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Abstract 

We present a method for studying nonintegrable Hami1toni;;m systems 

{ are action-angle variables) in the 

reg1me of large k" Our central tool 1s the conditional probability 

p that the system 1s at at time given that 

it resided at An integral representation 1s given for 

this conditional probability" By discretizing the Hamiltonian equations 

of motion in small time steps, E. , we arrive at a phase volume preserving 

mapping which replaces the actual flow" 1Nhen the motion on the energy 

surface 1s bounded we are able to evaluate physical quantities 

of interest fOT large k and fixed We also discuss the representation 

of -i when an external random forcing is added in order 

to smooth the singular functions associated with the deterministic flovL 

Explicit calculations of a "diffusion" coefficient are given for a non-inte

grable system with two degrees of freedom" The limit £_. 0 , which returns 

us to the actual flow, is subtle and is discussed" 





I. Introduction 

Extensive study has been made of Hamiltonian dynamical systems which are 

1 b . . bl 1 
c ose to emg Integra e. The primary means is perturbation theory In 

the non-integrable piece of the Hamiltonian. Given H 1n the form 

(1) 

with •• 'J 
) the canonically conjugate 

action and angle variables for an M degree of freedom system, one attempts 

a power series expansion ink of any interesting physical quantity. The 

KAtvl theorem is an exposition of the topological structure of phase space 

orbits based on a superconvergent form of perturbation theory in k. 2 The 

picture which emerges is one of regular orbits lying on invariant tori with 

interspersed irregular motion. 

\Nhen k is large, the physical expectation Is that most orbits will become 

essentially chaotic and that memory of the integrable piece of H.) f/0 (.:.!}, 

will be hopelessly lost. In this paper we set up a formalism adapted to 

study systems like (1) when k is large. Our primary tool is an integral 

representation for the conditional probability tJ 2 
that at t 

the system is at the point of phase space, given that it resided 

at J ) at We give the representation for 

for the actual flow __ ~n phase ?P~~ associated with H{g) and for the phase 

space volume preserving mapE_i_?g which takes the system across discrete jumps 

in time. 

Chaotic behavior of the detennini stic system g1ven by (1) exhibits itself as 

an apparently random motion of orbits generated by the action of H. This 

intrinsic stochas is the main subject of study in the present paper. 

It is possible that m addition to this intrinsic chaotic behavior there 

will be external noise which as extrinsic stochas This wi 11 also be 
~------- -------~-----'--
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considered in the discussion of 

fluctuations is to smooth out the ! functions entering P(t/-hii ) . 
These are a manifestation of the determinism in the dynamics. If one wishes 

to have a smooth transition from k=o (no intrinsic stochasticity) to k large, 

one can introduce these external fluctuations to keep all operations smooth. 3 

If the "size" of the fluctuations is called , then for k>)tr" , all physi-

cal quantities should be smooth as In the opposite limit, << 

intrinsic stochasticity should be unimportant and only the external random 

driving will be present. 

In the next section we derive the representations for P(~,tht;t~) and 

discuss some of its properties. After that we turn to a model Hamiltonian 

of the form j.l.b H, {~) with two degrees of freedom to test our 

ideas. Our model is treated analytically as well as numerically. 



II. Integral Representation of the Conditional Probability 

We want to consider the conditional probability that the 

dynamical system governed by the Hamiltonian ) with or w a choice -
of 2M canonical co-ordinates, in the state at timet given it >vas in 

at time t
0

• 1ne M degree of freedom distribution function 

which obeys Liouville's equation 

( ) 
with 

L -- ) 
, action-angle variables, 

is connected to ) by 2. 

