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How Cells Know Where They Are
Arthur D. Lander

Development, regeneration, and even day-to-day physiology require plant and animal cells
to make decisions based on their locations. The principles by which cells may do this are
deceptively straightforward. But when reliability needs to be high—as often occurs during
development—successful strategies tend to be anything but simple. Increasingly, the challenge
facing biologists is to relate the diverse diffusible molecules, control circuits, and gene
regulatory networks that help cells know where they are to the varied, sometimes stringent,
constraints imposed by the need for real-world precision and accuracy.

Tomeasure the distance from one object to
another, something must traverse the in-
tervening space. For distances of centi-

meters or meters, we lay down a ruler or tape
measure; for objects much farther away, wemight
bounce off sound or radio waves and measure
the return time. In the microscopic world of
cells, where measurements of position typically
are made over spans of a few hundred micro-
meters or less (Fig. 1), the things that most read-
ily cross such distances are molecules, and the
simplest way they do so is by aqueous diffusion.
Unlike the propagation of light or sound waves,
diffusion is not a constant-rate phenomenon—a
diffusing front gets slower as it spreads—making
computation of distance from arrival time tricky
(although not impossible). But, given constant
production at a source, diffusion can create steady-
state gradients within which concentration is a
proxy for distance. From this insight, it was pro-
posed, and later demonstrated, that cells in devel-
oping animal embryos receive positional cues from
diffusible molecules that indeed form stable gra-
dients across tissues (1). Such molecules, dubbed
morphogens, play central roles in orchestrating
developmental pattern formation.

Recently, there has been debate about wheth-
er cells really receive positional information by
measuring concentrations in steady-state diffu-
sion gradients (2, 3). The most serious objections
have to dowith reliability: In the world of cellular
biochemistry, variability in synthesis and secre-
tion, in the binding of molecules to receptors, in
the activation of signaling pathways, and in gene
regulation can all be quite high. Among other
things, such variability can stem from the environ-
ment (e.g., unpredictable temperature or nutrition),
genetics, or stochastic fluctuations in biochemical
processes. Yet the positional information that cells
ultimately obtain is often exceedingly reliable,
particularly during development (as evidenced by
the remarkably accurate symmetries and family
resemblances we encounter in our own bodies).
Can steady-state diffusion gradients provide that
kind of reliability?

In short, it depends. It depends on the amount
and kind of variability cells face, the mechanisms
by which gradients form, and how much reli-
ability is required. Consider, for example, a sheet
of cells (an epithelium) in which a diffusible mor-
phogen is secreted at a constant rate by cells lying
in a stripe (Fig. 2A). The morphogen is destroyed
everywhere, through receptor-mediated uptake,
at a constant proportion per time (this situation
approximates what is thought to be the case in a
variety of developing tissues). Eventually, a sta-
ble gradient forms in which morphogen concen-

tration falls exponentially away from the source,
the precise shape determined by the morphogen’s
rate of production, diffusivity, and rate of uptake
and destruction. A cell’s reading of morphogen
concentration will then depend on its number of
receptors and how much intracellular signaling
occurs per occupied receptor.

Not surprisingly, if cellular location is measured
from the morphogen concentration sensed by
each cell, unreliability in any of these processes—
morphogen production, transport, uptake, recep-
tor synthesis, and signaling—will produce mea-
surement errors. The type and magnitude of the
error will depend on what is varying and where
the cell is located. Variability that enters upstream
of individual cells (e.g., inmorphogen production
or transport) or affects all cells equally (e.g., animal-
to-animal differences or temperature change) will
produce inaccuracy, that is, a shift in the locations
of positional values. In contrast, cell-to-cell var-
iability produces imprecision, that is, scatter in the
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Fig. 1. A gallery of positional tasks. A leukocyte (A) may need to know in which direction to head to find
the site of an infection but not the absolute distance to it. A cell in an early embryo (B) may need to know
absolute location with respect to one or the other end of the embryo so that it differentiates into a spatially
appropriate cell type, whereas a cell in a tissue undergoing branching morphogenesis (C) may need to
know only the rough location with respect to the nearest branch point or vessel. In regenerating tissues
(D), cells need to know their position with respect to a site of injury or amputation, whereas in tissues or
organs with laminar structures (E) cells may need only know whether they are in the appropriate layer.
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positional measurements that cells at equivalent
locations make. Inaccuracy is often best quanti-
fied by a sensitivity coefficient, a unitless number
that captures the fold change in the location of a
positional value per any given fold change in some
upstream process. Imprecision is most readily
quantified as a transition width, the distance away
from any position x that one must move before
no more than some maximum proportion of cells
(e.g., 15%) conclude that they are on the wrong
side of x from where they actually are (4–6).

