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ARTICLE

Time-of-flight resolved light field fluctuations
reveal deep human tissue physiology
Oybek Kholiqov 1, Wenjun Zhou 1, Tingwei Zhang1, V.N. Du Le 1 & Vivek J. Srinivasan 1,2*

Red blood cells (RBCs) transport oxygen to tissues and remove carbon dioxide. Diffuse

optical flowmetry (DOF) assesses deep tissue RBC dynamics by measuring coherent fluc-

tuations of multiply scattered near-infrared light intensity. While classical DOF measure-

ments empirically correlate with blood flow, they remain far-removed from light scattering

physics and difficult to interpret in layered media. To advance DOF measurements closer to

the physics, here we introduce an interferometric technique, surmounting challenges of bulk

motion to apply it in awake humans. We reveal two measurement dimensions: optical phase,

and time-of-flight (TOF), the latter with 22 picosecond resolution. With this multidimensional

data, we directly confirm the unordered, or Brownian, nature of optically probed RBC

dynamics typically assumed in classical DOF. We illustrate how incorrect absorption

assumptions, anisotropic RBC scattering, and layered tissues may confound classical DOF. By

comparison, our direct method enables accurate and comprehensive assessment of blood

flow dynamics in humans.
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The separation and characterization of light paths in ran-
dom media are a goal in many fields, including colloid
science, fiber-optic communications, and biophotonics.

Near-infrared spectroscopy (NIRS) endeavors to assess deep
biological tissue in vivo by measurements of highly scattered
near-infrared light, which can penetrate centimeters beneath the
surface before detection. NIRS measures either incoherent or
coherent light intensity. Incoherent NIRS includes continuous
wave (CW-) NIRS1, the simplest technique, as well as more
advanced (temporal) frequency domain2,3, spatial frequency
domain4, and time-domain (TD-)5,6 NIRS approaches. Coherent
NIRS aims to assess dynamics of turbid media through fluctua-
tions of multiply scattered light7. In particular, diffusing wave
spectroscopy/diffuse correlation spectroscopy (DWS/DCS)
probes red blood cell (RBC) dynamics related to blood flow deep
in biological tissues from coherent light intensity fluctuations8.

Measuring blood flow in tissues such as the brain9,10 is para-
mount, and methods of diffuse optical flowmetry (DOF)
including DWS/DCS and related coherent techniques (e.g. laser
Doppler11 and laser speckle12) are widely used8. In the diffuse
scattering regime, relevant for probing deep tissue, while the
theory connecting scatterer dynamics to light fluctuations is
established13, these methods remain largely empirical, without a
proven physical model for RBC motion (i.e. advection or Brow-
nian motion). There are two major reasons for this disconnect.
First, classical DWS/DCS cannot resolve light dynamics in time-
of-flight (TOF), though efforts are underway to improve TOF
discrimination14–16. Second, though DWS/DCS autocorrelation
decay times correlate empirically with blood flow17; counter-
intuitively, the functional form of observed autocorrelations
resembles theory for Brownian motion, not random flow8. At
intermediate source–detector (SD) separations, these issues are
further confounded by the fact that single scattering with Brow-
nian motion and diffuse scattering with random flow both yield
similar TOF-integrated intensity autocorrelations18,19. Numerical
simulations of correlation transport theory in synthetic vascular
beds support the Brownian motion model in larger vessels with
laminar flow20. However, existing in vivo TOF-integrated mea-
surements are simply too coarse to assess competing physical
models, as many models fit experimental observations21,22.

Here, we advance an optical method called interferometric
near-infrared spectroscopy (iNIRS)23 for human use (Fig. 1a),
thus bringing in vivo diffuse light scattering experiments closer to
the underlying physics (Fig. 1b). In contrast to coherence-gated
methods that attempt to isolate singly scattered, superficial
light24, iNIRS embraces multiply scattered, deeply penetrating
light, while assessing it quantitatively. By tuning the light source
optical frequency, iNIRS efficiently25 and directly measures
intrinsic field autocorrelations with 22–45 ps TOF resolution and
shot noise limited sensitivity26. After carefully estimating and
correcting extrinsic motion artifacts to isolate intrinsic tissue
dynamics, in all studied tissues, we discern multiple exponentially
decaying autocorrelation components, each with a distinct TOF
distribution. By deconstructing DWS/DCS, we then illustrate how
these TOF-resolved components contribute to classical TOF-
integrated autocorrelations in DOF. We verify our interpretations
through multi-modality experiments, with scattering contrast
agents, in different species, and during physiological manipula-
tions. Our detailed data sets enhance understanding of light
scattering dynamics in biological tissues, enabling more accurate
monitoring of blood flow based on sound physical underpinnings.

Results
In vivo bulk motion correction. Non-contact assessment of
optical field fluctuations in humans requires management of

motion artifacts. A uniform axial sample velocity imparts a linear
phase shift to the sample field, and thus, the estimated field
autocorrelation. Consequently, if the sample velocity changes
randomly during the time window for autocorrelation estimation,
sample dynamics are overestimated (see Supplementary Note 1).