J 

So we see that satisfies Liouville's equation 

) I 
with the initial condition 

The formal solution to (5) is 

) 
) 

) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 



Introduce the solution to the Hmnil ton equations of motion 

J -- -dt ) 

which at t =O satisfies 

This solution is formally 

( ;5., t) X -
In terms of this we may write (8) as 

J 

and noting that is a differential operator 

P(-~ l -l1 (t-tfj)r( ~~ _ +~(1;-t())r '~~'"" 
><;; = e c) ~-.!:Y; - c;(f-~; 

-g ( ll!, t - "(;()) . 
Since 'P(i: J. L ""-L ) is a conditional P. robabili ty. it must satisfy -iT- r':!:::, l#@ , 

Now we want to use these properties to construct a representation for 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

p( , I ) 0 Break up the interval from to into N steps 

of size 

p 

0 Apply (15) to each of these intervals to find 

I~N-1) tll~l) ("11/=1 J 

t . ... )f f(~, ,t,/ ~·J t,) P~, t., l'l:l; (16) 



with We may also write this as 

(17) 

We require, then, the elementary conditional probability 

-- ~J) (18) 

noting 

To proceed we must discretize the equations of motion (9) and use this result 

in making the elementary time step of size £.. Let us write 

( ( 
(19) 

in place of (9), and for a small time interval of size £ , we replace (19) by 

( (20) 

For 
) 

we have 

c o)) (21) 

or 

( n-1 
(22) 

which yields our final formula for ,t I 

By virtue of its construction this representation satisfies 
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I ) :: 
I 

(24) 

as required for a conditional probability. 

The passage to the limit fixed, requires N = (i-~'J/£ to 

become infinite. In this limit the representation (23) becomes a functional 

integral 

f J~l-rJ s(.,(tJ-v &1 (t.,)-1!) r · r)- {'lj(r)» 

p(~),/Y,t,),. J { VJ.Id<(r[/ f;{~(-t.)-¥) U~cr::)- ~('lllr:J]) 
(25) 

where the denominator is a normalization factor required to maintain (24). 

Functional integrals for P(!1t Jy, 1:;~) have been discussed by Jouvet 

and Phythian4" and others 5· Our derivation of (25) yields some insight in-

to the meaning of the functional integral which in any case is defined by 

our limiting procedure on (23). 

Once one has f(g,i /Ji;i.tJ) it may be used to answer dynamical questions 

of physical interest. Suppose we want the time dependence of the phase 

function (g) This is given by 

a( ;t)) = PC:tJ o} d(1':) ""f - d ter~,,t) t1 
(26) 

or using (23) 

-Xs-1 + t: ~{r..r_,}) 
(27) 

An approximation to thus yields an approximate value of 
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( )) A quantity of physical interest is the direct 

"ff . 6" dl us1on tensor /,:: ~· •• J } defined by 

(28) 

which enters the equation of motion for the angle averaged phase space density 

F Jt) = s ( 

f( I I I ) 
J I 

o.b 

From (23) or (25) we see that 

J J 
) 

we find 

f 

In tenns of 

P{l, I 

(29) 

~~) is a product of delta func-

tions. Clearly it is not a very smooth object. 1Nhen the Hamiltonian gives 

rise to irregular or chaotic motion, we expect in some physical sense that 

) is smoother, as it represents diffusion. Rechester 

and White3· have made the suggestion that we 11smoothn 'P(!,t/w,i..,) by 

introducing random noise into the equation of motion (19) and dealing only 

with the conditional probahi1i ty averaged over this noise. Call the random 

no1se li) and write 

{~;t)) ) 
(30) 

In the discretized form we have 

(31) 

to replace (22). 
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In (23) we use the integral representation of the delta functions and 

average over the probability distribution of the noise. Call the result-

ing conditional probability ( I 

. 
x exp' 

(32) 

In the average of exp i l. f& 8, (en~!)] we encounter the 

characteristic function of the distribution. This has a cumulant expan-

siOn 

(33) 

Since the external noise was introduced simply to smooth out the behavior of 

, we are free to choose EJt) to be gaussian white 

noise with zero mean and co-variance 

(34) 

-
This leads to 

(!, t I 

_,J) 
(35) 
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which has clearly smoothed out the delta functions of the detenninistic 

system over a range in phase space of order for 

For the calculations we will indicate below on Hamiltonians of the form 

the external noise will be unimportant in the limit of interest: 

In this limit the intrinsic stochasticity of the orbits in phase space 

overwhelms the extrinsic stochasticity given by the external nmse 

For studying both the and regimes, (35) will prove useful. 