Sensitivity coefficients for perturbations of
morphogen and receptor production and esti-
mated transition widths associated with sto-
chastic fluctuations in receptor occupancy are
plotted in Fig. 2B for morphogen gradients
such as the one in Fig. 2A by using assumptions
about receptor abundance estimated from the
Drosophila wing disc (6). Sensitivity to morpho-
gen production declines with distance from the
morphogen source, whereas sensitivity to recep-
tor production falls to zero and then rises to an
asymptotic value. The transition width caused
by fluctuation in receptor occupancy (“binding
noise”) rises with distance from the morphogen
source, because lower receptor occupancy produces
larger stochastic fluctuations (6). A similar rise
occurs for fluctuations driven by other sources
of cell-to-cell variability (5).

In essence, there is some effect of every form
of variability at virtually every location, but which
errors matter in practice depend on where posi-
tional measurements need to be made, howmuch
error can be tolerated, and how much different
inputs actually vary. Only in a few cases are hard
data on in vivo variability available [e.g., (5, 7, 8)],
but the fact that mutants that are heterozygous

null for genes encoding morphogens, receptors,
or components of signaling pathways (i.e., puta-
tive 50% reductions in input) usually display de-
velopmental patterns that are shifted only slightly
(e.g., <20%) suggests that sensitivity coefficients
for developmental morphogen gradients are often
<0.26 (ln1.2/ln2) (6). Similarly, from looking at
the phenotypic effects of mutations that lead to
broadening of the widths of gene expression
stripes established by morphogen gradients [e.g.,
(9)], we can estimate bounds on tolerable tran-
sitions widths (Fig. 2B). Such limits reveal a sur-
prising fact: In simple, steady-state morphogen
diffusion gradients, there is no location at which
cells simultaneously achieve substantial robust-
ness to variation in morphogen production, varia-
tion in receptor production, and cell-to-cell
variability in receptor occupancy.

What Price Reliability?
Might cells improve robustness by altering the
mechanisms bywhich gradients formor are sensed?
Evidence suggests that they do. For example, some
cells increase morphogen degradation in response
to morphogen signaling (so-called self-enhanced
degradation), which decreases sensitivity to var-
iation in morphogen production (10). But this
benefit comes at the expense of making gradients
shallower, the result of which is greater impre-
cision for any given amount of cell-to-cell var-
iability (6). Of course, precision can be improved
by operating in regimes of higher total morpho-
gen (increased receptor occupancy translates into
reduced stochastic fluctuations in binding), but
this quickly leads to receptor saturation near the
morphogen source, which greatly increases sen-
sitivity to variation in morphogen production rate

(6). Sensitivity to morphogen production rate can
be lowered by measuring morphogen concentra-
tions before the gradient reaches a steady state
(2), but this carries the price of making cells
highly dependent on the precise time at which
they make their measurement (i.e., they gain a
more accurate ruler at the expense of needing an
accurate clock).

