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 ABSTRACT 

 Manure nitrogen (N) from cattle production facili-
ties can lead to negative environmental effects, such as 
contribution to greenhouse gas emissions, leaching and 
runoff to aqueous ecosystems leading to eutrophica-
tion, and acid rain. To mitigate these effects and to 
improve the efficiency of N use, accurate prediction 
of N excretion and secretions are required. A genetic 
algorithm was implemented to select models to pre-
dict fecal, urinary, and total manure N excretions, and 
milk N secretions from 3 classes of animals: lactating 
dairy cows, heifers and dry cows, and steers. Two tiers 
of model classes were developed for each category of 
animals based on model input requirements. A total 
of 6 models for heifers and dry cows and steers and 
an additional 2 models for lactating dairy cattle were 
developed. Evaluation of the models using K-fold cross 
validation based on all data and using the most recent 
6 yr of data showed better prediction for total manure 
N and fecal N compared with urinary N excretion, 
which was the most variable response in the database. 
Compared with extant models from the literature, the 
models developed in this study resulted in a significant 
improvement in prediction error for fecal and urinary N 
excretions from lactating cows. For total manure pro-
duction by lactating cows, extant and new models were 
comparable in their prediction ability. Both proposed 
and extant models performed better than the predic-
tion methods used by the US Environmental Protection 
Agency for the national inventory of greenhouse gases. 
Therefore, the proposed models are recommended for 
use in estimation of manure N from various classes of 
animals. 
 Key words:   modeling , climate change , livestock , ni-
trous oxide , manure 

 INTRODUCTION 

 The demand for animal products continues to grow 
and remains an essential component of sustainable food 

production. To meet the demand, the overall efficiency 
of milk and meat production needs to be increased 
without greater negative effects on the environment. 
Assessment of the efficiency of animal production and 
its subsequent environmental footprint requires quanti-
fication of each nutrient consumed, used, excreted, or 
lost to the environment. However, direct measurement 
of the required nutrient flows, in particular the quantity 
of manure nitrogen (N) excreted to the environment 
is challenging. Mathematical models are often used to 
estimate nutrient requirements, excretion, pollution, 
and greenhouse gas (GHG) emissions to quantify the 
efficiency and environmental effect of animal agricul-
ture. National inventories of GHG emissions, includ-
ing nitrous oxide (N2O) emissions from livestock are 
calculated to assess and possibly mitigate the effect of 
emissions to global change (UN, 1992). 

 Accurate prediction of N2O emissions and N load in 
fields and downstream ecosystems require that N ex-
creted from individual animals or groups of animals be 
quantified with reasonable accuracy. Precise estimates 
of N excretion from livestock lead to better quantifica-
tion of manure N, which is a basis for estimating N 
volatilization, leaching, run-off, and emission. Several 
models have been developed to predict N excretion 
from lactating dairy cattle, heifers, and steers to assess 
the efficiency of cattle production and calculate na-
tional inventories of N2O emissions. For example, IPCC 
(2006) recommends methodologies for predicting N2O 
emissions from livestock manure using either default 
(tier 1 or 2) or country specific estimates (tier 2 or 3) 
for N excretion. The accuracy of these estimates relies 
heavily on predicted N excretion because errors at the 
individual animal level are multiplied by the total na-
tional or regional animal population. The current IPCC 
Tier 2 default values for total N (TN) excretion are 
scalar multipliers of the total animal mass. In the US 
national GHG inventory, the US Environmental Pro-
tection Agency (EPA) estimates TN as the difference 
between total N intake (NI) and the sum of estimated 
secreted milk N (MN) and N retained in animal tissue. 
However, in addition to NI, diet composition and qual-
ity have been shown to be important predictors of N 
excretion in cattle and predict excretions with greater 
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accuracy when compared with models based on animal 
BW alone (Castillo et al., 2000; Nennich et al., 2005; 
Kebreab et al., 2010; Dijkstra et al., 2013). Moreover, 
the proportion of N excreted in urine (UN) and feces 
(FN) determines its fate as a source of N pollution 
(Tamminga, 1996); therefore, models predicting UN 
and FN separately improve estimation of nitrogenous 
compounds in air and soil. Independent UN and FN 
predictions could be used in process-based manure and 
soil models such as Manure-DNDC (Li et al., 2012) 
and result in more accurate environmental effect as-
sessment.

Despite the number of studies dedicated to predict-
ing N excretion from cattle, accuracy remains low 
(Higgs et al., 2012). Whereas the complexity of rumi-
nant digestion plays a role, the current accuracy of N 
excretion models can also be attributed to statistical 
methodology, a narrow pool of potential explanatory 
variables, and small data sets for model development 
and selection. The objective of the current study was 
to develop mathematical models of N excretion with 
varying complexity for different classes of animals us-
ing a robust model selection process from a large data 
set and a wide pool of explanatory variables. We hy-
pothesized that the resulting models would increase the 
accuracy of N excretion prediction models in cattle and 
subsequent estimates of N2O emissions, thus leading 
to a better assessment of mitigation options to reduce 
GHG emissions.