We do not consider it further here. 
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III. Strong Coupli~ Limits for Hamiltonian Dynamics 

For our Hamiltonian 1-1 {:;[} = H0 + u, t) , we 

write the equations of motion in the following discretized form 

(n) = + ~ h {n-1)) 
~ 

(36) 

(}( n) ~ (){n-1) + 
~ """' 

(:f(nJ) J U, (~(n! ~(11-1)) 
(37) 

as (n) ' (n) Also we have introduced the abbreviated nota-

tion }= J )= u, ~r~ 
This form of discretized motion defines a mapping from ( :;[ {n-1) 

1 
-1)) 

(11)) which preserves volume in 2N dimensional phase 

space. 

Our representation for the conditional probability 

comes from (23) and reads 

~~ I J n,;o IM J'f_(n) d C£(oJ-:I~) r'rzM-:X) 

-I &-1)- i /e!J.(TtrJ) tCr-&f} 

!ilfJ (ij(s) 1{s-1)'] 1 JJ" /- ~ - (38) 

The idea is to now represent each of the b functions in (38) by fourier 

series, For the evolution of the angle variables this is quite natural 

since they are defined to lie in the interval 0 (s):!::l-' 

For actiOns to remain in a finite interval, we must require that the energy 

surface ~) , on which the orbits lie, be bounded. 

We restrict our attention to this case, Then if the highest power of 
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a ~1 
~ ' 'J , occuring 1n €) 15 ) ) ) 

the values of lie more less in the I "P Of or range 

course, the actual values of are more complicated, but what is 

essential is that each lies in a finite domain for fixed E, With 

this in mind we write (38) as 

( J dtfn) 
If 

::::::. J(;[{N)~:r) 

s~Yt(I;J~ [( · &® [ ;trs)-%(s-d 
s=t 

~ 

(;[(lj)- £ {.r-0)] 

J1 
[ ~(J)- ~{r-r)-X Jr 

LAS ? {g:(s)/ 
Las 

Mas 

(39) 

where .,e is an M vector of integers and is the length of the interval -
covered by on the energy surface. 

To evaluate p ) for large k we 

proceed by choosing those values of and mas which result in the 

smallest number of factors of oscillating integrands of form exp a k 

(functions of (s) l The smallest number of such factors will 
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always be zero from the choice J ~~ :::: 0 .£,~~" o.ff a Then we 

can arrange to have one factor exp i k ( ) by judicious choice of the 

~$ ; then, two; etc. Each oscillating integral over the 

and 'X [s) will contribute po~ers of k -12 to the expansion for - . 

large k. This is readily seen by use of a stationary phase approximation 

on such integrals, Although the convergence of such a large k expansion 

is likely to be problematic, a useful asymptotic series will result. 

For purposes of illustration of these general statements we will now 

restrict ourselves to Hamiltonians of the form 

H (40) 

For this choice all the ~ln) integrations can be performed leaving us with 

M Jl 
t ~ li-I~l~:1l8-~}7T 

&=I 

where 1'1, 

(n) =: £ h ( (r)) (42) 
.,:::.() -

A quantity of some physical interest in chaotic systems is the value of 

) after a large number of steps N, The mean value 

D k' = I i J p(.r e i /I r; t ) de j /J..,f)() ;}N _, -I ,..,()J ,..,, fl -

l 

(J-l,J (43) 
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l(n) ( 

( 44) 

represents a diffllsion coefficient telling how far the system will wander 

1n space from its initial value after a long time + t.lfJ • 

1s clearly related to the trace of the direct diffusion tensor, Eq. (29), 

given at present by 

111) = r (n) h~ ( l {o)) hb ( 1 (»J} 
0 

1_, Oif -'t{s-1-£ !J (:f +~ J(~(s~l)- (N·~~ -.£:~t» 
~ 

( 45) 

