
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Statistical phylogenetic methods with applications to virus evolution

Permalink
https://escholarship.org/uc/item/362312kp

Author
Westesson, Oscar

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/362312kp
https://escholarship.org
http://www.cdlib.org/

Statistical phylogenetic methods with applications to virus evolution

by

Oscar Westesson

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Joint Doctor of Philosophy

with University of California, San Francisco

in

Bioengineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Ian Holmes, Chair
Professor Rasmus Nielsen

Professor Joe DeRisi

Fall 2012

Statistical phylogenetic methods with applications to virus evolution

Copyright 2012
by

Oscar Westesson

1

Abstract

Statistical phylogenetic methods with applications to virus evolution

by

Oscar Westesson

Joint Doctor of Philosophy

with University of California, San Francisco

in Bioengineering

University of California, Berkeley

Ian Holmes, Chair

This thesis explores methods for computational comparative modeling of genetic sequences.
The framework within which this modeling is undertaken is that of sequence alignments and
associated phylogenetic trees. The first part explores methods for building ancestral sequence
alignments making explicit use of phylogenetic likelihood functions. New capabilities of an
existing MCMC alignment sampler are discussed in detail, and the sampler is used to analyze
a set of HIV/SIV gp120 proteins. An approximate maximum-likelihood alignment method
is presented, first in a tutorial-style format and later in precise mathematical terms. An
implementation of this method is evaluated alongside leading alignment programs. The
second part describes methods utilizing multiple sequence alignments. First, mutation rate
is used to predict positional mutational sensitivities for a protein. Second, the flexible,
automated model-specification capabilities of the XRate software are presented. The final
chapter presents recHMM, a method to detect recombination among sequence by use of a
phylogenetic hidden Markov model with a tree in each hidden state.

i

För min farmor och farfar, som alltid undrade varför jag aldrig blev doktor.

ii

Acknowledgments

This dissertation contains much of the work I did while in the lab of Ian Holmes at UC
Berkeley. I am deeply indebted to Ian for taking me on as a student and providing a quiet
example of what it means to be a modern computational scientist. The folks in and around

the lab during my time there (anb before) were absolutely essential, each in their own
ways, to my growth as a scientist and person. Mitch Skinner, Robert Bradley, Lars

Barquist, Andrew Uzilov, and Alex James Hughes: thanks for the help, lunches, and
pranks. Members of the Andino and DeRisi labs helped deepen my interest in virology and

keep my ideas grounded in biology: Raul Andino, Joe DeRisi, Charles Runckel, Michael
Schulte, and Cecily Burrill. Without the following teachers along the way I would perhaps
never have come to love pure and applied maths as much as I do: Rich “R” Kelly, Naomi

Jochnowitz, and Bernd Sturmfels. The very tricky transfer from University of Rochester to
UC Berkeley would likely not have happened were it not for Maritza Aguilar, an extremely

helpful and thorough admissions counselor.

iii

Contents

Contents iii

List of Figures v

List of Tables viii

1 Introduction 1

I Methods for multiple sequence alignment 12

2 Approximate alignment with transducers: theory 13
2.1 Background . 14
2.2 Informal tutorial on transducer composition 17
2.3 Formal definitions . 66
2.4 Conclusions . 97
2.5 Methods . 98

3 Approximate alignment with transducers: simulation-based evaluation 100
3.1 Background . 101
3.2 Results . 103
3.3 Discussion . 107
3.4 Methods . 109

4 HandAlign: MCMC for exact Bayesian inference of alignment, tree, and
parameters 117
4.1 Background . 118
4.2 Sampling alignments, trees, and parameters 118
4.3 Capabilities . 119

iv

II Methods utilizing a multiple sequence alignment 123

5 Predicting the functional effects of polymorphisms using mutation rate 124
5.1 Background . 125
5.2 Results . 126
5.3 Discussion . 127
5.4 Materials and methods . 130

6 Modeling genomic features using phylo-grammars 133
6.1 Background . 134
6.2 Methods . 136
6.3 Results and discussion . 138

7 RecHMM: Detecting phylogenetic recombination 153
7.1 Background . 154
7.2 Results . 157
7.3 Discussion . 168
7.4 Methods . 171

Bibliography 177

III Appendices 192

A Experimental connections 193
A.1 Recombination map via high-throughput sequencing in poliovirus 195
A.2 Probing RNA secondary structure via SHAPE in poliovirus 198
A.3 Reconstructing an ancestral Adeno-associated virus sequence for synthesis . . 201

B ProtPal simulation study and OPTIC data analysis 208

C Additional phenotype prediction figures 220

D Table of DART-Scheme functions 226

E Glossary of XRate terminology 229

F RecHMM simulation and methodological details 234
F.1 Additional simulation results . 234
F.2 Methodological details . 239

v

List of Figures

1.1 Outline of document . 3
1.2 Pairwise alignment . 4
1.3 Multiple alignment . 4
1.4 Ancestral alignment . 5

2.1 Tutorial: cs-mf-liv-tree . 18
2.2 Tutorial: cs-mf-liv-machines . 19
2.3 Tutorial: mf-generator . 20
2.4 Tutorial: liv-small . 20
2.5 Tutorial: fanned-emission . 22
2.6 Tutorial: condensed-emission . 23
2.7 Tutorial: legend . 24
2.8 Tutorial: transitions . 25
2.9 Tutorial: moore-mf-generator . 26
2.10 Tutorial: liv-labeled . 27
2.11 Tutorial: mf-labeled . 27
2.12 Tutorial: cs-labeled . 27
2.13 Tutorial: null-model . 28
2.14 Tutorial: substituter . 28
2.15 Tutorial: identity . 29
2.16 Tutorial: tkf91 . 30
2.17 Tutorial: tkf91-labeled . 31
2.18 Tutorial: tkf91-root . 32
2.19 Tutorial: protpal . 32
2.20 Tutorial: protpal-mix2 . 33
2.21 Tutorial: triplet . 34
2.22 Tutorial: substituter2 . 35
2.23 Tutorial: substituter-substituter2 . 35
2.24 Tutorial: tkf91-tkf91 . 36
2.25 Tutorial: mf-substituter . 39
2.26 Tutorial: mf-tkf91 . 39
2.27 Tutorial: substituter-mf . 41

vi

2.28 Tutorial: substituter-cs . 41
2.29 Tutorial: tkf91-mf . 41
2.30 Tutorial: mf-substituter-cs . 43
2.31 Tutorial: mf-tkf91-liv . 44
2.32 Tutorial: fork-subcs-submf . 47
2.33 Tutorial: root-fork-subcs-submf . 48
2.34 Tutorial: fork-tkf91liv-tkf91mf . 50
2.35 Tutorial: root-fork-tkf91liv-tkf91mf . 52
2.36 Tutorial: viterbi-root-fork-tkf91liv-tkf91mf . 53
2.37 Tutorial: viterbi-fork-tkf91liv-tkf91mf . 54
2.38 Tutorial: viterbi-profile . 54
2.39 Tutorial: forward2-root-fork-tkf91liv-tkf91mf . 55
2.40 Tutorial: forward2-fork-tkf91liv-tkf91mf . 56
2.41 Tutorial: forward2-profile . 56
2.42 Tutorial: fork3-tkf91liv-tkf91mf-tkf91cs . 58
2.43 Tutorial: fork-tkf91viterbi-tkf91cs . 59
2.44 Tutorial: fork-tkf91forward2-tkf91cs . 60
2.45 Simulation study results . 62
2.46 Tutorial: fork-tkf91-tkf91 . 63
2.47 Tutorial: root-fork-tkf91-tkf91 . 64
2.48 Empirical runtime analysis . 94

3.1 Indel rate estimation error distributions . 112
3.2 Indel rate estimation errors separated by simulated indel rate 113
3.3 Effects of gap attraction . 114
3.4 Indel rate distribution in OPTIC database . 115
3.5 Sampled paths through state graph . 116

4.1 An alignment summarizing a handalign MCMC trace 121
4.2 Indel rate analysis of SIV/HIV gp120 proteins 122

5.1 Phenotype prediction methods . 128
5.2 Accuracy of phenotype prediction methods . 129

6.1 PhastCons XRate grammar . 142
6.2 DLESS XRate grammar . 146
6.3 Analysis of poliovirus alignment under various XRate grammars 149

7.1 RecHMM simulation study . 161
7.2 Effect of incorrect state space size . 162
7.3 Neisseria recombination in argF and penA genes 163
7.4 HIV-1 recombinant CRF01 AE/B . 165
7.5 HIV-1 recombinant 95IN21301 . 166

vii

7.6 HIV-1 recombinant BREPM12313 . 169
7.7 HIV-1 recombinant BREPM16704 . 169
7.8 HIV-1 recombinant BREPM11871 . 170
7.9 RecHMM training algorithm schematic . 173
7.10 RecHMM computational demands . 174

A.1 Recombination map in poliovirus . 197
A.2 Circulating recombinant forms . 198
A.3 Estimated recombination parameters . 199
A.4 Recombination model fit comparision . 203
A.5 Pairing probability and SHAPE in poliovirus 204
A.6 Cis-acting replication element (CRE) in poliovirus 204
A.7 RNAse-L structure element in poliovirus . 205
A.8 Novel predicted functional structure in poliovirus 205
A.9 Multiple alignment 3D structure visualization 206
A.10 Reconstructed sequence logo . 207
A.11 Codon reconstruction visualization . 207

B.1 Estimating age of invidivual residues . 211
B.2 Alignment Metric Accuracy (AMA) . 212
B.3 Indel rate estimation errors separated by simulated substitution rate 213
B.4 Substitution rate estimation accuracy . 214
B.5 Branch-specific indel rates in OPTIC . 215
B.6 OPTIC species tree . 216
B.7 OPTIC amino acid distribution for inserted, deleted, and background sequence 216
B.8 Inserted and deleted sequence length distributions 217
B.9 Distribution of normalized indel positions . 218
B.10 Indel rate vs human indel SNPs . 219

C.1 Phenotypes predicted using dataset-optimized cutoffs 220

F.1 Synthetic recombinant alignment 1 . 235
F.2 Synthetic recombinant alignment 2 . 236
F.3 Synthetic recombinant alignment 3 . 237
F.4 Synthetic recombinant alignment 4 . 238
F.5 Marginal tree topologies . 238
F.6 Mis-specified size of HMM: too many states . 239
F.7 Mis-specified size of HMM: too few states . 240
F.8 Synthetic recombinant alignment 5 . 240
F.9 Non-ARG trees enable more accurate inference 241
F.10 Small recombinant regions . 241

viii

List of Tables

2.1 Meanings of states and I/O functions of transducer B · B 38
2.2 Meanings of states and I/O functions of transducer ∆(MF) · B 40
2.3 Meanings of states and I/O functions of transducer B · ∇(MF) 42
2.4 Meanings of states in transducer ∆(MF) · B · ∇(LIV) 45
2.5 Transition types of Qn . 78
2.6 Transition types of Hn . 83

5.1 SNP-phenotype datasets used . 130
5.2 Definitions of counts relevant to accuracy measures 131
5.3 Definitions of accuracy measures . 131

1

Chapter 1

Introduction

2

Overview

That all living organisms are related by common ancestors [1], and that the history relating
them is encoded in their DNA sequences [2], has profound implications for the study of
evolution. The ease and accuracy with which genetic sequences can be extracted has paved
the way for rigorous, quantitative approaches to studying the molecular basis for evolution,
developing and testing mathematical models on real data.

By examining the sequences of extant species in an evolutionary context, a wide range of
questions can be investigated. We can reconstruct what has happened: what mutations along
the human lineage separate us from our closest primate relatives? Which evolutionary events
are common, and which are rare? Is a newly-sequenced virus a mosaic of previously-known
viral types, and when did this mixing occur? We can predict what will happen: given the
observed mutational behavior of HIV, how likely are immune/drug escape mutations? If we
mutate protein X at position n, is X likely to be functionally impaired? We can also make
annotation predictions: using the known evolutionary patterns of functional RNA secondary
structures in viruses, which regions in virus Y are likely to contain additional structured
elements? Where are the protein-coding regions in a newly-sequenced organism’s genome?

This dissertation focuses on approaching the above questions by way of the construction
and analysis of sequence alignments. A sequence alignment is a compact summary of homol-
ogy among a group of sequences, vertically orienting “equivalent” residues into columns. An
alignment allows for a great possibility of analyses, ranging from simple heuristics to rigor-
ous, complex probabilistic models. The structure of parts and chapters is shown graphically
in Figure 1.1.

Part I (Chapters 2-4) of this dissertation focuses on methods for building sequence align-
ments. Chapter 2 presents the mathematical details of an alignment algorithm which approx-
imates a maximum-likelihood solution under a broad class of evolutionary models. Chapter
3 evaluates ProtPal, an implementation of this method, next to other leading alignment
methods in the context of evolutionary analyses. Chapter 4 outlines the capabilities of the
Bayesian MCMC alignment sampler handalign.

Part II (Chapters 5-7) of this dissertation outlines three methods which utilize a multiple
sequence alignment. Chapter 5 discusses a method to predict mutational sensitivity of
particular positions in a protein by estimating position-specific mutation rates. Chapter 6
describes the XRate software, and in particular its capabilities for automated specification of
large, complex evolutionary models. Chapter 7 describes RecHMM, a method for detecting
recombination by partitioning alignments into regions associated with differing phylogenetic
trees.

3

Sequence-based phylogenetics

Alignment methodsAlignment-based analysis

Recombination

Phylo-grammars for
genomic features

SNP phenotype
predictionRecHMM

Poliovirus
recombination

assay

Poliovirus SHAPE
structure analysis

XRate
macros

Mutation rate as
SNP effect
predictor

ProtPal
benchmark

HandAlign

ProtPal
theory

AAV ancestral
reconstruction

Chapter

Collaboration

Topic

Experimental
connection

Visualization with
JBrowse

Figure 1.1: The topics covered in this dissertation.

Methods for multiple sequence alignment

The first part of this dissertation explores methods for building sequence alignments. An
alignment transforms the sequences of related organisms into a concise collection of evo-
lutionary statements of homology: residues from related sequences are aligned together in
columns if they are believed to originate from a common ancestor. Practically speaking,
aligning sequences amounts to placing gaps where insertions and deletions have changed
sequences’ length so as to vertically homologous residues.

Three types of alignments are relevant to this work: pairwise, multiple, and ancestral. A
pairwise alignment is an alignment of two sequences, one involving three or more is referred
to as a multiple sequence alignment (MSA), and a multiple alignment in which the extant as

4

poliovirus A C C G T
rhinovirus A A - - G G

Figure 1.2: A pairwise alignment between the poliovirus sequence ACCGT and the rhi-
novirus A sequence AGG. Gaps are introduced such that aligned characters are believed
to share a common ancestor. An insertion or deletion results in the poliovirus CC residues
having no homologs in rhinovirus. A nucleotide substitution is evident in the last column,
where G is aligned to T.

poliovirus A C C G T
rhinovirus A A - - G G
rhinovirus B T - - C G

Figure 1.3: A multiple alignment between poliovirus, rhinovirus A, and rhinovirus B.
Characters aligned in columns are hypothesized to share a common ancestor. Multiple
alignment, as opposed to pairwise alignment, often cannot be globally optimized, and so
alignment methods use heuristics to narrow the search space.

well as (predicted) ancestral sequences are included is called an ancestral alignment.
Figure 1 shows an example of a small alignment of sequences from the small RNA virus

species poliovirus and rhinovirus A. Gaps (dashes) are used to account for the residues in
poliovirus (CC) that do not occur in rhinovirus A. Note that homologous residues do not
necessarily need to be the same: the G and T at the end of the sequences are predicted to
be homologous, but a nucleotide substitution (mutation) some time since the poliovirus -
rhinovirus A divergence has led to a difference between them.

Figure 1 shows a multiple alignment of related sequences from poliovirus, rhinovirus A,
and rhinovirus B. Note that the history of CC in poliovirus is still unaccounted for - we
cannot determine whether it was an insertion in the poliovirus lineage or a deletion in both
the rhinovirus A and rhinovirus B lineages; we only know that this sequence is not shared
among all the extant viruses.

Figure 1 shows an ancestral alignment of poliovirus, rhinovirus A, rhinovirus B, and their
common ancestor. The characters of the ancestral sequence may be explicitly predicted or
left as unknowns, indicated by asterisks. An ancestral alignment requires a phylogenetic
tree relating the sequences to define the ancestors; for simplicity, a multifurcating “star”
topology is assumed in Figure 1.

In Figure 1, since poliovirus has two characters CC that are not present in the ancestor,
we can now confidently classify this as an insertion (rather than a deletion in the other two
lineages). This was not possible using a pairwise or standard multiple alignment without
making an additional prediction (e.g. based on parsimony). Note that while an ancestral
alignment provides a finer-grained account of evolutionary history than does a multiple
alignment (which is contained within an ancestral alignment), it still retains some ambiguity.

5

ancestor * - - * *
poliovirus A C C G T

rhinovirus A A - - G G
rhinovirus B T - - C G

Figure 1.4: An ancestral alignment between poliovirus, rhinovirus A, and rhinovirus B,
and their common ancestor. Characters aligned in columns are hypothesized to share a com-
mon ancestor which is now explicitly predicted as an additional sequence in the alignment.
The CC unique to poliovirus can now be classified as an insertion, since it is not present in
the ancestral sequence. Ancestral characters are left as unknown, indicated by *.

For instance, in the example above, we do not know whether the individual Cs of poliovirus
were deleted “one at a time” or as part of a multi-residue deletion, nor do we know the
timing of this event - was it recent, or just after the three species diverged? This notion of
reconstruction granularity will be explored further in Chapters 2 and 3.

While the optimal pairwise alignment can be found in polynomial time and memory for
simple models [3], the space of possible multiple and ancestral alignments for of a group of
sequences grows extremely quickly, and exact optimal solutions can rarely be obtained. To
circumvent this, multiple alignment algorithms use a variety of heuristics in order to trim the
search space of possible alignments. These can be decomposed into two parts: the objective
function and the optimization strategy. The objective function is the criteria by which the
algorithm ranks candidate alignments, and the optimization strategy is the way in which the
objective function is maximized.

Curiously, though the MSA is often interpreted in an evolutionary context, few alignment
programs are based on objective functions which are explicitly evolutionary likelihoods. That
is, the goal of most alignment programs is not to discover alignments which correspond to
reasonable evolutionary histories. The aims of Part I are to develop alignment methods
based on phylogenetic objective functions, and to investigate how this shift in focus affects
alignment quality.

In Chapter 2, we develop a method for building ancestral alignments whose objective
function is based on a flexible class of evolutionary likelihood models (sequence transducers).
While direct, exact inference under such an objective function is typically intractable, we
derive an efficient hierarchical approximation method capable of typical alignment tasks. In
Chapter 3, we evaluate an implementation of this method next to other leading alignment
methods, using simulated evolutionary histories to determine the relative accuracy of the
various programs. In Chapter 4, we describe the capabilities of handalign, a Bayesian
MCMC alignment sampler capable of co-sampling alignments, trees, and model parameters.

6

Phylogenetic objective functions

We consider two methods using the objective function presented in [4], based on string
transducers. String transducers are conditional pairwise models for sequence evolution: they
describe the evolution of an ancestral sequence into its direct descendant. We can think of a
transducer as an evolutionary machine, “absorbing” an ancestral sequence and “emitting” a
descendant (possibly altered by substitutions, insertions, and deletions) conditional on the
absorbed ancestor. Mathematically, a transducer is a probability distribution over descen-
dants X conditional on an ancestor Y , taking the form P (X|Y). Placing a transducer on
each branch of a phylogenetic tree forms the basis of our objective function: we seek to find
ancestral alignments which have a high likelihood under this evolutionary model. Direct,
naive inference under such a model requires O(LN) time and memory for N sequences of
length L - intractable for all but the smallest alignment tasks. In Chapters 4 and 2 we
explore two alternative inference strategies for this class of models.

Exact inference of alignment, tree, and parameters via MCMC A powerful ap-
proach to attacking large statistical inference problems is Markov chain Monte Carlo (MCMC)
- stochastic sampling via local perturbations. If run sufficiently long, an MCMC chain is
guaranteed to recover the full posterior distribution over hidden variables (which includes
the maximum a posteriori (MAP) solution as a special case). Perhaps more importantly, all
unobserved variables can be co-sampled, eliminating the need to arbitrarily set them before-
hand. This is ideal for phylogenetic analysis, when only the sequences are truly observed:
a pre-estimated phylogeny and/or evolutionary parameters can affect alignment inference
in non-trivial ways, and the uncertainty associated with these inferences is not propagated
forward.

Rigorous accounting for uncertainty and thoroughly exploring the solution space come at
a steep computational cost; MCMC alignment samplers typically require orders of magnitude
more time than heuristic tools. To combat this, in Chapter 4 we describe the capabilities
of handalign, a Bayesian ancestral alignment sampler, including the range of models it
is able to use, transition kernel options, accelerating/limiting heuristics, and trace post-
processing tools. We run handalign on HIV/SIV gp120 proteins, finding that alignment
of the “hypervariable” regions is so uncertain (most columns having posterior probability
near zero) that alignment-based analysis of these regions should be avoided at all costs.
We estimate the posterior distribution of indel rate of this protein to be approximately
normally-distributed with mean 0.05 indels per substitution.

Approximate ancestral alignment using sequence profiles While handalign and
other MCMC methods represent a statistically unbiased approach to ancestral alignment
construction, there are many cases where its computational demands render it impractical
or even impossible to use. Further, many downstream analyses require a single “best guess”
alignment, and creating (let alone analyzing) an entire MCMC trace of alignments (and
parameters and trees) may create a flood of data unnecessary to these analyses. For these

7

reasons we sought to develop an alignment algorithm that uses the same phylogenetic ob-
jective function but is efficient enough to allow for typical alignment tasks. We endeavored
to expose the mathematical underpinnings of such a method in sufficient detail so that an
interested reader could implement or extend the method, but still readable enough so that
non-experts could appreciate it.

We develop an algorithm for building ancestral alignments using an approximation to
the phylogenetic likelihood function found in [4]. The algorithm is progressive - it traverses
the phylogeny from leaves to root, with the final alignment constructed when the root is
reached. At each progressive step (each corresponding to an internal node of the phylogeny),
a subset of the possible subtree alignments is selected using stochastic traceback sampling.
The size of this subset allows a strict bound on the number of reconstructions that are
considered. In the limit of sampling infinitely many alignments at each progressive step, all
solutions are retained, leading to exact inference over the set of O(LN) possible alignments.
If only one alignment is retained at each internal node, a progressive alignment algorithm
similar to that of PRANK [5] is recovered. The former choice (generating infinitely many
alignments) is intractable for reasonably-sized alignment tasks, and while the latter (using
a single alignment) is computationally efficient, it may produce inaccurate alignments in
situations when the optimal alignment of a subtree is only clear upon incorporating sequences
outside that subtree.

In Chapter 2 we present this new method in two parts. The first is a tutorial-style
overview of the relevant transducer algebra used by the underlying algorithms. The second
part is a rigorous, complete description of the algebra and algorithms used for the method.
While the two sections may be read independently, connections between them (e.g. visual
representations of structures described in the second part) are clearly indicated.

In Chapter 3 we evaluate ProtPal, an implementation of this method next to other lead-
ing alignment methods. Our principal aim was to investigate the relative accuracy of the
programs in a phylogenetic sense - how accurately do they reconstruct evolutionary his-
tory? This is related, though not equivalent, to the common practice of ranking programs
by pairwise residue metrics (such as the Sum-of-Pairs (SPS), or Alignment Metric Accuracy
(AMA)), which instead ask “how many pairwise residue homologies were correctly found?”
Using insertion and deletion rates as measures of evolutionary reconstruction accuracy, we
find that ProtPal is more accurate than all other tested programs. Though it is still suscep-
tible to a bias towards deletions (as noted in [6] and Figure 3.3), the effect is significantly
less than typical aligners, and even slightly better than PRANK, the previous state-of-the-
art phylogenetic aligner. To demonstrate the practical capability and utility of ProtPal, we
reconstruct the evolutionary history of ∼ 7500 human gene families from the Orthologous
and Paralagous Transcripts in Clades (OPTIC) database. From these reconstructions, we
find that indel rates are approximately gamma-distributed, with 95% of genes experiencing
less than 0.1 indels per synonymous substitution, insertion and deletion lengths follow a
comparable distribution, and an enrichment for regulatory and metabolic function among
the 200 highest indel rate genes.

8

Alignment-based phylogenetic analysis

Part II of this dissertation explores analysis methods which utilize a multiple sequence align-
ment. The chapters of this part (Chapters 5-7) all involve modeling the substitution history
of an alignment, as opposed to the insertion/deletion history as in Chapter 2, 3 and 4. Rather
than treating gaps as manifestations of phylogenetic indel events, they are essentially not in-
cluded in the likelihood. While this is somewhat unsatisfactory from a theoretical modeling
perspective, the decrease in computational cost enables an extremely wide range of modeling
possibilities.

In particular, it is possible to exactly summarize the spectrum of possible mutational his-
tories generating an alignment, without resorting to heuristics or approximations, in O(LN)
time and memory for N sequences of length L. This is quite remarkable, given that there
are infinitely many mutational histories separating just two sequences separated by nonzero
time if mutations are assumed to occur in continuous time. Modeling mutation histories over
continuous time can be accomplished in a straightforward way (for finite state spaces) by
using the matrix exponential, transforming a mutation rate matrix describing instantaneous
change (e.g. at what rate does A mutate to T in an infinitesimally small time period) to a
time-parametrized probability matrix (e.g. given that the sequence has an A at time zero,
what is the probability that the sequence will have T after time t, accounting for possibly
infinitely many substitutions under that time?).

Using such a probability matrix on each branch of a tree, it is possible to compute the
likelihood of an entire alignment column by way of Felsenstein’s “pruning” algorithm. The
pruning recursion begins at the leaves of the tree and “prunes” leaves and subtrees one by
one, tabulating the likelihood of each subtree conditional on a particular character present
at its root. Upon reaching the root after O(N) operations, the likelihood of the column
can be computed by summing over possible values of the root character. Under a simple
“independent and identically-distributed” (IID) model, wherein each alignment column is
assumed to be an independent realization of the same evolutionary process, computing the
likelihood of an alignment simply involves multiplying the L individual column likelihoods [7].

Each chapter in Part II presents a venture beyond such a basic IID model. By quantifying
these departures from IID, we can extract subtle evolutionary signals of interest, such as those
of mutational sensitivity, RNA structures, or recombination. Chapter 5 describes a method to
predict the mutational tolerance of individual positions of a protein based on their measured
mutation rate. Chapter 6 describes the automated model-specification capabilities of the
XRate software. Chapter 7 describes a method to detect recombination among sequences
using a phylogenetic hidden Markov model with trees in each of the hidden states.

Predicting the functional effect of single nucleotide
polymorphisms

One of the great hopes of personal genomic sequencing is to more accurately characterize
the genetic components of disease. Genome-wide association studies (GWAS) aim to do

9

this by correlating known disease phenotypes with genotypes, and have been successful with
certain diseases [8–11]. An alternative, orthogonal approach is to use the protein’s sequence
itself, and predict the functional consequences of particular single nucleotide polymorphisms
(SNPs). While this type of approach cannot, in itself, predict genotype-disease connections,
it can allow investigators to zero in on the positions which may be more informative for
phenotypes of interest.

Popular methods like SIFT [12], PolyPhen [13], PMut [14], and ASP [15] use structural,
comparative, or evolutionary features to separate SNPs into neutral and deleterious classes.
In Chapter 5, we develop a model in which each alignment column evolves at its own mu-
tation rate, independent from neighboring columns. The estimated mutation rate for each
column can then be used as a measure of “mutability” - the ability of a protein to tolerate a
mutation at a given position without losing its function. Intuitively, if many mutations have
been tolerated over the evolutionary history of the protein at a particular position (leading
to a high measured mutation rate), it may be more likely that a mutation there will be tol-
erated in the extant state of the protein. We use large-scale SNP-phenytope datasets from
HIV, E. coli, phage T4, and human proteins to estimate cutoffs allowing us to make binary
(functional or nonfunctional) predictions from continuously-varying mutation rate measure-
ments. Evaluating our predictions next to leading phenotype prediction programs, we find
that using mutation rate as a mutability measure is the most accurate on all datasets tested.

XRate macros: detecting genomic features and structures

The model presented in Chapter 5 is a simple example of a broad class of phylogenetic mod-
els known as phylogrammars, a generalization of stochastic context-free grammars (SCFGs)
originating from computational linguistics [16]. A phylogrammar is composed of two parts:
a phylogenetic model (phylo-) and hidden transformations (grammar). Hidden transforma-
tions are repeatedly applied until only “emitting” symbols remain, which then give rise to
the observed alignment columns according to the phylogenetic model(s). The high-level idea
is that the grammar’s transformations partition the alignment into distinct regions, each of
which exhibits its own evolutionary patterns.

In practice the alignment is taken as observed and the sequence of hidden transformations
(or “states”) represents a structure of interest which is to be reconstructed probabilistically.
For instance, a gene-finding phylogrammar could partition the alignment into “gene” and
“intergenic” groups of columns, and an RNA structure grammar into “paired” and “un-
paired” columns folding into stems, loops, and bulges. While this can be accomplished
within reasonable time and memory constraints, implementation is non-trivial for all but
the simplest of phylogrammars. However, the necessary algorithms all have the same gen-
eral form, which can be summarized in terms of the structure of the grammar. For regular
grammars (e.g. HMMs), these are known as the Forward and Backward recursion, named
as such since they summarize subsequences starting at one end and move towards the other.
For context-free grammars (e.g. models for RNA structure), which may include nested (as
opposed to simpler right-left) correlations, the inference algorithms are the Inside and Out-

10

side recursions [17]. The XRate software [18] implements the relevant parameter estimation
and inference algorithms for a wide range of phylogrammars. Models need only be specified
in its Scheme-like grammar format.

However, even this specification can become limiting when prototyping large, repeti-
tive, or data-dependent (such as the grammar in Chapter 5, whose structure depends on
the length of the alignment) grammars. To combat this, XRate now includes a model-
specification macro language allowing grammars to be defined using loops, conditionals,
and data-dependent variables (such as the tree and alignment). This allows trivial imple-
mentation of simple grammars (such as an IID Jukes-Cantor grammar), and medium-size
grammars (such as the column-specific rate grammar in Chapter 5) can be implemented and
prototyped in an intuitive way with only a basic knowledge of the macro language. Large
grammars which would be nearly impossible to implement coherently by hand are now pos-
sible with extensive use of the macro language. For instance, XDecoder, a model describing
RNA structure which may (partially or fully) overlap protein-coding sequences, can be repre-
sented with a few hundred lines of macro code, whereas the “expanded” version is over 3500
lines long. A set of increasingly complex grammars, concluding with XDecoder, is presented
in Chapter 6 to highlight the capabilities of XRate’s macro language for phylogrammar spec-
ification. Further, experimental evidence (from SHAPE chemistry performed on poliovirus)
is presented alongside XDecoder’s pairing predictions, demonstrating its utility in identifying
functional RNA structures in viral genomes.

RecHMM: detecting recombination

In Chapter 7 we consider a different kind of departure from a null IID phylogenetic model.
The previous two chapters involve methods which assume two crucial pieces of input data:
the alignment and the phylogenetic tree relating the aligned sequences. We now consider
the situation where not only is the tree unknown (which, in practice, is quite common), but
multiple trees may be needed to explain the diversity present in the alignment.

Biologically, a shift in tree topology between columns can be explained by recombination
- an evolutionary event related to those discussed elsewhere in this work (e.g. substitu-
tions, insertions, and deletions). A recombinant sequence is one which has more than one
parent. Nearly all organisms participate in some form of genetic mixing, though its pre-
cise evolutionary roles may differ. Recombination in humans is extremely common-we are
each a mixture of our two parents. In viruses, recombinant forms of HIV-1 [19–21] and
poliovirus [22] frequently exhibit increased virulence, yet some hypothesize that population-
level recombination may actually be deleterious in most cases [23].

Whatever it’s evolutionary role, accurate detection of recombination breakpoints remains
a difficult problem. Previous methods such as SimPlot [24] and BootScan use sliding windows
and summary statistics (similarity to reference strains and percent of trees showing reference-
query clustering, respectively) to detect changes in ancestry along a query sequence. While
this may suffice for coarse-grained analysis, predictions depend heavily on the window size
used. Further, more detailed analysis aiming to estimate genomic breakpoint distributions or

11

investigate the sequence features responsible for modulating local recombination rates [25,26]
depend on fine-scale predictions. The HMM-based approach by Husmeier and Wright [27],
embedding a phylogenetic tree in each hidden state, allows for dispensing with the sliding
window: using standard HMM inference algorithms, all possible breakpoint locations can
efficiently be considered. Their approach was limited to 4 taxa since the trees in each hidden
state were fixed beforehand, severely hampering its practical utility.

In Chapter 7, we present an extension to the Husmeier and Wright [27] approach which
avoids the need to fix trees beforehand. Instead, the method uses Structural EM [28] to
simultaneously estimate trees in hidden states and determine recombination breakpoints.
The result is a method free of sliding windows that can handle many taxa. We evaluate the
method’s accuracy via simulation studies in which both simulation and inference parameters
are varied over a wide range. We investigate published recombinant Neisseria and HIV-1
data, finding that our method recovers all previously-predicted breakpoints and, in many
cases, find additional possible breakpoints.

Recently, experimental systems have been designed which can measure recombination
rates with high resolution and throughput. Such an assay was developed in poliovirus, finding
that most of the recombination occurring in a single replication cycle is concentrated in a few
“hotspots”, where GC tracts and RNA structure have elevated the recombination rate. The
most pronounced of these hotspots is near the large structured RNAse-L element at the 3’
end of the genome. A recent recHMM-based analysis of circulating vaccine-derived poliovirus
strains shows several recombination events in that region, suggesting that mechanistic factors
may play a significant role in determining breakpoint distributions.

12

Part I

Methods for multiple sequence
alignment

13

Chapter 2

Approximate alignment with
transducers: theory

14

The following chapter contains work conducted together with Gerton Lunter, Benedict Paten,
and Ian Holmes, submitted to the arXiv [29].

Overview

We present an extension of Felsenstein’s algorithm to indel models defined on entire se-
quences, without the need to condition on one multiple alignment. The algorithm makes use
of a generalization from probabilistic substitution matrices to weighted finite-state transduc-
ers. Our approach may equivalently be viewed as a probabilistic formulation of progressive
multiple sequence alignment, using partial-order graphs to represent ensemble profiles of
ancestral sequences. We present a hierarchical stochastic approximation technique which
makes this algorithm tractable for alignment analyses of reasonable size.

2.1 Background

Felsenstein’s pruning algorithm is routinely used throughout bioinformatics and molecular
evolution [7]. A few common applications include estimation of substitution rates [30]; recon-
struction of phylogenetic trees [31]; identification of conserved (slow-evolving) or recently-
adapted (fast-evolving) elements in proteins and DNA [32]; detection of different substi-
tution matrix “signatures” (e.g. purifying vs diversifying selection at synonymous codon
positions [33], hydrophobic vs hydrophilic amino acid signatures [34], CpG methylation in
genomes [35], or basepair covariation in RNA structures [36]); annotation of structures in
genomes [37,38]; and placement of metagenomic reads on phylogenetic trees [39].

The pruning algorithm computes the likelihood of observing a single column of a multiple
sequence alignment, given knowledge of an underlying phylogenetic tree (including a map
from leaf-nodes of the tree to rows in the alignment) and a substitution probability matrix
associated with each branch of the tree. Crucially, the algorithm sums over all unobserved
substitution histories on internal branches of the tree. For a tree containing N taxa, the
algorithm achieves O(N) time and memory complexity by computing and tabulating inter-
mediate probability functions of the form Gn(x) = P (Yn|xn = x), where xn represents the
individual residue state of ancestral node n, and Yn = {ym} represents all the data at leaves
{m} descended from node n in the tree (i.e. the observed residues at all leaf nodes m whose
ancestors include node n).

The pruning recursion visits all nodes in postorder. Each Gn function is computed in
terms of the functions Gl and Gr of its immediate left and right children (assuming a binary
tree):

Gn(x) = P (Yn|xn = x)

=

{ (∑
xl
B

(l)
x, xlGl(xl)

)(∑
xr
B

(r)
x, xrGr(xr)

)
if n is not a leaf

δ(x = yn) if n is a leaf

15

where B
(n)
ab = P (xn = b|xm = a) is the probability that node n has state b, given that its

parent node m has state a; and δ(x = yn) is a Kronecker delta function terminating the
recursion at the leaf nodes of the tree.

The “states” in the above description may represent individual residues (nucleotides,
amino acids), base-pairs (in RNA secondary structures) or base-triples (codons). Sometimes,
the state space is augmented to include gap characters, or latent variables. In the machine
learning literature, the Gn functions are often described as “messages” propagated from the
leaves to the root of the tree [40], and corresponding to a summary of the information in the
subtree rooted at n.

The usual method for extending this approach from individual residues to full-length
sequences assumes both that one knows the alignment of the sequences, and that the columns
of this alignment are each independent realizations of single-residue evolution. One uses
pruning to compute the above likelihood for a single alignment column, then multiplies
together the probabilities across every column in the alignment. For an alignment of length
L, the time complexity is O(LN) and the memory complexity O(N). This approach works
well for marginalizing substitution histories consistent with a single alignment, but does not
readily generalize to summation over indel histories or alignments.

The purpose of this manuscript is to introduce another way of extending Felsenstein’s
recursion from single residues (or small groups of residues) to entire, full-length sequences,
without needing to condition on a single alignment. With no constraints on the algorithm,
using a branch transducer with c states, the time and memory complexities are O((cL)N),
with close similarity to the algorithms of Sankoff [41] and Hein [42]. For a user-specified
maximum internal profile size p ≥ L, the worst-case complexity drops to O(c2p3N) (typical
case is O((cp)2N) when a stochastic lower-bound approximation is used; in this form, the
algorithm is similar to the partial order graph for multiple sequence alignment [43]. Empirical
tests indicate that the typical-case complexity drops further to O(cpN) if an“alignment
envelope” is provided as a clue to the algorithm. The alignment envelope is not a hard
constraint, and may be controllably relaxed, or dispensed with altogether.

The new algorithm is, essentially, algebraically equivalent to Felsenstein’s algorithm, if the
concept of a “substitution matrix” over a particular alphabet is extended to the countably-
infinite set of all sequences over that alphabet. Our chosen class of “infinite substitution
matrix” is one that has a finite representation: namely, the finite-state transducer, a proba-
bilistic automaton that transforms an input sequence to an output sequence, a familiar tool
of statistical linguistics [44].

In vector form, Felsenstein’s pruning recursion is

Gn =

{ (
B(l)Gl

)
◦
(
B(r)Gr

)
if n is not a leaf

∇(yn) if n is a leaf

where A ◦ B is the pointwise (Hadamard) product and ∇(x) is the unit column vector
in dimension x. By generalizing a few key algebraic ideas from matrices to transducers
(matrix multiplication, the pointwise product, row vectors and column vectors), we are

16

able to interpret this vector-space form of Felsenstein’s algorithm as the specification of a
composite phylogenetic transducer that spans all possible alignments (see Section 2.3).

The transducer approach offers a natural generalization of Felsenstein’s pruning recursion
to indels, since it can be used to calculate

P (S|T, θ) =
∑
A

P (S,A|T, θ)

i.e. the likelihood of sequences S given tree T and parameters θ, summed over all alignments
A. Previous attempts to address indels phylogenetically have mostly returned P (S|Â, T, θ)
where Â represents a single alignment (typically estimated by a separate alignment program,
which may introduce undetermined biases). The exceptions to this rule are the “statistical
alignment” methods [42,45–48] which also marginalize alignments in an unbiased way—albeit
more slowly, since they use Markov Chain Monte Carlo methods (MCMC). In this sense,
the new algorithm may be thought of as a fast, non-MCMC approximation to statistical
alignment.

The purpose of this manuscript is a clean theoretical presentation of the algorithm. In
separate work [49] we find that the algorithm appears to recover more accurate reconstruc-
tions of simulated phylogenetic indel histories, as indicated by proxy statistics such as the
estimated indel rate.

The use of transducers in bioinformatics has been reported before [4, 50–53] including
an application to genome reconstruction that is conceptually similar to what we do here for
proteins [53]. In particular, to maximize accessibility, we have chosen to use a formulation
of finite-state transducers that closely mirrors the formulation available on Wikipedia at the
time of writing
(http://en.wikipedia.org/w/index.php?title=Finite state transducer&oldid=486381386).
This presentation is consistent with others described in the computer science literature [44].

Document structure

We will begin with a narrative, “tutorial” overview that introduces the main theoretical
concepts using a small worked example. Following this we will present general, precise,
technical definitions. The informal overview makes extensive use of illustrative figures, and
is intended to be easily read, even by someone not familiar with transducer theory. The
technical description is intended primarily for those wishing to integrate the internals of this
method into their own algorithms. Either section may be read in isolation.

Each example presented in this informal section (e.g. single transducers, composite trans-
ducers, sampled paths) correspond to rigorously-defined mathematical constructs defined in
the technical section. Whenever possible, we provide references between the examples and
their technical definitions.

The final section of the tutorial, Section 2.2, gives a detailed account of the connections
between the tutorial and formal sections.

17

2.2 Informal tutorial on transducer composition

In this section we introduce (via verbal descriptions and graphical representations) the var-
ious machines and manners of combining them necessary for the task of modeling evolution
on the tree shown in Figure 2.1. (The arrangement of machines required for this tree is
shown in Figure 2.2.) While the conceptual underpinnings of our algorithm are not unusu-
ally complex, a complete mathematical description demands a significant amount of technical
notation (which we provide in Section 2.3). For this reason, we aim to minimize notation in
this section, instead focusing on a selection of illustrative example machines ranging from
simple to complex.

We first describe the sorts of state machines used, beginning with simple linear machines
(which appear at the leaves of the tree in Figure 2.2) and moving on to the various possibilities
of the branch model. Then we describe (and provide examples for) the techniques which
allow us to co-ordinate these machines on a phylogeny: composition and intersection.

Finally, we outline how combinations of these machines allow a straightforward defini-
tion of Felsenstein’s pruning algorithm for models allowing insertion/deletion events, and a
stochastic approximation technique which will allow inference on datasets of common prac-
tical size.

Transducers as input-output machines

We begin with a brief definition of transducers from Wikipedia. These ideas are defined with
greater mathematical precision in Section 2.3.

A finite state transducer is a finite state machine with two tapes: an input tape and an
output tape. ... An automaton can be said to recognize a string if we view the content
of its tape as input. In other words, the automaton computes a function that maps strings
into the set {0, 1}. († † †) Alternatively, we can say that an automaton generates strings,
which means viewing its tape as an output tape. On this view, the automaton generates a
formal language, which is a set of strings. The two views of automata are equivalent: the
function that the automaton computes is precisely the indicator function of the set of strings
it generates... Finite State Transducers can be weighted, where each transition is labeled with
a weight in addition to the input and output labels.
http://en.wikipedia.org/w/index.php?title=Finite_state_transducer&oldid=486381386

(† † †) For a weighted transducer this mapping is, more generally, to the nonnegative real
axis [0,∞) rather than just the binary set {0, 1}.

In this tutorial section we are going to work through a small examples of using transduc-
ers on a tree for three tiny protein sequences (MF, CS, LIV). Specifically, we will com-
pute the likelihood of the tree shown in Figure 2.1, explaining the common descent of
these three sequences under the so-called TKF91 model (Figure 2.16), as well as a sim-
pler model that only allows point substitutions. To do this we will construct (progressively,
from the bottom up) the ensemble of transducer machines shown in Figure 2.2. We will

http://en.wikipedia.org/w/index.php?title=Finite_state_transducer&oldid=486381386

18

Sequence MF

TKF91 model

TKF91 model

Sequence LIV

Intermediate sequence

TKF91 model

Sequence CS

TKF91 model

Ancestral sequence

Figure 2.1: Example tree used in this tutorial. The TKF91 model is used as the branch
transducer model, but our approach is applicable to a wider range of string transducer
models.

see that the full state space of Figure 2.2 is equivalent to Hein’s O(LN) alignment algo-
rithm for the TKF91 model [42]; O(NL2) progressive alignment corresponds to a greedy
Viterbi/maximum likelihood-traceback approximation, and partial-order graph alignment
corresponds to a Forward/stochastic-traceback approximation.

Generators and recognizers

As noted in the Wikipedia quote, transducers can be thought of as generalizations of the
related concepts of generators (state machines that emit output sequences, such as HMMs)
and parsers or recognizers (state machines that match/parse input sequences, such as the
UNIX ‘lex’ program). Both generators and recognizers are separate special cases of transduc-
ers. Of particular use in our treatment are generators/recognizers that generate/recognize
a single unique sequence. Generators and recognizers are defined with greater precision in
Section 2.3 and Section 2.3.

19

MF-recognizer, ∇(MF)

TKF91 model, B

TKF91 model, B

LIV-recognizer, ∇(LIV)

TKF91 model, B

CS-recognizer, ∇(CS)

TKF91 model, B

TKF91 root generator, R

Figure 2.2: An ensemble of transducers modeling the likelihood of the tree shown in Fig-
ure 2.1. We write this as R · (B · (B · ∇(LIV)) ◦ (B · ∇(MF))) ◦ (B · ∇(CS)). The terms
in this expression represent individual component transducers: R is shown in Figure 2.18,
B is shown in Figure 2.17, ∇(LIV) is in Figure 2.10, ∇(MF) in Figure 2.11, and ∇(CS)
in Figure 2.12. (The general notation ∇(. . .) is introduced in Section 2.2 and formalized in
Section 2.3.) The operations for combining these transducers, denoted “·” and “◦”, are—
respectively—transducer composition (introduced in Section 2.2, formalized in Section 2.3)
and transducer intersection (introduced in Section 2.2, formalized in Section 2.3). The full
state graph of this transducer is not shown in this manuscript: even for such a small tree
and short sequences, it is too complex to visualize easily (the closest thing is Figure 2.42,
which represents this transducer configuration minus the root generator, R).

20

Figure 2.3: Generator for protein sequence MF. This is a trivial state machine which emits
(generates) the sequence MF with weight (probability) 1. The red circle indicates the Start
state, and the red diamond the End state.

Figure 2.4: Recognizer for protein sequence LIV. This is a trivial state machine which
absorbs (recognizes) the sequence LIV with weight (probability) 1, and all other sequences
with weight 0. The red circle indicates the Start state, and the red diamond the End state.

Figure 2.3 is an example of a generator that uniquely generates (inserts) the protein
sequence MF. Figure 2.4 is an example of a recognizer that uniquely recognizes (and deletes)
the protein sequence LIV.

These Figures illustrate the visual notation we use throughout the illustrative Figures of
this tutorial. States and transitions are shown as a graph. Transitions can be labeled with
absorption/emission pairs, written x/y where x is the absorbed character and y the emitted
character. Either x or y is allowed to be the empty string (shown in these diagrams as the
gap character, a hyphen). In a Figure that shows absorption/emission pairs, if there is no
absorption/emission labeled on a transition, then it can be assumed to be −/− (i.e. no
character is absorbed or emitted) and the transition is said to be a “null” transition.

Some transitions are also labeled with weights. If no transition label is present, the weight
is usually 1 (some more complicated diagrams omit all the weights, to avoid clutter). The
weight of a path is defined to be the product of transition weights occuring on the path.

The weight of an input-output sequence-pair is the sum over all path weights that generate
the specified input and output sequences. The weight of this sequence-pair can be interpreted
as the joint probability of both (a) successfully parsing the input sequence and (b) emitting
the specified output sequence.

Note sometimes this weight is zero—e.g. in Figure 2.4 the weight is zero except in the
unique case that the input tape is LIV, when the weight is one—this in fact makes Figure 2.4
a special kind of recognizer: one that only recognizes a single string (and recognizes that
string with weight one). We call this an exact-match recognizer.

More generally, suppose that G, R and T are all probabilistically weighted finite-state
transducers: G is a generator (output only), R is a recognizer (input only) and T is a general

21

transducer (input and output). Then, conventionally, G defines a probability distribution
P (Y |G) over the emitted output sequence Y ; R defines a probability P (accept|X,R) of
accepting a given input sequence X; and T defines a joint probability P (accept, Y |X,T)
that input X will be accepted and output Y emitted. According to this convention, it is
reasonable to expect these weights to obey the following (here Ω∗ denotes the set of all
sequences): ∑

Y ∈Ω∗

P (Y |G) = 1

P (accept|X,R) ≤ 1 ∀X ∈ Ω∗∑
Y ∈Ω∗

P (accept, Y |X,T) ≤ 1 ∀X ∈ Ω∗

It is important to state that these are just conventional interpretations of the
computed weights: in principle the weights can mean anything we want, but it is common
to interpret them as probabilities in this way.

Thus, as noted in the Wikipedia quote, generators and recognizers are in some sense
equivalent, although the probabilistic interpretations of the weights are slightly different.
In particular, just as we can have a generative profile that generates some sequences with
higher probability than others (e.g. a profile HMM) we can also have a recognition profile: a
transducer that recognizes some sequences with higher probability than others. The exact-
match transducer of Figure 2.4 is a (trivial and deterministic) example of such a recognizer;
later we will see that the stored probability vectors in the Felsenstein pruning recursion can
also be thought of as recognition profiles.

Moore machines

In our mathematical descriptions, we will treat transducers as Mealy machines, meaning
that absorptions and emissions are associated with transitions between states. In the Moore
machine view, absorptions and emissions are associated with states. In our case, the distinc-
tion between these two is primarily a semantic one, since the structure of the machines and
the I/O functions of the states is intimately tied.

The latter view (Moore) can be more useful in bioinformatics, where rapid point sub-
stitution means that all combinations of input and output characters are possible. In such
situations, the Mealy type of machine can suffer from an excess of transitions, complicat-
ing the presentation. For example, consider the Mealy-machine-like view of Figure 2.5, and
compare it with the more compact Moore-machine-like view of Figure 2.6.

Figure 2.7 shows the visual notation we use in this tutorial for Moore-form transducer
state types. There are seven state types: Start, Match, Insert, Delete, End, Wait, and
Null, frequently abbreviated to S,M, I,D,E,W,N . State types are defined precisely in
Section 2.3. Note that in the TKF91 model (Figure 2.16, the example we use for most of
this tutorial) there are exactly one of each of these types, but this is not a requirement. For

22

Figure 2.5: All combinations of input and output characters are frequently observed. The
transitions in this diagram include all possible deletion, insertion, and substitution transitions
between a pair of transducer states. Each transition is labeled with I/O characters (blue)
and selected transitions are labeled with the transition weights (green). Insertions (I/O label
“-/y”) have weight fU(y), deletions (I/O label “x/-”) have weight hV (x), and substitutions
(I/O label “x/y”) have weight gQ(x, y). The large number of transitions complicates the
visualization of such “Mealy-machine” transducers. We therefore use a “Moore-machine”
representation, where all transitions of each type between a pair of states are collapsed into
a single transition, and I/O weights are associated with states (Figure 2.6).

instance, the transducer in Figure 2.20 has two Insert, two Delete and three Wait states,
while Figure 2.14 has no Insert or Delete states at all; Figure 2.9 has no Match states; and
so on.

Some other features of this view include the following:

• The shape and color of states indicates their type. The six Moore normal form states
are all red. Insert states point upwards; Delete states point downwards; Match states
are rectangles; Wait states are octagons (like U.S. Stop signs); Start is a circle and
End is a diamond. There is a seventh state type, Null, which is written as a black
circle to distinguish it from the six Moore-form state types. (Null states have no
associated inputs or outputs; they arise as a side-effect of algorithmically-constructed
transducers in Section 2.2 and Section 2.2. In practice, they are nuisance states that
must be eliminated by marginalization, or otherwise dealt with somehow.) This visual
shorthand will be used throughout.

• We impose certain constraints on states that involve I/O: they must be typed as Insert,
Delete, or Match, and their type determines what kinds of I/O happens on transitions
into those states (e.g. a Match state always involves an absorption and an emission).

• We impose certain constraints on transitions into I/O states: their weights must be
factorizable into transition and I/O components. Suppose j is a Match state and i
is a state that precedes j; then all transitions i → j must both absorb a non-gap
input character x and emit a non-gap output character y, so the transition can be

written i
x/y−→ j and the transition weight must take the form tij × ej(x, y) where tij

is a component that can depend on the source and destination state (but not the I/O
characters) and ej(x, y) is a component that can depend on the I/O characters and the
destination state (but not the source state).

23

Figure 2.6: In a condensed Moore-machine-like representation, possible combinations of
input and output characters are encoded in the distributions contained within each state,
simplifying the display. In this diagram, all four insertion transitions from Figure 2.5 (-/A,
-/C, etc.) are collapsed into a single -/y transition; similarly, all four deletion transitions
from Figure 2.5 (A/-, etc.) are collapsed into one x/-, and all sixteen substitution transi-
tions (A/A, A/C, . . . G/G) are collapsed to one x/y. To allow this, the transition weights for
all the collapsed transitions must factorize into independent I/O- and transition-associated
components. In this example (corresponding to Figure 2.5), the I/O weights are U(y) for
insertions, Q(x, y) for substitutions and V (x) for deletions; while the transition weights are
f for insertions, g for substitutions, and h for deletions. Visual conventions. The desti-
nation state node is bordered in red, to indicate that transitions into it have been collapsed.
Instead of just a plain circle, the node shape is an upward house (insertions), a downward
house (deletions), or a rectangle (substitutions). Instead of specific I/O character labels (A/G
for a substitution of A to G, -/C for an insertion of C, etc.) we now have generic labels like
x/y representing the set of all substitutions; the actual characters (and their weights) are
encoded by the I/O functions. For most Figures in the remainder of this manuscript, we will
omit these blue generic I/O labels, as they are implied by the node shape of the destination
state.

24

Insert NullEndStart Wait Match Delete

Figure 2.7: In a Moore machine, each state falls into one of several types (a transducer may
contain more than one state of each type). A state’s type determines its I/O capabilities:
an Insert state emits (writes) an output character, a Delete state absorbs (reads) an input
character, and a Match state both absorbs an input character and emits an output character.
Mnemonics: Insert states point upwards, Delete states point Downwards, Wait states are
octagonal like U.S. Stop signs.

• We can then associate the “I/O weight function” ej with Match state j and the “tran-
sition weight” tij with a single conceptual transition i → j that summarizes all the

transitions i
x/y→ j (compare Figure 2.5 and Figure 2.6).

• The function ej can be thought of as a conditional-probability substitution matrix (for
Match states, c.f. Q in Figure 2.6), a row vector representing a probability distribution
(for Insert states, c.f. U in Figure 2.6), or a column vector of conditional probabilities
(for Delete states, c.f. V in Figure 2.6).

• Note that we call ej an “I/O function” rather than an “emit function”. The latter term
is more common in bioinformatics HMM theory; however, ej also describes probabilistic
weights of absorptions as well as emissions, and we seek to avoid ambiguity.

Figure 2.8 shows the allowed types of transition in Moore-normal form transducers. In our
“Moore-normal form” for transducers, we require that all input states (Match, Delete) are
immediately preceded in the transition graph by a Wait state. This is useful for co-ordinating
multiple transducers connected together as described in later sections, since it requires the
transducer to “wait” for a parent transducer to emit a character before entering an absorbing
state. The downside is that the state graph sometimes contains a few Wait states which
appear redundant (for example, compare Figure 2.9 with Figure 2.3, or Figure 2.10 with
Figure 2.4). For most Figures in the remainder of this manuscript, we will leave out the blue
“x/y” labels on transitions, as they are implied by the state type of the destination state.

Note also that this graph depicts the transitions between types of states allowed under
our formalism, rather than a particular state machine. It happens that the TKF91 model
(Figure 2.17) contains exactly one state of each type, so its state graph appears similar to
Figure 2.8, but this is not true of all transducers.

Generators and recognizers in Moore normal form

We provide here several examples of small transducers in Moore normal form, including
versions of the transducers in Figure 2.3 and Figure 2.4.

25

Figure 2.8: Allowed transitions between types of transducer states, along with their I/O
requirements. In particular, note the Wait state(s) which must precede all absorbing (Match
and Delete) states—the primary departure from the familiar pair HMM structure. Wait
states are useful in co-ordinating multiple connected trandsucers, since they indicate that
the transducer is “waiting” for an upstream transducer to emit a character before entering
an absorbing state. Also note that this graph is not intended to depict a particular state
machine, but rather it shows the transitions which are permitted between the types of states
of arbitrary machines under our formalism. Since the TKF91 model (Figure 2.17) contains
exactly one state of each type, its structure is similar to this graph (but other transducers
may have more or less than one state of each type).

26

ıMS ıF EWF

Figure 2.9: Transducer ∆(MF), the Moore-normal form generator for protein sequence
MF. The states are labeled S (Start), E (End), ıM and ıF (Insert states that emit the
respective amino acid symbols), and WF (a Wait state that pauses after emitting the final
amino acid; this is a requirement imposed by our Moore normal form). The state labeled ıZ
(for Z ∈ {M,F}) has I/O function δ(y = Z).

