CBSC. The proposed design introduces scaling bits to

promise the inputs of the SC multiplication kernel to be larger than 0.5, avoiding the “small”

number region which leads to large relative error of SC multiplication. Numerical results

shows that 8-bit Scaled-CBSC and Scaled COSAIM designs with 3 scaling bits can achieve

up to 46.6% and 30.4% improvements in mean error and standard deviation, respectively;

reduce the peak relative error from 100% to 1.8%. For hardware performance, the Scaled-

CBSC can improve 12.6%, 51.5%, 57.6%, 58.4% in delay, area, area-delay product, energy

30

consumption, respectively, over the state of art work. Though COSAIM will introduce

some resource overhead, it can significantly reduce the delay and the area-delay product.

For discrete cosine transformation (DCT) application, 3 scaling bits are required for 8-bit

Scaled-CBSC and COSAIM multiplication to significantly improves the image quality by

5.9dB.

31

Chapter 3

A Counting-Based Stochastic

Computing Division

3.1 Review of Correlation Based SC Division

Correlated division, or CORDIV, proposed by Te-Hsuan [5] explored the fact that

division could be computed as the conditional probability of two SN numbers: PX1|X2
. The

formula can be simplified to

PX1|X2
= px1,x2

/px2
= x1,SN/x2,SN (3.1)

when x1 and x2 are highly correlated, where px2
is the event of x2 and px1,x2

is the joint event

of x1 and x2. As a result, the output probability PQuotient can be expressed by the ratio of

number of bit ‘1’ in the dividend and the divisor SN bit-streams: N1
Dividend/N

1
Divisor. Thus,

CORDIV requires that the divisor is always larger than the dividend to avoid the quotient

being larger than one. This work proved that with highly correlated input SN bit-streams,

32

CORDIV could obtain much more accurate results when compared with Gaines’ design [10].

But the accuracy of CORDIV method depends on the quality of input SN bit-streams. The

framework of CORDIV design is shown in Fig. 3.1.

Figure 3.1: CORDIV design diagram.

Specially designed SNGs shown in Fig. 3.1 [5] has been proved that could mitigate

this problem. However, the accuracy still depends on the distribution of bit ‘1’ in input SN

bit-streams, shown in Fig. 3.2. Adding skewed synchronizer could improve accuracy, but

was still not accurate enough, especially in certain output value ranges [51].

Based on the correlated division method and the aforementioned SNG design in

the CBSC-MUL framework (Sec. 2.1), a counting-based SC division, or CBDIV, is proposed

to improve the latency and accuracy of SC division in this chapter.

33

Figure 3.2: CORDIV method input SN bit-streams with different bit distribution: (a)
Quotient result with appropriate bit distribution. (b) Quotient result with extreme bit
distribution.

3.2 Proposed Counting-Based SC Division Design

In this section, we try to mitigate the aforementioned issues in the existing cor-

related division designs and propose a new SC division method based on a more efficient

counting-based SC (CBSC) concept.

From Fig. 3.2, we can see that the location of bit ‘1’ in the divisor may significantly

affect the quotient accuracy. The two input probabilities are 3/16 and 5/16, respectively,

whose exact quotient result would be 0.6. The first 1-0 pair and the following 1-1 pair in

the divisor and the dividend SN bit-streams are in red and blue blocks, respectively. And

the output in the quotient bit-stream at the corresponding location, which are the first bit

‘0’ and following ‘1’ are also marked with red and blue, respectively. As CORDIV method

will consistently output bit ‘0’ if the divisor and the dividend SN have 1-0 pair followed

by 0-0 pairs at the corresponding location until a 1-1 pair appears. And will consistently

output ‘1’ if the two input bit-streams have a 1-1 pair followed by 0-0 pairs until a 1-0 pair

appears. Suppose the input SNs have appropriate bit ‘1’ distribution as shown in the upper

case in Fig. 3.2, CORDIV computes Zr = 10/16 = 0.625. But if we have extreme bit ‘1’

distribution given as the lower case in Fig. 3.2, too many 0-0 pairs appear between 1-0 pair

34

and the following 1-1 pair, CORDIV computes Zw = 5/16 = 0.3125, which is far from the

exact result.

To solve this problem, we propose a new division method called CBDIV, which

stands for Counting-Based Division. Unlike CORDIV [5] or ISCBDIV [51], we don’t require

a synchronizer or expensive RNG-comparator structure to guarantee a strong correlation

of two input SN bit-streams. Instead, the SN generation in CBDIV utilizes a deterministic

pattern shown in Fig. 2.1(a), which is isolated from the random fluctuations.

Since we use the deterministic pattern to generate the divisor SN bit-stream, the

location of bit ‘1’ is fixed. We can easily arrange the dividend SN bit-stream to favor the

1-1, 0-0 pairs as many and fast as possible, as the location of bit ‘1’ in the dividend SN

bit-stream is completely determined according to the divisor SN. That means if a bit in

divisor SN is ‘1’, the bit in dividend SN at the corresponding location will also be set to

‘1’ to guarantee all the 1-1 pairs to be continuously found. So, before SDividend has used

up all bit ‘1’s in the SN bit-stream, SDividend is completely the same as SDivisor. In other

words, when the first 1-0 pair occurs, meaning that the dividend (which is less than divisor

by design) has already used up all the bit ‘1’ and no more 1-1 pair is left, which can be

illustrated in an example shown in the first 2 rows in Fig. 3.3(a). Here, the value of the

dividend SN SDividend and the divisor SN SDivisor are 6/16 and 9/16, respectively.

As we can see, after the arrangement, the right parts of SDivisor and SDividend

in the blue dash line block in Fig. 3.3(a) are exactly the same. Then based on CORDIV

method [5], the quotient SN bit-stream SQuotient simply obtains all its bit ‘1’s in the right

half at the 3rd row in Fig. 3.3(a). A counter which increases by 1 in every clock cycle is

35

Figure 3.3: (a) The proposed CBDIV method. (b) The proposed CBDIV design. (c) The
optimized CBDIV design.

enough to get the binary form value, which is shown in the 4th row in Fig. 3.3(a). We

notice that the remaining bits outside the blue frame in SQuotient are all bit ‘0’. As a result,

we don’t need to count anymore and can simply terminate the process, thus reduce the

computing time. The result now counts 10/16 = 0.625, which is a good approximation to

the exact result 2/3 = 0.667.

36

Based on our CBDIV method, the CBDIV design actually requires 3 counters to

realize the process, 2 up counters and 1 down counter, as shown in Fig. 3.3(b). One up

counter is used as an FSM (finite state machine) to generate the divisor SN bit-stream.

The bit-stream follows similar low discrepancy distribution proposed in [40]. Because the

two input bit-streams, SDividend and SDivisor, are completely the same before the division

process ends as we have discussed before. We only need to generate one of them. Here, we

only generate SDivisor. The other up counter is used to convert the quotient SN bit-stream

SQuotient to binary form. It simply increases by one in every clock cycle since the bits in

SQuotient are always ‘1’ before the division process ends. The down counter, with an initial

value of Dividend · 2N , determines when to terminate the process. The enable signal “EN”

of the down counter is connected to the SDivisor signal. So, the down counter will decrease

by one if bit ‘1’ appears in SDivisor.

By observing the 4th and 5th row in Fig. 3.3(a), we notice that the FSM output

is always one smaller than the output quotient value before the process terminates, which

means we can infer the quotient from the FSM output value even without a counter. So

we combine the 2 up counters together. Considering the SDivisor generation, we keep the

up counter used as the FSM. When the division process finishes, we simply add one to the

output of the FSM to obtain the quotient. Now we only require 2 counters to form our

CBDIV design. The optimized CBDIV design is shown in Fig. 3.3(c).

37

Table 3.1: Hardware performance for SC and fixed-point dividers.

Approaches Area (µm2) Critical Path (ns) Avg. Latency (cycles) Avg. Delay (ns) ADP Power (µW) Avg. Energy (pJ)

Fixed-Point 1090 3.16 17 53.72 58555 41.4 7.038

DFSM-DIV [45] 520 1.24 128 158.72 82534 22.3 28.544

CORDIV [5] 381 0.94 128 120.32 45842 14.7 18.765

ISCBDIV [51] 394 0.98 128 125.44 49423 15.8 20.211

CBDIV (proposed) 299 1.72 44 75.68 22628 10.9 4.796

3.3 Experimental Results and Discussions

In this section, we evaluate the performance of the proposed counting-based SC

divider, CBDIV. We also compare CBDIV against the binary logic baseline and the state-

of-the-art works.

3.3.1 Experimental Setup

To evaluate the performance of the proposed CBDIV design, we compare the error

behavior and the hardware performance of CBDIV with a fixed-point divider using long

division algorithm. The area, the critical path, the average latency (clock cycles), the aver-

age delay, the area and delay product (ADP), the power and the total energy consumption

are measured to evaluate the hardware performance of CBDIV. We also compare CBDIV

with several state of art works such as DFSM-DIV (SC division with deterministic finite

state machines) [45], CORDIV [5], and ISCBDIV [51]. All the approaches are with binary

number inputs of 7-bit precision (corresponding to 128-bit length bit-stream).

The dividers are implemented in Verilog and synthesized with Synopsys Design

Compiler using EDK 32nm standard cell library [11]. For fair comparison, all the dividers

are binary in and binary out, SNGs which generate SN bit-streams and a counter which

counts the value of the result SN bit-stream have been added to the in-stream SC-based

38

division designs. The hardware performance comparison of the dividers are shown in Ta-

ble 3.1. For fair power and energy consumption comparison, the input clock frequency of

all the dividers are set to be 100MHz. In addition, energy consumption is measured based

on the total execution time and its power consumed during the whole division process.