Turning from these general remarks we choose a specific Hamiltonian with 

two degrees of freedom. 1Ve required the unperturbed or integrable part 

of I-I to be at most quadratic in J and to have two 

h . h 1 . "d h f 7. resonances w 1c can over ap 1ns1 e t e energy sur ace . By canonical 

transformation such an !-I can always be cast 1n the form 

H )= z?ft), + fCOS Z'11 ~] (46) 

with some numerical matrix. If l1as positive eigenvalues, the 

energy surface contains bounded The choice we have made to study 1s 

(47) 
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The discretized equations of motion read 

and 

(n) - (11-1} + £ 

.l.,;; (n) -

g},(n) 

9
2 
(n) ::: 

(81~~ + [. 

(II-~ -~" L 

(tH) f 

~in11T 
• 'II) 

{n)+ 

+ 

(n-1) ( 48) 

(n~d (49) 

(n)) 
(SO) 

(51) 

Choosing M
0 

} quadratic m was clearly to make (:f) linear. 

Choosing 0 1s to make ~) nonintegrable. This choice of 

discretization makes the mapping 

preserving in phase space for any Notice that this mapping becomes the 

chirikov standard mapping7 · when p=o, 
We have investigated the orbits of the system defined by (48) - (51) by 

the surface of section method. We present in Figures 1 - 6, the I•
1 

9, 

plane for 0 for various choices of f for a large k, Note that p= 0 

(Figure 1) 1s integrable. 

Note an essential difference between the mapping (48) - (51) and the flow. 

v\fuen f=o , the flow is integrable. When f ::;;) o , the mapping is not. The 

usual parameter of the standard mapping is :l in the notation 

used here, In doing the numerical integrations presented in Figures 1-6 

we took .k= 1/0x:Z'lr , and the value of E. used in Figure 1 was 3.6 x 10- 4. 

This gives a standard mapping parameter of 4.6 x 10- 4 which is so small as 

not to destroy the regularity of motion in , seen 1n the plot, 

Now we use (44) to evaluate If) for our mapping. The ingredients we 

need for the calculation are 

) - (I,+ +I. ) (52) 
) 

and 
1'1 

{r)) (n) £ ( ' ,f (53) 
II) _., 

r 
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The leading contributions to are ( =2 ) 

D ( ~) l 

(K) ~ {15/;) + ~(l(rJ (K/1 

+ 1{Kj] 

Kf)- 1{1<f)+ 1
(Kf[} 

t '' 
(54) 

where ~ For r=o the 
2 results of Reference 3 are recovered including a correction, the J 2 (J{) term, 

1s the ordinary Bessel function of order 1. 

pointed out by R. Cohen. The standard mapping parameter for f=o is I(= 

as should be. 

The initial condition enters only in terms not proportional to N and thus 

are absent in the limit, Equation (43), defining ) , This is 

actua11y a nice result for one would hope that diffusion in a chaotic system 

would be independent of one's starting point in phase space. 

In Figures 7 and 8 we compare numerical ca1cu1ations for with 

-=1. 0 and E.= and 0.1 respectively with the asymptotic form of (54) 

D [1- L c 
{ 7rl< 

fij!) cos 
(55) 

To return to the £-= o limit which gives us the original Hamiltonian flow is 

somewhat subtle. We take up that subject next. 
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IV. The Limit 

To this point we have focused our attention on the behavior of phase space 

volume preserving mappings such as Equations (36) and (37) which are derived 

from discretizing Hamiltonian flows, Our concentration has been on the 

limit where k, the "size" of the non-integrable part of the original 

Hamiltonian, becomes large while the time step E. remains fixed. To return 

to the actual flow we must investigate the limit of our methods. 