MATERIALS AND METHODS

Database

The data set used for model development was col-
lected from 59 indirect calorimetry studies conducted 
over 30 yr at the USDA Energy and Metabolism labo-
ratory in Beltsville, Maryland. Indirect calorimetry is 
the preeminent method for measuring energy exchange 
between animals and their environment. Furthermore, 
the data provides a reliable representation of the 
current state of knowledge on nutrient utilization by 
lactating and growing cattle because of the number of 
observations over an extended period from the same 
research station and because it constitutes the basis 
of the nutrient evaluation system for the current US 
nutrient requirement models for dairy cattle (NRC, 
2001). However, the data were collected in thermoneu-
tral conditions fed temperate forages so care should be 
taken when extrapolating outside thermoneutral condi-
tions. Studies for hormone therapy and those that used 
whole raw soybeans were excluded from the database 
because they were not representative of current US 
dairy practices. The database contains individual daily 

nutrient balance observations from lactating Holstein 
and Jersey cows (n = 1,049); nonlactating Holstein and 
Jersey cows (n = 591); Holstein, Hereford, and Angus-
Hereford cross heifers (n = 279); and Holstein, Angus, 
Hereford, and Angus-Hereford cross steers (n = 458). 
The data include a wide range of diet compositions 
that represents current diet formulations. Descriptions 
and summary statistics of relevant measured dietary 
and animal variables are provided in Table 1. Descrip-
tions of the data collection and consolidation methods 
were described by Wilkerson et al. (1997). The data 
was divided by type of cattle into 3 sets for model de-
velopment: lactating cows, nonlactating cows and heif-
ers, and steers. Models were developed to predict feces, 
urine and total N for all 3 cattle types in addition to N 
in milk for lactating cattle.

Modeling Framework

The modeling framework in this study was composed 
of 3 complementary and sequential parts. In the first 
part, a linear mixed effects model was specified for the 
prediction of UN, FN, TN, and MN from the different 
animal classes. In the second part, key independent 
variables were identified using a multistage model-se-
lection technique and the selected models were fitted to 
data. Finally, the fitted models were evaluated through 
a cross-validation procedure and compared with exist-
ing models from the literature. All models were fitted 
using the lme4 package in the R statistical software 
(Bates et al., 2013).

Model Specification

A cross-classified mixed-effects model was used to 
account for the dependence of records originating from 
the same animal and study. The model was specified 
as follows:

 y a sijk ijk i j ijk= + + +xT β ε , 

where yijk is the kth observation of UN, FN, TN, or MN 
from the jth study and the ith animal; xijk

T  is the trans-
pose vector of explanatory variables; β is the vector of 
fixed-effect parameters; ai is the random effect associ-
ated with the ith animal; sj is the random effect associ-
ated with the jth study; and εijk is the residual random 
error assumed to be independent and identically dis-
tributed as N(0, σ2), where σ2 is the residual variance. 
It was further assumed that ai and sj are independent 
and distributed as a Ni a~ ,0 2σ( ) and s Nj s~ , ,0 2σ( )  where 

σa
2 is the between-animal variance and σs

2 is the between-
study variance. 
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Table 1. Units, mean, SD, and range of variables used for covariate selection 

Covariate1 Unit

Lactating cows 
(n = 1,047)

Heifers and dry cows 
(n = 870)

Steers 
(n = 458)

Mean SD Minimum Maximum Mean SD Minimum Maximum Mean SD Minimum Maximum

UN g/d 148 64.7 22.3 350 92.6 41.3 17.0 245 58.5 28.9 11.9 190
FN g/d 144 47.4 35.1 334 50.1 18.7 11.8 125 46.6 21.1 11.0 117
TN g/d 292 101 80.9 641 143 54.0 33.2 357 105 44.9 26.9 280
MN g/d 112 43.7 0.85 267 — — — — — — — —
Milk kg/d 23.3 10.3 0.104 56.6 — — — — — — — —
NI g/d 432 145 79.9 932 156 57.8 39.2 352 130 53.7 43.4 307
DMI kg/d 16.5 4.27 3.94 29.4 6.23 2.00 2.10 13.4 5.08 1.66 2.09 11.1
GE MJ/kg of DM 18.9 0.52 17.8 20.7 19.0 0.887 16.0 23.0 19.4 1.26 17.3 23.4
DE MJ/kg of DM 12.5 0.95 8.53 15.8 13.2 1.30 8.45 16.3 13.4 1.13 10.3 16.2
ME MJ/kg of DM 10.8 0.90 6.85 14.6 11.0 1.19 6.51 14.3 11.5 1.04 8.16 14.1
OM % of DM 93.6 1.11 87.9 96.3 93.0 2.27 77.9 96.9 93.8 1.78 86.4 96.8
DM % 65.3 19.8 30.2 100 60.2 23.7 19.4 100 61.6 27.7 18.9 96.4
EE % of DM 2.78 0.97 0.99 7.02 2.84 1.01 0.840 7.64 3.63 1.28 0.669 7.55
NDF % of DM 34.3 7.44 14.9 76.1 38.9 12.9 13.2 78.3 35.8 14.7 18.7 74.7
ADF % of DM 20.0 4.20 7.67 47.1 23.1 9.36 4.29 48.3 21.6 12.1 7.5 50.9
Lignin % of DM 4.43 1.44 0.52 9.42 4.94 2.35 0.411 14.3 4.79 2.97 1.18 15.7
Ash % of DM 6.39 1.11 3.71 12.13 6.97 2.21 3.08 22.1 6.25 1.78 3.22 13.6
CP % of DM 16.2 2.51 5.17 23.5 15.6 2.64 4.92 23.0 15.9 3.56 10.8 25.4
Forage % of DM 54.1 19.1 8.93 100 61.8 24.3 9.38 100 65.7 28.7 25.0 100
DIM d 161 82 11 488 — — — — — — — —
BW kg 594 88.4 302 854 563 174 195 893 317 86.7 168 631
1UN = urinary nitrogen, FN = fecal nitrogen, TN = total manure nitrogen, MN = milk nitrogen, NI = N intake, GE = gross energy, DE = digestible energy, and EE = ether extract.
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Model Selection

