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ABSTRACT OF THE DISSERTATION

Bayesian Dose-Response Modeling in Sparse Data

By

Steven B. Kim

Doctor of Philosophy in Statistics

University of California, Irvine, 2015

Professor Daniel Gillen, Chair

This book discusses Bayesian dose-response modeling in small samples applied to two dif-

ferent settings. The first setting is early phase clinical trials, and the second setting is

toxicology studies in cancer risk assessment. In early phase clinical trials, experimental

units are humans who are actual patients. Prior to a clinical trial, opinions from multiple

subject area experts are generally more informative than the opinion of a single expert, but

we may face a dilemma when they have disagreeing prior opinions. In this regard, we con-

sider compromising the disagreement and compare two different approaches for making a

decision. In addition to combining multiple opinions, we also address balancing two levels of

ethics in early phase clinical trials. The first level is individual-level ethics which reflects the

perspective of trial participants. The second level is population-level ethics which reflects

the perspective of future patients. We extensively compare two existing statistical methods

which focus on each perspective and propose a new method which balances the two conflict-

ing perspectives. In toxicology studies, experimental units are living animals. Here we focus

on a potential non-monotonic dose-response relationship which is known as hormesis. Briefly,

hormesis is a phenomenon which can be characterized by a beneficial effect at low doses and

a harmful effect at high doses. In cancer risk assessments, the estimation of a parameter,

which is known as a benchmark dose, can be highly sensitive to a class of assumptions,

monotonicity or hormesis. In this regard, we propose a robust approach which considers

x



both monotonicity and hormesis as a possibility. In addition, We discuss statistical hypoth-

esis testing for hormesis and consider various experimental designs for detecting hormesis

based on Bayesian decision theory. Past experiments have not been optimally designed for

testing for hormesis, and some Bayesian optimal designs may not be optimal under a wrong

parametric assumption. In this regard, we consider a robust experimental design which does

not require any parametric assumption.
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Chapter 1

Introduction and Background

The overarching goal of a dose-response model is to estimate the risk and/or benefit of a

toxic agent or experimental treatment as a function of dose. Common situations where

dose-response modeling is used include early phase clinical trials where interest often lies

in estimating the maximal tolerable dose of a new investigational therapy, and toxicologic

studies where the focus is on estimating tolerable levels of toxic agents found in the environ-

ment. In practice, a dose-response relationship may be monotonic, as shown in Figure 1.1a,

or non-monotonic as shown in Figure 1.1b. Depending upon the scientific context, either

assumption may be appropriate. Further, interest may lie anywhere from local approxima-

tion of a dose-response curve to classification of a dose-response type such as monotonicity

or non-monotonicity.

The research presented here focuses on the commonly encountered scenario of estimating the

dose-response relationship where outcomes are dichotomous. Examples include the occur-

rence of severe adverse events in the case of early phase clinical trials or the development of

tumors in the case of environmental toxicology studies. Further, we focus on small-sample

studies since most investigations concerned with dose-response assessment tend to rely on

1



Figure 1.1: Two classes of dose-response relationship
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(b) Nonmonotonic

relatively small sample sizes for logistical and/or ethical reasons. To overcome the inherent

problems associated with statistical estimation in the presence of sparse data, the research

presented throughout will primarily consider the development of Bayesian methods that

allow for prior information elicited from prior research and investigator experience to be

incorporated into the modeling process.

Among the various uses for dose-response modeling, our discussion mainly focuses on two

previously mentioned topics: dose-response modeling in early phase clinical trials and toxicol-

ogy studies for cancer risk assessment. Throughout, the overarching theme of the presented

research is the development of flexible models for dose-response assessment that are robust

to strong modeling assumptions. In clinical trials, experiments are performed on humans.

In this case, we discuss methods that account for multiple prior opinions and the compro-

mise between conflicting ethical perspectives. Since initiation of a clinical trial utilizing a

Bayesian dose-finding design with a single investigator’s prior “opinion” may lead to unde-

sirable trial results, we consider gathering multiple prior opinions and accounting for prior

uncertainty. In addition, we consider the development of statistical methods that explic-

2



itly address the potentially conflicting perspectives of individual- (i.e. trial patients) and

population-level (i.e. future treated patients) ethics inherent in clinical trials design. The

proposed research stresses the importance of an appropriate statistical strategy to balance

these two perspectives.

In toxicology studies for cancer risk assessment, the experimental unit of interest is generally

an animal. As such, efficient study design is essential for multiple ethical, economical and

logistical reasons, while appropriate estimation techniques are critical to better ensure that

meaningful conclusion may be drawn regarding potential results in human populations. With

this in mind, we focus on novel research methods in three areas: (1) robust estimation of a

safe dose for regulatory policy, (2) sensitive hypothesis testing procedures for determining

monotonicity or non-monotonicity of a dose-response relationship, and (3) efficient experi-

mental design methods for detecting a non-monotonic dose-response relationships when it

is hypothesized that small levels of toxicologic agents may, in fact, be beneficial. Specifi-

cally, in toxicology and related fields, several scientists have argued that low exposure to

a toxic substance may reduce the probability of a deleterious event when compared to no

exposure to the substance, as depicted in Figure 1.1b. Despite this, most toxicology anal-

yses either assume monotonicity of the dose-response curve or employ ad hoc procedures

for determining non-monotonicity and subsequent dose-response estimation. The methods

developed here address this gap in the literature by formally incorporating the possibility of

non-monotonicity into both study design and estimation procedures.

The remainder of this chapter is dedicated to further familiarizing the reader with the back-

ground and setting of early phase clinical trials and toxicology studies for cancer risk assess-

ment. While the primary contributions of this dissertation are to develop statistical methods,

in this chapter we present background in the scientific applications that have motivated the

work in order to understand and appreciate the perspectives presented.

3



1.1 Early Phase Clinical Trials

1.1.1 Introduction

In the US, a modern drug development process is divided into four phases. While later phases

focus on efficacy of an experimental agent, the first phase (Phase I) focuses on safety of a

new experimental drug when applied to human subjects. The primary objective of a Phase I

clinical trial is to study toxicity of a new treatment and to determine an acceptable dose for

later trials. A maximum tolerable dose (MTD) is defined as the highest dose that produces

a desirable effect while avoiding unacceptable toxicity. A formal statistical definition of a

MTD will be provided in Chapter 2 along with the basic notation used throughout Chapters

2 and 3. It is commonly assumed that both toxicity and efficacy increase with respect to

dose. In this regard, neither underestimation nor overestimation of a MTD is desirable,

and cost associated with mis-estimation in either direction depends heavily on the severity

of the disease being treated. For example, in the context of developing new therapies for

treating cancer, underestimation of a MTD decreases the likelihood of eliminating cancer

cells, whereas overestimation of the MTD increases the likelihood of killing good cells.

As previously noted, most early phase clinical trials rely on relatively small sample sizes for

logistical and ethical reasons. To overcome the inherent problems associated with statistical

estimation in the presence of sparse data, it may be desirable to utilize Bayesian statis-

tical methods that allow for prior information elicited from any research and investigator

experience independent of current data. Multiple researchers have contributed to the devel-

opment of Bayesian adaptive designs in Phase I clinical trials. However, Bayesian methods

are still not widely used by trial investigators. While not fully known, the slow adoption of

Bayesian methods in early phase clinical trials likely stems from the combination of a lack of

understanding of Bayesian methods, computational complexity, model sensitivity, and prior

sensitivity.
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A focus on computational complexity is becoming less of a necessity since currently available

computing power easily allows Bayesian adaptive designs and simulation studies. In addition,

the potential negative impact from a misspecified parametric assumption often does not

represent a great concern because the scientific goal in Phase I clinical trials is not to estimate

the entire dose-response curve, but to estimate a local neighborhood of the MTD. In small-

sample studies, we are able to primarily gain efficiency by borrowing from a mathematical

framework posited by the dose-response model.

Prior sensitivity with respect to the distribution of the MTD and the distribution of the

number of adverse events (AE) in a trial remains a real concern. One approach to avoiding

the negative impact of prior sensitivity is to collect prior information from multiple experts

instead of a single expert. To address prior sensitivity and to account for prior uncertainty,

we develop and assess the method of weighting each posterior based on empirical evidence.

We present theoretical justification and numerical experiments to illustrate the benefit of

data-dependent weighting scheme in small-sample studies in Chapter 2.

While some argue that the ultimate goal of a clinical trial is to benefit future patients, trial

participants are also real patients who should benefit from an experimental treatment as

much as possible using as much knowledge as currently available regarding the safety and

efficacy of the intervention. As such, we cannot ethically disregard the potential benefits

and risks for trial participants during an experiment. We focus on two existing statistical

design methods for Phase I clinical trials that have been previously proposed by O’Quigley

et al. [45] and Whitehead and Brunier [67]. The two methods place differential weight on

the ethical obligation of investigators to trial participants (so-call individual-level ethics)

and to future treated patients (so-called population-level ethics). Specifically, the method

proposed by O’Quigley et al. [45] tends to emphasize individual-level ethics, whereas the

design procedure proposed by Whitehead and Brunier [67] tends to emphasize population-

level ethics.

5



Palmer [48] extensively discussed the two different levels of ethics in clinical trials of all

phases. However, the ethical issues inherent in clinical trial design and conduct are still,

and will likely continue to be, debatable. If one makes a series of decisions to provide the

best treatment to trial participants based on little accumulated knowledge in early stages

of a clinical trial, information of the MTD will be slowly gathered. This result is intuitive

because limited allocations over a restricted range of the dose space (the set of all possible

experimental doses) limits knowledge regarding the overall dose-response curve. Hence, this

strategy is not optimal for population-level ethics. On the other hand, if we make a series

of decisions to maximize statistical information regarding the estimated MTD, under- and

over-treatment of trial participants will frequently occur. Hence, the strategy of observing a

wide range of dose space tends to allow population-level ethics to outweigh individual-level

ethics. The novel methodology presented in Chapter 3 is motivated by our belief that there

should exist a balance between the two levels of ethics in the statistical design and conduct

of Phase I clinical trials and that such a balance should be formalized via statistical decision

theory.

1.1.2 Further History on Statistical Methods for Phase I Clinical

Trial Design

Markovian Up-and-Down Designs

Traditional designs for allocating a cohort of new patients to an experimental dose have

historically been based on up-and-down schemes. Briefly, these designs are characterized by

a dose allocating process that relies upon the outcomes of the last patient cohort treated at

a given dose to determine whether the next patient cohort should move up in dose, move

down in dose, or stay at the same dose. The most common of these is the 3 + 3 design (see

Appendix A.1 for the dose-allocation algorithm). Such designs are generally known to be
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conservative in that they tend to under-treat patients, yet are still widely used because they

are mathematically and computationally simple to implement. Storer [60] used a Markov

chain representation to evaluate conservative characteristics of multiple up-and-down rules.

He showed that some simple alternatives to the traditional design [64, 66, 51] are just as

conservative as the traditional 3 + 3 design. He showed that a two-stage design (transition

from one alternative method to another alternative method) reduces bias in the estimation

of a MTD.

Many statisticians have raised statistical and ethical concerns regarding the use of traditional

up-and-down schemes. For example, a target MTD in the 3 + 3 design implicitly corresponds

to a dose for which the probability of an AE is less than or equal to one-third. This defini-

tion of an acceptable toxicity is rather arbitrary and should clearly depend on the clinical

setting being investigated. Further, the Markov property leads to both statistical and ethical

concerns because it disregards a potentially large proportion of accumulated information in

suggesting dose allocations for new patients. This concern has led to the proposal of several

modified up-and-down schemes that include random-walk rules and accelerated titrations

designs, though all still implicitly weight later observed observations more than earlier trial

results [24, 28, 25, 59].

Bayesian Adaptive Designs

To overcome many of the statistical and ethical concerns of up-and-down schemes, O’Quigley

et al. [45] proposed the continual reassessment method (CRM) for Phase I cancer studies.

The CRM is a Bayesian adaptive design that places a prior distribution on the dose-response

curve, in combination with all available data, when allocating the next patient to a new

experimental dose. It was motivated by the underlying principle that trial participants

should be treated at the current best guess of the most appropriate dose level based on all

accumulated information. In this framework, a more precise definition of a MTD is provided
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in a statistical sense. Given the more precise estimand, the CRM proceeds by treating a new

patient at the posterior mean of the MTD, or at the closest experimental dose, therefore

each patient in the trial has a relatively small chance of being allocated to a dose far away

from the MTD when compared to the Markovian up-and-down designs.

The CRM immediately gained popularity in statistical and clinical communities, while some

people worried about its relatively anti-conservative operating characteristics when compared

to the traditional schemes. The general framework of the CRM has given rise to several

proposed modifications in order to build in further safety constraints in dose escalations

[27, 29, 3]. Goodman et al. [29] suggested limiting dose escalation by a single experimental

dose level. Babb et al. [3] proposed to treat a new patient at a fixed quantile of the

marginal posterior distribution of the MTD, and this method is known as the escalation

with overdose control (EWOC). In the EWOC, a loss from over-dosing is greater than a

loss from under-dosing of the same degree as opposed to the CRM which assigns the same

loss for over-dosing and under-dosing of the same degree. The Frequentist approach of the

CRM and the asymptotic property of the CRM were further investigated [46, 57], and some

authors addressed prior sensitivity in the CRM [62, 70].

As previously noted, the CRM seeks to provide the best treatment to trial patients, which

reflects individual-level ethics. Taking a different perspective than the CRM, Whitehead

and Brunier [67] applied Bayesian decision theory to Phase I clinical trials by devising a

dose-allocation scheme from the point of view of future patients. In this approach, the gain

function was defined as the inverse of the asymptotic variance of the maximum likelihood

estimator (MLE) for the MTD. This design is referred to as the information gain method

(IGM) throughout our discussion. The IGM was devised from the perspective of population-

level ethics as it seeks to optimize dose allocations to maximize precision of a resulting

estimate of the MTD. The underlying idea is that future patients should be treated at a

dose where the MTD is estimated as precisely as possible conditional upon the amount of
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information one could reasonably obtain during a phase I clinical trial. This dose allocation

rule requires a wide support of the dose space and tends to be applicable when the severity

of an AE is mild to moderate (e.g. headache, rash, and easily reversible conditions) since

dramatic increases and decreases in dose can be observed.

Whitehead and Williams [68] discussed more gain functions in the cases of cancer therapy and

pointed out that conservatively modified CRMs may reduce the speed of the trial procedure.

On the other hand, O’Quigley and Conaway [44] argued that, under current practice, it

is not widely accepted to use a procedure that sacrifices the point of view of current trial

participants to that of future patients. Following this, Bartroff and Lai [5] proposed a method

that minimizes a loss function consisting of two additive terms, where each term reflects the

individual and population risks. This approach attempted to compromise between the loss

contributed by underdosing or overdosing a new patient and the incurred loss of the next

patient who will receive a dose at the estimated loss function. This method reduced the

complexity arising from considering infinitely many future patients by considering the next

two patients.

1.2 Chemical Risk Assessments with Possibly Non-monotonic

Dose-Response Relationships

1.2.1 Introduction

In toxicology, hormesis is defined as a dose-response relationship characterized by a low dose

stimulation and a high dose inhibitory. It can be described by a J-shaped, U-shaped, or an

inverted U-shaped dose-response curve. The theory of hormesis is based on the assumption

of a stimulatory effect caused by low exposure to a toxic agent. Among various forms of
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Figure 1.2: Benchmark doses under monotonicity and hormesis
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hormesis, we particularly focus on a J-shaped hormetic curve which can be understood as a

beneficial effect at low dose and a harmful effect at high dose, though beneficial and harmful

effects are not necessary components of the definition of hormesis [13].

Some hormetic dose-response relationships are commonly known even outside toxicology.

For example, adequate physical activity reduces oxidative stress whereas lack of and ex-

cessive physical activity increases the risk of high oxidative stress [49]. However, it is still

controversial whether the theory of hormesis can be generalized to cancer-causing chemicals.

Furthermore, a class of dose-response relationships depends on a specific endpoint of interest

for a given toxic substance. For example, under the assumption of monotonicity with respect

to toxicity and efficacy in chemotherapy, we can expect an inverted U-shaped dose-response

relationship when the endpoint of interest is a conditional outcome such as a desirable event

given no adverse event [69].

In cancer risk assessments, a benchmark dose (BMD) refers to the dose corresponding to a

fixed relative increase in the risk of a deleterious event when compared to the background
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risk (in the absence of an additional dose). The fixed relative increase is referred to as a

benchmark risk (BMR) and is often fixed at 0.01, 0.05, or 0.10 in most assessments [26].

Figure 1.2 shows BMDs under monotonic and hormetic dose-response relationships when a

BMR is fixed at 0.10. A statistical definition of a BMD given by the US Environmental

Protection Agency (EPA) will be introduced in Chapter 4. An allowed risk in regulatory

policy for public health is generally very small. However, estimation of such a low risk by an

experiment requires an extremely large sample size. Though most cancer risk assessments

are animal-based, such a large-sample study is considered to be ethically and logistically

unacceptable. Because of this, it is common to first estimate a BMD for a reasonable BMR

based on a small- or mid-sample study, then to use an estimated BMD as a point of departure

for low dose extrapolation to protect public health. Monotonicity of the underlying dose-

response curve has generally been assumed in this procedure. However, severe bias in the

estimated BMD can result if the monotonicity assumption does not hold. To address this

gap in methodology, the underlying methods presented in Chapter 4 allow for monotonic and

hormetic dose-response relationships in the estimation process by extending the parameter

space of commonly used multistage dose-response models in a novel way.

Hypothesis testing for hormesis has been of great scientific interest in toxicology. One dif-

ficulty in the testing arises from sparse experimental doses and sample sizes, particularly

at low doses. It follows parametric testing procedures tend to suffer from high bias due

to restricted, and often invalid, parametrization assumptions. To overcome these disadvan-

tages, we consider a non-parametric approach using Bayesian model averaging [50]. We also

consider a parametric approach which modifies the parameter space of a multistage dose-

response model. The multistage model has long history in risk assessments, and it is one

of several models equipped in the current EPA Benchmark Dose Software (BMDS). The

modification is general so that it can be applied to other models in the BMDS. A detailed

investigation is presented in Chapter 5.
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Many past experiments were not optimally designed to assess a hormetic effect at low dose.

For future data collection to test hormesis, it is important to consider optimal dose alloca-

tions. Zapponi and Marcello [71] reviewed multiple datasets that exhibit potential evidence

for hormesis in cancer-causing agents, but a common experimental design in the presented

datasets is based on nearly equal sample sizes at given experimental doses. If we allocate

180 animals to six experimental doses, say (0.0, 0.2, 0.4, 0.6, 0.8, 1.0), we expect different

degrees of evidence for hormesis from the study design of (50, 50, 50, 10, 10, 10) and the

study design of (30, 30, 30, 30, 30, 30). As such, we discuss the importance of an experi-

mental design in Chapter 6 and propose various experimental designs based upon Bayesian

decision theoretic approaches in order to maximize statistical information for quantifying

the presence of a hormetic dose-response relationship.

1.2.2 Further History on Statistical Methods for Toxicology Stud-

ies of Carcinogen Risk

BMD Estimation and Regulatory Policy

For protecting public health, accurate estimation of a BMD is important as an estimated

BMD serves as a point of departure for further downward extrapolation. One difficulty in

estimation of a BMD for a low BMR arises from sparseness of data particularly at low dose

levels. A regression technique allows us to interpolate between two experimental doses or

to extrapolate from the lowest experimental dose, but the resulting estimate of the BMD is

highly sensitive to model specification even within a class of monotonic dose-response mod-

els. This follows because a regressed dose-response curve behaves uniquely at low dose from

model to model. For certain monotonic dose-response models derived based on biological in-

terpretations, such as a one-parameter exponential model and a two-parameter Beta-Poisson

model, it can be shown that a dose-response relationship at arbitrarily low dose is linear [30].
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Therefore, a linear downward extrapolation from an estimated BMD has been practiced for

regulatory purposes.