To solve this, we employ short SD separations to provide a
large backscattered/few-scattered static reference from which
phase drift can be estimated and subsequently corrected. To
maintain sufficient dynamic range to detect long TOF diffuse
light at short SD separations, we apply digital spectral shaping
(Supplementary Fig. 1). To assess motion, we consider the iNIRS
field autocorrelation, GiNIRS

1;w , at null SD separation in the human
forearm, estimated over a short 2 ms window, at τs,peak, the TOF
of the temporal point spread function (TPSF) maximum (Fig. 2a,
b). The behavior of GiNIRS

1;w , where the real and imaginary parts are
sinusoidal and in quadrature (Fig. 2c), corresponds to rotation in
the complex plane, which implies a Doppler frequency shift, Δf=
Δθbps/(2πΔτd), where Δθbps and Δτd are bulk Doppler phase shift
and lag time resolution, respectively. Therefore, we assume a
uniform Doppler velocity over this short window. The Doppler
phase/frequency shift can be approximated from the peak of the
Fourier transform of GiNIRS

1;w (power spectrum, Fig. 2d). The
Doppler frequency shift time course over a 2.5 s acquisition is
then obtained by sliding the short window across the time course
(Fig. 2e). We assume that the peak TOF for null SD consists
largely of backscattered light from extravascular tissue. This
assumption is reasonable as backscattered light in a single mode is
typically orders of magnitude larger than multiply scattered light
in that mode27, and the fractional blood volume of most tissues is
typically on the order of 5% or less28,29. As the sole intrinsic
dynamics of static tissue are slow intracellular motility, we
propose that this Doppler shift is caused by bulk axial motion of
the sample. The bulk Doppler phase shift is summed cumulatively
over time and unwrapped to yield the cumulative unwrapped
phase, θbps. Conversion from cumulative unwrapped phase to
axial shift Z based on Z(td)= θbps(td)λ0/(4π) suggests
micrometer-scale bulk motion (solid black line in Fig. 2f, right
axis). As bulk motion should be identical for all TOFs, it can also
be determined by integrating GiNIRS

1;w over TOF prior to phase
estimation (green in Fig. 2f). Upon correction (Supplementary
Fig. 2), the cumulative bulk phase θbps at the peak TOF is nearly
constant, as expected for static tissue (red in Fig. 2f).

Furthermore, rotation in the mutual coherence function is
eliminated by motion correction (Supplementary Fig. 2a). As the
intrinsic field autocorrelation is expected to be real for unbiased
dynamics, we take the real part of the autocorrelation after phase
correction as our estimate of GiNIRS

1 . We also verify that the
imaginary part consists of noise. The correction methodology is
further validated by examining GiNIRS

1 at selected TOFs. Prior to
correction, the field autocorrelation at τs,peak (solid black in
Supplementary Fig. 2b) decays in ~700 μs, more than an order of
magnitude faster than the GiNIRS

2 decay time25, whereas the
heterodyne Siegert relationship25 predicts that GiNIRS

2 should
decay faster than GiNIRS

1 . This apparent discrepancy occurs
because the estimated field autocorrelation is corrupted by bulk
phase shifts (see Supplementary Note 1). The autocorrelation of
the bulk phase shift estimate (green in Supplementary Fig. 2b)
reveals that indeed, the unexpectedly fast decay is explained by
motion. Phase correction increases the decay time at τs,peak to
~200 ms (solid red in Supplementary Fig. 2b), while its impact at
τs= 300 ps (~35% increase) is less striking due to the higher
intrinsic decay time, but still significant. As shown in Supple-
mentary Fig. 2c, the intensity autocorrelation predicted from the
iNIRS field autocorrelation approaches the directly-determined
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intensity autocorrelation, showing that phase correction restores
the validity of the modified Siegert relationship (see Supplemen-
tary Note 2)25.

Co-registered validation against OCT. Validation of our phase
drift estimation was performed via simultaneous co-registered
comparison (Fig. 2g) with a gold standard technique, OCT, where
bulk phase shifts due to motion are routinely estimated from
static tissue and corrected30. A standard OCT cross-section of
forearm tissue reveals epidermal and dermal layers (Fig. 2h),
consisting mainly of intrinsically static tissue from which OCT
bulk phase shifts can be estimated30. In particular, the calculated

OCT Doppler velocity over the axial range in the epidermis,
indicated by a green arrow, with no vasculature, should yield bulk
motion. A parametric plot of Doppler velocities over 1.9 s, ΔV=
Δfλ0/2 (Eq. (4) with αSD= 0°), and accounting for different center
wavelengths, yields excellent correlation R2= 0.95 (Fig. 2i) and
agreement (Fig. 2j), conclusively showing that iNIRS bulk phase
drift results from sample axial motion.

Phase correction significantly impacts field autocorrelation
decays at early TOFs. iNIRS was performed in an Intralipid
phantom (μs′= 10 cm−1, μa ~ 0.045 cm−1), human forearm, nude
mouse head, and human forehead (Fig. 3a–d). TPSFs enabled
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estimation of optical properties (Fig. 3e–h). After motion cor-
rection, an exponential model (Eq. (7)) consisting of a static and
dynamic term was fit to TOF-resolved autocorrelations. This
model is theoretically well justified, approaching dynamic light
scattering (DLS) theory (which is valid for a single backscattering
angle) and DWS theory (which is valid at early lag times and late
TOFs) for Brownian motion (Supplementary Note 3). The static

term accounts for static scattering paths (Supplementary Fig. 3)
that decorrelate on time scales longer than the fitting window of
10 ms used for all data. For the Intralipid reflectance measure-
ment, where all particles are dynamic (Fig. 3i), the static com-
ponent is insignificant (blue). For tissue, (Fig. 3j–l), motion
correction reveals a strong static component (blue), which likely
describes light scattered only from extravascular tissue. Slopes of
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the autocorrelation decay rate versus TOF (Fig. 3n, p) are
increased by motion correction in human tissues, but remain
virtually identical for Intralipid (Fig. 3m), which has no physio-
logical motion, and the mouse head (Fig. 3o), which was ste-
reotactically stabilized. Critically, upon phase correction, fits
intercepted the TOF axis much closer to τs= 0 (Eq. (11)), as
predicted from DWS theory. BFI values, quantified based on Eq.
(11) with estimated reduced scattering coefficients, are included
(Fig. 3m–p). Finally, to improve observations at late TOFs we
employed a TOF-dependent averaging strategy: at each TOF, τs,
GiNIRS
1 was averaged across a 20% window (e.g. for τs= 1000 ps,

GiNIRS
1 was averaged from 900–1100 ps). Subsequently, resulting

autocorrelations were fitted with a 2-parameter model (Eq. (9)), a
reasonable approximation at late TOFs (see Supplementary
Note 3), to determine decay rates (Fig. 3q–t). Interestingly,
human head measurements (Fig. 3t) exhibited two decay stages,
with a lower slope at early TOFs, consistent with extracerebral
(e.g. scalp and skull) blood flow31, transitioning to a higher slope
at later TOFs, consistent with higher CBF.

