UC Irvine
ICS Technical Reports

Title
Stream-processing point data

Permalink
https://escholarship.org/uc/item/363933fg

Authors

Pajarola, Renato
Sainz, Miguel

Publication Date
2004

Peer reviewed

eScholarship.org

Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/363933fp
https://escholarship.org
http://www.cdlib.org/

1CS

TECHNICAL REPORT

Stream-Processing Point Data

Renato Pajarola and Miguel Sainz

UCI-ICS Technical Report No. 04-02
Department of Computer Science
University of California, Irvine

March 2004

Information and Computer Science
University of California, Irvine

Stream-Processing Point Data

Renato Pajarola® Miguel Sainz*

Computer Graphics Lab
Computer Science Department
University of California Irvine

Abstract

With the fast increasing size of captured 3D models, i.e. from
high-resolution laser range scanning devices, it has become more
and more important to provide basic point processing methods
for large raw point data sets. In this paper we present a novel
stream-based point processing framework that orders unorga-
nized raw points along a spatial dimension and processes them
sequentially. The major advantage of our novel concept is its
extremely low main memory usage and its applicability to process
very large data sets out-of-core in a sequential order. Further-
more, the framework supports local operators and is extensible to
concatenate multiple operators successively.

Keywords: point processing, sequential processing, normal esti-
mation, fairing

1. Introduction

Points as rendering and modeling primitives have become a pow-
erful alternative to traditional polygonal object representation. In
fact, points or 3D coordinates are the fundamental geome-
try-defining entities. Satisfying provably correct surface szymp]ing
criteria as discussed in [17], a set of points p,, ..., p, € R” in 3D
space fully defines the geometry as well as the topology of a sur-
face including boundaries, components and genus. We assume
here that input point sample data sets reasonably sample the rep-
resented surface, i.e. satisfying the Nyquist sampling criteria.
Points are also the natural raw output data primitives of the 3D
geometry capturing stage in most 3D geometry acquisition sys-
tems, i.e. laser range scanning or large objects [15].

With the dramatically increasing use and precision of 3D cap-
turing devices it is critical to support raw point cloud data in a
practical way. In particular, basic point processing operations
such as normal direction estimation or fairing must be supported.
Such operators can only be computed efficiently if the unorga-
nized point data can be loaded into main memory and organized
in some spatial indexing data structure. This approach, while opti-
mal up to some size limit, will decrease quickly in efficiency
when the models exceed available physical main memory. In the
case of large mismatch between model size and physical main
memory size it may almost cause this main memory approach to
come to a halt. Furthermore, combining multiple operations can-
not easily be addressed in an efficient way by merely combining
multiple stages of applying operators.

In this paper we set the stage for a new stream-processing
concept, a novel approach for processing points sequentially to
improve memory access coherency and dramatically limit main
memory usage. This sequential stream-processing model directly
allows us to process extremely large models out-of-core without
the need to partition the models or process them on very large
server machines. In fact, our stream-processing framework has
such a low main memory usage that physical main memory limi-
tation is practically irrelevant and extremely large models can be
processed on very memory-limited machines.

"pajarola@acm.org, msainz @ics.uci.edu

The operations that are supported by the proposed concept are
local operators f(p) that perform a function on a point p and its
local neighborhood. Many basic operations such as normal esti-
mation on raw point data sets follow this principle and require the
definition of a local neighborhood and then perform a computa-
tion of attributes based on this neighborhood [14, 17]. Also filter
operations such as fairing are in this category and in general
require a local neighborhood to operate on. Surface parameter
estimation and filter operations are amongst the standard tasks for
processing points. Our new concept supports any direct local
operator f(p) that is non-recursive in nature and that does not
include any traversal of the samples beyond a limited local neigh-
borhood.

2. Related Work

Conceptually, the most closely related work to our approach are
sweep-line techniques in computational geometry [dBvKOS97].
The basic concept follows that idea of sweeping a line, or a plane
in 3D, through the data set and consider the events when a data
element is passed by the sweep-line. We extend this concept to
processing a stream of points in 3D and to allow for several oper-
ations to be performed in consecutive stages.

Further related work is the approach to process triangle
meshes in a sequential order [8, 9]. This technique grows triangle
mesh regions sequentially in a fixed order that limits main mem-
ory usage by keeping information of active elements only. In par-
ticular, the active elements only consist of a small fraction of the
mesh. This technique provides very efficient compression [8],
rendering and simplification [9] of very large meshes. While this
technique operates on a data set with a well defined and compact
neighborhood definition given by the mesh connectivity, our pro-
posed framework operates on a much lower level of processing
raw points.