To address model uncertainty, implementation of frequentist model averaging techniques

has been extensively discussed in the risk assessment based community. Weights for model

averaging include various information criteria including the Akaike information criterion

(AIC), the Bayesian information criterion (BIC), and the Kullback information criterion

[9, 65, 4, 41]. A common framework based on these information criteria increases the contri-

bution of a well fitted model and decreases the contribution of a complex model. Recently,

implementation of BMA in risk assessments has been discussed [56]. In the aforementioned

studies, however, only monotonic dose-response models are considered for model averaging.

Allowing of Hormesis in BMD Estimation

In contrast to conservative estimation approaches based on monotonicity that have been

taken by several regulatory agencies, some scientists have argued the existence of hormesis

and have even raised the importance of accepting hormesis as a default dose-response re-

lationship in risk assessments. Calabrese and Baldwin [11] quantified evidence of hormesis

and categorized approximately 350 studies into high, moderate, and low hormetic effects.

Following this work, multiple studies have elevated the importance of hormesis in toxicol-

ogy by reporting empirical evidence for hormesis using a series of ad hoc methodologies

[12, 14, 15, 19]. In particular, Calabrese and Cook [15] discussed various advantages to

parameter estimation if the possibility of a hormetic function was accepted as the default

assumption in carcinogen risk assessments. One possible advantage they pointed out is the

protection of both normal and high-risk populations by estimating a BMD where the cor-

responding risk is lower than the background risk for both groups. Further, Zapponi and

Marcello [71] reviewed several datasets which was appealed to be evidence of hormesis.
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Despite the long history of hormesis theory, it has not been widely accepted by regulatory

agencies such as the EPA. Despite valid points regarding the costs of ignoring the possibility

of hormesis, some authors have pointed out limitations of the ad hoc estimation approaches

and the lack of validated hypothesis testing procedures applied to existing database [61, 42].

It has been argued that the current practice of using a lower confidence limit of a BMD,

referred to as BMDL, or an averaged BMDL from various monotonic models is conservative

and health-protective, particularly when evidence for hormesis is not definitive [61, 26].

A multistage model, which is the foundation for the development of the following statistical

methods, was derived from biological mechanisms of action. Armitage and Doll [2] discussed

the two-stage theory of carcinogenesis, and Armitage [1] argued that a multistage model

with several stages (e.g. five to seven stages) has often been regarded as implausible in the

absence of direct biological evidence about a succession of stages. He further mentioned that

one can either assume more than two stages or regard several intermediate stages as a single

phase as approximation. A biological interpretation is important, but a model with such

a large number of parameters may suffer from over-fitting in sparse data and experimental

doses. Crump [20] reviewed a linearized multistage model, and Kuo and Cohen [39] presented

a Gibbs algorithm for the multistage model under the monotonic assumption.

There are many flexible dose-response models which are suitable for modeling hormesis in

dichotomous and continuous response [40, 32, 33, 53, 7, 8]. Many of these flexible models

are not currently installed in the EPA BMDS.
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Chapter 2

An Alternative Perspective on the

Use of Consensus Estimators

In Chapter 2, we focus on the incorporation of multiple priors in Bayesian adaptive stud-

ies. We consider two classes of Bayes estimators. The first class averages individual Bayes

estimators with the weight initially determined before data collection. In the second class

of estimators, a single consensus prior is first formed as a linear combination of weighted

priors, and the resulting Bayes estimator is then obtained. We show that this class results

in a natural posterior weighting scheme with prior weights updated conditional upon ob-

served data. We focus on the case when we periodically analyze data and sequentially make

decisions based on observed data.

2.1 Introduction

In small-sample studies, statisticians often rely on parametric assumptions to gain efficiency

for estimation and testing. In a Bayesian framework, additional prior information is also in-
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corporated into the model and statistical inference regarding parameters of scientific interest

is based on the resulting posterior distribution, which is obtained by updating the prior with

observed empirical data. In many cases the posterior distribution of a parameter of interest

will depend on the prior elicitation in an appreciable way, particularly in a sparse data set-

ting. It can be particularly critical in the setting of Phase I clinical trials because both dose

allocations for trial participants and an estimated dose appropriate for future patients may

significantly depends on the prior elicitation.

When eliciting prior information, knowledge from multiple subject area experts are generally

more informative than the knowledge of a single expert. On the other hand, when multiple

experts have divergent prior information, we face the dilemma of how to combine this in-

formation into inferential procedures. This issue is most important in sparse data settings

where inference may change substantially depending upon the way the information is incor-

porated into the model. The incorporation of multiple prior opinions has previously been

considered and many advocate that simple combination methods tend to perform reasonably

well relative to more complicated approaches [18]. One approach for incorporating multi-

ple prior opinions focuses on the use of consensus estimators, as discussed by Samaniego

[52], among others. Samaniego focused on a consensus class of estimators that combines

individual posterior estimates [52]. When each individual has a unique posterior estimate

originating from a unique prior distribution, this class of estimators averages the multiple

posterior estimates based on the credibility of each prior elicitation determined before ob-

serving any data. This approach would seem more robust than relying on a single posterior

estimate as it marginalizes uncertainty in the prior across various experts.

When it is fairly evident that one expert’s prior information is far more plausible, after

observing data, relative to the other prior information, it is tempting to determine the

credibility of each prior based on the observed data. In many cases, such an approach

would result in foundationally unsound inference as it would constitute “double dipping” of

16



the data by modifying the pre-specified prior distribution with information obtained during

the experiment. However, in this chapter we provide an alternative perspective of a single

pre-specified consensus prior that is formed as a, possibly weighted, linear combination of

the available priors. Specifically, we show that the use of the consensus prior results in a

natural posterior weighting scheme with individual weights based on observed data. The

result is particularly useful in the setting of adaptive studies where design modifications

are periodically made as new data are observed, since it demonstrates that future design

decisions tend to shrink towards the most plausible prior when the consensus prior is used.

In Section 2.2, we present two classes of consensus estimators, while briefly reviewing a

consensus prior and the notion of self-consistency in the context of Bayesian estimation [52].

We then provide an alternative perspective of posterior estimators based on the consensus

prior, showing that they are equivalent to a class of estimators that weight the contribution

of each prior conditionally upon all observed data. We also comment on Occam’s window

criterion in the context of a consensus prior. In Section 2.3, we provide simple examples in

the context of a normal probability model to enhance the understanding of the alternative

perspective of a consensus prior. In Section 2.4, we consider the use of consensus estimators in

the context of early phase clinical trials that necessitate adaptive dose allocations. Simulation

studies are presented to illustrate the utility of incorporating multiple prior opinions and

to compare the operating characteristics of consensus estimators in the adaptive phase I

trial setting. We conclude with a discussion on the utility of consensus priors in scientific

investigations in Section 2.5.
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2.2 Bayesian Decisions Based on a Consensus Prior

2.2.1 A Consensus Prior

In small-sample studies a single prior that is contrary to observed data may substantially

influence posterior inference, and hence scientific decisions based on the resulting posterior

distribution. To guard against this undesirable situation, we may rely on multiple opinions.

In this setting it is necessary to incorporate prior disagreements in the resulting inferential

procedure.

We initially consider a case where all investigators specify conjugate priors through the same

model (i.e. the same likelihood function). Let Q = {Q1, . . . , QK} denote a set of priors and

g(θ | Qk) denote the prior density function of θ from Qk. As discussed by Samaniego [52],

one possible approach for a compromise is to gather the multiple investigators and formulate

a single prior through conversations. However, this process may not be systematic and is

logistically infeasible in many settings. A simple alternative and systematic approach to

account for multiple priors is to specify a K-fold mixture

g∗(θ) =
K∑
k=1

g(θ | Qk)P (Qk) , (2.1)

which is referred to throughout as a consensus prior. The pre-assigned prior probabilities

P (Qk), Qk ∈ Q, reflect the plausibility of each investigator’s prior, perhaps depending on

various degrees of knowledge and experience. Multiple advantages stemming from the use

of a consensus prior based on individual conjugate priors are listed in Samaniego [52]. One

particular advantage of interest is that the posterior distribution is also a K-fold mixture

of the conditional posteriors g(θ | ~y,Qk), where ~y denotes observed data. Its mathematical

properties will be further discussed in Section 2.3.
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2.2.2 Self-Consistency

Suppose that θ̂ is a sufficient statistic and is an unbiased estimator of a scalar parameter

θ. The Bayes estimator of θ that minimizes squared error loss is said to be self-consistent

if E(θ | θ̂ = θ∗) = θ∗, where θ∗ = E(θ) is the prior expectation [52]. If such an estimator

exists, the property of self-consistency is appealing in the sense that the posterior estimate is

θ∗ when both the prior estimate and the unbiased estimator are θ∗. While self-consistency is

not guaranteed in general, particularly when the estimand of interest is a nonlinear function

of regression parameters, we can find a self-consistent estimator of the form (1 − η)θ∗ + ηθ̂

under some simple models.

Using the form of a consensus prior in Equation (2.1), Samaniego [52] noted that self-

consistency is not preserved in general. He instead discussed the class of estimators of the

form

θ̂∗ =
K∑
k=1

wkθ̂k , (2.2)

where an individual posterior estimator θ̂k is of the form (1− ηk)θ∗k + ηkθ̂. We refer to this

class of estimators as weighted posterior estimators. A weighted posterior estimator is a

natural compromise when individual posterior estimates disagree, where the contribution of

each investigator is determined by its prior plausibility, say wk = P (Qk). If ηk is constant in

ks, the property of self-consistency is preserved because

E
(
θ | θ̂ = θ∗

)
= (1− η)

K∑
k=1

wk θ
∗
k + η

K∑
k=1

wk θ
∗ = (1− η) θ∗ + η θ∗ . (2.3)

However, if ηk depends on k, self-consistency is not generally guaranteed.
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2.2.3 An Alternative Perspective on the Consensus Prior

While the notion of self-consistency is mathematically and intuitively appealing to some,

there are cases when it is tempting to use empirical evidence to determine each individual’s

contribution to posterior estimation. For instance, when θ̂1 = −1 and θ̂2 = 1 after observing

θ̂ = 2, it may be a natural reaction to desire w2 > w1. Data-dependent weighting schemes

are no longer Bayesian, but rather are Empirical Bayesian, since the data are used in the

construction of the prior. A purely Bayesian approach is rigorous that prior information

should be obtained independent of the data. While briefly noted in Samaniego [52], in this

section we explicitly show that at least one data-dependent weighting scheme can be formally

justified by showing its equivalence to the use of a consensus prior that is specified prior to

the observation of any experimental data. The result not only provides formal justification

for the use of adaptively weighted priors in sequential experimentation but also yields further

intuitive appeal for the use of consensus priors in Bayesian inference.

Let f(~y | θ) be the likelihood function, which is the same regardless Qk ∈ Q. The marginal

likelihood function

f(~y | Qk) =

∫
f(~y | θ) g(θ | Qk) dθ (2.4)

does depend on Qk. Given ~y, we can quantify the updated belief for Qk ∈ Q by

P (Qk | ~y) =
f(~y | Qk)P (Qk)∑K
j=1 fj(~y | Qj)P (Qj)

. (2.5)

This unconventional quantity thus represents the posterior probability of prior Qk. Condi-

tioning on Qk, the individual posterior probability distribution of θ is

g(θ | ~y,Qk) =
f(~y | θ) g(θ | Qk)

f(~y | Qk)
. (2.6)
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In the following proposition we claim that the weighted average of the individual posterior

probability density functions

g2(θ | ~y) =
K∑
k=1

g(θ | ~y,Qk)P (Qk | ~y) (2.7)

is legitimate in the sense that it is equivalent to

g1(θ | ~y) =
f(~y | θ) g∗(θ)∫
f(~y | θ) g∗(θ) dθ

, (2.8)

where g∗(θ) is the consensus prior in Equation (2.1).

Proposition. For a given set of priors g(θ | Qk) for k = 1, . . . , K, we have g1(θ | ~y) = g2(θ | ~y).

Proof. By Equations (2.1) to (2.7),

g2(θ | ~y) =
K∑
k=1

g(θ | ~y,Qk)P (Qk | ~y)

=
K∑
k=1

f(~y | θ) g(θ | Qk)

f(~y | Qk)

f(~y | Qk)P (Qk)∑K
j=1 fj(~y | Qj)P (Qj)

=
K∑
k=1

f(~y | θ) g(θ | Qk)P (Qk)∑K
j=1 fj(~y | Qj)P (Qj)

=
K∑
k=1

f(~y | θ) g(θ | Qk)P (Qk)∑K
j=1

(∫
f(~y | θ) gj(θ | Qj) dθ

)
P (Qj)

=
f(~y | θ)

∑K
k=1 g(θ | Qk)P (Qk)∫

f(~y | θ)
(∑K

j=1 gj(θ | Qj)P (Qj)
)
dθ

=
f(~y | θ) g∗(θ)∫
f(~y | θ) g∗(θ) dθ

= g1(θ | ~y) .
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Therefore, posterior inference obtained by using the pre-specified consensus prior is equiva-

lent to the posterior inference based on the weighted posterior density function. In addition,

the posterior contribution of the kth investigator is exactly equal to P (Qk | ~yn) in Equation

(2.5). Equation (2.7) is reminiscent of Bayesian model averaging, which involves a similar

posterior weighted average [50].

Based upon the weighted posterior density function, g2(θ | ~y), the resulting Bayes estimator

of θ which minimizes squared error loss is

θ̂∗∗ =
K∑
k=1

w∗k θ̂k ,

where w∗k = P (Qk | ~y) is the posterior weight given in Equation (2.5) and θ̂k = E(θ | ~y,Qk)

is the individual Bayes estimator that minimizes the individual posterior squared error loss.

Law of Total Probability establishes validity of the estimator since it is equivalent to the

Bayes estimator obtained from use of the pre-specified consensus prior. As such, we refer to

this estimator as the consensus prior estimator.

2.2.4 A Note on the Occam’s Window Criterion

In this section, we address the importance of maintaining all prior specifications until the end

of Bayesian inference. Though the weighting methods in θ̂∗ and θ̂∗∗ are different, both meth-

ods preserve an assigned prior probability distribution on Q. Some authors have proposed

the use of Occam’s window criterion to refine the model space in the context of Bayesian

model averaging when a posterior decision is required [70]. In this case, it is argued that

the elimination of poorly fitted model(s) from the model space (i.e. set of candidate models)

is reasonable if the fit of a model is far worse than the fit of the best-fitting model. In the

context of a consensus prior, it may be also tempting to take this approach by eliminating

22



Qk ∈ Q if

P (Qj | ~y)

maxj P (Qj | ~y)
< ε (2.9)

for some prefixed ε > 0 according to the Occam’s window criterion. The impact of such a poor

prior is down-weighed through the consensus prior (and through the consensus posterior),

but the elimination of any Qk ∈ Q based on the observed data would lead to changing

the prior probabilities assigned to the initial set Q. To see this, we let Ek(~y) denote the

complementary of the event described in Equation (2.9) (i.e. Qk is not eliminated given ~y).

Attempting to refine Q, the posterior density function of θ is given by

g(θ | ~y) =
K∑
k=1

g(θ | ~y,Qk)P
∗(Qk | ~y) (2.10)

with the normalized posterior weight

P ∗(Qk | ~y) =
P (Qk | ~y) IEk(~y)∑K
j=1 P (Qj | ~y) IEj(~y)

, (2.11)

where IE = 1 if an event E occurs, zero otherwise.

Proposition. The application of the Occam’s window criterion to a consensus prior is not

coherent.
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Proof. From Equations (2.5) and (2.9) to (2.11),

g(θ | ~y) =
K∑
k=1

f(~y | θ,Qk) g(θ | Qk)

f(~y | Qk)

P (Qk | ~y) IEk(~y)∑K
j=1 P (Qj | ~y) IEj(~y)

=
K∑
k=1

f(~y | θ) g(θ | Qk)

f(~y | Qk)

f(~y|Qk)P (Qk)∑K
j=1 f(~y|Qj)P (Qj)

IEk(~y)∑K
j=1

f(~y|Qj)P (Qj)∑K
i=1 f(~y|Qi)P (Qi)

IEj(~y)

= f(~y | θ)
K∑
k=1

g(θ | Qk)P (Qk) IEk(~y)∑K
j=1 f(~y | Qj)P (Qj) IEj(~y)

=
f(~y | θ)

∑K
k=1 g(θ | Qk)P (Qk) IEk(~y)∑K

j=1

(∫
f(~y | θ) g(θ | Qj) dθ

)
P (Qj) IEj(~y)

=
f(~y | θ)

∑K
k=1 g(θ | Qk)P (Qk) IEk(~y)∫

f(~y | θ)
∑K

j=1 g(θ | Qj)P (Qj) IEj(~y) dθ
.

Therefore, the data-dependent weighted prior density

K∑
k=1

g(θ | Qk)P (Qk) IEk(~y)

cannot be considered as a consensus prior because it depends on ~y.

Similarly, it is worth noting that the same concern arises when one applies the Occam’s

window criterion in the context of Bayesian model averaging. In addition, the application

precludes self-consistency of θ̂∗ in Equation (2.2) with constant ηk = η because the last equal-

ity in Equation (2.3) does not hold with altered wk. From the perspective of self consistency

of θ̂∗ and the perspective of the Bayes estimator θ̂∗∗, all priors should be incorporated into

the analysis.
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2.3 Examples

2.3.1 Normal Model with Unknown Mean and Known Variance

We consider a random sample ~Y = (Y1, . . . , Yn), where Yi ∼ N(µ, σ2) with unknown µ and

known σ2. Under this exponential family, the sample mean µ̂ = Ȳ is sufficient and unbiased

for µ. For k = 1, . . . , K, the conjugate priors µ | Qk ∼ N(µ∗k, σ
2
k) leads to the posterior

µ | ~y,Qk ∼ N
(
µ̂k, τ

−1
k

)
, where τk = σ−2

k + nσ−2 denotes the posterior precision (i.e. inverse

of the posterior variance) and the Bayes estimator µ̂k is in the form of (1 − ηk)µ
∗
k + ηkȲ

with ηk = nσ−2τ−1
k . For self-consistency, we require the same prior precision τk = τ , and the

self-consistent weighted posterior estimator of µ is

µ̂∗ =
K∑
k=1

wk µ̂k ,

where wk = P (Qk).

In general, each individual marginal likelihood function can be written as

f(~y | Qk) ∝
1
√
vk

exp

(
(ȳ − µ∗k)2

2vk

)
,

where vk = σ2
k + σ2n−1. To this end, the posterior contribution of Qk to the weighted

posterior g2(µ | ~y) is

P (Qk | ~y) ∝ P (Qk)φ(ȳ; µ∗k, vk) ,

where φ(·) denotes a normal density function. Then, the consensus prior estimator of θ is

µ̂∗∗ =
K∑
k=1

w∗k µ̂k ,
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with w∗k = P (Qk)φ(ȳ; µ∗k, vk). In practice, one expert may be more experienced and hence

may receive a relatively greater prior weight P (Qk). However, for a given P (Qk), a strong

prior expressed via a small value of σ2
k additionally increases the posterior weight w∗k. This is

a typical behavior in the posterior weighting scheme. As such, one might consider whether

to upweight an individual opinion simply because of a strong prior.