We introduce a notation for generators (∆) and recognizers (∇); a useful mnemonic for
this notation (and for the state types in Figure 2.7) is “insertions point up, deletions point
down”.

• Figure 2.9 uses our Moore-machine visual representation to depict the generator in
Figure 2.3. We write this transducer as ∆(MF).

• Figure 2.10 is a Moore-form recognizer for sequence LIV. We write this transducer as
∇(LIV). The state labeled δZ (for Z ∈ {L, I, V }) has I/O function δ(x = Z), defined
to be 1 if x = Z, 0 otherwise. The machine recognizes sequence LIV with weight 1,
and all other sequences with weight 0.

• Figure 2.11 is the Moore-machine recognizer for MF, the same sequence whose gener-
ator is shown in Figure 2.9. We write this transducer as ∇(MF).

• Figure 2.12 is the Moore-machine recognizer for sequence CS. We write this transducer
as ∇(CS).

• Figure 2.13 is a “null model” generator that emits a single IID sequence (with residue
frequency distribution π) of geometrically-distributed length (with geometric parame-
ter p).

Substitution and identity

Figure 2.14 shows how the Moore-normal notation can be used to represent a substitution
matrix. The machine pauses in the Wait state before absorbing each residue x and emitting
a residue y according to the distribution Qxy. Since there are no states of type Insert or
Delete, the output sequence will necessarily be the same length as the input.

This is something of a trivial example, since it is certainly not necessary to use transducer
machinery to model point substitution processes. Our aim is to show explicitly how a familiar

27

ES WVWIWLW0 δI δVδL

Figure 2.10: Transducer ∇(LIV), the Moore-normal form recognizer for protein sequence
LIV. The states are labeled S (Start), E (End), δL, δI and δV (Delete states that recognize the
respective amino acid symbols), WL, WI and WV (Wait states that pause after recognizing
each amino acid; these are requirements imposed by our Moore normal form). The states
have been grouped (enclosed by a rectangle) to show four clusters: states that are visited
before any of the sequence has been recognized, states that are visited after “L” has been
recognized, states that are visited after “I” has been recognized, and states that are visited
after “V” has been recognized. The I/O function associated with each Delete state δZ is
δ(x = Z).

ES WFWMW0 δFδM

Figure 2.11: Transducer ∇(MF), the Moore-normal form recognizer for protein sequence
MF. The states are labeled S (Start), E (End), δM and δF (Delete states that recognize
the respective amino acid symbols), WM and WF (Wait states that pause after recognizing
each amino acid; these are requirements imposed by our Moore normal form). The states
have been grouped (enclosed by a rectangle) to show four clusters: states that are visited
before any of the sequence has been recognized, states that are visited after “M” has been
recognized, and states that are visited after “F” has been recognized. The I/O function
associated with each Delete state δZ is δ(x = Z).

ES WSWCW0 δSδC

Figure 2.12: Transducer ∇(CS), the Moore-normal form recognizer for protein sequence
CS. The states are labeled S (Start), E (End), δC and δS (Delete states that recognize
the respective amino acid symbols), WC and WS (Wait states that pause after recognizing
each amino acid; these are requirements imposed by our Moore normal form). The states
have been grouped (enclosed by a rectangle) to show four clusters: states that are visited
before any of the sequence has been recognized, states that are visited after “C” has been
recognized, and states that are visited after “S” has been recognized. The I/O function
associated with each Delete state δZ is δ(x = Z).

28

p p

1− p

1− p

π(y)

Figure 2.13: Transducer N , a simple null-model generator with geometric length parameter
p and residue frequency distribution π.

Qxy

Figure 2.14: Transducer S(Q) (“the substituter”) introduces substitutions (according to
substitution matrix Q) but no indels. Whenever the machine makes a transition into the
rectangular Match state, a character x is read from the input and a character y emitted to the
output, with the output character sampled from the conditional distribution P (y|x) = Qxy.

simple case (the Felsenstein algorithm for point substitution) is represented using the more
elaborate transducer notation.

Figure 2.15 shows the identity transducer, I, a special case of the substituter: I = S(δ),
where

δxy =

{
1 x = y
0 x 6= y

The identity essentially copies its input to its output directly. It is defined formally in
Section 2.3.

The TKF91 model as a transducer

We use the TKF91 model of indels [54] as an example, not because it is the best model
of indels (it has deficiencies, most notably the linear gap penalty); rather, because it is
canonical, widely-known, and illustrative of the general properties of transducers.

The TKF91 transducer with I/O functions is shown in Figure 2.16. The underlying
continuous-time indel model has insertion rate λ and deletion rate µ. The transition weights
of the transducer, modeling the stochastic transformation of a sequence over a finite time
interval t, are a = exp(−µt) is the “match probability” (equivalently, 1 − a is the deletion

29

δ(x = y)

Figure 2.15: Transducer I, the identity transducer, simply copies the input tape to the
output tape. This can be thought of as a special case of the substituter transducer in
Figure 2.14 where the substitution matrix is the identity matrix. Formal definitions:
Transducer I is defined in Section 2.3.

probability), b = λ 1−a exp(λt)
µ−aλ exp(λt)

is the probability of an insertion at the start of the sequence

or following a match, and c = µb
λ(1−a)

is the probability of an insertion following a deletion.

These may be derived from analysis of the underlying birth-death process [54].
The three I/O functions for Match, Delete and Insert states are defined as follows: condi-

tional on absorbing character x, the Match state emits y with probability exp(Rt)xy, where
R is the rate matrix governing character substitutions and t is the time separating the input
and output sequences. Characters are all deleted with the same weight: once a Delete state
is entered the absorbed character is deleted with weight 1 regardless of its value. Inserted
characters y are emitted according to the equilibrium distribution πy.

In the language of [54], every state path contains a Start→Wait segment that corresponds
to the “immortal link”, and every Wait→Wait tour corresponds to an “mortal link”.

Figure 2.17 is a version of Figure 2.16 where, rather than writing the I/O weight functions
directly on each state (as in Figure 2.16), we have instead written a state label (as in Fig-
ure 2.10, Figure 2.11 and Figure 2.12). The state labels are S,M, I,D,E,W (interpretation:
Start, Match, Insert, Delete, End, Wait).

It has been shown that affine-gap versions of the TKF91 model can also be represented
using state machines [55]. An approximate affine-gap transducer, based on the work of
Knudsen [56], Rivas [57] et al, is shown in Figure 2.19; a version that approximates a two-
component mixture-of-geometric indel length distributions is shown in Figure 2.20, while a
transducer that only inserts/deletes in multiples of 3 is in Figure 2.21.

A generator for the equilibrium distribution of the TKF91 model

TKF91 is an input/output transducer that operates on individual branches. In order to ar-
range this model on a phylogenetic tree, we need a generating transducer at the root. Shown
in Figure 2.18 is the equilibrium TKF91 generator, conceptually the same as Figure 2.13,
with insertion weight λ/µ (which is the parameter of the geometric length distribution of
sequences at equilibrium under the TKF91 model).

30

1− b

1− b

1− a
b

a

1− c

b

1− b

c

b

1

πy

exp(Rt)xy

Figure 2.16: The TKF91 transducer, labeled with transition weights and I/O functions.
This transducer models the sequence transformations of the TKF91 model [54]. The tran-
sition weights a, b, c are defined in Section 2.2. Figure 2.17 shows the same transducer with
state type labels rather than I/O functions.

We have now defined all the component transducers we need to model evolution along
a phylogeny. Conceptually, we can imagine the equilibrium machine generating a sequence
at the root of the tree which is then repeatedly passed down along the branches, each of
which mutates the sequence via a TKF91 machine (potentially introducing substitutions
and indels). The result is a set of sequences (one for each node), whose evolutionary history
is recorded via the actions of each TKF91 branch machine. What remains is to detail the
various ways of connecting transducers by constraining some of their tapes to be the same—
namely composition and intersection.

Composition of transducers

The first way of connecting transducers that we will consider is “composition”: feeding the
output of one transducer, T , into the input of another, U . The two transducers are now
connected, in a sense, since the output of T must be synchronized with inputs from U : when
T emits a character, U must be ready to absorb a character.

We can equivalently consider the two connected transducers as a single, composite ma-
chine that represents the connected ensemble of T followed by U . From two transducers T

31

1− b

1− b

1− a
b

a

1− c

b

1− b

c

b

E

D

I

M

S

W

Figure 2.17: Transducer B, the TKF91 model on a branch of length t. This transducer
models the sequence transformations of the TKF91 model [54]. The machine shown here is
identical to that of Figure 2.16 in nearly all respects. The only difference is this: in order
that we can later refer to the states by name, rather than writing the I/O weight functions
directly on each state we have instead written a state type label S,M, I,D,E,W (Start,
Match, Insert, Delete, End, Wait). It so happens that the TKF91 transducer has one of
each of these kinds of state. Identically to Figure 2.16, the transition weights a, b, c are
defined in Section 2.2. For each of the I/O states (I, D and M) we must, of course, still
specify an I/O weight function. These are also identical to Figure 2.16, and are reproduced
here for reference: exp(Rt) is the substitution matrix for the M (Match) state, π is the
vector of weights corresponding to the probability distribution of inserted characters for the
I (Insert) state, and (1, 1, . . . , 1) is the vector of weights corresponding to the conditional
probabilities that any given character will be deleted by the D (Delete) state (in the TKF91
model, deletion rate is independent of the actual character being deleted, which is why these
delete weights are all 1).

32

1− λ/µ

λ/µ λ/µ 1− λ/µ

I

S EW

Figure 2.18: Transducer R, the equilibrium TKF91 generator. The equilibrium distribution
for the TKF91 model is essentially the same generator as Figure 2.13 with p = λ/µ. The
I/O function for the I (Insert) state is πy. Note that this is the limit of Figure 2.16 on a
long branch with empty ancestor: R = limt→∞ (∆(ε) · B(t)).

1− b

1− gλ/µ

1− a

g

gλ/µ

a

(1− g)(1− b)

b

1− b (1− g)b

b

1

πy

exp(Rt)xy

Figure 2.19: An approximate affine-gap transducer. Note that in contrast to Figure 2.16,
this machine requires two Wait states, with the extra Wait state serving to preserve the
“memory” of being inside a deletion. The parameters of this model are insertion rate λ,
deletion rate µ, gap extension probability g, substitution rate matrix R, inserted residue
frequencies π (typically the equilibrium distribution, so πR = 0), and branch length t. The
transition weights use the quantities a = exp(−µt) and b = 1 − exp(−λt). The transducer
in Figure 2.18 serves as a suitable root generator.

33

1− b

g2λ/µ

1− g2λ/µ

(1− a)(1− f)

b(1− f)

(1− g1)b

(1− g2)(1− b)

b(1− f)

bf

bf

(1− a)f

1− g1λ/µ
(1− g1)(1− b)

1− b

g2

(1− g2)b

a

g1

g1λ/µ

πy

πy

exp(Rt)xy

1

1

Figure 2.20: A transducer that models indel length distributions as a 2-component mixture
of geometric distributions. Note that this machine requires two separate copies of the Insert
and Delete states, along with three Wait states, with two of the Wait states serving to preserve
the “memory” of being inside a deletion from the respective Delete states. The parameters of
this model are insertion rate λ, deletion rate µ, gap extension probabilities g1 and g2 for the
two mixture components, first component mixture strength f , substitution rate matrix R,
inserted residue frequencies π (typically the equilibrium distribution, so πR = 0), and branch
length t. The transition weights use the quantities a = exp(−µt) and b = 1− exp(−λt). The
transducer in Figure 2.18 serves as a suitable root generator.

34

E

I1

I3I2

M

S

W

D2

D3

D1

Figure 2.21: A transducer whose indels are a multiple of 3 in length. (This is not in strict
normal form, but could be made so by adding a Wait state after every Delete state.)

and U , we make a new transducer, written TU (or T · U), wherein every state corresponds
to a pair (t, u) of T - and U -states.

In computing the weight of an input/output sequence pair (X, Y), where the input se-
quence X is fed to T and output Y is read from U , we must sum over all state paths through
the composite machine TU that are consistent with (X, Y). In doing so, we are effectively
summing over the intermediate sequence (the output of T , which is the input of U), just as
we sum over the intermediate index when doing matrix multiplication. In fact, matrix mul-
tiplication of I/O functions is an explicit part of the algorithm that we use to automatically
construct composite transducers in Section 2.3. The notation (TU or T ·U) reflects the fact
that transducer composition is directly analogous to matrix multiplication.

Properties of composition include that if T is a generator then TU is also a generator,
while if U is a recognizer then TU is also a recognizer. A formal definition of transducer
composition, together with an algorithm for constructing the composite transducer TU , is
presented in Section 2.3. This algorithmic construction of TU (which serves both as a proof
of the existence of TU , and an upper bound on its complexity) is essential as a formal means
of verifying our later results.

Multiplying two substitution models

As a simple example of transducer composition, we turn to the simple substituting transduc-
ers in Figure 2.14 and Figure 2.22. Composing these two in series models two consecutive

branches x
Q→ y

R→ z, with the action of each branch modeled by a different substitution
matrix, Q and R.

35

Rxy

Figure 2.22: Transducer S(R) introduces substitutions (rate matrix R) but no indels.
Compare to Figure 2.14, which is the same model but with substitution matrix Q instead of
R.

(QR)xy

Figure 2.23: Transducer S(Q) · S(R), the composition of Figure 2.14 and Figure 2.22.
Note that this is just S(QR): in the simple case of substituters, transducer composition is
exactly the same as multiplication of substitution matrices. In the more general case, trans-
ducer composition is always analogous to matrix multiplication, though (unlike matrices)
transducers tend in general to require more representational storage space when multiplied
together (not the case here, but see e.g. Figure 2.24).

Constructing the T · U composite machine (shown in Figure 2.23) simply involves con-
structing a machine whose Match state I/O function is the matrix product of the component
substitution matrices, QR. If x denotes the input symbol to the two-transducer ensemble
(input into the Q-substituter), y denotes the output symbol from the two-transducer en-
semble (output from the R-substituter), and z denotes the unobserved intermediate symbol
(output from Q and input to R), then the I/O weight function for the composite state QR
in the two-transducer ensemble is

(QR)xy =
∑
z

QxzRzy

Multiplying two TKF91 models

For a more complex example, consider the composition of a TKF91 transducer with itself.
This is again like two consecutive branches x → y → z, but now TKF91 is acting along
each branch, rather than a simple substitution process. An input sequence is fed into first
TKF91; the output of this first TKF91 transducer is an intermediate sequence that is fed

36

c(1− a)

1− c

b

(1− c)(1− b)

(1− b)ba

(1− b)b(1− a)

(1− b)2

(1− b)b(1− a)

(1− b)ba

(1− b)2

a2

(1− c)(1− b)

(1− b)2

c

(1− b)b(1− a)

ca

b

1− a

(1− c)b(1− a)

(1− c)ba

(1− b)2 b

(1− b)2

(1− b)2 (1− b)ba

(1− b)b(1− a)

(1− b)ba

(1− b)ba

c

a(1− a)

(1− c)b(1− a)

b

(1− c)ba

b

(1− b)ba

(1− b)b(1− a)

(1− b)b(1− a)

b

WW

MD

SS

MI

ID

II

EE

SI

IM

DW

MM

Figure 2.24: Transducer B · B, the composition of the TKF91 model (Figure 2.17) with
itself, representing the evolutionary drift over two consecutive branches of the phylogenetic
tree. Each composite state is labeled with the states of the two component transducers.
I/O weight functions, state labels, and meanings of transition parameters are explained
in Table 2.1 and Section 2.2. Formal definitions: The algorithmic construction of the
composite transducer is described in Section 2.3.

37

into the input of the second TKF91; output of this second TKF91 is the output of the entire
ensemble.

The composite machine inputs a sequence and outputs a sequence, just like the machine
in Figure 2.23, but these sequences may differ by insertions and deletions as well as substitu-
tions. The intermediate sequence (emitted by the first TKF91 and absorbed by the second)
is unobserved, and whenever we sum over state paths through the composite machine, we
are essentially summing over values for this intermediate sequence.

Figure 2.24 shows the state space of this transducer. The meaning of the various states
in this model are shown in Table 2.1.

The last two states in Table 2.1, II and MI, appear to contradict the co-ordination of
the machines. Consider, specifically, the state MI: the first transducer is in a state that
produces output (M) while the second transducer is in a state which does not receive input
(I). The solution to this paradox is that the first transducer has not emitted a symbol,
despite being in an M state, because symbols are only emitted on transitions into M states;
and inspection of the composite machine (Figure 2.24) reveals that transitions into state MI
only occur from states MD or MM . Only the second transducer changes state during these
transitions; the M state of the first transducer is a holdover from a previous emission. The
interpretation of such transitions is well-specified by our formal construction (Section 2.3).

In a specific sense (summing over paths) this composite transducer is equivalent to the
single transducer in Figure 2.16, but with the time parameter doubled (t → 2t). We can
write this statement as B(t) · B(t) ≡ B(2t). This statement is, in fact, equivalent to a
form of the Chapman-Kolmogorov equation, B(t)B(t′) = B(t+ t′), for transition probability
matrices B(t) of a stationary continuous-time Markov chain. In fact TKF91 is currently the
only nontrivial transducer known to have this property (by “nontrivial” we mean including
all types of state, and so excluding substitution-only models such as Figure 2.14, which are
essentially special limits of TKF91 where the indel rates are zero). An open question is
whether there are any transducers for affine-gap versions of TKF91 which have this property
(excluding TKF92 from this since it does not technically operate on strings, but rather
sequences of strings (fragments) with immovable boundaries). The Chapman-Kolmogorov
equation for transducers is stated in Section 2.3.

Constraining the input to the substitution model

Figure 2.25 is the composition of the MF-generator (Figure 2.9) with the Q-substituter
(Figure 2.14). This is quite similar to a probabilistic weight matrix trained on the single
sequence MF, as each of the Insert states has its own I/O probability weights.

Constraining the input to the TKF91 model

Figure 2.26 is the composition of the MF-generator (Figure 2.9) with TKF91 (Figure 2.17). In
contrast to Figure 2.25, this machine generates samples from the distribution of descendants
of a known ancestor (MF) via indels and substitutions. It is conceptually similar to a profile

38

b1b2 Meaning I/O fn.
SS Both transducers are in the Start state. No characters are

absorbed or emitted.
EE Both transducers are in the End state. No characters are

absorbed or emitted.
WW Both transducers are in the Wait state. No characters are

absorbed or emitted, but both are poised to absorb se-
quences from their input tapes.

SI The second transducer inserts a character y while the first
remains in the Start state.

πy

IM The first transducer emits a character (via the Insert state)
which the second transducer absorbs, mutates and re-emits
as character y (via a Match state).

(π exp(Rt))y

MM The first transducer absorbs character x (from the input
tape), mutates and emits it (via the Match state); the second
transducer absorbs the output of the first, mutates it again,
and emits it as y (via a Match state).

exp(2Rt)xy

ID The first transducer emits a character (via the Insert state)
which the second transducer absorbs and deletes (via its
Delete state).

MD The first transducer absorbs a character x, mutates and
emits it (via the Match state) to the second transducer,
which absorbs and deletes it (via its Delete state).

1

DW The first transducer absorbs and deletes a character x,
whereas the second transducer idles in a Wait state (since it
has recieved no input from the first tranducer).

1

II The second transducer inserts a character y while the first
remains in the Insert state from a previous insertion. Only
the second transducer is changing state (and thus emitting
a character) here—the first is resting in an Insert state from
a previous transition.

πy

MI The second transducer inserts a character y while the first
remains in the Match state from a previous match. Only
the second transducer is changing state (and thus emitting
a character) here—the first is resting in a Match state from
a previous transition.

πy

Table 2.1: Meanings (and, where applicable, I/O functions) of all states in transducer B ·B
(Figure 2.24), the composition of two TKF91 transducers (an individual TKF91 transducer
is shown in Figure 2.17). Every state corresponds to a tuple (b1, b2) where b1 is the state of
the first TKF91 transducer and b2 is the state of the second TKF91 transducer.

39

QMy QFy

Figure 2.25: Transducer ∆(MF) · S(Q) corresponds to the generation of sequence MF
(by the transducer in Figure 2.9) and its subsequent mutation via substitutions (by the
transducer in Figure 2.14). Since no gaps are involved, and the initial sequence length is
specified (by Figure 2.9), there is only one state path through this transducer. State types
are indicated by the shape (as per Figure 2.7), and the I/O functions of the two Insert states
are indicated. For more information see Section 2.2.

(1− b)(1− a)

b

(1− b)(1− a)

(1− b)a

c

1− c

(1− b)a

(1− b)(1− a)

c

b

b

b

(1− c)a

(1− c)(1− a)

(1− b)(1− a)
(1− b)ab

1− b

b

1− b

(1− b)a

WFW

SS

EE

ıMM

ıF I

SI

ıMI

ıFM

ıMD

ıFD

Figure 2.26: Transducer ∆(MF) · B, the composition of the MF-generator (Figure 2.9)
with the TKF91 transducer (Figure 2.17). This can be viewed as an HMM that generates
sequences sampled from the distribution of TKF91-mutated descendants of ancestor MF.
See Section 2.2 and Table 2.2 for the meaning of each state.

HMM trained on the single sequence MF (though without the Dirichlet prior distributions
that are typically used when training a profile HMM).

The meaning of the various states in this machine are shown in Table 2.2.
As noted in Section 2.2, a generator composed with any transducer is still a generator.

That is, the composite machine contains no states of type Match or Delete: it accepts null
input (since its immediately-upstream transducer, the MF-generator, accepts null input).
Even when the TKF91 is in a state that accepts input symbols (Match or Delete), the
input symbol was inserted by the MF-generator; the MF-generator does not itself accept
any input, so the entire ensemble accepts no input. Therefore the entire composite machine
is a generator, since it accepts null input (and produces non-null output).

40

ib Meaning I/O fn.
SS Both transducers are in the Start state. No characters are

absorbed or emitted.
EE Both transducers are in the End state. No characters are

absorbed or emitted.
WFW Both transducers are in their respective Wait states. No

characters are absorbed or emitted, and both are poised to
enter the End state.

SI The TKF91 transducer inserts a character y while the gen-
erator remains in the start state.

πy

ıMM The generator emits the M character, which TKF91 absorbs
via its Match state and emits character y.

exp(Rt)My

ıMD The generator emits the M character, which TKF91 absorbs
via its Delete state.

ıMI TKF91 inserts a character y while the generator remains in
the Insert state from which it emitted its last character (M).

πy

ıFM The generator emits the F character, which TKF91 absorbs
via its Match state and emits character y.

exp(Rt)Fy

ıFD The generator emits the F character, which TKF91 absorbs
via its Delete state.

ıF I TKF91 inserts a character y while the generator remains in
the Insert state from which it emitted its last character (F).

πy

Table 2.2: Meanings (and, where applicable, I/O functions) of all states in transducer
∆(MF) ·B (Figure 2.26), the composition of the MF-generator (Figure 2.9) with the TKF91
transducer (Figure 2.17). Since this is an ensemble of two transducers, every state corre-
sponds to a pair (i, b) where i is the state of the generator transducer and b is the state of
the TKF91 transducer.

Constraining the output of the substitution model

Figure 2.27 and Figure 2.28 show the composition of the substituter with (respectively) the
MF-recognizer and the CS-recognizer. These machines are similar to the one in Figure 2.25,
but instead of the substituter taking its input from a generator, the order is reversed: we
are now feeding the substituter’s output to a recognizer. The composite machines accept
sequence on input, and emit null output.

Constraining the output of the TKF91 model

Figure 2.29 shows the composition of a TKF91 transducer with the MF-recognizer. It is
worth comparing the recognizer in Figure 2.29 with the analogous generator in Figure 2.26.
While similar, the generator and the recognizer are not the same; for a sequence S, Fig-

41

QxFQxM

Figure 2.27: Transducer S(Q) ·∇(MF) ‘recognizes’ sequences ancestral to MF: it computes
the probability that a given input sequence will mutate into MF, assuming a point substi-
tution model. In contrast to the machine in Figure 2.25, this machine accepts an ancestral
sequence as input and emits null output. Note that a sequence of any length besides 2 will
have recognition weight zero.

QxSQxC

Figure 2.28: Transducer S(Q) · ∇(CS) ‘recognizes’ sequences ancestral to CS: it computes
the probability that a given input sequence will mutate into CS, assuming a point substitution
model. In contrast to the machine in Figure 2.25, this machine accepts an ancestral sequence
as input and emits null output. Note that a sequence of any length besides 2 will have
recognition weight zero.

1− c

1− c

a

1− b1− b

1− a

bπF

1− b

1− b

1− b
cπM

a

1− c

bπF

1− a1− a

cπF

bπM

WWM

DWM

SS

MδF

DWF
WWF

MδM

IδM

EE

IδF

DW0

WW0

Figure 2.29: Transducer B · ∇(MF) computes the probability that a given ancestral input
sequence will evolve (via the TKF91 model) into the specific descendant MF. It can therefore
be thought of as a recognizer for the ancestor of MF. This machine absorbs sequence on its
input and has null output due to the recognizer’s null output. See Section 2.2 and Table 2.3
for more information.

42

bd Meaning I/O fn.
SS Both transducers are in the Start state. No characters are

absorbed or emitted.
EE Both transducers are in the End state. No characters are

absorbed or emitted.
WW0 Both transducers are in Wait states. No characters are ab-

sorbed or emitted; both are poised to accept input.
DW0 TKF91 absorbs a character x and deletes it; recognizer re-

mains in the initial Wait state (W0).
1

IδM TKF91 emits a character (M) via an Insert state and it is
recognized by the δM state of the recognizer.

MδM TKF91 absorbs a character x via a Match state, then emits
an M, which is recognized by the δM state of the recognizer.

exp(Rt)xM

WWM Both transducers are in Wait states: TKF91 in its only Wait
state and the recognizer in the Wait state following the M
character.

DWM TKF91 absorbs a character x and deletes it; recognizer re-
mains in the Wait state (WM).

1

IδF TKF91 emits a character (F) via an Insert state and it is
recognized by the δF state of the recognizer.

MδF TKF91 absorbs a character x via a Match state, then emits
an F, which is recognized by the δF state of the recognizer.

exp(Rt)xF

WWF Both transducers are in Wait states: TKF91 in its only Wait
state and the recognizer in the Wait state following the F
character.

DWF TKF91 absorbs a character x and deletes it; recognizer re-
mains in the Wait state (WF).

1

Table 2.3: Meanings (and, where applicable, I/O functions) of all states in transducer
B · ∇(MF) (Figure 2.29), the composition of the TKF91 model (Figure 2.17) with the
MF-recognizer (Figure 2.11). Since this is an ensemble of two transducers, every state
corresponds to a pair (b, d) where b is the state of the TKF91 transducer and d is the state
of the recognizer transducer.

ure 2.29 with S as input computes P (MF |S) (probability that descendant of S is MF),
whereas Figure 2.26 with S as output computes P (S|MF) (probability that descendant of
MF is S).

The meaning of the various states in this model are shown in Table 2.3.

43

QFSQMC

Figure 2.30: Transducer ∆(MF) ·S(Q) ·∇(CS) is a pure Markov chain (with no I/O) whose
single Start→End state path describes the transformation of MF to CS via substitutions only.

Specifying input and output to the substitution model

Figure 2.30 shows the composition of the MF-generator, substituter, and CS-recognizer. This
machine is a pure Markov chain (with no inputs or outputs) which can be used to compute
the probability of transforming MF to CS. Specifically, this probability is equal to the weight
of the single path through Figure 2.30.

Note that composing ∆(MF) ·S(Q) ·∇(LIV) would result in a state graph with no valid
paths from Start to End, since S(Q) cannot change sequence length. This is correct: the
total path weight of zero, corresponding to the probability of transforming MF to LIV by
point substitutions alone.

Specifying input and output to the TKF91 model

Figure 2.31 shows the composition of three transducers, the MF-generator, TKF91 and
LIV-recognizer (transitions are omitted for clarity). This is one step beyond the machine
in Figure 2.30, as it allows insertions and deletions to separate the generated (MF) and
recognized (CS) sequences.

The meaning of the various states in this model are shown in Table 2.4.
Figure 2.31, like Figure 2.30, contains only null states (no match, insert, or delete states),

making it a pure Markov chain with no I/O. Such Markov models can be viewed as a special
case of an input/output machine where the input and output are both null. (As noted
previously, a hidden Markov model corresponds to the special case of a transducer with null
input, i.e. a generator.)

Probability P (Y = LIV|X = MF) for the TKF91 model is equal to sum of all path weights
from start to end in the Markov model of Figure 2.31. The set of paths corresponds to the set
of valid evolutionary transformations relating sequences MF and LIV (valid meaning those
allowed under the model, namely non-overlapping single-residue indels and substitutions).

This is directly analogous to computing a pairwise alignment (e.g. using the Needlman-
Wunsch algorithm), and the structure of the Markov model shown in Figure 2.31 suggests
the familiar structure of a pairwise dynamic programming matrix.

Removal of null states

In Figure 2.24, the state ID is of type Null: it corresponds to an insertion by the first TKF91
transducer that is then immediately deleted by the second TKF91 transducer, so there is no

44

EEE

ıF IδL

ıF IδI

ıF IδV

ıFDWL

ıMIδL

ıMMδI

ıFDWI

ıMMδL

ıMIδI

ıMIδV

ıFDWV

ıMMδV

ıMDW0

WFWWV

SSS

ıMDWI

ıFMδI

ıMDWL

ıFMδL SIδV

SIδIıFDW0

SIδL

ıFMδV

ıMDWV

Figure 2.31: Transducer ∆(MF) · B · ∇(LIV) is a Markov chain (that is to say, a state
machine, but one with no input or output characters) wherein every Start→End state path
describes an indel history via which sequence MF mutates to sequence LIV. Note that the
structure of this Markov chain is very similar to a dynamic programming matrix for pairwise
sequence alignment. The “rows” and “cells” of this matrix are shown as boxes. Computation
of the total Start→End path weight, using a recursion that visits all the states in topological
sort order, is similar to the Forward algorithm of HMMs. See Section 2.2 and Table 2.4 for
more information on the states of this model.

45

ibd Meaning
SSS All transducers are in the Start state. No characters are emitted or ab-

sorbed.
WFWWV All transducers are in their Wait states which precede the End states for

each transducer. No characters are emitted or absorbed.
EEE All transducers are in their End states. No characters are emitted or

absorbed.
SIδy The component TKF91 machine emits a character y via the Insert state

(I) which is read by the δy state of the recognizer; the generator remains
in the Start state (S), not yet having emitted any characters.

ıxIδy The component TKF91 machine emits a character y via the Insert state
(I) which is read by the δy state of the recognizer; the generator remains
in an Insert state (ıx) corresponding to the last character x which it gen-
erated.

ıxMδy The generator emits character x via an Insert state (ıx); TKF91 absorbs
the x and emits a y via a Match state (M); the recognizer absorbs the y
character via state δy.

ıxDWy The generator emits character x via an Insert state (ıx), and TKF91 ab-
sorbs and deletes it via a Delete state (D). The recognizer remains in Wy,
the Wait state following character y (or W0 if the recognizer has not yet
read any characters).

Table 2.4: Meanings of states in transducer ∆(MF) · B · ∇(LIV) (Figure 2.31), the com-
position of the MF-generator (Figure 2.9), TKF91 (Figure 2.17) and the LIV-recognizer
(Figure 2.10). Since this is an ensemble of three transducers, every state corresponds to a
triple (i, b, d) where i is the state of the generator transducer, b is the state of the TKF91
transducer and d is the state of the recognizer transducer. Where states are labeled with x
or y suffices (e.g. SIδy), then the definition is valid ∀ x ∈ {M,F} and ∀y ∈ {L, I, V }.

net insertion or deletion.
It is often the case that Null states are irrelevant to the final analysis. (For example,

we may not care about all the potential, but unlikely, insertions that were immediately
deleted and never observed.) It turns out that is often useful to eliminate these states; i.e.
transform the transducer into an equivalent transducer that does not contain null states.
(Here “equivalent” means a transducer that defines the same weight for every pair of I/O
sequences; this is made precise in Section 2.3.) Fortunately we can often find such an
equivalent transducer using a straightforward matrix inversion [58]. Null state removal is
described in more detail in Section 2.3 and Section 2.3.

46

Intersection of transducers

Our second operation for connecting two transducers involves feeding the same input tape
into both transducers in parallel, and is called “intersection”.

As with a transducer composition, an intersection is constructed by taking the Cartesian
product of two transducers’ state spaces. From two transducers T and U , we make a new
transducer T ◦ U wherein every state corresponds to a pair (t, u) of T - and U -states, and
whose output tape constitutes a pairwise alignment of the outputs of T and U .

A property of intersection is that if T and U are both recognizers, then there is no output,
and so T ◦ U is a recognizer also.

Conversely, if either T or U is not a recognizer, then T ◦ U will have an output; and if
neither T or U is a recognizer, then the output of T ◦ U will be a pairwise alignment of T ’s
output with U ’s output (equivalently, we may regard T ◦ U as having two output tapes).
Transducer Qn in Section 2.3 is an example of such a two-output transducer. Indeed, if we do
further intersections (such as (T ◦U) ◦ V where V is another transducer) then the resultant
transducer may have several output tapes (as in the general multi-sequence HMMs defined
in [46]). The models denoted Fn in Section 2.3 are of this nature.

A formal definition of transducer intersection, together with an algorithm for constructing
the intersected transducer T ◦ U , is presented in Section 2.3. Like the construction of TU ,
this algorithmic construction of T ◦U serves both as a proof of the existence of T ◦U , and an
upper bound on its complexity. It is also essential as a formal means of verifying our later
results.

Composition, intersection and Felsenstein’s pruning algorithm

If a composition is like matrix multiplication (i.e. the operation of evolution along a con-
tiguous branch of the phylogenetic tree), then an intersection is like a bifurcation at a node
in the phylogenetic tree, where a branch splits into two child branches.

Intersection corresponds to the pointwise multiplication step in the Felsenstein pruning
algorithm — i.e. the calculation

P (descendants|parent) = P (left child and its descendants|parent)P (right child and its descendants|parent)

Specifically, in the Felsenstein algorithm, we define G(n)(x) to be the probability of all
observed descendants of node n, conditional on node n having been in state x. Let us
further suppose that M (n) is the conditional substitution matrix for the branch above node
n (coming from n’s parent), so

M
(n)
ij = P (node n is in state j|parent of node n is in state i)

Then we can write the core recursion of Felsenstein’s pruning algorithm in matrix form; G(n)

is a column vector, M (n) is a matrix, and the core recursion is

G(n) =
(
M (l) ·G(l)

)
◦
(
M (r) ·G(r)

)

47

QxFQxSQxMQxC

Figure 2.32: The transducer (S(Q) · ∇(CS)) ◦ (S(Q) · ∇(MF)) recognizes the common
ancestor of MF and CS.

where (l, r) are the left- and right-children of node n, “·” denotes matrix multiplication, and
“◦” denotes the pointwise product (also called the Hadamard product), defined as follows for
two vectors A and B:

(A ◦B)i = AiBi, A ◦B =

A1B1

A2B2

A3B3

. . .
AKBK

Thus the two core steps of Felsenstein’s algorithm (in matrix notation) are (a) matrix

multiplication and (b) the pointwise product. Composition provides the transducer equiva-
lent of matrix multiplication; intersection provides the transducer equivalent of the pointwise
product.

Note also that G(n)(x) is the probability of node n’s observed descendants conditional on
x, the state of node n. Thus G(n) is similar to a recognition profile, where the computed
weight for a sequence S represents the probability of some event (recognition) conditional
on having S as input, i.e. a probability of the form P (. . . |S) (as opposed to a probability
distribution of the form P (S| . . .) where the sequence S is the output, as is computed by
generative profiles).

Finally consider the initialization step of the Felsenstein algorithm. Let n be a leaf node
and y the observed character at that node. The initialization step is

G(n)(x) = δ(x = y)

i.e. we initialize G(n) with a unit column vector, when n is a leaf. This unit vector is, in
some sense, equivalent to our exact-match recognizer. In fact, generators and recognizers are
analogous to (respectively) row-vectors and column-vectors in our infinite-dimensional vector
space (where every dimension represents a different sequence). The exact-match recognizer
∇(S) resembles a unit column-vector in the S-dimension, while the exact-match generator
∆(S) resembles a unit row-vector in the S-dimension.

Recognizer for a common ancestor under the substitution model

Figure 2.32 shows the intersection of Figure 2.27 and Figure 2.28. This is an ensemble of
four transducers. Conceptually, what happens when a sequence is input is as follows. First,
the input sequence is duplicated; one copy is then fed into a substituter (Figure 2.14), whose

48

p
∑

x
πxQxMQxC p

∑
x
πxQxFQxS 1− p

Figure 2.33: Transducer N · ((S(Q) · ∇(CS)) ◦ (S(Q) · ∇(MF))) allows computing the
final Felsenstein probability for the two sequence MF and CS descended from an unobserved
ancestor by character substitutions. Since characters emitted by the N transducer are all
absorbed by the two recognizers, the composite machine has null input and output. The
probabilities (involving the geometric parameter p, the prior π and the substitution matrix
Q) are all encoded on the transitions. The use of summation operators in the weights of
these transitions reflects the fact that multiple transitions have been collapsed into when by
our composition algorithm, which marginalizes I/O characters that are not directly observed.
Note that this machine is equivalent to the composition of a null model (Figure 2.13) with
the machine in Figure 2.32.

output is fed into the exact-matcher for CS (Figure 2.12); the other copy of the input sequence
is fed into a separate substituter (Figure 2.22), whose output is fed into exact-matcher for
MF (Figure 2.11).

The composite transducer is a recognizer (the only I/O states are Deletes; there are no
Matches or Inserts), since it absorbs input but the recognizers (exact-matchers) have null
output. Note also that the I/O weight functions in the two Delete states in Figure 2.32 are
equivalent to the G(n) probability vectors in Felsenstein’s algorithm (Section 2.2).

Since this is an ensemble of four transducers, every state corresponds to a tuple (b1, d1, b2, d2)
where b1 is the state of the substituter transducer on the CS-branch (Figure 2.14), d1 is the
state of the exact-matcher for sequence CS (Figure 2.12), b2 is the state of the substituter
transducer on the MF-branch (Figure 2.22), d1 is the state of the exact-matcher for sequence
MF (Figure 2.11).

The I/O label for the general case where (b1, d1, b2, d2) = (Q, δA, R, δB) denotes the vector
whose elements are given by QxARxB. So, for example, the I/O label for state (Q, δC , R, δM)
is the vector whose x’th entry is the probability that an input symbol x would mutate to C
on the Q-branch and M on the R-branch.

The Felsenstein likelihood for a two-branch tree using the substitution model

As noted, the previous machine (Figure 2.32) can be considered to compute the Felsenstein
probability vector G(n) at an internal node n of a tree. When n is the root node of the tree,
this must be multiplied by a prior over sequences if we are to compute the final Felsenstein
probability,

P (sequences|tree) = πG(1) =
∑
x

πxG
(1)
x

In transducer terms, this “multiplication by a prior for the root” is a composition: we
connect a root generator to the input of the machine. Composing Figure 2.13 (a simple

49

prior over root sequences: geometric length distribution and IID with frequencies π) with
the transducer of Figure 2.32 (which represents G(1)) yields a pure Markov chain whose total
path weight from Start to End is the final Felsenstein probability (Figure 2.33). Furthermore,
sampling traceback paths through this machine provides an easy way to sample from the
posterior distribution over ancestral sequences relating MF and CS.

Recognizer for a common ancestor under the TKF91 model

The transducer shown in Figure 2.34, is the recognition profile for the TKF91-derived com-
mon ancestor of LIV and MF. LIV and MF may each differ from the ancestor by insertions,
deletions, and substitutions; a particular path through this machine represents one such
explanation of differences (or, equivalently, an alignment of LIV, MF, and their ancestor).
This type of machine is denoted Gn in Section 2.3.

Figure 2.34 is an ensemble of four transducers. Conceptually, what happens to an input
sequence is as follows. First, the input sequence is duplicated; one copy of the input is fed
into TKF91 (Figure 2.17), whose output is fed into the exact-matcher for LIV (Figure 2.10);
the other copy of the input is fed into a separate TKF91 machine (Figure 2.17), whose output
is fed into the exact-matcher for MF (Figure 2.11).

Since this is an ensemble of four transducers, every state corresponds to a tuple (b1, d1, b2, d2)
where b1 is the state of the TKF91 transducer on the LIV-branch (Figure 2.17), d1 is the
state of the exact-matcher for sequence LIV (Figure 2.10), b2 is the state of the TKF91
transducer on the MF-branch (Figure 2.17), and d1 is the state of the exact-matcher for
sequence MF (Figure 2.11).

Note that, as with Figure 2.31, the underlying structure of this state graph is somewhat
like a DP matrix, with rows, columns and cells. In fact, (modulo some quirks of the auto-
matic graph layout performed by graphviz’s ‘dot’ program) Figure 2.34 and Figure 2.31 are
structurally quite similar. However, compared to Figure 2.31, Figure 2.34 has more states
in each “cell”, because this transducer tracks events on two separate branches (whereas
Figure 2.31 only tracks one branch).

Since this machine is a recognizer, it has Delete states but no Match or Insert states. The
delete states present do not necessarily correspond to deletions by the TKF91 transducers:
all characters are ultimately deleted by the exact-match recognizers for LIV and MF, so even
if the two TKF91 transducers allow symbols to pass through undeleted, they will still be
deleted by the exact-matchers.

In fact, this transducer’s states distinguish between deletion events on one branch vs
insertion events on the other: this is significant because a “deleted” residue is homologous
to a residue in the ancestral sequence, while an “inserted” residue is not. There are, in fact,
four delete states in each “cell” of the matrix, corresponding to four fates of the input symbol
after it is duplicated:

1. Both copies of the input symbol pass successfully through respective TKF91 transduc-
ers and are then deleted by respective downstream exact-matchers for sequences LIV

50

DWV DWF

MδV MδM

EEEE

MδV MδF

WWLWW0

WWV WW0

MδIDW0

MδV DW0DWLMδF

DWV MδM

WW0WW0

DWIMδF

MδLDW0

MδLMδM

DWV DWM

DWIMδM

SSSS

DWLDWF

DW0DWM

MδV DWM

DWIDW0DW0DWF

WWIWW0

MδV DWF

WW0WWM

MδIDWF

WW0WWF

DWLDWM

MδIDWM

WWV WWM

MδIMδF

DWLDW0

DWV DW0

MδIMδM

WWV WWF

WWLWWF

MδLMδF

WWIWWM

DWIDWM

DW0DW0

WWIWWF

DWIDWF

MδLDWF

DWLMδMDW0MδF MδLDWM

DWV MδF

WWLWWM

DW0MδM

Figure 2.34: Transducer (B·∇(LIV))◦(B·∇(MF)) recognizes the ancestor of LIV and MF,
assuming common descent under the TKF91 model. As with Figure 2.31, the structure of this
machine is very similar to a dynamic programming matrix for pairwise sequence alignment;
again, the “rows” and “cells” of this matrix have been shown as boxes. In contrast to
Figure 2.31, this machine is not a Markov model (ancestral sequence already encoded in the
state space), but a recognizer (ancestral sequence read from input tape). This Figure, along
with several others in this manuscript, was autogenerated using phylocomposer [51] and
graphviz [59]. Formal definitions: This type of machine is denoted Gn in Section 2.3. The
algorithms for constructing composite and intersected transducer state graphs, are reviewed
in Section 2.3 and Section 2.3.

51

and MF (e.g. MDLMDF);

2. One copy of the input symbol is deleted by the TKF91 transducer on the LIV-branch,
leaving the downstream LIV-matcher idling in a Wait state; the other copy of the input
symbol passes through the TKF91 transducer on the MF-branch and is then deleted
by the downstream MF-matcher; (e.g. DW0MDF);

3. One copy of the input symbol passes through the TKF91 transducer on the LIV-
branch and is then deleted by the downstream LIV-matcher; the other copy is deleted
by TKF91 transducer on MF-branch, leaving the downstream MF-matcher idling in a
Wait state; (e.g. MDLDW0);

4. Both copies of the input symbol are deleted by the respective TKF91 transducers,
while the downstream exact-matchers idle in Wait states without seeing any input
(e.g. DW0DW0).

The other states in each cell of the matrix are Null states (where the symbols recognized by
the LIV- and MF-matchers originate from insertions by the TKF91 transducers, rather than
as input symbols) and Wait states (where the ensemble waits for the next input symbol).

The Felsenstein likelihood for a two-branch tree using the TKF91 model

If we want to compute the joint marginal probability of LIV and MF as siblings under the
TKF91 model, marginalizing the unobserved common ancestor, we have to use the same trick
that we used to convert the recognizer in Figure 2.32 into the Markov model of Figure 2.33.
That is, we must connect a generator to the input of Figure 2.34, where the generator emits
sequences from the root prior (equilibrium) distribution of the TKF91 model. Using the
basic generator shown in Figure 2.18, we construct the machine shown in Figure 2.35. (This
type of machine is denoted Mn in Section 2.3.)

Summing over all Start→End paths in Figure 2.35, the total weight is the final Felsenstein
probability, i.e. the joint likelihood P (LIV,MF |tree,TKF91). Sampling traceback paths
through Figure 2.35 yields samples from the posterior distribution over common ancestors of
LIV and MF. The sum-over-paths is computed via a form of the standard Forward dynamic
programming algorithm, described in Section 2.3.

This ability to sample paths will allow us to constrain the size of the state space when
we move from pairs of sequences to entire phylogenetic trees. Tracing paths back through
the state graph according to their posterior probability is straightforward once the Forward
matrix is filled; the algorithmic internals are detailed in Section 2.3.

Maximum likelihood ancestral reconstruction under the TKF91 model

In Figure 2.36, the highest-weight (Viterbi) traceback path is highlighted. This path, via
the significances of each of the visited states, corresponds to an ancestral alignment relating
LIV and MF: an alignment of the sequences and their ancestor.

52

Figure 2.35: Transducer R · ((B · ∇(LIV)) ◦ (B · ∇(MF))) models the generation of an
ancestral sequence which is then duplicated; the two copies are mutated (in parallel) by
two TKF91 transducers into (respectively) LIV and MF. This machine is equivalent to the
generator in Figure 2.18 coupled to the input of the recognizer in Figure 2.34. Because it is a
generator coupled to a recognizer, there is no net input or output, and so we can think of this
as a straightforward Markov model, albeit with some probability “missing”: the total sum-
over-paths weight from Start→End is less than one. Indeed, the total sum-over-paths weight
through this Markov model corresponds to the joint likelihood of the two sibling sequences,
LIV and MF. Formal definitions: This type of machine is denoted Mn in Section 2.3.

e.g.
Ancestral sequence * * *
Sequence 1 L V I
Sequence 2 M F -

Computing this alignment/path is straightforward, and essentially amounts to choosing
the highest-probability possibility (as opposed to sampling) in each step of the traceback
detailed in section Section 2.3.

If we remove the root generator, we obtain a linear recognizer profile for the sequence at
the ancestral node (Figure 2.38), as might be computed by progressive alignment. This can
be thought of as a profile HMM trained on an alignment of the two sequences MF and LIV.
It is a machine of the same form as En in Section 2.3.

53

Figure 2.36: The highest-weight path through the machine of Figure 2.35 corresponds
to the most likely evolutionary history relating the two sequences. Equivalently, this path
corresponds to an alignment of the two sequences and their ancestors. Formal definitions:
The subset of the state graph corresponding to this path is denoted M ′

n in Section 2.3.

Sampling ancestral reconstructions under the TKF91 model

Instead of only saving the single highest-weight path through the machine of Figure 2.35 (as
in Figure 2.36), we can sample several paths from the posterior probability distribution over
paths. In Figure 2.39, two sampled paths through the state graph are shown. Tracing paths
back through the state graph according to their posterior probability is straightforward once
the Forward matrix is filled; the algorithmic internals are detailed in Section 2.3.

It is possible that many paths through the state graph have weights only slightly less
than the Viterbi path. By sampling suboptimal paths according to their weights, it is
possible to retain and propogate this uncertainty when applying this method to progressive
alignment. Intuitively, this corresponds to storing multiple evolutionary histories of a subtree
as progressive alignment climbs the phylogenetic tree.
For instance, in addition to sampling this path

Ancestral sequence * * *
Sequence 1 L V I
Sequence 2 M F -

we also have this path

54

DWV DWF

MδV MδM

EEEE

MδV MδF

WWLWW0

WWV WW0

MδIDW0

MδV DW0DWLMδF

DWV MδM

WW0WW0

DWIMδF

MδLDW0

MδLMδM

DWV DWM

DWIMδM

SSSS

DWLDWF

DW0DWM

MδV DWM

DWIDW0DW0DWF

WWIWW0

MδV DWF

WW0WWM

MδIDWF

WW0WWF

DWLDWM

MδIDWM

WWV WWM

MδIMδF

DWLDW0

DWV DW0

MδIMδM

WWV WWF

WWLWWF

MδLMδF

WWIWWM

DWIDWM

DW0DW0

WWIWWF

DWIDWF

MδLDWF

DWLMδMDW0MδF MδLDWM

DWV MδF

WWLWWM

DW0MδM

Figure 2.37: Removing the generator from Figure 2.36 leaves a recognition profile for the
ancestral sequence relating MF and LIV. Formal definitions: This and related transfor-
mations to sampled state paths are described in Section 2.3.

ES W3W2W1W0 δ2 δ3δ1

Figure 2.38: Transducer P1 is a linear recognition profile for the ancestor relating MF and
LIV, created by taking the states visited by the Viterbi path shown in Figure 2.37. Formal
definitions: This machine, and the one in Figure 2.41, are examples of the recognition
profiles En described in Section 2.3.

55

Figure 2.39: As well as finding just the highest-weight path through the machine of Fig-
ure 2.35 (as in Figure 2.36), it is possible to sample suboptimal paths proportional to their
posterior probability. Here, two sampled paths through the state graph are shown. Formal
definitions: The subset of the state graph covered by the set of sampled paths is denoted
M ′

n in Section 2.3. The mathematical detail of sampling paths is described in Section 2.3.

Ancestral sequence * * *
Sequence 1 L V I
Sequence 2 M - F

Combining these paths into a single graph and relabeling again, we still have a recognition
profile, but it is now branched, reflecting the possible uncertainty in our alignment/ancestral
prediction, shown in Figure 2.41 (which is a transducer of the form En in Section 2.3). The
exact series of transformations required to convert Figure 2.39 into Figure 2.41 (removing
the root generator, eliminating null states, and adding wait states to restore the machine to
Moore normal form) is detailed in Section 2.3.

Note that these are all still approximations to the full recognition profile for the ancestor,
which is Figure 2.34. While we could retain this entire profile, progressively climbing up a tree
would add so many states to the graph that inference would quickly become an intractable
problem. Storing a subset allows a flexible way in which to retain many high-probability
solutions while still allowing for a strict bound on the size of the state space.

56

DWV DWF

MδV MδM

EEEE

MδV MδF

WWLWW0

WWV WW0

MδIDW0

MδV DW0DWLMδF

DWV MδM

WW0WW0

DWIMδF

MδLDW0

MδLMδM

DWV DWM

DWIMδM

SSSS

DWLDWF

DW0DWM

MδV DWM

DWIDW0DW0DWF

WWIWW0

MδV DWF

WW0WWM

MδIDWF

WW0WWF

DWLDWM

MδIDWM

WWV WWM

MδIMδF

DWLDW0

DWV DW0

MδIMδM

WWV WWF

WWLWWF

MδLMδF

WWIWWM

DWIDWM

DW0DW0

WWIWWF

DWIDWF

MδLDWF

DWLMδMDW0MδF MδLDWM

DWV MδF

WWLWWM

DW0MδM

Figure 2.40: Two sample paths through the machine in Figure 2.35, representing possible
evolutionary histories relating MF and LIV. These are the same two paths as in Figure 2.39,
but we have removed the root generator (as we did to transform Figure 2.36 into Fig-
ure 2.37). Paths are sampled according to their posterior probability, allowing us to select
a high-probability subset of the state graph. The mathematical details of sampling paths is
described in Section 2.3.

ES

W4

W3

W2

W1W0

δ4 δ5

δ2 δ3

δ1

Figure 2.41: Transducer P2 is a branched recognizer for the ancestor common to MF and
LIV. The branched structure results from sampling multiple paths through the state graph
in Figure 2.35, mapping the paths back to Figure 2.34, and retaining only the subset of
the graph visited by a sampled path. Formal definitions: This machine, and the one in
Figure 2.38, are examples of the recognition profiles En described in Section 2.3.

57

Ancestral sequence recognizer on a larger TKF91 tree

Figure 2.42 shows the full recognition profile for the root-ancestral sequence in Figure 2.1,
representing all the possible evolutionary histories relating the three sequences. For clar-
ity, many transitions in this diagram have been removed or collapsed. (The recognition
transducer for the root profile is denoted G1 in Section 2.3.)

Felsenstein probability on a larger TKF91 tree

We have now seen the individual steps of the transducer version of the Felsenstein recursion.
Essentially, composition replaces matrix multiplication, intersection replaces the pointwise
product, and the initiation/termination steps involve (respectively) recognizers and genera-
tors.

The full recursion (with the same O(LN) complexity as the Sankoff algorithm [41] for
simultaneously aligning N sequences of length L, ignoring secondary structure) involves
starting with exact-match recognition profiles at the leaves (Figure 2.11, Figure 2.10), using
those to construct recognition profiles for the parents (Figure 2.34), and progressively climb-
ing the tree toward the root, constructing ancestral recognition profiles for each internal
node. At the root, compose the root generator with the root recognition profile, and the
Forward probability can be computed.

Progressive alignment version of Felsenstein recursion

The “progressive alignment” version, equivalent to doing Felsenstein’s pruning recursion on
a single alignment found using the progressive alignment algorithm, involves sampling the
single best linear recognition profile of the parent at each internal node, as in Figure 2.37.

We then repeat the process at the next level up in the tree, aligning the parent profile
to its sibling, as shown in Figure 2.43. The machine in Figure 2.43 is an example of the
transducer Hn in Section 2.3. (Technically, Figure 2.34 is also an example of Hn, as well
as being an example of Gn. The difference is that Gn describes all possible histories below
node n, since it is made by combining the two transducers Gl and Gr for the two children
(l, r) of node n. By contrast, Hn only describes a subset of such histories, since it is made
by combining the two transducers El and Er, which are subsets of the corresponding Hl and
Hr; just as Figure 2.38 and Figure 2.41 are subsets of Figure 2.34.)

This method can be recognized as a form of “sequence-profile” alignment as familiar from
progressive alignment, except that we don’t really make a distinction between a sequence
and a profile (in that observed sequences are converted into exact-match recognition profiles
in the very first steps of the procedure).

The “progressive” algorithm proceeds in the exact same way as the “full” version, except
that at each internal node a linear profile is created from the Viterbi path through the state
graph. This “best guess” of the alignment of each subtree is likely to work well in cases where
the alignment is unambiguous, but under certain evolutionary parameters the alignment of
a subtree may not be clear until more sequences are observed.

58

Figure 2.42: Transducer (B·(B·∇(LIV))◦(B·∇(MF)))◦(B·∇(CS)) is the full recognition
profile for the root-ancestral sequence in Figure 2.1, representing all the possible evolutionary
histories relating the three sequences. For clarity, many transitions in this diagram have
been removed or collapsed. Formal definitions: This transducer, which recognizes the
root sequence in Figure 2.1, is denoted G1 in Section 2.3.

59

Mδ1DWC

DW2MδS

DW1MδC

DW1DWC

DW3DWC

WW2WW0

DW1DWS DW3DW0

WW1WWC

Mδ1DWS

WW1WWS

DW2MδCDW1MδS

WW0WW0

WW2WWS

DW2DWC

DW2DWS

Mδ3DW0

DW0DWS

WW3WW0

DW2DW0

Mδ2DWC

DW0DWC

SSSS

Mδ3MδS

DW3MδC

WW1WW0

WW2WWC

WW0WWC

Mδ1MδC

DW1DW0

Mδ2DWS Mδ3MδC

DW3MδS

Mδ1DW0

WW0WWS

Mδ1MδS

Mδ2DW0DW0MδS

WW3WWC

DW0DW0

Mδ2MδS

DW0MδC

WW3WWS

EEEE

Mδ2MδC

Mδ3DWC

DW3DWS

Mδ3DWS

Figure 2.43: Transducer (B · P1) ◦ (B · ∇(CS)) recognizes the common ancestor of CS and
P1. Transducer P1, shown in Figure 2.38, itself models the common ancestor of MF and LIV.
Using profile P1, which is essentially a best-guess reconstructed ancestral profile, represents
the most resource-conservative form of progressive alignment: only the maximum-likelihood
indel reconstruction is kept during each step of the Felsenstein pruning recursion. Formal
definitions: This type of transducer is denoted Hn in Section 2.3.

60

Figure 2.44: Transducer (B ·P2)◦ (B ·∇(CS)) shows the alignment of the sequence CS with
the sampled profile P2. Transducer P2, shown in Figure 2.41, is a branched profile whose
different paths represent alternate ancestries of sibling sequences MF and LIV. Formal
definitions: The type of transducer shown in this Figure is denoted Hn in Section 2.3.