A multilevel, multistep selection process was imple-
mented due to the large number of potential models. 
First, 2 levels of increasing model complexity were de-
fined to provide flexibility for users with different levels 
of available input. The first model form (tier 1) was 
predicted from a single intake parameter: DMI (kg/d) 
or NI (g/d). The more complex models (tier 2) were se-
lected from a large pool of diet and animal explanatory 
variables including dietary energy, protein, fiber, DM, 
fat, ash content, animal weight, breed, stage of lacta-
tion, and stage of pregnancy, where applicable (Table 
1). All continuous variables were centered around their 
mean to reduce multicollinearity and facilitate compu-
tation.

A systematic procedure involving several steps to 
reduce the dimension of the variable pool was taken to 
decrease the number of potential models in tier 2. First, 
to prevent multicollinearity, one of a pair of highly cor-
related (r > 0.8) variables was taken out by removing 
the independent variable with smallest correlation with 
the response. Because this would remove all but one 
measure of intake and energy content, and because 
comparison between models with discrepant measures 
of these explanatory variables was desired, 6 sets of 
variable pools were developed for each model selection 
process in tier 2. These variable pools contained either 
NI or DMI and either gross energy, digestible energy 
(DE, kJ/kg of DM), or ME (kJ/kg of DM). In the sec-
ond variable reduction step, variables with the greater 
degree of variance inflation were removed until the 
largest condition index of the independent variable cor-
relation matrix was less than 10 as described by Belsley 
et al. (2004) using the perturb package in R statistical 
software (Hendrickx, 2012).

Having reduced multicollinearity to an acceptable 
degree, the final step used an information-theoretic ap-
proach to select a single model from all models within 
the domain defined by the established variable pools. 
The Bayesian information criterion (BIC) was chosen 
as the means for measuring model information because 
its theoretical objective is to select the model that best 
explains the underlying process leading to the observa-
tions and because of its tendency to select parsimoni-
ous models when the sample size is large (Ward, 2008).

A genetic algorithm was implemented to select the 
best models from each variable pool based on the BIC. 
Genetic algorithms, used in this case as an optimiza-
tion tool, are a class of computer search and learning 
algorithms modeled after the biological process of ge-
netic selection (Forrest, 1993). Heuristically, the genetic 
algorithm selects chromosomes, or models in this case, 

to be passed on to future populations based on some 
measure of fitness (BIC). Chromosome information can 
be propagated through random mating with another 
chromosome or random mutation of a gene within a 
chromosome. The probability with which the algorithm 
populates the future generation through mating or mu-
tation (pm) and the probability of genetic mutation (pg) 
can be tuned to facilitate thorough exploration of the 
parameter space and facilitate convergence. A key as-
pect of the algorithm is that the best chromosome from 
each generation is conserved without mutation, which 
guarantees nondecreasing fitness of each generation. In 
the present application, a chromosome was established 
as a binary vector of length v that indicates which 
variables are included in the design matrix X, where 
v is the number of independent variables in the largest 
possible model. The algorithm was initiated with 50 
randomly selected chromosomes specifying an initial 
population of models that make up a random subset 
of models nested within the largest possible model. 
Future populations were propagated using the genetic 
algorithm with pm = 0.99 and pg = 0.10. Convergence 
was set as the point when the best model was the same 
for 50 generations.

For each form of excretion, in each animal class, the 
6 models selected from different variable pools by the 
genetic algorithm were compared and the one with the 
lowest BIC was chosen. The BIC determination was 
based on maximum likelihood fits and all models were 
then refit using restricted maximum-likelihood to re-
port unbiased estimates of the variance components. 
Model intercepts are reported in terms of the uncen-
tered independent variables for which the standard er-
rors were derived through the delta-method (DeGroot 
and Schervish, 2010).