Figure 2.1: Mean squared error with respect to the mean under the normal model
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(a) P (Q1) = P (Q2)
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(b) P (Q2) = 9× P (Q1)

Typically with a small sample, the bias of µ̂∗∗ is expected to be small relative to the bias

of µ̂∗ because µ̂∗∗ incorporates weights that have been adjusted based on observed data.

On the other hand, the variance of µ̂∗∗ is large relative to the variance of µ̂∗ because the

data-dependent weight w∗k is random. As a numerical example for the trade-off between bias

and variance, we consider K = 2 priors with σk = 0.5 (i.e. prior sample size of two) and

µ∗k = (−1)k for k = 1, 2. Figure 2.1 shows the curve of relative root mean squared error

(RMSE) of µ̂∗∗ to µ̂∗ when µ varies from -2 to 2 for small sample sizes n = 3, 6, 9, 12. Focusing

on the case of P (Q1) = P (Q2) (see Figure 2.1a), RMSE exceeds one (i.e. the self-consistent

weighted posterior estimator, µ̂∗, performs better) when µ is close to the midpoint of the two

prior estimates. On the other hand, RMSE is below one (i.e. the consensus prior estimator
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µ̂∗∗ performs better) when µ is substantially closer to one of the two prior estimates. The

relative performance of µ̂∗∗ increases under all values of µ as n increases. Focusing on the

case of P (Q2) = 9 × P (Q1) (see Figure 2.1b), a similar trend is shown with the zone of

superiority of µ̂∗ shifted to µ∗2 = 1. When the true value of µ is near µ∗2, the consensus prior

estimator µ̂∗∗ performs better with respect to RMSE. When the true value of µ is against

the prior assignment P (Q2) = 9 × P (Q1) (i.e. µ is close to µ∗1), RMSE decreases, and the

rate of decrease is positively correlated with the sample size.

2.3.2 Normal Model with Unknown Mean and Variance

We now assume both µ and σ2 are unknown and consider the conjugate normal-gamma prior

µ | τ,Qk ∼ N

(
µ∗k,

1

nkτ

)
, τ | Qk ∼ Gamma(ak, bk) ,

where τ = σ−2. The parameter of interest is µ, and σ2 is the nuisance parameter. It can be

shown that the kth marginal posterior distribution of µ is given by

µ | ~y,Qk ∼ T

(
2a∗k, µ̂k,

a∗k (nk + n)

b∗k

)

with

a∗k = ak +
n

2
, b∗k = bk +

1

2

(
n∑
i=1

(yi − ȳ)2 +
nkn (ȳ − µ∗k)2

nk + n

)
, µ̂k =

nkµ
∗
k + nȳ

nk + n
.

Therefore, a self-consistent weighted posterior estimator, µ̂∗, can be achieved by equating

nk.
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The kth marginal likelihood is given by

f(~y | Qk) =
Γ(a∗k)

Γ(ak)

(bk)
ak

(b∗k)
a∗k

(
nk

nk + n

)1/2 (
1

2π

)n/2
.

To simplify the computation of the consensus prior estimator, µ̂∗∗, we may consider constant

(ak, bk, nk) while varying P (Qk) if necessary. In this case, the difference among priors is

expressed only through µ∗k, and the posterior weight becomes

P (Qk | ~yn) ∝ P (Qk)
(b∗k)

−a∗k∑K
j=1(b∗j)

−a∗j
,

where (ȳ − µ∗k)2 is an important determinant in b∗k. Thus the closer the distance between

the summary statistic and the prior guess the greater the contribution to the posterior. As

such, the relative operating characteristics of the posterior weighted estimator, µ̂∗, and the

consensus prior estimator, µ̂∗∗, are similar to the case of known variance.

2.4 Incorporation in Adaptive Phase I Clinical Trials

A maximum tolerable dose (MTD) is the highest dose of a therapeutic treatment that does

not cause unacceptable toxicity in a loose definition. A precise definition will be provided

later in this section. A primary objective of most Phase I clinical trials is to study the

toxicity of a new drug and to determine the MTD for later investigation and future patients.

Whitehead and Williamson [68] discussed various Bayesian decision theoretic approaches for

dose-finding studies based on a logistic regression model. Among various gain functions dis-

cussed, we focus on the patient gain using the terminology in the paper. For the patient gain,

the dose allocation rule is optimal for each member of trial participants. This experimental

design is analogous to the continual reassessment method (CRM) proposed by O’Quigley et

al. [45], which was first developed to treat cancer patients in severe conditions. One major
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concern about this Bayesian adaptive design is prior sensitivity. In particular, estimation

of the MTD and the number of adverse events (AEs) per trial can be highly sensitive to a

prior specification because we often have thirty or fewer subjects in Phase I clinical trials.

Sometimes, multiple researchers may have different opinions about the toxicity of a new

experimental drug while the dose allocations for the first few trial participants heavily de-

pend on their subjective information. Therefore, the application of a consensus prior may

be recommended.

2.4.1 Elicitation and Incorporation of Multiple Prior Opinions

Suppose we observe ~Yn = (Y1, . . . , Yn), where Yi ∼ Bernoulli(πxi) with Yi = 1 indicating an

AE at the treated dose xi in log-scale. Using a logistic regression, the likelihood function of

~β = (β0, β1) is

f(~y | ~β) =
n∏
i=1

(
eβ0+β1xi

1 + eβ0+β1xi

)yi ( 1

1 + eβ0+β1xi

)1−yi

by assuming independence among patients. We let β0 ∈ (−∞,∞) and β1 ∈ (0,∞) by

assuming a monotonic dose-response relationship. We consider a conditional mean prior

[67, 6]. This method of prior elicitation requires the selection of two arbitrarily doses,

say x−1 < x0 without loss of generosity. Then, we specify two independent Beta priors

πxi ∼ Beta(ai, bi) for i = −1, 0. By the Jacobian transformation, we obtain the joint prior

density function

f(~β) =
0∏

i=−1

Γ(ai + bi)

Γ(ai) Γ(bi)

(
eβ0+β1xi

1 + eβ0+β1xi

)ai ( 1

1 + eβ0+β1xi

)bi
(x0 − x−1) ,
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hence ai and bi can be thought of as the pseudo numbers of AEs and non-AEs, respectively,

at the selected dose xi. To this end,

f(~β | ~y) ∝
n∏

i=−1

(
eβ0+β1xi

1 + eβ0+β1xi

)yi ( 1

1 + eβ0+β1xi

)1−yi
(x0 − x−1) ,

where yi = ai and 1− yi = bi for i = −1, 0.

If we have multiple experts we may ask each kth investigator independently to specify

(xik, aik, bik) for i = −1, 0, thus defining the set of priors, Q = {Q1, . . . , QK}. In addition to

conjugacy, the conditional means prior is advantageous because it is more interpretable than

a direct specification of the joint prior density function of ~β. Hence, it is easy to control the

amount of prior information in a consensus prior. The weighted posterior density function

is

g(~β | ~y) ∝
K∑
k=1

P (Qk | ~y)
n∏

i=−1

cik

(
eβ0+β1xi

1 + eβ0+β1xi

)yik ( 1

1 + eβ0+β1xi

)nik−yik
,

where yik = yi, nik = 1, and cik = 1 for i = 1, . . . , n, and yik = aik, nik = aik + bik, and

cik =
Γ(aik + bik)

Γ(aik) Γ(bik)
(x0k − x−1k)

for i = −1, 0. It may be advantageous to keep x0k − x−1k constant or nearly constant

across investigators because the distance contributes to the weighted posterior. In addition,

the values of (aik, bik) may be highly influential when they are not small. For example, if

(ai1, bi1) = (1, 2) and (ai2, bi2) = (2, 4) with the same value of x0k − x−1k, then ci2 / ci1 = 10.

Here we provide the precise definition of the MTD. For a given risk level γ ∈ (0, 1), we define

Dγ(~β) ≡ Dγ to be the dose that achieves πDγ = γ. Under the logistic model, we have

Dγ(~β) =
log
(

γ
1−γ

)
− β0

β1

. (2.12)
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This is sometimes called the lethal dose γ. Assuming both efficacy and toxicity of a treatment

are monotonic with respect to dose, Dγ, is the target treatment dose for a fixed risk level,

and it is the parameter of interest. A typical value of γ is between 0.15 and 0.35 in dosing

trials for serious medical conditions such as cancer.

2.4.2 Allocating Trial Participants to New Experimental Doses

We modify the patient gain discussed in Whitehead and Williamson [68] to the patient loss

by taking the inverse of the gain. For the patient loss, we allocate the (n+ 1)th patient at

xn+1 = argminxE
(
(x−Dγ)

2 | ~yn
)
.

Thus, for the posterior weighted estimator, the next patient would be allocated at

D̂∗γ =
K∑
k=1

wk D̂γ,k

where D̂γ,k = E (Dγ | ~yn, Qk) and wk = P (Qk). Using the consensus prior estimator, the

next patient would be allocated at

D̂∗∗γ =
K∑
k=1

w∗k D̂γ,k .

where the kth posterior mean contributes to this decision with the data-dependent weight of

w∗k = P (Qk | ~yn).

It is worth noting that due to the nonlinear transformation of the regression parameters

involved in computation of the MTD, it is difficult to construct a self-consistent estimator
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from the class

D̂∗γ =
K∑
k=1

wk D̂γ,k

with the data-independent weight wk = P (Qk).

2.4.3 Simulation Study

Simulation Design

We designed simulation studies to investigate the relative operating characteristics of the

weighted posterior estimator and the consensus prior estimator in Phase I clinical trials. For

numerical experiments, we set the target risk level at γ = 0.2 and assume that a maximum

of N = 25 patients are to be treated, a common value for a phase I clinical trials. We

suppose three investigators have divergent priors. The first investigator specifies Q1 with

(x−11, a−11, b−11) = (−4.0, 1.2, 3.8) and (x01, a01, b01) = (4.0, 1.2, 3.8). This prior specification

added 1.2 AEs and 3.8 non-AEs at the arbitrarily low dose x−11 = −4 and added 3.8 AEs

and 1.2 non-AEs at the arbitrarily high dose x01 = 4. The second investigator specifies Q2 by

(x−12, a−12, b−12) = (0.0, 1.2, 3.8) and (x02, a02, b02) = (8.0, 1.2, 3.8), and the third investigator

specifies Q3 by (x−12, a−12, b−12) = (4.0, 1.2, 3.8) and (x02, a02, b02) = (12.0, 1.2, 3.8). The

three prior elicitations are equally strong by matching x0k − x−1k = 8 and
∑0

i=−1 aik +

bik = 10. In addition, we assume equal prior probabilities so that P (Qk) = 1/3 for k =

1, 2, 3. Note that Q1 is relatively conservative and Q3 is relatively anti-conservative. In

particular, the prior means of Dγ are D∗γ,k = E(Dγ | Qk) = −3.1, 0.9, 4.9 for k = 1, 2, 3,

respectively. If the trial were to proceed using each investigator separately, the first trial

patient would be allocated to these three doses accordingly and remaining trial patients

would be allocated using the updated estimates of Dγ. Therefore the three priors would
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lead to different estimated doses and different numbers of AEs. On the other hand, if the

three investigator opinions are incorporated into a single trial, the first patient is allocated at

(−3.1 + 0.9 + 4.9) / 3 = 0.9 and the remaining decisions are based on the choice of estimator.

If the weighted posterior estimator, D̂∗γ, is used, the three investigators contribute to the

entire trial equally. If the consensus prior estimator, D̂∗∗γ , is used the contribution of each

investigator adaptively varies depending on accumulated data.

As shown in Figure 2.2, we consider the nine scenarios by 3 × 3 possible pairing values of

β0 = (−6,−3, 0) and β1 = (0.5, 0.8, 1.2) under the logistic regression model. The scenario

numbers are assigned relative to the ascending order of Dγ. From Scenarios 1 to 9, the nine

values of Dγ are -2.77, -1.73, -1.16, 1.34, 2.02, 3.23, 3.84, 5.77, and 9.23. A low value of Dγ

implies that a new experimental dose is toxic relative to the dosing range, and a high value

of Dγ implies that it is relatively toxic safe. In each subfigure, the true Dγ of each scenario

is indicated by the dotted line, and prior guesses D∗γ,k for k = 1, 2, 3 are indicated by the

three solid lines.

Evaluations

We let D̂γ generically denote a Bayes estimator of Dγ. Then, the probability distribution

of interest is the probability of an AE at dose D̂γ, πD̂γ , rather than the distribution of D̂γ

itself. In other words, if D̂γ deviates from the true Dγ, practitioners’ interest is the degree

of deviation from the true risk level.

We evaluate simulation results in three aspects. First, it is important to treat trial partic-

ipants near the target risk level γ = 0.2 (from the perspective of current patients). In this

regard, we measure the mean, standard deviation (SD), and RMSE of πX with respect to

0.2, where X is the random variable denoting each treated dose during the trial. Second, it is

also important to estimate Dγ when γ is near 0.2 at the end of a trial (from the perspective of
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future patients). In this regard, we measure the mean, SD, and RMSE of πD̂ after observing

the outcomes of N = 25 patients. Third, practitioners are generally concerned about the

distribution SN =
∑N

i=1 Yi, the sum of AEs at the end of a trial. In particular, as we fixed

N = 25 and γ = 0.2, a desirable distribution of S25 should have a mode near N × γ = 5

with small V ar(S25) and large P (4 ≤ S25 ≤ 6). To this end, we summarize the distribution

of S25 by the mean, SD, and P (4 ≤ S25 ≤ 6).

Simulation Results

The simulation results for separate trials using Q1, Q2, Q3, individually, and a single trial

incorporating Q = {Q1, Q2, Q3} are summarized in Table 2.1. In the table, results utilizing

the weighted posterior estimator (i.e. D̂∗γ) are denoted by Q∗123, and results utilizing the

consensus prior estimator (i.e. D̂∗∗γ ) are denoted by Q∗∗123.

Focusing on the distribution of πX , of the probability of an AE at each allocated dose level

during the trial, results can be very sensitive when a single prior is used (see the left three

columns of Table 1). In Scenario 1, Scenario 2, and Scenario 3, when a new experimental dose

has relatively high toxicity, the respective means of πX were 0.711, 0.787, and 0.860 for the

anti-conservative prior Q3 which imply that large portions of trial patients were overdosed

in simulated trials. By the use of a consensus prior, the respective means reduced to 0.428,

0.393, and 0.363 for Q∗123, and they reduced even greater to 0.268, 0.238, and 0.224 for Q∗∗123,

respectively, which were closer to γ = 0.2. The SDs of πX were greater in Q∗∗123 than in Q∗123.

The RMSEs were lower for Q∗∗123. When the true Dγ increases from Scenario 4 to Scenario

9, Q∗∗123 yielded the averages of πX closer to γ = 0.2 with larger SDs when compared to Q∗123.

As a consequence, the RMSE of πX was greater in Q∗∗123 than in Q∗123 from Scenario 4 to

Scenario 7.

Focusing on the distribution of πD̂γ (see the middle three columns of the table), similar trends
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were found for Q1, Q2, Q3, Q∗123, and Q∗∗123 with respect to the mean, SD, and RMSE. In

each scenario, πD̂γ in Q∗∗123 was closer to the target γ = 0.2 on average with larger variability

when compared to Q∗123. The resulting RMSEs of Q∗∗123 were smaller in Scenarios 1, 2, 3, 8,

and 9, the cases when the combined priors were relatively distant from the true Dγ. The

gross negative impact of prior misspecification was reduced by weighting each prior based on

data in the consensus prior estimator. When the combined priors were relatively close to the

truth as in Scenarios 4, 5, 6, and 7, the RMSEs of Q∗123 were smaller due to less variability

of D̂∗γ than the variability of D̂∗∗γ . This general tendency was similar to the case under the

normal model when we compared the self-consistent weighted posterior estimator µ̂∗ and the

consensus prior estimator µ̂∗∗.

We turn our focus to the distribution of S25 (see the right three columns of the table). The

resulting E(S25) generally decrease as the true Dγ increases for each method of Bayes esti-

mation with rare exceptions. In the nine scenarios, the range of E(S25) was (0.066, 4.835) for

Q1, (0.433, 10.674) for Q2, (2.044, 17.778) for Q3, (0.436, 10.674) for Q∗123, and (1.590, 6.686)

for Q∗∗123. By adaptively weighting each individual’s opinion based on accumulated informa-

tion, Q∗∗123 resulted in the shortest range of E(S25) across the various scenarios, and it yielded

S25 closest to N ×γ = 5 on average among the five considered approaches. Furthermore, the

adaptive weighting scheme of the consensus prior provided robustness to P (4 ≤ S25 ≤ 6).

In summary, the resulting distributions of πX , πD̂γ , and SN from the individual priors Q1, Q2,

and Q3 showed high prior sensitivity, and robustness was gained by the use of a compromised

design incorporating all priors. When we compared the weighted posterior estimator Q∗123

and the consensus prior estimator Q∗∗123, Q∗123 yielded relatively small variability with respect

to dose allocation and final estimation of Dγ, while Q∗∗123 yielded relatively small deviation

from the target MTD on average. Further, by adjusting the weights of contributions to

sequential decisions based on updated data, Q∗∗123 provided greater robustness with respect

to the distribution of S25.
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Figure 2.3 graphically summarize the relative performance of Q∗∗123 to Q∗123. Figure 2.3a plots

the relative RMSE of πX (solid) and the relative RMSE of πD̂γ (dotted). A relative RMSE

lower than one implies a smaller RMSE for Q∗∗123, and this subfigure is analogous to Figure

2.1a. When the consensus prior guess and the true value of a parameter of interest are

fairly close, the design utilizing the weighted posterior estimator tends to perform better

with respect to RMSE. However, when the two quantities are distant (i.e. one extreme prior

guess is relatively close to the true value), the design utilizing the consensus prior estimator

tends to perform better with respect to RMSE. Figure 2.3b highlights the robustness and

practical importance (i.e. safety of dose-finding studies) of the design utilizing the consensus

prior estimator with respect to E(S25).

2.5 Discussion

In small-sample studies it is often necessary to incorporate prior information in order to

stabilize estimation and inferential procedures. When several subject-specific experts are

available for prior elicitation, the incorporation of multiple priors can lead to robustness to

prior mis-specification when compared to the use of a single expert opinion. It is highly

unlikely that two or more researchers have the exactly same prior information about a pa-

rameter of interest. For some scientific topics, experts have various and perhaps strong

opinions. To this end, the incorporation of multiple priors via a consensus estimator can be

useful in a practical sense. We have considered the performance of two classes of consensus

estimators. First is the class of convex combinations of Bayes estimators that are derived

from each individual prior, with weights for each Bayes estimator resulting from the weight

placed on the corresponding prior distribution giving yield to that estimator. In the second

class of estimators, a single consensus prior is first formed as a combination of the available

priors, and the resulting Bayes estimator is then obtained. We have provided an alternative
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theoretical perspective of the consensus prior estimator by showing that this class of estima-

tors results in a natural posterior weighting scheme with prior weights updated conditional

upon observed data.

The first class of weighted posterior estimators have a path to self-consistency under simple

models, while the second class of consensus prior estimators does not generally result in

self-consistency. However, the adaptive weighting scheme of the consensus prior estimator

allows for adjustment of the contribution of each investigator’s opinion based on empirical

evidence, a desirable feature in an adaptive experiment. Based on our numerical illustrations,

the weighted posterior estimator tends to have smaller variability while the consensus prior

estimator tends to have smaller bias. If the true value of the parameter of interest is located

near the mean of the prior guesses, use of weighted posterior estimator seems preferable. If

this is not the case, use of the consensus prior estimator is generally preferable. The former

is not Bayesian, the latter is.