A very interesting approach to treat points in a sequential way
has been proposed in [4]. There, a novel fast point rendering
approach has been proposed by linearizing a multiresolution hier-
archy into a single sequence of nodes, and basically performing
level-of-detail selection and rendering directly on the GPU. The
method does not address any low-level processing tasks and is not
directly applicable to large data sets exceeding physical main
memory or geometry cache sizes.

Since points as rendering primitives have been discussed in
[16] and [12], many rendering techniques and systems have been
proposed such as [25, 23, 24, 2, 11, 2]. In general these tech-
niques address high-level point processing tasks such as multires-
olution modeling and rendering of points with normals and spatial
extent. More low-level processing techniques on point data sets
can be found in [18, 20]. However, they are aimed at processing
moderate point set sizes in main memory and assume that some
basic processing such as an initial normal estimation has been
done beforehand.

3. Basic Sweep-Plane Concept

The basic concept of our framework is to process the input points
Py, ---»P, € R” in a sequential order such that each point p; is
read only once from the input-stream, kept in an active working
set 4 for some minimal amount of time and then written to the

2

output-stream as illustrated in Figure 1. This dramatically
increases memory-access coherency for large data sets as all oper-
ations only involve points from the rather small set 4. Moreover,
since the set 4 is orders-of-magnitude smaller then the entire data
set it can generally be maintained efficiently in main-memory and
because input and output are streams of points this directly leads
to an out-of-core framework for stream-processing points.

sweep-plane
A °
® o o o
e o o o) :
y ° o o °
L
R ° . °
[] ° ° []
® ® []
ol® ® b
' active :
output stream ' set 4 input stream

FIGURE 1. Sweep-plane process overview

As shown in Figure 1, we conceptually move a sweep-plane
through space along the z-axis (without restricting the generality
of this concept to any direction). Every time a new point from the
input stream is hit by the sweep-plane it is added to 4. The active
set 4 is continuously monitored and the local operator f(p) is
applied to the point p for which all necessary data is available.
Furthermore, the smallest element of 4 is examined and if it does
not possibly contribute anymore to applying the operator f to any
future point it can safely be written to the output stream. In the
remainder of this paper we will use small and large in the context
of the sequential ordering. In the following section we describe in
more detail the process for local neighborhood construction and
application of a local operator.

When points have not yet been read from the input stream, or
after they have been written to the output stream, their data gener-
ally resides on external disk memory, or possibly within some
memory mapped virtual file memory. On the other hand, when
elements live in the active set 4 they reside in virtual main mem-
ory and extra data is temporarily stored such as a list of k-nearest
neighbors and other attributes.

Since raw point data sets rarely come with the structure of
being sequentially ordered in space they must be ordered in a
pre-process. This can efficiently be done for very large data sets
by external sort techniques [12,24], and in practice the rsort [15]
implementation has been used for similar tasks.

4. Nearest Neighbors and Local Operator

4.1 Nearest Neighborhood Determination

Any local operator f(p;) requires information about the local
neighborhood of points K; = {p;, ...,p; } surrounding p;. This
neighborhood X; can either be defined by & maximal range or as a
number k of nearest neighbors. We will mainly focus on the
k-nearest neighbors here but a fixed range can also be supported
efficiently by varying k for each point.

To compute all k-nearest neighbors efficiently, or any neigh-
borhood set for that matter, it is essential to maintain a spatial
index structure Qg over the the active set 4 that allows for very

selective spatial (range-) queries. However, since we are process-
ing a stream of points and want the spatial data structure to hold
as few active elements as possible, we must remove the smallest
active element from this data structure at the earliest possible
time. Thus the index Qk must also incorporate a priority-queue in
the sequential ordering. Furthermore, despite frequent insertions
and deletions this spatial data structure must also be reasonably
balanced to support efficient access. Hence the main challenges in
defining and implementing Q are:

® exhibit strong spatial selectivity

® support dynamic insertions of new points p;

® support removal of smallest priority-queue element p;_,,

® maintain a balance of O(log m)

® preserve the sorted priority-queue property dynamically

The selection of choice for Q is a kD-heap that combines a
dynamic, quasi balanced kD-tree with a priority heap. The
kD-tree was selected over other spatial data structures due to its
simple binary tree structure, efficient incremental insertion and
removal operations, and the ability to influence the balance
dynamically. In fact, since the points are streamed in one dimen-
sion it makes sense to only have a two-dimensional kD-tree parti-
tioning the sweep-plane. The priority-queue is integrated with the
kD-tree as a heap that parallels the kD-tree binary tree structure.
Each kD-tree node holds a pointer to the smallest element in its
subtree. Figure 2 shows an example kD-tree with alternating x,y
split dimensions and heap structure in the z dimension.

split coordinate.

smallest element

FIGURE 2. Integration of kD-tree and priority-heap.