The error behavior is measured using root mean square error (RMSE). To evaluate

the error behavior, we develop behavioral simulation models for all the SC-based dividers

listed in Table 3.1 in MATLAB and measure the accuracy of over 100, 000 operations. To

promise the dividend be smaller than the divisor, we generate the dividend in the range of

[0, 0.5], and the divisor in the range of [0.5, 1].

3.3.2 Hardware Performance

From the second column in Table 3.1, we observe that among all the listed stochas-

tic dividers, our proposed CBDIV is the most area efficient, doing 72.6% of area reduction

when compared to the fixed-point divider (binary logic) baseline, and outperforms state of

art stochastic dividers by at least 21.5%. As the latency of CBDIV design is determined

by the value of the dividend, which is proved in Sec. 3.2, the latency of CBDIV design will

vary according to the inputs. This is different from the latency of previous SC division

designs when certain precision is determined, which is a fixed value. We show this property

in Fig. 3.4. So we use Avg. Latency (average latency) and Avg. Delay to measure the

average computing time of CBDIV and compare these two values against previous works.

From column 4, we can see that CBDIV saves 65.6% of latency in average; and from column

5, the Avg. Delay of CBDIV is 75.68ns, outperforms state of art works by at least 37.1%.

Also, though the latency of CBDIV is 40.9% larger than which of the fixed-point divider,

39

the area and delay product (ADP), is much smaller than the fixed-point divider (61.4%

smaller), and improves by at least 50.6% when compared to previous works as shown in

column 6.

From the last two columns in Table 3.1, we observe that CBDIV performs the

best both in power and energy consumption among all the listed division designs. In power

aspect, CBDIV outperforms state of art works by 25.9%. For the energy consumption

aspect, we note that in-stream SC-based division designs will cost even more energy than

the fixed-point divider when SNGs and the counter are taken into consideration. CBDIV

design has solved this problem by improving the computing latency, doing 31.9% in energy

reduction when compared to the fixed-point divider baseline.

3.3.3 Error Behavior

Fig. 3.5 shows the accuracy comparison among the proposed CBDIV method

with the baseline fixed-point divider and existing approaches: CORDIV [5], ISCBDIV [51],

DFSM-DIV [45]. LFSR (linear feedback shift register) is utilized to generate SN bit-streams

for binary inputs in state of art approaches for comparison.

We show the results over five non-overlapped output value ranges as well as the

average RMSE value obtained from 100, 000 computations for all the algorithms. From

Fig. 3.5, we can observe that CBDIV outperforms state of art works in all of the five non-

overlapped output value ranges. Compared with DFSM-DIV, which has the smallest RMSE

value in average, CBDIV makes an improvement by 77.8%. To make a supplement, note

in Fig. 3.5, CBDIV shows similar RMSE values in different output value ranges, different

40

(a)

(b)

Figure 3.4: Latency and delay comparison among CBDIV and other dividers with different
output value ranges (7-bit precision): (a) Average latency. (b) Average delay of the whole
process.

41

from performances of the existing works which is due to the intrinsic property of different

SC division methods.

Furthermore, we show the error behavior of CBDIV with different bit-stream

length (precision) compared with the fixed-point baseline and state of art works in Fig. 3.6.

In Fig. 3.6, we show that even with 5-bit precision, the average value of RMSE of CBDIV

is still 15.4% better than DFSM-DIV with 7-bit precision.

Figure 3.5: Error behavior of CBDIV and other dividers with different output value ranges
(7-bit precision).

3.3.4 Comparison in an Image Processing Application

We implement the proposed CBDIV method for an image process application,

Contrast Stretch to further compare the performance against the baseline design and the

state of art works.

42

Figure 3.6: Error behavior of CBDIV with different precision.

The bit-stream length of CBDIV, ISCBDIV [51] and DFSM-DIV [45] implemented

are all 256-bit, as the pixels in the input figure with JPEG format are 8-bit precision. The

contrast-stretched pixel G(x, y) of an arbitrary input image pixel I(x, y) can be calculated

as (3.2).

G(x, y) =
I(x, y)− Imin

Imax − Imin
· 255 (3.2)

Where Imax and Imin are the maximum and minimum pixel value in the image I(x, y),

respectively. Note that we first perform the division of I(x,y)−Imin

Imax−Imin
, since SC dividers always

require the dividend smaller than the divisor. We also utilize the CBSC method to do the

multiplication illustrated in Sec. 3.1. 255 can be treated as 255/256 · 28, then w in CBSC

multiplier will be 255/256 and the process requires 255 clock cycles to finish. According to

the deterministic pattern used in CBSC method, all bit ‘1’s in the divisor (I(x,y)−Imin

Imax−Imin
) bit-

stream will appear in these 255 clock cycles, meaning that we only need to count how many

43

bit ‘1’s are there in the divisor bit-stream. For CBDIV, the counting process is finished

at the same time when CBDIV terminates. We don’t require any more action and simply

output the CBDIV result as the value of G(x, y). While the outputs for ISCBDIV and

DFSM-DIV are SN bit-streams, so we just add a counter to obtain G(x, y).

We apply contrast stretching to several input images, using PSNR (Peak Signal

Noise Ratio) to evaluate the output image quality. Contrast stretched images with an exact

divider are used as the baseline. The PSNR values of all the tested images with different

SC dividers are shown in Table 3.2. We can observe that the proposed CBDIV method

outperforms the two state of art SC dividers in all the tested images, and improves the

image quality by 20.6 dB in average.

Table 3.2: PSNR for contrast stretch application using SC dividers

PSNR (dB)

ISCBDIV DFSM-DIV CBDIV

Map 34.84 36.28 53.69

Portrait 36.19 27.30 57.40

Woman 30.22 26.37 53.11

Lena 32.80 25.35 54.62

3.4 Summary

The work in this chapter proposes a fast and energy efficient approximate divider

design based on stochastic computing division design, CBDIV, which exploits both the

correlation requirement of existing SC-based division methods and the high efficiency of

counting-based SC scheme. CBDIV fits well with the hybrid computing in which binary

and SC implementations are both required for overall better application performance, like

44

image processing. Experimental results show that the proposed CBDIV outperforms state

of art works by 77.8% in accuracy, 37.1% in delay, 21.5% in area, 50.6% in ADP and 25.9%

in power. CBDIV also saves 31.9% in energy consumption when compared to the fixed-

point division baseline, and is much more energy efficient than early proposed SC-based

dividers if the inputs and outputs are both binary numbers. Furthermore, CBDIV with

5-bit precision can even outperform state of art works with 7-bit precision in accuracy by

15.4%. Finally, we compare CBDIV with other state of art SC dividers in contrast stretch

application and shows that CBDIV can improve the accuracy with 20.6dB in average, which

is a huge improvement.

45

Chapter 4

HEALM: Hardware Efficient

Approximate Logarithmic

Multiplier With Reduced Error

4.1 Approximate Logarithmic Multiplier

The classic approximate logarithmic multiplier was proposed by Mitchell, also

called ALM [31]. It shows good overall performance and has flexibility for trade-offs among

area, power and accuracy. Specifically, for ALM design, the two inputs A and B are first

represented by the following format: 2ka · (1 + x) and 2kb · (1 + y), respectively. Then the

multiplication result can be approximated as (4.1).

CALM =























2ka+kb · (1 + x+ y), x+ y < 1,

2ka+kb+1 · (x+ y), x+ y ≥ 1

(4.1)

46

Figure 4.1: The design of approximate log-based multiplier.

Here CALM is the approximate multiplication result. The ALM design requires four steps

to finish the multiplication process. The architecture of ALM design is shown in Fig. 4.1.

First it utilizes leading-one detectors (LOD) to find the leading bit ‘1’ as the integer

part; second, barrel shifters are used to re-align the rest of the bits as the fraction part;

then it sums the two fraction and integer parts up as ka + kb + x + y; and finally it shifts

back with the same bits. Although ALM suffers from high absolute MRED (mean relative

error distance) and peak relative error of 3.76% and 11.11%, respectively, it can perform a

good trade-off among accuracy, area and power.

This chapter will focus on the 8-bit and 16-bit precision hardware efficient ap-

proximate logarithmic multiplier design and demonstrate the superior performance of the

proposed new design against the ALM [31] baseline and other state of art works like LeAp [9],

REALM [39], ALM-SOA [30], ILM-EA [3] and ILM-AA [3].

47

4.2 Proposed Hardware-Efficient Approximate Logarithmic

Multiplier

In this section, we show the details of the proposed hardware-efficient ALM de-

sign by considering the bit or width truncation in the mantissa summation part and error

compensation at the same time.

Consider an inexact adder with N -bit inputs A and B, then the sum S has N +1

bits. Let k be the number of bits in the lower part of the sum which are approximated.

The binary representation of A is AN−1AN−2...AkAk−1...A0 and B is in a similar form.

The upper part AN−1AN−2...Ak and BN−1BN−2...Bk, which are denoted as AH and BH ,

respectively, will perform the exact summation to obtain the higher part of S, SNSN−1...Sk,

which is denoted as SH . The lower part Ak−1...A0 and Bk−1...B0, which are denoted

as AL and BL, will perform the approximate summation to obtain the lower part of S:

Ck−1Sk−1...S0. Note that Ck−1 is the carry bit to the exact summation of upper parts.

We implement two representative approximate adders (or inexact adders), one is

the truncation adder (TA), the other is the set one adder (SOA) [30] with error improvement

to the ALM. These adders have very small complexity, which are suitable for implementing

our HEALM designs, named as HEALM-TA and HEALM-SOA with error improvement.

To carry out the error compensation, we first analyze the error profile of ALM when the

exact adder used for the mantissa summation is replaced with an approximate adder. Then,

we perform specified error compensation for HEALM with each approximate adder under

different k values, where k represents the number of bits in the inexact mantissa summation

48

part, to achieve the best trade-off among the error metrics and the hardware resources. The

structure of the HEALM design is shown in Fig. 4.2.

Figure 4.2: HEALM design: mantissa summation in ALM design replaced with an error
compensated approximate adder.