These scenarios illustrate a basic engineering
principle: Strategies that improve performance in
one arena typically degrade it in another. Often
such trade-offs arise out of a linkage between the
number of degrees of freedom available for com-
bating unreliability and the number of sources of
unreliability. For example, assume that we could
insert into the morphogen gradient in Fig. 2 an
additional component, a “nonreceptor” molecule
that binds, internalizes, and degrades the mor-
phogen without participating in signaling [such a
role has been suggested for cell-surface proteo-
glycans (11, 12)]. Now the curve of sensitivity
of positional measurement to receptor production
can easily be shifted so that it overlaps with the
curve of sensitivity to morphogen production
(i.e., the system can now be simultaneously ro-
bust, at many locations, to variation in both mor-
phogen and receptor production). Unfortunately,
addition of a new component adds a new po-
tential source of unreliability—variability in the
production of the nonreceptor. Not surprising-
ly, just those conditions that shift the receptor-
sensitivity curve to a more desirable location
correspond to conditions that make nonreceptor
sensitivity high everywhere. In other words, when-
ever we add something new, we risk trading sen-
sitivity to what was there for sensitivity to what
we added.
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Fig. 2. Effect of input variability on the reliability of diffusion gradients. (A)
Diffusion of molecules through intracellular spaces, when coupled to receptor-
mediated uptake, produces steady-state gradients from which cells can as-
certain their positions. But variability in processes that contribute to gradient
formation or interpretation will necessarily lead cells to make mistakes. Their
errors may be classified as either inaccuracy, whereby the average cell at a

given location obtains an incorrect positional value, or imprecision, whereby
there is cell-to-cell variability in the positional information obtained by cells at
equivalent positions (the latter effectively converts the gradient of positional
information into a probability cloud, rather than a sharp curve). (B) The most
important potential sources of unreliability are different at different locations
along a gradient [values shown are based on the gradient in (A)].
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The same problem surfaces when we exam-
ine the suggestion that morphogen gradients im-
prove accuracy by abandoning simple morphogen
diffusion in favor of active transport (13). Sen-
sitivity to variation in morphogen production can
certainly be reduced but only at the expense of
creating new sensitivity to variation in the level
of whatever carrier is responsible for mediating
the active transport (e.g., receptors). In fact, ob-
servations suggesting that active transport plays a
role in morphogen-gradient formation in animal
tissues (14–16) have increasingly been challenged
(17–20). The situation is clearly different in plants,
which lack the contiguous intercellular spaces of
animal tissues, so that long-range transport of
water-solublemolecules typically necessitates pas-
sage through cells, enabled by plasma membrane
carriers and active transporters (21, 22).

Of course, relying on diffusion for transport
does make morphogen gradients highly sensitive
to variations in diffusivity, but the beauty of dif-
fusion is its reliability. Diffusion coefficients are
only weakly sensitive to temperature and are in-
dependent of the metabolic state of the cell.
Effective diffusivity is surprisingly insensitive to
randomly placed obstacles, even when densely
packed (23), and transient binding or trapping by
“sticky” molecules in the environment only af-
fects the rate at whichmorphogen gradients form,
not their steady-state shape (2, 18, 19).

This discussion highlights an important point:
The goal of good design is not tomake sensitivity
go away—because of performance trade-offs every
system will always be sensitive to something—
but rather to shift it onto the things that are re-
liable and away from those that are not. Of course
what is reliable may be idiosyncratic. For exam-
ple, tissues with small cells that have few recep-
tors will experience larger stochastic fluctuations
in receptor occupancy than tissues with larger
cells and many receptors, placing a greater pre-
mium on insensitivity to receptor density in one
case versus the other. Likewise, embryos that de-
velop in eggs laid on land should place a greater
premium on resistance to temperature fluctuation
than mammalian embryos or embryos that de-
velop in marine environments.