Stochastic lower bound version of Felsenstein recursion

Our stochastic lower bound version is intermediate to the progressive alignment (Viterbi-like)
algorithm and the full Sankoff algorithm. Rather than just sampling the best linear profile for
each parent, as in progressive alignment (Figure 2.37), we sample some fixed number of such
paths (Figure 2.40). This allows us to account for some amount of alignment uncertainty,
while avoiding the full complexity of the complete ancestral profile (Figure 2.42).

By sampling a fixed number of traceback paths, we can construct a recognition profile
for the ancestral sequence that is linearly bounded in size and offers a stochastic “lower
bound” on the probability computed by the full Felsenstein transducer in Figure 2.35 that
(if we include the Viterbi path along with the sampled paths) is guaranteed to improve on
the Viterbi lower-bound for the full Felsenstein probability.

Figure 2.44 shows the intersection of P2 (the ancestor of MF and LIV) with sequence
CS, with TKF91 models accounting for the differences. Again this is a “sequence-profile”
alignment, though it can also be called “profile-profile” alignment, since CS can be considered
to be a (trivial) linear profile. Unlike in traditional progressive alignment (but quite like e.g.
partial order alignment [43]), one of the profiles is now branched (because we sampled more
than one path to construct it in Figure 2.40), allowing a tunable (by modulating how many
paths are sampled in the traceback step) way to account for alignment uncertainty.

Just like Figure 2.43, the machine in Figure 2.44 is an example of the transducer Hn in
Section 2.3.

Finally we compose the root generator (Figure 2.18) with Figure 2.44. (If there were
more than two internal nodes in this tree, we would simply continue the process of aligning
siblings and sampling a recognition profile for the parent, iterating until the root node was

61

reached.) The sum of all path weights through the state graph of the final machine represents
the stochastic lower-bound on the final Felsenstein probability for this tree. Since we have
omitted some states at each progressive step, the computed probability does not sum over
all possible histories relating the sequences, hence it is a lower bound on the true Felsenstein
probability. (Each time we create a branched profile from a subset of the complete state
graph, we discard some low-probability states and therefore leak a little bit of probability,
but hopefully not much.) The hope is that, in practice, by sampling sufficiently many paths
we are able to recover the maximum likelihood reconstruction at the root level, and so the
lower bound is a good one. Furthermore, as long as we include the Viterbi path in with
the retained sampled paths at every progressive step, then the final state machine will be a
superset of the machine that Viterbi progressive alignment will have constructed, so we are
guaranteed that the final likelihood will be greater than the Viterbi likelihood, while still
representing a lower bound.

In terms of accuracy at estimating indel rates, we find that our method performs signif-
icantly better than Viterbi progressive alignment and approaches the accuracy of the true
alignment. We simulated indel histories under 5 indel rates (0.005, 0.01, 0.02, 0.04, and 0.08
indels per unit time), and analyzed the unaligned leaf sequences using PRANK [6] and an
implementation of our algorithm, ProtPal. Insertion and deletion rates were computed using
basic event counts normalized by branch lengths (more details are provided in Methods).
PRANK provides an excellent comparison since it is phylogenetically-oriented, but uses pro-
gressive Viterbi reconstruction rather than ensembles/profiles at internal nodes. Comparing
indel rates computed using the true alignment gives an idea how well PRANK and ProtPal
compare to a “perfect” method. Note that this does not necessarily correspond to sampling
infinitely many paths in our method, since the maximum likelihood reconstruction may not
always be the true alignment.

Figure 2.45 shows the error distributions of estimated insertion and deletion rates using
the PRANK, ProtPal, and true reconstructions. The root mean squared error (RMSE), a
measure of the overall distance from the ‘true’ value (inferred

true
= 1, indicated with a vertical

dashed line), is shown to the right of each distribution. ProtPal’s RMSE values lie between
PRANK’s and the true alignment, indicating using alignment profiles at internal nodes allows
for inferring more accurate alignments, or at least alignments which allow for more accurately
computing summary statistics such as the indel rate. ProtPal’s distributions are also more
symmetric than PRANK’s between insertions and deletions, indicating that it is more able
to avoid the bias towards deletions described in [6].

A Pair HMM for aligning siblings

While we have constructed our hierarchy of phylogenetic transducers by using recognizers, it
is also sometimes useful (and perhaps more conventional in bioinformatics) to think in terms
of generators. For example, we can describe the multi-sequence HMM that simultaneously

62

Figure 2.45: In a simulation experiment, an implementation of our algorithm outperforms
PRANK [6] and approaches the accuracy of the true indel history. Alignments were sim-
ulated over range of evolutionary parameters, and unaligned leaf sequences along with a
phylogeny were fed to PRANK and ProtPal, which each produced a predicted indel recon-
struction. From each reconstruction, insertion and deletion rates were calculated by event
counts normalized by branch lengths. The plot shows the ratio of inferred

true
rates pooled over

all evolutionary parameters, with root mean squared error (RMSE) and middle 90% quan-
tiles appearing to the right and below each histogram. Full results from these simulations
are provided in Chapter 3.

emits an alignment of all of the sequences; this is a generator, and in fact is the model
Fn described in Section 2.3. (An animation of such a multi-sequence generator emitting
a small alignment can be viewed at http://youtu.be/EcLj5MSDPyM with more at http:

//biowiki.org/PhyloFilm.)
If we take the intersection of two TKF91 transducers, we obtain a transducer that has

one input sequence and two output sequences (or, equivalently, one output tape that encodes
a pairwise alignment of two sequences). This transducer is shown in Figure 2.46. If we then
connect a TKF91 equilibrium generator (Figure 2.18) to the input of Figure 2.46, we get
Figure 2.47: a generator with two output tapes, i.e. a Pair HMM. (To avoid introducing yet
more tables and cross-references, we have confined the descriptions of the states in Figure 2.47
and Figure 2.46 to the respective Figure captions.)

The Pair HMM in Figure 2.47 is particularly useful, as it crops up in our algorithm
whenever we have to align two recognizers. Specifically, Figure 2.35—which looks a bit
like a pairwise dynamic programming matrix for aligning sequence LIV to sequence MF—is
essentially Figure 2.47 with one output tape connected to the LIV-recognizer (Figure 2.10)
and the other output tape connected to the MF-recognizer (Figure 2.11). In computing
the state space of machines like Figure 2.35 (which are called Mn in Section 2.3), it is

http://youtu.be/EcLj5MSDPyM
http://biowiki.org/PhyloFilm
http://biowiki.org/PhyloFilm

63

MDI

EEE

SIW

SSS
WWW

SSI

MDM

MMM

MDD

MMD

MMI

MIW

Figure 2.46: Transducer Υ ◦ (B ◦ B) is a bifurcation of two TKF91 transducers. It can
be viewed as a transducer with one input tape and two output tapes. Each state has the
form υb1b2 where υ is the state of the bifurcation transducer (Section 2.3), b1 is the state
of the first TKF91 machine (Figure 2.17) and b2 is the state of the second TKF91 machine.
The meaning of I/O states (Match, Insert, Delete) is subtle in this model, because there
are two output tapes. Dealing first with the Inserts: in states SIW and MIW , the first
TKF91 transducer is inserting symbols to the first output tape, while in states SSI, MMI
and MDI, the second TKF91 transducer is emitting symbols to the second output tape.
Dealing now with the Matches and Deletes: the four states that can receive an input symbol
are MMM , MMD, MDM and MDD. Of these, MMM emits a symbol to both output
tapes (and so is a Match); MMD only emits a symbol to the first output tape (and so
qualifies as a Match because it has input and output); MDM only emits a symbol to the
second output tape (and so qualifies as a Match); and MDD produces no output at all (and
is therefore the only true Delete state).

useful to precompute the state space of the component machine in Figure 2.47 (called Qn

in Section 2.3). This amounts to a run-time optimization, though it also helps us verify
correctness of the model.

64

IDI

EEE

SIW

SSS

WWW

SSI

IMM IIW

IMD

IDM

IMI

IDD

Figure 2.47: Transducer R ◦ (B ◦ B) represents the operation of sampling a sequence from
the TKF91 equilibrium distribution and then feeding that sequence independently into two
TKF91 transducers. Equivalently, it is the composition of the TKF91 equilibrium generator
(Figure 2.18) with a bifurcation of two TKF91 transducers (Figure 2.46). It can be viewed as
a generator with two output tapes; i.e. a Pair HMM. Each state has the form ρb1b2 where ρ is
the state of the generator, b1 is the state of the first TKF91 machine and b2 is the state of the
second. As in Figure 2.46, the meaning of I/O states is subtle in this model, because there
are two output tapes. We first deal with Insert states where one of the TKF91 transducers
is responsible for the insertion. In states SIW and IIW , the first TKF91 transducer is
emitting symbols to the first output tape; in states SSI, IDI and IMI, the second TKF91
transducer is emitting symbols to the second output tape. The remaining states (excluding
SSS and EEE) all involve symbol emissions by the generator, that are then processed
by the two TKF91 models in various ways. These four states that involve emissions by the
generator are IMM , IMD, IDM and IDD. Of these, IMM emits a symbol to both output
tapes (and so qualifies as an Insert state); IMD only emits a symbol to the first output tape
(and is an Insert state); IDM only emits a symbol to the second output tape (and is an
Insert state); and IDD produces no output at all (and is therefore a Null state). Note that
Figure 2.35, which looks a bit like a pairwise dynamic programming matrix, is essentially
this Pair HMM with one output tape connected to the LIV-recognizer (Figure 2.10) and
the other output tape connected to the MF-recognizer (Figure 2.11), Formal definitions:
This type of transducer is called Qn in Section 2.3. When both its outputs are connected to
recognizers (Hl and Hr), then one obtains a transducer of the form Mn.

65

A note on the relationship between this tutorial and the formal
definitions section

As noted throughout the tutorial, the example phylogeny and transducers can be directly
related to the “Hierarchy of phylogenetic transducers” described in Section 2.3 onwards.

Consider the tree of Figure 2.1. Let the nodes of this tree be numbered as follows: (1)
Ancestral sequence, (2) Intermediate sequence, (3) Sequence LIV, (4) Sequence MF, (5)
Sequence CS.

Some of the transducers defined for this tree in Section 2.3 include

R = R Figure 2.18
∀n ∈ {2, 3, 4, 5} : Bn = B Figure 2.17

E5 = H5 = G5 = ∇(CS) Figure 2.12
E4 = H4 = G4 = ∇(MF) Figure 2.11
E3 = H3 = G3 = ∇(LIV) Figure 2.10

G2 = (B3 ·G3) ◦ (B4 ·G4)
= (B · ∇(LIV)) ◦ (B · ∇(MF)) Figure 2.34

H2 = (B3 · E3) ◦ (B4 · E4)
= (B · ∇(LIV)) ◦ (B · ∇(MF)) Figure 2.34 again

M2 = R ·H2

= R · (B · ∇(LIV)) ◦ (B · ∇(MF)) Figure 2.35
E2 ⊆ H2 Figure 2.38, Figure 2.41
G1 = (B2 ·G2) ◦ (B5 ·G5)

= (B · (B · ∇(LIV)) ◦ (B · ∇(MF))) ◦ (B · ∇(CS)) Figure 2.42
H1 = (B2 · E2) ◦ (B5 · E5) Figure 2.43, Figure 2.44
G0 = R ·G1

= R · (B · (B · ∇(LIV)) ◦ (B · ∇(MF))) ◦ (B · ∇(CS)) Figure 2.2
∀n ∈ {1, 2} : Qn = R ◦ (B · B) Figure 2.47

66

2.3 Formal definitions

This report makes our transducer-related definitions precise, including notation for state
types, weights (i.e. probabilities), transducer composition, etc.

Notation relating to mundane manipulations of sequences (sequence length, sequence
concatenation, etc.) is deferred to the end of the document, so as not to interrupt the flow.

We first review the letter transducer T , transduction weight W(x : [T] : y) and equiva-
lence T ≡ T ′.

We then define two operations for combining transducers: composition (TU) which unifies
T ’s output with U ’s input, and intersection (T ◦ U) which unifies T ’s and U ’s input.

We define our “normal” form for letter transducers, partitioning the states and transi-
tions into types {S,M,D, I,N,W,E} based on their input/output labeling. (These types
stand for Start, Match, Delete, Insert, Null, Wait, End.) This normal form is common
in the bioinformatics literature [17] and forms the basis for our previous constructions of
phylogenetic transducers [4, 58].

We define exact-match and identity transducers, and give constructions of these.
We define our hierarchy of phylogenetic transducers, and give constructions and inference

algorithms, including the concept of “alignment envelopes” for size-limiting of transducers.

Input-output automata

The letter transducer is a tuple T = (ΩI ,ΩO,Φ, φS, φE, τ,W) where ΩI is an input alphabet,
ΩO is an output alphabet, Φ is a set of states, φS ∈ Φ is the start state, φE ∈ Φ is the end
state, τ ⊆ Φ× (I ∪{ε})× (O∪{ε})×Φ is the transition relation, and W : τ → [0,∞) is the
transition weight function.

Transition paths: The transitions in τ correspond to the edges of a labeled multidigraph
over states in Φ. Let Π ⊂ τ ∗ be the set of all labeled transition paths from φS to φE.

I/O sequences: Let SI : Π→ Ω∗I and SO : Π→ Ω∗O be functions returning the input and
output sequences of a transition path, obtained by concatenating the respective transition
labels.

Transduction weight: For a transition path π ∈ Π, define the path weight W(π) and (for
sequences x ∈ Ω∗I , y ∈ Ω∗O) the transduction weight W(x : [T] : y)

W(π) =
∏
τ∈π

W(τ)

W(x : [T] : y) =
∑

π∈Π,SI(π)=x,SO(π)=y

W(π)

Equivalence: If for transducers T, T ′ it is true that W(x : [T] : y) =W ′(x : [T ′] : y) ∀x, y
then the transducers are equivalent in weight, T ≡ T ′.

67

State types and normal forms

Types of state and transition: If there exists a state type function, type : Φ → T , mapping
states to types in T = {S,M,D, I,N,W,E}, and functions Wtrans : Φ2 → [0,∞) and

Wemit : (I ∪ {ε})× (O ∪ {ε})× Φ→ [0,∞), such that

ΦU = {φ : φ ∈ Φ, type(φ) ∈ U ⊆ T }
ΦS = {φS}
ΦE = {φE}

Φ ≡ ΦSMDINWE

τM ⊆ ΦW × ΩI × ΩO × ΦM

τD ⊆ ΦW × ΩI × {ε} × ΦD

τI ⊆ ΦSMDIN × {ε} × ΩO × ΦI

τN ⊆ ΦSMDIN × {ε} × {ε} × ΦN

τW ⊆ ΦSMDIN × {ε} × {ε} × ΦW

τE ⊆ ΦW × {ε} × {ε} × ΦE

τ = τM ∪ τD ∪ τI ∪ τN ∪ τW ∪ τE
W(φsrc, ωin, ωout, φdest) ≡ Wtrans(φsrc, φdest)Wemit(ωin, ωout, φdest)

then the transducer is in (weak) normal form. If, additionally, ΦN = ∅, then the transducer is
in strict normal form. The above transition and I/O constraints are summarized graphically
in Figure 2.8.

Interpretation: A normal-form transducer can be thought of as associating inputs and
outputs with states, rather than transitions. (Thus, it is like a Moore machine.) The state
types are start (S) and end (E); wait (W), in which the transducer waits for input; match
(M) and delete (D), which process input symbols; insert (I), which writes additional output
symbols; and null (N), which has no associated input or output. All transitions also fall into
one of these types, via the destination states; thus, τM is the set of transitions ending in a
match state, etc. The transition weight (W) factors into a term that is independent of the

input/output label (Wtrans) and a term that is independent of the source state (Wemit).
Universality: For any weak-normal form transducer T there exists an equivalent in strict-

normal form which can be found by applying the state-marginalization algorithm to eliminate
null states. For any transducer, there is an equivalent letter transducer in weak normal form,
and therefore, in strict normal form.

Moore and Mealy machines

The following terms in common usage relate approximately to our definitions:
Mealy machines are transducers with I/O occurring on transitions, as with our general

definition of the letter transducer.

68

Moore machines are transducers whose I/O is associated with states, as with our normal
form. The difference between these two views is illustrated via a small example in Figure 2.6
and Figure 2.5.

Composition (TU) unifies output of T with input of U

Transducer composition: Given letter transducers T = (ΩX ,ΩY ,Φ, φS, φE, τ,W) and U =
(ΩY ,ΩZ ,Φ

′, φ′S, φ
′
E, τ

′,W ′), there exists a letter transducer TU = (ΩX ,ΩZ ,Φ
′′ . . .W ′′) such

that ∀x ∈ Ω∗X , z ∈ Ω∗Z :

W ′′(x : [TU] : z) =
∑
y∈Ω∗Y

W(x : [T] : y)W ′(y : [U] : z)

Example construction: Assume without loss of generality that T and U are in strict
normal form. Then Φ′′ ⊂ Φ× Φ′, φ′′S = (φS, φ

′
S), φ′′E = (φE, φ

′
E) and

W ′′((t, u), ωx, ωz, (t
′, u′)) =

δ(t = t′)δ(ωx = ε)W ′(u, ε, ωz, u′) if type(u) 6= W
W(t, ωx, ε, t

′)δ(ωz = ε)δ(u = u′) if type(u) = W, type(t′) /∈ {M, I}∑
ωy∈ΩY

W(t, ωx, ωy, t
′)W ′(u, ωy, ωz, u′) if type(u) = W, type(t′) ∈ {M, I}

0 otherwise

The resulting transducer is in weak-normal form (it can be converted to a strict-normal form
transducer by eliminating null states).

In the tutorial section, many examples of simple and complex compositions are shown in
Section 2.2, for instance Figure 2.24, Figure 2.26 and Figure 2.31.

Intersection (T ◦ U) unifies input of T with input of U

Transducer intersection: Given letter transducers T = (ΩX ,ΩT ,Φ, φS, φE, τ,W) and U =
(ΩX ,ΩU ,Φ

′, φ′S, φ
′
E, τ

′,W ′), there exists a letter transducer T ◦ U = (ΩX ,ΩV ,Φ
′′ . . .W ′′)

where ΩV ⊆ (T ∪ {ε})× (U ∪ {ε}) such that ∀x ∈ Ω∗X , t ∈ Ω∗T , u ∈ Ω∗U :

W(x : [T] : t)W ′(x : [U] : u) =W ′′(x : [T ◦ U] : (t, u))

where the term on the right is defined as follows

W ′′(x : [T ◦ U] : (t, u)) =
∑

v∈Ω∗V ,S1(v)=t,S2(v)=u

W ′′(x : [T ◦ U] : v)

Here ΩV is the set of all possible pairwise alignment columns, v ∈ Ω∗V is a pairwise alignment
and S1(v) and S2(v) are the sequences in (respectively) the first and second rows of v.

69

Example construction: Assume without loss of generality that T and U are in strict
normal form. Then Φ′′ ⊂ Φ× Φ′, φ′′S = (φS, φ

′
S), φ′′E = (φE, φ

′
E) and

W ′′((t, u), ωx, (ωy, ωz), (t
′, u′)) =

δ(t = t′)δ(ωx = ωy = ε)W ′(u, ε, ωz, u′) if type(u) 6= W
W(t, ε, ωx, t

′)δ(ωx = ωz = ε)δ(u = u′) if type(u) = W, type(t) 6= W
W(t, ωx, ωy, t

′)W ′(u, ωx, ωz, u′) if type(t) = type(u) = W
0 otherwise

The resulting transducer is in weak-normal form (it can be converted to a strict-normal form
transducer by eliminating null states). In the tutorial section, many examples of simple and
complex intersections are shown in Section 2.2, for instance Figure 2.32 and Figure 2.35.

Identity and bifurcation transducers (I, Υ)

Identity: There exists a transducer I = (Ω,Ω . . .) that copies its input identically to its
output. An example construction (not in normal form) is

I = (Ω,Ω, {φ}, φ, φ, τI , 1)

τI = {(φ, ω, ω, φ) : ω ∈ Ω}

Bifurcation: There exists a transducer Υ = (Ω,Ω2 . . .) that duplicates its input in par-

allel. That is, for input x1x2x3 . . . it gives output

(
x1

x1

)(
x2

x2

)(
x3

x3

)
. . .. An example

construction (not in normal form) is

Υ = (Ω,Ω2, {φ}, φ, φ, τΥ, 1)

τΥ =

{(
φ, ω,

(
ω
ω

)
, φ

)
: ω ∈ Ω

}
It can be seen that Υ ≡ I ◦ I.

An intersection T ◦ U may be considered a parallel composition of Υ with T and U . We
write this as Υ(T, U) or, diagrammatically,

Υ
Q
Q

�
�
T
@@��

U
@@��

We use the notation Υ(T, U) in several places, when it is convenient to have a placeholder
transducer Υ at a bifurcating node in a tree.

Exact-match recognizers (∇(S))

Recognition profiles: A transducer T is a recognizer if it has a null output alphabet, and so
generates no output except the empty string.

70

Exact-match recognizer: For S ∈ Ω∗, there exists a transducer ∇(S) = (Ω, ∅ . . .W) that
accepts the specific sequence S with weight one, but rejects all other input sequences

W(x : [∇(S)] : ε) = δ(x = S)

Note that ∇(S) has a null output alphabet, so its only possible output is the empty string,
and it is a recognizer.

In general, if T = (ΩX ,ΩY . . .W ′) is any transducer then ∀x ∈ Ω∗X , y ∈ Ω∗Y

W ′(x : [T] : y) ≡ W(x : [T∇(y)] : ε)

An example construction (not in normal form) is

∇(S) = (Ω, ∅,Zlength(S)+1
, 0, length(S), τ∇, 1)

τ∇ =
{

(n, symbol(S, n+ 1), ε, n+ 1) : n ∈ Zlength(S)

)
}

where ZN is the set of integers modulo N , and symbol(S, k) is the k’th position of S (for
1 ≤ k ≤ length(S)). Note that this construction has length(S) + 1 states.

For later convenience it is useful to define the function

t∇(S)(i, j) = Wtrans
∇(S) (i, j)

= δ(i+ 1 = j)

Figure 2.4 shows a small example of an exact-match transducer for sequence LIV, while
Figure 2.10 shows an equivalent exact-match transducer in normal form.

Generators

Generative transducers: A transducer T is generative (or “a generator”) if it has a null input
alphabet, and so rejects any input except the empty string. Then T may be regarded as a
state machine that generates an output, equivalent to a Hidden Markov Model. Define the
probability (weight) distribution over the output sequence

P (x|T) ≡ W(ε : [T] : x)

Figure 2.9 and Figure 2.17 are both examples of generative transducers. Figure 2.9 is a
specific generator that only emits one sequence (with probability 1), while Figure 2.17 can
potentially emit (and defines a probability for) any output sequence.

Algorithmic complexities

|ΦTU | = O(|ΦT ||ΦU |)
|ΦT◦U | = O(|ΦT ||ΦU |)
|Φ∇(S)| = O(length(S))

71

The complexity of computingW(x : [T] : y) is similar to the Forward algorithm: the time
complexity isO(|τT |length(x)length(y)) and the memory complexity isO(|ΦT |min (length(x), length(y))).
Memory complexity rises to O(|ΦT |length(x)length(y)) if a traceback is required. Anal-
ogously to the Forward algorithm, there are checkpointing versions which trade memory
complexity for time complexity.

Chapman-Kolmogorov equation

If Tt is a transducer parameterized by a continuous time parameter t, modeling the evolu-
tion of a sequence for time t under a continuous-time Markov process, then the Chapman-
Kolmogorov equation [60] can be expressed as a transducer equivalence

TtTu ≡ Tt+u

The TKF91 transducers, for example, have this property. Furthermore, for TKF91, Tt+u
has the same number of states and transitions as Tt, so this is a kind of self-similarity. TKF91
composed with itself is shown in Figure 2.24.

In this paper, we have deferred the difficult problem of finding time-parameterized trans-
ducers that solve this equation (and so may be appropriate for Felsenstein recursions). For
studies of this problem the reader is referred to previous work [54–57,61].

Hierarchy of phylogenetic transducers

Phylogenetic tree (n, L)

Suppose we have an evolutionary model defined on a rooted binary phylogenetic tree, and a
set of κ observed sequences associated with the leaf nodes of the tree.

The nodes are numbered in preorder, with internal nodes (1 . . . κ−1) preceding leaf nodes
L = {κ . . . 2κ− 1}. Node 1 is the root.

Hidden and observed sequences (Sn)

Let Sn ∈ Ω∗ denote the sequence at node n and let S = {Sn, n ∈ L} denote the observed
leaf-node sequences.

Model components (Bn, R)

Let Bn = (Ω,Ω, . . .) be a transducer modeling the evolution on the branch to node n > 1,
from n’s parent. Let R = (∅,Ω, . . .) be a generator modeling the distribution of ancestral
sequences at the root node.

Figure 2.17 and Figure 2.19 are examples of Bn transducers. Figure 2.18 is an example
of an R transducer.

72

The forward model (Fn)

If n ≥ 1 is a leaf node, define Fn = I. Otherwise, let (l, r) denote the left and right child
nodes, and define

Fn = (BlFl) ◦ (BrFr)

which we can represent as

Υ
Q
Q

�
�
Bl

Fl
@@��

Br

Fr
@@��

(recall that Υ is the bifurcation transducer).

The complete, generative transducer is F0 = RF1

The output alphabet of F0 is (∪ {ε})κ where κ is the number of leaf sequences. Letting
Sn : τ ∗ → Ω∗ denote the map from a transition path π to the n’th output leaf sequence (with
gaps removed), we define the output distribution

P (S|F0) =W(ε : [F0] : S) =
∑

π:Sn(π)=Sn∀n∈Ln

W(π)

where Ln denotes the set of leaf nodes that have n as a common ancestor.
Note that |ΦF0| '

∏2κ−1
n |ΦBn| where 2κ − 1 is the number of nodes in the tree. So the

state space grows exponentially with the size of the tree—and this is before we have even
introduced any sequences. We seek to avoid this with our hierarchy of approximate models,
which will have state spaces that are bounded in size.

First, however, we expand the state space even more, by introducing the observed se-
quences explicitly into the model.

The evidence-expanded model (Gn)

Inference with stochastic grammars often uses a dynamic programming matrix (e.g. the
Inside matrix) to track the ways that a given evidential sequence can be produced by a given
grammar.

For our purposes it is useful to introduce the evidence in a different way, by transforming
the model to incorporate the evidence directly. We augment the state space so that the model
is no longer capable of generating any sequences except the observed {Sn}, by composing F0

with exact-match transducers that will only accept the observed sequences. This yields a
model whose state space is very large and, in fact, is directly analogous to the Inside dynamic
programming matrix.

If n ≥ 1 is a leaf node, defineGn = ∇(Sn). The number of states is |ΦGn| = O(length(Sn)).
Otherwise, let (l, r) denote the left and right child nodes, and define

Gn = (BlGl) ◦ (BrGr)

73

which we can represent as

Υ
@@��

Bl

Gl

Br

Gr

Figure 2.34 and Figure 2.42 are examples of Gn-transducers for the tree of Figure 2.1.
The complete evidence-expanded model is G0 = RG1. (In our tutorial example, the state

graph of this transducer has too many transitions to show, but it is the configuration shown
in Figure 2.2.)

The probability that the forward model F0 generates the evidential sequences S is iden-
tical to the probability that the evidence-expanded model G0 generates the empty string

P (S|F0) =W(ε : [F0] : S) =W(ε : [G0] : ε)

Note the astronomical number of states in G0

|ΦG0| '

(
κ∏

n=1

length(Sn)

)(
2κ−1∏
n=1

|ΦBn|

)
This is even worse than F0; in fact, it is the same as the number of cells in the Inside matrix
for computing P (S|F0). The good news is we are about to start constraining it.

The constrained-expanded model (Hn, En, Mn, Qn)

We now introduce a progressive series of approximating constraints to make inference under
the model more tractable.

If n ≥ 1 is a leaf node, define Hn = ∇(Sn) ≡ Gn. The number of states is |ΦHn| '
length(Sn), just as with Gn.

Otherwise, let (l, r) denote the left and right child nodes, and define

Hn = (BlEl) ◦ (BrEr)

where ΦEn ⊆ ΦHn .
We can represent Hn diagramatically as

Υ
@@��

Bl

El

Br

Er
Figure 2.34, Figure 2.43 and Figure 2.44 are examples of Hn transducers.

Transducer En, which is what we mean by the “constrained-expanded model”, is ef-
fectively a profile of sequences that might plausibly appear at node n, given the observed

74

descendants of that node. Figure 2.38 and Figure 2.41 are examples of such transducers for
the “intermediate sequence” in the tree of Figure 2.1. (Figure 2.37 and Figure 2.40 show the
relationship to the corresponding Hn transducers).

The profile is constructed as follows.
The general idea is to generate a set of candidate sequences at node n, by sampling

from the posterior distribution of such sequences given only the descendants of node
n, ignoring (for the moment) the nodes outside the n-rooted subtree. To do this, we need to
introduce a prior distribution over the sequence at node n. This prior is an approximation
to replace the true (but as yet unknown) posterior distribution due to nodes outside the
n-rooted subtree (including n’s parent, and ancestors all the way back to the root, as well
as siblings, cousins etc.)

A plausible choice for this prior, equivalent to assuming stationarity of the underlying
evolutionary process, is the same prior that we use for the root node; that is, the generator
model R. We therefore define

Mn = RHn

= R((BlEl) ◦ (BrEr))

We can represent Mn diagramatically as R

Υ
@@��

Bl

El

Br

Er

Figure 2.35 is an example of the Mn type of model.
The transducer Qn = R(Bl◦Br), which forms the comparison kernel of Mn, is also useful.

It can be represented as R

Υ
@@��

Bl Br

Conceptually, Qn is a generator with two output tapes (i.e. a Pair HMM). These tapes
are generated by sampling a sequence from the root generator R, making two copies of it,
and feeding the two copies into Bl and Br respectively. The outputs of Bl and Br are the
two outputs of the Pair HMM. The different states of Qn encode information about how each
output symbol originated (e.g. by root insertions that were then matched on the branches,
vs insertions on the branches). Figure 2.47 shows an example of a Qn-like transducer.

Transducer Mn can be thought of as the dynamic programming matrix that we get if we
use the Pair HMM Qn to align the recognition profiles El and Er.

75

Component state tuples (ρ, υ, bl, el, br, er)

Suppose that a ∈ ΦA, b ∈ ΦB, υ ∈ ΦΥ. Our construction of composite transducers allows us
to represent any state in A◦B = Υ(A,B) as a tuple (υ, a, b). Similarly, any state in AB can
be represented as (a, b). Each state in Mn can thus be written as a tuple (ρ, υ, bl, el, br, er)
of component states, where

• ρ is the state of the generator transducer R

• υ is the state of the bifurcation transducer Υ

• bl is the state of the left-branch transducer Bl

• el is the state of the left child profile transducer El

• br is the state of the right-branch transducer Bl

• er is the state of the right child profile transducer Er

Similarly, each state in Hn (and En) can be written as a tuple (υ, bl, el, br, er).

Constructing En from Hn

The construction of En as a sub-model of Hn proceeds as follows:

1. sample a set of K paths from P (π|Mn) =W(π)/W(ε : [Mn] : ε);

2. identify the set of Mn-states {(ρ, υ, bl, el, br, er)} used by the sampled paths;

3. strip off the leading ρ’s from these Mn-states to find the associated set of Hn-states
{(υ, bl, el, br, er)};

4. the set of Hn-states so constructed is the subset of En’s states that have type D (wait
states must be added to place it in strict normal form).

Here K plays the role of a bounding parameter. For the constrained-expanded transducer,
|ΦEn| ' KL, where L = maxn length(Sn). Models Hn and Mn, however, contain O(b2K2L2)
states, where b = maxn |ΦBn |, as they are constructed by intersection of two O(bKL)-state
transducers (BlEl and BrEr).

Explicit construction of Qn

Qn = R(Bl ◦Br)

= (∅, (∪ {ε})2,ΦQn , φS;Qn , φE;Qn , τQn ,WQn)

φS;Qn = (φS;R, φS;Υ, φS;Bl
, φS;Br)

φE;Qn = (φE;R, φE;Υ, φE;Bl
, φE;Br)

76

States of Qn

Define type(φ1, φ2, φ3 . . .) = (type(φ1), type(φ2), type(φ3) . . .).
Let q = (ρ, υ, bl, br) ∈ ΦQn . We construct ΦQn from classes, adopting the convention that

each class of states is defined by its associated types:

Φclass = {q : type(ρ, υ, bl, br) ∈ Tclass}

The state typings are

Tmatch = {(I,M,M,M)}
Tright-del = {(I,M,M,D)}
Tleft-del = {(I,M,D,M)}
Tnull = {(I,M,D,D)}

Tright-ins = {(S, S, S, I), (I,M,M, I), (I,M,D, I)}
Tleft-ins = {(S, S, I,W), (I,M, I,W)}
Twait = {(W,W,W,W)}

Tright-emit = Tleft-del ∪ Tright-ins

Tleft-emit = Tleft-ins ∪ Tright-del

The state space of Qn is

ΦQn = {φS;Qn , φE;Qn} ∪ Φmatch ∪ Φleft-emit ∪ Φright-emit ∪ Φnull ∪ Φwait

It is possible to calculate transition and I/O weights of Qn by starting with the example
constructions given for TU and T ◦U , then eliminating states that are not in the above set.
This gives the results described in the following sections.

I/O weights of Qn

Let (ωl, ωr) ∈ (∪ {ε})2.
The I/O weight function for Qn is

Wemit
Qn

(ε, (ωl, ωr), q) =

∑
ω∈Ω

Wemit
R (ε, ω,R)Wemit

Bl
(ω, ωl, bl)Wemit

Br
(ω, ωr, br) if q ∈ Φmatch∑

ω∈Ω

Wemit
R (ε, ω,R)Wemit

Br
(ω, ωr, br) if q ∈ Φleft-del∑

ω∈Ω

Wemit
R (ε, ω,R)Wemit

Bl
(ω, ωl, bl) if q ∈ Φright-del

Wemit
Bl

(ε, ωl, bl) if q ∈ Φleft-ins
Wemit

Br
(ε, ωr, br) if q ∈ Φright-ins

1 otherwise

77

Transition weights of Qn

The transition weight between two states q = (ρ, υ, bl, br) and q′ = (ρ′, υ′, b′l, b
′
r) always takes

the form

Wtrans
Qn

(q, q′) ≡ Wtrans
R ({πR}).Wtrans

Υ ({πΥ}).Wtrans
Bl

({πBl
}).Wtrans

Br
({πBr})

where Wtrans
T ({πT}) represents a sum over a set of paths through component transducer T .

The allowed paths {πT} are constrained by the types of q, q′ as shown in Table 2.5. Table 2.5
uses the following conventions:

• A 0 in any column means that the corresponding state must remain unchanged. For
example, if |πBl

| = 0 then

Wtrans
Bl

({πBl
}) ≡ δ(bl = b′l)

• A 1 in any column means that the corresponding transducer makes a single transition.
For example, if |πBl

| = 1 then

Wtrans
Bl

({πBl
}) ≡ Wtrans

Bl
(bl, b

′
l)

• A 2 in any column means that the corresponding transducer makes two transitions,
via an intermediate state. For example, if |πBl

| = 2 then

Wtrans
Bl

({πBl
}) ≡

∑
b′′l ∈ΦBl

Wtrans
Bl

(bl, b
′′
l)Wtrans

Bl
(b′′l , b

′
l)

(Since the transducers are in strict normal form, and given the context in which the
2’s appear, it will always be the case that the intermediate state b′′l has type W .)

• An asterisk (∗) in a type-tuple is interpreted as a wildcard; for example, (S, S, S, ∗)
corresponds to {(S, S, S, S), (S, S, S, I)}.

• If a transition does not appear in the above table, or if any of the Wtrans’s are zero,
then @(h, ω, ω′, h′) ∈ τHn .

State types of Qn

type(q) =

S if q = φS;Qn

E if q = φE;Qn

W if q ∈ Φwait
I if q ∈ Φmatch ∪ Φleft-emit ∪ Φright-emit
N if q ∈ Φnull

78

type(ρ, υ, bl, br) type(ρ′, υ′, b′l, b
′
r) |πR| |πΥ| |πBl

| |πBr |
(S, S, S, ∗) (S, S, S, I) 0 0 0 1

(S, S, I,W) 0 0 1 1
(I,M,M,M) 1 2 2 2
(I,M,M,D) 1 2 2 2
(I,M,D,M) 1 2 2 2
(I,M,D,D) 1 2 2 2
(W,W,W,W) 1 1 1 1

(S, S, I,W) (S, S, I,W) 0 0 1 0
(I,M,M,M) 1 2 2 1
(I,M,M,D) 1 2 2 1
(I,M,D,M) 1 2 2 1
(I,M,D,D) 1 2 2 1
(W,W,W,W) 1 1 1 0

(I,M,M, ∗) (I,M,M, I) 0 0 0 1
(I,M, I,W) 0 0 1 1
(I,M,M,M) 1 2 2 2
(I,M,M,D) 1 2 2 2
(I,M,D,M) 1 2 2 2
(I,M,D,D) 1 2 2 2
(W,W,W,W) 1 1 1 1

(I,M,D, ∗) (I,M,D, I) 0 0 0 1
(I,M, I,W) 0 0 1 1
(I,M,M,M) 1 2 2 2
(I,M,M,D) 1 2 2 2
(I,M,D,M) 1 2 2 2
(I,M,D,D) 1 2 2 2
(W,W,W,W) 1 1 1 1

(I,M, I,W) (I,M, I,W) 0 0 1 0
(I,M,M,M) 1 2 2 1
(I,M,M,D) 1 2 2 1
(I,M,D,M) 1 2 2 1
(I,M,D,D) 1 2 2 1
(W,W,W,W) 1 1 1 0

(W,W,W,W) (E,E,E,E) 1 1 1 1

Table 2.5: Transition types of Qn, the transducer described in Section 2.3 This transducer
requires its input to be empty: it is ‘generative’. It jointly models a parent sequence (hidden)
and a pair of sibling sequences (outputs), and is somewhat analogous to a Pair HMM. It is
used during progressive reconstruction.

79

Note thatQn contains null states (Φnull) corresponding to coincident deletions on branches
n → l and n → r. These states have type(ρ, υ, bl, br) = (I,M,D,D). There are transition
paths that go through these states, including paths that cycle indefinitely among these states.

We need to eliminate these states before constructing Mn. Let Q′n ≡ Qn denote the
transducer obtained from Qn by marginalizing Φnull

ΦQ′n = {φS;Qn , φE;Qn} ∪ Φmatch ∪ Φleft-emit ∪ Φright-emit ∪ Φwait

The question arises, how to restore these states when constructing En? Ortheus samples
them randomly, but (empirically) a lot of samples are needed before there is any chance of
guessing the right number, and in practice it makes little difference to the accuracy of the
reconstruction. In principle it might be possible to leave them in as self-looping delete states
in En, but this would make En cyclic.

Explicit construction of Mn using Q′n, El and Er

Refer to the previous section for definitions pertaining to Q′n.

Mn = R((BlEl) ◦ (BrEr))

Q′n ≡ R(Bl ◦Br)

States of Mn

The complete set of Mn-states is

ΦMn = {φS;Mn , φE;Mn}
∪ {(ρ, υ, bl, el, br, er) : (ρ, υ, bl, br) ∈ Φmatch, type(el) = type(er) = D}
∪ {(ρ, υ, bl, el, br, er) : (ρ, υ, bl, br) ∈ Φleft-emit, type(el) = D, type(er) = W}
∪ {(ρ, υ, bl, el, br, er) : (ρ, υ, bl, br) ∈ Φright-emit, type(el) = W, type(er) = D}
∪ {(ρ, υ, bl, el, br, er) : (ρ, υ, bl, br) ∈ Φwait, type(el) = type(er) = W}

I/O weights of Mn

Let m = (ρ, υ, bl, el, br, er) be an Mn-state and q = (ρ, υ, bl, br) the subsumed Q′n-state.
Similarly, let m′ = (ρ′, υ′, b′l, e

′
l, b
′
r, e
′
r) and q′ = (ρ′, υ′, b′l, b

′
r).

The I/O weight function for Mn is

Wemit
Mn

(ε, ε,m) =

∑
ωl∈Ω

∑
ωr∈Ω

Wemit
Q′n

(ε, (ωl, ωr), q).Wemit
El

(ωl, ε, el).Wemit
Er

(ωr, ε, er) if q ∈ Φmatch∑
ωl∈Ω

Wemit
Q′n

(ε, (ωl, ε), q).Wemit
El

(ωl, ε, el) if q ∈ Φleft-emit∑
ωr∈Ω

Wemit
Q′n

(ε, (ε, ωr), q).Wemit
Er

(ωr, ε, er) if q ∈ Φright-emit

1 otherwise

80

Transitions of Mn

As before,

q = (ρ, υ, bl, br)

m = (ρ, υ, bl, el, br, er)

q′ = (ρ′, υ′, b′l, b
′
r)

m′ = (ρ′, υ′, b′l, e
′
l, b
′
r, e
′
r)

An “upper bound” (i.e. superset) of the transition set of Mn is as follows

τMn ⊆ {(m, ε, ε,m′) : q′ ∈ Φmatch, type(q) ∈ {S, I}, type(e′l, e
′
r) = (D,D)}

∪ {(m, ε, ε,m′) : q′ ∈ Φleft-emit, type(q) ∈ {S, I}, type(e′l, e
′
r) = (D,W)}

∪ {(m, ε, ε,m′) : q′ ∈ Φright-emit, type(q) ∈ {S, I}, type(e′l, e
′
r) = (W,D)}

∪ {(m, ε, ε,m′) : q′ ∈ Φwait, type(q) ∈ {S, I}, type(e′l, e
′
r) = (W,W)}

∪ {(m, ε, ε,m′) : type(q, el, er) = (W,W,W), type(q′, e′l, e
′
r) = (E,E,E)}

More precisely, τMn contains the transitions in the above set for which the transition weight
(defined in the next section) is nonzero. (This ensures that the individual transition paths
q → q′, el → e′l and er → e′r exist with nonzero weight.)

Transition weights of Mn

Let Wvia-wait
En

(e, e′) be the weight of either the direct transition e → e′, or a double tran-
sition e→ e′′ → e′ summed over all intermediate states e′′

Wvia-wait
En

(e, e′) =

∑

e′′∈ΦEn

Wtrans
En

(e, e′′)Wtrans
En

(e′′, e′) if type(e) ∈ {S,D}

Wtrans
En

(e, e′) if type(e) = W

Let Wto-wait
En

(e, e′) be the weight of a transition (or non-transition) that leaves En in a
wait state

Wto-wait
En

(e, e′) =

 W
trans
En

(e, e′) if type(e) ∈ {S,D}, type(e′) = W
1 if e = e′, type(e′) = W
0 otherwise

The transition weight function for Mn is

Wtrans
Mn

(m,m′) =Wtrans
Q′n

(q, q′)×

Wvia-wait
El

(el, e
′
l)Wvia-wait

Er
(er, e

′
r) if q′ ∈ Φmatch

Wvia-wait
El

(el, e
′
l)Wto-wait

Er
(er, e

′
r) if q′ ∈ Φleft-emit

Wto-wait
El

(el, e
′
l)Wvia-wait

Er
(er, e

′
r) if q′ ∈ Φright-emit

Wto-wait
El

(el, e
′
l)Wto-wait

Er
(er, e

′
r) if q′ ∈ Φwait

Wtrans
El

(el, e
′
l)Wtrans

Er
(er, e

′
r) if q′ = φE;Q′n

81

Explicit construction of Hn

This construction is somewhat redundant, since we construct Mn from Qn, El and Er, rather
than from RHn. It is retained for comparison.

Hn = (BlEl) ◦ (BrEr)

= (Ω, ∅,ΦHn , φS;Hn , φE;Hn , τHn ,WHn)

Assume Bl, Br, El, Er in strict-normal form.

States of Hn

Define type(φ1, φ2, φ3 . . .) = (type(φ1), type(φ2), type(φ3) . . .).
Let h = (υ, bl, el, br, er) ∈ ΦHn . We construct ΦHn from classes, adopting the convention

that each class of states is defined by its associated types:

Φclass = {h : type(υ, bl, el, br, er) ∈ Tclass}

Define Φext ⊂ ΦHn to be the subset of Hn-states that follow externally-driven cascades

Text = {(M,M,D,M,D), (M,M,D,D,W),

(M,D,W,M,D), (M,D,W,D,W)}

Define Φint ⊂ ΦHn to be the subset of Hn-states that follow internal cascades

Tint = Tleft-int ∪ Tright-int

Tleft-int = {(S, I,D,W,W), (M, I,D,W,W)}
Tright-int = {(S, S, S, I,D), (M,M,D, I,D), (M,D,W, I,D)}

Remaining states are the start, end, and wait states:

φS;Hn = (φS;Υ, φS;Bl
, φS;El

, φS;Br , φS;Er)

φE;Hn = (φE;Υ, φE;Bl
, φE;El

, φE;Br , φE;Er)

Twait = {(W,W,W,W,W)}

The complete set of Hn-states is

ΦHn = {φS;Hn , φE;Hn} ∪ Φext ∪ Φint ∪ Φwait

It is possible to calculate transition and I/O weights of Hn by starting with the example
constructions given for TU and T ◦U , then eliminating states that are not in the above set.
This gives the results described in the following sections.

82

I/O weights of Hn

Let ω, ω′ ∈ (∪ {ε}).
Let Cn(bn, en) be the I/O weight function for BnEn on a transition into composite state

(bn, en) where type(bn, en) = (I,D)

Cn(bn, en) =
∑
ω∈Ω

Wemit
Bn

(ε, ω, bn)Wemit
En

(ω, ε, en)

Let Dn(ω, bn, en) be the I/O weight function for BnEn on a transition into composite
state (bn, en) where type(bn, en) ∈ {(M,D), (D,W)} with input symbol ω

Dn(ω, bn, en) =

∑
ω′∈Ω

Wemit
Bn

(ω, ω′, bn)Wemit
En

(ω′, ε, en) if type(bn, en) = (M,D)

Wemit
Bn

(ω, ε, bn) if type(bn, en) = (D,W)

The I/O weight function for Hn is

Wemit
Hn

(ω, ε, h) =

Dl(ω, bl, el)Dr(ω, br, er) if h ∈ Φext
Cl(bl, el) if h ∈ Φleft-int
Cr(br, er) if h ∈ Φright-int
1 otherwise

Transition weights of Hn

The transition weight between two states h = (υ, bl, el, br, er) and h′ = (υ′, b′l, e
′
l, b
′
r, e
′
r) always

takes the form

Wtrans
Hn

(h, h′) ≡ Wtrans
Υ ({πΥ}).Wtrans

Bl
({πBl

}).Wtrans
El

({πEl
}).Wtrans

Br
({πBr}).Wtrans

Er
({πEr})

where the RHS terms again represent sums over paths, with the allowed paths depending on
the types of h, h′ as shown in Table 2.6. Table 2.6 uses the same conventions as Table 2.5.

State types of Hn

type(h) =

S if h = φS;Hn

E if h = φE;Hn

W if h ∈ Φwait
D if h ∈ Φext
N if h ∈ Φint

Since Hn contains states of type N (the internal cascades), it is necessary to eliminate
these states from En (after sampling paths through Mn), so as to guarantee that En will be
in strict normal form.

83

type(υ, bl, el, br, er) type(υ′, b′l, e
′
l, b
′
r, e
′
r) |πΥ| |πBl

| |πEl
| |πBr | |πEr |

(S, S, S, S, S) (S, S, S, I,D) 0 0 0 1 2
(S, I,D,W,W) 0 1 2 1 1
(W,W,W,W,W) 1 1 1 1 1

(S, S, S, I,D) (S, S, S, I,D) 0 0 0 1 2
(S, I,D,W,W) 0 1 2 1 1
(W,W,W,W,W) 1 1 1 1 1

(S, I,D,W,W) (S, I,D,W,W) 0 1 2 0 0
(W,W,W,W,W) 1 1 1 0 0

(W,W,W,W,W) (M,M,D,M,D) 1 1 1 1 1
(M,M,D,D,W) 1 1 1 1 0
(M,D,W,M,D) 1 1 0 1 1
(M,D,W,D,W) 1 1 0 1 0
(E,E,E,E,E) 1 1 1 1 1

(M,M,D,M,D) (M,M,D, I,D) 0 0 0 1 2
(M, I,D,W,W) 0 1 2 1 1
(W,W,W,W,W) 1 1 1 1 1

(M,M,D,D,W) (M,M,D, I,D) 0 0 0 1 1
(M, I,D,W,W) 0 1 2 1 0
(W,W,W,W,W) 1 1 1 1 0

(M,D,W,M,D) (M,D,W, I,D) 0 0 0 1 2
(M, I,D,W,W) 0 1 1 1 1
(W,W,W,W,W) 1 1 0 1 1

(M,D,W,D,W) (M,D,W, I,D) 0 0 0 1 1
(M, I,D,W,W) 0 1 1 1 0
(W,W,W,W,W) 1 1 0 1 0

(M,M,D, I,D) (M,M,D, I,D) 0 0 0 1 2
(M, I,D,W,W) 0 1 2 1 1
(W,W,W,W,W) 1 1 1 1 1

(M,D,W, I,D) (M,D,W, I,D) 0 0 0 1 2
(M, I,D,W,W) 0 1 1 1 1
(W,W,W,W,W) 1 1 0 1 1

(M, I,D,W,W) (M, I,D,W,W) 0 1 2 0 0
(W,W,W,W,W) 1 1 1 0 0

Table 2.6: Transition types of Hn, the transducer described in Section 2.3 This transducer
requires non-empty input: it is a ‘recognizing profile’ or ‘recognizer’. It models a subtree
of sequences conditional on an absorbed parental sequence. It is used during progressive
reconstruction.

84

Explicit construction of Mn using R and Hn

This construction is somewhat redundant, since we construct Mn from Qn, El and Er, rather
than from RHn. It is retained for comparison.

The following construction uses the fact that Mn = RHn so that we can compactly define
Mn by referring back to the previous construction of Hn. In practice, it will be more efficient
to precompute Qn = R(Bl ◦Br).

Refer to the previous section (“Explicit construction ofHn”) for definitions of Φext,Φint,Φwait,Wtrans
Hn

(h, h′),Wemit
Hn

(ω, ω′, h).
Assume that R is in strict normal form.

Mn = RHn

= R((BlEl) ◦ (BrEr))

= (∅, ∅,ΦMn , φS;Mn , φE;Mn , τMn ,WMn)

φS;Mn = (φS;R, φS;Υ, φS;Bl
, φS;El

, φS;Br , φS;Er)

φE;Mn = (φE;R, φE;Υ, φE;Bl
, φE;El

, φE;Br , φE;Er)

States of Mn

The complete set of Mn-states is

ΦMn = {φS;Mn , φE;Mn}
∪ {(ρ, υ, bl, el, br, er) : (υ, bl, el, br, er) ∈ Φext, type(ρ) = I}
∪ {(ρ, υ, bl, el, br, er) : (υ, bl, el, br, er) ∈ Φwait, type(ρ) = W}
∪ {(ρ, υ, bl, el, br, er) : (υ, bl, el, br, er) ∈ Φint, type(ρ) = type(υ) = S}
∪ {(ρ, υ, bl, el, br, er) : (υ, bl, el, br, er) ∈ Φint, type(ρ) = I, type(υ) = M}

I/O weights of Mn

Let m = (ρ, υ, bl, el, br, er) be an Mn-state and h = (υ, bl, el, br, er) the subsumed Hn-state.
Similarly, let m′ = (ρ′, υ′, b′l, e

′
l, b
′
r, e
′
r) and h′ = (υ′, b′l, e

′
l, b
′
r, e
′
r).

The I/O weight function for Mn is

Wemit
Mn

(ε, ε,m) =

∑
ω∈Ω

Wemit
R (ε, ω, ρ)Wemit

Hn
(ω, ε, h) if h ∈ Φext

Wemit
Hn

(ε, ε, h) otherwise

85

Transition weights of Mn

The transition weight function for Mn is

Wtrans
Mn

(m,m′) =

Wtrans

Hn
(h, h′) if h′ ∈ Φint

Wtrans
R (ρ, ρ′)

∑
h′′∈Φwait

Wtrans
Hn

(h, h′′)Wtrans
Hn

(h′′, h′) if h′ ∈ Φext

Wtrans
R (ρ, ρ′)Wtrans

Hn
(h, h′) otherwise

If El and Er are acyclic, then Hn and En will be acyclic too. However, Mn does contain
cycles among states of type (I,M,D,W,D,W). These correspond to characters output by
R that are then deleted by both Bl and Br. It is necessary to eliminate these states from Mn

by marginalization, and to then restore them probabilistically when sampling paths through
Mn.

Dynamic programming algorithms

The recursion for W(ε : [Mn] : ε) is

W(ε : [Mn] : ε) = Z(φE)

Z(m′) =
∑

m:(m,ε,ε,m′)∈τ

Z(m)W(m, ε, ε,m′) ∀m′ 6= φS

Z(φS) = 1

The algorithm to fill Z(m) has the general structure shown in Algorithm 1. (Some
optimization of this algorithm is desirable, since not all tuples (ρ, υ, bl, el, br, er) are states
of Mn. If En is in strict-normal form its W - and D-states will occur in pairs (c.f. the
strict-normal version of the exact-match transducer ∇(S)). These (D,W) pairs are largely
redundant: the choice between D and W is dictated by the parent Bn, as can be seen from
Table 2.6 and the construction of ΦHn .)

Time complexity The skeleton structure of Algorithm 1 is three nested loops, over
ΦEl

,ΦEr , and ΦQn . The state spaces ΦEl
,ΦEr , and ΦQn are independent of each other,

and so Algorithm 1 has time complexity O(|ΦEl
||ΦEl

||ΦQn|tZ(m)), where tZ(m) is the time
required to compute Z(m) for a given m ∈Mn.

The quantities |ΦE∗| can be bounded by a user-specified constant p by terminating
stochastic sampling such that |ΦE∗| ≤ p as described in Section 2.3. ΦQn is comprised
of pairs of states from transducers Bl and Br, (detailed in Section 2.3), and so it has size
O(|ΦBl

||ΦBr |). Computing Z(m) (outlined in Algorithm 4) requires summing over all in-
coming states, so tZ(m) has time complexity O(|m : (m, ε, ε,m′) ∈ τ |). In typical cases, this
set will be small (e.g. a linear profile will have exactly one incoming transition per state),
though the worst-case size is O(p). If we assume the same branch transducer B is used
throughout, the full forward recursion has worst-case time complexity O(|ΦB|2p3).

86

Initialize Z(φS)← 1;

foreach el ∈ ΦEl
do /* topologically-sorted */

foreach er ∈ ΦEr do /* topologically-sorted */

foreach (ρ, υ, bl, br) ∈ ΦQn do /* topologically-sorted */
Let m = (ρ, υ, bl, el, br, er);

if m ∈ ΦMn then
Compute Z(m);

Return Z(φE).

Algorithm 1: The analog of the Forward algorithm for transducer Mn, described in
Section 2.3. This is used during progressive reconstruction to store the sum-over-paths
likelihood up to each state in ΦMn . The value of Z(φE;) is the likelihood of sequences
descended from node n.

For comparison, the Forward algorithm for computing the probability of two sequences
(Sl, Sr) being generated by a Pair Hidden Markov Model (M) has the general structure
shown in Algorithm 2.

Initialize cell (0, 0, START);

foreach 0 ≤ il ≤ length(Sl) do /* ascending order */

foreach 0 ≤ ir ≤ length(Sr) do /* ascending order */

foreach σ ∈M do /* topologically-sorted */
Compute the sum-over-paths up to cell (il, ir, σ);

Return cell (length(Sl), length(Sr),END).

Algorithm 2: The general form of the Forward algorithm for computing the joint
probability of two sequences generated by the model M , a Pair HMM.

The generative transducer Qn ≡ R(Bl ◦Br) in Algorithm 1 is effectively identical to the
Pair HMM in Algorithm 2.

Pseudocode for DP recursion

We outline a more precise version of the Forward-like DP recursion in Algorithm 3 and the
associated Function sum paths to. Let get state type(q, side) return the state type for the
profile on side which is consistent with q.

87

Transition sets

Since all transitions in the state spaces Q′n, El, and Er are known, we can define the following
sets :

incoming left profile indices(j) = {i : tl(i, j) 6= 0}
incoming right profile indices(j) = {i : tr(i, j) 6= 0}

incoming match states(q′) = {q : q ∈ Φmatch,W
trans
Q′n

(q, q′) 6= 0}

incoming left emit states(q′) = {q : q ∈ Φleft-emit,W
trans
Q′n

(q, q′) 6= 0}

incoming right emit states(q′) = {q : q ∈ Φright-emit,W
trans
Q′n

(q, q′) 6= 0}

Traceback

Sampling a path from P (π|Mn) is analogous to stochastic traceback through the Forward
matrix. The basic traceback algorithm is presented in Algorithm 5, and a more precise
version is presented in Algorithm 6.