4.2.1 HEALM With Truncation Adder: HEALM-TA

The Error Behavior of ALM-TA

Before we discuss our proposed HEALM design with truncation adder, or HEALM-

TA, we need to show the error behavior of ALM with a simple TA, represented as ALM-TA.

First, we give a brief introduction on the concept of TA. The TA simply truncates the lower

part of the inputs A and B, which makes the inexact part of the mantissa summation SL

equal to zero. Thus the mantissa summation with TA will only calculate the upper part

SH . An N -bit adder is actually truncated to an N − k-bit adder. We use a 7-bit case with

k = 4 to describe the concept of TA, which is shown in Fig. 4.4(a).

49

(a)

(b)

Figure 4.3: (a) The error behavior of ALM (8×8). (b) The error behavior of the fractional
part of ALM in an power-of-two interval.

50

(a) (b)

Figure 4.4: (a) A 7-bit truncation adder (TA) example. (b) A 7-bit set one adder (SOA)
example.

The error behavior of ALM-TA is similar as the error behavior of the ALMmethod.

We have shown the ALM method in (4.1) in Sec. 4.1, and now the exact multiplication

written in log-based form can be expressed as (4.2).

CExact = 2ka+kb · (1 + x) · (1 + y)

= 2ka+kb · (1 + x+ y + xy)

(4.2)

ErrorALM = CExact − CALM

=























2ka+kb · (xy), x+ y < 1,

2ka+kb+1 · (1− x− y + xy), x+ y ≥ 1

(4.3)

51

ErrorALM−TA = CExact − CALM−TA

=































































2ka+kb · (1 + xHxL + yHyL

+x · y − 1− xH − yH), x+ y < 1,

2ka+kb+1 · (1 + xHxL + yHyL

+x · y − 2 · xH − 2 · yH), x+ y ≥ 1

=











































2ka+kb · (xL + yL + xy), x+ y < 1,

2ka+kb+1 · (1 + xL + yL

+x · y − xH − yH), x+ y ≥ 1

(4.4)

Based on (4.1) and (4.2), we can calculate the error of ALM as (4.3). The error

behavior of ALM showing a proportional replication in each power-of-two interval is demon-

strated in Fig. 4.3. Hence, we can perform error compensation to the fractional part before

barrel shifting operation to save resource, which is also demonstrated in [9].

After replacing the exact mantissa summation in ALM (“x+y”) with approximate

summation by using TA, the error will also accumulate. We use ErrorALM−TA to represent

it from time being. The error behavior of ALM-TA can be calculated as (4.4) and also has

a proportional replication in each power-of-two interval. Fig. 4.5(a) demonstrates the error

behavior of ALM-TA with k = 4 in an interval. Notice that the error behavior though

distributes nearly symmetric, which is similar as the error profile of ALM in a single interval.

It further shows proportional replication in each 1/8 interval. Also, for TA summation, no

matter what the lower half of the inputs are (here represented as xL and yL, as the inputs of

52

(a)

(b)

(c)

Figure 4.5: (a) The error behavior of ALM-TA with k = 4. (b) The error behavior of
ALM-TA with k = 4 doing average operation in each block. (c) The error compensation
pattern for HEALM-TA with k = 4.

53

(a)

(b)

(c)

Figure 4.6: (a) The error behavior of ALM-SOA with k=4. (b) The error behavior of
ALM-SOA doing average operation in each block. (c) The error compensation pattern for
HEALM-SOA with k=4.

54

the mantissa summation is the fractional part x and y of input A and B, respectively), the

approximate summation is only determined by the exact summation part (xH +yH). Thus,

we partition the fractional xy-space into 64 blocks (8×8) with the red dash line, which are

the most significant 3 bits (3 MSBs) of x and y, as shown in Fig. 4.5; and recalculate the

average error in each block as shown in Fig. 4.5(b). Also, for ALM-TA with more than 3

bits in the exact summation part (k < 4), we still use the 8×8 blocks partition to calculate

the average error to save resource. The experimental results shown in Sec. 4.3 will prove

that the partition with 8×8 is sufficient to achieve acceptable accuracy improvement and

good resource saving.

The Proposed HEALM-TA Error Compensation

Based on the aforementioned observation on the error behavior of ALM-TA, we

can perform specified error compensation and propose our HEALM idea. We first generate

a lookup table, which is of the same size as 8×8 blocks partition, as an error compensation

pattern. An example of the pattern is shown in Fig. 4.5(c). The error coefficient, Errcoeff ,

which is added to the approximate mantissa summation, is generated by searching the

lookup table based on the 3 MSBs of x and y to perform the specified error compensation.

Note that when the error compensation pattern is simple (usually the value of k is large),

such as the example we show in Fig. 4.5(c), the lookup table can be simplified to several

large squarish area. Like the case shown in Fig. 4.5(c), the blue area is equivalent to the

sum of 3 rectangular regions, which can be described much simpler than an 8×8 lookup

table, thus saving the resource consumption.

55

CHEALM−TA =































































2ka+kb · (1 + xH + yH

+Errcoeff), x+ y < 1,

2ka+kb+1 · (xH + yH

+Errcoeff), x+ y ≥ 1

(4.5)

The HEALM-TA method can be expressed as (4.5), where CHEALM−TA is the product of

HEALM-TA method. And the value of the error coefficients are determined by the average

error of each block. We notice that if x+ y ≥ 1, the error coefficient Errcoeff will be added

twice. Thus, the equivalent error in these blocks where x + y ≥ 1 should be as half as its

initial value. So we divided the Errcoeff for these blocks to half. And for those blocks

where x+y could be either smaller or larger than 1, we further perform error compensation

arrangement to achieve the possible smallest peak relative error. Note that the mantissa

summation of x + y is replaced with the approximate summation now, so we need to do

quatization of the error coefficients to ensure that the precision of these coefficients no

larger than the precision of the exact summation part. In the case of k = 4 as shown

in Fig. 4.5(c), the exact summation only has 3 bits. So Errcoeff also need to be a 3-bit

parameter. Actually in this case, the error coefficient will either be 1/8 or 2/8 as shown

in Fig. 4.5(c). Our proposed HEALM-TA design performs well especially when the value

of k is large. And 8-bit HEALM-TA with k = 3 can improve the traditional ALM design

in both error metrics and area, which is never achieved by the previous works with 8-bit

precision. We’ll prove this later in Sec. 4.3.

56

Single Coefficient Mode: HEALM-TA-S

Furthermore, we propose a single coefficient mode, named as HEALM-TA-S to

perform error compensation on ALM-TA with almost no resource overheads. As an N -bit

simple TA with k bits truncated, it consists of 1 HA (half adder) and N − k − 1 FAs (full

adder), which is shown in Fig. 4.7(a) (in the example of k = 4, the exact summation part

includes 2 FA and 1 HA). To perform the simplest error compensation, the error coefficient

Figure 4.7: The mantissa summation unit of HEALM-TA-S design with k = 4: (a) The
exact summation part with no error compensation. (b) The exact summation part improved
with a single error coefficient, replacing the HA with an FA.

for the whole fractional space is set to be the same value, which is 2−(N−k) (1/8 in this

case); and the HA is replaced with an FA at the LSB (least significant bit) location to

obtain the smallest resource overheads. The structure of the mantissa summation part of

HEALM-TA-S design is shown in Fig. 4.7(b). Note that the input carry bit (Cin) for the

57

FA at LSB is always set to ‘1’ according to the error coefficient. We’ll prove later in Sec. 4.3

that HEALM-TA-S can perform a good trade-off among the error metrics and the hardware

performance especially when k is large for HEALM-TA-S design.

4.2.2 HEALM With Set One Adder: HEALM-SOA

Besides HEALM-TA, we also propose another HEALM design with set one adder,

or SOA, called HEALM-SOA. Simple ALM design with mantissa summation replaced with

SOA (ALM-SOA) has already been proposed before [30]. Based on ALM-SOA, we further

perform error compensation similar to Sec. 4.2.1.

In an SOA, different from TA, all the bits in SL part are set to logic ‘1’ to produce

a balanced error in the ALM-SOA method. For the SH , which is the exact summation part,

SH = AH + BH + Cin, where the carry bit Cin is obtained by doing an AND operation of

the MSB in AH and BH (A[k-1] and B[k-1], respectively), as expressed in (4.6), suppose

the SOA is an N -bit summation with k bits in the approximate summation part SL.

SH = S[N : k] = A[N − 1 : k] +B[N − 1 : k] + Cin

Cin = A[k − 1]B[k − 1]

SL[i] = 1, i ∈ [0, k − 1]

(4.6)

Then, based on (4.1) and (4.6), we can calculate the error of ALM-SOA in an power-of-2

interval as (4.7), where Cin = x[k − 1]y[k − 1], and SSOA = Σ2i/2N , i ∈ {0, 1, ..., k − 1}.

Similar as ALM-TA, we show the error behavior of ALM-SOA (k = 4) with an example in

Fig. 4.6(a).

58

ErrorALM−SOA = CExact − CALM−SOA

=































































2ka+kb · (1 + xHxL + yHyL + x · y

−1− xH − yH − Cin − SSOA), x+ y < 1,

2ka+kb+1 · (1 + xHxL + yHyL + x · y

−2 · (xH + yH + Cin + SSOA)), x+ y ≥ 1

=











































2ka+kb · (xL + yL + x · y − Cin − SSOA), x+ y < 1,

2ka+kb · (1 + xL + yL + x · y

−xH − yH − Cin − SSOA), x+ y ≥ 1

(4.7)

The HEALM-SOA idea is similar as HEALM-TA. The error compensation pattern of

HEALM-SOA is shown in Fig. 4.6(c). We partition the fractional space into 8×8 blocks

and calculate the average error following the same way as HEALM-TA, which is shown in

Fig. 4.6(b). Then based on the error distribution of ALM-SOA, we generate a specified

error compensation pattern in a lookup table form. The error coefficient which is added to

the mantissa summation part is determined by the 3 MSBs of x and y as HEALM-TA. Sim-

ilar to HEALM-TA, HEALM-SOA also selects the error compensation patterns to achieve

the smallest possible peak relative error and can provide improvement upon the traditional

ALM design in terms of both the error metrics and resource consumption. We’ll show this

later in Sec. 4.3.