An interesting example is provided by the ret-
inoic acid (RA) gradient that patterns the ver-
tebrate hindbrain. Because RA is a small molecule
derived in a few enzymatic steps from dietary
vitamin A, we expect its abundance to vary great-
ly from embryo to embryo, much more than is
the case for morphogens encoded by the genome.
It should thus come as no surprise that numerous
control mechanisms that reduce or counteract such
variability—including feedback regulation of RA
biosynthesis, degradation, and delivery to intra-
cellular receptors—are observed in the hindbrain
(24). Consistent with the presence of these (and
other) control mechanisms, large experimentally
induced fluctuations (>10-fold) in total RA levels
have surprisingly little effect on the positional
information that hindbrain cells obtain from RA
(25). From the standpoint of the organism, a re-

duced sensitivity to variation in abundance of RA
undoubtedly increases sensitivity to amounts of
other components [e.g., cellular RA-binding pro-
teins and cytochrome P450 and RA receptors
(26, 27)]. This is an acceptable trade, because
amounts of those other components are likely to
be more reliable.

Quality Through Quantity
Shifting sensitivities is not the only way to im-
prove positional reliability; by making combina-
tions ofmeasurements, cells may exploit strategies
such as pooled sampling and disturbance com-
pensation. The former refers to the way scientists
typically tame noisy data: We average (pool) re-
peated measurements. For this to be effective,
successive measurements must be independent;
that is, disturbances that corrupt one measure-
ment need to be uncorrelated with those that cor-
rupt the next.

Cells naturally pool measurements by letting
intracellular signals accumulate over time (tem-
poral integration). For example, morphogen-receptor
complexes may be internalized and continue to
signal within endosomes. Or the half-lives of pro-
tein products produced in response to morphogen
signaling may exceed the duration of signaling
complexes. In such cases, steady-state morpho-
gen responses will reflect the average morphogen
concentration over a time on the order of the half-
life of signaling endosomes or downstream pro-
tein products, whichever is greater.

In this way, many short-lived disturbances are
easily averaged out (for example, fluctuations in
the extracellular levels of freely diffusing mole-
cules tend to relax on a time scale of seconds).
But some disturbancesmay have long time scales.
For example, stochastic fluctuation in receptor
occupancy resulting from the probabilistic nature
of binding will reflect the time scales of receptor
dynamics, which generally need to be long (e.g.,
hours) so as not to interfere with the formation
of long-range diffusion gradients (6, 28). Wheth-
er cells have sufficient time to average away
such noise may thus depend on how quickly
they need to obtain their positional information.
In other words, cells face a speed-accuracy trade-off
(Fig. 3).

A drawback of simple temporal integration is
that a cell must commit to a particular time scale
of integration (e.g., a particular half-life of the
accumulating molecule). Even if disturbances
happen on faster time scales, cells must wait a
fixed time before determining their locations [lest
their measurements be inaccurate (Fig. 3C)]. One
way to get around this is to exploit noise-induced
switching (29), a phenomenon that occurs when
noisy inputs act on hysteretic switches—devices
that switch from off to on at different thresholds
from which they switch from on to off. Between
the two thresholds, any transient fluctuation that
flips the switch from off to on will tend to leave it
in the on state until a large enough fluctuation in
the other direction occurs to flip it back. In effect,
the on state is “remembered” for a time related to

the rate at which fluctuations occur. Because of
this memory, hysteretic switches achieve tem-
poral averaging on a time scale set by the noise
itself (Fig. 3D).

There are other reasons why switches are a
useful thing to include in the machinery with
which cells read position: Diffusible carriers of
positional information (morphogens) are usually
smoothly graded in space, but cells often need
to make binary decisions (e.g., to differentiate
or not). Response circuits that are switchlike,
that is, ultrasensitive, are thus essential. What is
interesting is how many of the switches that op-
erate downstream of positional cues turn out to be
of the hysteretic type. Examples include gene
regulatory switches driven by Bicoid signaling in
theDrosophila embryo; sonic hedgehog, fibroblast
growth factors (FGFs), and RA in the vertebrate
spinal cord; and RA in the vertebrate hindbrain
(30–34). In several of these cases,modeling strongly
suggests that noise-induced switching plays a key
role in producing sharp, positionally accurate gene
expression borders (30, 34).