Bi-exponential field autocorrelations at early to intermediate
TOFs. Careful observation revealed systematic discrepancies
between mono-exponential fits and in vivo data, up to TOFs of a
few hundred picoseconds. To empirically describe data more
comprehensively across time lags, a 5-parameter fit was devel-
oped (Eq. (8)). The adjusted R2, which penalizes overfitting, was
determined for both the mono-exponential (3-parameter) and bi-
exponential (5-parameter) fits. Besides improving the adjusted R2

at intermediate TOFs, (Fig. 4g–i) the empirical 5-parameter fit
(three amplitudes, two decay rates) eliminated systematic devia-
tions that plagued the 3-parameter fit (two amplitudes, one decay
rate), which is founded in DLS and DWS theory.

Based on the empirical 5-parameter fit, TOF-resolved ampli-
tudes were constructed for the static, slow, and fast components
and compared across tissues (Fig. 4a–c). First, the fast component
dominated at long TOFs and its decay rate increased with TOF.
Second, the static component dominated at short TOFs and null
SD separation, but rapidly attenuated with increasing TOF in all
tissues. Third, a slow component, with a TOF distribution
intermediate between the static and fast components, was required
to accurately describe in vivo data. The amplitude and decay rate
(inverse time constant) of the slow component relative to the fast
component were sample dependent. The slow component was
notably absent in Intralipid, with a much lower scattering
anisotropy than RBCs (gIL ~ 0.632 versus gRBC ~ 0.97533).

Next, we examined changes during various manipulations with
TOF-dependent averaging. For separate nude mouse head
measurements, we injected 0.1 mL of Intralipid-20% intrave-
nously, which increases the number of dynamic scattering events
and momentum transfer (Fig. 5a, d), and performed a standard
hypercapnic challenge, which increases cerebral blood flow
(Fig. 5b, e). Both manipulations increased the slope of the decay
rate versus TOF. For human forehead measurements (prefrontal
cortex activation), the subject covertly read a paragraph of
unfamiliar text after a 10-min rest period (eyes closed).

The slopes of both of the aforementioned stages increased
during activation, with the late slope increasing more than the
early slope (Fig. 5c, f). These distinct decay stages are plausible
based on known differences in blood flow dynamics in superficial
(scalp and skull) and brain tissue31. Importantly, the fast dynamic
component increased during all manipulations (Supplementary
Fig. 6), while the behavior of the slow component was unclear.

To interrogate whether the slow component was intravascular
in origin, we then performed simulations based on a time-tested
physical model11 (Supplementary Fig. 7). First, by eliminating

paths with any large angle dynamic scattering events in
simulation, we found that the long autocorrelation tails are
clearly associated with light paths for which intravascular
dynamic scattering events all result in a small deflection angle
(Supplementary Fig. 8). The probability of such paths, and hence
the shape of the tails, depends on the scattering anisotropy
(Supplementary Fig. 9) and even on the shape of the scattering
phase function (Supplementary Fig. 10). Due to low blood
volume in tissue and high scattering anisotropy of RBCs33 (gRBC
= 0.975), such paths remain probable up to intermediate TOFs
(Supplementary Fig. 11). Second, inclusion of advection and
diffusion in a hybrid model did not alter the bi-exponential
character of the autocorrelation compared to a pure diffusion
(unordered Brownian motion) model, but did change the decay
rates of each component and caused the slow component to
attenuate more rapidly with TOF (Supplementary Fig. 12). Thus,
while the presence of long autocorrelation tails is due to small
angle dynamic scattering, the amplitude of the tails also depends
on sample dynamics (diffusive versus directional). A hybrid
model incorporating advection and Brownian motion (Supple-
mentary Fig. 12) predicted qualitative features of our TOF-
resolved autocorrelations. Third, the inclusion of early ballistic
displacement affected the short time lag behavior, changed the
decay rates of each component, and caused the slow component
to attenuate more rapidly with TOF (Supplementary Fig. 12). In
summary, our simulations and experiments consistently sup-
ported that the presence of a fast and slow component (i.e. the
need for a bi-exponential fit) at early TOFs was associated with
small angle intravascular forward scattering, though the slow
component amplitude was not related in a simple way to the
fraction of forward scattering events and sample dynamics.
Finally, as discussed further below, bi-exponential autocorrela-
tions at later TOFs in the human forehead required a completely
different explanation.