Model Evaluation and Comparison

The final predictive power of the selected models 
was assessed using a K-fold cross-validation (Picard 
and Cook, 1984; Efron and Tibshirani, 1994). In this 
method, the data are iteratively divided into training 
and testing data sets to obtain estimates of the pre-
diction error from data that was not used in model 
development. The data was folded by study, resulting 
in 59 folds divided by the appropriate animal class, and 
the prediction error was estimated by the root mean 
square prediction error (RMSPE). Thus, the cross-
validation technique used is similar to the “leave-one-
out” technique in which a whole study was left out of 
the training set instead of a single observation. Here 
the RMSPE was calculated according to the following 
formula (Bibby and Toutenburg, 1977):
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T

= −( ) −( )⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

−y X y Xβ β� � n 1
1 2/

 

where y is the vector of observations; X is the matrix 
of explanatory variables; β� is the vector of fixed-effect 
parameter estimates; n is the number of observations in 
each fold; and the superscript T indicates the transpose 
function. The final prediction error was calculated as a 
weighted average in which each RMSPE was weighted 
by the number of observations in the fold and is pre-
sented both in the units of the predicted value and as a 
percentage of the mean observed value. In its original 
units, the RMSPE is an indicator of the average uncer-
tainty of prediction and when expressed as a percentage 
allows for comparison of prediction accuracy across 
models.

To assess the models’ application in predicting obser-
vations of more recent years, the models were refit ex-
cluding the last 6 yr of observations and then evaluated 
using the RMSPE with the independent data subset 
of observations from the last 6 yr. Descriptions of this 
data subset are given in Table 2. In addition, to com-
pare model performance with extant models, the RM-
SPE of 3 FN models (Castillo et al., 2000; Huhtanen et 
al., 2008; Kebreab et al., 2010), 3 UN models (Castillo 
et al., 2000; Huhtanen et al., 2008; Kebreab et al., 
2010), and 2 TN models (Nennich et al., 2005; Yan et 
al., 2006) was calculated with both the complete data 
and the most recent data subset. To assess the models’ 
potential for practical application, the TN prediction 
equations used in the national GHG inventory (EPA, 
2014) were evaluated for prediction accuracy with both 
the complete and most recent data. In addition to pre-
diction error of the extant models, prediction bias was 
assessed through decomposition of the prediction error 
into mean bias (error of central tendency), systematic 
bias (error due to regression), and the random error 
(dispersion error) as a percent of the MSPE (Bibby and 
Toutenburg, 1977).

RESULTS AND DISCUSSION

Methodology

Assessment of the amount and form of N escaping 
ruminant production facilities requires accurate predic-
tion equations. Most extant models were developed 
from a small pool of potential covariates and selected 
based on either biological knowledge or a stepwise selec-
tion method; both of which are subject to criticism. A 
more thorough search of available covariates and model 
parameter space is likely to improve prediction abil-
ity. However, when the number of possible covariates is 
large, model selection can be a time- and computation-

intensive process. The genetic algorithm used in our 
study facilitated the selection process and reduced the 
time required to identify the best possible model based 
on a given criteria. In the present application, the algo-
rithm converged to the models with the lowest BIC in 
less than 100 iterations.

Model Development

The models developed in our study through the selec-
tion process described previously are presented in Table 
3. Two tiers of models were selected for each class of 
animals to accommodate variable input requirements. 
Nitrogen intake was selected as the best predictor 
compared with DMI for all 3 animal classes in tier 1 
models for UN and TN. In contrast, DMI was selected 
as the best predictor for FN and MN in lactating cows, 
whereas NI was selected for FN prediction in heifers 
and dry cows and steers. The selection of DMI as a bet-
ter predictor of FN instead of NI in lactating cows was 
not surprising. Although greater NI and DMI increase 
rumen microbial growth and N absorption across the 
digestive tract, greater DMI will also increase the rate 
of digesta passage and secretion of digestive enzymes 
resulting in greater fecal DM and FN (Swanson, 1977; 
Dijkstra et al., 2013). As expected, all measures of ex-
cretion, for all animal classes and tiers had a positive 
linear relationship with the intake parameter (NI or 
DMI).

A measurement of the energy content of the diet was 
included in all selected tier 2 models except equation 
16 in Table 3, predicting UN excretion in steers. The 
estimated regression coefficients reveal a consistent 
positive relationship of energy content with UN (and 
MN for lactating cows), and a consistent negative re-
lationship with FN and TN. The apparent increase in 
UN with increasing diet energy content is in contrast to 
findings by Kebreab et al. (2010). However, the univari-
ate models reported by Kebreab et al. (2010) used ME 
intake (kJ/d) or metabolizability (kJ of ME/kJ of gross 
energy) covariates instead of ME or DE content (kJ/
kg of DM) as reported in our study. In the present data 
set, ME intake was highly correlated (r = 0.92) to NI, 
and thus would be expected to increase all forms of N 
excretion as shown by Kebreab et al. (2010). Metaboliz-
ability, conversely, was highly correlated to ME and DE 
content (kJ/kg of DM) and the negative relationship 
of UN and metabolizability reported by Kebreab et al. 
(2010) was not consistent with the present findings. 
However, Kebreab et al. (2010) reported the standard 
error of the parameter estimate for predicting UN from 
metabolizability was 46% of the mean estimate. This 
is much larger than current standard errors as a pro-
portion of their mean estimates, which was perhaps a 
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Table 2. Units, means, SD, and range of data collected from 1990 to 1995 used to evaluate the selected models 

Variable1 Unit

Lactating cows 
(n = 82)

Heifers and dry cows 
(n = 52)

Steers 
(n = 30)