Note that unlike HEALM-TA, the LSB summation of the exact summation part

in HEALM-SOA should consider the carry bit Cin from the SL (approximate summation

59

part). The LSB summation also requires a FA instead of HA in the exact summation part of

HEALM-SOA. We cannot directly add a bit ‘1’ as error compensation to the LSB location.

So HEALM-SOA will not have a single error coefficient mode like “HEALM-SOA-S”.

4.3 Experimental Results and Discussions

In this section, we evaluate the performance of the proposed hardware-efficient

approximate logarithmic multiplier with reduced error, named HEALM under 8-bit preci-

sion. We also compare HEALM against the ALM (approximate logarithmic multiplier)

baseline [31] and other state of art works with the same precision. Furthermore, we demon-

strate 16-bit HEALM design results compared with the baseline and state of art works as

a complementary.

4.3.1 Experimental Setup

To evaluate the performance of the proposed HEALM design, we first compare

the error metrics and the hardware performance of HEALM with its original version: a

classical ALM proposed by Mitchell, which is selected as the baseline. We also compare

HEALM with other state of art improved ALMs. These improved ALMs include: LeAp [9],

REALM [39], ALM-SOA [30], ILM-EA [3], ILM-AA [3]. For REALM design, we compare

REALM8 which did the same partition in the fractional space (in an power-of-2 interval)

as HEALM does for fair comparison.

All the above mentioned 8-bit multipliers are implemented in Verilog HDL and

synthesized with Synopsys Design Compiler using EDK 32nm standard cell library [11]

60

as single-cycle designs, and at the same timing constraints of 2.5ns (400 MHz working

frequency) for area and power consumption comparison. For 16-bit multipliers, we imple-

mented with the same library but at the timing constraints of 5ns (200MHz).

For the error metrics evaluation, we developed behavioral simulation models for

all the multipliers listed in Table 4.1 in MATLAB and measured the accuracy using 1

million random inputs uniformly distributed over the set {0, 1, ..., (28 − 1)}. The errors

are reported with respect to the exact results. The error metrics used to report the error

behavior include: mean error (mean of absolute relative error, also referred as MRED in

some previous works [3]); and peak error (maximum value of the absolute relative error).

All the error metrics are in percentages.

4.3.2 Performance Evaluation

The error metrics and the hardware performance for the implemented multipliers

are shown in Table 4.1. Since the proposed HEALM designs utilize the inexact adder in the

mantissa summation, we use a parameter k in Table 4.1 to represent the number of bits in

the inexact summation part. For example, in the demonstrated cases shown in Fig. 4.4(a)

and Fig. 4.4(b), k equals to 4. For ALM, LeAp, and ILM-EA designs, as these multipliers

do not have an inexact summation unit, k equals to 0. For the REALM design, the value of

the error configuration parameter mentioned in the work [39] is equivalent to the number

of bits in the inexact summation part, which is represented by k in our work. To avoid

ambiguity, we use the same notation as HEALM design does for easy comparison.

61

Table 4.1: Error metrics and hardware performance comparison for the 8-bit multipliers.

Logarithmic Multiplier Design k Mean Error /% Peak Error /% Area /µm2 Power /µW

HEALM-TA (proposed)

1 1.12 4.86 1216.84 114.50
2 1.40 8.25 938.05 92.17
3 2.17 9.75 743.63 74.14
4 3.66 13.77 595.46 51.41

HEALM-TA-S (proposed)

1 3.21 11.11 763.70 71.19
2 3.17 12.02 716.69 65.68
3 3.39 13.79 614.01 56.62
4 4.26 17.12 534.72 42.32

HEALM-SOA (proposed)

1 1.13 4.71 1175.41 113.96
2 1.38 5.90 966.76 90.32
3 1.78 7.65 808.94 75.05
4 3.12 12.17 664.33 59.55

ALM with/without Approximate Adder

ALM [31] 0 3.76 11.11 820.63 72.83

ALM-TA

1 4.02 12.03 763.45 69.41
2 4.79 13.83 702.71 65.07
3 6.58 17.25 612.74 56.20
4 10.29 23.53 533.19 41.73

ALM-SOA [30]

1 3.50 11.11 776.92 72.11
2 3.23 11.46 736.26 68.54
3 3.07 12.36 702.96 64.46
4 3.47 14.13 596.98 50.63

Other Improved Logarithmic Multipliers from the Literature

LeAp [9] 0 1.38 4.71 1040.21 106.43

REALM [39]

0 0.90 3.96 1235.14 124.75
1 1.06 4.76 1128.40 108.48
2 1.81 8.27 993.96 96.46
3 3.25 12.80 908.82 82.56
4 6.58 23.07 709.57 62.40

ILM-EA [3] 0 2.84 11.11 1221.92 107.89

ILM-AA [3]

1 2.91 12.25 1186.85 104.72
2 3.09 14.24 1046.06 95.03
3 3.64 17.35 985.57 87.74
4 5.47 23.47 887.47 77.34

Table 4.2: Error metrics and hardware performance comparison for the 16-bit multipliers.

Approach k Mean Error /% Peak Error /% Area /µm2 Power /µW

ALM [31] 0 3.76 11.11 1825.52 110.91

REALM [39]
0 0.75 3.70 2383.36 164.50
9 1.06 5.27 1572.90 94.07

LeAp [9] 0 0.98 4.76 1990.71 128.20

ALM-TA 9 4.88 12.93 1263.86 66.26

HEALM-TA-S 9 4.87 12.02 1267.16 66.45

HEALM-TA 9 1.64 5.83 1511.39 87.62

ALM-SOA [30] 9 3.07 12.03 1383.56 74.10

HEALM-SOA 9 1.38 5.15 1577.47 91.89

62

Table 4.1 demonstrates that with the same value of k, the proposed HEALM-TA

design improves the error metrics upon the ALM-TA design, reducing up to 6.63%, 9.76%,

in mean and peak error, respectively; HEALM-SOA improves the error metrics upon the

ALM-SOA design, reducing up to 2.37%, 6.40%, in mean and peak error, respectively.

When compared with the ALM baseline, HEALM-TA and HEALM-SOA can improve the

mean / peak error by 2.64% / 6.25%, and 2.63% / 6.40%, respectively. When compared

with REALM, which is the state of art work, the HEALM designs can improve mean error,

peak error, area and power consumption by up to 2.92%, 9.3%, 16.08%, 17.61% respectively

with the same value of k. The smallest mean error that HEALM-TA and HEALM-SOA can

achieve are 1.12% and 1.13%, respectively. And the smallest peak error that HEALM-TA

and HEALM-SOA can obtain are 4.86% and 4.71%, respectively. The 16-bit multiplication

results are summarized in Table 4.2. Due to limited space, we simply show the results of

k = 9 and compare with several state of art works. 16-bit HEALM-TA can improve all of

the four design metrics (mean error, peak error, area, power) against the ALM baseline by

2.12%, 5.28%, 17.21%, 21.00%; and 16-bit HEALM-SOA can improve the design metrics

by 2.38%, 5.96%, 13.59%, 17.15%.

Considering the trade-off among error metrics improvement and resource consump-

tion, the previous works can improve either error metrics or resource consumption (area,

power) aspect, but can hardly improve both of these aspects especially when the precision

is small (like 8-bit precision) as shown in Table 4.1. To better illustrate this, we show

the relationship between the mean error / peak error and area / power for all the listed

multipliers in Fig. 4.8. The rectangular area with the red dash border line in all four sub

63

Figure 4.8: Comparison of HEALM with baseline and state of art works.

figures represents that a design outperforms the classical ALM design both in error metrics

and resource consumption aspects. Notice in Fig. 4.8(a), only the proposed HEALM-TA

and HEALM-SOA with k = 3 improve both the peak error and area aspects, decreasing

the peak error with 1.36% and 3.46%, respectively. In Fig. 4.8(c), though some previous

64

works like ALM-SOA outperforms ALM in both mean error and area aspects, only a lit-

tle improvement in mean error (at most 0.69%) was obtained. In contrast, the proposed

HEALM-TA and HEALM-SOA with k = 3 reduce the mean error by 1.59% and 1.98%

when compared to ALM, respectively; and provides 9.38% and 1.42% in area reduction at

the same time. Besides, HEALM-TA and HEALM-SOA design with k = 4 can reduce the

mean error by 0.10% and 0.64% when compared to ALM and reduce power by 29.41% and

18.23% at the same time.

The results of HEALM-TA-S (single error coefficient mode) design in Table 4.1

shows that HEALM-TA-S can do better trade-offs between accuracy and resource con-

sumption especially when the value of k is large. In case of k = 4, which is the largest value

of k, HEALM-TA-S decreases the mean / peak error by up to 6.03% / 6.11%, respectively

when compared to ALM-TA. Note that HEALM-TA-S achieves this improvement with al-

most no resource overheads. It also saves 34.84% / 41.89% of area / power with 8-bit inputs,

respectively; and 30.59% / 40.09% with 16-bit inputs when compared to the ALM baseline.

4.3.3 An Image Processing Application Evaluation

Now, we show how the proposed HEALM designs compare to state of art methods

in an multimedia application. Discrete cosine transformation (DCT) is a commonly used

lossy image compression method. The quality of the compressed images is usually evaluated

using metrics such as PSNR (peak signal noise ratio) and higher PSNR value represents

better image quality. We implement the proposed HEALM design with 8-bit precision in

the DCT-iDCT (inverse DCT) workloads, and compare with other logarithmic multipliers

65

Table 4.3: PSNR (dB) for images after DCT-iDCT using logarithmic multipliers.