Deconstructing DWS/DCS. We next investigated the contribu-
tions of the empirical iNIRS slow components to classical TOF-
integrated DWS/DCS. To contend with the long autocorrelation
tails in iNIRS, in addition to 5-parameter iNIRS fitting (approach
1), we also performed 3-parameter early time lag iNIRS fitting
(approach 2), which has a more solid theoretical foundation in
the cumulant approximation (see Supplementary Note 3). Then,
we integrated GiNIRS

1 over TOF (Fig. 1b, Supplementary Note 4),
or we integrated the fast component (red) or early lag fits (cyan)
individually (Fig. 6a), to ascertain their role in DWS/DCS. First,
we found that that blood flow index (BFI= αDB) of DWS/DCS is
highly dependent on the fit region. On the other hand, integrating
just the iNIRS fast component (red) or iNIRS early lag fits (cyan)
alone yielded better agreement with DWS/DCS theory, resulting
in the same BFI regardless of fit region (Fig. 6b, c). In addition to
field dynamics, iNIRS quantifies both baseline absorption and
changes during hypercapnia (Fig. 7a). However, BFI can be
recovered in iNIRS without explicit knowledge of absorption
(Fig. 7b). On the other hand, absorption must be considered in
DWS/DCS. Reassuringly, iNIRS BFI from the fast component
decay rate of the 5-parameter fit (approach 1, red in Fig. 7b)
agreed with iNIRS BFI from the early time lag fit (approach 2,
cyan in Fig. 7b). We expect that fitting early lags in DWS/DCS
should more effectively, but perhaps imperfectly, isolate the fast
component, which is sensitive to modulations of intravascular
scattering dynamics (Supplementary Fig. 6). Indeed, applying
“best practices” in DWS/DCS (fitting early time lags34 and
accounting for absorption35,36) achieves only modest agreement
with iNIRS (solid black Fig. 7c). Importantly, agreement is
improved significantly by applying DWS/DCS theory to the TOF-
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integrated fast iNIRS component (red in Fig. 7c), or the TOF-
integrated early lag iNIRS fit (cyan in Fig. 7c), both approaches
which “force” a single exponential autocorrelation decay at all
TOFs. As discrepancies are resolved by eliminating the slowly
decaying tails, we can pinpoint the slowly decaying tails as a
confound. Evidently, even if best practices are followed in DWS/
DCS, TOF-resolved iNIRS can still improve quantification at 7.6
mm SD separation.

Discussion. In this work, we introduce two new dimensions, optical
phase and TOF, to improve DOF of human tissues. To achieve non-
contact measurements in vivo, we move the source and detector
closer37, using the large intrinsically static reference to estimate and
correct phase drift due to motion, and custom signal processing to
achieve the dynamic range needed to isolate diffuse paths (Supple-
mentary Fig. 1). Our methodology reveals fundamental physics of
light–tissue interactions, providing informative and direct diffuse
optical measurements that decipher classical techniques.

In DWS/DCS, a Brownian motion model fits experimental
autocorrelation functions better than a more intuitive random
flow model. Though BFI empirically correlates with standard flow
measures38, the units of BFI (distance2/time) remain challenging
to interpret. Simulations have suggested that RBC migration in
laminar shear flow, describable as a diffusion process39, provides
a plausible explanation for Monte Carlo simulations20,40.

However, the applicability of this concept in capillaries with
single-file RBC flow, which account for a majority of micro-
vascular volume, remains unclear. In laser Doppler or laser
speckle, which do not possess TOF resolution, it is always possible
to invoke contributions from longer, multiply scattered paths to
explain exponential autocorrelation decays via an advection, or
random flow, model18,19.

On the other hand, iNIRS can assess TOF-resolved dynamics
essentially independently of the TOF distribution of photons. The
observation of exponential decays at early time lags and late TOFs
in iNIRS autocorrelations (22 ps TOF resolution) provides the
most comprehensive experimental support, to date, for a
Brownian model of RBC displacement in coherent light
scattering, rendering a pure advection model of RBC motion
untenable. Nonetheless, our results are not inconsistent with a
hybrid model that incorporates advection and Brownian motion.
Our simulations showed that a hybrid model does not alter the
bi-exponential character of the TOF-resolved field autocorrela-
tions, but does change the relative decay rates and amplitudes of
the fast and slow components (Supplementary Fig. 12). This
conclusion also held for early ballistic motion prior to the
collision time, though some deviations from the bi-exponential fit
were evident prior to the collision time. We found that a hybrid
model could recapitulate observed features in our experimental
autocorrelations, particularly the relative attenuation of the slow
component with TOF. Our sampling rate was insufficient to
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conclusively identify a finite collision time scale (i.e. very early
motion resembling advection) to establish Brownian motion in all
tissues (Fig. 4j–l). Finally, we caution that just because
autocorrelations are well-described by a Brownian motion model,
does not per force imply that RBC diffusion is responsible for the
autocorrelation decay. Other motion of RBCs, such as tumbling

or deformation, not described by existing theories, may also play
a role. Along these lines, it is interesting to note that OCT also
measures exponential field autocorrelations in ~0.05 picoliter
intravascular volumes, in a quasi-backscattering geometry41,42.
The connection of such findings to those presented here, if any,
requires further investigation.
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In vascularized tissue, coherent light transport entails a
sequence of static scattering events from tissue matrix, punc-
tuated by dynamic scattering events from blood11. For a wide
range of in vivo measurements, a constant plus bi-exponential
decay provides an excellent empirical description of field
autocorrelations at all TOFs, excepting minor deviations at very
early time lags in some media (Fig. 4). The fast decay component
appears to increase with TOF, agrees with DWS theory based on
the cumulant approximation at late TOFs in homogenous media,
and increases when intravascular momentum transfer is
enhanced (Supplementary Fig. 6).