Mean SD Minimum Maximum Mean SD Minimum Maximum Mean SD Minimum Maximum

UN g/d 232 61.5 123 350 122 24.3 74.0 171 65.3 23.1 36.0 115
FN g/d 223 56.2 105 334 48.5 8.58 35.7 72.4 40.3 8.36 26.3 57.5
TN g/d 455 109 230 641 170 27.1 131 227 106 28.6 62.8 169
MN g/d 161 48.0 47.9 267 — — — — — — — —
Milk kg/d 35.0 9.55 6.47 56.6 — — — — — — — —
NI g/d 632 161 294 932 169 22.7 124 212 127 29.6 85.6 197
DMI kg/d 21.0 4.39 10.3 28.2 6.01 0.71 4.64 7.40 5.72 0.89 4.42 7.43
DE MJ/kg of DM 12.9 0.83 11.1 14.9 14.0 0.94 10.7 15.5 13.5 0.72 12.3 15.0
ME MJ/kg of DM 11.1 0.81 9.57 13.1 11.5 0.81 8.84 13.1 11.8 0.67 10.7 13.2
DM % 48.6 5.81 34.2 58.2 51.2 3.78 38.5 56.6 88.3 0.88 86.5 89.7
EE % 3.90 0.89 2.18 6.52 4.31 1.49 2.07 7.64 2.97 0.83 1.64 4.04
NDF % of DM 37.0 8.66 25.6 59.3 35.5 5.57 28.0 50.1 24.8 3.48 19.9 32.8
ADF % of DM 23.4 3.51 16.2 34.5 22.2 3.97 17.1 36.3 11.2 1.36 7.50 15.2
Lignin % of DM 6.40 0.96 4.30 9.01 5.34 1.48 3.15 8.76 3.35 0.74 2.06 4.96
Ash % of DM 7.48 0.51 6.39 8.65 8.44 1.98 6.20 13.3 5.14 0.49 3.92 6.15
CP % of DM 18.7 1.46 16.4 21.2 17.6 1.01 14.5 19.2 13.9 2.27 10.8 17.1
Forage % of DM 71.1 24.6 50.0 100 67.8 22.8 50.0 100 0.25 0 0.25 0.25
DIM d 142 70 41 299 — — — — — — — —
BW kg 578 102 355 759 625 138 339 797 396 33.5 331 457
1UN = urinary nitrogen, FN = fecal nitrogen, TN = total manure nitrogen, MN = milk nitrogen, NI = N intake, DE = digestible energy, and EE = ether extract.



Journal of D
airy S

cience Vol. 98 N
o. 5, 2015

E
N

V
IR

O
N

M
E

N
TA

L E
FFE

C
TS

 O
F R

U
M

IN
A

N
T P

R
O

D
U

C
TIO

N
3031

Table 3. Model selection results and variance estimates1 

Tier
Equation  

no. Estimate2 σR
2 σa

2 σs
2

Lactating cattle    
 1 1 UN = 12.0 5.80  + 0.333 0.0106 NI( ) ( )× 610 307 420

 2 2
UN = 2.81  + 0.293 0.0101 NI + 3.99 1.11 DE + 0.906− × ×( ) ( ) ( )260 00.158 NDF + 8.39 0.578 CP + 0.161 0.0108 DIM

 + 0.370 0

( ) ( ) ( )× × ×

..821 MBW( )×
 411 101 225

 1 3 FN =  + 10.1 0.169 DMI− ×( ) ( )18 5 3 59. . 178 39.6 195

 2 4
FN = 72.7 2.34 11.8 0.609 ME 0.437 0.0979 NDF + 3.52 0.2( ) ( ) ( )− × − × 558 CP + 0.161 0.478 ForR + 9.32 0.148 DMI

 0.0184 0.005

( ) ( ) ( )× ×

− 554 DIM( )×
 117 24.6 195

 1 5 TN = 20.3 4.72  + 0.654 0.00926 NI( ) ( )× 567 126 212

 2 6
TN = 2.16 2.88  + 0.631 0.0105 NI 12.8 1.07 ME + 0.392 0.( ) ( ) ( )× − × 1160 NDF + 4.81 0.540 CP + 0.137 0.0104 DIM 

+ 0.426 0.0

( ) ( ) ( )× × ×

7764 MBW( )×
400 67.7 276

 1 7 MN = 9.0 + 8.13 0.245 DMI− ×( )1 370 103 286

 2 8
MN = 5.62 1.65  + 4.62 0.714 ME-0.389 0.104 NDF + 1.70 0.( ) ( ) ( )× × 3318 CP + 6.66 0.198 DMI 0.194 0.00714 DIM

 0.275 0.063

( ) ( ) ( )× × − ×

− 44 MBW( )×
163 113 70.6

Heifers and nonlactating cows    
 1 9 UN = 14.3 3.18  + 0.510 0.0121 NI( ) ( )× 168 66.0 215
 2 10 UN = 43.8 2.94  + 0.429 0.0133 NI 2.10 0.691 ME + 0.292 0− × − ×( ) ( ) ( ) ..113 ADF + 3.35 0.313 CP + 0.284 0.0400 MBW( ) ( ) ( )× × × 166 13.8 160
 1 11 FN = 0.345 1.73  + 0.317 0.00638 NI( ) ( )× 31.3 6.73 40.8