The two basic operations that are supported are: incremental
insertion of a new element into the kD-tree, and removal of an
arbitrary element while satisfying the kD-tree structure
[dBvKOS97]. Both operations are followed by a bottom-up
update of the priority-heap relation.

A more complex operation is the k-nearest neighbor update
which is solved in two phases. In the first phase, just before the
next element p; read from the input stream is inserted, a query on
Ok finds the smaller one-sided k-nearest neighbors K; which are
all smaller than p;, since Qg only contains previous points in the
sequential ordering. The element p; is then inserted into Qg with
its temporary neighborhood K;. This starts the second k-nearest
neighbor search phase where p; resides in the kD-heap — the first
stage while being in the active set A as shown in Figure 3 - and X;
is continually updated. During the above query when an element
Pi.j in Qg is tested to update K;, simultaneously p; is tested to
update K;. ;. Therefore, K; is continually updated with the larger
one-sided k-nearest neighbors while p; is in Qg and new elements
Pi4j are inserted.

[] [] L]
z oulput stream FIFO queue
smaller """"

———» Sweep-plane

[]
. A e
* . . L
o oo0o oof¢™ PP, e L] ®Pn
° []
® .
L[]
sorting buffer| kD-heap input stream
activeseld 7T largey,

FIGURE 3. Stages of a simple stream-processing pipeline. A point moves from right-to-left through these stages.

The last major operation on the kD-heap QO is the removal of
smallest elements. As it is imperative to keep the size of Qg as
small as possible for fast k-nearest neighbor updates, we need to
remove elements whose k-nearest neighborhood is completed as
early as possible. Therefore, our kD-heap supports a query to find
a sorted list L, smallest first, of elements p; in Qg for which the
current sweep-plane has moved beyond the farthest, kth-nearest
neighbor in K;. The elements of this list L can then be removed
from Q. However, note that L is only partially sorted with
respect to the sequential ordering and hence its elements cannot
immediately be passed to the next stage. Therefore, the elements
pj of L are first passed to a sorting buffer B — the second stage
while being in the active set 4 as shown in Figure 3 — that
re-establishes the global ordering. The smallest element p; of B
has regained its correct global ordering as soon as it is smaller
than the smallest element in Qy and in that case it can be passed
to the next processing stage.

4.2 Local Operator

After passing the kD-heap Qg and when leaving the sorting buffer
B, an element p; has a fully determined k-nearest neighborhood K;
and the local operator f(p;) can be applied. However, it must be
guaranteed that all elements referred to by K; can be accessed
before performing f(p;). Note that K; refers to elements that can
be smaller as well as larger than p; in the sequential ordering. Ele-
ments that are larger are guaranteed to be maintained in the active
set 4 either by the current kD-heap Q or the sorting buffer B. On
the other hand, also the elements of K; smaller than p; must be
kept in the active set 4. Hence upon leaving the sorting buffer B,
just after applying the operator f(p;), the element pj cannot be dis-
carded yet and is passed to a FIFO queue F — the third and last
stage while being in the active set A as shown in Figure 3. This
FIFO queue F assures that every element p, referenced by any
nearest neighbor set K; of a larger point p; in the sorting buffer B
or the kD-heap Qk is f’orced to stay in the active set 4.

Therefore, the first element p; of F can leave the active set 4
and be written to the output stream when it is not anymore refer-
enced by any other (larger) element pjin A. This relation is man-
aged by a simple priority queue ZQ, over all elements p; in Qg
and B, that maintains the smallest referenced element (z-refer-
ence) in K = UK Thus the first element p, of F has fully com-
pleted its service in the active set 4 when it is beyond the smallest
reference managed by ZQ. This completes the three stage
stream-processing pipeline shown in Figure 3 for establishing a
k-nearest neighborhood and computing a local operator. The local
operator f(p;) can be applied on pj and its neighborhood K; when
it is moved ilrom the sorting buffer B to the FIFO queue F.