Let the function sample(set, weights) input two equal-length vectors and return a randomly-
chosen element of set, such that seti is sampled with probability weightsi

sum(weights)
. A state path

with two sampled paths is shown in Figure 2.40.

Alternative sampling schemes The above stochastic sampling strategy was chosen for
its ease of presentation and implementation, but our approach is sufficiently general to allow
any algorithm which selects a subset of complete paths through Mn. This selection may be
by random (as ours is) or deterministic means. Randomized algorithms are widespread in
computer science [62], though deterministic algorithms may be easier to analyze mathemat-
ically.

For instance, if an analog to the backward algorithm for HMMs was developed for the
state space of Mn (e.g. Algorithm 3 reversed), we could select a set of states according
to their posterior probability (e.g. the n states with highest posterior probability), and
determine the most likely paths (via Viterbi paths) from start to end which include these
states. Alternatively, a decision theory-based “optimal accuracy” approach could be used to
optimize the total posterior probability of the selected states. These approaches require an
additional dynamic programming recursion (the backward algorithm) at each step, and we
suspect the improvement in accuracy may be minimal in the limit of sampling many paths.
Empirically, we have observed that sampling paths is very fast compared to filling a DP
matrix, and so we have focused our attention on the outlined stochastic approach.

Alignment envelopes

Note that states e ∈ ΦEn of the constrained-expanded model, as with states g ∈ ΦGn

of the expanded model, can be associated with a vector of subsequence co-ordinates (one

88

Initialize Z(φS)← 1;

foreach 1 ≤ i′r ≤ Nr do
foreach q′ ∈ {q : type(q) = (S, S, S, I)} do

Let (e′l, e
′
r) = (φS, φ

(i′r)
D);

sum paths to(q′, e′l, e
′
r);

foreach 1 ≤ i′l ≤ Nl do
foreach 1 ≤ i′r ≤ Nr do

if is in envelope(i′l, i
′
r) then

foreach q′ ∈ Φmatch do

Let (e′l, e
′
r) = (φ

(i′l)
D , φ

(i′r)
D);

sum paths to(q′, e′l, e
′
r);

foreach q′ ∈ Φleft-emit do

Let (e′l, e
′
r) = (φ

(i′l)
D , φ

(i′r)
W);

sum paths to(q′, e′l, e
′
r);

foreach q′ ∈ Φright-emit do

if type(q′) == (S, S, S, I) then
continue

Let τ = get state type(q′, left);

(e′l, e
′
r) = (φ

(i′l)
τ , φ

(i′r)
D);

sum paths to(q′, e′l, e
′
r);

foreach q′ ∈ Φwait do

Let (e′l, e
′
r) = (φ

(i′l)
W , φ

(i′r)
W);

sum paths to(q′, e′l, e
′
r);

foreach 1 ≤ i′l ≤ Nl do
foreach q′ ∈ Φleft-emit do

Let (e′l, e
′
r) = (φ

(i′l)
D , φ

(end)
W);

sum paths to(q′, e′l, e
′
r);

foreach 1 ≤ i′r ≤ Nr do
foreach q′ ∈ Φright-emit do

Let (e′l, e
′
r) = (φ

(end)
W , φ

(i′r)
D);

sum paths to(q′, e′l, e
′
r);

foreach q′ ∈ Φwait do

Let (e′l, e
′
r) = (φ

(end)
W , φ

(end)
W);

sum paths to(q′, e′l, e
′
r);

Initialize Z(φE)← 0;
foreach q ∈ Φwait do

Let m = (q, φ
(end)
W , φ

(end)
W);

Z(φE)← Z(φE) + Z(m)Wtrans
Q′n

(q, φE;Q′n);

Algorithm 3: The full version of the analog of the Forward algorithm for transducer
Mn, described in Section 2.3. This to visit each state in ΦMn in the proper order,
storing the sum-over-paths likelihood up to that state using sum paths to(. . .) (defined
separately). The value of Z(φE;) is the likelihood of sequences descended from node n.

89

Input: (q′, e′l, e
′
r).

Result: The cell in Z for m = (q′, e′l, e
′
r) is filled.

Let m′ = (q′, e′l, e
′
r);

Let E =Wemit
Mn

(ε, ε,m′);

Initialize Z(m′)←Wtrans
Q′n

(φS, q
′)tl(0, i

′
l)tr(0, i

′
r)E ;

foreach il ∈ incoming left profile indices(i′l) do
foreach ir ∈ incoming right profile indices(i′r) do

Let (el, er) = (φ
(il)
D , φ

(ir)
D);

foreach q ∈ incoming match states(q′) do
Let m = (q, el, er);
Z(m′)← Z(m′) + Z(m)Wtrans

Q′n
(q, q′)tl(il, i

′
l)tr(ir, i

′
r)E

foreach il ∈ incoming left profile indices(i′l) do
foreach q ∈ incoming left emit states(q′) do

Let (el, er) = (φ
(il)
D , φ

(i′r)
W);

Let m = (q, el, er);
Z(m′)← Z(m′) + Z(m)Wtrans

Q′n
(q, q′)tl(il, i

′
l)E ;

foreach ir ∈ incoming right profile indices(i′r) do
foreach q ∈ incoming right emit states(q′) do

Let τ = get state type(q, left);

Let (el, er) = (φ
(i′l)
τ , φ

(ir)
D);

Let m = (q, el, er);
Z(m′)← Z(m′) + Z(m)Wtrans

Q′n
(q, q′)tr(il, i

′
l)E ;

Algorithm 4: sum paths to() used by Algorithm 3. This is used during the Forward
algorithm to compute the sum-over-paths likelihood ending at a given state. This
quantity is later used to guide stochastic sampling (Algorithms 5 and 6).

subsequence co-ordinate for each leaf-sequence in the clade descended from node n). For
example, in our non-normal construction of ∇(S), the state φ ∈ Z|S|+1 is itself the co-
ordinate. The co-ordinate information associated with el and er can, therefore, be used to
define some sort of alignment envelope, as in [63]. For example, we could exclude (el, er)
pairs if they result in alignment cutpoints that are too far from the main diagonal of the
sequence co-ordinate hypercube.

Let the function is in envelope(il, ir) return true if the state-index pair (il, ir) is allowed
by the alignment envelope, and false otherwise. Further, assume that Z is a sparse container
data structure, such that Z(m) always evaluates to zero if m = (ρ, υ, bl, el, br, er) is not in
the envelope.

90

Input: Z
Output: A path π through Mn sampled proportional to Wtrans

Mn
(π).

Initialize π ← (φE;Mn)
Initialize m′ ← φE;Mn

while m′ 6= φS;Mn do

Let K = {k ∈Mn :Wtrans
Mn

(k,m′) 6= 0}

With probability
Z(m)Wtrans

Mn
(m,m′)∑

k∈K Z(k)Wtrans
Mn

(k,m′)
, prepend m to π.

Set m′ ← m
return π

Algorithm 5: Pseudocode for Stochastic traceback for sampling paths through the
transducer Mn, described in Section 2.3. Stochastic sampling is done such that a path
π through Mn is visited proportional to its likelihood weight. By tracing a series of
paths through Mn and storing the union of these paths as a sequence profile, we are able
to limit the number of solutions considered during progressive reconstruction, reducing
time and memory complexity.

Construction of alignment envelopes

Let ∇(S) be defined such that it has only one nonzero-weighted path

X0 → W0
symbol(S,1)→ M1 → W1

symbol(S,2)→ M2 → . . .→ WL−1

symbol(S,length(S))
→ Mlength(S) → Wlength(S) → Xlength(S)

so a ∇(S)-state is either the start state (X0), the end state (Xlength(S)), a wait state (Wi)

or a match state (Mi). All these states have the form φi where i represents the number of
symbols of S that have to be read in order to reach that state, i.e. a “co-ordinate” into S.
All ∇(S)-states are labeled with such co-ordinates, as are the states of any transducer that
is a composition involving ∇(S), such as Gn or Hn.

For example, in a simple case involving a root node (1) with two children (2,3) whose
sequences are constrained to be S2, S3, the evidence transducer is G = RGroot = R(G2 ◦
G3) = R(Υ(B2∇(S2), B3∇(S3))) = R

b
bb

"
""
B2

∇[S2]

B3

∇[S3]
All states of G have the form g = (r, b2, φ2i2, b3, φ3i3) where φ2, φ3 ∈ {X,W,M}, so

φ2i2 ∈ {Xi2 ,Wi2 ,Mi2} and similarly for φ3i3. Thus, each state in G is associated with a
co-ordinate pair (i2, i3) into (S2, S3), as well as a state-type pair (φ2, φ3).

Let n be a node in the tree, let Ln be the set of indices of leaf nodes descended from n,
and let Gn be the phylogenetic transducer for the subtree rooted at n, defined in Section 2.3.
Let Φn be the state space of Gn.

91

Input: Z
Output: A path π through Mn sampled proportional to Wtrans

Mn
(π).

Initialize π ← (φE;Mn)
Initialize m′ ← φE;Mn

while m′ 6= φS;Mn do
Initialize states in← ()
Initialize weights in← ()
Set (q′, e′l, e

′
r)← m′

if m′ = φE;Mn then
foreach q ∈ Φwait do

Add (q′, φ
(end)
W , φ

(end)
W) to states in

Add Z((q, φ
(end)
W , φ

(end)
W))Wtrans

Q′n
(q, φE;Q′n) to weights in

else

if Wtrans
Q′n

(φS;Q′n , qTo)tl(0, i
′
l)tr(0, i

′
r) 6= 0 then

Add (φS;Q′n , φS, φS) to states in

Add Wtrans
Q′n

(φS;Q′n , qTo)tl(0, i
′
l)tr(0, i

′
r) to weights in

foreach il ∈ incoming left profile indices(i′l) do
foreach ir ∈ incoming right profile indices(i′r) do

Let (el, er) = (φ
(il)
D , φ

(ir)
D);

foreach q ∈ incoming match states(q′) do
Add (q, el, er) to states in;
Add Z((q, el, er))Wtrans

Q′n
(q, q′)tl(il, i

′
l)tr(ir, i

′
r) to weights in;

foreach il ∈ incoming left profile indices(i′l) do

Let (el, er) = (φ
(il)
D , φ

(i′r)
W);

foreach q ∈ incoming left emit states(q′) do
Add (q, el, er) to states in;
Add Z((q, el, er))Wtrans

Q′n
(q, q′)tl(il, i

′
l) to weights in;

foreach ir ∈ incoming right profile indices(i′r) do
Let τ = get state type(q′, left);

Let (el, er) = (φ
(i′l)
τ , φ

(ir)
D);

foreach q ∈ incoming right emit states(q′) do
Add (q, el, er) to states in;
Add Z((q, el, er))Wtrans

Q′n
(q, q′)tr(ir, i

′
r) to weights in;

Set m← sample(states in, weights in)
Prepend m to π
Set m′ ← m

return π
Algorithm 6: Pseudocode for stochastic traceback for sampling paths through the
transducer Mn, described in Section 2.3. Stochastic sampling is done such that a path
π through Mn is visited proportional to its likelihood weight. By tracing a series of
paths through Mn and storing the union of these paths as a sequence profile, we are able
to limit the number of solutions considered during progressive reconstruction, reducing
time and memory complexity.

92

If m ∈ Ln is a leaf node descended from n, then Gn includes, as a component, the
transducer ∇(Sm). Any Gn-state, g ∈ Φn, is a tuple, one element of which is a ∇(Sm)-state,
φi, where i is a co-ordinate (into sequence Sm) and φ is a state-type. Define im(g) to be the
co-ordinate and φm(g) to be the corresponding state-type.

Let An : Φn → 2Ln be the function returning the set of absorbing leaf indices for a state,
such that the existence of a finite-weight transition g′ → g implies that im(g) = im(g′) + 1
for all m ∈ An(g).

Let (l, r) be two sibling nodes. The alignment envelope is the set of sibling state-pairs
from Gl and Gr that can be aligned. The function E : Φl×Φr → {0, 1} indicates membership
of the envelope. For example, this basic envelope allows only sibling co-ordinates separated
by a distance s or less

Ebasic(f, g) = max
m∈Al(f),n∈Ar(g)

|im(f)− in(g)| ≤ s

An alignment envelope can be based on a guide alignment. For leaf nodes x, y and
1 ≤ i ≤ length(Sx), let G(x, i, y) be the number of residues of sequence Sy in the section
of the guide alignment from the first column, up to and including the column containing
residue i of sequence Sx.

This envelope excludes a pair of sibling states if they include a homology between residues
which is more than s from the homology of those characters contained in the guide alignment:

Eguide(f, g) = max
m∈Al(f),n∈Ar(g)

max(|G(m, im(f), n)− in(g)| , |G(n, in(g),m)− im(f)|) ≤ s

Let K(x, i, y, j) be the number of match columns (those alignment columns in which both
Sx and Sy have a non-gap character) between the column containing residue i of sequence Sx
and the column containing residue j of sequence Sy. This envelope excludes a pair of sibling
states if they include a homology between residues which is more than s matches from the
homology of those characters contained in the guide alignment:

Eguide(f, g) = max
m∈Al(f),n∈Ar(g)

max(|G(m, im(f), n)−K(m, im(f), n, in(g))|,

|G(n, in(g),m)−K(n, in(g),m, im(f))|) ≤ s

Explicit construction of profile En from Mn, following DP

Having sampled a set of paths through Mn, profile En is constructed by applying a series of
transformations. Refer to the previous sections for definitions pertaining to Mn and En.

Transformation Mn →M ′
n: sampled paths

Let Π′ ⊆ ΠM ′n be a set of complete paths through Mn, corresponding to K random samples
from P (π|Mn).

93

The state space of M ′
n is the union of all states used by the paths in ΠM ′n

ΦM ′n =
⋃
π∈Π′

|π|⋃
i=1

πi

where πi is the ith state in a path π ∈ (τMn)∗.
The I/O and transition weight functions for M ′

n are the same as those of Mn:

Wtrans
M ′n

(m,m′) = Wtrans
Mn

(m,m′)

Wemit
M ′n

(ε, ε,m′) = Wemit
Mn

(ε, ε,m′)

M ′
n can be updated after each path π is sampled:

ΦM ′n = ΦM ′n ∪
|π|⋃
i=1

πi

For some arbitrary limiting factor p ≥ L, if |ΦM ′n| ≥ p upon addition of states of π,
sampling may be terminated. This allows bounding |ΦEn| as the algorithm traverses up the
phylogeny.

Transformation M ′
n → E ′′n: stripping out the prior

Let E ′′n be a the transducer constructed via removing the R states from the states of M ′
n.

ΦE′′n = {(υ, bl, el, br, er) : ∃(ρ, υ, bl, el, br, er) ∈M ′
n}

The I/O and transition weight functions for E ′′n are the same as those of Hn:

Wtrans
E′′n

(e, e′) = Wtrans
Hn

(e, e′)

Wemit
E′′n

(ε, ε, e′) = Wemit
Hn

(ε, ε, e′)

Transformation E ′′n → E ′n: eliminating null states

Let E ′n be the transducer derived from E ′′n by marginalizing its null states.
The state space of E ′n is the set of non-null states in E ′′n:

ΦE′n = {e : e ∈ E ′′n, type(e) ∈ {S,E,D,W}}

The transition weight function is the same as that of Hn (and also E ′′n) with paths through
null states marginalized. Let

94

�

�

�

�

�

�

�

0.8 1.6 3.2 6.4 12.8 25.6 52

1e
−0
1

1e
+0

0
1e

+0
1 � Mean CPU time for ProtPal alignment (60 replicates)

Middle 95% of data
Time (h) ~ Columns

ProtPal runtime

CP
U

 T
im

e
(h

ou
rs

)

12 sequence alignment length (KB)

1.55

Figure 2.48: When using an alignment envelope, our implementation of the alignment algo-
rithm scales with polynomial complexity with respect to sequence length. Alignments con-
sisting of 12 sequences were simulated for lengths ranging from 800bp to 52kb and aligned
using our software. Mean and middle 90% quantiles (60 replicates) for CPU time required
on a 2GHz, 2GB RAM Linux machine are shown next to a linear fit in log-log space (dashed
line).

πE′′n(e,e′) = {π : π1 = e, π|π| = e′, type(πi) = N ∀ i : 2 ≤ i < |π|}
Wtrans

E′n
(e, e′) =

∑
π∈πE′′n(e,e′)

Wtrans
Hn

(π)

The transition weight function resulting from summing over null states in E ′′n can be
done with a preorder traversal of the state graph, outlined in Algorithm 7. The stack data
structure has operations stack.push(e), which adds e to the top of the stack, and stack.pop(),
which removes and returns the top element of the stack. The weights container maps states
in ΦE′′n to real-valued weights.

95

Input: ΦE′′n ,Wtrans
E′′n

Output: Wtrans
E′n

Let ΦE′n = {e : e ∈ E ′′n, type(e) ∈ {S,E,D,W}}
Initialize tnew(e, e′) = 0 ∀(e, e′) ∈ ΦE′n

foreach source state ∈ ΦE′′n do
Initialize stack = [source state]
Initialize weights[source state] = 0

while stack 6= [] do
Set e = stack.pop()
foreach e′ ∈ {e′ ∈ ΦE′′n :Wtrans

E′′n
(e, e′) 6= 0} do

if type(e′) 6= N then

tnew(source, e′)+ = weights[e] · Wtrans
E′′n

(e, e′)

else
stack.push(e′)
weights[e′] = weight[e] · Wtrans

E′′n
(e, e′)

return Wtrans
E′n

(e, e′) ≡ tnew(e, e′) ∀(e, e′) ∈ ΦE′n

Algorithm 7: Pseudocode for transforming the transition weight function of E ′′n into
that of E ′n via summing over null state paths (insertions). This is done after stochas-
tic sampling as the first of two steps transforming a sampled Mn transducer into a
recognizer En, described in Section 2.3. Summing over null states ensures that these
states cannot align to sibling states in the parent round of profile-profile alignment.
An insertion at branch n is, by definition, not homologous to any characters outside
the n-rooted subtree, and null state elimination is how this is explicitly enforced in our
algorithm.

Besides the states {φS, φE, φ(end)
W }, the remaining states in E ′n are of type D, which we

now index in ascending topological order:

ΦE′n = {φS, φE, φ(end)
W } ∪ {φ(n)

D : 1 ≤ n ≤ Nn}

where 1 ≤ i, j ≤ Nn,

tn(i, j) ≡ Wtrans
E′n

(φ
(i)
D , φ

(j)
D)

tn(0, j) ≡ Wtrans
E′n

(φS, φ
(j)
D)

tn(i, Nn + 1) ≡ Wtrans
E′n

(φ
(i)
D , φ

(end)
W)

96

Transformation E ′n → En: adding wait states

Let En be the transducer derived from transforming E ′n into strict normal form. Since N
states were removed in the transformation from E ′′n → E ′n, we need only add W states before
each D state:

ΦEn = {φS, φE, φ(end)
W } ∪ {φ(n)

D : 1 ≤ n ≤ N} ∪ {φ(n)
W : 1 ≤ n ≤ N}

Note the following correspondences between the previously-definedWtrans
En

(e, e′) and new
notation.

Wtrans
En

(φ
(i)
D , φ

(j)
W) = tn(i, j)

Wtrans
En

(φ
(j)
W , φ

(j)
D) = 1

Wvia-wait
En

(φ
(i)
D , φ

(j)
D) = tn(i, j)

Wto-wait
En

(φ
(i)
D , φ

(j)
W) = tn(i, j)

Wto-wait
En

(φ
(i)
W , φ

(j)
W) = δ(i = j)

Message-passing interpretation

In the interpretation of Felsenstein’s pruning algorithm [7] and Elston and Stewart’s more
general peeling algorithm [64] as message-passing on factor graphs [40], the tip-to-root mes-
sages are functions of the form P (Sn|Sn = x) where Sn (a random variable) denotes the
sequence at node n, x denotes a particular value for this r.v., and Sn = {Sm : m ∈ Ln}
denotes the observation of sequences at nodes in Ln, the set of leaf nodes that have n as a
common ancestor.

These tip-to-root messages are equivalent to our evidence-expanded transducers (Sec-
tion 2.3):

P (Sn|Sn = x) =W(x : [Gn] : ε)

The corresponding root-to-tip messages take the form P (S̄n,Sn = x) where S̄n = {Sm :
m ∈ L,m /∈ Ln} denotes the observation of sequences at leaf nodes that do not have n as a
common ancestor. These messages can be combined with the tip-to-root messages to yield
posterior probabilities of ancestral sequences

P (Sn = x|S) =
P (S̄n,Sn = x)P (Sn|Sn = x)

P (S)

We can define a recursion for transducers that model these root-to-tip messages, just as
with the tip-to-root messages.

First, define J1 = R.

97

Next, suppose that n > 1 is a node with parent p and sibling s. Define

Jn = Jp(Bn ◦ (BsGs)) = Jp

Υ
@@��

Bn Bs

Gs

Note that Jn is a generator that outputs only the sequence at node n (because Gs has
null output). Note also that JnGn ≡ G0.

The root-to-tip message is

P (S̄n,Sn = x) =W(ε : [Jn] : x)

The equations for Gn and Jn are transducer formulations of the pruning and peeling
recursions

P (Sn|Sn = x) =

(∑
y

P (Sl = y|Sn = x)P (Sl|Sl = y)

)(∑
z

P (Sr = z|Sn = x)P (Sr|Sr = z)

)
P (S̄n,Sn = x) =

∑
y

P (S̄p,Sp = y)P (Sn = x|Sp = y)
∑
z

P (Ss = z|Sp = y)P (Ss|Ss = z)

where (l, r) are the left and right children of node n. For comparison,

Gn = (BlGl) ◦ (BrGr)

Jn = Jp(Bn ◦ (BsGs))

W(x : [Bn] : y) = P (Sn = y|Sp = x)

W(x : [TU] : z) =
∑
y

W(x : [T] : y)W(y : [U] : z)

W(x : [Tl] : Sl)W(x : [Tr] : Sr) = W(x : [Tl ◦ Tr] : Sn)

2.4 Conclusions

In this article we have presented an algorithm that may be viewed in two equivalent ways:
a form of Felsenstein’s pruning algorithm generalized from individual characters to entire
sequences, or a phylogenetic generalization of progressive alignment. Our algorithm extends
the concept of a character substitution matrix (e.g. [65, 66]) to finite-state transducers, re-
placing matrix multiplication with transducer composition.

We described a hierarchical approximation technique enabling inference in O(c2p3N)
time and memory (typical-case O((cp)2N)) , as opposed to O(LN) for exact, exhaustive

98

inference (N sequences of length L, limiting factor m ≥ L and branch transducer with
c states). Empirical tests indicate that adding additional constraints (in the form of an
“alignment envelope”) brings typical-case time complexity down to O(cpN), making the
algorithm practical for typical alignment problems.

Much of computational biology depends on a multiple sequence alignment as input, yet
the uncertainty and bias engendered by an alignment is rarely accounted for. Further, most
alignment programs account for the phylogeny relating sequences either in a heuristic sense,
or not at all. Previous studies have indicated that alignment uncertainty and/or accuracy
strongly affects downstream analyses [67], particularly if evolutionary inferences are to be
made [6].

In this work we have described the mathematics and algorithms required for an alignment
algorithm that is simultaneously explicitly phylogenetic and avoids conditioning on a single
multiple alignment. In extensive simulations (in separate work, submitted), we find that our
implementation of this algorithm recovers significantly more accurate reconstructions of sim-
ulated indel histories, indicating the need for mathematically rigorous alignment algorithms,
particularly for evolutionary applications.

The source code to this paper, including the graphviz and phylocomposer files used to
produce the diagrams, can be found at https://github.com/ihh/transducer-tutorial

2.5 Methods

Accuracy simulation study The simulation study was performed as described in Ap-
pendix B.

Time simulation study In order to empirically determine the time complexity of our
method, alignments of varying lengths (800, 1600, 3200, 6400, 12800, 25600, 52000 positions)
were simulated using indel-seq-gen (default parameters) on the 12 Drosophila species tree and
aligned with ProtPal using a guide alignment with restriction parameter (-s option described
in Section 2.3) set to 10. The analysis time on a 2GHz, 2GB machine was averaged over 60
replicates and plotted next to a linear fit computed using R (www.r-project.org).

Additional notation

This section defines commonplace notation used earlier in the document.

Sequences and alignments

Sequence notation: Let Ω∗ be the set of sequences over Ω, including the empty sequence ε.
Let x + y denote the concatenation of sequences x and y, and

∑
n xn the concatenation of

sequences {xn}.

https://github.com/ihh/transducer-tutorial

99

Gapped-pair alignment: A gapped pairwise alignment is a sequence of individual columns
of the form (ω1, ω2) where ω1 ∈ (1 ∪ {ε}) and ω2 ∈ (2 ∪ {ε}).

Map from alignment to sequences: The function Sk : ((1 ∪ {ε})× (2 ∪ {ε}))∗ → Ω∗k re-
turns the k’th row of a pairwise alignment, with gaps removed

S1(x) =
∑

(ω1,ω2)∈x

ω1

S2(x) =
∑

(ω1,ω2)∈x

ω2

Transition paths: A transition path π ∈ Π is a sequence of transitions of the form
(φ1, ωI , ωO, φ2) where φ1, φ2 ∈ Φ, ωI ∈ (I ∪ {ε}), and ωO ∈ (O ∪ {ε}).

Input and output sequences: Define the input and output sequences SI : Π → Ω∗I and
SO : Π→ Ω∗O

SI(π) =
∑

(φ1,ωI ,ωO,φ2)∈π

ωI

SO(π) =
∑

(φ1,ωI ,ωO,φ2)∈π

ωO

100

Chapter 3

Approximate alignment with
transducers: simulation-based
evaluation

101

The following chapter contains work published in PLoS ONE, together with Gerton Lunter,
Benedict Paten, and Ian Holmes [49].

Overview

The Multiple Sequence Alignment (MSA) is a computational abstraction that represents
a partial summary either of indel history, or of structural similarity. Taking the former
view (indel history), it is possible to use formal automata theory to generalize the phylo-
genetic likelihood framework for finite substitution models (Dayhoff’s probability matrices
and Felsenstein’s pruning algorithm) to arbitrary-length sequences. In this paper, we report
results of a simulation-based benchmark of several methods for reconstruction of indel his-
tory. The methods tested include a relatively new algorithm for statistical marginalization of
MSAs that sums over a stochastically-sampled ensemble of the most probable evolutionary
histories. For mammalian evolutionary parameters on several different trees, the single most
likely history sampled by our algorithm appears less biased than histories reconstructed by
other MSA methods. The algorithm can also be used for alignment-free inference, where the
MSA is explicitly summed out of the analysis. As an illustration of our method, we discuss
reconstruction of the evolutionary histories of human protein-coding genes.

3.1 Background

The Multiple Sequence Alignment (MSA), indispensable to computational sequence analy-
sis, represents a hypothetical claim about the homology beteen sequences. MSAs have many
different uses, but the underlying hypothesis can often be classified as a claim either of struc-
tural homology (the 3D structures align in a particular way) or of evolutionary homology
(the sequences are related by a particular history on a given phylogenetic tree). These types
of hypothesis are similar, but with subtle (and important) distinctions: at the residue level, a
claim of evolutionary homology (direct shared descent) is far stronger than a claim of struc-
tural homology (same approximate fold). Furthermore, both types of MSA—evolutionary
and structural—typically only represent summaries of the respective homologies: some fine
detail is often omitted. For example, an evolutionary MSA may—or may not—include the
ancestral sequences at internal nodes of the underlying tree.

Structural and evolutionary MSAs are often conflated, but they have quite different
applications. For example, a common use for a structural MSA is template-based structure
prediction, where a query sequence is aligned to a target of known structure; the success of
this prediction reflects the number of query-template residues correctly aligned [68]. By way
of contrast, a common application for an evolutionary MSA is to identify regions or sites
under selection, the success of which depends on accurate reconstruction of the evolutionary
history [69,70].

102

Evaluation of alignment methods is typically done with implicit regard for the structural
interpretation. Many benchmarks have used metrics based on the Sum of Pairs Score (SPS)
[71]. In the situation that a query-template pairwise alignment is randomly picked out of the
MSA, the SPS effectively estimates the proportion of homologous residues that are correctly
identified. Several alignment methods attempt to maximize the posterior expectation of
SPS or similar metrics. This appears to improve accuracy, particularly when measured with
reference to structural homology. However, it does not automatically confer evolutionary
accuracy — a correct reconstruction of the evolutionary history of the sequences.

Several studies suggest that multiple alignment for evolutionary purposes is still a highly
uncertain procedure [67], and that errors therein may significantly bias analyses of evolution-
ary effects [6, 72–76]. A useful component of these studies is simulation of genetic sequence
evolution [6], which appears to better indicate evolutionary accuracy than benchmarks de-
rived from protein structure alignments. Simulations can be made quite realistic given the
abundance of comparative sequence data [77].

The current state-of-the-art in phylogenetic alignment software is a choice between (on
the one hand) programs that lack explicit models of the underlying evolutionary process,
and so are not framed as statistical inference problems [6], and (on the other hand) Bayesian
Markov chain Monte Carlo (MCMC) methods, which are statistically exact but prohibitively
slow [46,48].

A telling observation is that while substitution rate is routinely measured from MSAs
and used as an indicator of natural selection, there is relatively little analogous use of indel
rate. As we report here, it seems highly likely that even if indel rate is a useful evolutionary
signal (which is eminently plausible), the present alignment methods distort measurements
of this rate so far as to make it meaningless (Figure 3.1 and Figure 3.2).

In this paper, we frame phylogenetic sequence alignment as an approximate maximum
likelihood (ML) inference. Our inference algorithm assumes that the tree is known, re-
quiring a separate tree estimation protocol. While this is a strong assumption, it is in
principle shared among all progressive aligners (e.g. PRANK [5], Muscle [78], ClustalW [79],
MAFFT [80]). The alignment-marginalized likelihoods reported by our algorithm allow for
statistical tests between alternative trees, and the functionality to estimate an initial align-
ment and guide tree from unaligned sequences exists elsewhere in the DART package. Our
framing uses automata-theoretic methods from computational linguistics to unify several
previously-disjoint areas of bioinformatics: Felsenstein’s pruning algorithm for the phylo-
genetic likelihood function [7], progressive multiple sequence alignment [81], and alignment
ensemble representation using partial order graphs [43]. Our algorithm may be viewed as a
stochastic generalization of pruning to infinite state spaces: it retains the linear time and
memory complexity of pruning (O(NL) for N sequences of length L), while moderating the
biasing effect of the MSA. The algorithmic details of our method are outlined briefly in the
Methods, and in more complete, mathematically precise terms (with a tutorial introduction)
in a separately submitted work.

Our software implementation of this algorithm is called ProtPal. We measured the ac-
curacy of ProtPal relative to leading non-MCMC alignment/reconstruction protocols by

103

simulating indels and substitutions on a known phylogeny, withholding the true history and
attempting to reconstruct it from the sequences at the tips of the tree. The results show
that all previous approaches to the reconstruction of ancestral sequences introduce significant
biases, including systematic underestimation of insertions and overestimation of deletions.
This contradicts previous claims that advances in the statistical foundations of alignment
tools, supported by improvements in protein-structure benchmarks, necessarily improve the
accuracy of evolutionary parameter estimates like the indel rate [6, 82,83].

ProtPal introduces less bias than any other methods we tested, including PRANK, the
state-of-the-art phylogenetic progressive aligner [6]. Both PRANK and ProtPal treat inser-
tions and deletions as phylogenetic events (Figure 3.3). Based on our tests, ProtPal appears
to be the best choice for small to moderately-sized analyses, such as a reconstruction of the
history of proteins at the inter-species level in human evolutionary history. Using ProtPal to
estimate indel rates for ∼ 7, 500 human protein-coding gene families, we find that per-gene
indel rates are approximately gamma-distributed, with 95% of genes experiencing a mean
rate of less than 0.1 indel events per synonymous substitution event. We find that lengths of
inserted and deleted sequences are comparably distributed, having medians 5 and 7, respec-
tively. The human lineage appears to have experienced unusually many insertions since the
human-mouse split. By mapping genes to Gene Ontology (GO) terms, we find that the 200
fastest-indel genes are enriched for regulatory and metabolic functions. Possible applications
and extensions of our algorithm include phylogenetic placement, homology detection, and
reconstruction of structured RNA.

3.2 Results

Computational reconstruction of simulated histories

We undertook to determine the ability of leading bioinformatics programs, including Prot-
Pal, to characterize mutation event histories. We simulated indel histories on a tree, then
attempted to reconstruct the MAP history, Ĥ, using only knowledge of the sequences S
and the phylogeny T (but not the sequence alignment). The history Ĥ is the aligned set of
observed extant and predicted ancestral sequences, such that insertion, deletion, and substi-
tution events can be pinpointed to specific tree branches (though not to specific time points
on those branches).

We then characterized the reconstruction quality both directly, by comparison of Ĥ to
the true H, and indirectly, by using Ĥ to estimate θ, the evolutionary parameters:

θ̂Ĥ = argmaxθ′P (θ′|Ĥ, S, T) = argmaxθ′P (Ĥ, S|T, θ′) (3.1)

where the latter step assumes a flat prior, P (θ′) = const. We then compared the history-
conditioned parameter estimate θ̂Ĥ to the true θ.

This statistic is not without its problems. For one thing, we use an initial guess of θ
to estimate Ĥ. Furthermore, for an unbiased estimate, we should sum over all histories,

104

rather than conditioning on the MAP reconstructed history. This summing over histories
would, however, require multiple expensive calculations of P (S|T, θ), where conditioning on
Ĥ requires only one such calculation. Furthermore, parameter estimation conditioned on a
MAP-reconstructed history is the de facto method employed by large-scale genomics studies
focusing on indels [84–87].

Simulation model parameters

The model parameters are θ = (λi, λd,pi,pd,R): the insertion and deletion rates (λi, λd),
indel length distributions (pi,pd) and substitution rate matrix (R). Here we focus on the
rates (λi, λd).

As described in Appendix B, we generated data using an external simulation tool, indel-
seq-gen, varying insertion (λi), deletion (λd) and substitution rates (r) over a range repre-
sentative of per-gene rates in Amniota evolution (Figure 3.4). We varied indel rates (with
λi = λd) between 0.005 and 0.08 expected indels per unit time, estimating that this range
accounts for 95% of human gene families. We left the substitution model (R) and indel
length distributions (pi,pd) fixed, employing indel-seq-gen’s empirically-estimated values.

We performed simulations on mammalian, amniote and fruitfly phylogenies, using the
taxa in those clades for which genomic sequence is actually available. We found generally
consistent results, with common trends that were most pronounced on the largest of the
three trees that we used (the twelve sequenced Drosophila species [88]). In discussing the
trends, we will refer specifically to the results on this largest of the trees.

Indel rate estimates

Overall most accurate We first set out to determine which program, when used to ana-
lyze a set of unaligned sequences, returns the indel rate estimate closest to the true rate. We

report the ratio of inferred rate to true rate for insertions
λ̂i
Ĥ

λi
and deletions

λ̂d
Ĥ

λd
in Figure 3.1,

with each λ̂∗
Ĥ
∈ {λ̂i

Ĥ
, λ̂d

Ĥ
} defined as θ̂Ĥ in Equation B.2. No parameter estimate derived

from a computationally reconstructed history approaches the level of accuracy achieved using
the true history (labeled “True simulated history” in Figure 3.1).

The results do not always concord with previous benchmarks that have measured ac-
curacy using 3D structural alignments: for example, the FSA program, one of the most
accurate aligners on structural benchmarks [83], performs poorly here. This discordance
may be due to the fundamental differences between evolutionary and structural homology,
and the metrics used to assess each. For instance, consider a region with many nearby and
overlapping insertions and deletions. The spatial and temporal location of these insertion
and deletion events (in particular, the pinpointing of events to branches on the tree) defines
what the “perfect” evolutionary reconstruction is. In contrast, even given perfect knowl-
edge of the insertion/deletion history, a “perfect” structural alignment depends only on the
proteins at the tips of the tree, and this alignment could differ from the true evolutionary
reconstruction.

105

Fundamentally, the difference between FSA and ProtPal is the underlying metric that is
being optimized by each program: FSA attempts to maximize a metric (AMA=Alignment
Metric Accuracy) which is essentially “structural” (in the sense that it predicts how many
residues would be correctly aligned in a pairwise alignment of two leaf-node sequences, as
might be used in structure prediction by target-template alignment), while ProtPal attempts
to maximize a “phylogenetic” metric (the probability of a given evolutionary history). The
metric we have used in our benchmark (which counts correct reconstruction of the number of
indel events on branches of the tree) is also “phylogenetic”. When ranking the programs using
the AMA metric, FSA perfoms well, with accuracy exceeding that of ProtPal in the highest
indel rate category (Figure B.2). This suggests that the differences between our evolutionary
benchmark and previous benchmarks are not due to the data, but rather the types of metrics
that are used to measure alignment accuracy; similarly, the differences between the leading
programs are primarily due to what types of benchmark they are explicitly trying to perform
well at.

All programs other than ProtPal display insertion-versus-deletion biases that are, to a
varying degree, asymmetric. Typically, the asymmetry is that insertions are underrepre-
sented and deletions overrepresented. ProtPal’s bias, which is generally less than the other
programs, is also the most symmetric: reconstructed insertions and deletions are roughly
equally reliable, with both slightly underestimated. Over the distribution of human gene
rates used by this benchmark, our phylogenetic likelihood approach, ProtPal, provides the
most accurate reconstructions of both insertion and deletion counts. PRANK, which also
uses a tree (but no likelihood), avoids insertion-deletion biases to a certain extent, although
insertion rates are slightly underestimated relative to deletion rates. Since ProtPal’s MAP
history estimation appears similar to the optimization algorithm of PRANK, we suspect
that ProtPal’s marginally better performance is due primarily to its main difference in im-
plementation: ProtPal tracks an ensemble of possible reconstructions during progressive tree
traversal (Section 3.4), whereas PRANK uses a single “current best guess.”

Effect of indel rate variation To investigate the effect of indel rate variation on estima-
tion accuracy, we separate each program’s error distributions by indel rate (Figure 3.2). We
find that all programs’ accuracy is strongly affected by the indel rate used in simulation. As

the true indel rate increases, most programs’ estimates drift towards
λ̂∗
Ĥ

λ∗
→ 0. This is consis-

tent with the so-called “gap attraction” effect, where indels that are nearby in sequence can
be misinterpreted as substitution events [90]. Depending on the phylogenetic orientation of
the events, estimated rates can be elevated or lowered, with different biases for insertion and
deletion rates (Figure 3.3).

Gap attraction and other biases operate simultaneously, and are sometimes opposed.
MUSCLE over-estimates the deletion rate under most conditions, but (consistent with a

trend where programs have lower
λ̂∗
Ĥ

λ∗
at higher indel rates) gets the deletion rate roughly

106

correct in the highest-indel-rate category of our benchmark. However, the alignments pro-
duced by MUSCLE at high indel rates are no more “accurate” by pairwise metrics (Fig-
ure B.2). We conjecture that multiple, contradictory types of gap attraction are at work,
e.g. Figures 3.3B and 3.3C.

After ProtPal, the two most accurate reconstruction methods are PRANK and ProbCons
(the latter combined with a parsimonious indel reconstruction). ProbCons produces more
reliable insertion estimates than PRANK in a broad range of benchmark categories, is tied
with PRANK for deletion estimates, and appears robust to indel rate variation. PRANK
performs slightly better than ProbCons in the slowest indel rate category we considered.
ProtPal produces the most reliable estimates overall, outperforming ProbCons in all but the
fastest indel rate category, and PRANK in all but the slowest.

Sensitivity to substitution rate As compared to variation of simulated indel rate, vari-
ation of simulated substitution rate appears to have little effect on the accuracy of indel
reconstruction (Figure B.3). One notable exception is FSA, which appears to be affected
by the substitution rate more than the other programs. For example, when the simulated
indel and substitution rates are both low, FSA is comparable to the most accurate of the
other programs (ProtPal); but when the substitution rate is increased, FSA’s error is greater
than the least accurate program (CLUSTALW). Errors in estimating the substitution rate
are comparable among the programs tested, and are similarly correlated with the simulation
indel rate (Figure B.4).

Reconstructed indel histories of human genes

We present here a comprehensive set of reconstructions accounting for the evolutionary his-
tory of individual codons in human genes. We used genes in the Orthologous and Paralogous
Transcripts in Clades (OPTIC) database’s Amniota set, comprised of the 5 mammals H.
sapiens, M. musculus, C. familiaris, M. domestica, O. anatinus and G. gallus as an out-
group [91]. Considering only those families with one unique ortholog per species (approx-
imately 7,500 families), we combined tree branch statistics across genes, using the species
tree in Figure B.6 . Our reconstructions are available at http://biowiki.org/~oscar/

optic_reconstruction.tar, and we provide here various graphical summaries of Amniota
evolutionary history. Several negative results stand in contrast to earlier-reported trends.

Indel rates Insertion and deletion rates are approximately gamma-distributed (Figure 3.4).
Roughly 95% of genes have indel rates < 0.1 indels per synonymous substitution.

http://biowiki.org/~oscar/optic_reconstruction.tar
http://biowiki.org/~oscar/optic_reconstruction.tar

107

Phylogenetic origins In our simulations, ProtPal pinpoints residues’ “branch of origin”
more reliably than other tools, with a 93% accuracy rate (Figure B.1). Many codons appeared
to have been inserted following the human-mouse split (Figure B.1)

Branch-specific indel rates Using our reconstructions to estimate the rates of indel
mutations along specific tree branches, we find evidence of an elevated insertion rate in
the human (black) branch, as well as on the the Amniota - Australophenids (pink) branch
(Figure B.5).

Amino acid distributions Distributions over amino acids differ significantly between
inserted, deleted and non-indel sequences (Figure B.7). In general, small residues are over-
represented in insertions, in agreement with previous studies [92].

Indel lengths We find, contrary to a previous study in Nematode [93], that length distribu-
tions in the Amniotes are nearly identical between insertions and deletions (Figure B.8). The
previously-reported result may be attributable to the deletion-biased nature of the methods
used, particularly CLUSTALW and MUSCLE [93].

Indel position The position of indels within genes is highly biased towards the ends of
genes, presumably in large part reflecting annotation error (Figure B.9). The bias is strongest
for deletions at the N-terminus of the gene, but both insertions and deletions are enriched
in both C- and N- termini.

Evolutionary context of indel SNPs We find no general correlation between the indel
rate for a gene and the number of indel polymorphisms recorded for that gene in dbSNP [94]
(Figure B.10).

Gene ontology indel rates No Gene Ontology (GO) categories stand out as having
significantly lowered or heightened indel rates in any of the three ontologies, contrasting with
the reported results of a 2007 study using a smaller number of genes [92]. An enrichment
analysis conducted with GOstat [95] showed that the 200 fastest evolving genes in our data
are significantly enriched for regulatory and metabolic functions.

3.3 Discussion

We developed and analyzed a simulation benchmark that compares programs based on their
reconstructions of evolutionary history, using instantaneous mutation rates representative
of Amniote evolution. We tested several different tree topologies; results were similar on

108

all trees, but most pronounced on the tree with the longest branch lengths. We find that
most programs distort indel rate measurements, despite claims to the contrary. Moreover,
the systematic bias varies significantly when the rates of substitutions and indels are varied
within a biologically reasonable range. Many of the programs we rated have been ranked in
the past, but using benchmarks that use protein structural alignments as a gold standard,
rather than evolutionary simulations. Furthermore, these previous benchmarks have not
directly assessed the reconstruction of evolutionary history (or summary statistics such as the
indel rate), but have used other alignment accuracy metrics such as the Sum of Pairs Score.
Alignment programs that perform weakly on our benchmark have apparently performed well
on these previous benchmarks. We hypothesize that these benchmarks, compared to ours,
are less directly predictive of a program’s accuracy at historical reconstruction, although
they may better reflect the program’s suitability to assist in tasks relating more closely to
folded structure, like prediction of a protein’s 3D structure from a homologous template.

We have introduced a new notation that describes a general, hidden Markov model-
structured likelihood function for indel histories on a tree, as well as the structure of the cor-
responding inference algorithm. We have implemented the new method in a freely-available
program, ProtPal, that allows, for the first time, phylogenetic reconstruction with accuracy
over a broad range of indel rates. ProtPal is written in C++ as a part of the DART pack-
age: www.biowiki.org/ProtPal. The evolutionary reconstructions ProtPal produces are,
according to our simulated tests, the most accurate of any available tool, for a range of
parameters typical of human genes.

We applied ProtPal to the reconstruction of human gene indel history, using families of
human gene orthologs from the OPTIC database. We find some patterns that agree with
previous studies, such as the non-uniform distributions over amino acids seen in [92]. Other
results stand in contrast - a previous study found significantly different length distributions
for insertions and deletions [93], whereas in our data they appear very similar. Another
prediction of our reconstruction is an elevated rate of insertions on the human branch since
the human-mouse split. This contrasts with a previous analysis [97], though the data therein
was whole genomes, rather than individual protein-coding genes. In contrast to [92], we find
no obvious predictive power of the Gene Ontology (GO) for indel rates; that is, the indel rate
does not appear strongly correlated with the presence or absence of any particular GO term-
gene association. However, enrichment analysis for GO terms using GOstat [95] showed that
the 200 fastest-evolving genes are significantly enriched for regulatory and metabolic func-
tion. This apparent discrepancy might be explained by a group of regulatory and metabolic
genes which have very high indel rates, but whose small number prevent them from skewing
the average within their GO categories.

Many applications which use a fixed-alignment phylogenetic likelihood could potentially
benefit from ProtPal’s reconstruction profiles. For example, phylogenetic placement algo-
rithms estimate taxonomic distributions by evaluating the relative likelihoods of placing
sequence reads on tree branches [39]. By using sequence profiles exported from ProtPal,
these reads could be placed with greater attention to indels and a more realistic account-
ing for alignment uncertainty. Homology detection could be done in a similar way, thereby

www.biowiki.org/ProtPal

109

making use of the phylogenetic relationship of the sequences within the reference family. It
has been observed that the detection of positive selection is highly sensitive to the alignment
used [72]. ProtPal could be modified to detect selection using entire profiles rather than
single alignments, potentially eliminating the bias brought on by an inaccurate alignment.

In summary, multiple alignments are frequently constructed for use in downstream evo-
lutionary analyses. However, except for our method and slow-performing MCMC methods,
there are no software tools for reconstructing molecular evolutionary history that explicitly
maximize a phylogenetic likelihood for indels. Our results strongly indicate that algorithms
such as ProtPal (which use such a phylogenetic model) produce significantly more reliable
estimates of evolutionary parameters, which we believe to be highly indicative of evolution-
ary accuracy. These results falsify previous assertions that existing, non-phylogenetic tools
are well-suited to this purpose. Furthermore, we have demonstrated that it is possible to
achieve such accuracy without sacrificing asymptotic guarantees on time/memory complex-
ity, or resorting to expensive MCMC methods. ProtPal can reconstruct phylogenetic histories
of entire databases on commodity hardware, enabling the large-scale study of evolutionary
history in a consistent phylogenetic framework.

3.4 Methods

The details concerning generation and analysis of simulated data are contained in Appendix
B .

Felsenstein’s algorithm for indel models

Our algorithm may be viewed as a generalization of Felsenstein’s pruning recursion [7], a
widely-used algorithm in bioinformatics and molecular evolution. A few common applications
of this algorithm include estimation of substitution rates [30]; reconstruction of phylogenetic
trees [31]; identification of conserved (slow-evolving) or recently-adapted (fast-evolving) el-
ements in proteins and DNA [32]; detection of different substitution matrix “signatures”
(e.g. purifying vs diversifying selection at synonymous codon positions [33], hydrophobic
vs hydrophilic amino acid signatures [34], CpG methylation in genomes [35], or basepair
covariation in RNA structures [36]); annotation of structures in genomes [37,38]; and place-
ment of metagenomic reads on phylogenetic trees [39]. We present a compact description of
our method in the context of Felsenstein’s algorithm here, while a complete mathematical
treatment can be found in Chapter 2.

Felsenstein’s algorithm computes P (S|T, θ) for a substitution model by tabulating inter-
mediate probability functions of the form Gn(x) = P (Sn|xn = x, θ), where xn represents the
individual residue state of ancestral node n, and Sn represents all the sequence data that
is causally descended from node n in the tree (i.e. the observed residues at the set of leaf
nodes whose most recent common ancestor is node n).

110

The pruning recursion visits all nodes in postorder. Each Gn function is computed in
terms of the functions Gl and Gr of its immediate left and right children (assuming a binary
tree):

Gn(x) = P (Sn|xn = x, θ)

=

{ (∑
xl
M

(l)
x, xlGl(xl)

)(∑
xr
M

(r)
x, xrGr(xr)

)
if n is not a leaf

δ(x = Sn) if n is a leaf

where M
(n)
ab = P (xn = b|xm = a) is the probability that node n has state b, given that its

parent node m has state a; and δ(x = Sn) is a Kronecker delta function terminating the
recursion at the leaf nodes of the tree. These Gn functions are often referred to as “messages”
in the machine-learning literature [40].

Our new algorithm is algebraically equivalent to Felsenstein’s algorithm, if the concept
of a “substitution matrix” over a particular alphabet is extended to the countably-infinite
set of all sequences over that alphabet. Our chosen class of “infinite substitution matrix”
is one that has a finite representation: namely, the finite-state transducer, a probabilistic
automaton that transforms an input sequence to an output sequence, and a familiar tool of
statistical linguistics [44].

By generalizing the idea of matrix multiplication (AB) to two transducers (A and B),
and introducing a notation for feeding the same input sequence to two transducers in parallel
(A ◦B), we are able to write Felsenstein’s algorithm in a new form:

Gn =

{ (
M (l)Gl

)
◦
(
M (r)Gr

)
if n is not a leaf

∇(Sn) if n is a leaf

where ∇(Sn) is the transducer equivalent of the Kronecker delta δ(x = Sn). The function
Gn is now encapsulated by a transducer “profile” of node n.

This representation has complexity O(LN) for N sequences of length L, which we reduce
toO(LN) by stochastic approximation of the Gn. This approximation relies on the alignment
envelope [53], a data structure introduced by prior work on efficient alignment methods. The
alignment envelope is a subset of all the possible histories in which most of the probability
mass is concentrated. A related data structure is the partial order graph [43]. Both these
data structures can be viewed as ensembles of possible histories, in contrast to a single “best-
guess” reconstruction of the history. Figure 3.5 shows a state graph, with paths through it
corresponding to histories relating the two sequences GL and GIV. The paths highlighted
in blue form a partial order graph, corresponding to a subset of these histories generated
by a stochastic traceback. At each progressive traversal step, we sample a high-probability
subset of alignments of two sibling profiles in order to maintain a bound on the state space
size. Note that if we sample only the most likely path at every internal node, we essentially
recover the progressive algorithm of PRANK, and if we sample and store all solutions, we
recover the machine Gn with state space of size O(LN).

111

OPTIC data analysis

Data Amniote gene families were downloaded from http://genserv.anat.ox.ac.uk/

downloads/clades/. We restricted our analysis to the ∼ 7,500 families having simple 1:1
orthologies. The same species tree topology (downloaded from http://genserv.anat.ox.

ac.uk/clades/amniota/displayPhylogeny was used for all reconstructions, though branch
lengths were estimated separately for each family as part of OPTIC. When computing
branch-specific indel rates, the branch lengths of the species tree were used.

Reconstruction and rate estimation Gene families were aligned and reconstructed
using ProtPal with a 3-rate class Markov chain over amino acids, insertion and deletion rates
set to 0.01, and 250 traceback samples. Averaged and per-branch indel rates were computed
with ProtPal using the -pi and -pb options. The indel rates were then normalized by the
synonymous substitution rate for each corresponding nucleotide alignment (taken directly
from OPTIC), computed with PAML [96]. Residues’ origins were determined by finding the
tree node closest to the root containing a non-gap reconstructed character.

External data Genes were mapped to Gene Ontology terms via the mapping downloaded
from http://www.ebi.ac.uk/GOA/human_release.html during 10/2010. Indel SNPs per
gene were taken from a table downloaded from Supplemental Table 5 of [98].

Additional supporting information

Appendix B contains techinical details concerning generation of simulation data, analysis of
OPTIC data, as well as additional figures pertaining to both simulated and OPTIC data.

http://genserv.anat.ox.ac.uk/downloads/clades/
http://genserv.anat.ox.ac.uk/downloads/clades/
http://genserv.anat.ox.ac.uk/clades/amniota/displayPhylogeny
http://genserv.anat.ox.ac.uk/clades/amniota/displayPhylogeny
http://www.ebi.ac.uk/GOA/human_release.html

112
0

10
0

30
0

0.17

0
10

0
30

0

0.17

0
50

15
0

0.25

0
50

10
0

20
0

0.25

0
50

15
0

25
0

0.40

0
50

10
0

20
0

0.34

0
50

10
0

15
0

0.45

0
50

10
0

20
0

0.37

0
50

15
0

0.57

0
50

10
0

15
0

1.11

0
50

10
0

20
0

0.58

0
50

10
0

15
0

0.57

0
50

15
0

25
0

0.28

0
50

15
0

25
0

0.27

0
50

10
0

15
0

20
0

0.39

0
50

15
0

25
0

0.35

0
20

40
60 2.38

0
20

40
60 2.38

0
20

40
60

80 3.14

0
20

40
60

80 3.14

0 1 2 3 4 5 0 1 2 3 4 5
Inferred rate

True simulated rate
Inferred rate

True simulated rate

Insertion Rates Deletion Rates
RMSE RMSE

Fr
eq

ue
nc

y

True Simulated History

ProtPal

PRANK

MUSCLE

FSA

CLUSTALW

ProbCons

MAFFT

DAWG lambda using MUSCLE alignment

DAWG lambda using FSA alignment

True Simulated History

ProtPal

PRANK

MUSCLE

FSA

CLUSTALW

ProbCons

MAFFT

DAWG lambda using MUSCLE alignment

DAWG lambda using FSA alignment

Figure 3.1: ProtPal’s estimates of insertion and deletion rates are the most accurate of any

program tested, as measured by the RMSE of
λ̂∗
Ĥ

λ∗
values aggregated over all substitution/indel

rate categories. Quantiles containing 90% of the data are shown as a bolded portion of the x-
axis, and RMSE is shown to the right of each distribution, the latter computed as described in
Appendix B Equation 1. No aligner approaches the accuracy of the rates estimated with the
true alignment, though ProtPal, PRANK, and ProbCons are the top three, with ProtPal
as the most accurate over all. Many aligners, particularly MUSCLE, CLUSTALW, and
MAFFT, significantly underestimate insertion rates and overestimate deletion rates. ProtPal
and PRANK perform their own ancestral reconstruction and other alignment programs were
augmented with a most-recent-common-ancestor (MRCA) parsimony as described in [89].

113

0
50

10
0

15
0

0.29
0.19
0.13
0.09
0.07 0

50
10

0
15

0

0.27
0.19
0.13
0.09
0.07

0
20

40
60

80 0.28
0.19
0.16
0.23
0.43 0

20
40

60
80

0.28
0.18
0.15
0.22
0.43

0
50

10
0

15
0

0.27
0.24
0.28
0.43
0.64 0

40
80

12
0

0.27
0.19
0.17
0.33
0.59

0
20

60
10

0

0.31
0.23
0.30
0.49
0.74 0

20
60

10
0

0.42
0.42
0.44
0.33
0.10

0
10

30
50

0.41
0.50
0.60
0.72
0.59 0

20
40

60

0.88
1.12
1.36
1.28
0.81

0
50

10
0

15
0

0.31
0.32
0.48
0.69
0.87 0

20
40

60
80

0.72
0.73
0.62
0.32
0.31

0
40

80
12

0

0.34
0.22
0.16
0.23
0.39 0

20
40

60
80

0.35
0.30
0.29
0.22
0.10

0
20

60
10

0

0.33
0.21
0.24
0.39
0.62 0

40
80

12
0

0.42
0.40
0.41
0.32
0.07

0
10

20
30

40
50

2.99
2.96
2.60
1.90
0.96 0

10
20

30
40

50

2.99
2.96
2.60
1.90
0.96

0
10

20
30 3.04

3.18
3.22
3.29
3.04 0

10
20

30 3.04
3.18
3.22
3.29
3.04

True Simulated History

ProtPal

PRANK

MUSCLE

FSA

CLUSTALW

ProbCons

MAFFT

DAWG lambda using MUSCLE alignment

DAWG lambda using FSA alignment

0 1 2 3 4 5 0 1 2 3 4 5
Inferred rate

True simulated rate
Inferred rate

True simulated rate

Insertion Rates Deletion Rates

Fr
eq

ue
nc

y

0.005
0.01
0.02
0.04
0.08

Indel rate

RMSE RMSE
True Simulated History

ProtPal

PRANK

MUSCLE

FSA

CLUSTALW

ProbCons

MAFFT

DAWG lambda using MUSCLE alignment

DAWG lambda using FSA alignment

Figure 3.2: Rate estimation accuracy is highly dependent on the simulated indel rate. For
instance, PRANK is more accurate at lower indel rates, ProbCons is more accurate at higher
rates. ProtPal is more accurate than PRANK in all but one rate (0.005) and equal or more
accurate than ProbCons in all but one rate (0.08). The drift towards inferred

true
= 0 exhibited

by most programs indicates that most programs infer proportionally fewer indels as rates
are increased, likely due to various forms of gap attraction. Color-coded 90% quantiles and
RMSEs are shown underneath and to the right of each group of distributions, respectively.
RMSE is computed as described in Appendix B Equation 1

114

-
G
-
-
-

-
C
-
-
-

A
-
-
-
-

T
-
-
-
-

A
A
A
A
A

G
A
-
-
-

C
T
-
-
-

A
A
A
A
A

-
-
G
-
-

-
-
C
-
-

A
A
-
A
A

T
T
-
T
T

A
A
A
A
A

A
A
G
A
A

T
T
C
T
T

A
A
A
A
A

G
-
-
-
-

C
-
-
-
-

-
-
-
-
A

-
-
-
-
T

A
A
A
A
A

G
-
-
-
A

C
-
-
-
T

A
A
A
A
A

True alignment Inferred alignment

Insertions nearby both in sequence and on the tree. Multiple substitutions inferred instead of multiple
nearby indels. Insertions are underestimated,

deletions are unaffected.