A primary focus of this chapter has been on the utility of incorporating multiple expert

opinions into scientific analyses, when they are available, not to persuade the reader that the

consensus estimator for compromising priors should always be chosen. Instead, choosing the

consensus estimator should depend on the context of the scientific problem. For example, in

Scenario 7 of Table 2.1, the scheme utilizing the consensus prior estimator allocated patients

at the risk level of 0.181 on average with SD of 0.144. On the other hand, the scheme utilizing

the weighted posterior estimator allocated patients at the risk level of 0.103 on average with

SD of 0.086 which resulted in the smaller RMSE (0.145 versus 0130). To make an informed

decision, one must consider whether precise underdosing throughout a trial or slightly less

precise dosing near the target is more preferable.

As a general precaution, when one formulates a set of priors, it is important to check the

balance of prior elicitations. Specifically, one will probably not want an investigator’s prior

to be upweighted simply because it is dogmatic. To this end, it may be necessary to impose
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some restriction on the magnitude of hyper-parameters. In general, matching the hyper-

parameters across investigators and investigating the impact of different hyper-parameters

under the model specified is strongly encouraged unless intentional differential weight to

investigators is desired.

While further work on evaluating the performance of consensus estimators should be per-

formed, the incorporation of multiple priors into analyses can provide robustness to prior

misspecification when compared to the use of a single expert opinion.
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Figure 2.2: Simulation scenarios for Phase I clinical trials
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Table 2.1: Simulation results

Scenario Prior
Dose Allocations MTD Estimation Number of AEs

Mean SD RMSE Mean SD RMSE Mean SD P (4 ≤ S25 ≤ 6)

Scenario 1

Q1 0.194 0.071 0.071 0.195 0.067 0.067 4.835 1.108 0.831
Q2 0.363 0.107 0.195 0.282 0.046 0.094 9.077 1.549 0.033
Q3 0.711 0.075 0.516 0.646 0.006 0.446 17.778 2.039 0.000
Q∗

123 0.428 0.089 0.245 0.365 0.041 0.170 10.674 1.706 0.003
Q∗∗

123 0.268 0.149 0.163 0.211 0.077 0.077 6.686 1.212 0.450

Scenario 2

Q1 0.159 0.086 0.095 0.186 0.080 0.081 3.992 0.961 0.688
Q2 0.316 0.140 0.182 0.228 0.065 0.071 7.891 1.228 0.117
Q3 0.787 0.077 0.592 0.717 0.006 0.517 19.676 1.882 0.000
Q∗

123 0.393 0.122 0.228 0.318 0.057 0.131 9.856 1.460 0.005
Q∗∗

123 0.238 0.171 0.175 0.196 0.089 0.089 5.971 1.018 0.714

Scenario 3

Q1 0.141 0.103 0.119 0.187 0.093 0.094 3.554 0.861 0.510
Q2 0.279 0.166 0.184 0.197 0.080 0.080 7.021 0.976 0.300
Q3 0.860 0.064 0.663 0.795 0.004 0.595 21.490 1.637 0.000
Q∗

123 0.363 0.153 0.223 0.283 0.073 0.110 9.072 1.205 0.008
Q∗∗

123 0.224 0.192 0.193 0.196 0.105 0.105 5.582 0.877 0.861

Scenario 4

Q1 0.052 0.056 0.159 0.139 0.074 0.096 1.273 0.725 0.002
Q2 0.186 0.111 0.112 0.192 0.094 0.094 4.652 0.879 0.907
Q3 0.418 0.190 0.289 0.275 0.052 0.091 10.442 1.409 0.000
Q∗

123 0.200 0.106 0.106 0.201 0.088 0.088 5.032 0.894 0.928
Q∗∗

123 0.208 0.165 0.166 0.202 0.109 0.109 5.179 0.896 0.916

Scenario 5

Q1 0.044 0.037 0.160 0.103 0.043 0.106 1.111 0.779 0.002
Q2 0.167 0.087 0.093 0.187 0.080 0.081 4.185 0.966 0.756
Q3 0.333 0.144 0.196 0.238 0.060 0.072 8.298 1.278 0.066
Q∗

123 0.174 0.081 0.085 0.191 0.074 0.075 4.350 0.975 0.801
Q∗∗

123 0.205 0.136 0.136 0.201 0.092 0.092 5.129 1.050 0.861

Scenario 6

Q1 0.041 0.024 0.161 0.077 0.024 0.125 1.020 0.819 0.003
Q2 0.134 0.059 0.089 0.167 0.062 0.070 3.362 1.051 0.429
Q3 0.262 0.087 0.107 0.221 0.064 0.067 6.551 1.248 0.494
Q∗

123 0.137 0.055 0.084 0.165 0.057 0.067 3.413 1.065 0.442
Q∗∗

123 0.188 0.103 0.103 0.200 0.079 0.079 4.717 1.154 0.797

Scenario 7

Q1 0.005 0.005 0.196 0.020 0.004 0.180 0.113 0.325 0.000
Q2 0.107 0.092 0.131 0.180 0.091 0.093 2.676 0.808 0.140
Q3 0.234 0.137 0.141 0.192 0.089 0.090 5.840 0.893 0.785
Q∗

123 0.103 0.086 0.130 0.168 0.089 0.095 2.584 0.770 0.106
Q∗∗

123 0.181 0.144 0.145 0.197 0.104 0.104 4.552 0.889 0.883

Scenario 8

Q1 0.003 0.003 0.197 0.010 0.001 0.190 0.083 0.280 0.000
Q2 0.051 0.041 0.155 0.113 0.049 0.100 1.263 0.802 0.005
Q3 0.174 0.088 0.092 0.190 0.082 0.082 4.372 0.985 0.802
Q∗

123 0.049 0.040 0.156 0.108 0.049 0.104 1.221 0.777 0.003
Q∗∗

123 0.142 0.104 0.119 0.190 0.086 0.087 3.567 0.950 0.508

Scenario 9

Q1 0.003 0.002 0.197 0.006 0.001 0.194 0.066 0.253 0.000
Q2 0.018 0.010 0.183 0.037 0.008 0.163 0.436 0.608 0.000
Q3 0.081 0.042 0.126 0.126 0.046 0.087 2.044 0.966 0.068
Q∗

123 0.018 0.010 0.183 0.036 0.008 0.164 0.433 0.595 0.000
Q∗∗

123 0.064 0.044 0.143 0.118 0.045 0.094 1.590 0.887 0.018
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Figure 2.3: Relative RMSE and average number of AEs
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Chapter 3

Balancing Individual- and

Population-Level Ethics in Phase I

Trials

In Chapter 3, we turn our focus to ethical issues in Phase I clinical trials. Bayesian adap-

tive designs have been proposed for Phase I clinical trials since the continual reassessment

method (CRM) was proposed by O’Quigley, Pepe and Fisher [45]. Focused on dose-finding

in the setting of cancer chemotherapies, the CRM seeks to allocate new patients to the pos-

terior estimate of a maximum tolerable dose (MTD). Later, Whitehead and Brunier applied

Bayesian decision theory to maximize statistical information for the MTD when allocating

new patients to an experimental dose [67]. The two allocation rules reflect conflicting per-

spectives of dose-finding trials. The CRM emphasizes individual-level ethics concerned with

treating current trial participants, while the method of Whitehead and Brunier emphasizes

population-level ethics concerned with treating future patients at the most precise estimate

possible. As a natural solution, we consider compromising between the two conflicting per-

spectives using a novel Bayesian decision theoretic dose allocation method.
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3.1 Introduction

Early in the drug development process, data on the toxicity of a new experimental treatment

is often scarce. The primary objective of a Phase I clinical trial is to study the toxicity of

an experimental treatment and to determine a maximum tolerable dose (MTD) for future

patients. Because little information regarding toxicity is available, over- and underdosing

patients is inevitable in these early trials. In addition, due to small sample sizes generally

considered in the first phase of drug development, resulting estimates of the MTD often

suffer from low precision.

To address many of the ethical and statistical concerns often raised during the conduct of

dose-finding trials, O’Quigley, Pepe and Fisher [45] proposed the continual reassessment

method (CRM) for Phase I cancer studies. The CRM is a Bayesian adaptive design that

utilizes a prior distribution for the dose-response curve, together with all available observed

data, when allocating the next randomized patient to a new treatment dose. This design

proceeds with a fixed allowable toxicity and a more precise definition of the MTD. If Y is a

binary random variable with Y = 1 indicating an AE, we define MTDγ as the dose which

satisfies P (Y = 1 | MTDγ) = γ for a fixed toxicity level γ. The CRM then seeks to treat

each new trial patient at MTDγ, hence dose escalation and de-escalation naturally occur by

the amount of change in posterior estimation of MTDγ.

Since the CRM was introduced many modifications of the design have been proposed to

reduce overdosing patients and to meet various practical needs. Goodman, Zahurak and

Piantadosi [29] suggested assigning more than one patient at a time to a given dose and

to limit dose escalation by a single prefixed dose level. Their simulation studies showed

that this restricted rule effectively reduced the number of observed AEs on average. Babb,

Rogatko and Zacks [3] proposed an escalation with overdose control (EWOC) design that

suggested treating a new patient at a fixed quantile of the marginal posterior distribution
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of MTDγ. Relative to the CRM, the EWOC imposes a heavier penalty for overdosing than

underdosing. Other authors have considered sensitivity to the choice of prior distribution in

these algorithms as well [3].

While the CRM and various modifications have primarily emphasized individual-level ethics

by allocating new patients at or below the posterior mean of the MTD, Whitehead and

Brunier [67] considered an approach to provide greater emphasis on population-level ethics.

Specifically, Whitehead and Brunier [67] applied Bayesian decision theory to Phase I clinical

trials by devising a dose allocation scheme from the perspective of future treated patients.

In this approach a gain function was defined as the inverse of the asymptotic variance of the

maximum likelihood estimate (MLE) for MTDγ. The gain function seeks to optimize dose

allocation in order to maximize precision of the resulting estimate of MTDγ. As such, this

design is referred to as the information gain method (IGM) in this chapter.

The IGM was motivated by a trial setting with healthy volunteers and where potential AEs

from a new drug are characterized by mild to moderate reactions (e.g. headache, drowsiness,

rash, etc.). In contrast, the applications given in O’Quigley, Pepe and Fisher [45] included

radiolabeled tumor-specific monoclonal antibodies and combination chemotherapies which

are relatively more serious cases. As depicted in their applications, the ethical perspective

in Phase I clinical trials should depend upon the severity of treating diseases and potential

AEs. Whitehead and Williamson [68] later discussed additional gain functions in cancer

therapy settings and pointed out that conservatively modified CRMs may reduce the speed

of trial procedures but also noted that the constraints suggested by Faries [27] and Goodman,

Zahurak and Piantadosi [29], starting at the lowest available dose level and prohibiting

skipping a fixed dose level, may not benefit patients in the early stage of a trial. Furthermore,

such constrains slow down the rate of information growth.

Additional Bayesian designs focusing on efficient estimation of the MTD have been discussed

by Haines, Perevozskaya and Rosenberger [31] including so called c-optimal designs and D-
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optimal designs. However, O’Quigley and Conaway [44] pointed out that under current

guidelines it is difficult to justify utilizing a procedure that fully sacrifices the point of view

of current trial participants for that of future patients. Clearly, both precise estimation of the

MTD and ethical dose allocation are of paramount concerns in early phase trials. As such, a

natural solution to the two conflicting perspectives would be a balance between individual-

and population-level ethics. Bartroff and Lai [5] proposed a method that minimizes a loss

function consisting of two additive terms, where each term reflects the individual and popu-

lation risks. This approach attempted to compromise between the loss of a new patient and

the loss of the following patient who will receive a dose that minimizes the following patient’s

loss. Due to the complexity that arises from considering infinitely many future patients they

chose to focus on the loss associated with two additional future patients.

Recently Oron and Hoff [47] argued that up-and-down designs, such as the traditional 3+3

design [60], offer more robust results with respect to the number of cohorts treated at the

MTD when compared to the CRM. They pointed out that the CRM is sensitive to prior

specification and settles on a specific dose which is not necessarily the MTD in small samples.

Though the simple up-and-down designs were not originally developed based on a rigorous

statistical framework, they attempt to gather information regarding toxicity over a relatively

wide dose range. In this sense, the comparisons between the CRM and up-and-down schemes

can be viewed as a simple version of individual- versus population-level ethics as well.

In the design of a Phase I dose-finding trial to investigate hyperthermic intraperitoneal

chemotherapy (HIPEC) we sought to compromise two well-known and commonly used dose

allocation methods (CRM and IGM) to emphasize individual-level ethics while increasing

the precision of the resulting MTD estimate. To this end, we propose an adaptive design to

balance the two perspectives using a new method we refer to as the balanced information

gain method (BIGM). The BIGM is formally developed by decomposing the loss function

for the IGM and observing that the IGM naturally compromises individual- and population-
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level ethics, but that the relative weight allocated to each attribute results in high volatility

in dose allocations during the early phase of a trial. To account for this, we modify the loss

function with a tuning parameter that allows a trialist to differentially weigh individual- and

population-level ethics to meet the necessary goals of their particular clinical setting. In

Section 3.2 we detail the statistical methodology used in developing the BIGM. Section 3.3

presents simulation studies to illustrate the operating characteristics of the newly proposed

approach, and Section 3.4 presents selected results from our experience in using the proposed

method to evaluate designs for a dosing trial of hyperthermic intraperitoneal chemotherapy

(HIPEC). Section 3.5 concludes with a general discussion of the BIGM and its use in early

phase dosing studies.

3.2 Methods

A Bayesian decision theoretic approach to adaptive design can be thought of as a sequence

of decisions based upon an action space, a loss (or gain) function, a likelihood function, and

a prior distribution. In the context of a fully sequential phase I dosing algorithm, each new

subject is treated at the dose that minimizes expected loss (maximizes expected gain), which

in turn is a function of the assumed probability model and prior distribution. In this section

we develop the BIGM as a compromise between the CRM and IGM.

3.2.1 Decomposition of the Loss Function in the IGM

The IGM is a dose allocation scheme in which the loss function is taken to be the asymptotic

variance of the MLE for MTDγ as estimated via a generalized linear model (GLM). In

the context of a GLM, let η = β1 + β2x, β2 > 0, denote a linear predictor and F (η)

denote a distribution function representing the probability of an AE at dose x (in log-scale).
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Assuming independent binary random variables with probability F (ηi), where ηi = β1 +β2xi

for i = 1, . . . , n, the likelihood function for ~β = (β1, β2) is

Ln ≡ f(~yn | ~β) =
n∏
i=1

[F (ηi)]
yi [1− F (ηi)]

1−yi .

Denoting the log-likelihood function by ln ≡ log(Ln), Fisher’s expected information matrix

based upon ~yn and ~xn = (x1, . . . , xn) is given by

In ≡ −E
(

∂2ln

∂~β ∂~βT

)
=

 ∑n
i=1 τi

∑n
i=1 τixi∑n

i=1 τixi
∑n

i=1 τix
2
i

 ,

where

τi ≡
[∂F (ηi) / ∂ηi]

2

F (ηi) [1− F (ηi)]

can be thought of as an unnormalized weight corresponding to the ith observation at dose

xi.

Denoting the inverse of F (·) by F−1(·), MTDγ in the above model specification is given by

the transformation h: R2 → R with

h(~β) =
F−1(γ)− β1

β2

≡ MTDγ ,

where the gradient of h is given by

∇~h ≡ ∂h(~β)

∂~β
= −

(
1
β2

F−1(γ)−β1
β2
2

)T
= − 1

β2

(
1 MTDγ

)T
.

Further denoting the normalized weight from the ith observation by wi ≡ τi /
∑n

i=1 τi, the
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asymptotic variance of M̂TDγ, the MLE of MTDγ, is

∇~hTI−1
n ∇~h =

(MTDγ)
2 (
∑n

i=1 τi)− 2 MTDγ (
∑n

i=1 τixi) +
∑n

i=1 τix
2
i

β2
2 det(In)

=
(
∑n

i=1 τi)
{

(MTDγ)
2 − 2 MTDγ (

∑n
i=1wixi) +

∑n
i=1wix

2
i

}
β2

2

{
(
∑n

i=1 τi) (
∑n

i=1 τix
2
i )− (

∑n
i=1 τixi)

2
}

=
(MTDγ −

∑n
i=1wixi)

2
+
{∑n

i=1wix
2
i − (

∑n
i=1 wixi)

2
}

β2
2 (
∑n

i=1 τi)
{∑n

i=1wix
2
i − (

∑n
i=1 wixi)

2
} .

(3.1)

In Equation (3.1), we let m
(1)
n ≡

∑n
i=1wixi ≡ µn and m

(2)
n ≡

∑n
i=1wix

2
i denote the first two

weighted sample moments for the observed doses ~xn = (x1, . . . , xn). Then, the numerator

represents the sum of squared error, (MTDγ − µn)2, and sampling variance, σ2
n ≡ m

(2)
n − µ2

n,

while the denominator consists of σ2
n which is equivalent to the gain function in D-optimal

designs. From Equation (3.1), one can distinguish two main factors contributing to the

variance of M̂TDγ: the distribution of ~xn and distances of ~xn from the target estimand

MTDγ. The later source of the variance is straightforward as it appears in the numerator

only, but the former source is rather complicated as it appears in both the numerator and

denominator with a nondecreasing quantity
∑n

i=1 τi in the denominator. Equation (3.1)

suggests that it is essential to increase σ2
n (i.e. a wide sampling scheme) to effectively reduce

the variance of M̂TDγ when n is small (i.e. early phase of a trial), but such a wide sampling

scheme is not necessarily optimal for the variance reduction when n is large. Instead, dose

allocations near the true MTDγ become more effective for variance reduction when n is large.

When deciding on an optimal dose for a new patient, it is necessary to consider In+1 instead

of In and further decompose the loss function LI(xn+1 | ~β) ≡ ∇~hTI−1
n+1∇~h. For concise

notation, let z
(m)
n =

∑n
i=1 τix

m
i for m = 0, 1, 2. Then, it can be shown that the loss function

with respect to a new dose xn+1 for given parameter ~β is decomposed as

LI(xn+1 | ~β) ∝ τn+1 (xn+1 −MTDγ)
2 + z

(0)
n {(MTDγ − µn)2 + σ2

n}{
z

(0)
n z

(2)
n − (z

(1)
n )2

}
+ z

(0)
n τn+1 {(xn+1 − µn)2 + σ2

n}
. (3.2)
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A derivation of Equation (3.2) is provided in the Appendix A.2. The implication of Equation

(3.2) is similar to that of Equation (3.1). The new dose xn+1 affects the first term (xn+1 −

MTDγ)
2 in the numerator and the second term (xn+1−µn)2 in the denominator. In order to

reduce the loss associated with xn+1, LI(xn+1 | ~β), we need to account for a balance between

the individual-level loss (xn+1 −MTDγ)
2 and the population-level gain (xn+1 − µn)2.