As prototypical local operator f(p ;) applied to K; we select the
normal estimation N(p;) by least squares firting [14, 1, 22, 17] to
demonstrate our basic framework. This computes the orientation
of a fitting plane through a set of points by an eigenvalue and

eigenvector analysis of the covariance matrix. We adopted a mov-
ing least squares (MLS) approach similar to [1] with a weighted
covariance

My = (Kf+D7 3, ¢, 0=P) 0-B) 6(p-F)

The average of the point set KU p; is given by p. The
weight function 6(r) is a smooth, radially’ symmetric, monotone
decreasing Gaussian function 6(r) = e"*/26> The variance o
is adaptively defined as the local point density estimate
n MAX,_ k(P —pj)2/|K1 see also [17]. Thus the normal n; of
a point p; is computed as the eigenvector of the MLS covariance
M; over K; U p; corresponding to the smallest eigenvalue of M;.
Potentially it is numerically more robust to define the normal as
the normalized vector product of the two eigenvectors corre-
sponding to the two largest eigenvalues of M;.

In fact, in addition to the normal n; estimate of a point p; we
also compute a bounding sphere radius r; over all points in K}, and
also an elliptical disk approximating the anisotropic distribution
of points in K. These attributes can be used by a point-based ren-
dering system to visualize the processed point set as circular or
elliptical disks.

5. Fairing
To demonstrate the applicability of the proposed stream-process-
ing framework we introduce a smoothing filter operation. How-
ever, processing data as a stream does not allow for iterative or
recursive operations to be performed. For this reason we adopt the
non-iterative feature preserving fairing operator presented in [10].
Its applicability to triangle soups makes it also suitable for modi-
fication to point sets. Fairing along the lines of [10] requires a tan-
gent plane normal estimate which we described in the previous
section. Furthermore, it also requires accessing spatially close
neighbors. Therefore, the basic framework to establish a k-nearest
neighborhood presented in Section 4 directly applies to the fairing
operator as well.

Given a point p; and its neighbors K;, we extend the smooth-
ing operation @ to points as follows

pi = (D(pi) = w‘.—l an(p,-)aj ﬂ[pj—p,-|) g(lnj(Pi)-PiI),

with summation over all points p; € K; U p; The operator
I1.(p;) denotes the projection of p; onto the tangent plane of
point p; and the value g; corresponds to an area weight. The nor-
malization term w; is the sum of weights
Ya; filp;-p)) &(M,(p)~p]) The Gaussian weight func-
tion f{r) adjusts the influence of a point based on spatial distance
and favors nearby points for smoothing, while g(r) tends to pre-
serve sharp features by giving less weight to points with different
normal orientations [10]. All necessary information to perform
this fairing operator ®(p;) is given by the stream-processing
framework as described in Section 4. This includes the normal

4

estimates n; used for the projection IT. as well as circular or ellip-
tical bounding disks used to calculate the area g; of a point p;.

region-of-action of the local operators fairing ()

normal estlmatlon N(p) normal estimation N(p)

sweep-plane
_—

= [
©
= . g
@ . . . - : * . =
. ° . . .
X P L] L] ¢
* N 4000000 |geeoo99e | 0 000 o0& PPi e L Py
. ~ L o .
[]
° . . e .
[]
z oulput stream FIFO 2 FIFO 1 sorting buffer| kD-heap input stream
spaller TTTTTTTTTTTA activeset4a 7~ largeg

FIGURE 4. Stages of a complex stream-processing pipeline for fairing. Region-of-action overlap is indicated for the
different local operators.

This completes the extended normal estimation and fairing
stream-processing pipeline shown in Figure 4.

The outlined smoothing operator ®(p;) is a local operator sim-
ilar to the normal estimation N(p;) explained in Section 4.2 and
operates on p; and its k-nearest neighbors K;. Note, however, that
its application must fit into the stream-processing pipeline cor-
rectly with respect to available and referenced data as illustrated
in Figure 4. In particular, smoothing points makes it necessary to
recompute a new normal, as well as circular or elliptical bounding
disk parameters, after applying the fairing operator. Hence we
apply a normal estimator n; = N(p;) followed by the fairing opera-
tor p/ =®(p;) and again followed by a normal estimation
n;' = N(p;). Moreover, as the fairing operator ®(p;) changes the
coordinates of points it must strictly be avoided that the normal
estimators operate on a mix of faired and non-faired points. Keep-
ing a second copy of the original input point coordinates, how-
ever, this can be avoided and the fairing operator can overlap both
normal operators in the sequential processing of points as shown
in Figure 4.