Approach Lena Boat Barbara House Pepper

ALM (baseline) 19.1 18.7 19.3 18.4 18.7

k = 1

ILM-AA 27.9 26.6 28.1 24.8 27.4

ALM-TA 18.9 18.6 19.2 18.2 18.5

ALM-SOA 19.2 18.8 19.5 18.6 18.9

REALM 37.2 36.5 36.9 38.4 36.4

HEALM-TA 36.1 35.7 36.2 36.5 35.6

HEALM-TA-S 20.4 19.9 20.6 19.9 20.1

HEALM-SOA 34.3 33.9 34.5 36.2 34.4

k = 2

ILM-AA 27.6 26.2 27.7 24.3 27.1

ALM-TA 17.4 17.1 17.6 16.5 17.0

ALM-SOA 19.8 19.4 20.1 19.4 19.5

REALM 27.1 26.8 27.1 27.9 27.2

HEALM-TA 33.2 32.7 33.4 35.1 33.3

HEALM-TA-S 19.9 19.5 20.1 19.5 19.6

HEALM-SOA 31.7 31.4 32.3 33.1 31.7

k = 3

ILM-AA 24.5 23.1 24.5 22.4 23.9

ALM-TA 15.0 14.8 15.2 14.3 14.7

ALM-SOA 19.9 19.5 20.1 19.5 19.6

REALM 21.2 21.2 21.4 19.6 20.8

HEALM-TA 26.5 25.6 26.2 28.1 26.4

HEALM-TA-S 18.8 18.4 18.9 18.7 18.3

HEALM-SOA 29.8 29.5 30.0 31.1 29.7

k = 4

ILM-AA 20.2 18.9 20.1 18.5 19.5

ALM-TA 14.1 13.7 14.1 13.4 13.7

ALM-SOA 18.9 18.9 19.6 16.7 18.9

REALM 19.8 20.0 19.8 17.8 19.5

HEALM-TA 29.1 28.7 29.1 25.9 28.5

HEALM-TA-S 23.1 22.0 22.6 24.3 22.3

HEALM-SOA 22.2 22.1 22.6 19.4 22.4

66

on five example images. To be fair, the mantissa summation parts of all the compared

logarithmic multipliers are inexact unit, except for the ALM, which is chosen as the baseline.

We show the results of image compression in Table 4.3. The result shows that with different

values of k, HEALM-TA can improve the image quality upon the ALM baseline by from

7.8∼17.2dB in average and HEALM-SOA can improve 2.9∼15.8dB in average, respectively.

Besides, HEALM-TA and HEALM-SOA design outperform all the other state of art works

when k = 2, 3, 4 by at least 6.3dB, 6.3dB, 8.8dB, respectively. Note that the single coefficient

mode design HEALM-TA-S performs the best when k = 4, making improvement upon the

ALM baseline by 4.1dB in average with extremely low resource consumption as mentioned

before. This is due to the error behavior of ALM, whose outputs are always smaller than

the exact product. And HEALM-TA-S with k = 4 will have a more balanced error than

the cases of k = 1, 2, 3.

4.4 Summary

The work in this chapter proposes a novel hardware-efficient approximate logarith-

mic multiplier, called HEALM. The proposed design, first determines the truncation width

for mantissa summation in ALM. Then the error reduction is performed via a lookup table

for multiple partitioned input ranges. Numerical results shows that HEALM and its en-

hanced designs can lead to more accurate results with reduced area and power at the same

time than the existing ALM baseline design. It also outperforms the state of art design,

REALM, with up to 2.92%, 9.30%, 16.08%, 17.61% improvement in mean error, peak error,

area, power consumption for 8-bit precision. For discrete cosine transformation (DCT) ap-

67

plication, with different values of k, HEALM-TA can improve the image quality upon the

ALM baseline by 7.8∼17.2dB in average and HEALM-SOA could improve 2.9∼15.8dB in

average, respectively. Besides, HEALM-TA and HEALM-SOA outperforms all the state of

art works with k = 2, 3, 4 on the image quality.

68

Chapter 5

PAALM: Power Density Aware

Approximate Logarithmic

Multiplier Design

5.1 Power Density Increase in the Approximate Logarithmic

Multiplier Design

recent study showed that approximate multiplier designs may lead to unwanted

higher power density, thus higher temperature and related reliability issues in the final chip

design [52]. The reason is that though approximation schemes reduce both power and area

at the same time, the power density, which is power per unit area, can increase as reduction

ratios for power and area can be different. It turns out that as shown in Table 5.1, the

power densities of recently proposed approximate multipliers are all larger than the fixed

69

point exact multiplier (the baseline) no matter with the same working frequency or with

the same throughput. As a result, those approximate multiplier designs can’t run on the

same frequency and voltage ranges of the original exact multiplier designs under the same

temperature constraint [52].

Table 5.1: 8-bit multipliers power density (synthesized using EDK 32nm standard cell
library [11])

Approaches Area (µm2)
Power Density (µW/µm2)

same frequency same throughput

FxP (baseline) 1754.10 0.0512 0.0512

ALM [31] 820.63 0.0853 0.0693

LeAp [9] 1040.21 0.1023 0.0831

REALM [39] 1235.14 0.1010 0.0821

ILM-EA [3] 1221.92 0.0883 0.0718

ILM-AA [3] 887.47 0.0871 0.0708

HEALM-TA 595.46 0.0863 0.0702

HEALM-SOA 664.33 0.0896 0.0729

Based on this observation, a power density aware approximate logarithmic multi-

plier design to achieve superior thermal performance will be demonstrated in this chapter.

5.2 Proposed Power Density Aware ALM

In this section, we present the details of our proposed power density aware logarith-

mic approximate multiplier (PAALM) design to mitigate the increase in the power density of

most existing approximate multiplications, especially the log-based multiplication designs.

5.2.1 Power Density Aware Logarithmic Multiplication

The first thing we do is to profile the power consumption of the key components

of the ALM design. The goal is to find the local power or power density hot spots so that

70

(a)

(b)

Figure 5.1: (a) The power, area distribution and power density of each component in the
ALM design; (b) The power, area distribution and power density of each component in the
PAALM design

71

Figure 5.2: The conventional ALM design

we can re-design the multiplier to avoid those hot spots and the overall power density can

be reduced in this way.

Specifically, we first show the power, area and the power density for each compo-

nent in a conventional ALM design in Fig. 5.1(a). In this figure, the LOD a and LOD b

modules represent the blocks detecting the leading one bit and performing the bit shifting

operation to obtain the exponential part ka, kb and the fraction part x, y. The Sum Exp

module is used to sum the exponential parts ka, kb up. Sum Frac module does the fraction

part summation. The Barrel Shift module stands for the barrel shifter which delivers the

output CALM . These ALM components are illustrated in Fig. 5.2.

72

From Fig. 5.1(a) we can see, the fraction summation part (Sum Frac module) is

the most power dense unit. However, it just takes up about 12.7% of the total power

consumption and 9.5% of the area. On the other hand, the barrel shifter unit is not the

most power dense component in the ALM structure, but dominates the power consumption

of the ALM design, taking up 58.2% of the total power consumption and has higher power

density (0.072µW/µm2) compared to the fixed-point baseline (0.051µW/µm2). Besides,

the Sum Frac module which has the highest power density, should be re-designed and be

replaced with modules which have less power density.

Based on the above observation, we propose to split the large barrel shifter into

two small barrel shifters. In this way, we can resolve both of these aforementioned issues.

Specifically, we rewrite the math expression of the ALM: (4.1) as follows:

CALM =



































































































2ka+kb · (1 + x+ y)

= 2ka · (1 + x) · 2kb + 2kb · y · 2ka

= A · 2kb + (B − 2kb) · 2ka , x+ y < 1,

2ka+kb+1
· (x+ y)

= 2ka · (1 + x) · 2kb+1 + 2kb · y · 2ka+1

= (A− 2ka) · 2kb+1 + (B − 2kb) · 2ka+1, x+ y ≥ 1

(5.1)

As we can see, compared to (4.1), one time ka + kb bit shifting operation is separated to a

ka bit shifting and a kb bit shifting operation.

We show the PAALM design in Fig. 5.3. Unlike the conventional ALM, the LOD

blocks in the PAALM structure not only detect the leading one bit and output the expo-

nential and fractional parts, but also deliver the A− 2ka and B− 2kb according to (5.1). In

this way, the barrel shifting operations are split into two shifting operations. But the real

73

Figure 5.3: The power density aware ALM design

benefits is that the area increase from two barrel shifters will exceed their power increase,

which leads to lower power density. After barrel shifting, the PAALM obtains A · 2kb or

(A − 2ka) · 2kb depending on whether x + y is smaller or larger than one, using a smaller

barrel shifter to obtain two partial products. Then we add these two partial products up to

achieve the final output CALM which is just the same as the output from the conventional

ALM. For the most power dense unit Sum Frac, we introduce the inexact summation to

replace the exact adder to reduce power density. We will give more details in Sec. 5.2.2.

Fig. 5.1(b) shows the power, area and power density of the components in the

new PAALM design. As we can see, the highest power density has been reduced from

0.088µW/µm2 to 0.058µW/µm2. Second, the new Sum INT unit and the improved SUM Frac

unit have much lower power density (0.042µW/µm2) compared to the initial Sum Frac

(0.088µW/µm2) and Sum Exp (0.047µW/µm2) units. Third, the two small barrel shifters

have lower power density than the previous large barrel shifter, which is beneficial to the

74

overall power density. Fourth, the power density differences between different components

are much smaller than the previous design, which is good for reducing some local hot spots

(although this is less relevant as we assume that the typical thermal analysis granularity will

be at the gate level). But the most important factor is that, we end up with reducing the

power density of the conventional ALM from 0.069µW/µm2 to 0.051µW/µm2 of PAALM

without hurting the accuracy.