Pooled sampling does not necessarily mean
repeating the same measurement; it can also
mean pooling different kinds of data. For ex-
ample, some cells can get positional information
frommore than one morphogen at the same time.
In the vertebrate hindbrain, the posterior-to-anterior
RA gradient is supplemented by FGF and Wnt
gradients in the same orientation (35); in the early
Drosophila embryo, the Bicoid gradient works
together with independent gradients of Caudal and
maternal Hunchback (7); in the bone morphoge-
netic protein gradients that provide dorsoventral
positional information to early invertebrate and
vertebrate embryos, there are always multiple lig-
ands (36, 37).

Measurements can also be pooled over space
instead of time; that is, neighboring cells can
share information. In syncytia, such as the early
Drosophila embryo, some spatial integration hap-
pens simply by virtue of diffusion of downstream
effectors of morphogen signaling from one nu-
cleus to another (38). In cellularized systems,
mechanisms of spatial pooling are less well un-
derstood. One fascinating example occurs in the
Drosophilawing imaginal disc, where the spatial
extent of expression of the transcription factor
vestigial (vg, which directs cells to adopt a wing
fate) is determined by the Wingless (Wg) mor-
phogen gradient. Because this gradient is quite
steep, Wg concentrations are thought to be very
low at the edges of the vg domain, exposing re-
ceptor occupancy to large, slow, stochastic fluc-
tuations. Ordinarily, this shouldmake the formation
of a sharp, reliable gene expression border very
difficult, but cells communicate with their neigh-
bors (via the Fat signaling pathway) so thatWg is
only permitted to turn on vg in a cell adjacent to
one already expressing vg (an example of spatial
pooling). Moreover, once they turn it on it re-
mains on independent of Wg (i.e., the switch is
hysteretic, so they accomplish temporal integra-
tion as well) (39). The combined effect is to
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produce a wave of vg expression that spreads from
theWg source outward, coming to a near halt at a
reliable position (Fig. 3D, curve g).

Fixing Errors Before They Happen
Making multiple measurements that are indepen-
dent with respect to disturbances is not always
feasible. In such cases, cells may exploit a dif-
ferent strategy, disturbance compensation. This
becomes available whenever multiple measure-
ments are affected by a common disturbance and
there is a priori knowledge of the nature of their

mutual dependence. A particularly simple exam-
ple is ratiometric measurement: For instance, if a
morphogen’s rate of production rises in a certain
way with temperature, then measuring its abun-
dance relative to that of some other molecule that
rises in the samewaywith temperaturewill produce
a temperature-corrected reading.

Ratiometric measurement can be implemented
in a surprising number of ways. For example,
cell-to-cell variation in receptor occupancy re-
sulting from noisy receptor expression can be
nullified by measuring the ratio of occupied to

unoccupied receptors rather than receptor occu-
pancy per se. Indeed, amounts of the morphogen
Hedgehog appear to be measured in just this way
(40). Similarly, when morphogens with opposing
actions are produced at opposite ends of a field of
cells, the net signal that cells receive can cancel
out perturbations that affect both morphogens
equally (41).

Any instance in which perturbations to a sys-
tem have more than one predictable effect creates
an opportunity for disturbance compensation.
For example, in a morphogen gradient set up by

B 

D 

A 

R
ec

ep
to

rs
 O

cc
u

p
ie

d

P
ro

b
ab

ili
ty

 

P
ro

b
ab

ili
ty

 

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

Imprecision 
Threshold 

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

Distance 

Time, t
a

b c

d

e

f

g

F 

Distance 

Distance 

1 2 3 4 5

5

10

15

20

t =1 2 3 

C 

E 

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

P
ro

b
ab

ili
ty

 