Analogous to Equation (3.1), a small increase in the population gain (xn+1 − µn)2 can

effectively reduce the loss LI(xn+1 | ~β) as n → ∞ because the increasing quantity z
(0)
n is

attached multiplicatively to (xn+1 − µn)2. As such, the IGM itself attempts to balance the

perspective of current patients against the perspective of future patients, but the rate of

compromise is rather slow as shown in Figure 3.1. The figure is from a simulated trial of

sample size N = 250 to compare general sampling schemes under the CRM and IGM in large

samples. The sample size is unrealistically large for a Phase I clinical trial, but it provides a

useful contrast. In the figure, the solid and dotted trajectories are representative sampling

paths under the CRM and IGM (respectively), and the dotted horizontal line indicates the

true MTDγ in this simulated trial. The first and second rows of “x” marks indicate observed

AEs in the CRM and the IGM, respectively. The starting dose is low because we set the prior

expectation of MTDγ to be lower than the true MTDγ, and the CRM required the treatment

of 12 patients before reaching the MTDγ from below. For a typical sample size 20 ≤ N ≤ 30,

about half of the trial patients would be undertreated. The slow movement is also worrisome

if the trial is initiated at a high dose. On the other hand, the IGM algorithm has a wider

sampling scheme which becomes stable as the trial proceeds, and the distribution of ~xn is

more robust to the starting dose level. However, such a large amplitude of dose allocations

in the early stage of a trial has not been widely accepted, particularly in cancer therapy

studies where observed AEs tend to be severe.
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Figure 3.1: Comparing sampling paths of CRM and IGM in a large sample
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3.2.2 Balanced Information Gain Method (BIGM)

After decomposing the loss function of the IGM, a compromise between the individual- and

population-level perspectives can be achieved in infinitely many ways. We propose a simple

modification of the numerator as

LB(xn+1 | ~β, λ) ∝ kn(λ) τn+1 (xn+1 −MTDγ)
2 + z

(0)
n {(MTDγ − µn)2 + σ2

n}{
z

(0)
n z

(2)
n − (z

(1)
n )2

}
+ z

(0)
n τn+1 {(xn+1 − µn)2 + σ2

n}
. (3.3)

for some nondecreasing kn(λ) > 1, where λ > 0 is a tuning parameter which adjusts a level

of compromise. A proposed accelerating function kn(λ) is given by

kn(λ) =
(

1 +
n

N

)λ(1+ sn
Nγ )

,

where sn =
∑n

i=1 yi is the number of AEs observed in n patients. Since the proposed

kn(λ) > 1 is a nondecreasing function with respect to n, the loss function LB(xn+1 | ~β, λ)

gradually approaches a CRM-like sampling scheme as a trial proceeds. By letting λ → 0

and λ →∞, the behavior of LB is similar to that for the loss function of the IGM and the

CRM, respectively. Specifically, relative to the loss function used in IGM, LB with λ > 0

imposes a stronger penalty on the deviation from MTDγ as n increases and the exponent of

kn(λ) increases for each observed AE. We refer to the dose allocation method that seeks to

minimize this modified loss function as the balanced information gain method (BIGM).
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3.3 Simulations

Early phase clinical trialists are often interested in both the distribution of the estimate of

MTDγ and the total number of observed AEs at the conclusion of a trial. Through simulation

we investigate the operating characteristics of the CRM, the IGM, and the BIGM as we vary

the tuning parameter λ from zero to a large value. Operating characteristics are assessed

under various degrees of prior mis-specification relative to the true dose response model.

3.3.1 Setting

We assume the probability of an AE at dose x (in log-sclale) is given by

P (Y = 1 | x) =
e−3.0+0.8x

1 + e−3.0+0.8x
. (3.4)

That is, the underlying dose-response curve is a logistic model with intercept parameter

β1 = −3.0 and slope parameter β2 = 0.8. We fix the target risk level at γ = 0.2 yielding

a true MTD0.2 of 2.02. The action space is the set of real numbers in the CRM, and it

is discretized by 0.1 for numerical search in the BIGM and the IGM. Each simulated trial

is terminated when reaching a sample size of N = 25. Estimated operating characteristics

are based upon 10,000 simulated trials for each considered scenario defined by the prior

specification given in the next section.

3.3.2 Priors

For prior specifications we consider the method known as the conditional means prior

[67, 6, 54], an interpretable and convenient approach for eliciting priors from scientific col-

laborators that serves as an attractive alternative to direct prior specification of the joint
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Figure 3.2: Simulation setting
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density function for (β1, β2). We let x−1 and x0 be two arbitrary doses where the probabil-

ities of an AE at the two doses are denoted by by θ−1 and θ0, respectively. We specify the

prior distribution for θi as θi ∼ Beta(ai, bi) for i = −1, 0. Assuming independence between

θ−1 and θ0 and the corresponding Jacobian for the transformation, the joint prior density

for ~β = (β1, β2) is induced as

f(~β) = 1~β∈Ω (x0 − x−1)
0∏

i=−1

[F (ηi)]
ai−1 [1− F (ηi)]

bi−1 ∂F (ηi)

∂ηi
,

where Ω ⊂ (−∞,∞)×(0,∞) is the support of ~β. Using the logistic link, we obtain conjugacy

as

f(~β) = 1~β∈Ω (x0 − x−1)
0∏

i=−1

[F (ηi)]
ai [1− F (ηi)]

bi ,

and elicited ai and bi can be thought of as pseudo observations at the two doses.
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To examine the performance of each procedure under varying degrees of prior mis-specification

we consider five different priors. Priors 1 to 5 specify (−2, 6), (−1, 7), (0, 9), (1, 10) and

(2, 10) for (x−1, x0), respectively. We commonly let (a−1, b−1) = (1.003, 1.303) for each

low dose x−1 and (a0, b0) = (1.303, 1.003) for each high dose x0. The hyper-parameter

(a−1, b−1) = (1.003, 1.303) corresponds to the prior mode θ̂−1 = 0.01 and P (θ−1 < 0.9) =

0.95 which reflects large uncertainty regarding the risk at each low dose x−1. Similarly,

(a0, b0) = (1.303, 1.003) corresponds to θ̂0 = 0.99 with P (θ0 > 0.1) = 0.95. In Figure 3.2 the

five dotted dose-response curves are

P (Y = 1 | x) =
eE(β1)+E(β2)x

1 + eE(β1)+E(β2)x

for each prior. The solid curve in the figure is the true dose-response curve in Equation (3.4).

On top of the figure, each number indicates the point MTD0.2 = log(0.25)−E(β1)
E(β2)

for each prior.

We can see that prior estimate of MTD0.2, and hence the starting dose at trial initiation,

gradually increases from Prior 1 to Prior 5.

3.3.3 Results

Our proposed BIGM algorithm was developed as a continuous compromise between the IGM

and the CRM, with the goal of inducing a CRM-like sampling scheme as a trial proceeds

and accelerating after each observed AE. Example dosing paths of the IGM, the BIGM with

λ = 0.5, 1.0, 1.5, 2.0, and the CRM are compared in Figure 3.3. For illustration, the sample

paths were generated under the true model defined in Secton 3.1 and using Prior 1 as defined

in Section 3.2 (resulting in a highly conservative starting dose). The figure illustrates that

the IGM and BIGM, with low values of λ, allow for greater variability in the dose allocation

scheme when treating early trial participants. This behavior can be beneficial relative to the

CRM for misspecified priors that tend to start at severely low or high dosing levels, since
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Table 3.1: Simulation results

IGM

Posterior Mean MLE Number of AEs
Prior Bias (PB%)A Variance MSE Bias (PB%) Variance MSE Mean Variance P (4 ≤ S25 ≤ 6)

1 -0.540 (-26.7) 0.432 0.723 0.077 (3.8) 0.563 0.569 4.755 0.298 1.000
2 -0.404 (-20.0) 0.388 0.551 0.082 (4.1) 0.568 0.568 5.061 0.255 0.997
3 -0.246 (-12.2) 0.344 0.405 0.090 (4.5) 0.570 0.570 5.458 0.300 0.980
4 -0.019 (-0.9) 0.266 0.266 0.110 (5.4) 0.576 0.576 5.922 0.381 0.876
5 0.278 (13.8) 0.148 0.225 0.066 (3.3) 0.700 0.700 6.610 0.694 0.513

BIGM λ = 0.5

Posterior Mean MLE Number of AEs
Prior Bias (PB%) Variance MSE Bias (PB%) Variance MSE Mean Variance P (4 ≤ SN ≤ 6)

1 -0.472 (-23.4) 0.418 0.641 -0.002 (-0.1) 1.095 1.095 4.492 0.495 0.951
2 -0.347 (-17.2) 0.397 0.517 0.005 (0.2) 0.751 0.751 4.853 0.515 0.984
3 -0.167 (-8.3) 0.368 0.396 0.062 (3.1) 0.680 0.684 5.348 0.544 0.948
4 0.020 (1.0) 0.270 0.270 0.059 (2.9) 0.497 0.501 5.923 0.622 0.790
5 0.289 (14.3) 0.167 0.250 0.043 (2.1) 0.883 0.884 6.711 0.964 0.434

BIGM λ = 1.0

Posterior Mean MLE Number of AEs
Prior Bias (PB%) Variance MSE Bias (PB%) Variance MSE Mean Variance P (4 ≤ SN ≤ 6)

1 -0.414 (-20.5) 0.451 0.623 0.007 (0.3) 1.762 1.762 4.366 0.669 0.866
2 -0.314 (-15.5) 0.429 0.527 -0.013 (-0.6) 4.294 4.294 4.786 0.699 0.943
3 -0.169 (-8.4) 0.381 0.409 0.017 (0.8) 0.573 0.573 5.375 0.704 0.913
4 0.022 (1.1) 0.286 0.287 0.034 (1.7) 0.631 0.632 5.987 0.828 0.730
5 0.278 (13.8) 0.173 0.250 0.024 (1.2) 1.696 1.696 6.870 1.183 0.383

BIGM λ = 2.0

Posterior Mean MLE Number of AEs
Prior Bias (PB%) Variance MSE Bias (PB%) Variance MSE Mean Variance P (4 ≤ SN ≤ 6)

1 -0.392 (-19.4) 0.470 0.623 0.011 (0.5) 36.651 36.651 4.269 0.823 0.797
2 -0.280 (-13.9) 0.447 0.525 -0.038 (-1.9) 8.236 8.238 4.734 0.894 0.890
3 -0.160 (-7.9) 0.400 0.425 -0.017 (-0.8) 1.680 1.680 5.403 0.893 0.876
4 0.008 (0.4) 0.308 0.308 0.023 (1.1) 0.689 0.689 6.112 1.039 0.666
5 0.246 (12.2) 0.172 0.232 0.033 (1.6) 1.914 1.915 7.073 1.357 0.320

CRM

Posterior Mean MLE Number of AEs
Prior Bias (PB%) Variance MSE Bias (PB%) Variance MSE Mean Variance P (4 ≤ S25 ≤ 6)

1 -0.210 (-10.4) 0.531 0.575 -0.345 (-17.1) 145.357 145.476 3.838 0.830 0.636
2 -0.179 (-8.9) 0.491 0.523 -0.142 (-7.0) 40.772 40.792 4.523 0.888 0.856
3 -0.153 (-7.6) 0.451 0.474 -0.041 (-2.0) 3.510 3.512 5.473 0.954 0.856
4 -0.049 (-2.4) 0.315 0.317 0.004 (0.2) 23.854 23.854 6.385 1.104 0.566
5 0.175 (8.7) 0.171 0.201 -0.158 (-7.8) 233.677 233.702 7.555 1.568 0.196

A Note: PB refers to the bias divided by the true MTD0.2 = 2.02 in percent (i.e. percent bias).
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Figure 3.3: Comparing sampling paths of IGM, BIGM and CRM in a small sample

the CRM tends to move slowly through the dosing range. As the trial proceeds, and more

information on the true MTD is obtained, the dose allocation behavior of the BIGM begins

to resemble that of the CRM. The acceleration of this process increases with increasing λ.

In particular, the path of the BIGM with λ = 0.5 resembles the path of the IGM, and the

path of the BIGM with λ = 2.0 resembles the path in the CRM.

Table 3.1 summarizes simulation results for the IGM, the BIGM with λ = 0.5, 1.0, 2.0 and

the CRM. Specifically, Table 3.1 yields characteristics of the distribution of posterior mean

for MTD0.2, the MLE for MTD0.2, and of S25 ≡
∑25

i=1 Yi (the total number of observed AEs at

trial completion after N = 25 subjects have been treated). We first focus on the distribution

of the posterior estimate. In general, as λ increases, absolute bias in the posterior mean

tends to decrease while variance tends to increase for a given prior. Focusing on Prior 3 (the
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prior yielding an estimate of MTD0.2 that is closest to the truth), the resulting mean square

errors (MSEs) in the BIGM are generally smaller than the resulting MSEs in the CRM and

are close to the IGM for small values of λ. In that prior, the resulting MSEs are 0.405,

0.396, 0.409, 0.425 and 0.474 in the IGM, the BIGM with λ = 0.5, 1.0, 2.0 and the CRM,

respectively. In Prior 1 (the most conservative prior yielding a relatively low estimate of

MTD0.2), the respective resulting MSEs are 0.723, 0.641, 0.623, 0.623 and 0.575. The wider

sampling scheme reduces variability in posterior estimation but increases the magnitude of

underestimation. As a result, the IGM has the maximum MSE despite having minimum

variance. In Prior 5 (prior estimate of MTD0.2 is relatively high), the respective results are

0.225, 0.250, 0.250, 0.232, and 0.201. Ironically, the smallest MSE is achieved in the CRM

by failure of preventing early trial participants from severe underdosing and overdosing.

Although the simulated MSEs of the BIGM are not always smaller than the MSEs of the

IGM and the CRM (e.g. Prior 5), the BIGM achieves a reasonable compromise between the

IGM and the CRM in most cases with respect to the trade-off between bias and variance in

posterior estimation of MTD0.2.

The operating characteristic of each design is also well reflected through the resulting distri-

bution of the MLE for MTD0.2. In particular, the IGM results in a more stable distribution

for the MLE when compared to the CRM. The narrow sampling scheme of the CRM occa-

sionally results in an extreme MLE particularly when observed S25 is too small or too large.

In theory, the expectation of the MLE for MTD0.2 is unbounded because P (S25 = 0) > 0 in

small samples. Observing S25 = 0 tended to be rare in the presented simulation studies, but

the variance of the MLE under the CRM was still observed to be large, particularly when

using a prior where the estimate of MTD0.2 was far away from the truth (e.g. variances of the

MLE were estimated to be 145.357 under Prior 1 and 233.677 under Prior 5). What is ob-

served is that the resulting distribution of the MLE is very sensitive to prior mis-specification

when the CRM is used, but the variance of the MLE gradually decreases when the BIGM

is used, particularly when λ approaches zero (converging toward the IGM). By eliminating
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prior information in the final estimate of the MTD, the bias of the MLE is close to zero in

most cases. As such, from Priors 1 to 5 the resulting MSEs are 0.569, 0.568, 0.570, 0.570 and

0.700 in the IGM, 1.095, 0.751, 0.684, 0.501, 0.884 in the BIGM with λ = 0.5, and 145.476,

40.792, 3.512, 23.854 and 233.702 in the CRM.

Finally we turn our focus to the resulting distribution of S25. For N = 25 and γ = 0.2, a

desired distribution of S25 should have a single mode near N × γ = 5 with a sharp peak.

In the IGM, the BIGM with λ = 0.5, 1.0, 2.0 and the CRM, the respective probability of

observing 4 to 6 AEs at the completion of a given trial was estimated to be 1.000, 0.951,

0.866, 0.797 and 0.636 for Prior 1, 0.980, 0.948, 0.913, 0.876, and 0.856 for Prior 3, and 0.513,

0.434, 0.383, 0.320 and 0.196 for Prior 5. In each case, the narrow sampling scheme of the

CRM results in the lowest probability of observing a total number of AEs in the target range.

Conversely, the wide sampling scheme of the IGM results in the highest observed probability

in each case and the lowest variability in the total number of observed AEs. As intended the

BIGM serves as a compromise between the two approaches. Comparing with the resulting

distributions of the posterior estimate of MTD0.2, the total number of observed AEs landing

in the target range is partially attributable to increased precision in the estimate of MTD0.2.

To summarize the simulation results, the IGM tends to yield more precise estimates of the

MTD and hence smaller variability in the total number of observed AEs across simulated

trials. In contrast, the CRM tends to yield lower bias in the estimated MTD though with

lower precision and high variability in the total number of observed AEs. The proposed

BIGM performs as intended, seeking to balance the positive operating characteristics of each

procedure. The result is a class of dosing algorithms that yields relatively low MSE for the

estimated MTD, low variability in the total number of observed AEs, and high probability of

observing a total number of AEs in the anticipated target range. , The choice of λ, and hence

the level of compromise between the IGM and CRM, can be made relative to the clinical

setting being investigated. Specifically, in cases where less severe AEs are anticipated, values
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of λ closer to 0 (approximating the behavior of the IGM) may be preferred. In cases were

severe AEs are anticipated, large values of λ (approximating the behavior of the CRM) may

be preferred along with the possible addition of overdose control procedures.

3.4 Design of a HIPEC Dosing Trial

Figure 3.4: Approximate prior distribution of the MTD in the HIPEC trial
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Hyperthermic intraperitoneal chemotherapy (HIPEC) is used to treat abdominal cancers in-

cluding ovarian, stomach, and peritoneal cancers. It has been hypothesized that chemother-

apy becomes more effective without increasing the strength of the chemotherapy when active

chemicals are heated. The treatment has been used based on clinicians’ common knowledge

without a formal determination of the MTD. Here we consider use of the proposed the BIGM

for estimating the MTD of HIPEC in a proposed clinical study. Specifically, in the HIPEC

dosing study the target risk level is γ = 0.35 and the goal is to determine MTD0.35 based

upon a total trial sample size of N = 30. Six experimental doses are to be considered with

values of 450, 600, 750, 900, 1050, and 1200 g/m2. Hence the goal is to determine the MTD
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corresponding to the closest dose level of the estimated MTD0.35. Unlike typical Phase I

clinical trials, an informative prior is available because the HIPEC treatment has been prac-

ticed in the past. For a conditional mean prior, the research team selected two doses at

x−1 = log(450) and x0 = log(1200) with (a−1, b−1) = (1.38, 9.63) and (a0, b0) = (3.06, 1.16).

When compared to the simulation setting defined in Section 3.1, the HIPEC trial is different

in that the action space is discrete with six possible experimental doses, the target risk level

is greater than γ = 0.2, and the prior specification is fairly strong. Figure 3.4 presents the

approximate induced prior distribution of MTD0.35 with the vertical line indicating the prior

mean of 760 g/m2.

We compare the operating characteristics of the IGM, the BIGM with various values of λ

and the CRM with respect to the distribution of estimated MTD, of dose allocation, and

of S30 =
∑30

i=1 Yi. We consider six scenarios where the true MTD0.35 is located at the ith

experimental dose in the ith scenario. In Scenario 1, the true probabilities of an AE at the six

experimental doses are (0.35, 0.45, 0.53, 0.60, 0.65, 0.69). In Scenarios 2 to 6, the respective

probabilities are (0.15, 0.35, 0.56, 0.72, 0.83, 0.89), (0.15, 0.25, 0.35, 0.45, 0.53, 0.60), (0.15,

0.22, 0.29, 0.35, 0.41, 0.46), (0.15, 0.20, 0.26, 0.31, 0.35, 0.39), and (0.15, 0.20, 0.24, 0.28,

0.32, 0.35). These scenarios are generated under the two-parameter logistic model.