5.2.2 The Error Compensation Scheme

To split one large barrel shifter and replace it with two small barrel shifters, the

PAALM actually introduces some area overheads, which will be demonstrated in Sec. 5.3. To

mitigate this issue, also reduce the power density of the SUM Frac unit which is mentioned

in Sec. 2.3.1, we replace the exact summation of x+y with simple inexact summation. Here,

we select the simplest truncation adder (TA) to save resource. We use k to represent the

number of bits truncated in the x+ y summation. As implementing the inexact summation

will introduce extra accuracy loss, we need to do error compensation.

However, since the PAALM does the bit shifting operation separately instead of

doing just once, we cannot do error compensation, like adding error coefficients directly to

the fraction summation part x+y, which was usually tried in previous log-based multiplica-

tion works like [9, 39]. To do special error compensation for the PAALM design, we replace

one LOD unit with a SO-LOD (set one LOD) unit, which is shown in Fig. 5.4. Different

from the conventional LOD unit, SO-LOD not only generates the exponential part and the

fractional part, but also set all the bits of A−2ka part to bit ‘1’. As A−2ka is equivalent to

x · 2ka , we rewrite this part as x′ · 2ka and show the structure of PAALM design with error

75

Figure 5.4: The set one LOD (SO-LOD) unit structure

compensation in Fig.5.5. Note that we just replace one of the two LOD units in PAALM

with the SO-LOD unit to avoid “over compensation”.

5.3 Experimental Results and Discussions

In this section, we evaluate the performance of the proposed power density aware

approximate logarithmic multiplication approach, named PAALM under 8-bit and 16-bit

precision. We also compare the proposed approach against the fixed-point exact multiplier

baseline and the conventional ALM design under the same precision.

5.3.1 Experimental Setup

To evaluate the performance of the proposed PAALM design, we demonstrate

the hardware and error metrics of PAALM in Table 5.2 and Table 5.3. We also compare

PAALM with other state of art improved ALMs. These improved ALMs include: LeAp [9],

REALM [39], ILM-EA [3], ILM-AA [3], HEALM-TA, HEALM-SOA.

76

Figure 5.5: The power density aware ALM design with error compensation

All the multipliers listed in Table 5.2 and Table 5.3 are implemented in Verilog

HDL and synthesized with Synopsys Design Compiler using EDK 32nm standard cell li-

brary [11] as single-cycle designs. As different working frequency will lead to different power

consumption of the circuit, and further introduce difficulties to compare the power density.

We constrain the throughput (delay) of all the listed multipliers in each table to be the

same. Note that different multiplication approaches require different computing latency

(Lat) to give outputs, the working frequency (Freq) actually will be different for these

listed approaches (Freq = Lat/Delay). Here, we select the delay/throughput of the fixed-

point exact multiplier, which is the baseline, as standard. The critical paths for the 8-bit

and 16-bit fixed-point multiplier are 2.07ns (5 cycles) and 4.51ns (7 cycles), respectively;

so the delay are 10.35ns (2.07ns × 5) and 31.57ns (4.51ns × 7), respectively. Under these

time constraints, we obtain the hardware performance for all the multipliers, including area

77

Table 5.2: Design metrics for the 8-bit logarithmic multipliers with the same throughput

Approach k Lat. Area (µm2) Power Density (µW/µm2) Err. Comp. Mean Error /% Peak Error /%

FxP (baseline) / 5 1754.10 0.0512 / / /

ALM [31] 0 3 820.63 0.0693 w/o 3.76 11.11

PAALM
(proposed)

0 2 1391.44 0.0507 w/o 3.76 11.11
3 2 1326.89 0.0508 w/o 3.77 11.77
3 2 1339.85 0.0505 w/t 2.96 11.77
4 2 1274.79 0.0466 w/o 3.83 12.59
4 2 1287.24 0.0455 w/t 3.27 12.59
5 2 1212.52 0.0453 w/o 4.09 14.05
5 2 1245.56 0.0503 w/t 3.52 14.05
6 2 1199.81 0.0453 w/o 5.13 16.43
6 2 1201.08 0.0467 w/t 4.42 16.43

Other state of art improved logarithmic multipliers

LeAp [9] 0 3 1040.21 0.0831 w/t 1.38 4.71

REALM [39]
0 3 1235.14 0.0821 w/t 0.90 3.96
4 3 709.57 0.0752 w/t 6.58 23.07

ILM-EA [3] 0 3 1221.92 0.0718 w/o 2.84 11.11

ILM-AA [3] 4 3 887.47 0.0708 w/o 5.47 23.47

HEALM-TA 4 3 595.46 0.0702 w/t 3.66 13.77

HEALM-SOA 4 3 664.33 0.0729 w/t 3.12 12.17

and power density (Power/Area) aspects. As Power and Energy for all the multipliers

can be easily calculated from the products of Area× PowerDensity and Power ×Delay,

respectively. To save space, these two metrics will no be listed in the table.

To evaluate the error metrics, we develop behavioral simulation models for all the

multipliers listed in Table 5.2 and Table 5.3 in MATLAB and measure the accuracy using

1 million (for 8-bit precision) and 10 million (for 16-bit precision) random inputs uniformly

distributed over the set {0, 1, ..., (28 − 1)} and the set {0, 1, ..., (216 − 1)}, respectively. The

errors are reported with respect to the exact results. The error metrics used to report the

error behavior include: mean error (mean of absolute relative error, also referred as MRED

in some previous works [3]); and peak error (maximum value of the absolute relative error).

All the error metrics are in percentages.

78

Table 5.3: Design metrics for the 16-bit logarithmic multipliers with the same throughput

Approach k Lat. Area (µm2) Power Density (µW/µm2) Err. Comp. Mean Error /% Peak Error /%

FxP (baseline) / 7 8753.48 0.0369 / / /

ALM [31] 0 3 1714.20 0.0407 w/o 3.85 11.11

PAALM
(proposed)

0 2 3296.25 0.0360 w/o 3.85 11.11
9 2 2939.18 0.0369 w/o 3.85 11.34
9 2 2978.31 0.0365 w/t 3.43 11.34
10 2 2836.50 0.0363 w/o 3.85 11.56
10 2 2957.98 0.0361 w/t 3.15 11.56
11 2 2733.06 0.0368 w/o 3.88 12.00
11 2 2898.26 0.0368 w/t 2.92 12.00
12 2 2678.93 0.0365 w/o 3.96 12.82
12 2 2798.89 0.0361 w/t 3.43 12.82
13 2 2642.34 0.0363 w/o 4.29 14.28
13 2 2743.48 0.0357 w/t 3.70 14.28
14 2 2553.89 0.0348 w/o 5.48 16.67
14 2 2619.46 0.0359 w/t 4.62 16.67

Other state of art improved logarithmic multipliers

LeAp [9] 0 3 1990.71 0.0455 w/t 0.98 4.76

REALM [39]
0 3 2383.36 0.0488 w/t 0.75 3.70
9 3 1572.90 0.0423 w/t 1.06 5.27

HEALM-TA 9 2 1511.39 0.0410 w/t 1.64 5.83

HEALM-SOA 9 2 1577.47 0.0412 w/t 1.38 5.15

5.3.2 Performance Evaluation and Comparison

We show the hardware performance of the proposed PAALM design under 8-bit

precision in Table 5.2. Note that as PAALM will introduce area overheads when compared

to the conventional ALM design. We introduce inexact summation and error compensation

scheme to save resource and improve error metrics as mentioned in Sec. 5.2.2. The parameter

k indicates the number of bits truncated in the x+y summation. In the Err. Comp. column:

the “w/t”, “w/o” mark represent “with” or “without” error compensation, respectively.

By introducing inexact summation, from Table 5.2, we observe that when compared to the

exact multiplier baseline, PAALM can improve the power density and area up to 11.5% and

31.6%, respectively. Also when compared to the conventional ALM design, PAALM will

improve the power density up to 34.6% with area overheads and outperforms all the listed

state of art works in power density.

79

For the 16-bit multipliers, the hardware performance and error metrics are demon-

strated in Table 5.3. PAALM reduces 5.7% power density and 70.8% area when compared

to the exact multiplier baseline; also reduces up to 14.5% of power density when compared

with the ALM design with area overheads. Similar to the 8-bit case, 16-bit PAALM also

outperforms all the listed state of art works in respect of the power density.

The error metrics of 8-bit and 16-bit PAALM design are also demonstrated in

Table 5.2 and Table 5.3. As proved in Sec. 2.3.1, without error compensation, PAALM

shows completely the same error behavior as the conventional ALM. However, different from

previous works, the error compensation scheme (mentioned in Sec. 5.2.2) for PAALM will do

little improvement to the mean and peak error, but focus on improving the error bias. We

show the curves for the absolute value of the error bias of PAALM with error compensation

under 8-bit and 16-bit precision with different k values in Fig. 5.6. By observing Fig. 5.6, we

can find an obvious convex property of the curves, not monotonically decreasing when we

decrease the k value. The reason is that when k is small, the “set one” error compensation

scheme will introduce larger and larger positive error to balance the negative error of ALM

when we increase k. However, when the error bias reaches the minimum value: -0.17 (when

k = 4 with 8-bit precision) or 0.08 (when k = 12 with 16-bit precision), and we further

increase k, the absolute value of the positive error will become larger than which of the

negative error, thus leads to a “rebound” of the error bias curve.

80

Figure 5.6: The absolute error bias values of 8-bit and 16-bit error compensated PAALM
for different k values

5.3.3 Evaluation on CNN Application

To further evaluate the performance of PAALM in applications which are multiplication-

intensive, we first implement the multiplier into a convolutional neural network (CNN) and

compare with the fixed-point multiplier baseline and the conventional ALM. The application

is developed on a Python platform.