Across tissues, the slow component was needed, at least up to
TOFs of 200–400 ps, for accurate in vivo fits over the entire
autocorrelation decay. The slow component was absent in
Intralipid phantoms (gIL= 0.6), and its amplitude was diminished
by Intralipid injection in vivo, strongly suggesting an association
with RBC scattering anisotropy. Likewise, in our simulations
(Supplementary Figs. 8–10), quasi-forward dynamic scattering
events were necessary and sufficient for a bi-exponential
autocorrelation in a homogenous medium. This is most clearly
shown in Supplementary Fig. 8, where eliminating paths with any
large angle dynamic scattering events still yielded an excellent
approximation of the long autocorrelation tails. Thus, we propose
that paths with low momentum transfer at dynamic scattering
events lead to the long autocorrelation tails. These paths can
persist in TOF due to the low probability of dynamic scattering in
tissue (fractional blood volume ~ 1–5%), and high forward
scattering of RBCs43. In contrast to traditional forward scattered
“snake paths”44, these slowly decorrelating paths are “dynamical
snake paths” in the sense that they are highly forward scattered
only by dynamical tissue (Supplementary Fig. 11). Dynamical
snake paths can be highly scattered by the surrounding static
tissue matrix, and might obey the diffusion approximation for
radiative transport. However, dynamical snake paths invalidate
the cumulant approximation and the diffusion approximation for
correlation transport, which predicts a pure exponential auto-
correlation for uniform Brownian motion along a single light
path. Dynamical snake paths, while few in number at larger
TOFs, can still influence DWS/DCS autocorrelations at long time
lags. Finally, we have not provided a rigorous theoretical
treatment of the long autocorrelation tails, in part due to its

attribution to two distinct physical effects (Table 1), as well as
uncertainties about RBC scattering (Supplementary Fig. 10). Such
uncertainties can be circumvented by a mono-exponential, early
time lag fit, which is theoretically justified in DWS.

In TOF-resolved iNIRS data, superficial extracerebral blood
flow has a clear signature: a slow autocorrelation decay rate at
early to intermediate TOFs (e.g. Figure 5f). By comparison,
dynamical snake paths create long autocorrelation tails at late time
lags and early to intermediate TOFs. Interestingly, superficial
layers with low blood flow create slowly decaying tails at long time
lags in TOF-integrated DWS/DCS. Thus, it is reasonable to ask
how a thick (~1 cm) superficial layer can affect iNIRS data at late
time lags and TOFs. In the human head, applying TOF-dependent
averaging to reduce noise (Supplementary Fig. 4), we observed
long autocorrelation tails, necessitating a bi-exponential fit, even at
TOFs of >500 ps. This observation is likely due to light paths
sampling both superficial (scalp/skull) and deep (brain) dynamics,
which are 6–10 times higher31,45. Monte Carlo simulations
(Supplementary Note 5), employing a two-layer model with
reasonable blood flow indices, reproduced both the biphasic
behavior of the decay rate versus TOF, as well as bi-exponential
autocorrelations at late TOFs, in agreement with human forehead
experiments (Supplementary Fig. 5). Notably, as the Monte Carlo
simulation assumed the cumulant approximation, bi-exponential
decays were absent at early TOFs, unlike our experimental human
forehead data. Additionally, in the mouse head, we observed that
removal of the scalp did not eliminate bi-exponential autocorrela-
tions (data not shown). Thus, the scalp is not required for a bi-
exponential autocorrelation, and we must attribute the bi-
exponential autocorrelation to two distinct physical effects. These
findings are summarized succinctly in Table 1.

Can iNIRS decipher classical DWS/DCS in vivo? Standard
practice in DWS/DCS is to fit early time lags, in order to select for
longer, deeper photon paths7,34,40. First, we note that Brownian
motion (Δr2 ~ τd) must dominate advection (Δr2 ~ τd2) at
sufficiently short time scales. Thus, as our results support the
presence of Brownian motion, to the extent that DWS/DCS
succeeds in isolating the earliest time scales, DWS/DCS will
observe Brownian motion. Second, our survey of literature
indicates that DWS/DCS early time lag fits often deviate from
long decay tails46,47 at short SD separations. Our deconstruction

Table 1 Physical effects leading to iNIRS observations. Based on in vivo iNIRS data and simulations, we ascribe distinct physical
effects to salient iNIRS observations. Support for the ascription of physical effects to iNIRS observations is provided in the form
of simulation (sim.) and experiment (exp.).

iNIRS Observations and Associated Physical Effects

iNIRS Observation
Associated 

Physical 
Effect(s)

Comment Support

1. Bi-exponential 
TOF-resolved 

decay

Dynamical 
snake paths

Absent at long 
TOFs

Figure 4.k (exp.)
Supplementary 
Figure 6 (sim.)

Sampling media 
with different 

dynamics

Absent at TOFs 
when mainly one 
medium is probed

Supplementary 
Figure 11.c (exp.)

Supplementary 
Figure 13 (sim.)

2. Biphasic decay 
rate vs. TOF

Sampling media 
with different 

dynamics

Absent at TOFs 
when mainly one 
medium is probed

Figure 3.t (exp.)

Supplementary 
Figure 13 (sim.)

Lag time
G

1

TOF

D
ec

ay
 ra

te
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of DWS/DCS at short SD separations (Fig. 6) clearly connects
these tails with the slow component of our bi-exponential iNIRS
decay and by extension, dynamical snake paths. Since the
cumulant approximation for uniform Brownian motion yields
an exponential TOF-resolved autocorrelation, the very presence
of a bi-exponential decay implies that the cumulant approxima-
tion with uniform Brownian motion is invalid. Without the
benefit of TOF resolution, fitting early lags cannot eliminate the
influence of the slow phase (Fig. 7d). Our in vivo results suggest
that previous estimates of DWS/DCS blood flow error, based on
the cumulant approximation and consequent similarity relation,
may be underestimated at short SD separation48. To ensure
accurate DWS/DCS measurements at short SD separations48, and
in laser Doppler/laser speckle11,12, future work should carefully
investigate the validity of the cumulant approximation, which
depends on anisotropy (Supplementary Fig. 9) and the phase
function (Supplementary Fig. 10) for dynamic scattering. For
DWS/DCS at 2.5 cm SD separation on the human forehead, the
validity of the cumulant approximation may not be a major
concern at early time lags; particularly in relation to the more
salient issue of extracerebral contamination30.