 2 12
FN = 107 1.34  + 0.359 0.00567 NI-4.18 0.303 ME-0.141 0.0( ) ( ) ( )× × 2283 DM 0.246 0.0542 ADF 1.00 0.166 ASH

 2.32(0.137) C

( ) ( ) ( )
−

× − × − ×

× PP 0.0792(0.0177) MBW− ×
26.6 5.77 36.7

 1 13 TN = 15.1 2.50  + 0.828 0.0106 NI( ) ( )× 145 13.6 111
 2 14 TN = 49.5 2.57  + 0.793 0.0115 NI 6.04 0.0501 ME + 0.825( ) ( ) ( )× − × 00.269 CP + 0.190 0.0332 MBW( ) ( )× × 127 3.06 129
Steers
 1 15 UN = 6.80 3.78  + 0.405 0.0166 NI( ) ( )× 194 1.89 77.2
 2 16 UN = 71.2 3.32  + 0.265 0.0181 ×NI + 3.76 0.344 CP + 0.46− ×( ) ( ) ( ) 88 0.0522 ×MBW( )  143 5.60 23.4
 1 17 FN = 0.506 2.30 + 0.352 0.00902 NI ( ) ( )× 57.3 0 32.4

 2 18
FN = 109.6 1.99  + 0.327 0.00724 NI-6.41 0.334 ME 0.276 0( ) ( ) ( )× × − ..531 DM 1.37 0.243 LIG 1.82 0.274 ASH

+ 0.0398 0.0230

( ) ( ) ( )
( )

× − × − ×

××MBW
26.4 2.90 25.2

 1 19 TN = 6.91 2.60  + 0.759 0.0126 NI( ) ( )× 116 0 31.0
 2 20 TN = 11.5 2.49  + 0.650 0.0152 NI 4.47 0.612 ME + 1.77 0.( ) ( ) ( )× − × 2278 CP + 0.432 0.0423 MBW( ) ( )× × 88.0 18.1 3.1

1The variance components of the mixed model include the residual variance σR
2( ), the animal variance σa

2( ), and the study variance σs
2( ).

2Parameter estimates with SE in parentheses. UN = urine nitrogen, FN = fecal nitrogen, MN = milk nitrogen, TN = total manure nitrogen, NI = nitrogen intake (g/d), DE = 
digestible energy content (kJ/kg DM), MBW = metabolic body weight (body weight3/4, kg), LIG = lignin content (% DM), ForR = proportion of forage in the diet, ASH = ash 
content (% DM).
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symptom of the smaller data set used by Kebreab et 
al. (2010). A simple plot of UN excretion versus energy 
content (not shown) confirms the proposed positive 
parameter estimate indicating an increase in UN with 
energy content.

For lactating cows, NDF, CP, and DIM were included 
in the selected tier 2 models for all forms of excretion 
and MN secretion. Neutral detergent fiber had a posi-
tive linear relationship with UN and TN and a negative 
relationship with FN and MN. As with intake, diet CP 
had a positive relationship with all dependent variables. 
Metabolic BW was selected for all tier 2 models predict-
ing UN and TN but not for all FN equations, suggesting 
that BW has a stronger relationship with UN than FN. 
For all excretion and animal types, a reduction in re-
sidual and total variance was noted when moving from 
tier 1 to tier 2 models. This reduction in variance was 
also reflected in the cross-validation RMSPE reported 
in Table 4, showing that, overall, prediction accuracy 
increased when more dietary information was included.

Model Evaluation

Prediction Models. A cross-validation procedure 
was used to evaluate the overall predictive ability of the 
fitted models, as described previously. Furthermore, the 

data was divided into 2 subsets containing the most re-
cent 6 yr in the database and those collected previous to 
the last 6 yr to investigate whether the models based on 
earlier years were still relevant in the most recent 6 yr 
given the 3-decade collection period. As expected, UN 
prediction equations resulted in the greatest prediction 
errors when evaluated with both the cross-validation 
RMSPE and the RMSPE of the data from the most 
recent 6 yr (Table 4). Total manure N consistently re-
sulted in the lowest prediction errors among the 3 forms 
of excretion for all animal classes. Fecal N prediction 
error was intermediate compared with UN and TN. 
Differences in the RMSPE between the 2 evaluation 
techniques (cross-validation and splitting the data by 
time period) were variable across animal and excretion 
types, ranging ±5% of the mean. The distribution of 
the variables of interest in the subset of data collected 
after 1990 is different from the complete data and more 
closely represents recent trends in animal size and diets 
(Table 2). As a result, the nonuniform change in the 
direction of prediction error when evaluated with this 
subset suggests prediction accuracy is not dependent 
on year, and the proposed equations are applicable 
to present practices given the required covariates are 
jointly within the bounds of the data used for model 
development (Table 1).

Table 4. Evaluation of selected models using a K-fold cross-validation (USDA cross) and splitting the data to 
be evaluated with the data from the most recent 6 yr (USDA 1990–1995) 

Equation  
no.