Distance 

t =1 

2 
3 

Imp

Inaccuracy 

Noisy input 

Time 

Time 

= 30 

= 3 

12

8

4

2000

3000

100

200

300

10

20

30

500 1000 20001500

500 1000 20001500

1000

= 300 

Inaccuracy 

0.5

1.0

1.5

2.0

Im
p

re
ci

si
o

n
 

0.2 0.4 0.6 0.8

1 

5 

10 

15 

Fig. 3. The costs of pooling information. Even when average receptor oc-
cupancy accurately reflects position (A), any single measurement made by
a cell will be corrupted by detection noise, including (but not limited to)
stochastic variation in receptor occupancy. (B) Dark squares correspond to
cells with instantaneous receptor occupancy above an arbitrary threshold (here
equal to 2), and the curve depicts, given just the sampling noise in the re-
ceptor occupancy levels in (A), the probability of individual cells exceeding this
threshold as a function of distance. Imprecision is the zone over which a cell’s
measurement has a substantial probability of being on the “wrong” side of the
threshold value, given its location. (C) A common form of temporal integration
occurs when noisy signals drive the accumulation of a downstream element
(e.g., a second messenger or a transcription factor) that turns over more slowly
than the noise fluctuations. The simulation illustrates what happens when a
signal with random (Gaussian) noise drives accumulation of a factor with a
half-life of 3, 30, or 300 times the characteristic noise time. The longer the
integration, the lower the noise, but the longer it takes for the signal to ap-
proach the correct steady-state value. (D) Trade-offs between noise reduction
and speed necessarily also apply to cells that read morphogen concentrations.
In this simulation, noisy signaling like that in (B) drives production of a mol-
ecule with a half-life twice the characteristic time t of fluctuations in receptor
occupancy [axes as in (B)]. Imprecision is reduced by ~45%, but only after
sufficient integration time (t > 4) is the threshold value of morphogen sig-
naling crossed near its steady-state location. (E) Here, pooling was achieved by

noise-induced switching, in which hysteretic cellular decisions drive cells back
and forth across threshold values in amanner driven by the noise itself. (F) The
trade-offs between precision, accuracy, and timing are different for different
strategies. Several simulations like those in (D) and (E) are summarized by
using curves (a to g) to plot the time evolution of imprecision and inaccuracy,
with color used to depict time (that is, simulations start at red and end at blue;
time is expressed in units of the characteristic noise time, i.e., the time it takes
noise to decorrelate). Imprecision is in units of transition width (normalized to
morphogen gradient length scale), and accuracy as the fractional approach of
the location of median probability to that at t = ∞ (b to f) or t = 100 (g).
Without any pooling (a), imprecision is high, but reads are accurate from
the outset. With noise-induced switching (b and c), precision is initially
very poor but eventually exceeds that in a; the detailed trajectories depend
on whether the hysteretic window is large (0 to 4 in b); or more modest
(1 to 3 in c). With temporal integration (d to f), precision improves steadily
with longer integration times (d, e, and f depict t = 1, 2, and 4, respec-
tively), but for dramatic improvement it can take very long to achieve
accuracy. Curve g simulates the spatiotemporal strategy used by the fruit
fly wing disc to measure the Wg gradient (see text); here very high precision
can be achieved, with inaccuracy that declines at a rate determined by how
fast information about vg expression is relayed from cell to cell (in the
simulation used to generate the figure, a rate of spread of six cells per time
unit was used).
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diffusion and receptor-mediated uptake, changes
in receptor production do not just alter the amount
of morphogen detected by each cell (as depicted
by the red curve in Fig. 2B), they also alter the
slope of the gradient. If cells can directly measure
that slope, its change can be used to correct mea-
surements of position obtained from morphogen
levels. In fact, cells in the Drosophila wing disc
domeasure the slope of theDecapentaplegic (Dpp)
morphogen gradient, albeit indirectly, because
the Fat signaling pathway responds to cell-to-cell
differences in perceivedmorphogen (42).Wheth-
er this information is actually exploited to correct
for disc-to-disc variations in receptor levels re-
mains to be seen.