The different data structures and stages of the active set 4 for
a combined normal estimation with bounding disks, and fairing
operator are illustrated in Figure 4. In contrast to the basic
stream-processing stages described in Section 4, a second FIFO
queue is necessary. The sorting buffer B is also modified in its
behavior in the following way. Since the fairing operator ®(p;)
changes p; it can only be applied to points that are not in the range
of the k-nearest neighborhood K; of any larger point p;- This is
assured by checking a priority queuc ZQ1 equivalent to the one
explained in Section 4. Moreover, the neighborhood K; can only
reference elements p; that have passed the normal operator since
their normals n; are required for fairing. These requirements
extend the scope of the sorting buffer B and the time elements
remain in it. The fairing operator ®(p;) is then applied to the ele-
ments p; leaving this modified sorting buffer stage and which are
passed to the following FIFO queue F/ Because we have a third
operator to recompute the normal of the smoothened points, the

. queue F1 buffers points until the set K; of its smallest element p;
only refers to points that have been faired before, thus are smaller
than any element in the sorting buffer B. The second normal esti-
mation is performed when a point leaves FI Finally the FIFO
queue F2 is necessary to keep all elements p; active which are
needed by the second normal operator. Therefore, the first ele- quently by the stream-processing algorithm. The output stream is

ment p; of F2 can leave the active set 4 when it is not referenced also written to a memory mapped file.

by any larger element p;j in A. This relation is assured by another &
priority queue Z()2 managing the smallest references from all ele-

6. Analysis

In terms of memory requirements we note that the most critical
part in all processing stages is the spatial data structure to provide
efficient access to all points p, ..., p, and their neighbors. In
general, constructing as well as querying a balanced spatial data
structure requires O(n log n) time and O(n) space. While this is
optimal it may nevertheless consume too much main memory.
Our stream-processing framework has the property that only a
limited number of m<<n points are active at any moment in time.
The active set 4 = p;_,, ..., p;_,, consists of points not fully
processed for which a new point p; on the sweep plane may be
necessary to complete the processing task, or processed points
which are still required by others to complete the processing task.
Thus in main memory only the m active points must be main-
tained, organized in an indexing data structure requiring only
O(rm) main memory space.

The processing performance is mainly determined by the spa-
tial indexing and the determination of all k-nearest neighbors.
Since the k-nearest neighbor query is only performed on the ele-
ments in the kD-heap Qg of the active set 4, the cost of comput-
ing all k-nearest neighbors will strongly depend on the size and
balance of the kD-heap data structure.

In the pre-process the points p,...,p, are sorted in one
direction, using an external memory sort algorithm in O(n log n)
time.

7. Experiments

All point processmg experiments were performed on a PowerMac
G4 dual 800MHz! CPU with 512MB main memory. Pre-process
results for ordering the data sets sequentially are ommitted. All
data sets are ordered along the z-dimension without considering
the actual main orientation of the model.

The streaming of points was implemented using memory
mapped arrays. The ordering pre-process writes the sequentially
ordered points into a memory mapped file that is read subse-

Note that the software is not parallelized and runs only on one CPU.

ments p; in O, B and F1 L.

Model #Points
David Tmm m
David 2mm | 4,129,534
David head | 2,000,646

Lucy 14,022,961
Dragon 435,545
Female 302,948

[Baljoint | 137,062
TABLE 1. Test model sizes.

For k-nearest neighbor finding and normal estimation,
Figure 5 shows the sizes of the various data structures of the
active set with respect to the progress of the stream-process
through the point sequence. One can see that while there is some
variation, the general trend is that the active set data structures are
orders-of-magnitude smaller than the input point set. In more
detail, the kD-heap and the FIFO data structure maintain signifi-
cantly more elements than the sorting buffer, which is expected in
the case of a simple normal estimation operator as described in
Section 4. The size of the kD-heap is the most important measur-
ing factor as the k-nearest neighbor search heavily depends on it
and consumes most of the processing time. The FIFO queue is
also of much less importance.