Predicted  
variable1

USDA cross2 USDA 1990–19952

RMSPE 
(g/d)

RMSPE 
(% of mean  
N excreted)

RMSPE 
(g/d)

RMSPE 
(% of mean  
N excreted)

Lactating cows  
 1 UN 35.1 23.7 29.5 12.7
 2 UN 26.6 18.0 24.6 10.6
 3 FN 18.0 12.6 40.6 18.2
 4 FN 16.4 11.4 37.1 16.6
 5 TN 28.7 9.80 37.0 8.14
 6 TN 25.9 8.87 36.4 8.00
 7 MN 24.6 21.9 24.1 14.9
 8 MN 17.5 15.6 19.6 12.2
Heifers and dry cows  
 9 UN 20.6 22.2 28.3 23.2
 10 UN 17.1 18.4 23.7 19.4
 11 FN 8.4 16.2 6.34 13.1
 12 FN 7.1 14.2 5.93 12.2
 13 TN 16.2 11.4 22.4 13.2
 14 TN 14.4 10.1 23.9 14.1
Steers  
 15 UN 15.5 26.5 15.2 23.2
 16 UN 12.7 21.7 12.9 19.8
 17 FN 8.2 17.6 8.59 22.0
 18 FN 6.6 14.2 6.10 15.1
 19 TN 11.6 11.0 9.38 8.89
 20 TN 9.7 9.2 6.73 6.37
1UN = urine nitrogen, FN = fecal nitrogen, MN = milk nitrogen, TN = total manure nitrogen.
2The square root of the mean square prediction error (RMSPE) expressed both in grams of N excretion per day 
and as a percentage of the mean observed excretion.



Journal of Dairy Science Vol. 98 No. 5, 2015

ENVIRONMENTAL EFFECTS OF RUMINANT PRODUCTION 3033

Comparison with Extant Models. The results of 
the evaluation of extant models are presented in Table 
5. All extant UN and FN models evaluated in our 
study for lactating cows resulted in larger prediction 
errors than the proposed models when evaluated with 
the complete data and most recent data. This suggests 
that if separate estimation of FN and UN is desired, use 
of the proposed models is recommended. The 2 extant 
prediction equations for TN (equations 27 and 28) listed 
in Table 5 performed better when evaluated with the 
most recent data than with the complete data. Under 
the complete data evaluation, the model proposed by 
Yan et al. (2006; equation 28) was within 1 g of the pre-
diction error of the proposed models (equations 5 and 
6), but the model by Nennich et al. (2005; equation 27) 
was approximately 20 g larger than both equation 28 
and the proposed prediction equations for TN excretion 
from lactating cows (equations 5 and 6). Under evalua-
tion with the most recent data, both equations 27 and 
28 performed slightly better than the proposed models, 
with a prediction error approximately 2 g smaller than 
that of equations 5 and 6, suggesting they were all 
equally suited for predicting TN from lactating cows. 
The data used for the analysis was greater and statisti-
cal procedure for model selection was different than 
most extant models, and this might have contributed 
to lower uncertainty associated with models developed 
in our study.

All extant models showed either significant mean 
(error of central tendency) or systematic (dispersion 
error) bias, with the exception of equations 28 and 29, 
when they were evaluated with the complete data set 
(Table 5). There was an increase in mean bias when the 
models were evaluated with data from the most recent 
6 yr for all but one model (equation 27). In particular, 
models predicting UN indicate large mean bias when 
evaluated with the complete and most recent data sets 
(equations 24–26; Table 5). The TN model by Nennich 
et al. (2005; equation 27) had large mean bias when 
evaluated with the complete data set; however, this 
decreased dramatically when evaluated with the most 
recent 6 yr of data. The decompositions of error for the 
non-EPA, TN models (equations 27–28) were overall 
better than the error decompositions of the other forms 
of excretion.

Practical Application

The N source for agricultural N2O emissions is pre-
dominantly livestock manure N worldwide (Gerber 
et al., 2013), and the combination of synthetic and 
manure fertilizer in the United States (EPA, 2014). 
Nitrous oxide is generated by microorganisms as an 
intermediate in both nitrification and denitrification 

processes in aerobic and anaerobic environments while 
manure is stored, treated, transported and applied to 
soil. Nitrogenous emissions, including ammonia volatil-
ization, can occur directly during manure handling and 
storage. Indirect emissions occur from N that originally 
escaped through volatilization, leaching, or run-off or 
was applied for soil amendment (Owen et al., 2014). 
In addition to N2O escape to the atmosphere, manure 
N can result in eutrophication of surface waters, acid 
rain, and respiratory damage (McCubbin et al., 2002; 
Diaz and Rosenberg, 2008). Reducing the intensity of N 
excretion (i.e., amount of manure N produced per kilo-
gram of milk or meat) is an important way to mitigate 
the environmental effects of animal agriculture (Montes 
et al., 2013).