Table 3.2 summarizes simulation results considered in the design of the HIPEC trial. We first

focus on the first two scenarios when the prior guess, E(MTD0.35) ≈ 750 g/m2, is above the

true MTD. In Scenario 1 (MTD = 450), the resulting probability of correct posterior guess

for MTD is 0.451, 0.445, 0.427, 0.426 and 0.415 in the IGM, the BIGM with λ = 0.5, 1.0, 2.0

and the CRM, respectively. In Scenario 2 (MTD = 600), the respective result is 0.824,

0.798, 0.788, 0.771, and 0.780. The IGM provides the most accurate final decision at the

cost of increased variance in dose allocation. The BIGM makes the compromise between

the trade-off. In Scenario 1, when the experimental drug is relative toxic, E(S30) = 13.0 in

the IGM and E(S30) = 13.6 in the CRM, and the BIGM gradually decreased the average
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as λ increases. When the true MTD is at the low end of the action space, V ar(S30) is

the maximum in the IGM as opposed to the case of continuous action space, while the

variance is smaller in the BIGM than both IGM and CRM. In Scenario 2, E(S30) = 11.5

and V ar(S30) = 0.6 in the IGM, and E(S30) = 12.2 and V ar(S30) = 2.0 in the CRM. In this

scenario, the BIGM shows the monotonic trend in both E(S30) and V ar(S30) with respect

to the tuning parameter λ. This trend is similar to the case of continuous dosing schedule.

In these two scenarios, the BIGM provides a reasonable compromise with respect to the

posterior estimation, dose allocation and the number of AEs.

We now focus on Scenarios 3, 4 and 5, when the prior guess is close to the true MTD or below.

In these cases, the information gain procedure is not useful. In Scenario 3 (MTD = 750), all

designs yield the probability of correct guess between 0.514 and 0.529, whereas the probability

of dose allocation at the maximum dose 1200 g/m2 is 0.114 in the IGM and 0.015 in the

CRM. The degree of under- and overdosing is reduced in the BIGM by increasing λ. In

Scenario 3, E(S30) = 10.8 in the CRM which is about 0.3 greater than the results in the

IGM and BIGM. On the other hand, V ar(S30) = 2.2 in the CRM is substantially greater

than V ar(S30) = 0.9 in the IGM, while the variance in the BIGM gradually decreases as λ

decreases toward zero. At the cost of high variability in dose allocation, the IGM obtains a

stable behavior of S30. Similar trends in the posterior estimation, dose allocation and S30

are found in Scenarios 4 and 5.

In Scenario 6 (MTD = 1200), when the prior guess is severely lower than the true MTD,

a deviation by one dose level from the true MTD appears to be tolerable because the true

dose-response curve rises gently. In this scenario, the probability of an AE at doses 1050

and 1200 g/m2 is 0.32 and 0.35, respectively. The resulting probability of the posterior guess

at one of the two doses is 0.599, 0.578, 0.572, 0.573 and 0.571 in the IGM, the BIGM with

λ = 0.5, 1.0, 2.0 and the CRM, respectively. The respective probability of dose allocation at

the two doses is 0.501, 0.447, 0.422, 0.398 and 0.416. In this scenario, the BIGM tends to
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reduce the degree of under estimation at the end of a trial and of underdosing during a trial.

All five designs show similar average and variance of S30.

When we alter the prior specification more conservatively so that E(MTD0.35) ≈ 550 g/m2,

the BIGM shows the balancing properties in Scenarios 3, 4, 5 and 6, but not as clearly in

Scenarios 1 and 2 because the action space is bounded at the low end. It implies that the

BIGM (and the IGM as a special case) requires a sufficient room for dose allocation in order

to show its intended properties.

3.5 Discussion

In this section, we provide a tractable interpretation of the loss function utilized by the IGM

based on its mathematical decomposition. Equation (3.2) reveals that the dose allocation

rule in the IGM indeed balances individual-level ethics by a term in the numerator and

population-level ethics by a term in the denominator, but the balancing process is rather

slow as illustrated in Figure 3.1. Therefore, the loss function derived from the asymptotic

variance of the MLE for MTDγ may not be suitable in small samples, particularly when

serious AEs are to be expected. As, we sought to accelerate the compromising procedure

by gradually weighing individual-level ethics heavier as a trial proceeds with additional

acceleration after each observed AE. To this end, we have proposed an allocation procedure

that initiates dosing with an IGM-like sampling scheme to increase precision in the MTD

estimate, then make a smooth transition to a CRM-like sampling scheme to reduce potential

severe over- and underdosing.

Our proposed procedure provides freedom in the choice of the acceleration tuning parameter,

since the pace of the transition should depend upon the clinical setting being considered.

Simulation results illustrate the operating characteristics of the proposed BIGM with respect
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to balancing the distribution of the MTD estimate and the distribution of the total number

of observed AEs at trial completion. The choice of tuning parameter, λ, is non-trivial

and it should be trial-specific depending upon severity of potential AEs and anticipated

consequences from treatment failure. Based on the results presented here and extended

simulation studies, 0.5 ≤ λ ≤ 2.0 in the proposed BIGM seems to provide a reasonable

balance between the two conflicting perspectives in the CRM and the IGM. Before initiating a

trial, one possible and recommended approach is to select λ after simulating several scenarios

based on all available prior knowledge and various sensitivity parameterizations.

Recently, Oron and Hoff [47] discussed that the number of cohorts treated at the dose

level closest to MTDγ is highly variable in the CRM. They used the terms “long-memory” to

describe designs that allocate new patients at an estimated MTDγ using all observations and

“short-memory” to describe designs that use only recent observations for a new decision. The

sampling schemes in short-memory designs are wider than in long-memory designs, and they

showed short-memory designs tend to be more robust in small-sample dose-finding studies.

They also pointed out that the CRM tends to settle early on a specific dose level which is not

necessarily the MTD in small samples. In addition, the CRM is more sensitive to a prior.

From a practical standpoint, we are concerned with variability in dose allocation rather than

the amount of information influencing a new decision. However, from a statistical point of

view, eliminating a portion of data to gain robustness may not be appealing. In contrast

to short-memory designs, the proposed BIGM is able to adjust variability in dose allocation

based on all observed data.
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Table 3.2: Simulation results (prospective HIPEC trial)

SCENARIO 1 (MTD = 450)

Posterior Estimation of MTD Dose Allocation Number of AEs
Method 450 600 750 900 1050 1200 450 600 750 900 1050 1200 Mean Variance

IGM 0.451 0.455 0.086 0.007 0.001 0.000 0.534 0.210 0.126 0.073 0.022 0.035 13.034 3.514
BIGM (0.5) 0.445 0.465 0.083 0.007 0.000 0.000 0.440 0.348 0.137 0.053 0.012 0.011 13.016 2.875
BIGM (1.0) 0.427 0.482 0.083 0.006 0.001 0.000 0.387 0.405 0.138 0.053 0.010 0.006 13.116 2.918
BIGM (2.0) 0.426 0.481 0.085 0.007 0.000 0.000 0.332 0.455 0.151 0.049 0.008 0.003 13.229 3.138

CRM 0.415 0.485 0.093 0.006 0.000 0.000 0.240 0.501 0.195 0.054 0.008 0.001 13.586 3.284

SCENARIO 2 (MTD = 600)

Posterior Estimation of MTD Dose Allocation Number of AEs
Method 450 600 750 900 1050 1200 450 600 750 900 1050 1200 Mean Variance

IGM 0.033 0.824 0.143 0.000 0.000 0.000 0.340 0.327 0.205 0.097 0.022 0.008 11.544 0.592
BIGM (0.5) 0.038 0.798 0.163 0.001 0.000 0.000 0.199 0.518 0.216 0.053 0.010 0.003 11.662 1.070
BIGM (1.0) 0.047 0.788 0.165 0.001 0.000 0.000 0.156 0.573 0.215 0.048 0.005 0.001 11.755 1.463
BIGM (2.0) 0.055 0.771 0.172 0.001 0.000 0.000 0.113 0.620 0.222 0.041 0.004 0.001 11.879 1.813

CRM 0.077 0.780 0.141 0.001 0.000 0.000 0.066 0.656 0.242 0.034 0.002 0.000 12.224 1.978

SCENARIO 3 (MTD = 750)

Posterior Estimation of MTD Dose Allocation Number of AEs
Method 450 600 750 900 1050 1200 450 600 750 900 1050 1200 Mean Variance

IGM 0.005 0.221 0.529 0.209 0.030 0.005 0.173 0.256 0.217 0.162 0.079 0.114 10.455 0.927
BIGM (0.5) 0.005 0.214 0.524 0.214 0.036 0.006 0.081 0.277 0.334 0.188 0.063 0.056 10.461 1.430
BIGM (1.0) 0.005 0.217 0.528 0.211 0.036 0.005 0.060 0.275 0.376 0.198 0.056 0.035 10.475 1.681
BIGM (2.0) 0.004 0.220 0.514 0.212 0.042 0.008 0.040 0.273 0.411 0.202 0.051 0.024 10.466 2.071

CRM 0.005 0.219 0.525 0.205 0.040 0.006 0.008 0.240 0.454 0.227 0.057 0.015 10.759 2.236

SCENARIO 4 (MTD = 900)

Posterior Estimation of MTD Dose Allocation Number of AEs
Method 450 600 750 900 1050 1200 450 600 750 900 1050 1200 Mean Variance

IGM 0.002 0.086 0.336 0.325 0.152 0.099 0.124 0.193 0.178 0.163 0.088 0.254 9.674 1.609
BIGM (0.5) 0.002 0.086 0.320 0.335 0.157 0.100 0.059 0.174 0.265 0.229 0.108 0.165 9.650 1.939
BIGM (1.0) 0.002 0.078 0.334 0.336 0.158 0.092 0.042 0.162 0.299 0.259 0.114 0.123 9.622 2.119
BIGM (2.0) 0.001 0.083 0.332 0.330 0.156 0.098 0.027 0.159 0.327 0.279 0.117 0.091 9.582 2.340

CRM 0.001 0.079 0.335 0.329 0.159 0.098 0.004 0.126 0.347 0.305 0.134 0.084 9.803 2.530

SCENARIO 5 (MTD = 1050)

Posterior Estimation of MTD Dose Allocation Number of AEs
Method 450 600 750 900 1050 1200 450 600 750 900 1050 1200 Mean Variance

IGM 0.002 0.046 0.208 0.283 0.206 0.255 0.111 0.151 0.147 0.150 0.083 0.358 8.998 2.665
BIGM (0.5) 0.001 0.041 0.210 0.289 0.202 0.256 0.055 0.129 0.215 0.220 0.119 0.262 8.964 2.651
BIGM (1.0) 0.001 0.043 0.216 0.294 0.200 0.246 0.039 0.120 0.238 0.251 0.139 0.213 8.956 2.623
BIGM (2.0) 0.001 0.041 0.214 0.302 0.208 0.234 0.025 0.115 0.261 0.278 0.151 0.170 8.900 2.686

CRM 0.001 0.044 0.210 0.302 0.216 0.227 0.002 0.089 0.266 0.302 0.175 0.164 9.141 2.893

SCENARIO 6 (MTD = 1200)

Posterior Estimation of MTD Dose Allocation Number of AEs
Method 450 600 750 900 1050 1200 450 600 750 900 1050 1200 Mean Variance

IGM 0.001 0.026 0.140 0.234 0.204 0.395 0.110 0.126 0.125 0.138 0.076 0.425 8.425 3.315
BIGM (0.5) 0.001 0.028 0.153 0.240 0.206 0.372 0.057 0.108 0.183 0.205 0.117 0.330 8.481 3.216
BIGM (1.0) 0.001 0.031 0.154 0.241 0.208 0.364 0.042 0.104 0.200 0.233 0.142 0.280 8.462 3.124
BIGM (2.0) 0.000 0.028 0.155 0.244 0.220 0.353 0.025 0.097 0.218 0.262 0.161 0.237 8.414 3.036

CRM 0.001 0.030 0.150 0.249 0.211 0.360 0.002 0.074 0.229 0.280 0.180 0.235 8.608 3.196
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Chapter 4

Estimation of Benchmark Dose in the

Presence or Absence of Hormesis

In Chapters 2 and 3, we focused on human-based experiments where trial participants are

actual patients to be treated. We turn our attention to dose-response modeling for animal-

based experiments in Chapters 4, 5 and 6. In Chapter 4, the parameter of interest is termed

a benchmark dose in cancer risk assessments, and this quantity is analogous to a maximum

tolerable dose in early phase clinical trials. As opposed to Phase I clinical trials, we assume

that a background effect of a carcinogen (cancer-causing agent) exists. In other words,

animals (or humans) may naturally develop cancers in the absence of the cancer-causing

agent being studied. Under current practice of the Environmental Protection Agency, a

benchmark dose is defined as the dose associated with a fixed increase of risk relative to the

background risk, and an estimated benchmark dose serves as a starting point for downward

extrapolation. There are broad two classes of dose-response models, monotonicity and non-

monotonicity. As an estimated benchmark dose is sensitive to an assumed dose-response

model, we take both classes of assumptions as possibilities for robust estimation.
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4.1 Introduction

Mathematical modeling of binomial responses at fixed experimental doses is commonly per-

formed by the Environment Protection Agency (EPA) using dose-response models built in

the EPA Benchmark Dose Software (BMDS). For a given model, the parameter of interest

is a benchmark dose (BMD) that is a function of regression parameters. In toxicity as-

sessments, a BMD is the dose corresponding to a specified relative increase in the risk of a

toxic event when compared to the background risk. The specified increase is referred to as

a benchmark risk (BMR) and is often fixed at 0.01, 0.05, or 0.10 in practice.

For estimation of the BMD it is common for investigators to assume a monotonic dose-

response relationship [26]. As an alternative to the monotonic assumption, the hormesis

theory has gained popularity in recent decades. Hormesis refers to a “beneficial” effect of

an agent at low doses and a “harmful” effect at high doses. The hormesis theory is based

upon the assumption of stimulatory effects caused by low level exposures to harmful agents.

Such dose-response relationships can be visually described as a J-shaped curve at low doses.

Calabrese and Baldwin quantified evidence of hormesis and categorized approximately 350

studies into high, moderate and low hormetic effects [11]. The method was based upon

five criteria including the number of experimental doses below a hormetic zone (a set of

doses corresponding to a lower risk than the background risk), estimation of the hormetic

zone, statistical significance of the stimulatory responses, the magnitude of the stimulatory

responses, and the replicability of the results. Most toxicology studies do not have a sufficient

number of unique doses for regression; a parametric model of the underlying dose-response

relationship is nearly always employed. Following this work, multiple studies have elevated

the importance of hormesis in toxicology by reporting empirical evidence for hormesis using a

series of ad hoc methodologies [10, 14, 15, 19]. In particular, Calabrese and Cook discussed

various advantages to parameter estimation if the possibility of a hormetic function was

accepted as the default dose-response relationship in carcinogen risk assessments [15]. They
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point out that one possible advantage is the protection of both normal and high risk groups

by estimating a BMD where the corresponding risk is lower than the background for both

groups. They further pointed out that ignoring hormesis leads to a less than ideal regulatory

policy. While valid points regarding the costs of ignoring the potential for hormesis have

been raised, other authors have pointed out limitations of the ad hoc estimation approaches

typically used in previous studies and the lack of validated hypothesis testing procedures

for hormetic relationships in existing databases [42]. It has been argued that the current

practice of using a lower confidence limit of BMD (BMDL) or an averaged BMDL from

various monotonic models is conservative and health-protective, particularly when evidence

for hormesis is not definitive [26, 61].

In small-sample studies, a parametric approach requiring a model-based assumption about

the underlying dose-response relationship is often implemented for inference regarding a

BMD in order overcome sparseness in the data. To reduce the impact of model mis-

specification, we account for model uncertainty via Bayesian model averaging (BMA) [50].

That is, we do not assume a single dose-response class, but rather take the perspective of

BMA by considering both monotonic and hormetic effects as possibilities at low doses. In the

BMA approach, a model that is better supported by empirical evidence will yield a higher

contribution to the posterior inference of the parameter of interest.

Implementation of model averaging techniques has been extensively discussed in the com-

munity of risk assessment based on various information criteria including Akaike information

criterion, Bayesian information criterion, and Kullback information criterion [9, 65, 4, 41].

Shao and Small illustrated the application of BMA using Gibbs sampling for the estimation

of the BMD. They further determined optimal future experimental doses using logistic and

quantal-linear models [56]. Despite the growing popularity of BMA approaches in the risk

assessment community, to date these methods have only been described for use in averaging

over multiple models that all assume a monotonic dose-response relationship. In this case
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the resulting BMD estimate is obtained by averaging over a class of models that give zero

prior probability to the possibility of a hormetic effect at low doses.

There are many flexible dose-response models, outside the EPA BMDS, that are suitable for

modeling hormesis [40, 33]. Recently, the impact of assuming monotonicity under existence

of hormesis has been investigated in a frequentist framework [8]. Bogen studied the impact of

misspecification by generating a hormetic curve and fitting several monotonic models using

the BMDS. He used a multistage model with a quadratic term to generate the hormetic curve,

which he referred to as a generic hockey-stick (GHS) model. He reported that the GHS model

performed as well or better than the monotonic models built in BMDS in estimation of the

BMD.

In this chapter we consider estimation of the BMD using BMA under two broad dose-

response model classes: monotonicity and hormesis. Among many dose-response models in

the BMDS, we narrow the scope of our discussion to a multistage model using a Bayesian

framework. A general description of the (monotonic) linearized multistage model is given

by Crump [20]. Armitage and Doll discussed the two-stage theory of carcinogenesis [2], and

Armitage later discussed that models with several stages (e.g. five to seven) that have often

been regarded as implausible in the absence of direct biological evidence about a succession

of stages [1]. Armitage further mentioned that one can either assume more than two stages

or regard some intermediate stages as being fictional shorthand for a single phase. From a

statistical perspective, a model with more than three parameters may suffer from over-fitting

when there are four to six experimental dose groups (including a control group) as commonly

encountered in past experiments for cancer risk assessment [71].

To incorporate a hormetic class of models in the BMA approach we consider a two-stage

model (i.e. up to a quadratic term with three parameters) that allows hormetic effects at

low doses rather than the usual assumption of monotonicity. The proposed parameterization

can be also thought of as weighting two mutually exclusive parameter spaces, where the
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posterior weights are dictated by changes in the dimension and support of the underlying

model parameters.

This chapter is structured as follows. In Section 4.2, we introduce the statistical methodology

including our proposed extension to a two-stage hormetic class of models and the BMA

algorithm used to average over classes models derived from assumption of monotonicity and

hormesis. In Section 4.3, we present the results of simulation studies designed to investigate

operating characteristics of the proposed two-stage model and robustness of the BMA method

under a variety of monotonic and hormetic dose-response settings. In Section 4.4, we apply

the proposed methodology to two datasets previously reported by Kociba et al and the

NTP study that consider the carcinogenic toxicity of 2,3,7,8-Tetrachlorodibenzo-p- Dioxin

(TCDD) [38, 43]. Section 4.5 concludes with a discussion on the use of less restrictive

modeling assumptions in risk assessment studies and avenues for future research.

4.2 Methods

4.2.1 Linearized Multi-Stage Model for Potential Hormesis

Let πx(~β) denote the probability of an event associated with dose x ≥ 0, where ~β =

(β0, . . . , βM)T denotes a vector of model parameters. Assuming Y ∼ Bernoulli
[
πx(~β)

]
,

a monotonic dose-response relationship under a linearized multistage model is given by

πx(~β) = P (Y = 1 | d) = 1− e−
∑M
m=0 βmx

m

for βm ≥ 0. The multistage model is used by the EPA for cancer risk assessments [26],

typically with M = 2. The background probability at x = 0 is given by π0(β0) = 1 − e−β0 ,
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therefore β0 = −log(1− π0). By taking the derivative of πx(~β) with respect to x,

∂πx(~β)

∂x
= e−

∑2
m=0 βmx

m

(β1 + 2β2x) . (4.1)

Since the above derivative approaches β1e
−β0 as x → 0, the second parameter β1 ≥ 0

guarantees monotonicity. For x > 0 the rate of increasing toxicity is determined by β2.