Lucy exhibits some strong growth of the data structures up to
maintaining around 300,000 points at a very early time but then
dramatically drops to only manage some 20,000 points dynami-

as* 10 ey

2504

Points
o
R N o SR
TEREAE

0.5

°
l r O R AR

o
3
&

Total model points x 10°

cally in the active set during the remainder of the stream-process-
ing.

The David head model exhibits a similar peak at about 2/3 of
the time with about 50,000 points in the kD-heap. For the most
part, however, only about 10,000 or less points are dynamically
managed in the active set.

The two David models, at 1mm and 2mm resolution, show an
interesting scaling behavior. The smaller 4M point David model
causes the system to dynamically manage around 25,000 points in
the kD-heap. The seven times bigger 28M point David model on
the other hand, while peaking a few times into 100,000, for the
most part requires only less than 40,000 elements in the kD-heap.

Variations in the active set size are due to variations in the
object shape and how the sweep-plane cuts through it, and also
how the object is aligned with respect to the z-axis which defines
the sequential ordering.

We also performed some experiments with the proposed fair-
ing operator described in Section 5. Similar results are reported in
Figure 6. One can observe that the main-memory data structures
are generally orders-of-magnitude smaller than the processed
input point data set. Hence our proposed stream-processing
framework efficiently stream-processes arbitrary large point dat
sets efficiently, and in particular with only very limited main
memory usage.

o5 i o
~ E t]] L
olladie skl AR o A
[05 1 1.5 2 25 45
Total model points x10°

FIGURE 5. kD-heap, sorting buffer and FIFO queue sizes plotted against the progress through the input point stream.

s
S

FIGURE 6. kD-heap, sorting buffer and FIFO/FIFO2 queue sizes plotted against the progress through the input point

stream.

8. Discussions

We have presented a novel point processing framework based on
a linear streaming of points and a sweep-plane algorithm for
k-nearest neighborhood determination. To our knowledge this is
the first method that can apply local operators such as normal esti-
mation and fairing without a data structure holding the entire data
set in in-core or virtual memory, and that is applicable to arbitrary
large data sets out-of-core. It is also the only framework that sup-
ports processing points as streams with only limited main mem-
ory usage and that is extensible to apply multiple local operators
successively on the point set.

Several implementation details are not optimized in the cur-
rent framework. At present, the aspect ratio of the bounding box
of input models is not examined, even though a sequential order-
ing along the z-dimension may not always be the optimal. In fact,
the sequential ordering should be performed along the axis of the
longest bounding box side for better performance. Furthermore,
most of the buffer and queue data structures are standard C++
STL template containers and not specialized implementations
optimized for performance. While the kD-tree priority-heap is a
custom data structure and has some minor balancing techniques
incorporated, it is not the fastest possible implementation. Among
the possible improvements is a much more agressive balancing
strategy to keep the k-nearest neighbor query cost low. Further
work would include the development of a specialized dynami-
cally balanced spatial indexing structure.

The k-nearest neighborhood sweep-plane algorithm described
in Section 4 can under certain circumstances generate an approxi-
mate k-nearest neighbor set instead of the exact solution. This has
to do with out-of-k-nearest-neighbor-range tests that in fact are
extremely difficult to answer exactly. For example, it is unclear
how to quickly determine if a point cannot anymore contribute to
the k-nearest neighbor set of any subsequent point reached by the
sweep-plane. The first observation we can make here is that with
several test models no difference to the exact solution was
noticed. The second observation is that a provably exact k-nearest
neighborhood determination may not even be necessary for local

operators such as normal estimation and fairing. Additionally, if
the framework is modified to compute a fixed-range d neighbor-
hood with variable k for each point, then all out-of-range tests can
exactly be performed with respect to d.

Acknowledgements

We would like to thank the Stanford 3D Scanning Repository and
Digital Michelangelo projects as well as Cyberware for freely
providing geometric models to the research community.

References

[1] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shackar Fleishman,
David Levin, and Claudio T. Silva. Point set surfaces. In Proceedings
IEEE Visualization 2001, pages 21-28. Computer Society Press, 2001.

[2] Mario Botsch and Leif Kobbelt. High-quality point-based rendering on
modem gpus. In Proceedings Pacific Graphics 2003, pages 335-343.
IEEE, Computer Society Press, 2003.

[3] Mario Botsch, Andreas Wiratanaya, and Leif Kobbelt. Efficient high
quality rendering of point sampled geometry. In Proceedings Eurograph-
ics Workshop on Rendering, pages 53—64, 2002.