One sequence experiences nearby insertion and
deletion events.

Multiple substitutions inferred instead of multiple
indels. Insertions and deletions are both

underestimated.

Insertions are nearby in sequence, but distant on
the tree.

Three independent deletions are inferred instead of
two insertions. Insertions are underestimated and

deletions are overestimated.

A

B

C

PRANK and ProtPal are effectively robust to
situation C by treating insertions and deletions as

phylogenetic events.

Insertion event

Deletion event

Key

Figure 3.3: Gap attraction, the canceling of nearby complementary indels, can affect in-
sertion and deletion rates in various ways depending on the phylogenetic relationship of
the sequences involved. All programs are, to some extent, sensitive to situations A and B
whereas phylogenetic aligners can avoid situation C. An insertion at a leaf requires gaps at
all other leaves - an understandably costly alignment move when gaps are added without
regard to the phylogeny, resulting in multiple penalization for each insertion. Such a
penalization would cause most non-phylogenetic aligners to prefer the “Inferred alignment”
in case C where there are fewer total gaps. Aligners treating indels as phylogenetic events
would penalize each of the implied multiple deletions and only penalize each insertion once,
thus preferring the “True alignment” in case C.

115

0.00 0.05 0.10 0.15 0.20

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

95% of rates

Insertion Rates - OPTIC Deletion Rates - OPTIC

Insertions per synonymous substitution Deletions per synonymous substitution

95% of rates

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y
0.

00
0

0.
00

5
0.

01
0

0.
01

5
0.

02
0

0.
02

5

0.00 0.05 0.10 0.15 0.20

Figure 3.4: Insertion and deletion rates in Amniota show similar distributions, with 95% of
genes having rates less than approximately 0.1 indels per synonymous substitution. Insertion
and deletion rates were estimated using reconstructions done with ProtPal from a set of
approximately 7,500 protein-coding genes from the OPTIC amniote database [91]. Indel
rates were normalized by the synonymous substitution rate of each gene as computed with
PAML [96] so that the plotted rate represents the number of expected indels per synonymous
substitution. Since these rates are conditioned on the MAP reconstructed history, there are
many alignments whose inferred indel rates are zero (197, 174, and 54 for insertions, deletions,
and both, respectively).

116

Start

End

G

L

G I VKey
Observed extant character

Unknown ancestral character
No homologous character

Deletion along branch
Insertion along branch

No insertion or deletion

Figure 3.5: Each path through this state graph represents a possible evolutionary history
relating sequences GL and GIV. By using stochastic traceback algorithms (sampling paths
proportional to their posterior probability, blue highlighted states and transitions), it is
possible to select a high-probability subset of the full state graph. By constructing such a
subset at each internal node, it is possible to maintain a bound on the state space size during
progressive tree traversal while still retaining an ensemble of possible histories.

117

Chapter 4

HandAlign: MCMC for exact
Bayesian inference of alignment, tree,
and parameters

118

The following section contains work conducted with Lars Barquist and Ian Holmes published
in Bioinformatics [99].

Overview

We describe handalign, a software package for Bayesian reconstruction of phylogenetic his-
tory. The underlying model of sequence evolution describes indels and substitutions. Align-
ments, trees, and model parameters are all treated as jointly-dependent random variables
and sampled via Metropolis-Hastings Markov chain Monte Carlo (MCMC), enabling system-
atic statistical parameter inference and hypothesis testing. handalign implements several
different MCMC proposal kernels, allows sampling from arbitrary target distributions via
Hastings ratios, and uses standard file formats for trees, alignments and models.

Availability and Implementation:

Installation and usage instructions are at http://biowiki.org/HandAlign

4.1 Background

Multiple sequence alignments constitute a central part of many bioinformatics workflows.
Commonly, an alignment is built from primary sequences, a tree is reconstructed from this
alignment, and various analyses are run using the alignment and/or tree.

This can be problematic for several reasons. First, inference of the tree and alignment is
likely to be uncertain: many alternative trees or alignments may explain the data comparably
well. Downstream analyses which assume the tree and alignment to be true ignore this
uncertainty, and potentially inherit embedded bias and error [67,73,100–102].

Second, this flow of information is circular: alignment algorithms often (implicitly or
explicitly) make use of a guide tree, while tree- and model-fitting algorithms typically use
an alignment as input. This leads to a chicken-and-egg situation [73,103,104].

In attempted resolution of these problems, the field of statistical alignment methods
unifies alignment and tree-building as related inference tasks under a phylogenetic likelihood
function [42,105–107]. The handalign software is one such tool, building on a range of prior
work in this area [46,108,109].

4.2 Sampling alignments, trees, and parameters

handalign implements a Bayesian model of sequence phylogeny with separate substitution
and indel components. To perform inference of unknown variables (i.e. trees, ancestral
sequences, or parameters) under this model, handalign makes use of Markov chain Monte
Carlo sampling (MCMC). We cannot directly observe the indel history (H), tree (T), or

http://biowiki.org/HandAlign

119

evolutionary model parameters (θ). However, we can estimate their a posteriori probability
distribution, conditional on what we do observe: the extant sequences (S). That is, we aim
to sample (H,T, θ|S). Explicitly marginalizing H, T and θ is infeasibly expensive: there
are combinatorially many trees T and histories H, and continuously-varying parameters θ.
MCMC provides a powerful alternative way to sample from (H,T, θ|S) that is often not
much more expensive than computing the joint likelihood of (H,T, θ, S).

Informally, MCMC randomly walks the space of (H,T, θ) tuples, the number of steps
spent at a particular tuple converging to the posterior probability P (H,T, θ|S). The result
is a series {(Hn, Tn, θn)} of samples from the posterior.

Depending on the investigator’s goals, various analyses can then be performed using the
collection of tuples {(Hn, Tn, θn)}. The ensemble can be summarized with a single “consen-
sus” alignment or tree,including confidence levels (e.g. the probability that a given subset
of species form a monophyletic clade, or that a given column is correct) [108]. Alternatively,
downstream computations can be averaged over the ensemble: the sampled parameters can
be used to estimate modes and moments (e.g. the most likely indel rate), or detect signatures
of interest (e.g. positive selection).

As well as MCMC, handalign can perform a stochastic search using the same underlying
model, but returning a single best-guess (H,T, θ) rather than a collection of such tuples.

4.3 Capabilities

Given unaligned FASTA-format sequences, or (optionally) an “initial guess” in the form of
a Stockholm-format alignment with an embedded Newick-format tree. handalign performs
N × |S| sampling steps (where |S| is the number of input sequences). Each step uses one
of the MCMC kernel moves (described below) to update one of H,T , or θ. If requested
(via a command-line option), the new tuple (H,T, θ) is logged to a file. If operated in
“Stochastic search” mode, a greedy local search is performed every K samples to find the
most likely nearby alignment. After N × |S| samples, the final (H,T, θ) tuple is output in
Stockholm+Newick format.

Indel models: The insertion-deletion model is an affine-gap transducer approximation
[110] to a Long Indel birth-death process [55] with insertion rate λ, deletion rate µ, deletion
extension probability r. The approximation is that indel events never overlap on the same
branch. Other indel length distributions, such as TKF91 [54] or mixture-geometric, can be
used.

Substitution models: Any parametric continuous-time Markov chain can be used to
model character evolution, via the file format of the companion program xrate [18]. For
instance, 20N -state amino acid models (with N -valued hidden states [111]) and 64-state
codon models have been used. Parameters of these substitution models can be sampled,

120

allowing alignment-free estimation of statistics such as Ka/Ks. Ancestral characters are
summed out [46]; they can be imputed using xrate.

Tree prior: The prior over tree topologies is uniform, with a weak exponential prior over
total branch length. Alternate priors can be implemented using the “Arbitrary target dis-
tribution” mechanism.

Arbitrary target distribution: handalign allows any tree/alignment probability model
to be implemented over a Unix pipe and used in a Metropolis-Hastings accept/reject step.

MCMC kernel moves: The relative proportions of the various sampling moves can be
set on the command line. All are variants of Gibbs-sampling moves. Some are full Gibbs
(perfectly mixing the sampled variables at every step); others utilize Metropolis-within-
Gibbs [112] or a variant of importance sampling that includes the current point in the list
of accessible points. The individual moves vary in the dependence of their complexities on
the input sequence length, L. The worst-case complexity with default settings is O(L2),
comparable to BaliPhy [108].

Stochastic search: handalign can be used to do a partially-randomized greedy search,
yielding a relatively quick, approximate maximum likelihood estimate for the alignment
and/or tree, in addition to a full MCMC trace. The iterative refinement command-line
option interrupts the MCMC run periodically to perform a greedy (Viterbi) search for the
locally-maximal alignment close to the current sample.

Alignment banding: As the DP matrix may be costly to fill, both in time and memory,
users may specify an alignment “band” as a heuristic constraint. Command-line options can
be used to prevent visiting cells more than M positions away from the current alignment
path. This has the effect of causing indels longer than M to be excluded, but is otherwise
ergodic, and generally converts an O(La) step into an O(LMa−1) step (for a ≥ 2).

HMMoC adapter: handalign can optionally make use of the Hidden Markov Model
Compiler hmmoc [113] to craft optimized C++ code for DP-based sampling steps. This
typically speeds things up by a large constant factor.

MCMC trace analysis: The DART package includes several scripts for summarizing
MCMC traces. constock.pl finds a consensus alignment and uses ANSI terminal color
to render posterior probabilities of individual columns (Figure 4.1). Alternatively, trees
can be extracted using stocktree.pl and a separate program, such as CONSENSE in
the PHYLIP package, used to estimate consensus trees. handalign sampling traces use
Stockholm alignment format to embed trees and parameters. A trace can be rendered
as an ANSI terminal color animation using stockfilm.pl, converted into other common

121

formats (see http://biowiki.org/StockholmTools) or the parameters extracted and their
distribution analyzed (Figure 4.2).

Current limitations and performance: The O(L2) complexity may be limiting for
longer sequences (e.g. genomes); alignment banding should ameliorate this (but its effect
on mixing performance is untested). Underflow/precision issues may potentially be an issue
with larger trees. A ongoing compilation of comparison tests is here: http://biowiki.org/
HandAlignBenchmark

Figure 4.1: A summary alignment of SIV/HIV gp120 proteins produced by constock.pl.
Posterior probabilities of alignment columns are shown on the “PP” line (most significant
decimal digit) and by ANSI terminal color (white-on-cyan is most reliable, blue-on-black is
least). Hypervariable (hV) region 5 [114] corresponds with a low-confidence region.

http://biowiki.org/StockholmTools
http://biowiki.org/HandAlignBenchmark
http://biowiki.org/HandAlignBenchmark

122

Figure 4.2: The indel rate of the SIV/HIV gp120 protein has most of its probability mass
concentrated between 0.04 and 0.06 indels per substitution. handalign was run for 90
minutes on a 3.4 GHz CPU, generating 2000 samples (500 discarded as burn-in). Every fifth
sample is plotted; the entire trace was used to estimate the density.

123

Part II

Methods utilizing a multiple sequence
alignment

124

Chapter 5

Predicting the functional effects of
polymorphisms using mutation rate

125

Overview

Predicting the phenotype resulting from non-synonymous mutations is an important goal
of genomic sequence analysis. Computational approaches to this problem have made use
of biochemical, structural, or comparative information in order to predict whether or not a
mutation will impair the protein’s function. In this work we employ phylogenetic models
for sequence evolution to predict the mutability at each position of a protein, using the
mutation rate as an informative statistic. Using four large-scale mutagenesis datasets, we
evaluate our approach next to leading methods, finding that ours is the most accurate among
the programs and datasets tested. More datasets are urgently needed to robustly evaluate
the growing number of tools for this sort of analysis.

5.1 Background

Large-scale sequencing projects are steadily discovering single nucleotide polymorphisms
(SNPs) that underlie human genetic diversity [115–117]. Beyond providing insights into hu-
man evolution and ancestry, these SNPs could provide clues to the genetic basis underlying
diseases. Associating SNPs with disease is the goal of the so called genome-wide associa-
tion study (GWAS): given a set of haplotypes annotated with disease conditions, determine
which SNPs are statistically associated with diseases. For many diseases, relevant genetic
mutations have been discovered using statistical GWAS studies [8–11]. However, SNPs may
coincidentally lie on the same haplotype as a disease-causing SNP, or otherwise be unrelated
to its predicted disease.

A complementary approach involves predicting the functional effect that a given SNP
will have on its protein, without knowledge of associated disease. Popular methods like
SIFT [12], PolyPhen [13], PMut [14], and ASP [15] use computations involving structural,
comparative, or evolutionary features to separate SNPs into neutral (do not affect function)
and deleterious (disrupt function) classes.

Structural predictors use biochemical or mechanistic models to predict whether a mu-
tation is likely to impair function, either via misfolding or modification of key residues.
Comparative analysis (e.g. SIFT [12]) uses related sequences, with the idea that if particu-
lar mutations are accepted in homologs (which are assumed functional), then they are likely
to be tolerated in the query sequence. Evolutionary approaches take comparative analysis
one step further, incorporating the phylogenetic relationship between the query’s homologs
in the mutability prediction. For instance, the ASP statistic measures how long ago (in
evolutionary time) a given position experienced a mutation [15].

Our method extends the phylogenetic approach of ASP by using models for sequence
evolution to estimate the mutation rate for each column of a query-homologs alignment.
Modeling variations in mutation rate to detect regions of interest is a common technique in
phylogenetics, and has been used to detect conserved regions, lineage-specific selection [118],
and evolutionary differences in HIV subtypes [119]. In applying mutation rate measurements

126

to SNP analysis, the high level idea is that a faster evolutionary rate correlates with tolerance
to mutation: if the evolutionary process has “tried” and accepted many mutations at a given
position, it is more likely that mutation of the current sequence will be tolerated.

Our approach is distinct from SIFT in that it leverages phylogenetics to account for
the non-independence of the selected homologs. It may often be the case that homologous
sequences do not lie at perfectly uniform evolutionary distance from the query, and by
modeling the evolutionary relationships between them, this bias need not affect the resulting
predictions. For instance, in Figure 5.1, related sequences display large divergence but slow
mutation rates at the position in question. SIFT would predict greater mutability at this
position than would a mutation rate-based score. Our method is distinct from the ASP score
as our quantitative measure is based on the entire tree relating all the alignment’s sequences
as opposed to focusing only on the query’s lineage. Further, we estimate the mutation rate
as a parameter to a probabilistic model, rather than using a discrete tree-dependent count.

Despite the simplicity of the current model used, our approach performs best on the four
datasets we investigated, leading us to believe that mutation rate is an informative quantity
in predicting SNP phenotype. It is possible that other phylogenetic measures or models
could be applied to this problem. For instance, features such as protein secondary structure
and differences in amino acid sizes could be incorporated in a straightforward way.

It is difficult to draw robust conclusions from so few datasets, and so we hope that the
improvement of SNP phenotype prediction methods spurs the creation of more datasets of
this kind.

The model used to estimate mutation rates is available as an XRate grammar as part of
the DART package [18], available via git: https://github.com/ihh/dart. The script used
to convert a grammar to a list of SNP mutability scores is also included in DART.

5.2 Results

We tested four programs on four datasets (as described in Materials and Methods) in order
to determine the relative accuracy of phylogenetic measurements to predict mutation toler-
ance. The methods tested were SIFT [12], PMut [14], ASP [15], and our XRate-based rate
measurement ColumnRates. The four publicly-available SNP-phenotype datasets used were
HIV protease [120], lysozyme [121], LacI [122], and CBS [123]. For each of the datasets,
the alignment that SIFT generates was used for the XRate and ASP analyses, so that this
variable would be unable to contribute to differences between them. Since ASP and Colum-
nRates return quantitative measures rather than dichotomous results, score cutoffs separat-
ing neutral and deleterious SNPs were estimated for each dataset using the remaining three
datasets. PMut and SIFT were run using default settings. After each of the methods was
run on the datasets, the predictions were compared against the measured phenotypes, with
the results summarized via the BER statistic, shown in Figure 5.2. Additional detail on the
testing setup is provided in Materials and Methods, and performance measured using other
summary statistics is shown in Appendix C.

https://github.com/ihh/dart

127

Overall accuracy

Figure 5.2 displays the accuracies of the four programs on each of the four datasets, as com-
puted by the balanced error rate (BER) statistic. The BER measure (defined in Methods)
was used since the datasets have different ratios of functional to nonfunctional mutations.
Most methods lie between 0.6 and 0.8, with the exception of our implementation of the
ASP metric, which categorizes only approximately 50% of SNPs correctly. It should be
emphasized that since we were unable to find a general-purpose implementation of ASP, we
implemented our own version following the description in [15] as closely as possible. Thus,
it is possible that certain aspects of their method are missing in our implementation, which
could contribute to its poor performance.

Despite this caveat, the ASP score does remarkably poorly on all the datasets tested.
When optimizing the score cutoff separately for each dataset (shown in Appendix C), ASP
does much better, outperforming SIFT on the Lysozyme and LacI datasets. This suggests
that ASP is sensitive to the specified score cutoff, which may limit its applicability to proteins
with no training data. In [15], the ASP score cutoff was set to ensure categorizing all the
functional SNPs correctly, which essentially amounts to using 100% of the test data and
maximizing the True Negative Rate during training. Further, their dataset on the MTHFR
protein contained only 30 SNPs - too few to allow statistically reliable conclusions. These
two factors may have contributed to the underestimation of ASP’s robustness.

The accuracy of PMut [14] lies between ASP and SIFT on all datasets. ColumnRates is
slightly more accurate than SIFT on all datasets. The quantities that SIFT and ColumnRates
measure are different but related. SIFT estimates the prevalence of a given residue at a
particular position given a collection of aligned related sequences and a prior distribution
over residues. ColumnRates measures the evolutionary rate of a particular position given
an alignment of related sequences and a tree relating them. Intuitively, a higher mutation
rate will likely give rise to more diversity at the leaves of the tree (which is what SIFT
measures). Depending on the phylogenetic relationship between the sequences, however, the
opposite may not always be true: sequence diversity among observed sequences could be
due to divergence rather than frequent mutations. Figure 5.1 shows examples of cases where
SIFT, ASP, and ColumnRates may make differing predictions. ColumnRates’s integration
of phylogenetic relationships into its predictions may contribute to its increased accuracy
relative to SIFT.

5.3 Discussion

We have presented a new tool for the prediction of SNP phenotypes which uses uses the
phylogenetic mutation rate at each position as the mutability score. This method uses XRate,

128

Figure 5.1: SIFT, ASP, and ColumnRates differ in the ways they use comparative sequence
information to predict SNP phenotype, often resulting in different predictions, indicated
with + and - symbols under each of the columns. The stars indicate possible locations
of mutations required to explain the diversity in the multiple alignment at right. The left
column displays high diversity of characters, causing SIFT to predict mutation tolerance.
Viewed in a phylogenetic context, the mutations required for the observed diversity all lie
on relatively long branches, causing ColumnRates to estimate a slow mutation rate, leading
to a prediction of mutational sensitivity. In the right column, ASP and ColumnRates make
different predictions: the multiple mutations in the root-Query path cause ASP to predict
mutational tolerance, whereas ColumnRates’s whole-tree measurement makes use of the
strong conservation in the D-I clade, measuring a low mutation rate and hence predicting
mutational sensitivity.

129
1−

BE
R

0.
0

0.
2

0.
4

0.
6

0.
8

SNP phenotype prediction accuracy

Lysozyme LacI HIV protease CBS
Test dataset

ColumnRates
SIFT

PMut
ASP

Figure 5.2: In a comparison using four publicly-available datasets, phylogenetic measure-
ments outperform other tested methods on all datasets. The balanced error rate (BER) was
calculated for each method and dataset as described in Materials and Methods. The hori-
zontal dashed line indicates BER=0.5, the expected accuracy if SNPs are randomly classified
as neutral or deleterious.

a general-purpose phylogenetic modeling package capable of implementing a wide class of
user-specified models [18,124]. We evaluate the performance of using one such phylogenetic
model next to leading phenotype prediction methods. We find that despite its simplicity and
lack of biochemical/structural awareness, it performs remarkably well, achieving the highest
accuracy (BER statistic) on all of the four datasets.

Diversity of evolutionary patterns and rates across proteins and the extreme paucity of
datasets leads to weak statistical power in evaluating prediction programs’ relative accuracy.
Still, the ranking of these programs is remarkably consistent across the four tested proteins.
ColumnRates’s performance on these data lead us to conclude that phylogenetic measure-
ments are a promising avenue for SNP phenotype prediction. Especially attractive is the
ease with which the models used could be extended to include other informative features.
Phylogenetic models have been used to model protein secondary structure [125–127], amino
acid size [128], and even experimental data [124], and it would be feasible to integrate such
features into a phenotype prediction model within XRate’s framework. We hope that these
results spur further developments in evolutionary phenotype prediction methods as well as
the creation of additional datasets of this kind.

130

5.4 Materials and methods

Datasets used

We evaluated four methods (SIFT [12], PMut [14], ASP [15], and ColumnRates), on the
following four datasets: Lysozyme [121], LacI [122], HIV protease [120] and CBS [123].
Lysozyme, LacI, and HIV protease SNP data were downloaded from the SIFT website:
http://sift.bii.a-star.edu.sg/. CBS data was downloaded from the supplementary
info of [123]. The datasets had functional and nonfunctional mutations according to the
distribution shown in Table 5.1.

Dataset Functional Nonfunctional
Lysozyme [121] 1377 175
LacI [122] 2267 1166
HIV protease [120] 111 159
CBS [123] 125 79

Table 5.1: Four SNP-phenotype datasets were used for comparision. Since the datasets had
varying sizes and functional-nonfunctional ratios, we used the balanced error rate (BER)
statistic in evaluating the prediction methods.

Optimizing score cutoffs

For a queried mutation, each program returns either a binary value or a continuously-valued
score. For those returning a numerical score, a “cutoff” separating functional and nonfunc-
tional predictions must be determined. This is done by partitioning the data into training
and test sets - cutoffs are optimized on the training set and the method is evaluated using
the test set. Given a training set (a collection of SNPs scores and phenotypes), the cutoff is
chosen so as to maximize a given statistic - in this case the Balanced Error Rate (defined in
Table 5.3). The cutoffs for ASP and ColumnRates were determined in this way; for SIFT
we used the published cutoff (0.05), and PMut natively returns binary results.

For the data shown in Figure 5.2, a cutoff for each dataset was determined using the
remaining datasets as a training set. This is intended to mimic the situation where we are
analyzing a protein with no SNP phenotype data: we use all the data we do have to estimate
a score cutoff that will (hopefully) be accurate on the protein of interest.

It can also be informative to see how each method performs when the cutoff is optimized
for each individual dataset. To investigate this we trained cutoffs for ASP and ColumnRates
using 50% of each data as training (and the remainder as test data). The BER scores for
each dataset using these optimized cutoffs are shown in Appendix C.

http://sift.bii.a-star.edu.sg/

131

Term Definition
True positives (TP) Deleterious mutations predicted as deleterious
True negatives (TN) Neutral mutations predicted as neutral
False positives (FP) Neutral mutations predicted as deleterious
False negatives (FN) Deleterious mutations predicted as neutral
Pexp = (TP + FN) Total number of experimentally-determined deleterious mutations
Nexp = (TN + FP) Total number of experimentally-determined neutral mutations
Ppred = (TP + FP) Total number of predicted deleterious mutations
Npred = (TN + FN) Total number of predicted neutral mutations

Table 5.2: Definitions of counts relevant to computing accuracy statistics, following [123]

Statistic Abbreviation Formula

Total accuracy ACC TP+TN
Pexp+Nexp

True positive rate TPR TP
Pexp

Positive predictive value PPV TP
Ppred

True negative rate TNR TN
Nexp

Negative predictive value NPV TN
Npred

Balanced error rate BER (1−TNR)+(1−TPR)
2

Table 5.3: We define the following accuracy statistics following [123]. We believe the BER
to be the most illustrative and reliable since the datasets used have differing ratios of func-
tional/nonfunctional mutations (listed in Table 5.1); we display only BER in Figure 5.2. For
specific applications, other statistics may be of greater interest, and so in Appendix C all of
these metrics are shown for each dataset.

Testing and evaluation

Following [123], we define the counts in Table 5.2 and accuracy statistics in Table 5.3.
Performance measured using other summary statistics is shown in Appendix C.

XRate grammars

ColumnRates simply involves training an XRate grammar (single-rate-rind.eg, available
as part of the DART package) on a multiple alignment of the query sequence along with
homologous sequences (referred to as alignment.stk below) and converting the grammar
into a common mutability score format. XRate uses the EM algorithm to train grammars’

132

probability and rate parameters. Users need only specify the grammars to be trained; all
parameter estimation and inference algorithms are internally implemented in XRate.

The grammar single-rate-rind.eg models sequence evolution along a tree with a
continuous-time Markov chain with rate matrix with entries Qij = rcπcj where i and j
are residues, rc is a column-specific mutation rate, and πcj is the equilibrium frequency of
character j in column c. That is, the model assumes that the substitution rate and equilib-
rium distribution differ at each column independently, and these are to be estimated when
the grammar is trained. The following command creates the trained grammar trained.eg,
which contains a mutation rate for each column:
xrate alignment.stk -g single-rate-rind.eg -t trained.eg -obl --noannotate

Using a simple script we convert the trained grammar to a SNP file where each row stores
the WT residue, position, SNP, and score:
cat trained.eg | python parseRateGrammar.py alignment.stk

This outputs a file wherein each line contains the mutability score for a certain position in
the reference sequence. For instance, the following line indicates the mutation from A to T
at position 74 has score 0.01:
A74T 0.01

133

Chapter 6

Modeling genomic features using
phylo-grammars

134

The following section contains work conducted with Ian Holmes published in PLoS ONE
[124].

Overview

Modeling sequence evolution on phylogenetic trees is a useful technique in computational
biology. Especially powerful are models which take account of the heterogeneous nature
of sequence evolution according to the “grammar” of the encoded gene features. However,
beyond a modest level of model complexity, manual coding of models becomes prohibitively
labor-intensive.
We demonstrate, via a set of case studies, the new built-in model-prototyping capabilities
of XRate (macros and Scheme extensions). These features allow rapid implementation of
phylogenetic models which would have previously been far more labor-intensive. XRate’s
new capabilities for lineage-specific models, ancestral sequence reconstruction, and improved
annotation output are also discussed.
XRate’s flexible model-specification capabilities and computational efficiency make it well-
suited to developing and prototyping phylogenetic grammar models. XRate is available as
part of the DART software package: http://biowiki.org/DART .

6.1 Background

Phylogenetics, the modeling of evolution on trees, is an extremely powerful tool in com-
putational biology. The better we can model a system, the more can learn from it, and
vice-versa. Especially attractive, given the plethora of available sequence data, is modeling
sequence evolution at the molecular level. Models describing the evolution of a single nu-
cleotide began simply (e.g. JC69 [65]), later evolving to capture such biological features as
transition/transversion bias (e.g. K80 [129]) and unequal base frequencies (e.g. HKY85 [66]).
Felsenstein’s “pruning” algorithm allows combining these models with phylogenetic trees to
compute the likelihood of multiple sequences [7].

As powerful as phylogenetic models are for explaining the evolutionary depth of a se-
quence alignment, they are even more powerful when combined with a model for the feature
structure: the partition of the alignment into regions, each evolving under a particular model.
The phylogenetic grammar, or “phylo-grammar”, is one such class of models. Combining
hidden Markov models (and, more generally, stochastic grammars) and phylogenetic sub-
stitution models provides computational modelers with a rich set of comparative tools to
analyze multiple sequence alignments (MSAs): gene prediction, homology detection, finding
structured RNA, and detecting changes in selective pressure have all been approached with
this general framework [36, 130–132]. Readers unfamiliar with phylo-grammars may benefit
from relevant descriptions and links available here: http://biowiki.org/PhyloGrammars

or the original paper describing XRate [18]. Also, a collection of animations depicting vari-

http://biowiki.org/DART
http://biowiki.org/PhyloGrammars

135

ous evolutionary models at work (generating multiple alignments or evolving sequences) has
been compiled here: http://biowiki.org/PhyloFilm .

While the mathematics of sequence modeling is straightforward, manual implementation
can quickly become the limiting factor in iterative development of a computational pipeline.
To streamline this step, general modeling platforms have been developed. For instance,
Exonerate allows users to specify a wide variety of common substitution and gap models
when aligning pairs of sequences [133]. Dynamite uses a specification file to generate code
for dynamic programming routines [134]. HMMoC is a similar model compiler sufficiently
general to work with arbitrary HMMs [113]. The BEAST program allows users to choose
from a wide range of phylogenetic substitution models while also sampling over trees [135].
The first three of these are non-phylogenetic, only able to model related pairs of sequences.
Dynamite and HMMoC are unique in that they allow definition of arbitrary models via
specification files, whereas users of BEAST and Exonerate are limited to the range of models
which have been hard-coded in the respective programs.

Defining models’ structure manually can be limiting as models grow in size and/or
complexity. For instance, a Nielsen-Yang model incorporating both selection and transi-
tion/transversion bias has nearly 4000 entries - far too many for a user to manually spec-
ify [33]. Such a large matrix requires specific model-generating code to be written and
integrated with the program in use - not always possible or practical for the user depending
on the program’s implementation.

XRate is a phylogenetic modeling program that implements the key parameterization and
inference algorithms given two ingredients: a user-specified phylo-grammar, and a multiple
sequence alignment. (A phylogeny can optionally be specified by the user, or it can be
inferred by the program.) XRate’s models describe the parametric structure of substitution
rate matrices, along with grammatical rules governing which rate matrices can account
for which alignment columns. This essentially amounts to partitioning the alignment (e.g.
marking up exon boundaries and reading frames) and factoring in the transitions between
the different types of region.

Parameter estimation and decoding (alignment annotation) algorithms are built in, allow-
ing fast model prototyping and fitting. Model training (estimating the rate and probability
parameters of the grammar) is done via a form of the Expectation Maximization (EM) al-
gorithm, described in more detail in the original XRate paper [18]. Most recently, XRate
allows programmatic model construction via its macros and Scheme extensions. XRate’s
built-in macro language allows large, repetitive grammars to be compactly represented, and
also enables the model structure to depend on aspects of the data, such as the tree or
alignment. Scheme extensions take this even further, interfacing XRate to a full-featured
functional scripting language, allowing complex XRate-oriented workflows to be written as
Scheme programs.

In this paper we demonstrate XRate’s new model-specification tools via a set of progres-
sively more complex examples, concluding with XDecoder, a phylo-grammar modeling RNA
secondary structure overlapping protein-coding regions. We also describe additional im-
provements to XRate since its initial publication, namely ancestral sequence reconstruction,

http://biowiki.org/PhyloFilm

136

GFF/WIG output, and hybrid substitution models. Finally, we show how XRate’s fea-
tures are exposed as function extensions in a dialect of the Scheme programming language,
typifying a Functional Programming (FP) style of model development and inference for phy-
logenetic sequence analysis. Terminology relevant to modeling with XRate are defined in
detail in Appendix E. We also provide an online tutorial for making nontrivial modifications
to existing grammars, going step-by-step from a Jukes-Cantor model to an autocorrelated
Gamma-distributed rates phylo-HMM: http://biowiki.org/XrateTutorial.

6.2 Methods

The XRate generative model

A phylo-grammar generates an alignment in two steps: nonterminal transformations and
token evolution. The sequence of nonterminal transformations comprises the “grammar”
portion of a phylo-grammar, and the “phylo” portion refers to the evolution of tokens along
a phylogeny. First, transformation rules are repeatedly applied, beginning with the START

nonterminal, until only a series of pseudoterminals remains. From each group of pseudoter-
minals (a group may be a single column, two “paired” columns in an RNA structure, or a
codon triplet of columns), a tuple of tokens is sampled from the initial distribution of the
chain corresponding to the pseudoterminal. These tokens then evolve down the phyloge-
netic tree according to the mutation rules of the chain, resulting in the observed alignment
columns.

If the nonterminal transformations contain no bifurcations and all emissions occur on
the same side of the nonterminal, the grammar is a phylogenetic hidden Markov model
(phylo-HMM), a special subclass of phylo-grammars. Otherwise, it is a phylogenetic stochas-
tic context-free grammar (phylo-SCFG), the most general class of models implemented by
XRate. This distinction, along with other related technical terms, are described in greater
detail in Appendix E, the Glossary of XRate model terminology.

The generality of XRate requires a slight tradeoff against speed. Since the low-level code
implementing core operations is shared among the set of possible models, XRate will gen-
erally be slower than programs with source code optimized for a narrower range of models.
Computing the Felsenstein likelihood under the HKY85 [66] model of a 5-taxon, 1Mb align-
ment, XRate required 1.25 minutes of CPU time and 116MB RAM, while PAML required
9 seconds of CPU time and 19MB RAM for the same operation. Running PFOLD [136] on
a 5-taxon, 1KB alignment required 11 seconds and 164MB RAM, and running XRate on
the same alignment with a comparable grammar required 25 seconds and 62MB RAM. All
programs were run with default settings on a 3.4 GHz Intel i7 processor. Model-fitting also
takes longer with XRate: a previous work found that XRate’s parameter estimation routines
were approximately 130 times slower than those in PAML [137].

In an attempt to improve XRate’s performance, we tried using Beagle, a library that
provides CPU and accelerated parallel GPU implementations of Felsenstein’s algorithm along

http://biowiki.org/XrateTutorial

137

with related matrix operations [138]. We have, however, been so far unable to generate
significant performance gains by this method.

Despite these caveats, XRate has proved to be fast enough for genome-scale applications,
such as a screen of Drosophila whole-genome alignments [76]. Furthermore, it implements a
significantly broader range of models than the above-cited tools.

XRate inputs, outputs and operations

The formulation of the XRate model presented in the previous section is generative: that
is, it describes the generation of data on a tree. In practice, the main reason for doing this
is to generate simulation data for benchmarking purposes. This is possible using the tool
simgram [103], which is provided with XRate as part of the DART package.

Most common use cases for generative models involve not simulation, but inference: that
is, reconstructing aspects of the generative process (sequence of nonterminal transformations,
token mutations, or grammar parameters) given observed sequence data (in the form of a
multiple sequence alignment). Using a phylo-grammar, a set of aligned sequences, and a
phylogeny relating these sequences (optionally inferred by XRate), XRate implements the
relevant parameterization and inference algorithms, allowing researchers to analyze sequence
data without having to implement their own models.

Sequences are read and written in Stockholm format [139] (converters to and from com-
mon formats are included with DART). This format allows for the option of embedding a
tree in Newick format [140] (via the #=GF NH tag) and annotations in GFF format [141].
By construction, Newick format necessarily specifies a rooted tree, rather than an unrooted
one. However, the root placement is only relevant for time-irreversible models; when using
time-reversible models, the placement of the root is arbitrary and can safely be ignored.
Given these input ingredients, a call to XRate proceeds in the following order (more detail
is provided at http://biowiki.org/XRATE and http://biowiki.org/XrateFormat):

1. The Stockholm file and grammar alphabet are parsed (as macros may depend on these).

2. Any grammar macros are expanded, followed by Scheme functions.

3. If requested, or a tree was not provided in the input data, one is estimated using
neighbor-joining [142]. As noted above, this is a rooted tree, but the root placement
is arbitrary if a time-reversible model is used.

4. Grammar parameters are estimated (if requested).

5. Alignment is annotated (if requested).

6. Ancestral sequences are reconstructed (if requested).

After the analysis is complete, the alignment (along with an embedded tree) is printed to
the output stream along with ancestral sequences (if requested) as well as any #=GC and #=GR

http://biowiki.org/XRATE
http://biowiki.org/XrateFormat

138

column annotations. GFF and WIG annotations are sent to standard output by default, but
these can be directed to separate files by way of the -gff and -wig options, respectively.

6.3 Results and discussion

The XRate format macro language for phylo-grammar
specification: case studies

The following sections describe case studies of repetitively-structured models which motivate
the need for grammar-generating code. Historically, we have attempted several solutions to
the case studies described. We first briefly review the factors that influenced our eventual
choice of Scheme as a macro language.

XRate was preceded by Searls’ Prolog-based automata [50] and Birney’s Dynamite parser-
generator [134], and roughly contemporaneous with Slater’s Exonerate [133] and Lunter’s
HMMoC [113]. In early versions of XRate (circa 2004), and in Exonerate, the only way
for the user to specify their own phylo-grammar models was to write C/C++ code that
would compile directly against the program’s internal libraries. This kind of compilation
step significantly slows model prototyping, and impedes re-use of model parameters.

Current versions of XRate, along with Dynamite and HMMoC, understand a machine-
readable grammar format. In the case of XRate, this format is based on Lisp S-expressions.
In such formats (as the case studies illustrate) the need arises for code that generates
repetitively-structured grammar files. It is often convenient, and sometimes sufficient, to
write such grammar-generating code in an external language: for example, we have written
Perl, Python and C++ libraries to generate XRate grammar files [18, 137]. However, this
approach still has the disadvantage (from a programmer’s or model developer’s perspective)
that (a) code to generate real grammars tends to require an ungainly mix of grammar-related
S-expression constants embedded in Perl/Python/C++ code, and (b) the requirement for an
explicit model-generation step can delay prototyping and evaluation of new phylo-grammar
models.

XRate’s macro language provides an alternate way to generate repetitive models within
XRate, without having to resort to external code-generating scripts. This allows the model-
specifying code to remain compact, readable, and easy to edit. As we report in this
manuscript, the XRate grammar format now also natively includes a Scheme-based scripting
language that can be embedded directly within grammar files, whose syntax blends seam-
lessly with the S-expression format used by XRate and whose functional nature fits XRate’s
problem domain. We provide here examples of common phylogenetic models which make
use of various macro features, and refer the reader to the online documentation for a com-
plete introduction to XRate’s macro features: http://biowiki.org/XrateMacros. All of
the code snippets presented here are available as minimal complete grammars in Text S1.
The full, trained grammars corresponding to those presented here are available as part of
DART. This correspondence is described here: http://biowiki.org/XratePaper2011

http://biowiki.org/XrateMacros
http://biowiki.org/XratePaper2011

139

A repetitively-structured HMM specified using simple macros

Probabilistic models for the evolution of biological sequences tend to contain repetitive struc-
ture. Sometimes, this structure arises as a reflection of symmetries in the phylo-grammar;
other times, it arises due to structure in the data, such as the tree or the alignment. While
small repetitive models can be written manually, developing richer evolutionary models and
grammars often demands writing code to model the underlying structure.

Markov chain symmetry The most familiar source of repetition derives from the substi-
tution model’s structure: different substitutions share parameters based on prior knowledge
or biological intuition. Perhaps most repetitive is the Jukes-Cantor model for DNA. The
matrix entries Qij denote the rate of substitution from i to j:

QJC =

A C G T

A ∗ u u u
C u ∗ u u
G u u ∗ u
T u u u ∗

Here u is an arbitrary positive rate parameter. The ∗ character denotes the negative sum

of the remaining row entries (here equal to −3u in every case). The parameter u is typically
set to 1/3 in order that the stochastic process performs, on average, one substitution event
per unit of time.

This matrix can be specified in XRate with two nested loops over alphabet tokens.
Each loop over alphabet tokens has the form (&foreach-token X expression...) where
expression... is a construct to be expanded for each alphabet token X. Here, expression
sets the substitution rate between each pair of source and destination tokens (except for the
case when the source and destination tokens are identical, for which case we simply generate
an empty list, (), which will be ignored by the XRate grammar parser). We do not explic-
itly need to write the negative values of the on-diagonal matrix elements (labeled ∗ in the
above description of the matrix); XRate will figure these out for itself. To check whether
source and destination tokens are equal in the loop, we use a conditional &if statement,
which has the form (&if (condition) (expansion-if-true) (expansion-if-false)).
The condition is implemented using the &eq macro, which tests if its two arguments are
equal. Putting all these together, the nested loops look like this:

(&foreach-token tok1

(&foreach-token tok2

(&if (&eq tok1 tok2)

() ;; If tok1==tok2, expand to an empty list (ignored by parser)

(mutate (from (tok1)) (to (tok2)) (rate u)))))

While this illustrates XRate’s looping and conditional capabilities, such a simple model
would almost be easier to code by hand. For a slightly more complex application, we turn

140

to the model of Pupko et al in their 2008 work. In their RASER program the authors
used a chain augmented with a latent variable indicating “slow” or “fast” substitution.
Reconstructing ancestral sequences on an HIV phylogeny allowed them to infer locations
of transitions between slow and fast modes - indicating a possible gain or loss of selective
pressure [143]. The chain shown below, QRASER, shows a simplified version of their model:
substitutions within rate classes occur according to a JC69 model scaled by rate parameters
s and f (slow and fast, respectively), and transitions between rate classes occur with rates
rsf and rfs (slow → fast and fast → slow, respectively).

QRASER =

As Cs Gs Ts Af Cf Gf Tf

As ∗ us us us rsf 0 0 0
Cs us ∗ us us 0 rsf 0 0
Gs us us ∗ us 0 0 rsf 0
Ts us us us ∗ 0 0 0 rsf
Af rfs 0 0 0 ∗ uf uf uf
Cf 0 rfs 0 0 uf ∗ uf uf
Gf 0 0 rfs 0 uf uf ∗ uf
Tf 0 0 0 rfs uf uf uf ∗

While this chain contains four times as many rates as the basic JC69 model, there are

only five parameters: u, s, f, rsf , rfs since the model contains repetition via its symmetry.
While manual implementation is possible, the model can be expressed in just a few lines of
XRate macro code. Further, additional “modes” of substitution (corresponding to additional
quadrants in the matrix above) can be added by editing the first two lines of the following
code.

XRate represents latent variable chains as tuples of the form (state class), where
state is a particular state of the Markov chain and class is the value of a hidden variable.
In this case, standard DNA characters are augmented with a latent variable indicating sub-
stitution rate class: Af indicates an A which evolves “fast.” The following syntax is used
to declare a latent variable chain (in this case, this variable may take values s or f), with
the row tag specifying CLASS as the Stockholm #=GR identifier for per-sequence, per-column
annotations:

(hidden-class (row CLASS) (label (s f)))

Combining loops, conditionals, hidden classes, and the (&cat LIST) function (which
concatenates the elements of LIST), we get the following XRate code for the RASER chain:

(rate (s 0.1) (f 2.0) (r_sf 0.01) (r_fs 0.01) (u 1.0))

(chain

(hidden-class (row CLASS) (label (s f)))

(terminal RASER)

(&foreach class1 (s f)

(&foreach class2 (s f)

(&foreach-token tok1

141

(&foreach-token tok2

(&if (&eq class1 class2)

(&if (&eq tok1 tok2)

() ;; if class1==class2 && tok1==tok2, expand to empty list (will be ignored)

;; The following line handles the case (class1==class2 && tok1!=tok2)

(mutate (from (tok1 class1)) (to (tok2 class2)) (rate u class1)))

(&if (&eq tok1 tok2)

;; The following line handles the case (class1!=class2 && tok1==tok2)

(mutate (from (tok1 class1)) (to (tok2 class2)) (rate (&cat r_ class1 class2)))

()))))))) ;; if class1!=class2 && tok1!=tok2, expand to empty list (ignored)

Phylo-HMM-induced repetition The previous examples both involved specifying the
Markov chain component of a phylo-grammar. Coupled with a trivial top-level grammar
(a START state and an EMIT state which emits the chain via the EMIT* pseudoterminal),
these models describe an alignment where each column’s characters evolve according to
the same substitution model. A common extension to this is using sequences of hidden
states which generate alignment columns according to different substitution models. These
“phylo-grammars” (which can include phylo-SCFGs and the more restricted phylo-HMMs)
allow modelers to describe and/or detect alignment regions exhibiting different evolution-
ary patterns. Phylo-HMMs model left-to-right correlations between alignment columns,
and phylo-SCFGs are capable of modeling nested correlations (such as “paired” columns in
an RNA secondary structure). Readers unfamiliar with phylo-grammars may benefit from
relevant descriptions and links available here: http://biowiki.org/PhyloGrammars, ani-
mations available here: http://biowiki.org/PhyloFilm, and the original paper describing
XRate [18].

We outline here a phylo-HMM that is simple to describe, but would take a substantial
amount of code to implement without XRate’s macro language. The model is based on
PhastCons, a program by Siepel et al which uses an HMM whose three states (or, in XRate
terminology, nonterminals) use substitution models differing only by rate multipliers [118].
This model, depicted schematically in Figure 6.1, can be used to detect alignment regions
evolving at different rates. If the rates of each hidden state correspond to quantiles of the
Gamma distribution, then summing over hidden states of this model is equivalent to the
commonly-used Gamma model of rate heterogeneity. We provide this grammar in Text S1,
which is essentially identical to the PhastCons grammar with n states except for its invoca-
tion of a Scheme function returning the n Gamma-derived rates for a given shape parameter.
We can define such a model in XRate easily due to the symmetric structure: all three nonter-
minals have similar underlying substitution models (varying only by a multiplier) and also
similar probabilities of making transitions to other nonterminals via grammar transformation
rules.

http://biowiki.org/PhyloGrammars
http://biowiki.org/PhyloFilm

142

leaveProb

leaveProb
leaveProb

stayProb stayProb

stayProb

Substitution Rate
Slow
Medium
Fast

Figure 6.1: The model used by PhastCons, a 3-nonterminal HMM with rate multipliers,
is compactly expressed by XRate’s macro language. Different nonterminal have different
evolutionary rates, but they all share the same underlying substitution model. Transi-
tion probabilities are shared: a transition between nonterminals happens with probability
leaveProb, and self-transitions happen with probability stayProb. This model (with any
number of nonterminals) can be expressed in XRate’s macro language in approximately 20
lines of code.

The grammar will have nonterminals named “1”, “2”...up to numNonTerms, each one asso-
ciated with a rate parameter (r 1, r 2...) and substitution chain (chain 1, chain 2...).
To express this grammar in XRate macro code, we’ll need to declare each of these nonter-
minals, the production rules which govern transitions between them, rate parameters, and
the nonterminal-associated substitution chains. (For a fully-functional grammar, an alpha-
bet is also needed; these are omitted in code snippets included in the main text, but the
corresponding grammars in Text S1 contain alphabets.)

First, define how many nonterminals the model will have: adding more nonterminals to
the model later on can be done simply by adjusting this variable. We define a SEED value to

143

initialize the rate parameters (this is not a random number seed, but rather an initial guess
at the parameter value necessary for the EM algorithm to begin), which is done inside a
foreach-integer loop using the numNonterms variable. The (foreach-integer X (1 K)

expression) expands expression for all values of X from 1 to K. In this case, we define a
rate parameter for each of our nonterminals 1..K.

(&define numNonterms 3)

(&define SEED 0.001)

(&foreach-integer nonterminal (1 numNonterms)

(rate ((&cat r_ nonterminal) SEED)))

Next, define a Markov chain for each nonterminal: all make use of the same underlying
substitution model (e.g. JC69 [65], HKY85 [66]) whose entries are stored as Q_a_b for
the transition rate between characters a and b. This “underlying” chain must be defined
elsewhere - either in an included file (using the (&include) directive), or directly in the
grammar file. For instance, we could re-use the JC69 chain, declaring rate parameters for
later use:

(&foreach-token tok1

(&foreach-token tok2

(&if (&eq tok1 tok2)

() ;; If tok1==tok2, expand to an empty list (ignored by parser)

(rate (&cat Q_ tok1 _ tok2) u))))

Each nonterminal has an associated substitution model which is Q_a_b scaled by a
different rate multiplier r_nonterminal. Using an integer loop, we create a chain for each
nonterminal using the rate parameters we defined in the two previous code snippets:

(&foreach-integer nonterminal (1 numNonterms)

(chain

(terminal (&cat chain_ nonterminal))

(&foreach-token tok1

(&foreach-token tok2

(&if (&eq tok1 tok2)

()

(mutate (from (tok1)) (to (tok2))

(rate (&cat Q_ tok1 _ tok2) (&cat r_ nonterminal))))))))

Next, define the production rules which govern the nonterminal transitions. For simplicity
of presentation (but not required), we assume here that transitions between nonterminals all
occur with probability proportional to leaveProb, and all self-transitions have probability
stayProb.

144

The pgroup declaration defines a probability distribution over a finite outcome space,
with the parameters declared therein normalized to unity during parameter estimation. In
this grammar we declare stayProb and leaveProb within a pgroup since they describe the
two outcomes at each step of creating the alignment: staying at the current nonterminal or
moving to a different one.

(pgroup (stayProb 0.9) (leaveProb 0.1))

(&foreach-integer nonterm1 (1 numNonterms)

;; Each nonterminal has a transition from start

(transform (from (start)) (to (nonterm1)) (prob (&/ 1 numNonterms)))

;; Each nonterminal can transition to end - we assign this prob 1

;; since the alignment length directs when this transition occurs

(transform (from (nonterm1)) (to ()) (prob 1))

(&foreach-integer nonterm2 (1 numNonterms)

(&if (&eq nonterm1 nonterm2))

;; If nonterm1==nonterm2, this is a self-transition

(transform (from (nonterm1)) (to (nonterm2)) (prob stayProb))

;; Otherwise, this is an inter-nonterminal transition

;; with probability changeProb / (numNonterms - 1)

(transform (from (nonterm1)) (to (nonterm2))

(prob (&/ changeProb (&- numNonterms 1))))))

Lastly, associate each nonterminal with its specially-designed Markov chain for emitted
alignment columns:

(&foreach-integer nonterminal (1 numNonterms)

(transform (from (nonterminal))(to ((&cat chain_ nonterminal) (&cat nonterminal *))))

(transform (from ((&cat nonterminal *))) (to (nonterminal))))

Data-induced repetition Models whose symmetric structure depends on the input data
are less common in phylogenetic analysis, perhaps because normally their implementation
requires creating a new model for each new dataset to be analyzed. XRate allows the user to
create models based on different parts of the input data, namely the tree and the alignment,
“on the fly” via its macro language. This is accomplished by making use of the tree iterators
(e.g. &BRANCHES, &NODES, and &LEAVES) and alignment data (e.g. &COLUMNS) to create
nonterminals and/or terminal chains associated with these parts of the input data.

In their program DLESS, Haussler and colleagues used such an approach in a tree-
dependent model to detect lineage-specific selection. Their model used a phylo-HMM with
different nonterminals for each tree node, with the substitution rate below this node scaled
to reflect gain or loss of functional elements [118]. We show a simplified form of their model
as a schematic in Figure 6.2, with blue colored branches representing a slowed evolutionary
rate.

145

Using XRate’s macros we can express this model in a compact way just as was done with
the PhastCons model. Since both models use a set of nonterminals with their own scaled sub-
stitution models, we need simply to replace the integer-based loop (&foreach-integer nonterminal (1 numNonterms) expression)

with the tree-based loop (&foreach-node state expression) to create a nonter-
minal for each node in the tree. Then, define each node-specific chain as a hybrid chain, such
that the chain associated with tree node n has all the branches below node n scaled to reflect
heightened selective pressure. Hybrid chains, substitution processes which vary across the
tree, are discussed briefly in the section on “Recent enhancements to XRate”, and the details
of their specification is thoroughly covered in the XRate format documentation, available
here: http://biowiki.org/XrateFormat . A minimal working form of the DLESS-style
grammar included in Text S1.

A repetitively-structured codon model specified using Scheme functions

While XRate’s macro language is very flexible, there are some relatively common models
that are difficult to express within the language’s constraints. For example, a Nielsen-Yang
codon matrix incorporating transition bias and selection has nearly 4,000 entries whose rates
are determined by the following criteria:

QNY
ij =

0 if i and j differ at more than one position
πj if i and j differ by a synonymous transversion
κπj if i and j differ by a synonymous transition
ωπj if i and j differ by a nonsynonymous transversion
ωκπj if i and j differ by a nonsynonymous transition

This sort of Markov chain is difficult to express in XRate’s macro language since its entries
are determined by aspects of the codons (synonymous changes and transitions/transversions)
which in turn depend on knowledge of the properties of nucleotides and codons that would
have to be hard-coded directly into the loops and conditionals afforded by XRate’s macros.
The conditions on the right side of the above equation are better framed as values returned
from a function: given a pair of codons, the function returns the “type” of difference between
them, which in turn determines the rate of substitution between the two codons.

Scheme extensions It is this sort of situation which motivates extensions to XRate that
are more general-purpose than the simple macros described up to this point. There are
several valid choices for the programming language that can be used to implement such
extensions. For example, a chain such as QNY can be generated fairly easily by way of a
Perl or Python script tailored to generate XRate grammar code. While this is a convenient
scripting mechanism for many users (and is perfectly possible with XRate), it tends to lead
to an awkward mix of code and embedded data (i.e. snippets of grammar-formatting text).

http://biowiki.org/XrateFormat

146

Substitution Rate
Normal
Slow

Figure 6.2: A schematic of a DLESS-style phylo-HMM: each node of the tree has its own
nonterminal, such that the node-rooted subtree evolves at a slower rate than the rest of
the tree. Inferring the pattern of hidden nonterminals generating an alignment allows for
detecting regions of lineage-specific selection. Expressing this model compactly in XRate’s
macro language allows it to be used with any input tree without having to write data-specific
code or use external model-generating scripts.

147

This obscures both the generating script and the final generated grammar file (the former
due to the code/data mix, and the latter due to sheer size).

Another choice of programming language for implementing XRate extensions, which suf-
fers slightly less from these limitations, is Scheme. As XRate’s macro language is based
on Lisp (the parent language to Scheme), the syntaxes are very similar, so the “extension”
blends naturally with the surrounding XRate grammar file. Scheme is inherently functional
and is also “safe” (in that it has garbage collection). Lastly, data and code have equivalent
formats in Scheme, enabling the sort of code/data mingling outlined above.

To implement the QNY chain in XRate, we can use the XRate Scheme standard library
(found in dart/scheme/xrate-stdlib.scm). This standard library implements all the nec-
essary functions to define the Nielsen-Yang model, with the genetic code implemented as a
Scheme association list (facilitating easy substitution of alternate genetic codes, such as the
mitochondrial code) as well as a wrapper function to initialize the entire model.

Without stepping through every detail of the Scheme implementation of the Nielsen-Yang
model in the XRate standard library, we will simply note that this implementation (the
Nielsen-Yang model on a DNA alphabet) is available via the following XRate code (the in-
clude path to dart/scheme is searched by default by the Scheme function load-from-path):

(&scheme

(load-from-path "xrate-stdlib.scm")

xrate-dna-alphabet

(xrate-NY-grammar))

Note that xrate-dna-alphabet is a simple variable, but xrate-NY-grammar is a function
and is therefore wrapped in parentheses (as per the syntax of calling a function in Scheme).
The reason that xrate-NY-grammar is a function is so that the user can optionally redefine
the genetic code, which (as noted above) is stored as a Scheme association list, in the variable
codon-translation-table (the standard library code can be examined for details).

A macro-heavy grammar for RNA structures in protein-coding exons

As a final example of the possibilities that XRate’s new model-specification features enable,
we present a new grammar for predicting RNA structures which overlap protein-coding
regions. XDecoder is based closely on the RNADecoder grammar first developed by Pederson
and colleagues [144]. This grammar is designed to detect phylogenetic evidence of conserved
RNA structures, while also incorporating the evolutionary signals brought on by selection at
the amino-acid level. In eukaryotes, RNA structure overlapping protein coding sequence is
not yet well-known, but in viral genomes this is a common phenomenon due to constraints
on genome size acting on many virus families. XDecoder is available as an XRate grammar,
linked here: http://biowiki.org/XratePaper2011

http://biowiki.org/XratePaper2011

148

Motivation for implementation Our endeavor to re-implement the RNADecoder gram-
mar was based both on practical and methodological reasons. The original RNADecoder
code is no longer maintained, but performs well on published viral datasets [145]. Running
RNADecoder on an alignment of full viral genomes is quite involved: the alignment must first
be split up into appropriately-sized chunks (˜300 columns), converted to COL format [146],
and linked to a tree in a special XML file which directs the analysis. The grammar and its
parameters, also stored in an XML format, are difficult to read and interpret. RNADecoder
attains remarkably higher specificity in genome-wide scans as compared to protein-naive
prediction programs like PFOLD [136] or MFOLD [147].