Specific estimation of FN and UN is useful for predic-
tion of the environmental fate of N that escapes cattle-
production facilities. For example, urea N in urine is 
volatilized to ammonia when it comes into contact 
with urease in feces and subsequent deposition of this 
ammonia can result in eutrophication of water sources 
or indirect N2O emissions. Most emissions inventories, 
however, are based on estimation of TN. The models 
used by the EPA (2014) for predicting TN from lactat-
ing cows, heifers and dry cows, and steers are presented 
in Table 5 (equations 20, 30, and 31, respectively) along 
with their evaluation results. These models resulted in 
large prediction errors both when evaluated with the 
complete and restricted data; with the exception of the 
equation for heifers and dry cows, which performed 
fairly well when evaluated with the most recent data. 
The general strategy of the EPA methodology is to 
estimate TN as the difference in NI and either the 
N deposited in tissue or secreted in milk. In lactat-
ing cows this reduces to TN = NI – MN by assuming 
retained or mobilized N is zero. Over the course of a 
lactation this, in general, is an appropriate assumption; 
however, on a daily basis, this assumption does not 
hold, as the retained N during lactation can be quite 
variable (Andrew and Erdman, 1995; Komaragiri and 
Erdman, 1997). Thus, application of this model should 
be limited to estimates of annual herd TN excretion 
and additional estimates for which the zero N retention 
assumption is reasonable.

The models can also be used in developing quanti-
fication protocols for producers to assess the effect of 
dietary manipulations on N partitioning to products 
and excreta. However, as with all regression models, 
caution should be taken in their application for predic-
tion. Inference about the effect of dietary and animal 
parameters on N excretion can be drawn from the 
proposed models; however, the regression parameters 
must be interpreted from within the context of the 
model and development data. Each parameter estimate 
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Table 5. Evaluation of extant fecal N (FN), urinary N (UN), and total N (TN) excretion prediction equations of lactating cows and their evaluation with the complete data (USDA 
complete) and the data from the most recent 6 yr (USDA 1990–1995) using the mean square prediction error (MSPE), its square root (RMSPE), and its decomposition into the 
error of central tendency (ECT), error of regression (ER), and dispersion error (ED)1  

Equation  
no. Model Citation

USDA complete USDA 1990–1995

RMSPE 
(g/d)

RMSPE 
(% of mean  
N excretion)

ECT ER ED
RMSPE 
(g/d)

RMSPE 
(% of mean  
N excretion)

ECT ER ED

(% of MSPE) (% of MSPE)

21 FN = 52.3 + 0.21 × NI Castillo et al. (2000) 31.8 21.1 5.49 32.2 62.3 69.5 27.2 70.0 0.37 29.6
22 FN = −21 + 6.73 × DMI  

+ 0.101 × NI
Huhtanen et al. (2008) 28.3 18.9 28.5 6.19 65.3 62.3 24.4 69.1 0.15 30.7

23 FN = 244 + 0.25 × NI  
− 346 × q

Kebreab et al. (2010) 23.8 15.8 2.22 26.6 71.2 46.2 18.1 55.9 4.89 39.2

24 UN = 30.4 × e0.0036 × NI Castillo et al. (2000) 73.7 48.4 4.00 62.8 33.8 190 79.3 62.0 33.7 4.25
25 UN = 40 + 0.879 × NI − 9  

× DMI − 3.9 × MILK
Huhtanen et al. (2008) 41.3 27.1 43.6 7.05 49.4 62.3 26.0 63.4 9.34 26.9

26 UN = 47.8 + 0.56 × NI 
− 71.4 × ME

Kebreab et al. (2010) 44.7 29.3 46.7 0.35 53.0 59.6 24.9 60.3 1.44 38.31

27 TN = 0.196 × BW + 84.1  
× CP × DMI

Nennich et al. (2005) 55.8 18.4 52.5 11.7 35.8 34.3 6.9 11.1 1.23 87.7

28 TN = −18 + 0.742 × NI  
+ 0.072 × BW − 1.486 × MILK

Yan et al. (2006) 28.4 9.39 6.62 4.00 89.4 35.9 7.3 14.8 7.90 77.3
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        EPA (2014) 69.1 22.8 3.66 0.00 96.3 70.0 15.0 52.5 0.53 47.0
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        EPA (2014) 33.6 32.0 5.55 23.2 71.2 46.7 44.3 38.9 8.81 52.3

1Evaluation of the US Environmental Protection Agency model for predicting TN excretion for lactating cows (equation 29), heifers and dry cows (equation 30), and steers (equa-
tion 31) is also given.
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indicates the average change in the dependent variable 
for a unit change of the accompanying covariate, if all 
other covariates are held constant.

CONCLUSIONS

National and international inventories of GHG emis-
sions from livestock require accurate N excretion predic-
tion equations available to estimate direct and indirect 
N2O emissions. Aggregate estimates of N2O emissions 
unavoidably compound errors associated with each level 
of estimation. Thus, models with the lowest prediction 
errors should be applied when available. The proposed 
equations for manure N excretion from lactating cows 
performed better or similar to extant models; however, 
no comparable equations for steers or heifers and dry 
cows were found. In addition, the equations presented 
for UN and FN had substantially smaller prediction 
errors than extant models. Separate estimation of UN 
and FN provides a more detailed description of N ex-
cretion. The estimates can be used to further improve 
assessment of the environmental effects of N excretions 
from cattle in connection with process-based or empiri-
cal models predicting emissions from manure storage 
and field application.
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