In order to model a hormetic effect at low doses (i.e. beneficial effect at low doses), we

assume β0 > 0 (i.e. π0 > 0), β1 < 0, and β2 > 0. To allow for both monotonicity and

hormesis in the model, we consider −∞ < β1 < ∞ with constraint 0 < πx(~β) < 1 for

all x > 0. If a true dose-response relationship is hormetic, the minimum probability of

an event occurs at x = −β1/(2β2) > 0 from Equation (4.1), and we let δ denote that

most beneficial dose. It can be verified that the second derivative ∂2πx(~β)/∂d2 evaluated at

δ = −β1/(2β2) is positive, hence we have a J-shape curve at the hormetic zone. In order

to preserve 0 < πx(~β) < 1, we guarantee that a linear predictor,
∑2

m=0 βmx
m > 0, for all

x > 0. Finally, since we need minx>0 πx(~β) = πδ(~β) > 0, we require
∑2

m=0 βmδ
m > 0.

The parameter space for ~β = (β0, β1, β2)T can then be partitioned as Ω = ΩM ∪ ΩH , where

ΩM = (0,∞)× (0,∞)× (0,∞) and

ΩH =

{
~β ∈ (0,∞)× (−∞, 0)× (0,∞) : β2 >

β2
1

4β0

}
. (4.2)

In other words, we increase the flexibility of the two-stage model by expanding the original

parameter space ΩM . In this parameterization, we have Ω(β
(1)
0 ) ⊃ Ω(β

(2)
0 ) whenever β

(1)
0 >

β
(2)
0 (i.e. π

(1)
0 > π

(2)
0 ). Figure 4.1 shows the two-dimensional space of (β1, β2) for π0 = 0.02,

0.04, 0.06, and 0.08. When ~β ∈ ΩH the two-stage model suffers from lack of flexibility

because of its intrinsic local symmetry about x = δ. We will further discuss this limitation

in later sections.
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Figure 4.1: Parameter space under hormesis
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4.2.2 Benchmark Dose under the Two-Stage Model

The EPA defines the BMD for a given BMR as the dose that satisfies

πBMD − π0

1− π0

= BMR , (4.3)

or equivalently πBMD = π0 + (1 − π0) BMR [26]. Under the two-stage model, the BMD

satisfies

BMR = 1− e−(β1BMD+β2BMD2) . (4.4)

for a given BMR. Using the quadratic equation, the closed form for the BMD is given by

BMD =
−β1 ±

√
β2

1 − 4β2 log(1− BMR)

2β2

> 0 ,

and exactly one BMD exists even under hormesis (the positive root) because the quantity

of the square root is always greater than the magnitude of β1.
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4.2.3 Likelihood and Prior Specification

Consider I experimental doses 0 ≤ x1 < · · · < xI . If x1 > 0, the background risk π0

is estimated from a parametric assumption. Further suppose Yi ∼ Binomial(ni, πxi) arise

independently, i = 1, . . . , I. The likelihood function is then given by

L(~β) = f(~y | ~β) ∝
I∏
i=1

[
πxi(

~β)
]yi [

1− πxi(~β)
]ni−yi

,

where ~y = (y1, . . . , yI) denotes realized Binomial outcomes.

The prior specification for ~β can be done in various ways. Since there is a one-to-one

relationship between the background effect π0 and β0 = −log(1 − π0), we can specify a

Beta distribution for π0 and sebsequently induce the prior distribution for β0 using Jacobian

transformation. Given β0, we assign a joint conditional prior distribution for (β1, β2) so that

the joint support of ~β satisfies Ω = ΩM ∪ΩH . Detailed discussion about a prior specification

is provided in Appendix A.3 and Gibbs sampling method for numerically approximate the

posterior is provided in Appendix A.4.

4.2.4 Connection to Bayesian Model Averaging

Shao and Small used BMA with two models, logistic and quantal-linear, to account for model

uncertainty, but both models were restricted to monotonicity [56]. If we treat a two-stage

model with ~β ∈ ΩM and a two-stage model with ~β ∈ ΩH as two dose-response models,

posterior inference for a BMD using a two-stage model with the parameter space Ω =

ΩM ∪ΩH can be regarded as BMA-based inference based on the two models. Alternatively,

the proposed parameterization can be also regarded as weighting two mutually exclusive

parameter spaces under the same model, where the posterior weights are determined by the

plausibility of the disjoint supports of the model parameters given data.
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Using BMA, if µ is a parameter of interest whose interpretation is the same under the two

models (e.g. µ = BMD), by the law of total probability, the posterior distribution of µ is

given by

f(µ | ~y) = f(µ | ~y, β1 < 0)P (β1 < 0 | ~y) + f(µ | ~y, β1 ≥ 0)P (β1 ≥ 0 | ~y) .

Note that the parameter space of ~β = (β0, β1, β2) can be partitioned into two sets ΩM

and ΩH by the sign of β1. A more formal discussion about the proposed parametrization

Ω = ΩM ∪ ΩH in conjunction with BMA is provided in Appendix A.5.

4.3 Simulations

In this section we investigate the impact of assuming monotonicity (ΩM) when hormesis

(ΩH) is present and visa versa under the two-stage model in the context of BMD estimation

(for BMR=0.10). We also examine the robustness of the BMA method under the increased

flexibility of the two-stage model with Ω = ΩM ∪ ΩH . We further consider the impact of

model misspecification when the true dose-response relationship lies outside the two-stage

model parameterization.

4.3.1 Simulation

In the presented simulation studies we assumed that N = 150 observations were available

with five experimental doses (d1, . . . , d5) such that the five experimental groups had the same

sample size (i.e. ni = 30). We take x1 = 0 in order to estimate the background probability π0.

For a prior specification extensively discussed in Appendix A, we assume truncated normal

priors for β1 and β2 given β0, and let µ = 0 and σ2 = 102 (i.e. the mean and the variance

before truncation), setting the bounds such that the parameter space satisfies Equation (4.2).
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Figure 4.2: Simulation scenarios.
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(b) Scenario 2
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(c) Scenario 3
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(d) Scenario 4
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(e) Scenario 5
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(f) Scenario 6
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Table 4.1: Simulation scenarios

Scenario Experimental Doses True Probabilities BMD Remark
1 (0.00, 0.17, 1.33, 0.67, 1.00) (0.02, 0.11, 0.27, 0.64, 0.88) 0.17 Monotonic (parametric) A

2 (0.00, 0.17, 1.33, 0.67, 1.00) (0.12, 0.04, 0.08, 0.41, 0.77) 0.49 Hormetic (parametric) A

3 (0.00, 0.02, 0.10, 0.20, 1.00) (0.10, 0.02, 0.12, 0.19, 0.65) 0.20 Hormetic (nonparametric)
4 (0.00, 0.14, 0.32, 0.45, 1.00) (0.10, 0.02, 0.12, 0.19, 0.65) 0.45 Hormetic (nonparametric)
5 (0.00, 0.10, 0.25, 0.50, 1.00) (0.10, 0.11, 0.13, 0.17, 0.24) 0.62 Monotonic (parametric) A

6 (0.00, 0.10, 0.25, 0.50, 1.00) (0.15, 0.10, 0.06, 0.06, 0.30) 0.90 Hormetic (parametric) A

A The dose-response curve was generated from a two-stage model.

To express large prior uncertainty for θ = P (β1 < 0), we let θ ∼ Beta(1.01, 1.01) so that 95%

of mass was between θ = 0.03 and θ = 0.97. We further set our best guess for π0 as π̂0 = 0.10

(the prior mode) and we assumed 95% certainty that π0 could not exceed 0.50. Using the

bisection method, we could find a0 and b0 such that π̂0 = (a0 − 1)/(a0 + b0 − 1) = 0.10 and

P (π0 < 0.50) =

∫ 0.50

0

Γ(a0 + b0)

Γ(b0) Γ(b0)
πa0−1

0 (1− π0)b0−1 dπ0 = 0.95 .

The prior opinion about π0 was then modeled as π0 ∼ Beta(a0 = 1.36, b0 = 5.12).

Based upon the above assumptions, we considered six simulation scenarios with the normal-

ized dose scale [0, 1] (Figure 4.2 and Table 4.1). Scenarios 1 and 2 are under the two-stage

models with (β0, β1, β2) = (0.02,0.30,1.80) and (0.13, -0.90, 2.25), respectively. Scenario 1

is a monotonic case, and Scenario 2 is a hormetic case. To investigate the impact of model

misspecification, we nonparametrically fixed five probabilities at given experimental doses

in Scenarios 3 and 4. Both scenarios are hormetic cases, where Scenario 3 is designed to

investigate the impact of severe asymmetry of a hormetic zone while the degree of asym-

metry is relatively mild in Scenario 4. As opposed to the first four scenarios in which the

probabilities at maximum experimental doses are quite high (πx5 ≥ 0.65), the last two sce-

narios, Scenarios 5 and 6, were designed so that the probabilities at maximum experimental

doses are relatively low (πx5 ≤ 0.30). Under two-stage models, monotonic Scenario 5 used

(β0, β1, β2) = (0.10, 0.15, 0.03) and hormetic Scenario 6 used (β0, β1, β2) = (0.16,−0.60, 0.80).
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Table 4.2: Simulation results

Parameter Space Scenario BMD Bias Percent Bias MSE Percent
√

MSE P (BMD ∈ CI0.95)

Ω

1 0.17 0.03 20.0 3e-3 31.6 0.95
2 0.49 -0.06 -11.6 0.01 17.6 0.88
3 0.20 0.06 27.8 0.01 47.5 0.98
4 0.45 -0.02 -3.9 3e-3 12.5 0.94
5 0.62 0.12 19.9 0.06 40.6 0.98
6 0.90 -0.10 -11.0 0.03 19.1 0.88

ΩM

1 0.17 -0.01 -4.7 8e-4 15.9 0.98
2 0.49 -0.22 -44.6 0.05 44.9 0.00
3 0.20 -2e-3 -0.9 2e-3 23.2 0.98
4 0.45 -0.12 -27.6 0.02 28.3 0.04
5 0.62 -0.03 -4.4 0.02 20.7 0.95
6 0.90 -0.28 -31.6 0.10 34.6 0.57

ΩH

1 0.17 0.09 50.3 0.01 52.8 0.02
2 0.49 -0.04 -9.00 0.01 15.3 0.89
3 0.20 0.19 95.7 0.04 100.9 0.00
4 0.45 2e-3 0.5 4e-3 13.4 0.97
5 0.62 0.29 46.1 0.15 61.8 0.68
6 0.90 -0.05 -5.61 0.02 16.7 0.90

Through the four hormetic scenarios (Scenarios 2, 3, 4, and 6), we investigated the operating

characteristics of the proposed parameterization under various lengths of a hormetic zone

and locations of a BMD in the unit scale as shown in Figure 4.2.

4.3.2 Simulation Results

Table 4.2 summarizes the results of 10,000 simulations in each of the four scenarios. In

Scenario 1, where the true dose-response relationship was generated by the monotonic two-

stage model, the expectation of point estimates for the BMD was 0.20, compared to the

true BMD of 0.17 (0.03 bias and 20.0% bias), and 95% credible intervals (CIs) for the BMD

covered the true value with probability 0.95. Focusing on the conditional results, when we

constrain the model fit to β1 ≥ 0 (i.e. ΩM) or to β1 < 0 (i.e. ΩH), the performances of

the two models were remarkably different. When conditioning on β1 ≥ 0, the percent bias

was -4.7%, the percent
√

MSE was 15.9%, and the coverage probability was 0.98. On the

other hand, when conditioning on β1 < 0, which was the incorrect trend at low doses, the

75



respective results were 50.3%, 52.8%, and 0.02. We could anticipate severe under-coverage

because of the transition from a negative slope to a positive slope at low doses resulting in

overestimation of the BMD when the true trend was monotonic. The posterior probability

of a hormetic effect, P (β1 < 0 | ~y), was estimated in this scenario to be 0.47 on average.

Focusing on Scenario 2, where the true dose-response relationship was generated by the

hormetic two-stage model, the percent bias and percent
√

MSE were -11.6% and 17.6%,

respectively, and the coverage probability of 95% CIs was 0.88 marginally. Conditioning on

the two parameter spaces separately, the coverage probabilities were 0.00 and 0.89 under

ΩM and ΩH , respectively. Although the marginal coverage probability of 0.88 was below

the nominal 0.95, the results highlight (1) the negative impact of ignoring hormesis when

there exists a hormetic zone at low doses and (2) the robustness gained by using the BMA

method. On average, P (β1 < 0 | ~y) = 0.92 in the second scenario.

The results from Scenario 3 illustrate a limitation of the hormetic two-stage model. Recall

that the true dose-response relationship was generated with an asymmetric hormetic zone.

Since this shape could not be represented via the two-stage model, we should expect some

impact of model misspecification. The conditional percent bias and
√

MSE were -0.9% and

23.2%, respectively, under ΩM , while the respective results were 95.7% and 100.9% under

ΩH . The coverage probabilities were 0.98 and 0.00 under ΩM and under ΩH , respectively.

Without considering the impact of model misspecification, the results were the opposite

from our anticipation because the conditional results from ΩM were more satisfying than

the conditional results from ΩH despite the true dose-response curve being hormetic. By

applying the BMA method, however, the percent bias and
√

MSE were 27.8% and 47.5%

with coverage probability 0.98. An illustration of the results follows. In this scenario, when

a posterior draw of ~β was in ΩM (i.e. β1 ≥ 0), the estimated monotonic dose-response curve

often passed through the first two points marked by “O” in the third panel of Figure 4.2.

As a consequence, on average, the deviation of an estimated BMD from the true BMD was
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not too serious despite the incorrect monotonicity assumption. On the other hand, when a

posterior draw for ~β was in ΩH (i.e. β1 < 0), the estimated hormetic zone was generally

longer than the truth, and such tendency caused the larger positive bias for the BMD. On

average, P (β1 < 0 | ~y) = 0.31 in the third scenario, which is quite small when we consider a

hormetic effect truly exists in this scenario.

Revisiting Figure 4.2d, recall that the hormetic zone was approximately symmetric in Sce-

nario 4. When conditioning on ΩM , we observed -27.6% bias, 28.3%
√

MSE, and a coverage

probability of 0.04. On the other hand, when conditioning on ΩH , we observed 0.5% bias,

13.4%
√

MSE, and a coverage probability of 0.97. The BMA with Ω = ΩM ∪ ΩH yielded

-3.9% bias, 12.5%
√

MSE, and 0.94 coverage probability. On average, P (β1 < 0 | ~y) was

estimated to be 0.78 in this scenario. A take-home message from Scenarios 3 and 4 is that

BMA is robust in these simulations not only because it allows for monotonicity or hormesis

in the two-stage model, but also because that flexibility allows it to perform better when

that model is mis-specified due to asymmetry in the hormetic zone.

The results from Scenario 5 showed the similar trend when compared to the results from

Scenario 1. Despite the highest response was relatively lower in the fifth scenario, the

magnitude and the direction of bias under ΩM , ΩH , and Ω were similar. The results from

hormetic Scenario 6 and the results from hormetic Scenario 2 were similar as well. In

particular, the smaller absolute bias and MSE and better coverage probability were shown in

ΩH than in ΩM . In addition, the results in Ω was closer to the results in ΩH which contained

the true parameter values. On average, P (β1 < 0 | ~y) was 0.46 and 0.80 in Scenarios 5 and

6, respectively. The simulation results from the last two scenarios show the robustness of

the BMA with Ω = ΩM ∪ ΩH when the probability at the maximum experimental dose is

quite low. In all scenarios, a larger value of σ does not lead to significantly different results.
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4.4 Applications

4.4.1 Hyperplastic Nodule and Hepatocellular Carcinoma

Kociba et al studied toxicity of 2,3,7,8-TCDD including the tumor category of hyperplastic

nodules and hepatocellular carcinoma at four fixed doses 0, 1, 10, and 100 ng/kg/day [38].

Hyperplastic nodules are characterized by abnormal growth of thyroid tissue, and hepatocel-

lular carcinoma is one of most common types of liver cancer which is known to be related to

viral hepatitis or cirrhosis. The observed proportions of incidence yi/ni in Sprague-Dawley

rats were 9/86 = 0.105, 3/50 = 0.060, 18/50 = 0.360, and 34/48 = 0.708 at the four doses,

respectively (N = 234). The data was recently analyzed by Small and Shao using BMA

with two monotonic dose-response models, the logistic and quantal-linear models. In their

analysis the posterior means for the BMD (at BMR = 0.10) were 20.93 and 8.08 with 5th

percentiles (BMDL) 16.70 and 5.85 under the two models, respectively. They also reported

MLEs for the BMD and BMDLs under the eight different models built into the EPA BMDS.

The MLEs ranged from 3.226 to 20.667 ng/kg/day, and the BMDLs ranged from 1.244 to

16.722 ng/kg/day under the eight models, which showed model-sensitivity even under the

same class of monotonic assumptions.

In the prior elicitation under the two-stage model, we expressed large uncertainty for β1

and β2. For β1 we used the truncated normal distributions TN(µ = 0, σ2 = 102, 0,∞) for

ΩM and TN(µ = 0, σ2 = 102,−∞, 0) for ΩH . For β2 | β0, β1 we used TN(µ = 0, σ2 =

102, β2
1/(4β0),∞) for both parameter spaces. For β0 we transformed π0 ∼ Beta(a0, b0) to β0

using the Jacobian transformation with a0 = 1.01 and b0 = 1.01 to elicit large uncertainty.

The same Beta distribution for θ = P (β1 < 0) was used as in the previously presented

simulation studies, aθ = bθ = 1.01, so that P (ΩM) = P (ΩH) = 0.5.

When we restricted the parameter space to ΩM , the posterior mean of the BMD was 12.83
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ng/kg/day with BMDL 7.87 ng/kg/day. For ΩH the posterior mean of the BMD was 35.28

ng/kg/day with BMDL 27.83 ng/kg/day which were nearly three times greater than the

results under the monotonic assumption. For Ω = ΩM ∪ ΩH utilizing BMA with the equal

prior probability on the two classes, the posterior mean of the BMD was 13.78 ng/kg/day

with BMDL 7.88 ng/kg/day which were close to the results for ΩM . In the BMA approach,

the posterior mean of β1 was 0.008 with 95% CI (-0.001, 0.015) which was strong evidence

for monotonicity under the model. The small posterior probability P (β1 < 0 | ~y) = P (ΩH |

~y) = 0.043 also explained why the BMA-based estimation was highly skewed towards ΩM (see

Table 4.3). In considering sensitivity of the posterior probabilities to the prior specification,

it is worth considering the degree of prior weight one would have had to place on a hormetic

dose response curve in order to obtain a posterior decision in favor of hormesis. In this

case, in order to achieve P (ΩH |~y) = 0.5 and 0.9, we would have needed to select (aθ, bθ)

such that P (ΩH) = 0.957 and 0.995, respectively. That is, one would have been nearly fully

convinced of a hormetic dose response curve prior to experimentation in order to conclude

the possibility of hormesis after incorporating the observed data.

If the true value of π0 was approximately 0.10, then the true BMD (at BMR = 0.10) should

satisfy πBMD ≈ 0.10 + (1− 0.10)× 0.10 = 0.19. We could infer that the true BMD might lie

between x1 = 0 and x3 = 10 ng/kg/day unless the true dose-response relationship behaved

awkwardly. Even if a hormetic zone was truly present, it might be difficult to believe the

posterior inference under ΩH . Instead, the results under ΩM seem to be more reasonable

in this setting. By relying on the robustness of BMA in the estimation of the BMD (see

simulation Scenario 3), the BMA-based estimation seems a more reasonable approach when

compared to simply conditioning on ΩH , despite the observed data revealing a decrease in

the response probabilities at low doses relative to the background.