Using XDecoder We developed our own variant of the RNADecoder model as an XRate
grammar, called XDecoder. This would have been a protracted task without XRate’s macro
capabilities: the expanded grammar is nearly 4,000 lines of code. Using XRate’s macros, the
main grammar (excluding the pre-estimated dinucleotide Markov chain) is only ˜100 lines
of macro code. Starting with an alignment of full-length poliovirus genomes, annotated with
reading frames, an analysis can be run with a single simple command:
xrate -g XDecoder.eg -l 300 -wig polio.wig polio.stk > polio_annotated.stk

This runs XRate with the XDecoder grammar on the Stockholm-format alignment polio.stk,
allowing no more than 300 positions between paired columns, creating the wiggle file polio.wig,
annotating the original alignment with maximum likelihood secondary structure and rate
class indicators, and writing the annotated alignment to the the file polio_annotated.stk.

Each analysis with RNADecoder requires an XML file to coordinate the alignment and
tree as well as direct parts of the analysis (training and annotation). XRate reads Stock-
holm format alignments which natively allows for alignment-tree association, enabling simple
batch processing of many alignments. The grammar can be run on arbitrarily long align-
ments, provided a suitable maximum pair length is specified via the -l N argument. This
prevents XRate from considering any pairing whose columns are more than N positions apart,
effectively limiting both the memory usage and runtime.

Training the grammar’s parameters, which may be necessary for running the grammar
on significantly different datasets, is also accomplished with a single command:
xrate -g XDecoder.eg -l 300 -t XDecoder.trained.eg polio.stk

The results of an analysis using XDecoder are shown in Figure 6.3, together with gene
and RNA structure annotations. Also shown are three related analyses (all done using
XRate grammars): PhastCons conservation, coding potential, and pairing probabilities
computed using PFOLD. These three separate analyses reflect the signals that XDecoder
must tease apart in order to reliably predict RNA structures. DNA-level conservation
could be due to protein-coding constraints, regional rate variation, pressure to maintain
a particular RNA structure, or a combination of all three. Using codon-position rate mul-
tipliers, multiple rate classes, and a secondary structure model, XDecoder unifies all of
these signals in a single phylogenetic model, resulting in the highly-specific predictions

149

shown at the top of Figure 6.3. The full JBrowse instance is provided as a demo at
http://jbrowse.org/poliovirus-xrate-demo-by-oscar-westesson/.

Figure 6.3: Data from several XRate analyses, shown alongside genes (A) and known RNA
structures (B) in poliovirus. XDecoder (C) recovers all known structures with high posterior
probability and predicts a promising target for experimental probing (region 6800-7100).
XDecoder was run on an alignment of 27 poliovirus sequences with the results visualized as
a track in JBrowse [148] via a wiggle file. Alongside XDecoder probabilities are the three
signals which XDecoder aims to disentangle: (D) conservation, (E) coding potential, and
(F) RNA structure. Paradoxically, the CRE and RNase-L inhibition elements show both
conservation and coding sequence preservation, whereas PFOLD’s predictions show only a
slight increase in probability density around the known structures. XDecoder is the only
grammar which returns predictions of reasonable specificity.

Recent enhancements to XRate

Lineage-specific models

All Markov chains in phylo-grammars describe the evolution of characters starting at the
root and ending at the tips of the tree. In lineage-specific models, or hybrid chains in XRate
terminology, the requirement that all branches share the same substitution process is relaxed.
Phylogenetic analysis is often used to detect a departure from a “null model” representing
some typical evolutionary pattern. Standard applications of HMMs and SCFGs focus on
modeling this departure on the alignment level, enabling different columns of the alignment
to show different patterns of evolution. Using hybrid chains, users can explicitly model
differences in evolution across parts of the tree. By combining a hybrid chain with grammar
nonterminals, this could be used to detect alignment regions (i.e. subsets of the set of all
sites) which display unusually high (or low) mutation rates in a particular part of the tree,

150

such as in the DLESS model described in the section on “Data-induced repetition”. The
details of specifying such models are contained within the XRate format documentation, at
http://biowiki.org/XrateFormat

Ancestral sequence reconstruction

A phylo-grammar is a generative model: it generates a hidden parse tree, then further gen-
erates observed data conditional on that parse tree. The observed data here is an alignment
of sequences; the hidden parse tree describes which alignment columns are to be generated
by the evolutionary models associated with which grammar nonterminals. Inference involves
reversing the generative process: reconstructing the hidden parse structure and evolutionary
trajectories that explain the alignment.

The original version of XRate was focused on reconstructing the parse tree, for the pur-
poses of annotating hidden structures such as gene boundaries or conserved regions. A
newly-implemented feature in XRate allows an additional feature: reconstruction of ances-
tral sequences. This functionality is already implicit in the phylogenetic model: no additional
modification to the grammar is necessary to enable reconstruction. The user can ask XRate
to return the most probable ancestral sequence at each internal node, or the entire poste-
rior distribution over such sequences, via the -ar and -arpp command-line options. Since
XRate does marginal state reconstruction, the character with the highest posterior proba-
bility returned by the -arpp option will always correspond to the single character returned
by the -ar option. Ancestral sequence reconstruction can be used to answer paleogenetic
questions: what did the sequence of the ancestor to all of clade X look like? Similarly, evo-
lutionary events such as particular substitutions or the gain or loss of function (also called
trait evolution) can be pinpointed to particular branches.

Direct output of GFF and Wiggle annotations

XRate allows parse annotations to be written out directly in common bioinformatics file
formats: GFF (a format for specifying co-ordinates of genomic features) [141] and WIG (a
per-base format for quantitative data) [149].

This allows a direct link between XRate and visualization tools such as JBrowse [148],
GBrowse [150], the UCSC Genome Browser [151],and Galaxy [152], allowing the results
of different analyses to be displayed next to one another and/or processed in a unified
framework.

GFF: Discrete genomic features GFF is a format oriented towards storing genomic
features using 9 tab-delimited fields: each line represents a separate feature, with each field
storing a particular aspect of the feature (e.g. identifier, start, end, etc). With XRate, a
common application is using GFF to annotate an alignment with features corresponding
to grammar nonterminals. For instance, using a gene-prediction grammar one could store
the predicted start and end points of genes together with a confidence measure. Similarly,

http://biowiki.org/XrateFormat

151

predicted RNA base pairs could be represented in GFF as one feature per pair, with start
and end positions indicating the paired positions.

WIG: Quantitative values for each column(s) Wiggle format stores a quantitative
value for a single or group of positions. This can be especially useful to summarize a large
number of possibilities as a single representative value. For instance, when predicting regions
of structured RNA, XRate may sum over many thousands of possible structures. We can
summarize the model’s results with the posterior probability that each column is involved
in a base-pairing interaction.

The Dart Scheme (Darts) interpreter

Another way to use XRate, instead of running it from the command line, is to call it from
the Scheme interpreter (included in DART). The compiled interpreter executable is named
“darts” (for “DART Scheme”). This offers a simple yet powerful way to create parameter-
fitting and genome annotation workflows. For example, a user could train a grammar on a
set of alignments, then use the resulting grammar to annotate a set of test alignments.

Darts, in common with the Scheme interpreter used in XRate grammars, is implemented
using Guile (GNU’s Ubiquitous Intelligent Language for Extension: http://www.gnu.org/software/guile/guile.html).
Certain commonly-encountered bioinformatics objects, serializable via standard file formats
and implemented as C++ classes within XRate, are exposed using Guile’s “small object”
(smob) mechanism. Currently, these types include Newick-format trees and Stockholm-
format alignments. API calls are provided to construct these “smobs” by parsing strings (or
files) in the appropriate format. The smobs may then be passed directly as parameters to
XRate API calls, or may be “unpacked” into Scheme data structures for individual element
access. Guile encourages sparing use of smobs; consequently, smobs are used within Darts
exclusively to implement bioinformatic objects that already have a broadly-used file format
(Stockholm alignments and Newick trees). In contrast, formats that are newly-introduced
by XRate (grammars, alphabets and so forth) are all based on S-expressions, and so may be
represented directly as native Scheme data structures.

The functions listed in Appendix D provide an interface between Scheme and XRate.
Together with the functions in the XRate-scheme standard library and Scheme’s native
functional scripting abilities, a broad array of models and/or workflows are possible. For
instance, one could estimate several sets of parameters for Nielsen-Yang models using groups
of alignments, and then embed each one in a PhastCons-style phylo-HMM, finally using this
model to annotate a set of alignments. While this and other workflows could be accomplished
in an external framework (e.g. Make, Galaxy [152]), Darts provides an alternate way to script
XRate tasks using the same language that is used to construct the grammars.

152

Additional supporting information

The JBrowse instance displayed in Figure 6.3 is available at
http://jbrowse.org/poliovirus-xrate-demo-by-oscar-westesson/.

Text S1 is available at
http://biowiki.org/twiki/pub/Main/XrateTutorial/example_grammars.zip

It contains example grammars referred to in the text, as well as small and large test Stock-
holm alignments. The alignment of poliovirus genomes along with the grammars used to
produce Figure 6.3 are also included along with a Makefile indicating how the data was an-
alyzed. Typing make help in the directory containing the Makefile will display the demon-
strations available to users.

Appendix D contains tables describing the Scheme-XRate functions available in Darts.

Appendix E contains a glossary of XRate terminology.

http://biowiki.org/twiki/pub/Main/XrateTutorial/example_grammars.zip

153

Chapter 7

RecHMM: Detecting phylogenetic
recombination

154

The following section contains work conducted with Ian Holmes published in PLoS Compu-
tational Biology [153].

Overview

In viral and bacterial pathogens, recombination has the ability to combine fitness-enhancing
mutations. Accurate characterization of recombinant breakpoints in newly-sequenced strains
can provide information about the role of this process in evolution; for example, in immune
evasion. Of particular interest are situations of admixture of pathogen subspecies, recom-
bination between whose genomes may change the apparent phylogenetic tree topology in
different regions of a multiple-genome alignment.

We describe an algorithm that can pinpoint recombination breakpoints to greater ac-
curacy than previous methods, allowing detection of both short recombinant regions and
long-range multiple-crossovers. The algorithm is appropriate for analysis of fast-evolving
pathogen sequences where repeated substitutions may be observed at a single site in a mul-
tiple alignment (violating the “infinite sites” assumption inherent to some other breakpoint-
detection algorithms). Simulations demonstrate the practicality of our implementation for
alignments of longer sequences and more taxa than previous methods.

7.1 Background

Recombination is the process by which a child inherits a mosaic of genes or sequences from
multiple parents. Though most species participate in some form of genetic mixing or recom-
bination, the mechanics by which this occurs varies greatly among them. In higher order
organisms, crossing over occurs in meiosis along the parent-child relationship, whereas in
bacteria, viruses, and protozoans, homologous exchange of DNA material can occur from
one individual to another without the need for sexual reproduction [154]. The diversity
with which recombination occurs motivates the need for different models and methods, each
ideally suited to its biological situaion. We have developed a probabilistic approach to re-
combination detection that we believe to be superior for analyzing situations of admixture
of pathogen subspecies with a high mutation/recombination ratio.

The situation we concern ourselves with has been termed phylogenetic recombination in-
ference (PRI) by [155], and works by inferring phylogenetic tree topology changes over a
multiple alignment. Though it has been shown that under a neutral coalescent model, the
number of recombination events which will lead to a tree topology change is very small, [156]
in situations of admixture following geographical separation a greater proportion of topology-
changing recombinations are expected. Abandoning the infinite-sites model of sequence evo-
lution and instead using a continuous-time Markov chain makes direct inference intractable,
and so we instead employ a phylo-HMM which models an effect of recombination, rather
than modeling the process explicitly.

155

While recombination detection is an interesting mathematical challenge, fast, flexible, and
reliable computational methods are also motivated by a multitude of biological reasons. We
see our method not as being able to answer all of these biological questions on recombination,
but rather a potentially valuable tool for furthering recombination research.

• Genome Dynamics The two most significant factors driving change in genomes in the
context of evolutionary adaptation and diversity are point mutation and recombination.
The ratio between these two differs greatly among organisms; in most, recombination
among subtypes is fairly rare and point mutation occurs comparatively often. Similarly
to point mutation, recombination has the possibility to combine independent fitness-
enhancing changes among genomes as well as disable genes. As Awadalla remarks, “re-
combinant genomes are known to be associated with changes in phenotype or fitness,
including heightened or reduced pathogenicity or virulence” [154]. Our understand-
ing about where, how, and why recombination occurs is comparatively primitive. We
know, for example, that pathogens such as Chlamydia trachomatis have recombination
hotspots [157], but the relevant cis-acting factors are unknown. The precise determi-
nation of breakpoints in recombining pathogens is crucial for higher-level downstream
analyses such as that of [157], or the methods proposed by [155] and [25] in which
genome-scale conclusions about recombination are made from large sets of observed
breakpoint locations. We believe our method offers improved precision and flexibility
as compared to other programs. Furthermore, in light of the high proportion of HIV
isolates which are recombinant, it can be useful that PRI allows one to safely relax the
requirement that all but one of the sequences in the alignment are ‘pure’ subtypes.

As well as being an appealing scientific challenge, a better understanding of the dynam-
ics of pathogen genome evolution might help highlight molecular processes to target in
designing therapeutics, as well as opening up the possibility for genetic manipulation.

• Phylogenetic Analysis When performing phylogenetic analysis on a multiple se-
quence alignment, most methods assume that there is a unique hierarchical relation-
ship among the taxa in question. If recombination has occurred in evolutionary history,
this phylogeny reconstruction will be systematically faulty in either its topology, branch
lengths or both. Incorrect trees could hinder further comparative genomic inferences
made from the data [158]. In our training scheme, we estimate separate trees for all
regions in the alignment, and if more sophisticated tree-inference methods ought to
be used, our precise breakpoint inference allows for training trees on the alignment
sections.

• Genetic Mapping In using genetic mapping information to locate genes associated
with various phenotypes, it is vital to know the extent of genome rearrangement
present. For a discussion of how this can affect microbial pathogen analysis, see [159].

156

Previous Related Work We give here an outline of previous methods which are related to
our phylo-HMM approach. For a more thorough survey or recombination detection methods,
see [154].

The rationale for phylogenetic recombination inference is motivated by the structure of
the Ancestral Recombination Graph (ARG), which contains all phylogenetic and recombina-
tion histories. The underlying idea is that recombination events in the history of the ARG
will, in certain cases, lead to discordant phylogenetic histories for present-day species.

Various approaches to learn the ARG directly from sequence data have been developed,
such as [160] and [161]. We recognize that PRI is in a somewhat different category both in
goal and approach as compared these methods, though they are motivated by the same un-
derlying biological phenomenon. Rather than aiming to reconstruct the ARG in its entirety,
our emphasis is on modeling fast-evolving organisms with the goal of accurately detecting
breakpoints for biological and epidemiological study.

The most widely-used program for phylogenetic recombination detection is SimPlot [24]
(on MS Windows). Recombination Identification Program (RIP), a similar program, [162]
runs on UNIX machines as well as from a server on the LANL HIV Database site. This
program slides a window along the alignment and plots the similarity of a query sequence
to a panel of reference sequences. The window and step size are adjustable to accommodate
varying levels of sensitivity. Bootscanning slides a window and performs many replicates
of bootstrapped phylogenetic trees in each window, and plots the percentage of trees which
show clustering between the query sequence and the given reference sequence. Bootscanning
produces similar output to our program, namely a predicted partition of the alignment as
well as trees for each region, but the method is entirely different.

In [27], Husmeier and Wright use a model that is similar to ours except for the training
scheme. Since they have no scalable tree-optimizing heuristic, their input alignment is limited
to 4 taxa so as to cover all unrooted tree topologies with only 3 HMM states, making their
method intractable for larger datasets. They show they are able to convincingly detect small
recombinant regions in Neisseria as well as simulated datasets limited to 4 taxa [27].

The recombination detection problem can be thought of as two inter-related problems:
how to accurately partition the alignment and how to construct trees on each region. This
property is due to the dual nature of the ARG: it simultaneously encodes the marginal tree
topologies as well as where they occur in the alignment. Notice that if the solution to one
sub-problem is known, the other becomes easy. If an alignment is already partitioned, simply
run a tree-inference program on the separate regions and this will give the marginal trees of
the sample. If the trees are known, simply construct an HMM with one tree in each state
and run the forward/backward algorithm to infer breakpoints. Previous methods have used
this property by assuming one of these problems to be solved and focusing on the other. For
example, in Husmeier and Wright’s model, there were very few trees to be tested, and so the
main difficulty was partitioning the alignment, which they did with a HMM similar to ours.
In SimPlot, windows (which are essentially small partitions) passed along the alignment and
trees/similarity plots are constructed. This allows the program to focus on tree-construction
(usually done with bootstrapped neighbor-joining) rather than searching for the optimal

157

alignment partition.
By employing a robust probabilistic model with a novel training scheme, we find a middle

ground between the heuristic approach of SimPlot [24] and the computational intractability
of Husmeier and Wright’s method [27], where we are essentially able to solve the recom-
bination inference problem a whole, rather than neglecting one sub-part and focusing on
the other. We use a HMM to model tree topology changes over the columns of a multiple
alignment. This is done much in the same way as Husmeier and Wright, but our use of a
more sophisticated tree-optimization (the structural EM heuristic) method allows searching
for recombination from a larger pool of sequences. By modifying the usual EM method
for estimating HMM parameters in a suitable way, we are able to simultaneously learn the
optimal partitioning of the alignment as well as trees in each of these partitions. We are
able to detect short recombinant regions better than previous methods for several reasons.
First, we do not use any sliding windows which may be too coarse-grained to detect such
small regions of differing topology. Second, our method allows each tree after EM conver-
gence to be evaluated at every column, and so small recombinant regions are not limited
by their size; they must only ‘match’ the topology to be detected or contribute to the tree
training. By embedding trees in hidden states of an HMM, the transition matrix allows
us to essentially put a prior on the number of breakpoints, as opposed to considering each
column independently. Furthermore, since the counts in the E-Step are computed using
all columns of the alignment, distant regions of the alignment with similar topology may
contribute their signal to a single tree, whereas in a window-sliding approach each window
is analyzed independently.

7.2 Results

Interpretation of the Results Since it is difficult to experimentally verify predictions
of recombination, we test our methods on previously-analyzed data from earlier studies on
Neisseria and HIV-1 as well as simulated datasets. Statistics summarizing simulations with
respect to several simulation parameters are included in Figure 7.1.

When comparing real and simulated data, one must keep in mind that real data may
have complications such as rate heterogeneity and structural features that are not present in
simulations, which are carried out using a simple independent-sites Markov chain model of
nucleotide evolution, such as the HKY85 model [66]. While this is currently the only model
we use in our program, it is straightforward to extend this to other models.

In analyzing real data, when there were several alignments in the original analysis, we in-
clude only those in which we recover new breakpoints, or otherwise demonstrate our method’s
utility. It is implicitly assumed that in the analyses which we don’t include, we came to sim-
ilar or identical conclusions as the original authors.

In our analysis of simulated data, we aim to quantitatively characterize the strengths and
weaknesses of the recHMM method by varying several simulation and analysis parameters. In
each simulation case, ARGs (and hence K-tuples of trees) were generated with RECODON

158

[163], which uses a coalescent-based simulation approach (for exact simulation parameters,
see Appendix F) . In keeping with the above discussion of PRI vs coalescent modeling,
we filter out ARGs whose marginal trees are identical in topology using the treecomp
program [164]. Thus, in all of the simulations, a perfect detector of topology change would
find every breakpoint. After tree-simulation, we simulate alignments using Seq-Gen, which
generates multiple alignments according to simple independent sites Markov chain models.
The reason for this decoupling of tree and sequence simulation is that Seq-Gen allows for
easier manipulation of the variables we’re testing, namely length of region, divergence since
recombination, and overall divergence (by way of branch-scaling.) [77].

After running our program on the simulated data to estimate parameters, recombinant
regions are determined by a posterior decoding algorithm which we describe briefly in the
Methods section and is fully outlined in Appendix F. (We use posterior decoding as opposed
to the Viterbi algorithm since we are primarly concerned with maximizing the expected
number of correct column labelings as opposed to maximizing the probability that our state
path is exactly correct.) As the notion of a ‘true negative’, a column which was correctly
annotated as a non-breakpoint, is not meaningful in this case, we instead examine positive
predictive value: TP

TP+FP
, where a true positive (TP) is defined as a predicted breakpoint

which occurs within 10 positions of a true breakpoint. Similarly, a false positive (FP)
is a predicted breakpoint which has no true breakpoint within 10 positions. In plotting
sensitivity: TP

TP+FN
, we define a false negative (FN) to be a true breakpoint for which we

have no predicted breakpoint within 10 positions.
We vary the following parameters with regard to simulation of data, the results of which

are depicted in Figure 7.1:

• Length of recombinant region The length of the region which has a discordant phy-
logenetic signal is inversely proportional to detection power. We simulated alignments
with three regions: two regions of length 200 bp on either side of the variable-length
region, resulting in two true breakpoints, at positions 200 and 200+length(region).

On alignments with recombinant regions longer than 100 bp, recHMM detects a high
percentage of breakpoints with few false positives. Below 100 bp the detection suf-
fered, with the program able to detect approximately 40% of breakpoints. For any
recombination-detection program, smaller regions will be harder to detect, and so high
accuracy down to 100 bp is promising.

• Taxa With more taxa, tree estimation becomes more difficult, and so distinguishing re-
gions having different trees becomes more challenging. Further, comparing likelihoods
of two large trees becomes unreliable as the scale of the likelihood becomes larger.

In alignments with up to 23 taxa, detection is fairly strong, but begins to taper off
around 25 taxa. Still, this is a notable improvement over Husmeier and Wright’s model
which could only accommodate 4 species. This is practically relevant only for initial
screening for recombination; once the donor species are known, the alignment can be
pruned of the irrelevant taxa for more accurate breakpoint detection.

159

• Divergence We vary the overall evolutionary time since speciation among the taxa
by scaling the branch lengths of the tree used to simulate the alignment. The idea
is that as divergence grows and the tree becomes indistinguishable from a ‘star-like’
topology, the phylogenetic signal relating species becomes weaker. On the other hand,
if divergence were 0, the population would appear clonal (e.g. identity along alignment
columns) and recombination would be undetectable.

• Divergence since recombination event In varying the divergence time since re-
combination, we wish to quantify the idea that more recent recombination events are
easier to detect, since they have closer homology to their donor genomes.

Since directly varying the divergence since the recombination event is difficult, we
instead restrict our analysis to a subset of topology-changing ARGs, namely those
whose marginal trees differ by a leaf-transfer event (as opposed to a general subtree-
transfer). While this may be an unlikely scenario from a pure coalescent perspective,
newly emergent recombinant pathogens can be represented as leaf-transfer events. In
terms of simulation, this restriction of ARGs allows us to approximate scaling all
branches (and sub-branches) since recombination by scaling only terminal branches,
allowing us to demonstrate the difference in detection power between ‘ancient’ and
‘recent’ recombination events.

Divergence and divergence since recombination appear to affect detection power in a
similar way. Though it is difficult to draw conclusions from so few data points, one
can see a sharper dependence in the leaf-scaling case, whereas in scaling all branches,
the curve is slightly gentler. This can be intuitively understood considering that the
leaf-scaling is varying only the relevant part of the tree, whereas when the whole tree
is scaled, the effect on the phylogeny is more evenly dispersed, resulting in a more
gradual effect on detection power.

• Number of recombinant regions K This varies the number of topologically distinct
regions in the alignment. In analyzing these alignments, the number of HMM states,
k, is set to the correct value K.

We observe that the method is relatively stable with respect to number of regions for
the values we tested (2-8), provided that the number of regions is correctly specified.
When this part of the model is mis-specified, the results are mixed, and we show re-
sults from simulation studies varying the model structure for fixed alignments in Figure
7.2. The K−varying plot in Figure 7.1 does not take into account the possibility that
non-bordering regions were wrongly annotated as coming from the same state. The
breakpoints of these regions would still be detected, but their tree topology would be
incorrect. Thus, we re-emphasize that recHMM is primarily a breakpoint-detection
tool, and that if serious inferences are to be made from the trees within each hid-
den state, then more sophisticated tree construction methods should be used on the
separate alignment regions.

160

We examined the effect of the following parameters in data analysis:

• Predicted number of recombinant regions For certain values of K above, we vary
k to see how detection power is affected when we have greater or fewer HMM states
than distinct regions. We would have liked to vary k extensively for every value of K,
but we as were limited by computing time, we analyzed only k = 4, 5, 6, 7, 8 for K = 5.

From this study, we concluded that specifying more states increases sensitivity, but at
a slight cost of PPV. Intuitively, if a model has too few states, discordant regions may
be merged together and modeled by a consensus topology, instead of being correctly
modeled as separate recombinant regions with their own tree-states. If excessively
many states are used, then presumably more of the genuinely differing regions will be
modeled, but also small, spurious regions of convergent mutations or rate heterogeneity
could be modeled by one of the extra states, leading to falsely predicted breakpoints.
In many cases, the cutoff criterion helps in filtering out small errant regions, and we
see only a moderate drop in PPV in Figure 7.2 for 7 and 8 states.

• Length of cutoff criterion The cutoff criterion is the value of the smallest distance
between breakpoints we allow in our predicted state path. For a detailed description
on how this cutoff criterion informs our posterior decoding algorithm, see the Methods
section and Appendix F. Simply stated, we disregard paths with breakpoints occurring
within the cutoff of each other when choosing a maximal path.

In Figure 7.1, we see that sensitivity rises as we allow for shorter region predictions
(by specifying a higher cutoff value). PPV shows the opposite trend; with smaller
cutoff criteria, we can be increasingly certain that any breakpoints we find are true
breakpoints. The cutoff value where the two curves intersect can be thought of as
a value which optimally balances sensitivity and PPV, and so in our simulated data
analysis we set the cutoff to 30 bp.

In our analysis of real data, we cover a range of data sizes and types, ranging between
4 and 9 taxa, with length ranging from 700 bp to circa 10,000 bp. We find that in each
case, we are able to recover the previous authors’ predictions for breakpoints. In many
cases, we find compelling evidence for additional, often shorter recombinant regions that
the original analysis either missed completely or registered as minor ‘spikes’ in their plot.
In each example we highlight the aspects of our method that contribute to its sensitivity,
flexibility and utility. In the case where we had no additional predictions to add to a dataset,
we omitted that analysis for brevity. For example, we analyzed the data from [157], but the
low mutation rate enabled their simpler approach to adequately determine breakpoints. In
this situation we acknowledge that our method is able, but not necessary, to analyze the
data.

161

100 200 300 400

0.
0

0.
4

0.
8

Recombinant Region Length

P
P

V
, S

en
si

tiv
ity

100 200 300 400

0.
0

0.
4

0.
8

Length of Recombinant Region

PPV
Sensitivity

Minimum Predicted Region Length

Region Length Cutoff

P
P

V
, S

en
si

tiv
ity

0 50 100 150

0.
0

0.
4

0.
8

PPV
Sensitivity

0 2 4 6 8 10 12

0.
0

0.
4

0.
8

Overall Divergence

Branch Length Scaling Factor

P
P

V
, S

en
si

tiv
ity

0 2 4 6 8 10 12

0.
0

0.
4

0.
8 PPV

Sensitivity

0 2 4 6 8 10 12

0.
0

0.
4

0.
8

Divergence Time Since Recombination

Terminal Branch Scaling Factor

P
P

V
, S

en
si

tiv
ity

0 2 4 6 8 10 12

0.
0

0.
4

0.
8

PPV
Sensitivity

2 3 4 5 6 7 8

0.
0

0.
4

0.
8

Number of Recombinant Regions

Number of Distinct Regions

P
P

V
, S

en
si

tiv
ity

2 3 4 5 6 7 8

0.
0

0.
4

0.
8

PPV
Sensitivity

10 15 20 25 30

0.
0

0.
4

0.
8

Number of Taxa Analyzed

Taxa in Multiple Alignment

P
P

V
, S

en
si

tiv
ity

10 15 20 25 30

0.
0

0.
4

0.
8

PPV
Sensitivity

Figure 7.1: Accuracy of breakpoint detection varies as a function of simulation and inference
parameters. In each case, we plot both positive predictive value (TP/(TP+FP) = PPV) and
sensitivity (TP/(TP+FN)). A correctly predicted breakpoint is defined as one which occurs less
than 10 bp from a true breakpoint. We observe that the overall accuracy remains high except for
situations of high diversity, extremely short recombinant region (less than 50 bp), or more than
20 taxa. In several cases, we were resource-limited and only able to provide a few data points
for each variable, and this is the reason for the sparseness of the plots. Each data point is the
maximum-likelihood outcome of 10 independently run EM trials, each one taking on average 15
minutes for small length/taxa, though this varies as seen in Figure 7.10.

162

Effect of Varying Number of HMM States

Number of HMM states used by detection algorithm

P
P

V
, S

en
si

tiv
ity

(Simulation used 5 states)

4 5 6 7 8

0.
00

0.
50

1.
00

PPV
Sensitivity

Figure 7.2: The detection power increases as more trees are added to the model. Here we analyze
alignments with 5 regions, while setting our predicted number of states to various values. The
sensitivity increases steadily while PPV tapers off at a fixed value.

Neisseria ArgF and penA genes We used our program to analyze data from Neisseria
data that consisted of single gene regions suspected of recombination. In these analyses,
recombinant regions were quite short and we demonstrate that our method is capable of
handling this situation.

In their 2001 work, Husmeier and Wright use a similar tree-topology HMM to detect
recombination. Since each EM iteration involves searching over all possible tree topologies
for the optimal trees for each region, they were limited to alignments of 4 taxa, where there
are only 3 unrooted phylogenies [27]. As mentioned earlier, both this and window-based
methods assume one part of the recombination inference problem to be solved. In this case,
the method allocates one tree per HMM state, and so estimation of the trees is no longer
necessary, leaving only the alignment partitioning problem to be solved. Our results on this
dataset are shown in Figure 7.3. The previous predictions are shown in red dashed lines. The
horizontal axis refers to the position within the alignment, and the vertical axis is partitioned
according to posterior state probability of the HMM. The posterior state probability can
intuitively be thought of as the probability that a certain column was generated by a certain
phylogenetic tree, taking into account the model structure and all the alignment data. At
each position, the posterior probabilities for the three trees must sum to one, and hence the
different colors partition the vertical axis. We were able to closely replicate their results
(namely the state probabilities depicted in Figure 15 of [27]).

In comparing our results to theirs, we note that our program, which does a probabilistic

163

Neisseria argF Recombination Analysis

Alignment Position (bp)

P
os

te
rio

r
P

ro
ba

bi
lit

y

0 50 150 250 350 450 550 650 750

0.
00

0.
50

1.
00

Neisseria penA gene Recombination Analysis

Alignment Position (bp)

P
os

te
rio

r
P

ro
ba

bi
lit

y

0 200 400 600 800 1000 1400 1800

0.
00

0.
50

1.
00

Figure 7.3: The left plot shows the analysis of Neisseria argF data with predictions from Husmeier
and Wright, who used a similar method, [27] in red dashed lines. We confirm each of their break-
points and are able to better characterize uncertain regions. Still, the region from 0-75 remains
difficult to characterize. Different colors represent posterior probabilities of different tree-topology
states in the HMM, and sharp changes in color indicates likely recombination breakpoints. The
right figure shows analysis of Neisseria penA data, an alignment of 9 taxa of length circa 1900 bp,
demonstrating our ability to analyze many taxa. We confirm with high posterior probabilities the
two breakpoints previously found by Bowler et al, shown in red [165].

tree-updating step, rather than providing a hidden state for all possible topologies, recovers
all the breakpoints of the previous study. At positions 202, 507, and 538 there are clearly
points at which different colors have high posterior probabilites. In regions such as 0-50, it is
difficult to make reliable inferences because with so few bases, phylogenetic tree construction
is unreliable. As mentioned in the Methods section, we employ a simple length cutoff heuristic
whereby all recombinant regions smaller than a certain length are removed. Though this is
less sophisticated than, say, explicitly specifying a prior distribution over state paths which
takes length into account, it performs reasonably well for the situations we analyzed. In
considering putative crossovers, points where a tree with high posterior probability changes
abruptly in favor of a different tree should be considered most closely. Also, topology changes
that are extremely short could be the result of spurious convergent mutations, in which two
phylogenetically distant species undergo mutations to the same base, making it seem as if
they had exchanged information. Note also that our method is better able to characterize
the regions 537-560 and 750-780. In [27], 537-560 is classified as “irregular”, and 750-780
shows only a spike in probability in Figure 13 of [27], and not at all in their Figure 15. We
predict the 500-600 region to be composed of two separate topologies, and 750-780 to be a
possibly newly characterized recombinant region, having the same topology as the 100-202
region.

In [165], Bowler et al discovered a mosaic structure in the PenA gene of Neisseria Menin-
gitidis which conferred resistance to Penicillin. Analyzing a DNA multiple alignment between
9 species, they were able to manually determine estimates for recombination breakpoints.
Constructing phylogenetic trees for each of the regions gave them clues as to the donors
of the acquired regions, after which these predictions were experimentally verified. In con-

164

trast, our method is able to simultaneously partition and estimate the trees of a recombinant
alignment. In Figure 7.3 we see that our method predicts nearly the same breakpoints with
high posterior probabilities. The alignment analyzed was composed of 9 species, covering
the range of virulent and commensal Neisseria subtypes, with length 1950 bp. This analysis
demonstrates the ability of our phylo-HMM to effectively make use of alignments with rela-
tively many taxa, a notable advantage over Husmeier et al ’s method. For a quantitative look
at how detection power varies with taxa number, see Figure 7.1. By using so many subtypes
for comparison, Bowler et al were able to precisely determine which species were the donors
and recipients of the recombinant regions, and subsequently verified these predictions in a
laboratory setting. If they had been limited to 4 taxa, the analysis would have had to be
repeated many times to cover all the possibilities. Biologically, the results in [165] motivate
a search for recombination within genes implicated in resistance, in contrast to the multiple
resistance gene transfer that has been previously studied, and this is a possible application
of our method.

HIV-1 whole-genome scans In order to determine the effectiveness of our method on
longer alignments, we analyzed several datasets of entire genomes (10,000 bp) of HIV-1
strains suspected of inter-subtype recombination. Our method is equally able to perform on
the genome scale as it is on the single-gene scale. In Neisseria argF, one of the predicted
recombinant regions was only 30 bp long, whereas in HIV they range from 100 bp to 6 kb.
This is a notable advantage over sliding-window methods which have a fixed resolution to be
used over the whole scan. We demonstrate here that we are able to determine breakpoints
between both large and small recombinant regions, making our method a promising tool for
comparative analysis of HIV and similar genomes. In analyzing data from previous studies,
we recovered all the breakpoints found by the previous authors. In cases in which we found
additional breakpoints, we describe them below, but otherwise we omit the plots for brevity.

HIV-1 CRF01 AE/B from Malaysia Figure 7.4 depicts our results on a new Malaysian
HIV strain previously analyzed by Lau et al [19]. We recover all six of the breakpoints
inferred by the original authors, who used a SimPlot/Bootscanning approach, and also we
find two new breakpoints whose significance appears equal to those found previously. In
Figure 7.4, we show for comparison the results from bootscanning, which Lau et al used for
their inference of recombination breakpoints. Lau et al provided precise breakpoint positions,
and these are plotted in our diagram as red dashed lines. Since bootscanning typically
removes gaps from multiple alignments before analysis, the breakpoint positions do not align
with Lau et al’s plot very well, and we provide rough mapping between plots. All six of their
breakpoint predictions are well-represented in our analysis. Note the ‘spike’ in likelihood at
around nt 5800 in Lau et al’s plot. This region registered as strongly recombinant in our
analysis, depicted as the grey region in region nt 6415-6594. Lau et al’s characterization
of the 1500 to 2000 region (2141 to 2856 in ours) is marked somewhat by uncertainty in
the optimal tree topology; their “ % trees” line wavers and is never very close to 100%,

165

Figure 7.4: The top figure shows our analysis of the strain CRF01 AE/B Malaysian HIV-
1 with our recombination phylo-HMM. We recover 6 previously predicted recombination
breakpoints (red), and predict new regions in 6415-6594 and 2360-2553 (green). The grey
and black regions correspond to posterior probabilities of the trees shown in the lowest figure.
Previous bootscanning analysis of the same data is shown in the middle figure [19]. Since
their method involved removing gaps from the alignment, we provide approximate mappings
from our predictions to their plot, as the red dashed lines between the two figures. They
provided precise breakpoint locations in their paper based on consensus HXB2 strain, which
we plot in our figure as the vertical red lines. Note the spike in their plot that appears in our
plot around 6500 as a recombinant region. The trees in the lowest figure were those trained
as hidden states in our HMM; the black state clearly shows the query strain clustering with
CRF AE, whereas the gray tree shows a closer relationship with subtype B, in accordance
with the previous findings.

166

HIV−1 95IN21301 Recombination Analysis

Alignment Position (bp)

P
os

te
rio

r
P

ro
ba

bi
lit

y

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000

0.
00

0.
50

1.
00

Query−A clustering
Query−C clustering

Figure 7.5: Analysis of A/C Indian HIV-1 recombinant strain 95IN21301. In the original paper [24],
gaps were stripped and so mapping predictions to our plot is difficult. Instead, we show our
confirmations in red, which correspond closely to the predictions seen in Figures 1 and 2 of [24].
Our new prediction of region 4328-4401 is shown in green. Trees trained as hidden HMM states
are shown underneath, with their colored boxes corresponding to the colors in the plot, which in
turn denote posterior probabilities of hidden states. Note that in the black tree the query sequence
doesn’t cluster with C, but the branch length from the (C,F) clade to the query strain is effectively
zero, indicating a star-like topology in these areas.

in contrast to their inference of region 3000 to 5500, where the line remains constant and
close to 100%. This uncertainty suggests that there may be additional recombination points
within that region, as is more conclusively shown in our diagram. We venture that the region
between nt 2141 and 2856 can be further partitioned by two more breakpoints, at nt 2360
and 2553, shown in Figure 7.4.

When using bootscanning, there is a lower limit to the size of the recombinant region
that can be found, which depends closely on the size of the sliding window. The 3283-3617
region, at just over 300 nt, is clearly found, but smaller regions registered only as spikes or
showed uncertainty of the region. Our method is probabilistic, and instead of defining sharp
partitions of the alignment, we allow the parameter training to gradually decide which re-
gions to use to train different trees. In our analyses, we consistently found that our program
is able to find small recombinant regions better than others’ methods. In this case, as the
posterior probabilities become more certain of the alignment partitioning, each of the grey
regions contributes its information in updating the grey tree. If a sliding window was being
passed over the alignment, each region would have to ‘fend for itself’ in conveying its phy-
logenetic signal, and small regions would go undetected. Because we use information from
the entire alignment during tree-optimization and sum over all possible tree-column assign-
ments, our approach is computationally more expensive but allows collaboration between
small recombinant regions, and, consequently, improved detection.

167

HIV-1 A/C Recombinant 95IN21301 from India We examined data from the original
SimPlot paper by Lole et al. In this work, the authors test five newly-sequence HIV-1 strains
from India, and find one of them to be recombinant [24]. We examine this strain and confirm
all five of their breakpoints and offer one new prediction. SimPlot detects mosaic strains by
plotting the similarity of a query strain to other subtype reference strains. The similarity
is computed within a sliding window of predefined size, according to various criteria (eg
Hamming distance, Jukes-Cantor distance, etc). The result is a visualization of the closest
relative of different regions of the query sequence. This is similar in effect to bootscanning
distance-based phylogenetic methods (eg Neighbor-joining), and suffers from many of the
same pitfalls. For example, in their whole-genome analysis of strain 95IN21301, Lole et al
used a window size of 600bp, severely limiting the resolution of recombination detection.
They conclusively found breakpoints around nt 6400 and 9500 (since gaps were removed, it
is difficult to determine exact breakpoint predictions from their plot alone). They then did
a second, finer-scale analysis with window size 200 bp on just the env and nef genes which
were suspected to be recombinant. Within each of these single-gene regions they found an
additional breakpoint in which the query sequence more closely represented subtype C.

In our analysis, we confirmed all five of these breakpoints by using our method (again,
gap-stripping made exact comparison somewhat limited), and our result is shown in Figure
7.5; breakpoints previously found are in red, and new predictions in green. Since we do not
have to specify a window and use instead a probabilistic weighting scheme, we are able to
detect large regions (eg the break at position 6402) just as well as shorter regions (eg 6969-
7073, 9431-9585). Furthermore, the method uses information from the entire alignment,
rather than partitioning it by windows. In this case, it’s possible that attempting to train
a phylogenetic tree T on the region R between nt 6969 and 7073 wouldn’t have yielded
conclusive results. If region R has high posterior probability of being generated by the
‘black’ tree that is dominant from positions 1-6402, the following M-Step will incorporate
more counts from region R, and so when region R is examined, the inference algorithm
recognizes that these columns ‘fit’ perfectly with the black topology, which corresponds to
having high emission probabilities from the black HMM state. Also, a short 83 bp region is
found supporting grey topology, in which 95IN21301 clusters with subtype A. This region
is short, and its posterior probability never reaches 1, but a neighbor-joining tree on this
section, 4328-4401 supports this clustering. In this way, our method is able to take into
account information from the entire alignment, rather than defining a rigid window which
can skip over small recombinant regions.

Three HIV-1 BF recombinants from Brazil We considered data from Filho et al [20].
Their data was composed of 10 newly sequenced strains from Brazil determined to have vary-
ing levels and structure of mosaicism, as determined by bootscan analysis. We confirm their
predictions (from Figure 2 of [20]) in strains PM12313, BREPM11871, and BREPM16704
and we find several more small recombinant regions. Each of the new recombinant regions
we find share breakpoints with other strains we analyzed as well as strain CRF12 BF [21],

168

suggesting they could be hotspots for recombination activity.
As seen in Figure 7.6, strain BREPM12313 showed a clear recombinant region from nt

1322-2571, previously characterized by Filho, et al. Also, a region around 4700-5000 showed
some evidence of recombination, having the same topology as 1322-2571. As this region’s
posterior probability is more ‘spike-shaped,’ rather than having sharp borders between colors,
it is difficult to say whether or not it is an ambiguous region or a genuine recombinant. It does
share one crossover point with strain BREPM11871, giving it somewhat more credibility.
Performing neighbor-joining on nt 4784-4945 (eg positions where posterior probability is
higher for grey) showed BREPM12313 clustering with subtype F. At the end of the genome,
another possible recombinant region is seen, at around 9700. This region includes only gaps
for the query sequence, and thus the inference is not reliable. Our method treats gaps as
missing information, and when they are present in small numbers reliability is not affected,
but in places like this where only gaps are present it can hinder the tree-inference.

Strain BREPM16704 was previously predicted to have four breakpoints, which we recov-
ered with remarkably high posterior probabilities for the tree-states. Figure 7.7 shows our
results with previous predictions in red. A new region, at 9281-9405, shows high posterior
probability and is common to BREPM11871 and CRF12BF [21], making a strong case for a
recombination hotspot.

In strain BREPM11871, all four breakpoints predicted by Filho, et al were found, as
well as a new crossover region, common to BREPM 16704, at 9238-9361 (shown in green
in Figure 7.8). The break previously described at nt 5462 bp was predicted by our method
to be at 5277. To determine the more likely crossover point, we performed 1000 bootstrap-
ping trials on each of the following regions: 4782-5277 (our prediction), 4782-5462 (Filho, et
al ’s prediction), and 5277-5462 (the disputed region). We found that the 5277-5462 region
strongly supported BREPM11871 clustering with subtype B, with 98.2% bootstrap sup-
port. Moreover, bootstrap support for query-F clustering appears higher for our predicted
region (99.9%) than the previous prediction (85.1%). We conclude that our algorithm often
outperforms previous methods in accurately determining recombination breakpoints.

7.3 Discussion

Recombination is an important force driving genome evolution, and in several cases it is the
primary force for diversity. As such, methods which can detect and characterize recombina-
tion events are crucial to the successful utilization of new sequence data. On the single-gene
level, recombination has been shown, in at least one case, to be able to confer antibiotic
resistance [165]. It could be possible that inter-subtype recombination conferring drug re-
sistance is a common phenomenon, which could be investigated using our methods. On
the multiple-gene scale, Chlamydia trachomatis has been shown to undergo frequent inter-
subtype recombination resulting in mosaic genomes [157] which complicate subtype definition
and classification. On the genome scale, HIV-1 has long been known to participate in re-
combination leading to several identified circulating recombinant forms (CRFs). For these

169

HIV−1 BREPM12313 Recombination Analysis

Alignment Position (bp)

P
os

te
rio

r
P

ro
ba

bi
lit

y

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000

0.
00

0.
50

1.
00

Query−F clustering
Query−B clustering

Figure 7.6: Brazilian strain BREPM12313. We confirm Filho, et al ’s breakpoints near 1322 and
2571 (red), and predict new recombinant regions in nt 4784-4945 as well as 970-1049 (green). The
second of these is short, but present in some form in all three strains analyzed here. The spike at
3851-3909 is even shorter and is not represented in the other two species, leading us to not predict
it as a likely recombinant region. Trees trained in hidden states are shown below the plot.

HIV−1 BREPM16704 Recombination Analysis

Alignment Position (bp)

P
os

te
rio

r
P

ro
ba

bi
lit

y

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000

0.
00

0.
50

1.
00

Query−F clustering
Query−B clustering

Figure 7.7: Brazilian strain BREPM16704. We confirm breakpoints near 1322, 2571, and 5462
(red) and predict recombinations in 9281-9405 and 1017-1085 (green). Trees trained in hidden
states are shown below the plot.

170

HIV−1 BREPM 11871 Recombination Analysis

Alignment Position (bp)

P
os

te
rio

r
P

ro
ba

bi
lit

y

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000

0.
00

0.
50

1.
00

85.1% (Q , F)
98.2% (Q , B)
99.9% (Q , F)

Bootstrap Support:

Q = BREPM11871Query−F clustering
Query−B clustering

Figure 7.8: Brazilian strain BREPM11871. Confirmation of breakpoints 1322 and 2571, and 4782
(red dashed lines). We predict a region common to BREPM16704 at 9238-9361 (green). Also,
the breakpoint previously estimated at 5462 (red) we propose to be at 5277 (green dashed line).
In support of this, we provide bootstrapping values (1000 replicates) for the 3 different regions,
indicated by horizontal colored lines above the plot. Our prediction (orange) carries the highest
value, 99.9%, whereas the previous (blue) is only 85.1%, since it includes a region (purple) that
strongly supports BREPM11871 clustering with subtype B, with value 98.2%. The small region at
985-1080 is difficult to confidently categorize, but its high posterior probability for clustering with
F and its agreement with the other two strains lead us to suspect a recombination. Trees trained
in hidden states are shown below the plot.

clinically relevant pathogens, accurate detection of recombination following introgression is
important not only to guide disease treatment methods, but also for tracing the epidemiolog-
ical history of the virus. In this work we present a novel method for recombination detection
which we believe to be more sensitive, flexible, and robust in the aforementioned evolution-
ary scenario. We combine two long-standing concepts, phylogenetics and hidden Markov
models, in a maximum-likelihood framework to model topology changes over an alignment
of related sequences.

We present a training scheme which attempts to solve the two problems embedded
within recombination detection simultaneously. We model evolution probabilistically with
a continuous-time Markov chain which directs the likelihood-based tree construction algo-
rithm [28]. Furthermore, our alignment-partitioning is handled with posterior probabilities
which take into account each hidden state tree. By summing over all possible tree-column
assignments and not using sharp window cutoffs, we are able to perform more precise break-
point determination. We can adjust the specificity and sensitivity of the model with the
transition matrix of the HMM, which dictates how much of a likelihood change should cause
the model inference to change states. We believe this likelihood comparison to be superior
to adjusting the size of the window because it enables distant sections of the alignment to
combine their phylogenetic signal in training a hidden state of the HMM.

171

7.4 Methods

The goal of this study is to start with a multiple alignment of sequence data and find positions
where recombination events have occurred. This is done by recovering a set of phylogenetic
trees and a map that assigns a tree to each column. The points at which neighboring
columns have different tree assignments will indicate possible locations of recombination
events in evolutionary history.

EM for Recombination-HMM We use a hidden Markov model with tree topologies as
hidden states and alignment columns as observed states. The usual method to train HMM
parameters is by the specialization of the EM algorithm known as the Baum-Welch algo-
rithm. Our transitions can be optimized in the usual way, but the emissions are more difficult
since their likelihood is governed by the tree topologies in the hidden states, which are not
easily optimized. For this problem, we employ an EM method for trees, developed by Fried-
man, et al [28], within our M-step for emission probabilities. Their phylogenetic inference
algorithm is implemented with such improvements as simulated annealing and noise injec-
tion in SEMPHY, available from their website at http://compbio.cs.huji.ac.il/semphy/. We
instead implemented our own ‘bare-bones’ version of this algorithm, without these improve-
ments. To progressively assign columns to trees, at each M-step, we weight the expected
counts of the tree-EM by the posterior counts of the phylo-HMM. Intuitively, this guides the
tree-maximization by providing comparatively more information from regions which fit a par-
ticular tree. We give a high-level description of our method here and more detail is provided
in Appendix F. Figure 7.9 gives a graphical representation of the overall task-flow. After
running our program on the alignment data to estimate parameters, a state path through
the HMM is computed from the final matrix of posterior probabilities. We would like this
path to represent a balance between being biologically reasonable and highly probable under
our model. Thus, we propose maximizing the sum of posterior state probabilities subject to
a length cutoff by the following method.

Let π be a path of length m through the state space of the HMM (discounting start and
end states), emitting the first m columns of the alignment, with one state per column. Let
M be the total number of columns in the alignment. We say that the state path is partial if
m ≤M , and complete if m = M .

Let πn denote the nth state in path π. The score of path π is defined as S(π) =∑m
n=1 P [πn, n] where P [i,m] is the posterior probability that column m was emitted by

state i.
We say a state path π is valid if all its breakpoints are more than ε apart. That is, there

exist no m,n > 1 with n−m < ε such that πm−1 6= πm and πm 6= πn.
Finding the maximal valid π is solved by a simple dynamic programming procedure,

outlined in Appendix F.
Since the EM algorithm has a tendency to converge to local likelihood maxima which

are not global maxima, especially when initialized randomly, we ran the algorithm several
times for each dataset, took the highest-likelihood result for the set of trials, and performed

172

the above posterior decoding on the final distribution. We show plots of our program’s
performance when various aspects of the model and input alignment are varied in Figure
7.10.

Algorithm: Recombination Phylo-HMM Training

Input: An alignment D, an integer K specifying number of trees, a guess at the true tree
topologies and transition matrix. In practice, we initialized the transition matrix to
have values of .999 on the diagonal, and split the remaining .001 among the remaining
columns. Transition probabilities are trained in the normal Baum-Welch manner. We
noted that inference was relatively robust to the initial value of this parameter.

Output: A proposed MLE of K phylogenetic trees and the transition matrix. This deter-
mines a posterior state distribution, from which we deduce breakpoints.

E-Step Outer: Calculate the Forward, Backward, and posterior probability arrays in the
usual manner for HMMs, as in [17]. The emission probabilities for each tree-state
are computed by Felsenstein’s pruning algorithm [7]. Use the Forward and Backward
arrays to compute the expected transitions between hidden states.

M-Step Outer:

1. Maximize the transition probabilities to obtain a new estimate of the transition
matrix.

2. Find a new set of trees, using model selection with Structural EM:

E-Step Inner: For all K trees, compute expected counts of hidden data Sij(a, b)
(see below). Scale counts for tree k from column m by the posterior proba-
bility that column m was emitted from state/tree k.

M-Step Inner: Increase the likelihood of each tree topology with Structural EM
(see below) [28].

The hidden data for each tree are defined as Sij(a, b) = P (xi = a, xj = b|D, (T, t)), the num-
ber of transitions from nucleotide a to nucleotide b from node i to node j, for all pairs of nodes.
For neighboring nodes, this can be computed by Elston and Stewart’s Peeling algorithm [64],
and for non-neighboring nodes, exact computation requires a dynamic programming routine
described in the original Structural EM paper [28]. In this work, the authors showed that
the likelihood contribution of an edge between two nodes can be summarized as a function
of this count Sij(a, b).

If we arrange these summaries in a weight matrix W in which Wij represents the expected
likelihood contribution resulting from placing an edge from node i to node j, it is easy to
see that the maximum expected likelihood tree will be the topology which maximizes the
sum of its edge scores. Finding such a topology is trivial if we do not require that the tree is
binary, for instance by maximum spanning tree algorithms. This (possibly non-binary) tree

173

Inferred Recombination PointsNew Model Selection and Parameter Estimate

Model and Parameters

Multiple Alignment

(Guess)

Forward-Backward

EM Converges

Optimal Model and Parameters

Transition Counts

Maximize Transition Probabilities

Tree-column Posteriors

Structural EM

Scale Counts

Best Branch-Lengths

Best Topologies

Figure 7.9: Phylo-HMM training algorithm: Input Alignment =⇒ Model Selection/Parameter
Estimation =⇒ Recombination Inference

is then transformed to a binary tree by operations which do not alter the tree’s likelihood.
In this way, Structural EM allows for iteratively constructing higher likelihood trees by
choosing the next tree which maximizes the expected likelihood based on the current tree.
The reader is referred to Appendix F and the original Structural EM paper [28] for more
detailed discussions of this algorithm which is crucial to our method.

In our methods, instead of allowing Structural EM to converge, we allow two iterations
using the same set of transition and posterior probabilities, as a heuristic substitute for
finding the true hidden tree topologies.

Possible Extensions We outline here a number of extensions which could grow directly
from this work. One of the strengths of the method is its generality and flexibility, and so
we believe it is ideally suited for continued development.

• Sequence Evolution Model Currently we model gaps as missing information (eg.
summing over possible values). This is not realistic and may hinder phylogenetic re-
construction, and consequently recombination inference. The simplest possible next
step is to treat a gap as a ‘5th nucleotide.’ While this assumes independence among
inserted and deleted residues, it has been shown to aid phylogenetic reconstructions
more than treating gaps as missing characters [166]. Our code uses the HKY85 sub-

174

10 15 20 25 30

10
0

30
0

50
0

Runtime vs. Taxa

2 HMM states, 600 bp alignment

Taxa in Multiple Alignment

T
im

e
(m

in
ut

es
)

400 500 600 700 800
12

14
16

Runtime vs. Alignment Length

2 HMM states, 8 taxa

Length of Multiple Alignment

T
im

e
(m

in
ut

es
)

2 3 4 5 6 7 8

50
10

0
15

0

Runtime vs. HMM States

8 taxa, 600 bp alignment

Number of HMM States

T
im

e
(m

in
ut

es
)

Number of EM Iterations

Iterations

P
ro

po
rt

io
n

of
 T

ria
ls

4 6 8 10 12 14

0.
00

0.
10

0.
20

Figure 7.10: Resource use of the algorithm increases with model complexity. The algorithm
converges in a reasonable number of EM steps, as seen in the lower right plot. We observed no
dependence of iterations to convergence and the model complexity, and so the lower right histogram
represents data concatenated from all simulation trials. The final bar in the histogram represents
the proportion of trials which took 14 or more iterations to converge.

175

stitution model, whose matrix exponential is solved in closed form. A more general
rate matrix diagonalization and exponentiation is currently only implemented in the
Python prototype of our core dynamic program, which we find to be too slow (the
experiments reported in this paper used a core dynamic programming algorithm im-
plemented in C, for speed). This is, however, purely a technical issue, and modeling
gaps is entirely feasible. Similar elaborations of the substitution model, such as codon
evolution (if the region of interest was protein-coding) or an extra hidden state deter-
mining coding and non-coding regions, might provide more accurate modeling of large
genome-scale alignments.

• ARG-like trees and k The method currently does not restrict the k-tuples of trees
produced at each iteration. As [167] point out, not all groups of trees can fit together
to produce an ARG. Restricting the tree groups would give a more conclusive answer
to the epidemiological recombination question, and may even be helpful in informing
the tree selection heuristic. One can imagine a simple extension to our method which
attempts to learn k as well as producing consistent trees:

At each training iteration:

– If the trees maximized in each hidden state are not consistent:

∗ First, find a set of trees in the usual manner, without regard to whether they
are consistent. Then, find the best-scoring set of trees which are consistent.
This is computationally intensive but not intractable, since we can enumerate
ordered spanning trees for each of our hidden states from our E-Step. Once
this set has been found, if the likelihood difference between the inconsistent
and consistent set is deemed acceptable, accept the trees and begin a new
training iteration.

∗ Otherwise, if this likelihood penalty is deemed to large, we recognize that the
current k is inadquate to describe the data, and so we add a new hidden state
to the model, and continue training.

A simpler way of estimating k would be to run a coarser heuristic method (eg. SimPlot)
and seed the HMM with the number of states that it finds.