Can iNIRS decipher classical DWS/DCS at longer SD
separations? Preliminary iNIRS decay rates in the adult human
head exemplify two stages, consistent with lower extracerebral
(i.e. scalp and skull) flow probed at early TOFs, and higher CBF
probed more at late TOFs. These data invalidate the assumption
of a semi-infinite homogenous medium in DWS/DCS, providing
the most direct evidence, to date, of long-assumed differences31 in
scalp and cerebral blood flow index, supporting that iNIRS can
distinguish superficial and deep dynamics. This capability will
enable more robust monitoring of CBF autoregulation in brain-
injured patients49 and higher performance brain computer
interfaces50 with better spatial resolution and brain specificity.

Coherent light transport in vascularized tissue is a complex
sequence of static and dynamic scattering events11. We present a
unified and comprehensive approach to characterize this process
in human tissues, employing an interferometric technique to add
new dimensions to experimental measurements. With TOF-
resolved autocorrelations, we provide evidence of light paths
sampling dissimilar dynamics in multilayered tissues. By applying
DWS/DCS theory at early time lags, our approach recovers blood
flow indices without explicit knowledge of absorption. At late
time lags, we also identify distinct signatures of light paths
experiencing small momentum transfer at dynamic scattering
events (“dynamical snake” paths). These physical insights could
lay the groundwork for a more comprehensive theory that
includes late time lags to yield even more information about
blood flow dynamics. This work demonstrates that TOF-resolved
field dynamics can provide more accurate assessments of blood
flow with near-infrared light, through direct observation and also
by informing our interpretation of classical techniques.

Methods
Interferometric near-infrared spectroscopy. iNIRS is a TOF-resolved method
for quantifying field dynamics in turbid media23,25. By measuring the interference
spectrum of light traversing biological tissue and light traveling a reference path,
the technique yields a mutual coherence function, Γrs(τs, td) between the sample
and reference fields, where τs is TOF and td is delay time. From a time series in td,
iNIRS provides a TOF-resolved optical field autocorrelation, GiNIRS

1 (τs, τd),

GiNIRS
1 ðτs; τdÞ ¼ hΓ�rsðτs; tdÞΓrsðτs; td þ τdÞitd ; ð1Þ

where τd is time lag and brackets denote expectation or averaging over td25. The
iNIRS field autocorrelation is related to intrinsic medium field autocorrelation,
G1(τs, τd), by a convolution (*) in TOF (τs) with the system instrument response
function (IRF):

GiNIRS
1 τs; τdð Þ ¼ G1 τs; τdð Þ � IRF τsð Þ: ð2Þ

Thus, iNIRS measures TOF-resolved field autocorrelations, with a TOF
resolution determined by the IRF width. Importantly, as implied by Eq. (2), iNIRS
implicitly measures the TPSF, IiNIRS(τs)=GiNIRS

1 (τs, 0) (Fig. 1b), which is related to
the intrinsic medium photon TOF distribution (DTOF), I(τs)=G1(τs, 0), by IiNIRS

(τs)= I(τs) ∗ IRF(τs). Therefore, while iNIRS is a coherent method, it also provides
a TPSF just like incoherent TD-NIRS23. By comparison, DWS/DCS assesses, via
the Siegert relationship, TOF-integrated field autocorrelations,

GDCS
1 τdð Þ ¼ 1

β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GDCS
2 τdð Þ � �I2DCS

q
¼

Z 1

0
G1 τs; τdð Þdτs; ð3Þ

where β is the coherence factor and ĪDCS is the average detected intensity. Compared
to DWS/DCS, iNIRS avoids two problematic operations in Eq. (3). First, by
measuring the field autocorrelation directly, iNIRS obviates the Siegert relationship
(central expression). Second, iNIRS provides new insight by evaluating the
integrand of the right expression of Eq. (3), with high TOF resolution, analogous to
the way that TD-NIRS provides new insight into CW-NIRS (Fig. 1b)51.

Determination of optical properties. iNIRS provides a TPSF, which can be fitted
with the convolution of the system instrument response function (IRF) and the
TOF-resolved diffusion approximation, to extract the absorption and reduced
scattering coefficients, μa and μ0s, respectively23. At null SD, we chose a fitting
region that starts at a lower TOF of 100 ps for all samples, to ensure validity of the
diffusion approximation for radiative transport, while the upper TOF was adjusted
based on SNR (green in Fig. 3e–h). For the four sets of samples (Intralipid, human
forearm, mouse brain, and human forehead), the iNIRS TPSF, chosen fitting
region, diffusion theory fit, extracted optical properties, and goodness-of-fit are
included in Fig. 3e–h respectively. The procedure was validated with a diluted
Intralipid phantom (true μ0s ~ 10 cm−1, μa ~ 0.045 cm−1), measured at SD= 7.6
mm, where iNIRS recovers μ0s to within 0.5%. We compared null SD and SD= 7.6
mm fitting results in the human forearm and the mouse brain, ensuring that optical
properties agreed to within 10%.

Co-registered validation against OCT. The configuration for validating iNIRS
estimation of bulk phase shifts is shown in Fig. 2g; iNIRS (855 nm) is combined
with a Thorlabs 1320 nm Telesto OCT system with a dichroic beam splitter. We
ensured that the OCT spot stayed within the iNIRS beam during acquisition, and
the total illumination power, ~20 mW across a spot size of 2 mm 1/e2 and 1 mW
with a limiting aperture of 3.5 mm, for iNIRS and OCT respectively, adheres to
ANSI limits. The bulk Doppler phase shift is given by

Δθ ¼ 4π
λ0

Δz þ Δz cos αSDð Þ þ Δx sin αSDð Þ
2

� �
; ð4Þ

where Δz and Δx are motion in the axial and lateral directions, respectively, αSD is
the angle between iNIRS illumination and detection, and λ0 is the center wave-
length (855 nm for iNIRS and 1320 nm for OCT). Note that no additional steps
were taken to stabilize the forearm.