[4] Carsten Dachsbacher, Christian Vogelgsang, and Marc Stamminger.
Sequential point trees. In Proceedings ACM SIGGRAPH 03, pages
657-662. ACM Press, 2003.

[5] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarz-
kopf. Computational Geometry: Algorithms and Applications.
Springer-Verlag, Berlin, 1997.

[6] J.P. Grossman and William J. Dally. Point sample rendering. In Proceed-
ings Eurographics Rendering Workshop 98, pages 181-192. Eurograph-
ics, 1998.

[7] H. Hoppe, T. DeRose, T. Duchampt, J. McDonald, and W Stuetzle. Sur-
face reconstruction from unorganized points. In Proceedings ACM SIG-
GRAPH 92, pages 71-78. ACM Press, 1992.

[8] Martin Isenburg and Stephan Gumhold. Compression for gigantic poly-
gon meshes. In Proceedings ACM SIGGRAPH 2003, pages 935-942.
ACM Press, 2003.

[9] Martin Isenburg, Peter Lindstrom, Stephan Gumhold, and Jack Snoeyink.
Large mesh simplification using processing sequences. In Proceedings
IEEE Visualization 2003, pages 465-472. Computer Society Press, 2003.

[10] Thouis R. Jones, Fredo Durand, and Mathieu Desbrun. Non-iterative,
feature-preserving mesh smoothing. In Proceedings ACM SIGGRAPH
2003, pages 943-949. ACM Press, 2003.

[11] Aravind Kalaiah and Amitabh Varshney. Modeling and rendering points
with local geometry. JEEE Transactions on Visualization and Comp
Graphics, 9(1):30-42, January-March 2003.

[12] Donald E. Knuth. The Art of Computer Programming, 3rd Edition. Add-
ison-Wesley, 1998.

[13] Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David
Koller, Lucas Pereira, Matt Ginzton, Sean Anderson, James Davis, Jer-
emy Ginsberg, Jonathan Shade, and Duane Fulk. The digital Michelan-
gelo project: 3D scanning of large statues. In Proceedings SIGGRAPH
2000, pages 131-144. ACM SIGGRAPH, 2000.

[14] Marc Levoy and Turner Whitted. The use of points as display primitives.
Technical Report TR 85-022, Department of Computer Science, Univer-
sity of North Carolina at Chapel Hill, 1985.

[15] John P. Linderman. rsort and fixcut. man pages, 1996. revised June 2000.

[16] Gopi Meenakshisundaram. Theory and Practice of Sampling and Recon-
struction for Manifolds with Boundaries. PhD thesis, Department of
Computer Science, University of North Carolina Chapel Hill, 2001.

[17] Niloy J. Mitra and An Nguyen. Estimating surface normals in noisy
point cloud data. In Symposium on Computational G ry, pages

322-328. ACM, 2003.

[18] Mark Pauly and Markus Gross. Spectral processing of point-sampled
geometry. In Proceedings ACM SIGGRAPH 2001, pages 379-386. ACM
Press, 2001.

[19] Mark Pauly, Markus Gross, and Leif P. Kobbelt. Efficient simplification
of point-sampled surfaces. In Proceedings IEEE Visualization 2002,
pages 163—170. Computer Society Press, 2002.

[20] Mark Pauly, Richard Keiser, Leif Kobbelt, and Markus Gross. Shape
modeling with point-sampled geometry. In Proceedings ACM SIG-
GRAPH 2003, pages 641-650. ACM Press, 2003.

[21] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus
Gross. Surfels: Surface elements as rendering primitives. In Proceedings
SIGGRAPH 2000, pages 335-342. ACM SIGGRAPH, 2000.

[22] Liu Ren, Hanspeter Pfister, and Matthias Zwicker. Object space EWA
surface splatting: A hardware accelerated approach to high quality point
rendering. In Proceedings EUROGRAPHICS 2002, pages —, 2002. also
in Computer Graphics Forum 21(3).

[23] Szymon Rusinkiewicz and Marc Levoy. Qsplat: A multiresolution point
rendering system for large meshes. In Proceedings SIGGRAPH 2000,
pages 343-352. ACM SIGGRAPH, 2000.

[24] Jeffrey S. Vitter. External memory algorithms and data structures: Deal-
ing with massive data. ACM Computing Surveys, 33(2):209-271, 2001.