Sequence Data All sequence data used in this study was downloaded from public databases
(GenBank and LANL HIV Database). The sequences were aligned with MUSCLE [168] with
the default parameters. Gaps in the alignments were treated as missing information. Boot-
strap analyses were performed with CLUSTAL W [79] with 1000 replicates and the default
parameters. The GenBank identifiers for sequences used are as follows, grouped by figure:
Figure 7.3: argF: X64860, X64866, X64869, X64873; penA: X59624-X59635; Figure 7.5:
AF067158, AB253429, AF067159, M17451, AF005494; Figure 7.4: AB032740, AB023804,
AY713408, EF495062; Figures 7.6-7.8: AF286228, AF005494, AY173956, AB098332, AY173956,
DQ085867, DQ085876, DQ085872.

176

The source code for our programs, though still being developed, is available upon request
or through CVS. For documentation, contact, and download information see
http://biowiki.org/RecHMM

177

Bibliography

1. Darwin C, Bynum W (2009) The origin of species by means of natural selection: or,
the preservation of favored races in the struggle for life. AL Burt.

2. Zuckerkandl E, Pauling L (1965) Molecules as documents of evolutionary history.
Journal of theoretical biology 8: 357–366.

3. Needleman SB, Wunsch CD (1970) A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular Biology
48: 443-453.

4. Holmes I (2003) Using guide trees to construct multiple-sequence evolutionary
HMMs. Bioinformatics 19 Suppl. 1: i147-157.

5. Löytynoja A, Goldman N (2005) An algorithm for progressive multiple alignment of
sequences with insertions. Proceedings of the National Academy of Sciences of the
USA 102: 10557-62.

6. Löytynoja A, Goldman N (2008) Phylogeny-aware gap placement prevents errors in
sequence alignment and evolutionary analysis. Science 320: 1632–1635.

7. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood
approach. Journal of Molecular Evolution 17: 368-376.

8. Burton P, Clayton D, Cardon L, Craddock N, Deloukas P, et al. (2007) Genome-wide
association study of 14,000 cases of seven common diseases and 3,000 shared controls.
Nature 447: 661–678.

9. Rioux J, Xavier R, Taylor K, Silverberg M, Goyette P, et al. (2007) Genome-wide
association study identifies new susceptibility loci for crohn disease and implicates
autophagy in disease pathogenesis. Nature genetics 39: 596–604.

10. Thomas G, Jacobs K, Yeager M, Kraft P, Wacholder S, et al. (2008) Multiple loci
identified in a genome-wide association study of prostate cancer. Nature genetics 40:
310–315.

178

11. Lambert J, Heath S, Even G, Campion D, Sleegers K, et al. (2009) Genome-wide
association study identifies variants at clu and cr1 associated with alzheimer’s disease.
Nature genetics 41: 1094–1099.

12. Ng P, Henikoff S (2003) Sift: Predicting amino acid changes that affect protein
function. Nucleic acids research 31: 3812–3814.

13. Adzhubei I, Schmidt S, Peshkin L, Ramensky V, Gerasimova A, et al. (2010) A
method and server for predicting damaging missense mutations. Nature methods 7:
248–249.

14. Ferrer-Costa C, Gelṕı J, Zamakola L, Parraga I, De La Cruz X, et al. (2005) Pmut:
a web-based tool for the annotation of pathological mutations on proteins. Bioinfor-
matics 21: 3176–3178.

15. Marini N, Thomas P, Rine J (2010) The use of orthologous sequences to predict the
impact of amino acid substitutions on protein function. PLoS genetics 6: e1000968.

16. Chomsky N (1956) Three models for the description of language. IRE Transactions
Information Theory 2: 113-124.

17. Durbin R, Eddy S, Krogh A, Mitchison G (1998) Biological Sequence Analysis: Prob-
abilistic Models of Proteins and Nucleic Acids. Cambridge, UK: Cambridge Univer-
sity Press.

18. Klosterman PS, Uzilov AV, Bendana YR, Bradley RK, Chao S, et al. (2006) XRate:
a fast prototyping, training and annotation tool for phylo-grammars. BMC Bioinfor-
matics 7.

19. Lau K, Wang B, Kamarulzaman A, Ng K, Saksena N (2007) Near full-length sequence
analysis of a unique crf01 ae/b recombinant from kuala lumpur, malaysia. AIDS
Research and Human Retroviruses 23: 1139-1145.

20. Filho D, Sucupira M, Casiero M, Sabino E, Diaz R, et al. (2006) Identification of
two hiv type 1 circulating recombinant forms in brazil. AIDS Research & Human
Retroviruses 22: 1–13.

21. Thomson M, Delgado E, Herrero I, Villahermosa M, Vázquez-de Parga E, et al. (2002)
Diversity of mosaic structures and common ancestry of human immunodeficiency
virus type 1 bf intersubtype recombinant viruses from argentina revealed by analysis
of near full-length genome sequences. Journal of general virology 83: 107–119.

22. Kew O, Wright P, Agol V, Delpeyroux F, Shimizu H, et al. (2004) Circulating vaccine-
derived polioviruses: current state of knowledge. Bulletin of the World Health Orga-
nization 82: 16–23.

179

23. Simon-Loriere E, Holmes E (2011) Why do rna viruses recombine? Nature Reviews
Microbiology 9: 617–626.

24. Lole K, Bollinger R, Paranjape R, Gadkari D, Kulkarni S, et al. (1999) Full-length
human immunodeficiency virus type 1 genomes from subtype c-infected seroconvert-
ers in india, with evidence of intersubtype recombination. Journal of virology 73:
152–160.

25. Archer J, Pinney J, Fan J, Simon-Loriere E, Arts E, et al. (2008) Identifying the im-
portant hiv-1 recombination breakpoints. PLoS computational biology 4: e1000178.

26. Baird H, Galetto R, Gao Y, Simon-Loriere E, Abreha M, et al. (2006) Sequence
determinants of breakpoint location during hiv-1 intersubtype recombination. Nucleic
acids research 34: 5203–5216.

27. Husmeier D, Wright F (2001) Detection of recombination in dna multiple alignments
with hidden markov models. Journal of Computational Biology 8: 401–427.

28. Friedman N, Ninio M, Pe’er I, Pupko T (2001) A structural EM algorithm for phy-
logenetic inference. In: Lengauer T, Sankoff D, Istrail S, Pevzner P, Waterman M,
editors, Proceedings of the Fifth Annual International Conference on Computational
Biology. New York: Association for Computing Machinery.

29. Westesson O, Lunter G, Paten B, Holmes I (2011) An alignment-free generalization
to indels of Felsenstein’s phylogenetic pruning algorithm. arXiv .

30. Yang Z (1994) Estimating the pattern of nucleotide substitution. Journal of Molecular
Evolution 39: 105-111.

31. Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a
new method of phylogenetic inference. Journal of Molecular Evolution 43: 304-311.

32. Siepel A, Haussler D (2004) Combining phylogenetic and hidden Markov models in
biosequence analysis. Journal of Computational Biology 11: 413-428.

33. Yang Z, Nielsen R, Goldman N, Pedersen AM (2000) Codon-substitution models for
heterogeneous selection pressure at amino acid sites. Genetics 155: 432-449.

34. Thorne JL, Goldman N, Jones DT (1996) Combining protein evolution and secondary
structure. Molecular Biology and Evolution 13: 666-673.

35. Siepel A, Haussler D (2004) Phylogenetic estimation of context-dependent substitu-
tion rates by maximum likelihood. Molecular Biology and Evolution 21: 468-488.

36. Knudsen B, Hein J (1999) RNA secondary structure prediction using stochastic
context-free grammars and evolutionary history. Bioinformatics 15: 446-454.

180

37. Siepel A, Haussler D (2004) Computational identification of evolutionarily conserved
exons. In: Bourne P, Gusfield D, editors, Proceedings of the eighth annual interna-
tional conference on research in computational molecular biology, San Diego, March
27-31 2004. ACM, pp. 177-186.

38. Pedersen JS, Bejerano G, Siepel A, Rosenbloom K, Lindblad-Toh K, et al. (2006)
Identification and classification of conserved RNA secondary structures in the human
genome. PLoS Computational Biology 2: e33.

39. Matsen FA, Kodner RB, Armbrust EV (2010) pplacer: linear time maximum-
likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference
tree. BMC Bioinformatics 11: 538.

40. Kschischang FR, Frey BJ, Loeliger HA (1998) Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory 47: 498-519.

41. Sankoff D, Cedergren RJ (1983) Simultaneous comparison of three or more sequences
related by a tree. In: Sankoff D, Kruskal JB, editors, Time Warps, String Edits, and
Macromolecules: the Theory and Practice of Sequence Comparison, Reading, MA:
Addison-Wesley, chapter 9. pp. 253-264.

42. Hein J (2001) An algorithm for statistical alignment of sequences related by a binary
tree. In: Altman RB, Dunker AK, Hunter L, Lauderdale K, Klein TE, editors, Pacific
Symposium on Biocomputing. Singapore: World Scientific, pp. 179-190.

43. Lee C, Grasso C, Sharlow M (2002) Multiple sequence alignment using partial order
graphs. Bioinformatics 18: 452–464.

44. Mohri M, Pereira F, Riley M (2002) Weighted finite-state transducers in speech
recognition. Computer Speech and Language 16: 69-88.

45. Hein J, Wiuf C, Knudsen B, Moller MB, Wibling G (2000) Statistical alignment:
computational properties, homology testing and goodness-of-fit. Journal of Molecular
Biology 302: 265-279.

46. Holmes I, Bruno WJ (2001) Evolutionary HMMs: a Bayesian approach to multiple
alignment. Bioinformatics 17: 803-820.

47. Metzler D (2003) Statistical alignment based on fragment insertion and deletion
models. Bioinformatics 19: 490-499.

48. Suchard MA, Redelings BD (2006) BAli-Phy: simultaneous Bayesian inference of
alignment and phylogeny. Bioinformatics 22: 2047–2048.

49. Westesson O, Lunter G, Paten B, Holmes I (2012) Accurate reconstruction of
insertion-deletion histories by statistical phylogenetics. PLoS ONE 7: e34572.

181

50. Searls DB, Murphy KP (1995) Automata-theoretic models of mutation and align-
ment. In: Rawlings C, Clark D, Altman R, Hunter L, Lengauer T, et al., editors,
Proceedings of the Third International Conference on Intelligent Systems for Molec-
ular Biology. Menlo Park, CA: AAAI Press, pp. 341-349.

51. Bradley RK, Holmes I (2007) Transducers: an emerging probabilistic framework for
modeling indels on trees. Bioinformatics 23: 3258–3262.

52. Satija R, Pachter L, Hein J (2008) Combining statistical alignment and phylogenetic
footprinting to detect regulatory elements. Bioinformatics 24: 1236-1242.

53. Paten B, Herrero J, Fitzgerald S, Beal K, Flicek P, et al. (2008) Genome-wide
nucleotide-level mammalian ancestor reconstruction. Genome Research 18: 1829–
1843.

54. Thorne JL, Kishino H, Felsenstein J (1991) An evolutionary model for maximum
likelihood alignment of DNA sequences. Journal of Molecular Evolution 33: 114-
124.

55. Miklós I, Lunter G, Holmes I (2004) A long indel model for evolutionary sequence
alignment. Molecular Biology and Evolution 21: 529-540.

56. Knudsen B, Miyamoto M (2003) Sequence alignments and pair hidden Markov models
using evolutionary history. Journal of Molecular Biology 333: 453-460.

57. Rivas E (2005) Evolutionary models for insertions and deletions in a probabilistic
modeling framework. BMC Bioinformatics 6.

58. Bradley RK, Holmes I (2009) Evolutionary triplet models of structured RNA. PLoS
Comput Biol 5: e1000483.

59. Http://www.graphviz.org/.

60. Karlin S, Taylor H (1975) A First Course in Stochastic Processes. San Diego, CA:
Academic Press.

61. Thorne JL, Kishino H, Felsenstein J (1992) Inching toward reality: an improved
likelihood model of sequence evolution. Journal of Molecular Evolution 34: 3-16.

62. Motwani R, Raghavan P (2010) Randomized algorithms. Chapman & Hall/CRC.

63. Holmes I (2005) Accelerated probabilistic inference of RNA structure evolution. BMC
Bioinformatics 6.

64. Elston RC, Stewart J (1971) A general model for the genetic analysis of pedigree
data. Human Heredity 21: 523-542.

182

65. Jukes TH, Cantor C (1969) Evolution of protein molecules. In: Mammalian Protein
Metabolism, New York: Academic Press. pp. 21-132.

66. Hasegawa M, Kishino H, Yano T (1985) Dating the human-ape splitting by a molec-
ular clock of mitochondrial DNA. Journal of Molecular Evolution 22: 160-174.

67. Wong KM, Suchard MA, Huelsenbeck JP (2008) Alignment uncertainty and genomic
analysis. Science 319: 473-6.

68. Qu X, Swanson R, Day R, Tsai J (2009) A guide to template based structure pre-
diction. Curr Protein Pept Sci 10: 270-85.

69. Moses AM, Chiang DY, Pollard DA, Iyer VN, Eisen MB (2004) MONKEY: iden-
tifying conserved transcription-factor binding sites in multiple alignments using a
binding site-specific evolutionary model. Genome Biology 5.

70. Pollard KS, Salama SR, Lambert N, Lambot M, Coppens S, et al. (2006) An RNA
gene expressed during cortical development evolved rapidly in humans. Nature 443:
167–172.

71. Thompson JD, Plewniak F, Poch O (1999) A comprehensive comparison of multiple
sequence alignment programs. Nucleic Acids Research 27: 2682-2690.

72. Markova-Raina P, Petrov D (2011) High sensitivity to aligner and high rate of false
positives in the estimates of positive selection in the 12 Drosophila genomes. Genome
Research 21: 863–874.

73. Nelesen S, Liu K, Zhao D, Linder CR, Warnow T (2008) The effect of the guide
tree on multiple sequence alignments and subsequent phylogenetic analyses. Pacific
Symposium on Biocomputing 2008: 25–36.

74. Liu K, Nelesen S, Raghavan S, Linder CR, Warnow T (2009) Barking up the wrong
treelength: the impact of gap penalty on alignment and tree accuracy. IEEE/ACM
Trans Comput Biol Bioinform 6: 7–21.

75. project consortium E (2007) Analyses of deep mammalian sequence alignments and
constraint predictions for 1% of the human genome. Genome Research 17: 760–774.

76. Bradley RK, Uzilov AV, Skinner ME, Bendana YR, Barquist L, et al. (2009) Evolu-
tionary modeling and prediction of non-coding RNAs in Drosophila. PLoS ONE 4:
e6478.

77. Strope C, Abel K, Scott S, Moriyama E (2009) Biological sequence simulation for
testing complex evolutionary hypotheses: indel-seq-gen version 2.0. Mol Biol Evol
26: 2581-93.

183

78. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced
time and space complexity. BMC Bioinformatics 5: 113.

79. Larkin M, Blackshields G, Brown N, Chenna R, McGettigan P, et al. (2007) Clustal
W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.

80. Katoh K, Kuma K, Toh H, Miyata T (2005) Mafft version 5: improvement in accuracy
of multiple sequence alignment. Nucleic Acids Research 33: 511–518.

81. Higgins DG, Bleasby AJ, Fuchs R (1992) CLUSTAL V: improved software for mul-
tiple sequence alignment. Computer Applications in the Biosciences 8: 189-191.

82. Cartwright RA (2005) DNA assembly with gaps (Dawg): simulating sequence evo-
lution. Bioinformatics 21 Suppl 3: iii31-8.

83. Bradley RK, Roberts A, Smoot M, Juvekar S, Do J, et al. (2009) Fast statistical
alignment. PLoS Computational Biology 5: e1000392.

84. Kamneva O, Liberles A, Ward N (2010) Genome-wide influence of indel substitutions
on evolution of bacteria of the pvc superphylum, revealed using a novel computational
method. Genome Biology and Evolution 2: 870-886.

85. Zhang Z, Huang J, Wang Z, WAng L, Peiji G (2011) Impact of indels on the flanking
regions in structural domains. Molecular Biology and Evolution 28: 291-301.

86. Zhu L, Wang Q, Tang P, Araki H, Tian D (2009) Genomewide association between
insertions/deletions and the nucleotide diversity in bacteria. Molecular Biology and
Evolution 26: 2353-2361.

87. Gomez-Valero L, Latorre A, Gil R, Gadau J, Feldhaar H, et al. (2008) Patterns and
rates of nucleotide substitution, insertion and deletion in the endosymbiont of ants
blochmannia floridanus. Molecular Ecology 17: 4382-4392.

88. Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, et al. (2007) Evolution of
genes and genomes on the Drosophila phylogeny. Nature 450: 203-218.

89. Sinha S, Siggia E (2005) Sequence turnover and tandem repeats in cis-regulatory
modules in drosophila. MBE 22.

90. Lunter G (2007) Probabilistic whole-genome alignments reveal high indel rates in the
human and mouse genomes. Bioinformatics 23: 289-296.

91. Heger A, Ponting C (2008) OPTIC: orthologous and paralogous transcripts in clades.
NAR 36: 267-270.

184

92. de la Chaux N, Messeer P, Arndt P (2007) DNA indels in coding regions reveal
selective contraints on protein evolution in the human lineage. BMC Evolutionary
Biology 7.

93. Wang Z, Martin J, Abubucker S, Yin Y, Gasser R, et al. (2009) Systematic analysis of
insertions and deletions specific to nematode proteins and their proposed functional
and evolutionary relevance. BMC Evol Biol 9.

94. Saccone S, Quan J, Mehta G, Bolze R, Thomas P, et al. (2011) New tools and
methods for direct programmatic access to the dbSNP relational database. Nucleic
Acids Res .

95. Beissbarth T, Speed TP (2004) GOstat: find statistically overrepresented Gene On-
tologies within a group of genes. Bioinformatics 20: 1464–1465.

96. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Molecular
Biology and Evolution 24: 1586-1591.

97. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature .

98. Mills R, Luttig C, Larkins C, Beauchamp A, Tsui C, et al. (2006) An initial map of
insertion and deletion (indel) variation in the human genome. Genome Research 16.

99. Westesson O, Barquist L, Holmes I (2012) Handalign: Bayesian multiple sequence
alignment, phylogeny, and ancestral reconstruction. Bioinformatics .

100. Yang Z, dos Reis M (2011) Statistical properties of the branch-site test of positive
selection. Molecular biology and evolution 28: 1217.

101. Malaspinas A, Eriksson N, Huggins P (2011) Parametric analysis of alignment and
phylogenetic uncertainty. Bulletin of mathematical biology 73: 1–16.

102. Hanson-Smith V, Kolaczkowski B, Thornton J (2010) Robustness of ancestral se-
quence reconstruction to phylogenetic uncertainty. Molecular biology and evolution
27: 1988.

103. Varadarajan A, Bradley RK, Holmes I (2008) Tools for simulating evolution of aligned
genomic regions with integrated parameter estimation. Genome Biology 9.

104. Arribas-Gil A (2010) Parameter estimation in multiple-hidden IID models from bio-
logical multiple alignment. Statistical Applications in Genetics and Molecular Biology
9: 10.

105. Lunter GA, Drummond AJ, Miklós I, Hein J (2004) Statistical alignment: Recent
progress, new applications, and challenges. In: Nielsen R, editor, Statistical methods
in Molecular Evolution, Springer Verlag, Series in Statistics in Health and Medicine,
chapter 14. pp. 375-406.

185

106. Lunter G, Miklos I, Drummond A, Jensen JL, Hein J (2005) Bayesian coestimation
of phylogeny and sequence alignment. BMC Bioinformatics 6: 83.

107. Fleissner R, Metzler D, von Haeseler A (2005) Simultaneous statistical multiple align-
ment and phylogeny reconstruction. Syst Biol 54: 548–561.

108. Redelings BD, Suchard MA (2005) Joint Bayesian estimation of alignment and phy-
logeny. Systematic Biology 54: 401-418.

109. Bouchard-Côté A, Jordan MI, Klein D (2009) Efficient inference in phylogenetic InDel
trees. In: Advances in Neural Information Processing Systems 21 (NIPS). Vancouver,
Canada.

110. Holmes I (2007) Phylocomposer and Phylodirector: Analysis and Visualization of
Transducer Indel Models. Bioinformatics 23: 3263-3264.

111. Holmes I, Rubin GM (2002) An Expectation Maximization algorithm for training
hidden substitution models. Journal of Molecular Biology 317: 757-768.

112. Gelfand A (2000) Gibbs sampling. Journal of the American Statistical Association
95: 1300–1304.

113. Lunter G (2007) HMMoC–a compiler for hidden Markov models. Bioinformatics 23:
2485–2487.

114. Leonard C, Spellman M, Riddle L, Harris R, Thomas J, et al. (1990) Assignment
of intrachain disulfide bonds and characterization of potential glycosylation sites of
the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120)
expressed in chinese hamster ovary cells. Journal of Biological Chemistry 265: 10373.

115. Frazer K, Ballinger D, Cox D, Hinds D, Stuve L, et al. (2007) A second generation
human haplotype map of over 3.1 million snps. Nature 449: 851–861.

116. Altshuler D, Lander E, Ambrogio L, Bloom T, Cibulskis K, et al. (2010) A map of
human genome variation from population scale sequencing. Nature 467: 1061–1073.

117. Wheeler D, Srinivasan M, Egholm M, Shen Y, Chen L, et al. (2008) The complete
genome of an individual by massively parallel dna sequencing. Nature 452: 872–876.

118. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, et al. (2005) Evolutionarily
conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Research
15: 1034-1050.

119. Abecasis A, Vandamme A, Lemey P (2009) Quantifying differences in the tempo of
human immunodeficiency virus type 1 subtype evolution. Journal of virology 83:
12917–12924.

186

120. Loeb D, Swanstrom R, Everitt L, Manchester M, Stamper S, et al. (1989) Complete
mutagenesis of the hiv-1 protease. Nature 340: 397–400.

121. Rennell D, Bouvier S, Hardy L, Poteete A, et al. (1991) Systematic mutation of
bacteriophage t4 lysozyme. Journal of molecular biology 222: 67.

122. Markiewicz P, Kleina L, Cruz C, Ehret S, Miller J, et al. (1994) Genetic studies of
the lac repressor. xiv. analysis of 4000 altered escherichia coli lac repressors reveals
essential and non-essential residues, as well as” spacers” which do not require a
specific sequence. Journal of molecular biology 240: 421.

123. Wei Q, Wang L, Wang Q, Kruger W, Dunbrack Jr R (2010) Testing computational
prediction of missense mutation phenotypes: functional characterization of 204 mu-
tations of human cystathionine beta synthase. Proteins: Structure, Function, and
Bioinformatics 78: 2058–2074.

124. Westesson O, Holmes I (2012) Developing and applying heterogeneous phylogenetic
models with xrate. PLoS ONE 7: e36898.

125. Goldman N, Thorne J, Jones D, et al. (1996) Using evolutionary trees in protein
secondary structure prediction and other comparative sequence analyses. Journal of
Molecular Biology 263: 196–208.

126. Thorne J, Goldman N, Jones D (1996) Combining protein evolution and secondary
structure. Molecular Biology and Evolution 13: 666–673.

127. Siepel A, Haussler D (2004) Combining phylogenetic and hidden markov models in
biosequence analysis. Journal of Computational Biology 11: 413–428.

128. Adachi J, Hasegawa M (1996) Model of amino acid substitution in proteins encoded
by mitochondrial dna. Journal of Molecular Evolution 42: 459–468.

129. Kimura M (1980) A simple method for estimating evolutionary rates of base substi-
tutions through comparative studies of nucleotide sequences. Journal of Molecular
Evolution 16: 111-120.

130. Meyer IM, Durbin R (2004) Gene structure conservation aids similarity based gene
prediction. Nucleic Acids Research 32: 776-783.

131. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14: 755-763.

132. Garber M, Guttman M, Clamp M, Zody M, Friedman N, et al. (2009) Identifying
novel constrained elements by exploiting biased substitution patterns. Bioinformatics
.

133. Slater GSC, Birney E (2005) Automated generation of heuristics for biological se-
quence comparison. BMC Bioinformatics 6: 31.

187

134. Birney E, Durbin R (1997) Dynamite: a flexible code generating language for dy-
namic programming methods used in sequence comparison. In: Gaasterland T, Karp
P, Karplus K, Ouzounis C, Sander C, et al., editors, Proceedings of the Fifth Inter-
national Conference on Intelligent Systems for Molecular Biology. Menlo Park, CA:
AAAI Press, pp. 56-64.

135. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sam-
pling trees. BMC Evolutionary Biology 7.

136. Knudsen B, Hein J (2003) Pfold: RNA secondary structure prediction using stochas-
tic context-free grammars. Nucleic Acids Research 31: 3423-3428.

137. Heger A, Ponting CP, Holmes I (2009) Accurate estimation of gene evolutionary rates
using XRATE, with an application to transmembrane proteins. Molecular Biology
and Evolution 26: 1715–1721.

138. Ayres D, Darling A, Zwickl D, Beerli P, Holder M, et al. (2011) Beagle: an applica-
tion programming interface and high-performance computing library for statistical
phylogenetics. Systematic Biology .

139. The Stockholm file format. http://www.cgb.ki.se/cgb/groups/sonnhammer/

Stockholm.html.

140. The Newick file format. http://evolution.genetics.washington.edu/phylip/

newicktree.html.

141. GFF: an exchange format for gene-finding features. Webpage at
http://www.sanger.ac.uk/Software/GFF/.

142. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstruct-
ing phylogenetic trees. Molecular Biology and Evolution 4: 406-425.

143. Penn O, Stern A, Rubinstein ND, Dutheil J, Bacharach E, et al. (2008) Evolutionary
modeling of rate shifts reveals specificity determinants in hiv-1 subtypes. PLoS
Computational Biology 4: e1000214.

144. Pedersen JS, Meyer IM, Forsberg R, Simmonds P, Hein J (2004) A comparative
method for finding and folding RNA secondary structures within protein-coding re-
gions. Nucleic Acids Research 32: 4925-4923.

145. Watts J, Dang K, Gorelick R, Leonard C, Bess J, et al. (2009) Architecture and
secondary structure of an entire hiv-1 rna genome. Nature .

146. Col format: http://colformat.kvl.dk/. URL COLFormat:http://colformat.kvl.

dk/.

http://www.cgb.ki.se/cgb/groups/sonnhammer/Stockholm.html
http://www.cgb.ki.se/cgb/groups/sonnhammer/Stockholm.html
http://evolution.genetics.washington.edu/phylip/newicktree.html
http://evolution.genetics.washington.edu/phylip/newicktree.html
COL Format: http://colformat.kvl.dk/
COL Format: http://colformat.kvl.dk/

188

147. Zuker M (1989) Computer prediction of RNA structure. Methods in Enzymology
180: 262-288.

148. Skinner ME, Uzilov AV, Stein LD, Mungall CJ, Holmes IH (2009) JBrowse: a next-
generation genome browser. Genome Res 19: 1630–1638.

149. Wiggle track format: https://cgwb.nci.nih.gov/goldenpath/help/wiggle.html. URL
https://cgwb.nci.nih.gov/goldenPath/help/wiggle.html.

150. Stein L, Mungall C, Shu S, Caudy M, Mangone M, et al. (2002) The generic genome
browser: a building block for a model organism system database. Genome Research
12: 1599-1610.

151. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, et al. (2003) The human
genome browser at UCSC. Genome Research 12: 996-1006.

152. Goecks J, Nekrutenko A, Taylor J, Afgan E, Ananda G, et al. (2010) Galaxy: a com-
prehensive approach for supporting accessible, reproducible, and transparent compu-
tational research in the life sciences. Genome Biol 11: R86.

153. Westesson O, Holmes I (2009) Accurate detection of recombinant breakpoints in
whole-genome alignments. PLoS Comput Biol 5: e1000318.

154. Awadalla P (2003) The evolutionary genomics of pathogen recombination. Nature
Reviews Genetics 4: 50–60.

155. Minin V, Dorman K, Fang F, Suchard M (2007) Phylogenetic mapping of recombina-
tion hotspots in human immunodeficiency virus via spatially smoothed change-point
processes. Genetics 175: 1773–1785.

156. Hein J, Schierup M, Wiuf C (2005) Gene genealogies, variation and evolution: a
primer in coalescent theory. Oxford University Press, USA.

157. Gomes J, Bruno W, Nunes A, Santos N, Florindo C, et al. (2007) Evolution of chlamy-
dia trachomatis diversity occurs by widespread interstrain recombination involving
hotspots. Genome research 17: 50–60.

158. Kedzierska A, Husmeier D (2006) A heuristic bayesian method for segmenting dna
sequence alignments and detecting evidence for recombination and gene conversion.
Statistical Applications in Genetics and Molecular Biology 5: 1–32.

159. Anderson T, Haubold B, Williams J, Estrada-Franco J, Richardson L, et al. (2000)
Microsatellite markers reveal a spectrum of population structures in the malaria
parasite plasmodium falciparum. Molecular Biology and Evolution 17: 1467–1482.

160. Song Y, Hein J (2005) Constructing minimal ancestral recombination graphs. Journal
of Computational Biology 12: 147–169.

https://cgwb.nci.nih.gov/goldenPath/help/wiggle.html

189

161. Minichiello M, Durbin R (2006) Mapping trait loci by use of inferred ancestral re-
combination graphs. The American Journal of Human Genetics 79: 910–922.

162. Siepel A, Korber B (1995) Scanning the database for recombinant hiv-1 genomes.
Human retroviruses and AIDS .

163. Arenas M, Posada D (2007) Recodon: coalescent simulation of coding dna sequences
with recombination, migration and demography. BMC bioinformatics 8: 458.

164. Puigbò P, Garcia-Vallvé S, McInerney J (2007) Topd/fmts: a new software to com-
pare phylogenetic trees. Bioinformatics 23: 1556–1558.

165. Bowler L, Zhang Q, Riou J, Spratt B (1994) Interspecies recombination between
the pena genes of neisseria meningitidis and commensal neisseria species during the
emergence of penicillin resistance in n. meningitidis: natural events and laboratory
simulation. Journal of bacteriology 176: 333–337.

166. McGuire G, Denham M, Balding D (2001) Models of sequence evolution for dna
sequences containing gaps. Molecular Biology and Evolution 18: 481–490.

167. Hudson R, Kaplan N (1985) Statistical properties of the number of recombination
events in the history of a sample of dna sequences. Genetics 111: 147–164.

168. Edgar RC (2004) Muscle: multiple sequence alignment with high accuracy and high
throughput. Nucleic Acids Research 32: 1792-1797.

169. Posada D, Buckley T (2004) Model selection and model averaging in phylogenetics:
advantages of akaike information criterion and bayesian approaches over likelihood
ratio tests. Systematic biology 53: 793–808.

170. Murray K, Barton D (2003) Poliovirus cre-dependent vpg uridylylation is required
for positive-strand rna synthesis but not for negative-strand rna synthesis. Journal
of virology 77: 4739–4750.

171. Goodfellow I, Chaudhry Y, Richardson A, Meredith J, Almond J, et al. (2000) Identi-
fication of a cis-acting replication element within the poliovirus coding region. Journal
of virology 74: 4590–4600.

172. Barton D, O’Donnell B, Flanegan J (2001) 5 cloverleaf in poliovirus rna is a cis-acting
replication element required for negative-strand synthesis. The EMBO journal 20:
1439–1448.

173. GOODFELLOW I, KERRIGAN D, EVANS D (2003) Structure and function analysis
of the poliovirus cis-acting replication element (cre). Rna 9: 124–137.

190

174. Mart́ınez-Salas E, Ramos R, Lafuente E, de Quinto S (2001) Functional interactions
in internal translation initiation directed by viral and cellular ires elements. Journal
of General Virology 82: 973–984.

175. Clever J, Sassetti C, Parslow T (1995) Rna secondary structure and binding sites for
gag gene products in the 5’packaging signal of human immunodeficiency virus type
1. Journal of virology 69: 2101–2109.

176. Alford R, Honda S, Lawrence C, Belmont J (1991) Rna secondary structure analysis
of the packaging signal for moloney murine leukemia virus. Virology 183: 611–619.

177. Han J, Townsend H, Jha B, Paranjape J, Silverman R, et al. (2007) A phylogenetically
conserved rna structure in the poliovirus open reading frame inhibits the antiviral
endoribonuclease rnase l. Journal of virology 81: 5561–5572.

178. Merino E, Wilkinson K, Coughlan J, Weeks K (2005) Rna structure analysis at single
nucleotide resolution by selective 2’-hydroxyl acylation and primer extension (shape).
Journal of the American Chemical Society 127: 4223–4231.

179. St George J (2003) Gene therapy progress and prospects: adenoviral vectors. Gene
Therapy 10: 1135–1141.

180. Roth J, Cristiano R (1997) Gene therapy for cancer: What have we done and where
are we going? Journal of the National Cancer Institute 89: 21–39.

181. Bainbridge J, Smith A, Barker S, Robbie S, Henderson R, et al. (2008) Effect of gene
therapy on visual function in leber’s congenital amaurosis. New England Journal of
Medicine 358: 2231–2239.

182. Mancuso K, Mauck M, Kuchenbecker J, Neitz M, Neitz J (2010) A multi-stage color
model revisited: implications for a gene therapy cure for red-green colorblindness.
Retinal Degenerative Diseases : 631–638.

183. Yu M, Poeschla E, Wong-Staal F, et al. (1994) Progress towards gene therapy for hiv
infection. Gene therapy 1: 13.

184. Flotte T, Carter B, et al. (1995) Adeno-associated virus vectors for gene therapy.
Gene therapy 2: 357.

185. Wu Z, Asokan A, Samulski R (2006) Adeno-associated virus serotypes: vector toolkit
for human gene therapy. Molecular therapy 14: 316–327.

186. Dong J, Fan P, Frizzell R (1996) Quantitative analysis of the packaging capacity of
recombinant adeno-associated virus. Human gene therapy 7: 2101–2112.

191

187. Perabo L, Endell J, King S, Lux K, Goldnau D, et al. (2006) Combinatorial engi-
neering of a gene therapy vector: directed evolution of adeno-associated virus. The
journal of gene medicine 8: 155–162.

188. Fisher K, Jooss K, Alston J, Yang Y, Haecker S, et al. (1997) Recombinant adeno-
associated virus for muscle directed gene therapy. Nature medicine 3: 306–312.

189. Maheshri N, Koerber J, Kaspar B, Schaffer D (2006) Directed evolution of adeno-
associated virus yields enhanced gene delivery vectors. Nature biotechnology 24:
198–204.

190. Do CB, Brudno M, Batzoglou S (2004). PROBCONS: Probabilistic consistency-based
multiple alignment of amino acid sequences. Submitted.

191. Holmes I (2000) A DART tutorial. Berkeley Drosophila Genome Project, LSA Room
539, UC Berkeley. A tutorial for probabilistic methods and hidden Markov models,
presented with the aid of the author’s software package implementing many common
HMM algorithms. Available from http://www.fruitfly.org/˜ihh/.

192. Documentation of Stockholm alignment file format:
http://biowiki.org/StockholmFormat.

193. Felsenstein J (1973) Maximum-likelihood estimation of evolutionary trees from con-
tinuous characters. American Journal of Human Genetics 25: 471-492.

194. Van Dyk D (2000) Nesting em algorithms for computational efficiency. Statistica
Sinica 10: 203–226.

192

Part III

Appendices

193

Appendix A

Experimental connections

Experimental data provide a unique, orthogonal lens for interpreting the models presented
in Parts I and II. Studies which provide reliable annotation (e.g. testing whether a gene or
RNA structure has the predicted functional role) serve to allow evaluation of evolutionary
predictive methods (e.g. XDecoder). Others measure short-scale evolutionary patterns, often
on the scale of hours (e.g. a single viral replication cycle) or days (e.g. multiple passages
in cell culture). Such studies provide a complementary viewpoint to evolutionary modeling
on longer time scales. Evolution occurs via two principal components - the mechanism
for change and the selective pressures determining whether this change will rise to fixation
in the population. Short-scale studies primarily provide information on the former, and
together with retrospective phylogenetic studies we can tease apart the relative contribution
of the latter. For instance, it is known that transitions (mutations among pyrimidines and
purines) are more common than transversions (mutations between these groups), and that
this can be explained by a combination of biochemical (transversions are a “smaller” change
chemically, and so more likely to happen in the course of genome replication) and selective
effects (transversions change the encoded amino acid more often, which is more likely to
be deleterious). This appendix describes three connections to experiments in viruses, an
especially attractive system for experimental evolutionary work due to their fast evolutionary
rates, short generation times, and small, well-characterized genomes.

In Section A.1, we describe a fine-scale map of single-replication recombination rates in
the coding region of poliovirus, which we compare to natural recombinants analyzed with
recHMM. In contrast to residue substitution, the relative contributions of mechanistic and
selective factors determining recombination patterns are poorly understood. This study,
along with ongoing characterization of naturally-occurring recombinants, serves to further
our understanding of the interplay between mechanistic and selective forces contributing to
recombination patterns.

In Section A.2, we describe a whole-genome, single-base resolution RNA structure probing
experiment which, combined with XDecoder predictions, was used to identify and verify a
novel functional RNA secondary structure in poliovirus. The evolutionary predictions of
XDecoder provide an ideal complement to the chemically-based probing experiments, with

194

the former providing a functional perspective and the latter a structural one. The novel
structure was selected for having strong signal in both forms of data.

In Section A.3 we describe the use of handalign and ProtPal to reconstruct an ances-
tral form of Adeno-associated virus (AAV) for applications to directed evolution and gene
therapy. Though directed evolution of extant AAV has been successful, it is thought that
ancestral forms possessed even greater evolvability. By reconstructing and synthesizing spe-
cific ancestors in AAV’s history, we hope to generate new forms with desirable properties,
as well as highlight reconstruction as a powerful technique in synthetic biology and directed
evolution.

195

A.1 Recombination map via high-throughput

sequencing in poliovirus

The following section contains unpublished work in progress conducted jointly with Joseph
DeRisi, Charles Runckel, and Raul Andino.

Part II Chapter 7 focused on detecting recombination on long time scales (e.g. decades)
using phylogenetic data. Often the precise recombination breakpoint is not known, either
because there are too few substutions near the breakpoint, or there are too many and the
phylogenetic relationships have been obscured. This, combined with the (relatively) few
recombinants which have been isolated from the field, makes determining genomic breakpoint
distributions quite difficult. Without reliable estimates of breakpoint distributions, it is
nearly impossible to begin to determine the genomic features which affect local variations in
recombination rate.

Recent advances in gene synthesis provide opportunities to investigate these questions in a
controlled laboratory setting. Using a synthetic form of poliovirus “tagged” with SNPs every
18 bases, co-infecting with wild-type (WT) and sequencing the progeny after one replication
cycle allows detection of recombination simply by looking for sequence reads containing both
WT and tagged sequences. The location of recombination can then be pinpointed within
a window of 18 bases. By counting recombinant and non-recombinant reads covering each
window and normalizing by the size (typically 18, though some deviation from this was
necessary to preserve the amino acid sequence), the number of recombinations per base and
replication cycle can be computed for each region, resulting in the map in Figure Figure A.1.
Millions of reads were recovered, allowing for sufficient coverage to identify approximately
57,000 recombination breakpoints which in turn allowed for high confidence in estimating
local recombination rates.

This experiment allows us to see which recombinant forms are produced in a single
selection-independent replication cycle; that is, the extent to which breakpoints in a partic-
ular region are mechanistically favored to occur. This is entirely different than phylogenetic
investigation of recombination (e.g. by recHMM), where the forms which occur in nature may
be extremely unlikely from a mechanistic perspective, but have been selected for by other
pressures. What is striking is that there are notable similarities between this experimentally-
determined recombination map and the few naturally-occurring poliovirus recombinants that
have been isolated. Figure A.1 shows local recombination rates for each of the 18-base tiles,
with the most prominent spike in rate occurring near the RNAse-L element, a large RNA
structure in the 3’ end of the polio genome. Initial analysis of circulating vaccine-derived
poliovirus forms shows that several circulating recombinants have a breakpoint near the
RNAse-L element (Figure A.2). While these isolates are thought to be epidemiologically
independent (e.g. each resulting from independent infection with the Sabin vaccine strain),
additional analysis is needed to confidently determine whether these recombination events
are shared or separate.

This correspondence between the selection-free map and naturally-occurring forms sug-

196

gests that recombination is strongly influenced by mechanistic, rather than selective forces.
However, significantly more data, especially naturally-occurring forms, is needed to verify
this apparent pattern. Focusing on the laboratory-generated recombinants, we used a prob-
abilistic model for the recombination process to determine the sequence features responsible
for modulating local recombination rates. The model we chose was a discrete-time, discrete-
state partially hidden Markov model. Changes in state (WT or tagged sequence) could occur
at any genomic position, but this state was only observable at SNP positions, which were
distributed at roughly every 18th base throughout the coding region. Using an EM algo-
rithm, we estimated maximum likelihood parameters for a variety of models incorporating
homopolymers, GC content, known RNA structure, SHAPE reactivity quantiles (e.g. high,
medium, and low SHAPE reactivity), and various combinations of these features. Each
model has a collection of features that classifies each genome position. For instance, the
Uniform model states that positions with a mismatch between tagged and WT forms have
one recombination probability, and the remaining positions (between tags) have another, for
a total of two parameter combinations. Note that for models with many features, not all will
be used since not all combinations are present (or in some cases even possible - for instance
one cannot have sequence identity on a mismatch position). The models’ features are listed
below.

testModel: Randomly-selected positions in the genome chosen to have a particular null
“feature”, used to verify that random model building did not result in better model
fit.

Uniform: Positions on a mismatch (e.g. SNP tag) given a separate rate.

3’/5’ Sequence ID: Mismatch within 5 bases 3’ (/5’) of the recombination point, mis-
matches.

3’/5’ Homopolymer: Homopolymer (length 3 or more) contained in 5 bases 3’ (/5’) of
recombination point, and mismatch positions.

3’/5’ GC rich-only: Positions with 100% GC content 5’ or 3’ of the recombination point,
as well as mismatches.

3’/5’ GC rich+identity: Positions with 100% GC content 5’ or 3’ of the recombination
point, as well as mismatches, identity, and homopolymers.

RNA structure predictions: Positions with XDecoder posterior pairing probability
above 0.75, 3’ homopolymers, 3’ sequence identity, and mismatch.

Known RNA structures: Positions near a known structured element.

SHAPE 10-category: 10 quantiles of SHAPE reactivity.

SHAPE 2-category: 2 quantiles of SHAPE reactivity (“low” and “high”).

197

Using the Bayesian Information Criterion for model comparison [169]), the relative fit of
these models was determined (Figure A.4). Duplicates of certain models (e.g. 3’ Homopoly-
mer) were used to probe the sensitity of the parameter estimation method. Across multiple
datasets and replicates, GC content and RNA structure repeatedly emerged as strong factors
raising the local recombination rate. A synthetic construct with increased GC content (40
synonymous SNPs, 12% increase in GC content) was constructed to test this hypothesis, and
had a 7.4-fold increase in recombination rate across the modified region. In our parameter
estimates, shown in Figure A.3, GC content was predicted to raise the recombination rate
by a factor of 4.68.

Increased sequencing surveillance in regions where recombinant forms are causing disease,
accurate high-throughput computational methods, and novel laboratory techniques provide a
promising outlook for advancing our knowledge of this potent evolutionary force. Especially
appealing is the sort of hybrid computational/experimental inquiry which has been initiated
with this project: large datasets can be generated by sophisticated biochemical means, and
later analyzed with mathematical tools, producing predictions which can then be tested back
in the laboratory.

Figure A.1: By counting sequence reads with recombinant and non-recombinant tags, the
recombination fraction on each region between tags can be estimated across the poliovirus
genome.

198
Po

st
er

io
r P

ro
ba

bi
lit

y

0.
0

0.
4

0.
8

743 1143 1543 1943 2343 2743 3143 3543 3943 4343 4743 5143 5543 5943 6343 6743 7143

5675
115430546 MAD

Genome position

Po
st

er
io

r P
ro

ba
bi

lit
y

0.
0

0.
4

0.
8

743 1143 1543 1943 2343 2743 3143 3543 3943 4343 4743 5143 5543 5943 6343 6743 7143

5637
115430548 MAD

Genome position

Po
st

er
io

r P
ro

ba
bi

lit
y

0.
0

0.
4

0.
8

743 1143 1543 1943 2343 2743 3143 3543 3943 4343 4743 5143 5543 5943 6343 6743 7143

5663
115430550 MAD

Genome position

Po
st

er
io

r P
ro

ba
bi

lit
y

0.
0

0.
4

0.
8

743 1143 1543 1943 2343 2743 3143 3543 3943 4343 4743 5143 5543 5943 6343 6743 7143

5678
164420616 MAD005

Genome position

Po
st

er
io

r P
ro

ba
bi

lit
y

0.
0

0.
4

0.
8

743 1143 1543 1943 2343 2743 3143 3543 3943 4343 4743 5143 5543 5943 6343 6743 7143

5663
164420618 MAD

Genome position

Po
st

er
io

r P
ro

ba
bi

lit
y

0.
0

0.
4

0.
8

743 1143 1543 1943 2343 2743 3143 3543 3943 4343 4743 5143 5543 5943 6343 6743 7143

5708
DQ890386 NIE0110767

Genome position

Po
st

er
io

r P
ro

ba
bi

lit
y

0.
0

0.
4

0.
8

743 1143 1543 1943 2343 2743 3143 3543 3943 4343 4743 5143 5543 5943 6343 6743 7143

5525
DQ890385 NIE0210766

Genome position

Po
st

er
io

r P
ro

ba
bi

lit
y

0.
0

0.
4

0.
8

743 1143 1543 1943 2343 2743 3143 3543 3943 4343 4743 5143 5543 5943 6343 6743 7143

769 3635 4161 5181
AF448783 EGY93-034

Genome position

Po
st

er
io

r P
ro

ba
bi

lit
y

0.
0

0.
4

0.
8

743 1143 1543 1943 2343 2743 3143 3543 3943 4343 4743 5143 5543 5943 6343 6743 7143

775 3722 4495 5081
30908785 P2S Mog664

Genome position

Po
st

er
io

r P
ro

ba
bi

lit
y

0.
0

0.
4

0.
8

743 1143 1543 1943 2343 2743 3143 3543 3943 4343 4743 5143 5543 5943 6343 6743 7143

775 3380
260907738 CHN3024

Genome position

Figure A.2: Circulating vaccine-derived poliovirus forms analyzed with recHMM. Labeled
green dashed lines indicate predicted breakpoints, and accession numbers and strain names
(where available) appear above the plots. Many breakpoints lie near the RNAse-L element (at
5748 in poliovirus 1), consistent with the “hotspot” seen in Figure A.1 in that region. More
isolated recombinants, together with epidemiological data concerning their independence
(e.g. resulting from separate innoculations with the Sabin vaccine strain) are necessary to
further investigate this phenomenon.

A.2 Probing RNA secondary structure via SHAPE in

poliovirus

The following section contains unpublished work in progress conducted jointly with Cecily
Burrill and Raul Andino.

The functional roles of RNA are gradually being uncovered. No longer thought of as a
passive intermediate between DNA and proteins, it is especially important in RNA viruses,
whose genomes exist either in single- or double-stranded RNA form. In particular, the
secondary structure (e.g. stems, loops, etc) is known to play major roles in the viral repli-

199

0.000

0.001

0.002

No mismatch
High GC

Mismatch
Low GC

No mismatch
Low GC

4.7e-4

2.2e-3

1.3e-6

Estimated recombination
parameters

Type of position

Pr
ob

ab
ili

ty
 o

f r
ec

om
bi

na
tio

n

Figure A.3: Using probabilistic models for the recombination and read generation process,
parameters based on sequence features were estimated using the EM algorithm. High GC
content away from SNP tags was predicted to increase the recombination rate by a factor of
4.68 (from 4.7× 10−4 to 2.2× 10−3. Recombination near mismatches was predicted as much
less probable, consistent with hypothesized mechanisms for viral recombination.

cation cycle, including genome replication [170–173], initiation of translation [174] packag-
ing [175,176], and immune evasion [177].

In Part II Chapter 6 we presented a grammar for predicting RNA secondary structure
overlapping protein-coding sequence on the basis of nucleotide substitution histories. We
summarized this as pairing probabilities - the sum over all posterior probabilities corre-

200

sponding to possible pairings involvinga given column. This quantity, the tendency of a
base to bind to another part of the genome, can be measured by complementary labora-
tory techniques using modification chemistry. Selective 2’-hydroxyl acylation analyzed by
primer extension (SHAPE) preferentially modifies the backbone of RNA in flexible (e.g.
loop) regions. By measuring the relative frequency of this modification and normalizing via
controls, a single-base resolution measure of reactivity (or tendency to not form a pair) can
be computed for each position across the genome [178]. Similar to obtaining a raw DNA se-
quence, the positional reactivity measurements (or even the complete RNA structure itself)
says little about the sequence’s functional role. These must currently be verified by labor-
intensive experimental techniques. Thus, XDecoder’s predictions provide a complementary
lens: while not as biochemically meaningful (indeed, the consensus structure predicted by
XDecoder often contains many non-canonical base pairs), the pairing probabilities, based
on evolutionary conservation, are likely to indicate functional roles. Combining these two
sources of data allowed us to identify a probable novel RNA structure in poliovirus and verify
its functionality using traditional mutagenesis/cell culture techniques.

Figure Figure A.5 shows SHAPE reactivity for each position in the genome alongside
XDecoder’s pairing probabilities. Figure A.6 shows the two forms of data around the CRE.
Pairing probability here is high, but surprisingly SHAPE reactivity appears no lower than
normal. Figure A.7 shows the two forms of data in the RNAse-L region where each is
highly confident and the correspondence is very close. The novel structure identified is in
the region 6700-7100 of poliovirus 1, shown in Figure A.8. Both SHAPE and XDecoder
had strong predictions in this region (low SHAPE reactivity and high pairing probability).
After making synonymous mutations via standard mutagenesis techniques, the growth rate
and plaque size of the resulting virus was markedly reduced, leading us to believe that this
region’s structure plays an important, though as yet unknown function in the viral life cycle.

201

A.3 Reconstructing an ancestral Adeno-associated

virus sequence for synthesis

The following section contains unpublished work in progress conducted jointly with David
Schaffer and John Weinstein.

Though many viruses cause disease, there are others which are either benign or even
useful to humans. Often those viruses which have co-evolved with their hosts exclusively
for long periods are able to infect and replicate without causing disease symptoms. Those
which have recently emerged (or re-emerged) due to cross-species transitions often have the
most severe symptoms, as in the case of ebolavirus, HIV, or influenza.

One virus which has had significant success in use as a gene therapy vector is Adeno-
associated virus (AAV). Gene therapy is the use of DNA as a therapeutic agent, often
with the goal of expressing a particular gene within a host [179]. Cancer [180], retinal
disease [181], colorblindness [182], and even HIV [183] have been treated with gene therapy.
AAV, so named because it requires the presence of a helper virus (typicallyAdenovirus),
causes no detectable disease phenotype and is robust to insertion of entire genes into its
genome [184]. These genes are then expressed in whichever cells the virus infects, which can
be of great use in treating diseases which are manifestations of malfunctioning genes in the
patient. The different strains of AAV possess different properties and tissue specificities. For
instance, AAV8 and AAV9 are able to infect the liver, whereas only AAV5 is able to infect
photoreceptor cells [185]. Directed evolution uses gene shuffling and mutagenesis is used
to generate a diverse library around a starting sequence, which is then subject to selection
(e.g. particular tissues) to generate new variants with the desired properties [186]. This
approach has been successful in creating novel AAV possessing properties useful for gene
therapy [187–189]. However, extant forms may occupy local optima of the fitness landscape,
hindering the scale of possible evolutionary steps.

In this project, we endeavored to predict and synthesize the AAV sequence ancestral to
those strains with desireable properties, with the rationale that the progenitor sequence, may
possess heightened “evolvability” since it gave rise to the myriad extant forms. Given proper
evolutionary pressures, it is conceivable that the observed strains, as well as other forms with
additional properties, could be derived through directed evolution of this ancestral form.

We utilized handalign to build an ancestral MSA and tree relating the relevant AAV
strains. By superimposing the known 3D structure of the gene of interest (cap), we were able
to examine the structural context of regions of alignment and/or reconstruction uncertainty.
There were several areas where the alignment was uncertain, often corresponding with un-
structured loop regions on the capsid exterior. While accurate reconstruction of such regions
is very difficult, the structural leniency and fast evolutionary behavior led us to believe that
small reconstruction errors in these regions would be unlikely to render our synthesized form
unviable. Figure A.9 shows the MSA visualized along with the 3D structure, with both
colored according to the percent identity of the corresponding alignment column.

Reconstruction uncertainty (conditional on an alignment) was also present at several re-

202

gions of the predicted sequence. Even if a “perfect” reconstruction of the indel history is
available, reconstructing individual characters may not be possible with 100% confidence
when multiple substitutions have occurred at a given position, or substitutions occur simul-
taneously on sister branches. Fortunately, we were able to tailor the synthesis procedure
to mirror this uncertainty. Using specialized synthesis techniques, the ancestral library can
be designed to have different amino acids represented at particular positions proportional
to their reconstruction probability. Figure A.10 shows the reconstruction probability of
individual amino acids, with the height of each character proportional to its probability.
Figure A.11 shows the reconstruction probability of individual codons: the vertical space
occupied by each codon is proportional to its probability. The amino acid coded for is indi-
cated using three-letter abbreviations, and the nucleotides are indicated with colors green,
red, orange, and blue (legend at top right).

203

BIC
AIC

SH
AP

E
10

-c
at

eg
or

y

te
st

M
od

el

R
N

A
st

ru
ct

ur
e

pr
ed

ic
tio

ns

3’
 H

om
op

ol
ym

er

3’
 H

om
op

ol
ym

er

3’
 S

eq
ue

nc
e

ID

5’
 H

om
op

ol
ym

er

5’
 H

om
op

ol
ym

er

5’
 S

eq
ue

nc
e

ID

U
ni

fo
rm

SH
AP

E
2-

ca
te

go
ry

5’
 G

C
 ri

ch
 +

 id
en

tit
y

5’
 G

C
 -

on
ly

3’
 G

C
 +

 id
en

tit
y

3’
 G

C
 ri

ch
 -

on
ly

Kn
ow

n
R

N
A

st
ru

ct
ur

es

Worst

Comparison of recombination models

R
el

at
iv

e
m

o
d

el
 fi

t
(B

IC
)

Best

Abbreviated model name
Model definitions in Appendix A.1

Parameters optimized by EM algorithm

Figure A.4: In using Bayesian model comparison statistics for relative model fit evaluation,
GC and RNA structure-aware models had the best fit. Homopolymers, previously thought
to contribute to recombination via promoting polymerase stalling events, appear to have a
negligible effect according to our modeling. Interestingly, SHAPE-based models (data taken
from study described in Appendix A.1) did better than homopolymers but not as well as only
using the known structures. Using parameters for each of 10 quantiles of SHAPE reactivity
did worse than only having 2 categories, since the BIC penalizes additional parameters which
don’t significantly improve model fit.

204

Figure A.5: Pairing probability and SHAPE measurements genome-wide in poliovirus.
SHAPE reactivities are quite noisy, whereas only a few regions are predicted by XDecoder
to harbor conserved structures. The three known structural regions - the 5’ UTR, CRE
element, and RNAse-L element, are all predicted with high pairing probability. A novel
structure was proposed in the region 6700-7100.

Figure A.6: The Cis-acting replication element (CRE) in poliovirus is a well-known struc-
tured region. This is predicted with high probability by XDecoder, lending confidence to
our predicted structure in the 3’ end of the 3D gene. Surprisingly, SHAPE reactivity in the
CRE region does not appear to be lower than average, suggesting that perhaps the CRE
does not fold into its hairpin structure during all parts of the replication cycle.

205

Figure A.7: The RNAse-L structure element in poliovirus is predicted by XDecoder with
high probability, and lower than average SHAPE reactivity is also observed in this region.

Figure A.8: The novel predicted structure possesses both high pairing probability and lower
than average SHAPE reactivity, leading us to believe that this is a thermodynamically stable
and biologically functional structured element.

206

Figure A.9: Visualizing alignment and structures in JalView . At top, an alignment of AAV
variants colored according to percent identity. The 3D structures of the CAP protein (left)
and its arrangement into a viral capsid (right) are correspondingly colored. The JalView
program allows for two-way interactive investigation: mousing over a residue in the AAV8
sequence highlights this residue in both structures, and clicking a residue in either structure
highlights the corresponding alignment column. Position 513 is currently highlighted - the
AAV8 residue is black in the alignment, and the molecule is shown in both structures on the
largest protruding loop.

207

Figure A.10: A distribution of predicted ancestral amino acid sequences; each character’s
height is proportional to its probability.

Figure A.11: A distribution of predicted ancestral DNA sequences (designated by colors green
(A), blue (C), orange (G), and red (T)), with amino acids displayed using 3-letter abbrevi-
ations. The vertical space occupied by each codon is proportional to its probability. Some
columns (e.g. 461) display high synonymous variability, while in others non-synonymous
changes are common (e.g. 467).