We use CIFAR10 [23] dataset to test the CNN application with approximate mul-

tipliers. The network consists of two convolution (CONV) layers and three fully connected

(FC) layers. The network is trained with 3000 steps, using double-precision floating point

numbers with a batch size of 128 in one step. To test the performance of the approximate

multipliers, we replace the floating-point multipliers with PAALM, ALM and fixed-point

multipliers in 8-bit precision to do the inference. Since the CONV layer is computation-

intensive and FC layer is memory-extensive, we simply replace the multipliers in CONV

81

Figure 5.7: CIFAR10 dataset inference accuracy based on different approximate multipliers

layers. Fig. 5.7 shows the classification accuracy comparison of PAALM, conventional ALM

and fixed-point multiplier on 1024 images. The accuracy is in percentage.

From Fig. 5.7, we can observe that all the listed multipliers can achieve similar

inference accuracy. Without error compensation, PAALM will lose some accuracy when

inexact summation is introduced; while when k < 5, PAALM can perform as well as the

conventional ALM. If error compensation is considered, we notice that when k = 4, PAALM

can outperform the conventional ALM, and achieves the same inference accuracy as the

fixed-point multiplier baseline. This is due to the extremely low error bias (almost zero) as

demonstrated in Fig. 5.6.

82

5.3.4 Evaluation on Image Processing Application

Now, we show how the proposed PAALM design compare to the conventional ALM

and fixed-point multiplier baseline in a multimedia application. Discrete cosine transfor-

mation (DCT) is a commonly used lossy image compression method. The quality of the

compressed images is usually evaluated using metrics such as PSNR (peak signal noise ra-

tio) and higher PSNR value represents better image quality. We implement the proposed

PAALM design with 8-bit precision in the DCT-iDCT (inverse DCT) workloads, and com-

pare with the conventional ALM and fixed-point multiplier on five example images. As the

error bias behavior of error compensated PAALM with different k value shows a convex

trend, and performs the best when k equals to 4. We just list the experimental results from

k = 3 ∼ 6.

We show results of image compression in Table 5.4. The results show that without

error compensation, the image quality will worsen when the value of k increases. While

if error compensation is introduced, when k equals to 4, thanks to a more balanced error

behavior, we can achieve the best image quality of 27.4dB in average, improving 8.6dB when

compared to the conventional ALM design. Note that the error compensation for PAALM

introduces almost no area and power overheads, thus we obtain an approximate multiplier

which achieves a balance of resource efficiency and low power density.

83

Table 5.4: PSNR (dB) for images after DCT-iDCT using logarithmic multipliers

Approach k Err. Comp. Lena Boat Barbara House Pepper Avg.

FxP (baseline) / / 40.3 39.7 39.6 40.1 38.5 39.6

ALM 0 w/o 19.1 18.7 19.3 18.4 18.7 18.8

PAALM
(proposed)

0 w/o 19.1 18.7 19.3 18.4 18.7 18.8
3 w/o 19.0 18.6 19.3 18.4 18.6 18.8
3 w/t 21.7 21.2 21.9 21.3 21.5 21.5
4 w/o 19.1 18.7 19.3 18.4 18.7 18.8
4 w/t 27.5 26.5 27.0 28.8 27.0 27.4
5 w/o 18.4 18.1 18.6 17.1 17.9 18.0
5 w/t 24.8 23.5 24.5 27.4 24.7 25.0
6 w/o 16.3 16.1 16.4 14.9 15.9 15.9
6 w/t 20.5 20.0 20.2 17.4 19.2 19.5

5.4 Summary

The work in this chapter proposes a novel power density aware approximate log-

arithmic multiplier (PAALM) design to mitigate the high power density issue occurred in

the existing ALM designs. By re-designing the high computing switch activities of existing

ALM designs based on equivalent mathematical formula, the power density can be reduced

with no accuracy loss but with some area overheads. Experimental results shows that the

proposed PAALM design can improve the power density and the area at the same time when

compared with the fixed-point multiplier baseline. The PAALM design can also achieve ex-

tremely low error bias with error compensation. Furthermore, the PAALM shows good

performance when implemented in CNN and image processing applications.

84

Chapter 6

Conclusions

Approximate computing enables efficient trade-off among accuracy, area, latency

and power for error tolerant applications implementation. However, most of the existing

works lack the systematic configurability for accuracy vs. area/power/latency trade-off.

This thesis introduced two related studies focusing on extension of counter-based stochas-

tic computing, and two studies focusing on improvement of the conventional logarithmic

multiplier, which is helpful and meaningful to more efficient approximate arithmetic circuit

designs. The contributions of each study is summarized in this chapter.

6.1 Counter-Based Stochastic-Behaving Approximate Inte-

ger Multiplier Design and Scaling Technique

This work proposes a new counter-based stochastic-behaving approximate integer

unsigned multiplier, COSAIM for many emerging machine learning hardware implemen-

tation. COSAIM is an accelerated design of recently proposed counter-based stochastic

85

multiplier. As a result, it still keeps the advantages of stochastic computing such as built-in

progress reconfigurability for progressive performance-accuracy trade-off. The work in this

chapter also proposes a novel scaled counting-based stochastic computing multiplication

design, named Scaled-CBSC. The proposed design introduces scaling bits to promise the

inputs of the SC multiplication kernel to be larger than 0.5, avoiding the “small” number

region which leads to large relative error of SC multiplication. Numerical results shows that

8-bit Scaled-CBSC and Scaled COSAIM designs with 3 scaling bits can achieve up to 46.6%

and 30.4% improvements in mean error and standard deviation, respectively; reduce the

peak relative error from 100% to 1.8%. For hardware performance, the Scaled-CBSC can

improve 12.6%, 51.5%, 57.6%, 58.4% in delay, area, area-delay product, energy consump-

tion, respectively, over the state of art work. Though COSAIM will introduce some resource

overhead, it can significantly reduce the delay and the area-delay product. For discrete co-

sine transformation (DCT) application, 3 scaling bits are required for 8-bit Scaled-CBSC

and COSAIM multiplication to significantly improves the image quality by 5.9dB.

6.2 A Counting-Based Stochastic Computing Division

This work proposes a fast and energy efficient approximate divider design based

on stochastic computing division design, CBDIV, which exploits both the correlation re-

quirement of existing SC-based division methods and the high efficiency of counting-based

SC scheme. CBDIV fits well with the hybrid computing in which binary and SC implemen-

tations are both required for overall better application performance, like image processing.

Experimental results show that the proposed CBDIV outperforms state of art works by

86

77.8% in accuracy, 37.1% in delay, 21.5% in area, 50.6% in ADP and 25.9% in power. CB-

DIV also saves 31.9% in energy consumption when compared to the fixed-point division

baseline, and is much more energy efficient than early proposed SC-based dividers if the

inputs and outputs are both binary numbers. Furthermore, CBDIV with 5-bit precision

can even outperform state of art works with 7-bit precision in accuracy by 15.4%. Finally,

we compare CBDIV with other state of art SC dividers in contrast stretch application and

shows that CBDIV can improve the accuracy with 20.6dB in average, which is a huge

improvement.

6.3 Hardware Efficient Approximate Logarithmic Multiplier

With Reduced Error

This work proposes a novel hardware-efficient approximate logarithmic multiplier,

called HEALM. The proposed design, first determines the truncation width for mantissa

summation in ALM. Then the error reduction is performed via a lookup table for multiple

partitioned input ranges. Numerical results shows that HEALM and its enhanced designs

can lead to more accurate results with reduced area and power at the same time than the

existing ALM baseline design. It also outperforms the state of art design, REALM, with

up to 2.92%, 9.30%, 16.08%, 17.61% improvement in mean error, peak error, area, power

consumption for 8-bit precision. For discrete cosine transformation (DCT) application,

with different values of k, HEALM-TA can improve the image quality upon the ALM

baseline by 7.8∼17.2dB in average and HEALM-SOA could improve 2.9∼15.8dB in average,

87

respectively. Besides, HEALM-TA and HEALM-SOA outperforms all the state of art works

with k = 2, 3, 4 on the image quality.

6.4 Power Density Aware Approximate Logarithmic Multi-

plier Design

This work proposes a novel power density aware approximate logarithmic multi-

plier (PAALM) design to mitigate the high power density issue occurred in the existing

ALM designs. By re-designing the high computing switch activities of existing ALM de-

signs based on equivalent mathematical formula, the power density can be reduced with

no accuracy loss but with some area overheads. Experimental results shows that the pro-

posed PAALM design can improve the power density and the area at the same time when

compared with the fixed-point multiplier baseline. The PAALM design can also achieve

extremely low error bias with error compensation. Furthermore, the PAALM shows good

performance when implemented in CNN and image processing applications.

88

Bibliography

[1] Armin Alaghi and John P Hayes. Survey of stochastic computing. ACM Transactions
on Embedded computing systems (TECS), 12(2s):1–19, 2013.

[2] Armin Alaghi and John P Hayes. Fast and accurate computation using stochastic cir-
cuits. In 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 1–4. IEEE, 2014.

[3] Mohammad Saeed Ansari, Bruce F Cockburn, and Jie Han. A hardware-efficient log-
arithmic multiplier with improved accuracy. In 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 928–931. IEEE, 2019.

[4] Kartikeya Bhardwaj, Pravin S Mane, and Jörg Henkel. Power-and area-efficient ap-
proximate wallace tree multiplier for error-resilient systems. In Fifteenth International
Symposium on Quality Electronic Design, pages 263–269. IEEE, 2014.

[5] Te-Hsuan Chen and John P Hayes. Design of division circuits for stochastic computing.
In 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages 116–121.
IEEE, 2016.

[6] Zhiyuan Chen, Yufei Ma, and Zhongfeng Wang. Optimizing stochastic computing
for low latency inference of convolutional neural networks. In Proceedings of the 39th
International Conference on Computer-Aided Design, pages 1–7, 2020.