Field autocorrelation models. The goal of coherent optical flowmetry is to infer
motion of scattering particles from field autocorrelations. Particle motion is
characterized by the mean-squared displacement as a function of lag time, <Δr2(τd)>.
For diffusion, <Δr2(τd)>= 6DBτd where DB is the effective Brownian diffusion
coefficient. For this model, BFI= αDB has been proposed8. For random flow, <Δr2

(τd)>= v2τd2, where v is the standard deviation of the velocity distribution. For this
model, BFI= αv2 has been proposed22. For hydrodynamic diffusion, <Δr2(τd)>=
6DB{τd− τC[1− exp(−τd/τC)]}, where DB is the hydrodynamic diffusion coefficient
and τC is the time scale required to establish Brownian motion21. For this model,
BFI= αDB has been proposed22. A hybrid model including random flow and
Brownian motion, where <Δr2(τd)> = 6DBτd+ v2τd2, has also been investigated.

Here we adopt the view11 that tissue light scattering is a sequence of
intravascular dynamic and extravascular static scattering events (Supplementary
Fig. 3). For DLS, or single scattering with a fixed scattering vector (q) with
magnitude q= |q|, static scattering fraction ηc, and dynamic scattering fraction
ηf= 1− ηc,

gDLS1 τdð Þ ¼ ηc|{z}
static component

þ ηf exp �q2 Δr2 τdð Þ� �
=6

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dynamic component

: ð5Þ

In the diffusing wave spectroscopy (DWS) regime7, the normalized TOF-
resolved field autocorrelation gDWS

1 (τs, τd) is given by

gDWS
1 τs; τdð Þ ¼ G1 τs; τdð Þ

I τsð Þ ¼ exp � 1
3
αk2 Δr2 τdð Þ� �

μ0scτs=nr

� �
: ð6Þ

Here, L= cτs/nr is the photon path length, c is the speed of light in vacuum, nr is the
group refractive index (assumed equal to the phase refractive index), k= 2πnr/λ0 is
the medium wavenumber, and λ0 is the free space central wavelength. A probability
of dynamic scattering, α, is included in DWS theory to account for the presence
of static scatterers46. Comparing dynamic components of DLS (Eq. (5)) to DWS
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(Eq. (6)), we observe that, in both regimes, diffusion yields an exponential decay and
random flow yields a Gaussian decay.

iNIRS affords the unique ability to measure TOF-resolved autocorrelations
spanning from the DLS to the DWS regimes. We might expect that DLS theory
(Eq. (5)) describes the earliest TOFs, particularly for the null SD geometry. For
intermediate TOFs, between DLS and DWS regimes, integration over scattering
angles and/or scattering events is required, and the models are more complicated
(Supplementary Note 3) although the cumulant approximation remains valid at
early time lags. Finally, we expect a transition to the DWS regime (Eq. (6)) at long
TOFs where the cumulant approximation is valid over the entire autocorrelation
decay. Early time lag behavior of TOF-resolved autocorrelation is more directly
relatable to particle motion than early time lag behavior of TOF-integrated
autocorrelations, which depend on the TOF distribution and optical properties
(Eq. (3)).

DWS/DCS provides a TOF-integrated field autocorrelation (Eq. (3)) via the Siegert
relationship. If optical properties are assumed (both μa and μ0s), TOF-integrated
autocorrelations can be fit with Eq. (3) to yield BFI. In iNIRS, BFI can be determined
from TOF-resolved autocorrelations, by fitting g iNIRS1 (τs, τd)=GiNIRS

1 (τs, τd)/IiNIRS(τs)
with Eq. (6), after assuming μ0s , which can conveniently be determined directly
from the iNIRS measurements themselves23,52. For instance, for the diffusion model,
the blood flow can be calculated as BFI= αDB= λ02 × slope/8π2nrμ0sc, given the slope
of ξ(τs) versus τs. The extra τs dimension provided by iNIRS yields a richer data
set than DWS/DCS to evaluate candidate BFI models, and does not require
knowledge of, or assumptions about, absorption. However, the convolution
(TOF-integration) in Eq. (3) may result in a non-zero second cumulant if the TOF
resolution is poor, which could possibly confound Gaussian and exponential decays.
Hence to accurately distinguish between a diffusion model (exponential decay in τd)
and a random flow model (Gaussian decay in τd), fine TOF resolution, not mere TOF
discrimination14, is essential. In this study, the iNIRS TOF resolution, δτs= 21.9 ps,
corresponding to a path length resolution of 6.6mm in vacuum, is the highest value
reported to date5,53.