Even the noise in a signal can drive dis-
turbance compensation, provided there is a known
correlation between noise strength and signal
strength (generally true for sampling noise, as in
the biochemical fluctuations in ligand-receptor
interactions). That is because hysteretic switches
not only time-integrate in response to noise, they
tend to shift their input-output relationships as a
function of the noise strength (29). Indeed, some
of the improvement in precision provided by
noise-induced switching (Fig. 3D, curves b
and c) reflects this effect.

Measurement Through Self-Organization
In the earlier discussion of how vg expression
is controlled in the Drosophila wing disc, the
morphogen Wg was presented as the source of
positional information, with cell-cell interactions
serving to help cells read Wg more reliably. We
could, however, flip this depiction on its head and
argue that the cell-cell interactions themselves
carry the positional information. That is because
the arrival of a spreading wave of cell-to-cell sig-
naling [a “juxtacrine relay” (43)] can itself be
used to measure distances in much the same way
that the time of arrival of thunder allows us to
judge distance from a lightening strike. From this
viewpoint, we might see theWg gradient as mere-
ly biasing the rate at which the wave travels so as
to improve the accuracy with which position is
determined from it.

There are, in fact, many ways in which short-
range cell-cell interactions can make long-range
things happen reliably. Systems that do this are
called spatially self-organizing, because spatial
order emerges directly from collective, or pooled,
interactions. Both the Fat and the Notch path-
ways have the potential to drive self-organization
based on interactions between cells and their
immediate neighbors (22, 42, 44). Self-organization
over longer ranges can be achieved through the
local production of secondary morphogens and
inhibitors that may interfere to create spontane-
ous patterns (e.g., Turing patterns) with charac-
teristic length scales (45). When allowances are
made for cell rearrangement, even differences in
cell-cell adhesion will drive spontaneous, large-
scale spatial organization (46).

Of course self-organization cannot tell cells
where they are relative to a fixed reference point

unless that location is somehow linked to the self-
organization process. Such coupling can come
from boundary conditions [as occurs when bac-
terial cells use self-organization to locate their
own midpoints (47)], but the control of vg ex-
pression in the wing disc tells us that in tissues it
can also come directly from a long-range mor-
phogen gradient. These observations suggest that
we risk being narrow-minded when we think of
cells as first measuring their positions and then
acting in a position-specific way (e.g., organizing
into patterns). We may find that, more often than
not, the spatial control of morphogenesis is in-
extricable from the process of morphogenesis
itself.

On the Horizon
In biology, simple questions rarely have simple
answers, and “how do cells know where they
are?” is no exception. I have focused here on the
problem that, despite the existence of straight-
forward ways for cells to measure position,
making measurements sufficiently accurate and
precise is inherently challenging. Although recent
years have seen considerable progress in identi-
fying mechanisms for encoding and detecting
positional information, as well as for achieving
reliability, there is much we still do not know. For
example:

1) How many of the “rulers” that cells use
have we found? Are they mainly diffusing mol-
ecules, or are migrating cells, mechanical signals,
or even electrical fields just as important?

2) How collaborative are most cases of po-
sitional sensing? As we have seen, cells gain re-
liability by pooling information with neighbors,
or even participating in large-scale, spatial self-
organization. How often do they do so, and in
what contexts?

3) What are the primary sources of unre-
liability that constrain how cells in different con-
texts measure position? To answer this question
requires that we not only quantify natural var-
iability but also learn about the environments in
which organisms evolved.

4) To what extent can known sources of un-
certainty and variability provide a satisfactory
(constraining) explanation for position-sensing
mechanismswe observe? In particular, howmany
of the multiple morphogens, feedback loops, and
complex gene regulatory circuits that we find in
real systems can we explain by their positive
influence on reliability?

Tackling these questions may force us to
explore new research directions, but if we wish to
truly understand how cells read position, there is
really no better position to be in.
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