208

Appendix B

ProtPal simulation study and OPTIC
data analysis

Methods

Simulation parameters and setup

Data generation Our simulation study is comprised of alignments simulated using 5 dif-
ferent indel rates (0.005, 0.01, 0.02, 0.04, and 0.08 indels per unit time), each with 3 different
substitution rates (0.5, 1, and 2 expected substitutions per unit time) and 100 replicates.
Time is defined such that a sequence evolving for time t with substitution rate r is expected
to accumulate rt subsitutions per site. We employed an independent third-party simulation
program, indel-seq-gen, specifically designed to generate realistic protein evolutionary histo-
ries [77]. indel-seq-gen is capable of modeling an empirically-fitted indel length distribution,
rate variation among sites, and a neighbor-aware distribution over inserted sequences allow-
ing for small local duplications. Since the indel and substitution model used by indel-seq-gen
are separate from (and richer than) those used by ProtPal, ProtPal has no unfair advantage
in this test.

indel-seq-gen v2.0.6 was run with the following command:
cat guidetree.tree| indel-seq-gen -m JTT -u xia --num gamma cats 3 -a 0.372 --branch scale

r/b --outfile simulated alignment.fa --quiet --outfile format f -s 10000 --write anc

The above command uses the “JTT” substition model, the “xia” indel fill model (based
on neighbor effects, estimated from E coli k-12 proteins [77]), and 3 gamma-distributed rate
categories with shape 0.372. Branch lengths are scaled by the substitution rate for simulation
rate r, normalized by the inverse of indel-seq-gen’s underlying substitution rate (b = 1.2) so
as to adhere to the above definition of evolutionary “time”. Similarly, indel rates, which are
set in the guide tree file guidetree.tree, are scaled by b

r
so that tλ∗ insertions/deletions

are expected over time t for rate λ∗.

209

The root mean squared error (RMSE) for each error distribution was computed as follows:

RMSE =

√√√√ ∑
replicates

(
λ̂∗
Ĥ

λ∗
− 1)2 (B.1)

The true tree was made available to all programs which can utilize a tree (ProtPal,
PRANK, MUSCLE), representing the use case in which the true tree is known (e.g. via
the species tree) but the true alignment is unknown. We ran simulations on three differ-
ent phylogenies: a tree of twelve sequenced Drosophila genomes [88] and trees from the
mammalian and amniotic clades of the OPTIC database. We here report results for the
Drosophila tree, which we empirically observe to show trends consistent with, but more
pronounced than, those of the mammalian and amniotic trees. The clearer trends may be
due to the Drosophila tree being larger than the other trees (12 taxa), or having a diverse
range of branch lengths (0.001 - 0.59 expected substitutions/site, at the genome-wide av-
erage rate). The simulation data, reconstructions, and analysis scripts are available from
http://biowiki.org/~oscar/simulation_reconstruction.tar.

Alignment We investigated several multiple alignment tools [5, 78–80, 83, 190] in combi-
nation with alignment-conditioned reconstruction methods. Programs were run with their
default settings, with the exception of PRANK and MUSCLE. To specify ancestral inference,
the guide tree, and “insertions opening forever”, PRANK used the extra options “-writeanc
-t <treefile> +F”. PRANK’s -F option allows insertions to match characters at align-
ments closer to the root. This can be a useful heuristic safeguard when an incorrect tree
may produce errors in subtree alignments that cannot be corrected at internal nodes closer
to the root. Since the true guide tree is provided to PRANK, it is safe to treat insertions in a
strict phylogenetic manner via the +F option. For computational efficiency, ProtPal was pro-
vided with a CLUSTALW guide alignment. Any alignment of the sequences can be used as
a guide, and we chose CLUSTALW for its general poor performance, so that ProtPal would
gain no unfair advantage by the information contained in the guide alignment. MUSCLE
was provided the guide tree with the additional option “-usetree <treefile>”.

Muscle v3.6
MUSCLE -in unaligned.fa -out aligned.fa -usetree guidetree.tree

PRANK v.080820
PRANK -d=unaligned.fa -noxml -realbranches -writeanc -o=output directory

-t=guidetree.tree +F

Clustal v2.03
clustalw -INFILE=unaligned.fa -OUTFILE=aligned.fa

ProbCons v1.12
probcons unaligned.fa > aligned.fa

http://biowiki.org/~oscar/simulation_reconstruction.tar

210

FSA v1.08
fsa unaligned.fa > aligned.fa

MAFFT v6.818b
mafft unaligned > aligned.fa

Imputing indel histories The ancestral reconstruction programs ProtPal and PRANK
were used to directly impute indel histories. The remaining tools were augmented to re-
construction tools by post-processing their MSAs using the maximum parsimony algorithm
described in [89], with the ambiguous cases described therein (e.g. where a column of char-
acters could be equally parsimoniously explained by a deletion on one child branch or an
insertion on the other) resolved by a uniformly random choice from the possible solutions.
Indel rates were estimated by counting indel events in MAP reconstructed histories:

θ̂Ĥ = argmaxθ′P (θ′|Ĥ, S, T) = argmaxθ′P (Ĥ, S|T, θ′) (B.2)

where the latter step assumes a flat prior, P (θ′) = const.
This statistic is not without its problems. For one thing, we use an initial guess of θ

to estimate Ĥ. Furthermore, for an unbiased estimate, we should sum over all histories,
rather than conditioning on the MAP reconstructed history. This summing over histories
would, however, require multiple expensive calculations of P (S|T, θ), where conditioning
on Ĥ requires only one such calculation. We further justify our benchmark of parameter
estimates conditioned on a MAP-reconstructed history by noting that this the de facto
method employed by large-scale genomics studies focusing on indels [84–87].

As well as imputing indel rates from reconstructed histories, we also tried using the
lambda.pl program in the DAWG package [82], which estimates indel rates from MSAs
directly (without attempting reconstruction).

Estimating substitution rates Substitution rates were estimated for each inferred align-
ment using XRate’s built-in EM algorithm and the following simple rate matrix. Given an
equilibrium distribution over amino acid characters, with πi defining the proportion of char-
acter i, the rate of character i mutating to j is set to rπj where r is the only free rate
parameter. XRate’s estimate of r is taken to be the average substitution rate of the MSA.

By using indel-seq-gen’s branch-scale option and changing the indel rate parameters
accordingly, we are able to modulate the substitution and indel rates independently in the
data generation step. This true substitution rate and the rate inferred by XRate are then
directly comparable.

Additional figures

In addition to estimating indel rates for all genes in the OPTIC set, we performed various
other analyses which were left out of the main text for reasons of space limitations. We
provide figures those displaying results here.

211

ProtPal PRANK MUSCLE FSA CLUSTALW ProbCons MAFFT

Pr
op

or
tio

n
co

rr
ec

tly
 in

fe
rr

ed
 a

nc
es

tr
ie

s

0.
80

0.
85

0.
90

0.
95

1.
00

0.9345
0.9235 0.9238

0.8501

0.9045

0.9226 0.9205

Ancestral Branch of Origin

Program

Figure B.1: ProtPal correctly reconstructs the age of more extant residues than any other
program tested. The y-axis shows the proportion of extant residues whose point of origin on
the phylogenetic tree was correctly pinpointed by the reconstruction. The branch of origin
was found by taking the tree node closest to the root containing a non-gap reconstructed
character. All programs except FSA are in the 92%-94% range, owing to the fact that many
columns (especially at low indel rates) are devoid of indels, making inference of origin trivial
(as these columns’ origin is pre-root).

212

0.
1

0.
2

0.
5

1.
0

0.
1

0.
2

0.
5

1.
0

0.
1

0.
2

0.
5

1.
0

0.
1

0.
2

0.
5

1.
0

0.
1

0.
2

0.
5

1.
0

Alignment Accuracy - AMA

Substitution Rate
0.5 1.0 2.0

0.005

0.01

0.02

0.04

0.08

A
M

A
 A

cc
ur

ac
y

M
et

ric
Indel Rate

ProtPal
PRANK
MUSCLE
FSA
CLUSTALW
ProbCons
MAFFT

Figure B.2: Cross-comparison of AMA scores and rate estimation accuracy reveals that
using a single metric to assess alignment accuracy can be unreliable. AMA scores were
computed for each programs alignment of only leaf sequences using cmpalign from the
DART package [18, 191]. AMA scores are comparable across programs until higher indel
rates, where FSA performs best—contrasting with Figure 3.1 and Figure 3.2. MUSCLE’s
accurate deletion rate measurements at high rates and the low corresponding AMA scores
suggest a “cancellation of biases”.

213

5e
−0

4
1e

−0
3

2e
−0

3
5e

−0
3

1e
−0

2
2e

−0
2

5e
−0

2
1e

−0
1

2e
−0

1

5e
−0

4
1e

−0
3

2e
−0

3
5e

−0
3

1e
−0

2
2e

−0
2

5e
−0

2
1e

−0
1

2e
−0

1

5e
−0

4
1e

−0
3

2e
−0

3
5e

−0
3

1e
−0

2
2e

−0
2

5e
−0

2
1e

−0
1

2e
−0

1

5e
−0

4
1e

−0
3

2e
−0

3
5e

−0
3

1e
−0

2
2e

−0
2

5e
−0

2
1e

−0
1

2e
−0

1

5e
−0

4
1e

−0
3

2e
−0

3
5e

−0
3

1e
−0

2
2e

−0
2

5e
−0

2
1e

−0
1

2e
−0

1

5e
−0

4
1e

−0
3

2e
−0

3
5e

−0
3

1e
−0

2
2e

−0
2

5e
−0

2
1e

−0
1

2e
−0

1

5e
−0

4
1e

−0
3

2e
−0

3
5e

−0
3

1e
−0

2
2e

−0
2

5e
−0

2
1e

−0
1

2e
−0

1

5e
−0

4
1e

−0
3

2e
−0

3
5e

−0
3

1e
−0

2
2e

−0
2

5e
−0

2
1e

−0
1

2e
−0

1

5e
−0

4
1e

−0
3

2e
−0

3
5e

−0
3

1e
−0

2
2e

−0
2

5e
−0

2
1e

−0
1

2e
−0

1

5e
−0

4
1e

−0
3

2e
−0

3
5e

−0
3

1e
−0

2
2e

−0
2

5e
−0

2
1e

−0
1

2e
−0

1

True ProtPal PRANK MUSCLE FSA CLUSTALW ProbCons MAFFT DAWG -
MUSCLE

DAWG -
FSA

True ProtPal PRANK MUSCLE FSA CLUSTALW ProbCons MAFFT DAWG -
MUSCLE

DAWG -
FSA

True ProtPal PRANK MUSCLE FSA CLUSTALW ProbCons MAFFT DAWG -
MUSCLE

DAWG -
FSA

True ProtPal PRANK MUSCLE FSA CLUSTALW ProbCons MAFFT DAWG -
MUSCLE

DAWG -
FSA

True ProtPal PRANK MUSCLE FSA CLUSTALW ProbCons MAFFT DAWG -
MUSCLE

DAWG -
FSA

True ProtPal PRANK MUSCLE FSA CLUSTALW ProbCons MAFFT DAWG -
MUSCLE

DAWG -
FSA

True ProtPal PRANK MUSCLE FSA CLUSTALW ProbCons MAFFT DAWG -
MUSCLE

DAWG -
FSA

True ProtPal PRANK MUSCLE FSA CLUSTALW ProbCons MAFFT DAWG -
MUSCLE

DAWG -
FSA

True ProtPal PRANK MUSCLE FSA CLUSTALW ProbCons MAFFT DAWG -
MUSCLE

DAWG -
FSA

True ProtPal PRANK MUSCLE FSA CLUSTALW ProbCons MAFFT DAWG -
MUSCLE

DAWG -
FSA

Insertion Rates Deletion Rates
Indel Rate

0.005

0.01

0.02

0.04

0.08

| T
ru

e
ra

te
 -

in
fe

rr
ed

 ra
te

 |
Tr

ue
 ra

te

Program

Substitution
 Rate

0.5
1.0
2.0

Figure B.3: Most programs are relatively robust to variations in the simulated substitution
rate, as evidenced by the benchmark data grouped according to substitution rate. Accuracy
of rate estimation is plotted as |true−inferred| on the y-axis, with bars grouped by program
for each indel rate and 3-tuple of substitution rates. Higher substitution rates often lead
to higher error, presumably because they obscure homologies, making it more difficult to
distinguish substitutions from indels. FSA appears more sensitive to increased substitutions
than other programs - at indel rate 0.02, FSA’s insertion rates are as accurate as ProtPal’s
at 0.5 and 1.0 substitutions per site, whereas at the highest substitution rate (2.0), its error
exceeds that of CLUSTALW.

214

0.
0

0.
5

1.
0

1.
5

0.
0

0.
5

1.
0

1.
5

0.
0

0.
5

1.
0

1.
5

0.
0

0.
5

1.
0

1.
5

0.
0

0.
5

1.
0

1.
5

0.
0

0.
5

1.
0

1.
5

0.
0

0.
5

1.
0

1.
5

0.
0

0.
5

1.
0

1.
5

0.
0

0.
5

1.
0

1.
5

0.
0

0.
5

1.
0

1.
5

0.
0

0.
5

1.
0

1.
5

0.
0

0.
5

1.
0

1.
5

0.
0

0.
5

1.
0

1.
5

0.
0

0.
5

1.
0

1.
5

0.
0

0.
5

1.
0

1.
5

ProtPal
PRANK
MUSCLE
FSA
CLUSTALW
ProbCons
MAFFT 0.005

0.01

0.02

0.04

0.08

Indel Rate

0.5 1.0 2.0
Substitution Rate

 |
Tr

ue
 ra

te
 -

in
fe

rr
ed

 ra
te

 |

Substitution Rate Accuracy

Figure B.4: Substitution rates estimated from multiple alignments display comparable
accuracy across methods.

215

Insertion Rates

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Deletion Rates

In
se

rt
io

ns
 p

er
 s

yn
on

ym
ou

s
su

bs
tit

ut
io

n

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Tree Branch Tree Branch

D
el

et
io

ns
 p

er
 s

yn
on

ym
ou

s
su

bs
tit

ut
io

n

Branch - speci�c Indel Rates - OPTIC

Figure B.5: Reconstruction allows for estimation of branch-specific indel rates, revealing
possibly interesting signals of evolution. Indel rates were averaged over all alignments, using
the species tree shown in Figure B.6. The human branch (Euarchontoglires - H.sapiens)
appears to have experienced unusually many insertions. The Amniota - Australophenids
(pink) branch has a higher deletion than insertion rate, though it is difficult to distinguish an
insertion on this branch from a deletion on the Amniota - G.gallus (navy) branch. All other
branches are comparable between insertions and deletions. Each bar is colored according to
branches in Figure B.6.

216

Australosphenids

Euarchontoglires

Metathelia

Amniota

Eutheria

H. sapiens M. musculus C. familiaris M. domestica O. anatinus G. gallus

125 MYA

150 MYA

165 MYA

80 MYA

310 MYA

Figure B.6: The phylogenetic tree used for analysis of OPTIC data, colored to inform the
branch-specific Figure B.5.

A R N D C Q E G H I L K M F P S T W Y V

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Amino Acid

Fr
eq

ue
nc

y

Residue Distribution - OPTIC Insertions
Deletions
All OPTIC

Figure B.7: Distributions over amino acids are highly non-uniform, and differ between in-
sertions, deletions, and the overall distribution seen in OPTIC. Inserted, deleted, and all
sequences were separately pooled across all OPTIC genes reconstructed and amino acid
distributions were computed for each.

217

1 2 5 10 20 50

10
0

50
0

20
00

10
00

0

Fr
eq

ue
nc

y

Insertions
Deletions

Indel Lengths - OPTIC

Length of Indel Sequence

Figure B.8: Lengths of inserted and deleted sequences are similarly distributed, in contrast
to the conclusions of previous studies, such as [93], which found that deletions were longer
relative to insertions in C. elegans sequence data. While this may represent a genuine
difference in the evolution of human and worm genomes, it is likely that the use of deletion-
biased aligners (MUSCLE and CLUSTALW) affected their conclusions.

218

0.0 0.2 0.4 0.6 0.8 1.0

0
40

0
80

0
12

00

0.0 0.2 0.4 0.6 0.8 1.0

0
20

00
40

00
60

00

Insertion Positions within Sequence - OPTIC

Deletion Positions within Sequence - OPTIC

Deletion Position
Sequence Length

Insertion Position
Sequence Length

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Figure B.9: Indels are highly non-uniform in their distribution across genes: we see a 6-fold
enrichment for insertions within the N-terminal 1% of the protein sequence, and a 1.4-fold
increase within the C-terminal 1%. There is an 14-fold enrichment in deletions within the
N-terminal 1% of the protein sequence, and a 1.8-fold increase within the C-terminal 1%.
Indel locations are normalized by gene length to enable combining data across all OPTIC
genes analyzed. This may be a mix of genuine biology (e.g. indels occur more often near
the ends of genes) and artifacts (annotation errors are more likely to occur at the ends of
genes).

219

0.0

0.5

1.0

1.5

10-3.5 10-3.0 10-2.5 10-2.0 10-1.5 10-1.0 10-0.5

10-3.5

10-3.0

Indel rate vs indel SNP
occurrence - OPTIC Density

10-4.0

10-4.5

In
de

l S
N

Ps
 p

er
 r

es
id

ue

Indels per synonymous substitution

Figure B.10: Visualizing the number of indel SNPs per residue (using only human sequence)
against the evolutionary indel rate (computed across the Amniote clade) shows no correlation.

220

Appendix C

Additional phenotype prediction
figures

50% of same dataset used for training

1−
BE

R

0.
0

0.
2

0.
4

0.
6

0.
8

SNP phenotype prediction accuracy: individually-trained cuto�s

Lysozyme LacI HIV protease CBS
Test dataset

ColumnRates
SIFT

PMut
ASP

Figure C.1: When cutoffs for ColumnRates and ASP are optimized independently for each
dataset (using 50% of data), ASP performs notably better, with accuracy between 60 and
80%. ColumnRates changes only a small amount, suggesting that it is capable of reliably
analyzing genes which have no pre-existing training data. The dashed line shows a BER
score of 0.5, the expected accuracy when randomly assigning SNPs as deleterious or neutral.

Here we show all the accuracy statistics from [123] for each of the four datasets. Each
plot is titled with the dataset used (e.g. Lysozyme, HIV protease, etc) and the groups of

221

bars each correspond to a particular statistic labeled under the group. Within each group of
bars, the colors correspond to programs used for inference. The statistics are Balanced Error
Rate (BER), Accuracy (ACC), True Positive Rate (TPR), Positive Predictive Value (PPV),
True Negative Rate (TNR), and Negative Predictive Value (NPV), defined in Chapter 6,
Materials and Methods.

1-BER ACC TPR TNR PPV NPV

columnRates
SIFT

PMUT
pyASP

Lysozyme

Sc
or

e
0.

0
0.

2
0.

4
0.

6
0.

8

Accuracy measure

1-BER ACC TPR TNR PPV NPV

columnRates
SIFT

PMUT
pyASP

LacI

Sc
or

e
0.

0
0.

2
0.

4
0.

6
0.

8

Accuracy measure

1-BER ACC TPR TNR PPV NPV

columnRates
SIFT

PMUT
pyASP

HIV protease

Sc
or

e
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Accuracy measure

1-BER ACC TPR TNR PPV NPV

columnRates
SIFT

PMUT
pyASP

CBS

Sc
or

e
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Accuracy measure

226

Appendix D

Table of DART-Scheme functions

The following list of Scheme functions, natively implemented within selected DART programs
(including XRate) when compiled with GNU Guile, is only complete to the date of publica-
tion. A more up-to-date list may be found at http://biowiki.org/DartSchemeFunctions

Darts functions for working with trees

Scheme function Effect

(newick-from-string x) Create a tree-smob from a
Newick-format string x

(newick-from-file x) Create a tree-smob from a
file x

(newick-from-stockholm x) Create a tree-smob from
the tree encoded within
alignment-smob x

(newick-to-file x y) Write tree-smob x to file y
in Newick format

(newick-ancestor-list x) List of all ancestors in the
tree-smob x

(newick-leaf-list x) List of all leaves in the tree-
smob x

(newick-branch-list x) List of all branches in the
tree-smob x

(newick-unpack x) Converts a tree-smob x into
a Scheme data structure

227

Darts functions for working with alignments

Scheme function Effect

(stockholm-from-string x) Create an alignment-smob
from a Stockholm-format
string x

(stockholm-from-file x) Create an alignment-smob
from a Stockholm-format
file x

(stockholm-to-file x y) Write alignment-smob
x to Stockholm-format
alignment file y

(stockholm-column-count x) Return the number of
columns in alignment-smob
x

(stockholm-unpack x) Converts an alignment-
smob x into a Scheme data
structure

Functions for working with grammars

Scheme function Effect

(xrate-validate-grammar x) Validate the syntax of
XRate grammar x

(xrate-validate-grammar-with-alignment x y) Validate the syntax of
XRate grammar x, us-
ing alignment-smob y to
expand macro constructs

(xrate-estimate-tree x y) Use XRate grammar y to es-
timate a tree for alignment-
smob x

(xrate-annotate-alignment x y) Use XRate grammar y to
annotate alignments-smob
x

(xrate-train-grammar x y) Train XRate grammar y on
the list of alignment-smobs
y

228

Miscellaneous functions

Scheme function Effect

(dart-log x) Logging directive; equiva-
lent to “-log x” at the
command line

(discrete-gamma-medians alpha beta K) Returns the median rates of
K equal-probability bins of
the gamma distribution

(discrete-gamma-means alpha beta K) Returns the mean rates of K
equal-probability bins of the
gamma distribution

(ln-gamma k) Calculates the gamma func-
tion, Γ(k) =

∫∞
0
e−xxk−1dx

(gamma-density x alpha beta) Calculates the gamma
probability density,
βα 1

Γ(α)
xα−1e−βx

(incomplete-gamma x alpha beta) Calculates the incomplete
gamma function, i.e. the in-
tegral of the gamma density
up to x

(incomplete-gamma-inverse p alpha beta) Calculates the inverse of the
incomplete gamma function

229

Appendix E

Glossary of XRate terminology

Within the glossary descriptions, italicized phrases refer to other glossary terms.

Alignment: See multiple sequence alignment.

Alphabet: The set of single-character tokens (symbols) from which sequences are consti-
tuted. The alphabet is defined in the grammar file; only one alphabet may be defined
per grammar file. (Usually the alphabet is DNA, RNA or protein. Sometimes the
alphabet is extended to include an explicit gap character.) An alphabet may option-
ally include a complement mapping, as well as specification of degenerate (ambiguous)
characters.

Ancestral reconstruction: The use of XRate to reconstruct the sequences at ancestral
nodes of a phylogenetic tree, given a grammar, a multiple sequence alignment and a
parse tree. This occurs after tree estimation, training and annotation.

Annotation: The use of XRate to apply a grammar to a multiple sequence alignment and
phylogenetic tree, so as to impute the optimal parse tree and mark up the alignment
with the co-ordinates of selected features (associated with particular nonterminals in
the parse tree), or generate other annotation including GFF and WIGgle files. This
occurs after tree estimation and training, but prior to ancestral reconstruction. Can
also refer to a specific part of a transformation rule that generates annotations.

Bifurcation: A transformation rule that generates two nonterminals. Bifurcation rules
have the form

(transform (from (A)) (to (B C)))

where A, B and C are nonterminals.

Chain: A substitution rate matrix (the name comes from “continuous-time Markov chain”).
The states of the substitution process are N -mers augmented with an optional hid-
den variable. That is, the state space of a chain consists of state-tuples of the form
(s1, s2, . . . , sN , h) with N ≥ 1, where s1 through sN represent alphabet symbols (which

230

will be observed in the final multiple sequence alignment) and h is an optional hidden
state which can take on a finite set of single-character values specific to this chain. Each
of the N alphabet symbols, s1 through sN , is associated with a unique pseudoterminal.
Examples of valid chain state spaces include the set of all nucleotides; the set of all
codons; and the set of all tuples (A,H) where A is an amino acid and H ∈ {F, S} is a
hidden binary variable taking values F (for fast) or S (for slow).

Complement: An order-2 permutation on the tokens of an alphabet. (Typically only used
for DNA or RNA alphabets.)

Emission: A transformation rule that generates some pseudoterminals (and thus, some
alignment columns); or the set of pseudoterminals (or alignment columns) generated
by such a rule. In XRate, emission rules have the form A→ x1 . . . xL A∗ xL+1 . . . xL+R

where A,A∗ are paired nonterminals (whose names differ only by the final asterisk)
and x1 . . . xL+R are pseudoterminals. (A∗ is referred to as the post-emit nonterminal.)
Any numbers L,R of pseudoterminals can appear to the left and right of the A∗, as
long as L + R > 0. If L = 0 and R > 0, the rule is a right-emission; if L > 0 and
R = 0, the rule is a left-emission. The pseudoterminals x1 . . . xL+R must comprise (any
permutation of) the full set of pseudoterminals for a given substitution chain. Each
pseudoterminal may optionally be prefixed with a tilde character (~) to indicate that
it should be complemented in the final alignment (used to generate reverse strands
in double-stranded models). For example, if C1, C2 and C3 are the three pseudoter-
minals of a codon chain, A is an emission nonterminal and A* is the corresponding
post-emission nonterminal, valid emission rules could include

(transform (from (A)) (to (C1 C2 C3 A*)) (prob (...)))

and
(transform (from (A)) (to (~C3 A* ~C2 ~C1)) (prob (...)))

Grammar: The contents of a grammar file: chains, nonterminals, transformation rules,
and alphabet. (The alphabet is specified in a separate part of the file from the rest of
the grammar, and so is sometimes omitted from this definition.)

Grammar symbol: A symbol that is either a nonterminal or a pseudoterminal.

HMM: Hidden Markov Model. An SCFG that is also a regular grammar. See also phylo-
HMM.

Hidden state: In the context of XRate, this term is ambiguous (see state). In this article,
it is used mostly to refer to the final element of a state-tuple in a chain. However, in
the context of HMM theory, it refers to what we call a nonterminal.

Hybrid chain: A mapping from tree branches to substitution rate matrices (chains) where
the instantaneous rate matrix may vary from one branch to another. This may be used
to implement lineage-dependent selection, or other models which are heterogeneous
with respect to the tree.

231

Initial distribution: The initial probability distribution over states in a substitution chain.

Left-emission: See emission.

Left-regular: A grammar is left-regular if it contains no bifurcations and its emissions are
all left-emissions.

Macro: A construct that is expanded by the XRate grammar preprocessor and may be
used to implement redundant or repetitive grammar models; e.g. grammars with a
large number of similar transformation rules sharing the same probability parameter,
or substitution chains whose mutation rules all share the same rate parameter.

Multiple sequence alignment: The raw data on which XRate operates, and which con-
stitutes its input and output. XRate cannot align sequences, but assumes that they
have been pre-aligned using an external alignment program. Alignments must be con-
verted to Stockholm format [192] before supplying them to XRate. The alignment may
include a phylogenetic tree (using the Stockholm syntax for specifying this); if no tree
is provided, XRate’s tree estimation routines can be used to find one.

Mutation rule: A single element in the rate matrix of a substitution chain.

Nonterminal: A grammar symbol that may be transformed, by application of transforma-
tion rules, into other nonterminals or pseudoterminals. In XRate, a nonterminal must
be exclusively associated with (that is, appear on the left-hand side of) either emission
rules, transition rules or bifurcation rules.

Parameter: A named parameter in a grammar. May be a probability parameter or a rate
parameter.

Parametric model: A grammar whose transformation rules or mutation rules (or both)
are specified as functions of the grammar’s parameters, rather than as direct numerical
values.

Parse tree: A tree structure corresponding to the derivation of a multiple sequence align-
ment from a grammar. Each tree node is labeled with a grammar symbol: the root
node is labeled with the start nonterminal, internal nodes are labeled with nonter-
minals, and the leaves are labeled with pseudoterminals. Not to be confused with a
phylogenetic tree.

PGroup: A set of probability parameters collectively representing a probability distribution
over a finite set of events. Following training, probability parameters constituting a
PGroup will be normalized to sum to 1.

Phylogenetic tree: The evolutionary tree describing the relationship between sequences in
a multiple alignment. XRate uses the Stockholm format for alignments, which allows

232

the tree to be included as an annotation of the alignment. If no tree is provided,
XRate’s tree estimation routines can be used to find one.

Phylo-grammar: See phylo-SCFG.

Phylo-HMM: A phylo-SCFG that uses a regular grammar. A phylo-HMM is an HMM
whose emissions generate alignment columns by evolving substitution chains on a phy-
logenetic tree.

Phylo-SCFG: A phylogenetic SCFG: a member of the general class of grammars imple-
mented by XRate. A phylo-SCFG is an SCFG whose emissions generate alignment
columns by evolving substitution chains on a phylogenetic tree.

Post-emit nonterminal: See emission.

Production rule: See transformation rule.

Probability parameter: A dimensionless parameter that generally takes a value between
0 and 1, and so can occur in the probability part of a transformation rule (or as a
multiplying factor in the rate part of a mutation rule). Probability parameters are
declared in PGroups.

Pseudocounts: A set of nonnegative counts that specifies a Dirichlet prior distribution over
a PGroup.

Pseudoterminal: A grammar symbol that is generated via an emission and cannot be
further modified by subsequent transformation rules. In a parse tree, a pseudoterminal
serves as a placeholder for an alignment column. Pseudoterminals occur in groups
associated with a particular substitution chain. In the generative interpretation of the
model, alignment columns are generated using the initial distribution and mutation
rules of the chain, applied on the phylogenetic tree associated with the alignment.

Rate parameter: A nonnegative parameter that has units of “inverse time” (i.e. rate),
and so can occur in the rate part of a mutation rule. Rate parameters can be declared
individually.

Regular grammar: A grammar is regular if it is either left-regular or right-regular; that
is, it contains no bifurcations and its emissions are all either left-emissions or right-
emissions. A regular grammar is equivalent to an HMM.

Right-emission: See emission.

Right-regular: A grammar is right-regular if it contains no bifurcations and its emissions
are all right-emissions.

SCFG: Stochastic Context-Free Grammar. See also phylo-SCFG.

233

Start nonterminal: The first nonterminal declared or used in a grammar. In the generative
interpretation of the model, this is the initial grammar symbol to which transformation
rules are applied. It is also the label of the root node in the parse tree.

State: In the context of a phylo-grammar, this term is ambiguous: it can refer either to a
state-tuple in a chain, or (for phylo-HMMs) a nonterminal in a grammar. For the most
part in this paper, and exclusively in this glossary, we use it in the former sense.

State space: The set of possible state-tuples in a chain.

State-tuple: A tuple of the form (s1, s2, . . . , sN , h) representing a single state in a chain,
where s1 through sN represent alphabet symbols and h is an optional hidden state.

Substitution chain: A continuous-time finite-state Markov chain over state-tuples. See
chain.

Substitution model: See substitution chain.

Terminal: See token.

Token: An alphabet symbol. (Also called a terminal.)

Training: The use of XRate to estimate a grammar’s parameters, mutation rule rates and
transformation rule probabilities, given a (set of) multiple alignments. This occurs
after tree estimation and prior to annotation or ancestral reconstruction.

Transformation rule: A probabilistic rule that describes the transformation of a nontermi-
nal symbol into a sequence of zero or more grammar symbols. (Also called a production
rule.) A transformation rule may be an emission, a transition or a bifurcation.

Transition: A transformation rule that generates exactly one nonterminal (and no pseu-
doterminals). Transition rules have the form

(transform (from (A)) (to (B)) (prob (...)))

where A and B are nonterminals.

Tree: In the context of a phylo-grammar, this term is ambiguous: it can mean a parse
tree (which explains the “horizontal”, i.e. spatial, structure of an alignment) or a
phylogenetic tree (which explains the “vertical”, i.e. temporal, structure).

Tree estimation: The use of XRate to estimate a phylogenetic tree for a multiple sequence
alignment, given a grammar. This occurs prior to training, annotation or ancestral
reconstruction.

Appendix F

RecHMM simulation and
methodological details

F.1 Additional simulation results

In analyzing actual biological data, there is no easy way to verify the predicted recombi-
nation breakpoints, so to investigate the accuracy, reliability, and limits of our method, we
applied our algorithms to data simulated by Recodon, [163]. We produced several syn-
thetic datasets of varying lengths, number of taxa, number of recombination events, and
structure of marginal trees. The general simulation parameters used were the following: re-
combination rate: 2× 10−8 , mutation rate: 3× 10−4, {A,C,G,T} frequencies: {.3 .2 .2 .3},
transition/transversion ratio: 2.0.

Taxa number presented more of a limitation in actual data than in simulated data; on
synthetic datasets we obtained conclusive results on alignments with up to 30 sequences.
This is most likely due to the simplicity of the generated data; when modeling evolution on
real data, simple Markov chain approaches greatly simplify the process, and we sum out gaps
as missing information, whereas in the simulated data there were no gaps. Our simulated
analyses were very accurate, usually if a breakpoint was detected, it was accurate within 10
positions. With marginal trees which differed only in subtle ways, such as branch-length or
deep branching patterns, our programs rarely detected changes, whereas with changes at the
leaves detection was near very strong. More HMM states than recombinant regions wasn’t
problematic, whereas having too few HMM states led to inaccurate or missed breakpoint
predictions. We believe this to be the limiting factor in our method; it was uncommon to
see a decisive model which employed more than 4 trees.

Many Taxa Intuitively, our methods will become less powerful the more taxa are in-
cluded in the alignment, since phylogenetic tree estimation becomes more and more difficult.
Note that there are many ‘spikes’ in the posterior distribution in positions 500-600 Figure

235

Recombination Analysis on Simulated Data, 23 Taxa, K=3

Alignment Position (bp)

P
os

te
rio

r
P

ro
ba

bi
lit

y

0.
00

0.
50

1.
00

0 50 150 250 350 450 550 650

117 440

Figure F.1: Synthetic alignment of size 700 × 23, with two breakpoints (shown in red). Both
breakpoints are topology-changing and both are detected with great accuracy, although there is
some uncertainty in region 530-600.

F.1, signifying uncertainty of inference, and in Figure F.2 the posteriors are uninformative.
Still, the program is often able to do quite well even with many taxa, such as in Figure F.3,
where the posteriors are somewhat noisy but it is still clear where the change happens. The
ability to include many taxa in a recombination analysis is very valuable, especially when
the involved species are unknown. The reason for the decay in inference is that a group of
phylogenetic trees with many taxa will have very similar likelihoods, and thus differentiating
between them in order to partition an alignment is a difficult task.
Ancient Recombination In situations where recombination has occurred long ago, ‘deep’
in the phylogenetic tree, an entire subtree is transferred. This type of recombination is
typically not detected very well by our method, since the ideal phylogenetic trees differ in
their branching near the root, as opposed to near the leaves. This leads to the inference
algorithm modeling the two regions by a single topology, since the likelihoods of the actual
different trees is relatively similar. Practically speaking, this is not as clinically important
as detecting recent recombinations. In a typical inter-subtype recombination analysis, the
reference strains are taken to be ‘pure’ in their subtype, and the search for recombination
only concerns the present-day clinical species. In the case when a few taxa in a large tree
(i.e. 2 taxa in a 30-taxa tree) are transferred, this is usually detected. This could arise
when analyzing a group of clinical isolates against a set of reference strains where two of
the isolates had undergone similar recombination events. Figure F.4 and F.5 show an exam-

236

Recombination Analysis on Simulated Data, 30 Taxa, K=2

Alignment Position (bp)

P
os

te
rio

r
P

ro
ba

bi
lit

y

0.
00

0.
50

1.
00

0 50 150 250 350 450 550 650

333

Figure F.2: Synthetic alignment of size 700 × 30, with one breakpoint (red). The entire posterior
distribution is uncertain and no inference can be made. There is somewhat less ‘noise‘ in the signal
after position 333, but other than this there is little to be learned from the results.

ple where an ancient recombination is missed and a recent leaf-changing topology change is
clearly detected.
Too many HMM states When the number of tree-states is larger than the number of
distinct regions in the alignment, this is typically not a problem, as seen in Figure F.6. One
of the trees either remains at low posterior probability or only appears for very small regions.
In this way, the training algorithm recognizes that it has an ‘extra’ tree that it doesn’t need
to accurately model the data. In some cases, however, this extra state can be employed to
model a more highly-diverged region which has a different optimal topology, but which is
not actually a recombinant region. In Figure F.6, the blue tree topology remains at low
probability except for two very short regions, and the breakpoint is still well-predicted.

Too few HMM states When the number of recombinant regions is more than the num-
ber of tree-states in the HMM, this has mixed effects. In Figures F.7 and F.8, the dataset
actually had 5 breakpoints, and each region was topologically distinct, but only 4 resp. 6
trees were used to train the model. Sometimes topology shifts are detected, even if the this
region does not have its own tree to train, but in general the model has a difficult time
decisively detecting breakpoints. Adding more states, as Figure F.8 attempts, does not ap-
pear to enable detecting more regions, leading us to believe that number of distinct-topology
regions of the alignment is the limiting factor in our methods. We are investigating more

237

Recombination Analysis on Simulated Data, 30 Taxa, K=2

Alignment Position (bp)

P
os

te
rio

r
P

ro
ba

bi
lit

y

0 1000 2500 4000 5500 7000 8500 10000

0.
00

0.
50

1.
00

8762

Figure F.3: Synthetic alignment of size 10,000 × 30, with one breakpoint (shown in red). The
recombination point at 8762 is found, despite having to compare trees with 30 taxa. Longer align-
ments tend to have a clearer/stronger phylogenetic signal, which may be why this recombination
was detected while the breakpoint in Figure F.2 was not.

robust initialization and training methods which might enable training many more states.
The requirement that the different tree topologies fit together to form an ARG somewhat
constrains the trees to look rather similar. If we relax this requirement, trees can differ
by more than 1 subtree prune and regraft move (the operation of detaching an edge and
reattaching it somewhere else in the tree), which leads to more radically distinct topologies.
When we simulate alignments with these sorts of topologies, we are more readily able to
detect 5 or more regions, as shown in Figure F.9.

Small regions Window-sliding methods typically perform badly in detecting small re-
gions (eg less than 200 bp), whereas we are able to reliably detect small regions if they have
distant supporting regions, and often even if they don’t. In our method, all the information
in the alignment is combined to construct trees, allowing distant but similar regions to col-
laborate in training trees which improves detection. If the short regions have a topology in
common with a longer region in the alignment, they are typically detected very well, because
their tree was mostly trained elsewhere in the alignment. If they represent a unique topology,

238

Recombination Analysis on Simulated Data, 16 Taxa, K=3

Alignment Position (bp)

P
os

te
rio

r
P

ro
ba

bi
lit

y

0.
0

0.
4

0.
8

0 50 150 250 350 450 550 650

585124

Figure F.4: Synthetic alignment of size 700 × 16, with two breakpoints. Breakpoint at 124
(orange) changes the topology near the root of the tree, whereas breakpoint 585 (red) changes tree
topology near the leaves (see topologies in Figure F.5).

Figure F.5: Tree topologies for different regions in Figure F.4. The transformation between
trees (1-124) and (125-585) involves a subtree transfer deep in the tree and so the breakpoint at
position 124 goes undetected. In contrast, the difference between (124-585) and (585-700) involves
transferring leaf 13, which is more readily detectable.

239

Recombination Analysis on Simulated Data, 6 Taxa, K=2

Alignment Position (bp)

P
os

te
rio

r
P

ro
ba

bi
lit

y

0 50 150 250 350 450 550 650

0.
00

1.
00

153

Recombination Analysis on Simulated Data, 6 Taxa, K=3

Alignment Position (bp)

P
os

te
rio

r
P

ro
ba

bi
lit

y

0 50 150 250 350 450 550 650

0.
00

1.
00

153

Figure F.6: When K=3, but there are only 2 recombinant regions, the third tree is unused except
for a very short region near the crossover point, and a spike near bp 300.

it is difficult to construct a tree on such a small region, and inference is limited. If there
are several small regions of a unique topology, however, they can combine their information
to make detection more feasible. Figure F.10 shows results on an alignment with four small
recombination regions which are all detected accurately. The small regions at 1000-1100 and
1600-1700 pool together their phylogenetic signal in order to train the black tree topology.

F.2 Methodological details

Here we describe the notation we use throughout this paper and the parameters we wish
to learn from the data. In general we follow the notation of [17] and [28], extending it

240

Alignment Position (bp)

P
os

te
rio

r
P

ro
ba

bi
lit

y

Recombination Analysis on Simulated Data, 15 Taxa, K=4

0.
00

0.
50

1.
00

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000

407 5046 5696 8843
324 3799 4911 5635 8845

Figure F.7: When K=4, but there are actually 6 recombinant regions, inference is hampered.
There are too many distinct topologies to train and the model is unable to accurately partition the
alignment, leading to one breakpoint undetected and one (4911) predicted poorly. The predicted
breakpoints (green) which are close to the actual simulated breakpoints (red) are labeled above the
alignment. Those regions which are predicted have somewhat inconclusive posterior distributions,
making inference difficult.

Alignment Position (bp)

P
os

te
rio

r
P

ro
ba

bi
lit

y

Recombination Analysis on Simulated Data, 15 Taxa, K=6

0.
00

0.
50

1.
00

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000

4973 5620 8810
324 3799 4911 5635 8845

Figure F.8: Using the same data as Figure F.7, but setting K=6, we still get 2/5 breakpoints
undetected. The training algorithm has a difficult time employing more than 4 trees in the HMM. In
contrast to Figure F.7, the posteriors are quite decisive and the predicted breakpoints are reasonably
accurate.

when necessary. While at present we must specify K, the number of trees in the model, an
eventual goal is to be able to learn K from the data, allowing the training routine find the
best number of states.

• An ancestral recombination graph (ARG) is a labeled directed acyclic graph in which
nodes correspond to species and edges correspond to evolutionary relationships. Leaf
nodes are assumed to be present-day species, and are taken to be observed, whereas
ancestral nodes are hidden data. Edges can be solid or dashed, where a solid line
indicates that all of the child’s genetic material evolved directly from the parent’s.
A leaf under a dashed line represents a recombinant child, in which some of their
sequence material came from one parent and some from the other. If the position of
recombination is assumed to be known, then an ARG is able to convey all evolutionary

241

Alignment Position (bp)

P
os

te
rio

r
P

ro
ba

bi
lit

y

Recombination Analysis on Simulated Data, 15 Taxa, K=5

0.
00

0.
50

1.
00

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

93 388 1274 1519 1753
93 389 1275 1518 1759

Figure F.9: Using data generated with arbitrary tree topologies, rather than ones that fit together
to form an ARG, we are able to train 5 distinct trees, and locate the breakpoints with great
accuracy. Relaxing the ARG requirement allows for radically different tree topologies which are
easier for the program to detect. This alignment contained 6 distinct regions, but the first and
last were somewhat similar, and here they are detected as being the same. Since these two are not
neighboring, all breakpoints are detected well.

Alignment Position (bp)

P
os

te
rio

r
P

ro
ba

bi
lit

y

Recombination Analysis on Simulated Data, 7 Taxa, K=3

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000 10500

0.
00

0.
50

1.
00

1000 1600 6300 7300 8400

Figure F.10: Small recombinant regions. In addition to the main breakpoint at position 6300,
this alignment contains four small crossover regions of size 100 bp (one label per small region, for
clarity). The regions at 7300 and 8400 are of the same topology as the large grey region in the first
half of the alignment, and so they are detected remarkably well (all four breaks accurate within
4 positions). The regions at 1000-1100 and 1600-1700 contain their own topology which appears
nowhere else in the alignment, and so their information is contributed only to the black tree. This
allows the black tree to be trained especially for those regions, leading to very close detection
(accurate within 2 bp).

242

information of a group of present-day taxa [156]. In contrast to a phylogenetic tree,
this graph contains nodes that have more than one parent.

• A marginal tree is a phylogenetic tree arising from an ARG by way of realizing a set
of dotted edges such that each leaf node has exactly one parent, and internal nodes
without children are removed. It is assumed that each position of the alignment can
be described by single marginal tree.

• D is a multiple sequence alignment, taken as input. This is an array of N biological
sequences, each of length M in which each column is assumed to have evolved from
a single ancestral character [28], except when gaps are present. Gaps are treated as
missing information. We use the terms ‘position’ and ‘column’ interchangeably as our
model generates one column per position.

• {(T, t)k} is a set of phylogenetic tree topologies T and branch-length vectors t for each
of the K hidden states. Strictly speaking, {(T, t)k} is not a parameter of our model,
but it actually is part of the architecture of the model, since it models how sequences in
the multiple alignment came to their present state via a certain evolutionary pathway.
This is a subtle point since {(T, t)k} dictates θe, which is a parameter matrix of the
HMM. Thus, whenever we re-estimate {(T, t)k}, we are performing model selection as
opposed to parameter estimation.

• θs is a stochastic matrix of size K×K in which the k, l entry indicates the probability
of transitioning from tree k to tree l.

• θe is a stochastic matrix of size K ×M where N is the number of sequences in the
multiple alignment and M is the length of the alignment. θek,m represents the probability
that tree k emitted column m of the alignment. We recognize that our choice of tree
topologies defines our emission matrix in the following way:

θek,m = P (Dm|(T, t)k) (F.1)

Where Dm is the mth column of the alignment data and P (Dm|Tk, tk) is the marginal
likelihood of tree k producing Dm, which can be computed by Felsenstein’s pruning
algorithm [193].

• For simplicity and clarity of notation, we will henceforth refer to the set {(T, t)k}, θe,
and θs as θ or the “parameter set.” We keep in mind that {(T, t)k} is actually part of
the model structure, but since we are updating these three objects at each iteration,
it makes intuitive sense to refer to them as a unit. When describing an algorithm such
as EM where the parameter set is iteratively improved, θ(n) refers to the parameter set
at the nth iteration.

• P (D|θ) represents the likelihood of the observed alignment data under our model and
a particular parameter set θ.

243

• With X = {x1, x2...xM} representing the hidden data (in this case an assignment of
phylogenetic trees to columns of our alignment), P (D,X|θ) is the probability of the
fully observed data under the model, given by the equation

P (D,X|θ) = θsstart,x1

M∏
i=1

θexi,Di
θsxi,xi+1

(F.2)

Further, the hidden and observed data are related by the property that

P (D|θ) =
∑
x

P (D, x|θ) (F.3)

Where x ranges over all MK possible sequence assignments to the hidden nodes.

• P (xm = k|, D, θ) denotes the posterior probability of a particular state emitting a
certain column, conditioned on the parameters and alignment data. For details on the
computation of this quantity, see [17].

• Pa→b(t) provides an underlying evolutionary model specifying the probability that sym-
bol a evolved into b under time t, for a, b ∈ Σ, t ≥ 0, as well as a prior distribution over
Σ. This is assumed to be part of the evolutionary process and in this work we do not
try to refine the model as we estimate the previous parameters.

Baum-Welch Algorithm The special case of the EM algorithm applied to HMMs is
known as the Baum-Welch algorithm [17]. This takes advantage of the tree-like structure
of HMMs, using the sum-product algorithm to efficiently calculate expected hidden data
statistics. In describing the Baum-Welch method, we introduce the following terms, following
the notation of Durbin et al [17]:

The Forward Probability (F)
Defined as F [m, k] = P (D1...m, xm = k|θ), this represents the probability of the ob-
served data up to and including column m, requiring that tree k produced column
m. The Forward probability gives us a simple way to calculate the probability of the
observed set of columns under a particular parameter set:

P (D|θ) =
∑
k

F [k,M]θsk,end (F.4)

This is intuitively understood as the probability of the sequence up to M (i.e. the
whole sequence), summed out over all possible states for the last position, and then
accounting for the transition into the End state.

The Backward Probability (B)
Defined as B[m, k] = P (Dm+1,m+2...M |xm = k, θ), this is analogous to the Forward
probability, but starting at the end of the sequence. Note that here we compute a
conditional as opposed to a joint probability (although both are conditioned on θ).

244

Posterior Probabilities
Using these Forward and Backward probability arrays, we can now calculate the pos-
terior probability of a certain hidden state assignment given the observed alignment
columns. We use the following property:

P (xm = k|D, θ)

=
P (D, xm = k|θ)

P (D|θ)

=
P (D1...m, xm = k|θ)P (Dm+1...M |xm = k, θ)

P (D|θ)

=
F [m, k]B[m, k]

P (D|θ)
(F.5)

Where P (D|θ) is computed by way of equation (F.4). These probabilities are useful
for both inference and training. First, in searching for optimal parameters, the pos-
teriors are what allow us to build different trees on different parts of an alignment.
At each iteration we use these posterior probabilities to weight hidden data counts in
the tree-optimization step. Second, once we are satisfied with the parameters and are
attempting to assign trees to columns, the posteriors can be of great use. The quantity
P (xm = k|D, θ) takes into account the HMM structure, whose transition probabil-
ities put a restrictive prior probability distribution on the number of recombination
crossovers. This not only allows for a more realistic interpretation, but also allows us
to adjust the sensitivity and specificity of the algorithm by controlling the entries of
θs.

Expected Counts
The Forward and Backward calculations also enable simple computation of expected
hidden event counts, namely the number of transitions k → l and emissions of string
σ from state k. In this application, we only estimate the transition counts, and use
Structural EM to deal with the emission maximization. To get the expected number
of transitions k → l, we use:

E [#k → l]

=
M∑
m=1

P (xm = k, xm+1 = l|D, θ)

=
F [m, k]θsk,lθ

e
l,Dm+1

B[m+ 1, l]

P (D|θ)
(F.6)

With these expected counts in hand, updating the parameter θs is trivial:

θ̂sk,l =
E [#k → l]∑
l′∈ΣE [#k → l′]

(F.7)

245

Structural EM Structural EM is an iterative model selection scheme aimed at finding the
most likely phylogenetic tree model for a multiple alignment [28]. It follows the prototypical
EM structure in that it alternates between estimating hidden data and maximizing the
model until a critical point in the likelihood surface is reached. In the E-Step, the tree
topology and branch lengths are held constant and hidden statistics are estimated, namely
the character transition counts between nodes. In the M-Step, a new model (a phylogenetic
tree) is selected and its branch lengths chosen based on the estimated hidden statistics. This
is a useful method as it makes maximum likelihood phylogenetics computationally feasible
with long sequences and many taxa. Further, its estimation step allows for differential
column-weighting which allows us to progressively “focus” a tree on particular alignment
region.

Structural EM Steps We give a high-level description and the reader is referred to the
original Structural EM paper for more detail [28]

Algorithm: Structural EM (SEM)

Input: An N ×M gapless multiple alignment of biological sequences

Output: A phylogenetic tree (T, t) such that P (D|(T, t)) is a critical point of the likelihood
surface

E-Step: Compute expected hidden data counts Si,j(a, b), the expected number of transitions
of symbol a to symbol b from node i to node j.

M-Step Branches: With these counts, find the branch length t̂i,j for each (i, j) pair (not
necessarily an edge in the tree) which would maximize the contribution of edge (i, j)
to the tree’s likelihood function.

M-Step Topology: From this matrix of likelihood contributions, construct a maximally-scoring
topology with the branch lengths chosen from the previous step.

Incorporation into Phylo-HMM Training We use SEM in training our phylo-HMM
to estimate a better and better set of trees for our model at each M-step. At each iteration
we perform K independent executions of SEM model selection, where during the E-Step of
each one, the counts S

(k)
i,j (a, b) are weighted by the posterior probabilities of the different

alignment columns having been generated by a particular tree. More precisely, while maxi-
mizing the kth tree:

S
(k)
i,j (a, b) =∑

m

P (xm = k|D, θ)P (xi[m] = a, xj[m] = b|Dm, T, t)

246

Where P (xm = k|, D, θ) denotes the posterior probability of the mth column being produced
by the kth tree given the observed data, as computed in equation (F.5). This posterior-
weighting scheme is a common phylo-HMM training strategy. Intuitively, if we strongly
believe that a column was generated by a particular tree, we would like the next update of
that tree to have access to comparatively more information from that column than if that
column-tree pair was unlikely. The higher a column is weighted for a particular tree, the
more closely that tree will come to ‘fitting’ that column perfectly after the SEM step. In
the extreme case where P (xm = k|D, θ) = 1 for certain columns and 0 for others, this is
equivalent to performing Structural EM on only the columns for which P (xm = k|D, θ) = 1.
As the EM training progresses, the hope is that the posterior distribution will become more
and more certain of which trees go with which columns.

The above modified EM-algorithm is unusual in that the M-step is another EM. This is
known as a nested EM, covered by [194]. This somewhat bends the rules of EM which state
that there must be a reliable MLE for the model once the hidden data has been estimated.
In this case, we note that EM typically increases drastically in likelihood in the first few
iterations and then increases very slowly, so it is important to set the number of ‘inner’
iterations carefully. If the EMinner is allowed to go until it converges, then P (D|θ(n)) is
guaranteed to increase monotonically with each iteration of EMouter, but the speed of this
convergence will be greatly compromised. If the EMinner is too restrained, irregular behaviour
of P (D|θ(n)) may be observed, and convergence of EMouter is not guaranteed. Ideally, some
middle ground would be reached in which the EMinner is allowed to run sufficiently so that
EMouter increases in likelihood with every (or almost every) step [194]. In our programs, the
EMinner is set to run 2 iterations of Structural EM which appears to be adequate.

Algorithm: Posterior Decoding

Definitions: Let π be a path of length m through the state space of the HMM (discounting
start and end states), emitting the first m columns of the alignment, with one state
per column. Let M be the total number of columns in the alignment. We say that the
state path is partial if m ≤M , and complete if m = M .

Let πn denote the nth state in path π. The score of path π is defined as S(π) =∑m
n=1 P [πn, n] where P [i,m] is the posterior probability that column m was emitted

by state i.

We say a state path π is valid if all its breakpoints are more than ε apart. That is,
there exist no m,n > 1 with n−m < ε such that πm−1 6= πm and πm 6= πn.

Let Π(i,m, e) be the set of all valid partial state paths of length m, whose last e
columns were emitted from state i. (That is, for π ∈ Π(i,m, e) and m − e < n ≤ m,
we must have πn = i.) We then define U [i,m, e] = maxπ∈Π(i,m,e) S(π) to be the highest
score of any such path, computed recursively as follows.

Input: A k ×M matrix of posterior state-column probabilities, P [i,m], and a minimum
breakpoint separation ε.

247

Output: A complete valid state path π through the HMM such that the score S(π) is
maximal. Note that a state path uniquely determines a set of breakpoints {m : πm 6=
πm+1}.

Recursion:
for i = 1 to k:
for m = 1 to M :
for e = 1 to min(m, ε):

U [i,m, e] = P [i,m] + max

0 if m = 1

U [i,m− 1, e] if m > 1
U [i,m− 1, e− 1] if m > 1 and e > 1

maxi′ U [i′,m− 1, ε] if m > ε and e = 1
maxi′ U [i′,m− 1,m− 1] if 1 < m ≤ ε and e = 1

Final score Ufinal = maxi U [i,M, 1]

The score of the maximally-scoring path is Ufinal. The path having this score can be
recovered by a straightforward traceback.

The terms in the max expression correspond to the possible incoming paths, and can be
intuitively understood in the following way:

0 if m = 1: for the first column in the alignment, there is no incoming path. This term
initializes the dynamic program.

U [i,m− 1, e] if m > 1: the path stays in the same state as the previous column. Since the
incoming path was in state i for at least e steps, the current path must also have been
in state i for at least e steps.

U [i,m − 1, e − 1] if m > 1 and e > 1: the path stays in the same state as the previous
column. Since the incoming path was in state i for at least e − 1 steps, the current
path must have been in state i for at least e steps.

maxi′ U [i′,m−1, ε] if m > ε and e = 1: the path changes state outside of the first ε columns
of the alignment. To prevent breakpoints being closer than ε, this is only allowed to
happen if the incoming path was in the same state for ε steps.

maxi′ U [i′,m − 1,m − 1] if 1 < m ≤ ε and e = 1: the path changes state within the first
ε columns of the alignment. To prevent breakpoints being closer than ε, this is only
allowed to happen if the incoming path was in the same state for all m − 1 of the
previous columns.

	Contents
	List of Figures
	List of Tables
	Introduction
	Methods for multiple sequence alignment
	Approximate alignment with transducers: theory
	Background
	Informal tutorial on transducer composition
	Formal definitions
	Conclusions
	Methods

	Approximate alignment with transducers: simulation-based evaluation
	Background
	Results
	Discussion
	Methods

	HandAlign: MCMC for exact Bayesian inference of alignment, tree, and parameters
	Background
	Sampling alignments, trees, and parameters
	Capabilities

	Methods utilizing a multiple sequence alignment
	Predicting the functional effects of polymorphisms using mutation rate
	Background
	Results
	Discussion
	Materials and methods

	Modeling genomic features using phylo-grammars
	Background
	Methods
	Results and discussion

	RecHMM: Detecting phylogenetic recombination
	Background
	Results
	Discussion
	Methods

	Bibliography

	 Appendices
	Experimental connections
	Recombination map via high-throughput sequencing in poliovirus
	Probing RNA secondary structure via SHAPE in poliovirus
	Reconstructing an ancestral Adeno-associated virus sequence for synthesis

	ProtPal simulation study and OPTIC data analysis
	Additional phenotype prediction figures
	Table of DART-Scheme functions
	Glossary of XRate terminology
	RecHMM simulation and methodological details
	Additional simulation results
	Methodological details