Fitting approach. At first glance, to encompass DLS (Eq. (5)) and DWS solutions
(Eq. (6)), it is reasonable to fit iNIRS field autocorrelations with the following
model52:

GiNIRS
1 τs; τdð Þ ¼ IiNIRSc τsð Þ|fflfflfflfflffl{zfflfflfflfflffl}

static component

þ IiNIRSf τsð Þe�ξ τsð Þτd|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
dynamic component

: ð7Þ

Here, If is the TOF-dependent coefficient accounting for the dynamic component
of the field, while Ic accounts for the possible presence of static paths. While Eq. (7)
was sufficient to describe Intralipid autocorrelations; in vivo, we empirically found
that a 5-parameter fit was needed to accurately describe the intermediate regime
between DLS and DWS across species and tissue types:

GiNIRS
1 τs; τdð Þ ¼ IiNIRSc τsð Þ|fflfflfflfflffl{zfflfflfflfflffl}

static component

þ IiNIRSf ;slow τsð Þe�ξslow τsð Þτd|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
slow dynamic component

þ IiNIRSf ;fast τsð Þe�ξfast τsð Þτd|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fast dynamic component

: ð8Þ

Note that while the 3-parameter fit is well-founded in DLS and DWS theory, we
provide no theoretical justification for the 5-parameter fit. Though the 5-parameter
fit was generally required, in the DWS regime, at long TOFs and early time lags,
decays are purely exponential. In such circumstances, to reduce the number of
parameters, it is reasonable to use a 2-parameter fit:

GiNIRS
1 τs; τdð Þ ¼ IiNIRSf τsð Þe�ξ τsð Þτd|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

dynamic component

: ð9Þ

Finally, well into the DWS regime, the normalized autocorrelation is described
even more succinctly by a 1-parameter fit:

g iNIRS1 τs; τdð Þ ¼ e�ξ τsð Þτd|fflfflfflffl{zfflfflfflffl}
dynamic component

: ð10Þ

In DWS (Eq. (6)), for Brownian motion, the TOF-resolved decay rate is

ξ τsð Þ ¼ 2k2αDBμ
0
scðτs � τs;0Þ
nr

: ð11Þ

Though DWS for a uniform medium passes through the origin, i.e. τs,0= 0, we
allow for a non-zero intercept with the TOF axis. This semi-empirical adjustment
to theory is believed to account for in vivo media with a thin superficial layer that
has comparatively little blood flow relative to the deeper layers, such as the outer
layers of the skin in humans, or the scalp and skull in mice. Applying Eq. (7) and
Eq. (11) to the Intralipid phantom, we obtained τs,0=−8.8 ps (equal to zero, up to
the TOF resolution) and αDB= 1.18 × 10−8 cm2 s−1 (Fig. 3m), consistent with
reported results35.

Static tissue may violate the Siegert relationship. By measuring optical field
autocorrelations directly, we also detect the presence of an intrinsically static
component, whose phase shift dynamics correlate with accepted “static” tissue
measured by OCT (Fig. 2). At null SD separation, this intrinsically static component
corresponds mainly to backscattered or back-reflected light from static tissue, and at
larger SD separations, light that scatters multiple times from extravascular tissue,

never experiencing phase shifts at dynamic scattering events. As might be expected,
there is no measurable static component (Fig. 3i) for a uniformly dynamic medium,
Intralipid, in a backscattering geometry. Also, in biological tissue, which comprises
stationary and moving scatterers, the static component approximates the IRF in a
backscattering geometry, and occurs earlier in TOF than all dynamic components
(Fig. 3j–l). It is important to note that if the measurement time were shorter than
the decorrelation time of the static component, the Siegert relationship would be
violated. However, our fitting procedure correctly extracts dynamic component(s)
regardless of the measurement time scale (Supplementary Note 6).

Experimental setup. The iNIRS light source (Fig. 1a) is an 855 nm distributed
feedback (DFB) laser, operating at a 100 kHz sweep rate, including forward and
backward sweeps, enabling a lag time (τd) resolution of 10 μs. A lag time resolution
of 10 μs for an exponential field autocorrelation is equivalent to a lag time reso-
lution of 5 μs for the corresponding exponential intensity autocorrelation. The end-
to-end tuning range was 64.7 GHz, enabling a TOF resolution of 21.9 ps (IRF
FWHM). This TOF resolution exceeds that of state-of-the-art TD-NIRS systems53

as well as TD-DCS14. The spectral interference signal from the balanced detector
was acquired continuously in blocks of 2.5 s at a 200MHz sampling rate, along
with laser sweep triggers. Forward and backward sweeps were segregated, resam-
pled, reshaped, and Fourier transformed as previously described26, forming a
complex mutual coherence function time series, Γrs(τs, td), at each TOF (τs) with
250,000 delay time (td) points, from which autocorrelations GiNIRS

1 (τs, τd) were
calculated. All samples were illuminated with 20 mW across a spot size of ~2 mm
(1/e2), strictly adhering to the tissue irradiation limits set by the American National
Standard Institute (ANSI). The single mode source and detector fibers are colli-
mated with off-the-shelf adjustable aspheric FC collimators (Thorlabs CFC-2X-B).
Mouse experiments were performed with the animal in a stereotaxic frame under
1–1.5% isoflurane in a mixture of air and oxygen. All procedures and protocols
involving human subjects research were approved by the UC Davis Institutional
Review Board and all procedures involving animal subjects were approved by the
UC Davis Institutional Animal Care and Use Committee (IACUC).

Compared to our previous work26,52, we reduced the source–detector
separation here to collect light from intrinsically static tissue and increase the
number of detected photons at all times of flight37. In this approach, the large
backscattered/few-scattered component at early TOFs can obscure later TOFs if the
IRF has sidelobes. In contrast with TD-NIRS, the iNIRS TPSF is obtained by
Fourier transforming the measured interference signal, enabling apodization
techniques to reduce sidelobes, and in turn, increase dynamic range as described in
Supplementary Fig. 1.

The interferometric strategy also obviates photon counting detectors (i.e. PMTs
and SPADs) susceptible to afterpulses and/or diffusion tails, which reduce dynamic
range and contaminate information at long times of flight26. In contrast, iNIRS,
without gating, achieves comparable dynamic range (~70 dB) to state-of-the-art
TD-NIRS systems54, without exhibiting afterpeaks, and maintaining high peak-to-
sidelobe ratio (~40 dB)26. Finally, our interferometric approach is uniquely suited
for operation under ambient light conditions.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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