It is clear from the representation of the conditional probability P(~;t 

as a product of delta functions or from the form of our expression Equation 

(54) or (55) for the diffusion coefficient in our model problem that one may 

not take the o limit directly on the large k asymptotic expansion. The 

issue we are encountering here is familiar from strong coupling expansions 

. f. ld h 8 . d . . 1 h . 9. 1n quantum 1e t eory an stat1st1ca p ys1cs 

To pose the problem 1n the context of our model Hamiltonian we note that in 

the E.~O limit one is interested in 

(56) 

large. Now the dimensions of k are 
-2 1 (time) and the dimensionsions of are (time)- while the dimensions of 

are (timef 3, If) must take the form (K~z'!fltt.~ 

(57) 

indeed our expression for ~ can be read off from (54) to be (defining ~= ~) 

-- (58) 



-17-

1Ne know the function for and we wish to evaluate it for 

Assuming this function has a finite limit we learn that 

(59) 

for the flow. Our expectation from the form of (54) is that for the parti-

cular problem at hand will be a function of the dimensionless quantity 

alone and wi 11 be absent. 

Various methods are available for making the extrapolation from 

we have not yet undertaken this project for our model Hamiltonian. What is 

needed are many more terms of the series we have begun in (54); this work 

will be reported in a subsequent publication. 

0, 
10. 
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V. Conclusions 

1~e have presented 1n this paper a method for evaluating physical properties 

of non-integrable Hamiltonian dynamics with 

when the parameter k is large. Our procedure requires the calculation of 

the conditional probability that the system 

is in at given it was in To determine 

for large k we put our system on a time "lattice" 

of spcing ~ between discrete time steps. This transforms the actual flow 

which occurs for £. ""'o into the volume preserving mapping, Equations (39) 

and (37). Fork large, L fixed we were able to give a procedure for evaluat-

1ng I The return to 

the actual flow at is subtle, and we have not yet explored the various 

existing approaches to that problem. 

The £, ~ limit of the Hamiltonian flow is of some interest in itself 

from a theoretical point of view. Numerical solutions of the Hamilton 

equations of motion on digital computers are, of course, done with £ 0 

There 1s thus a body of numerical "experimentn against which to compare the 

large k, fixed £ limits discussed here. More physically one often encounters 

situations in which the flow can be approximated by "free0 or unperturbed 

motion with occasional bumping of adiabatic invariants by resonance crossing. 

The motion of a charged particle in an electrostatic field of eikonal form 

l·s f · t t · 1 h · 11 · a case o some 1n eres .. 1n p asma p ys1cs . The 11free 11 motion is that 

of the oscillation center over which one can average to arrive at a mapping 

to be studied by the methods given here. 
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Figure Captions 

Figure 1. 

Figure 2. 
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Figure 4. 

Figure 5. 
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Surface of Section Plot for orbits generat by our 

Hamiltonian, Equation (47). We show the 

plane for =0 The initial conditions are 

- 0) (o) = I. = = -
The parameters k, and were II '0) p: 0· 

:ur 
Same as Figure 1, except f= 0. 

Same as Figure 1, except p= 
Same as Figure 1, except p= 
Same as Figure 1, except f-::: {). ?S 

Same as Figure 1' except p ~ J, 0 

The analytic asymptotic fonn, Equation (55)' for 

I:> J u'w. iN< -l~'f>e 
-" 

compared to numerical results (labeled by theN's) from 

the discretized equations of motion, Equations (48) - (51). 

In this graph D/k2 is shovm for 10 .s:.. 0
1 

1.01 £ 

The range of K -::::::. ./)( 1s K ~. S' 9 

The integration over initial angles 
) 

) was 

performed with a 96 point Gaussian quadrature. The deviation 

of the numerical points from the asymptotic formula is less 

than 49, 0 and lS consistent \Aii th the numer:ical error ar1s1ng 

from the use of only 96 initial 's and 96 initial 's. 

The same as Figure 7 with = I "' 0., ) 

The range of I<= here lS :5: K ~ 
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