[7] Chen, Yu-Hsin and Krishna, Tushar and Emer, Joel and Sze, Vivienne. Eyeriss: An
Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks.
In IEEE International Solid-State Circuits Conference, ISSCC 2016, Digest of Tech-
nical Papers, pages 262–263, 2016.

[8] Shao-I Chu, Yi-Ming Lee, Chen-En Hsieh, Jiun-Han Yen, and Yu-Jung Huang. Stochas-
tic circuit design of image contrast stretching. In 2019 International SoC Design Con-
ference (ISOCC), pages 81–82. IEEE, 2019.

[9] Zahra Ebrahimi, Salim Ullah, and Akash Kumar. Leap: Leading-one detection-based
softcore approximate multipliers with tunable accuracy. In 2020 25th Asia and South
Pacific Design Automation Conference (ASP-DAC), pages 605–610. IEEE, 2020.

89

[10] Brian R Gaines. Stochastic computing systems. In Advances in information systems
science, pages 37–172. Springer, 1969.

[11] R Goldman, K Bartleson, T Wood, K Kranen, V Melikyan, and E Babayan. 32/28nm
educational design kit: Capabilities, deployment and future. In 2013 IEEE Asia Pacific
Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia),
pages 284–288. IEEE, 2013.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[13] Google. Tensor models. GitHub,[Online]. Available:
https://github.com/tensorflow/models.[Accessed 25 02 2018], 2016.

[14] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep
learning with limited numerical precision. In International Conference on Machine
Learning, pages 1737–1746, 2015.

[15] Soheil Hashemi, R Iris Bahar, and Sherief Reda. Drum: A dynamic range unbiased
multiplier for approximate applications. In 2015 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pages 418–425. IEEE, 2015.

[16] Guixia He, Jiaquan Gao, and Jun Wang. Efficient dense matrix-vector multiplication
on gpu. Concurrency and Computation: Practice and Experience, 30(19):e4705, 2018.
e4705 CPE-17-0584.R2.

[17] Reza Hojabr, Kamyar Givaki, SM Tayaranian, Parsa Esfahanian, Ahmad Khonsari,
Dara Rahmati, and M Hassan Najafi. Skippynn: An embedded stochastic-computing
accelerator for convolutional neural networks. In Proceedings of the 56th Annual Design
Automation Conference 2019, page 132. ACM, 2019.

[18] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural
networks, 4(2):251–257, 1991.

[19] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward net-
works are universal approximators. Neural networks, 2(5):359–366, 1989.

[20] Kyounghoon Kim, Jungki Kim, Joonsang Yu, Jungwoo Seo, Jongeun Lee, and Kiyoung
Choi. Dynamic energy-accuracy trade-off using stochastic computing in deep neural
networks. In 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC),
pages 1–6. IEEE, 2016.

[21] Kyounghoon Kim, Jongeun Lee, and Kiyoung Choi. An energy-efficient random num-
ber generator for stochastic circuits. In 2016 21st Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 256–261. IEEE, 2016.

[22] Israel Koren. Computer arithmetic algorithms. AK Peters/CRC Press, 2018.

[23] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

90

[24] Parag Kulkarni, Puneet Gupta, and Milos Ercegovac. Trading accuracy for power
with an underdesigned multiplier architecture. In 2011 24th Internatioal Conference
on VLSI Design, pages 346–351. IEEE, 2011.

[25] Fengfu Li, Bo Zhang, and Liu Bin. Ternary weight networks. arXiv e-prints, Nov 2016.

[26] Peng Li, David J Lilja, Weikang Qian, Kia Bazargan, and Marc D Riedel. Computation
on stochastic bit streams digital image processing case studies. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 22(3):449–462, 2013.

[27] Zhouhan Lin, Matthieu Courbariaux, and Bengio Yoshua. Neural networks with few
multiplications. arXiv e-prints, Feb 2016.

[28] Siting Liu and Jie Han. Energy efficient stochastic computing with sobol sequences. In
Proceedings of the Conference on Design, Automation & Test in Europe, pages 650–653.
European Design and Automation Association, 2017.

[29] Siting Liu and Jie Han. Toward energy-efficient stochastic circuits using parallel
sobol sequences. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
26(7):1326–1339, 2018.

[30] Weiqiang Liu, Jiahua Xu, Danye Wang, Chenghua Wang, Paolo Montuschi, and Fab-
rizio Lombardi. Design and evaluation of approximate logarithmic multipliers for low
power error-tolerant applications. IEEE Transactions on Circuits and Systems I: Reg-
ular Papers, 65(9):2856–2868, 2018.

[31] John N Mitchell. Computer multiplication and division using binary logarithms. IRE
Transactions on Electronic Computers, (4):512–517, 1962.

[32] Ali Naderi, Shie Mannor, Mohamad Sawan, and Warren J Gross. Delayed stochastic
decoding of ldpc codes. IEEE Transactions on Signal Processing, 59(11):5617–5626,
2011.

[33] M Hassan Najafi, David J Lilja, and Marc Riedel. Deterministic methods for stochas-
tic computing using low-discrepancy sequences. In 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 1–8. IEEE, 2018.

[34] Srinivasan Narayanamoorthy, Hadi Asghari Moghaddam, Zhenhong Liu, Taejoon Park,
and Nam Sung Kim. Energy-efficient approximate multiplication for digital signal pro-
cessing and classification applications. IEEE transactions on very large scale integration
(VLSI) systems, 23(6):1180–1184, 2014.

[35] Florian Neugebauer, Ilia Polian, and John P Hayes. Building a better random number
generator for stochastic computing. In 2017 Euromicro Conference on Digital System
Design (DSD), pages 1–8. IEEE, 2017.

[36] Bharath Srinivas Prabakaran, Semeen Rehman, Muhammad Abdullah Hanif, Salim
Ullah, Ghazal Mazaheri, Akash Kumar, and Muhammad Shafique. Demas: An efficient
design methodology for building approximate adders for fpga-based systems. In 2018

91

Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 917–
920. IEEE, 2018.

[37] Gintaras V Puskorius, Lee Feldkamp, and Leighton Davis. Dynamic neural network
methods applied to on-vehicle idle speed control. Proceedings of the IEEE, 84(10):1407–
1420, 1996.

[38] Hassaan Saadat, Haseeb Bokhari, and Sri Parameswaran. Minimally biased multipli-
ers for approximate integer and floating-point multiplication. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 37(11):2623–2635, 2018.

[39] Hassaan Saadat, Haris Javaid, Aleksandar Ignjatovic, and Sri Parameswaran. Realm:
reduced-error approximate log-based integer multiplier. In 2020 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pages 1366–1371. IEEE, 2020.

[40] Hyeonuk Sim and Jongeun Lee. A new stochastic computing multiplier with applica-
tion to deep convolutional neural networks. In 2017 54th ACM/EDAC/IEEE Design
Automation Conference (DAC), pages 1–6. IEEE, 2017.

[41] Hyeonuk Sim, Dong Nguyen, Jongeun Lee, and Kiyoung Choi. Scalable stochastic-
computing accelerator for convolutional neural networks. In 2017 22nd Asia and South
Pacific Design Automation Conference (ASP-DAC), pages 696–701. IEEE, 2017.

[42] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient processing of
deep neural networks: A tutorial and survey. Proceedings of the IEEE, 105(12):2295–
2329, 2017.

[43] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. Efficient processing
of deep neural networks. Synthesis Lectures on Computer Architecture, 15(2):1–341,
2020.

[44] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap to human-
level performance in face verification. In 2014 IEEE Conference on Computer Vision
and Pattern Recognition, pages 1701–1708, June 2014.

[45] Nikos Temenos and Paul P Sotiriadis. Deterministic finite state machines for stochastic
division in unipolar format. In 2020 IEEE International Symposium on Circuits and
Systems (ISCAS), pages 1–5. IEEE, 2020.

[46] Salim Ullah, Sanjeev Sripadraj Murthy, and Akash Kumar. Smapproxlib: library of
fpga-based approximate multipliers. In 2018 55th ACM/ESDA/IEEE Design Automa-
tion Conference (DAC), pages 1–6. IEEE, 2018.

[47] Salim Ullah, Semeen Rehman, Bharath Srinivas Prabakaran, Florian Kriebel, Muham-
mad Abdullah Hanif, Muhammad Shafique, and Akash Kumar. Area-optimized low-
latency approximate multipliers for fpga-based hardware accelerators. In Proceedings
of the 55th Annual Design Automation Conference, pages 1–6, 2018.

92

[48] Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. Improving the speed of neural
networks on cpus. 2011.

[49] Swagath Venkataramani, Srimat T Chakradhar, Kaushik Roy, and Anand Raghu-
nathan. Approximate computing and the quest for computing efficiency. In 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6. IEEE, 2015.

[50] Junsong Wang, Qiuwen Lou, Xiaofan Zhang, Chao Zhu, Yonghua Lin, and Deming
Chen. Design flow of accelerating hybrid extremely low bit-width neural network in
embedded fpga. In 2018 28th International Conference on Field Programmable Logic
and Applications (FPL), pages 163–1636. IEEE, 2018.

[51] Di Wu and Joshua San Miguel. In-stream stochastic division and square root via
correlation. In Proceedings of the 56th Annual Design Automation Conference 2019,
page 162. ACM, 2019.

[52] Georgios Zervakis, Iraklis Anagnostopoulos, Sami Alsalamin, Ourania Spantidi, Isai
Roman-Ballesteros, Jorg Henkel, and Hussam Amrouch. Thermal-aware design for
approximate dnn accelerators. IEEE Transactions on Computers, pages 1–1, 2022.

[53] H. Zhou, S. P. Khatri, J. Hu, and F. Liu. Scaled population arithmetic for efficient
stochastic computing. In 2020 25th Asia and South Pacific Design Automation Con-
ference (ASP-DAC), pages 611–616, 2020.

93