Figure 4.3 plots the estimated dose-response curves using the posterior mean of ~β under

the four different models: two-stage monotonic, two-stage hormetic, logistic, and quantal-
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Figure 4.3: Estimated dose-response curves (Kociba et al, 1978)
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(b) Magnifying low doses

linear models. The estimated curves under the logistic and quantal-linear models were

drawn using the posterior means reported by Shao and Small [56]. Figure 4.3a presents the

whole experimental range from 0 to 100 ng/kg/day, and Figure 4.3b magnifies the lower-left

quadrant of the left panel. The vertical lines in the left panel indicate the posterior means

of the BMD conditioning on each model, and the vertical lines in the right panel indicate

the corresponding BMDLs. As shown in the figure, the fits under the two-stage monotonic

model and the quantal-linear model are very similar because the two models are nested (i.e.

β2 = 0 in the two-stage). The negative slope in the two-stage hormetic model pulled the

estimated BMD and BMDL away from x = 0 when compared to the other monotonic models.

Although we observed y1/n1 > y2/n2 < y3/n3 in the dataset, the two-stage hormetic model

could not generally detect the empirical trend during Gibbs sampling due to the extreme

asymmetry of the dose response curve about the nadir.
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Table 4.3: Estimated BMDs and BMDLs

Tumor Category Parameter Space E(BMD | ~y) BMDL P (β1 < 0 | ~y)

Hyperplastic nodule, hepatocellular carcinoma
ΩM 12.83 7.87 0.000
ΩH 35.28 27.83 1.000
Ω 13.78 7.88 0.043

Female rats liver neoplastic nodule
ΩM 39.97 25.62 0.000
ΩH 54.80 42.97 1.000
Ω 47.52 28.40 0.509

4.4.2 Liver Neoplastic Nodules in Female Rats

Following Kociba et al’s study in 1978, the NTP conducted several experiments to investigate

the carcinogenesis of 2,3,7,8-TCDD. Here we focus on one particular dataset for the tumor

category liver neoplastic nodule [43]. The dataset included Binomial responses in Osborne-

Mendel female rats at four experimental doses 0, 1.4, 7.1, and 71 ng/kg/day. The observed

proportions of tumor occurrence were 5/75 = 0.067, 1/49 = 0.020, 3/50 = 0.060, and

12/49 = 0.245, respectively (N = 223). Under the logistic and quantal-linear models,

by Shao and Small, the posterior means of the BMD were 50.85 and 33.52 ng/kg/day,

respectively, and BMDLs were 36.06 and 18.35 ng/kg/day, respectively [56]. Even under the

same class of assumptions, the two results greatly differ, particularly the two-fold relative

difference in the estimated BMDLs.

We used the same vague prior distributions described in Section 4.4.1 and P (ΩM) = P (ΩH) =

0.5. Under the two-stage monotonic model, the posterior mean of the BMD was 39.97

ng/kg/day with BMDL of 25.62 ng/kg/day. Under the two-stage hormetic model, the pos-

terior mean of the BMD was 54.80 ng/kg/day with BMDL of 42.97 ng/kg/day. Applying the

proposed BMA with the equal prior probability on the two classes, the posterior mean of the

BMD was 47.52 ng/kg/day with BMDL of 28.40 ng/kg/day with P (β1 < 0 | ~y) = P (ΩH |

~y) = 0.509. That is, our posterior belief for the two classes of assumptions, monotonicity

and hormesis, has not changed much from the prior belief. In this case, in order to obtain

P (ΩH |~y) = 0.9, we would have required a prior probability of hormesis of 0.897.
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Figure 4.4 plots the estimated dose-response curves under the four models. As in Kociba et

al’s study, the negative slope in the hormetic model led to the relatively larger estimate of

the BMD and BMDL when compared to the other three models. One major difference from

the Kociba et al dataset is the less severe asymmetry in the empirical hormetic zone, which

partially accounts for the greater posterior probability of ΩH when compared P (ΩH | ~y) =

0.043 in the Kociba’s dataset.

In Figure 4.4a we can see that the four fitted curves passes near the coordinate (x4 =

71, y4/n4 = 12/49) due to the high leverage of this dose level. The hormetic model is sensitive

to this impact because the leverage point tends to extend the length of an estimated hormetic

zone. It is a potential source of overestimation of the BMD under the hormetic model. If the

hormetic model truly overestimated the BMD, the potential positive bias could be relieved

to some degree by BMA because

E(BMD | ~y,Ω) = 0.509E(BMD | ~y,ΩH) + 0.491E(BMD | ~y,ΩM) .

Despite P (ΩH | ~y) ≈ P (ΩM | ~y), BMDL = 28.40 under Ω was closer to BMDL = 25.62

under ΩM alone when compared to an estimated BMDL of 42.97 under ΩH .

4.5 Discussions

Our discussion has focused on the estimation of the BMD accounting for possible hormetic

dose-response relationships. To this end we have extended the nonnegative parameter space

in the classic two-stage model. We also illustrated that the two-stage model with Ω =

ΩM ∪ ΩH is equivalent to a BMA approach, while the sign of β1 determines the class of

assumptions. In the presented simulation studies, the BMA approach exhibited robustness

in the estimation of the BMD when compared to assuming only one class of assumptions
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Figure 4.4: The estimated dose-response curves (NTP, 1982)
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(b) Magnifying low doses

(either monotonic or hormetic). In particular, undesirable results in the average percent

bias in the BMD estimate and coverage probability of 95% CIs could be avoided by the new

parameterization. Modification of any generalized linear model to allow a hormetic effect

can be done in a similar manner.

Some models in the EPA BMDS, such as multistage models, the logistic model, and the probit

model, take an original dose x in the linear predictor. A common pitfall of those models in

the estimation of the BMD is the effect of leverage. It can be shown that, under the model

with a linear predictor, the second derivative of the log-likelihood with respect to the slope

parameter involves the second order of x. As a consequence, the highest experimental dose

provides the most information regarding the slope parameter and possibly produces a large

bias in the estimate of the BMD at a low BMR. In the two applied examples presented here,

we observed that the fitted models tended to chase the last data point due to this leverage.

As pointed out, a limitation of the two-stage hormetic model developed here is the symmetry

of a hormetic zone. This assumption may lead to a positive bias as shown in the third
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simulation scenario and the two applied examples. This behavior has implication with respect

to public safety since overestimation of the BMD is generally more detrimental than the

underestimation of the same magnitude in cancer risk assessments. To break the symmetry,

we could add an additional parameter in the linear predictor as
∑2

m=0 βm (di/dI)
β3 , where xI

is the maximum experimental dose, if I > 4. In addition to allowing an asymmetric hormetic

zone, a potential leverage effect can be reduced if β3 < 1. This parameterization in the

multistage model still allows us to partition the parameter space by the sign of β1. The three-

stage model with the linear predictor
∑3

m=0 βmdi does not have this property (i.e. a single

parameter determines a class of assumption), thus classification of dose-response patterns

is not simple. In the applied examples, however, using the four-parameter (asymmetric)

hormetic model might not be appropriate since I = 4 for both datasets. However, such a

parameterization may be useful when data are available at more experimental doses.

If the true dose-response relationship is strictly monotonic, the parameter of interest from a

regulatory perspective may still be the BMD for a given BMR. On the other hand, if the dose-

response relationship is hormetic, the most beneficial dose δ satisfying πδ = minx>0 πx is an

alternative parameter of interest. In either case it is important to develop robust and efficient

statistical procedures that allow for monotonicity or hormesis, and that provide information

on the posterior probabilities for these two classes of models. In addition, optimal study

designs for maximizing information regarding potential hormetic effects are needed. These

remain focuses of our future research.
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Chapter 5

Hypothesis Testing for Hormesis

In toxicology studies hormesis refers to a dose-response relationship with a stimulatory re-

sponse at low doses and an inhibitory response at high doses. In Chapter 5, we focus on

statistical methods for hypothesis testing for hormesis. We consider both parametric and

non-parametric approaches and illustrate that parametric assumptions may lead to decreased

statistical power in some cases.

5.1 Introduction

Hormesis has been extensively discussed in past literature. Calabrese and Baldwin applied a

priori criteria to a large number of toxicology studies to determine whether each study pro-

vided sufficient evidence for hormesis [11, 10]. Later, additional studies evaluated hormetic

effects in carcinogen risk assessments [14, 15, 19]. Although these studies highlighted the

potential importance of hormesis, other authors have expressed skepticism, pointing out a

lack of formality in the hypothesis testing procedures, unknown specificity and sensitivity,

and potential adverse consequences of incorporating hormetic models into policy decisions
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[21, 61, 42].

When attempting to distinguish hormesis from monotonicitic dose-response relationship, the

importance of flexible dose-response modeling has been been discussed, and many nonmono-

tonic dose-response models have been proposed [58, 53, 34, 33, 32, 8, 7, 37]. Among many

existing models, the parametric model proposed by Hunt and Bowman [34] classifies dose-

response relationships into three classes: strictly increasing, threshold (i.e. flat below some

threshold), and hormetic. This model was extended by Hunt and Rai to account for potential

random effects due to litter affiliation when testing for hormetic and threshold effects in ani-

mal studies [33]. The sample size they considered was relatively large, therefore the method

could be applied by relying on asymptotic results in a frequentist framework. Recently, Kim

et al [37] considered a multistage model which allows monotonicity and hormesis for the

estimation of a benchmark dose defined by the Environmental Protection Agency [26]. The

multistage model is a member of a class of well-known models included in the widely used

EPA Benchmark Dose Software.

The common property of the aforementioned parametric models is that they focus on sym-

metric hormetic zones only. Our proposal in this chapter is motivated by potential caveats

due to model misspecification when the true hormetic zone is not symmetric. To address the

issue, we propose two alternative methods. The first is based on the multistage model with

a nonlinear predictor. This parametric approach is able to fit an asymmetric hormetic zone

with enhanced flexibility. The second is based on a weighted average of multiple nonparamet-

ric models using Bayesian model averaging (BMA) as proposed by [50]. This nonparametric

approach quantifies the posterior probability of hormesis based on the BMA framework. In

this chapter we mainly focus on hypothesis testing for strict monotonicity (the null hypoth-

esis) versus hormesis (the alternative hypothesis).

The remainder of the chapter is organized as follows. In Section 5.2 we review the afore-

mentioned Hunt-Bowman model and propose the flexible multistage model and the non-
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parametric BMA approach. In Section Section 5.3 presents the results of a simulation study

to assess the performance of each approach for distinguishing between hormetic from mono-

tonic dose-response relationships in relatively sparse data settings that are commonly encoun-

tered in toxicology studies. In Section 5.4 we apply the proposed methods to data assessing

the carcinogenic effect of cadmium compounds in male rats. Section 5.5 summarizes the

methods considered and discusses avenues for further research in the field.

5.2 Methods

In this section we discuss three dose-response models that allow for both monotonicity and

hormesis. The first model is the Hunt-Bowman model originally proposed by Hunt and

Bowman [34] in a frequentist framework, though we implement the model in a Bayesian

framework to allow for potentially better performance in sparse data situations. The second

model is a multistage model with a nonlinear predictor, which we refer to as the multistage

model for the remainder of the chapter. The third model is a BMA-based nonparametric

approach that does not require any functional form for a dose-response relationship. Under

each model, we consider hypothesis testing for strict monotonicity versus hormesis.

5.2.1 Hunt-Bowman Model

Parameterization.

Let d ≥ 0 denote the experimental dose of a potentially toxic compound. The Hunt-Bowman

model describes a dose-response relationship by

πd(~θ) = α0 + α1d+ α2d
2 (5.1)
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for 0 ≤ d ≤ τ and

πd(~θ) =
1

1 + e−β0−β1(d−τ)
(5.2)

for d > τ , where ~θ ≡ (α0, α1, α2, β0, β1, τ) is a vector of unknown model parameters and πd(~θ)

is the probability of a positive response at dose d. To force continuity in d, there are two

restrictions α2 = −α1/τ and α0 = (1+eβ0)−1. These restrictions do not guarantee continuity

in the slope of a dose-response curve. For 0 ≤ d ≤ τ , Equation (5.1) can be written as

πd(~θ) =

(
1

1 + e−β0

)
+ αd−

(α
τ

)
d2, (5.3)

where α ≡ α1 for short, and the vector of freely varying parameters is ~θ = (α, β0, β1, τ).

This parameterization allows for a hormetic effect for d ∈ (0, τ) using the quadratic form

in Equation (5.3) and resumes the monotonic curve by the two-parameter logistic model

in Equation (5.2). In the absence of hormesis, it is equivalent to the usual two-parameter

logistic model with a background risk at d = 0.

If τ = 0, the parameter space is

ΘM = {(α, β0, β1, τ) : −∞ < β0 <∞, β1 > 0, τ = 0} ,

which does not depend on α. If τ > 0 and α 6= 0 (i.e. hormesis), the parameter space is a

subset of

Θ0 = {(α, β0, β1, τ) : α < 0,−∞ < β0 <∞, β1 > 0, τ > 0} ,

where the subset guarantees πd(~θ) > 0 for all d ≥ 0. The sufficient condition for πd(~θ) > 0

for all d ≥ 0 is the single inequality π0.5τ (~θ) > 0 in Equation (5.3). Therefore, the parameter
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space for hormesis is

ΘH =
{
~θ ∈ Θ0 : π0.5τ (~θ) > 0

}
.

In the presence of hormesis, τ represents the length of hormetic zone (defined as the range of

doses where the probability of a toxic event is less than that observed at no dose), the magni-

tude of α < 0 determines the strength of the hormetic effect, β0 determines the background

risk π0(~θ), and β1 > 0 determines the rate of increasing toxicity with respect to d ∈ (τ,∞).

We wish to test H0: τ = 0 versus H1: τ > 0, and note that there are four freely varying

parameters in ΘH and two freely varying parameters in ΘM . If τ > 0 and α = 0, the model

generates a threshold dose-response relationship, a class not focused on in this chapter.

Prior.

To implement the Hunt-Bowman model in a Bayesian framework, it is necessary to specify a

prior distribution for the model parameters. As the single value of τ (i.e. τ = 0) determines

the absence of hormesis, we consider a spike and slab prior for τ [35]. We let p0 = P (τ > 0),

the prior probability of hormesis. Then, the prior density function of τ is

f(τ) = p0 f
+(τ) + (1− p0) Iτ=0 , (5.4)

where Iτ=0 = 1 if τ = 0 (zero otherwise) and f+(τ) is a density function for τ > 0.

For an interpretable prior specification on (β0, β1), we consider a conditional mean prior

(Bedrick et al., 1996). By choosing two arbitrarily doses, say d−2 and d−1, we independently

model

πdi(β0, β1) =
eβ0+β1di

1 + eβ0+β1di
∼ Beta(ri, si)
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using the logistic link. Using Jacobian transformation, it can be shown that

f(β0, β1) =
−1∏
i=−2

Γ(ri + si)

Γ(ri) Γ(si)

(
eβ0+β1di

1 + eβ0+β1di

)ri ( 1

1 + eβ0+β1di

)si
. (5.5)

By conjugacy, ri = yi and si = ni − yi are interpreted as pseudo observations at the fixed

dose di for i = −2,−1. If it is necessary, we may choose a set of two fixed doses separately

for the monotonic and hormetic case with separate Beta distributions.

If τ = 0, we do not need to consider a prior distribution for α. Given τ > 0 and β0, a

hormetic effect can be quantified as π0(~θ)− π0.5τ (~θ) = −ατ/4. To express large uncertainty

for −ατ/4, we may consider the uniform distribution

−ατ
4

∣∣∣∣ τ, β0 ∼ Uniform

(
0,

1

1 + e−β0

)
.

That is,

f(α | τ, β0) =
τ(1 + e−β0)

4
, α ∈

(
− 4

τ(1 + e−β0)
, 0

)
. (5.6)

From Equations (5.4), (5.5), and (5.6), the joint prior density function of ~θ = (α, β0, β1, τ)

is

f(~θ) = f(α | τ, β0) f(β0, β1) f(τ) (5.7)

for ~θ in the parameter space ΘM ∪ΘH .
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Posterior.

Let di denote experimental doses for i = 0, 1, . . . , I with d0 = 0 being the control group and

0 < d1 < · · · < dI . Without loss of generality, we assume dI = 1. Given ni animals allocated

at dose di, let Yi ∼ Binomial(ni, πi) denote the number of toxic events with πi = πdi(
~θ), the

probability of a toxic event as a function of di given by the Hunt-Bowman model in Section

2.1.1. The likelihood function is

f(~y | ~θ) =
I∏
i=0

ni!

y! (ni − yi)!

{
πdi(

~θ)
}yi {

1− πdi(~θ)
}ni−yi

(5.8)

for given data ~y = (y0, y1, . . . , yn).

By assuming τ ∼ Uniform(d0, dI) in the presence of hormesis, we let f+(τ) = 1 for τ ∈ (0, 1)

in Equation (5.4). From Equations (5.7) and (5.8), the joint posterior density function is

f(~y | ~θ) =
f(~y | ~θ) f(~θ)∫

ΘM∪ΘH
f(~y | ~θ) f(~θ) d~θ

∝
{
p0τ(1 + e−β0)

4
Iτ>0 + (1− p0) Iτ=0

} I∏
i=−2

ci

{
πdi(

~θ)
}yi {

1− πdi(~θ)
}ni−yi

for ~θ respecting all constraints in the parameter space ΘM ∪ΘH , where ci is the appropriate

constant for i = −2, . . . , I and yi = ri and ni = si + ri for i = −2,−1. Particularly, in

addition to the boundary set in ΘM ∪ΘH , we condition on τ ∈ [0, 1] and force α to respect

the bounds given in Equation (5.6). Then, posterior inference for the hypothesis of hormesis

can be based on P (H0 | ~y) = P (τ = 0 | ~y) and P (H1 | ~y) = P (τ > 0 | ~y).
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5.2.2 Multistage Model

Parameterization.

Let d ≥ 0 be a dose as in the previous section. The linearized multistage model describes a

monotonic dose-response relationship by

πd(~γ) = 1− e−
∑M
m=0 γmd

m

with nonnegative coefficients [2, 1, 20]. We let M = 2 with an additional parameter γ3 such

that

πd(~θ) = 1− e−
∑2
m=0 γmd

mγ3 , (5.9)

and we allow γ1 < 0 to model a hormetic effect at low dose. Bogen and Kim et al considered

the linear predictor (i.e. γ3 = 1) for hormesis which allows a symmetric hormetic zone [8, 37].

By the nonlinear predictor in Equation (6.2), we are able to model an asymmetric hormetic

zone with a smooth transition from a hormetic zone to a monotonic zone as opposed to the

Hunt-Bowman model.

We can partition the four-dimensional parameter space for ~γ = (γ0, γ1, γ2, γ3) into two dis-

joint spaces. The monotonic parameter space is given by

ΓM = {~γ : γ0 > 0, γ1 ≥ 0, γ2 > 0, γ3 > 0} ,

and the hormetic parameter space is given by

ΓH =
{
~γ : γ0 > 0, γ1 < 0, γ2 > 0, γ3 > 0, γ2

1 < 4γ0γ2

}
.
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The last inequality guarantees πd∗ > 0, where

d∗ = d∗(~γ) =

(
− γ1

2γ2

)1/γ3

(5.10)

is the nadir of the dose-response curve (i.e. the most beneficial dose). The sufficient condition

for πd(~γ) > 0 for all d ≥ 0 is
∑2

m=0 γm(d∗)mγ3 > 0. Under this model, the length of the

hormetic zone is

d∗∗ = d∗∗(~γ) =

(
−γ1

γ2

)1/γ3

, (5.11)

where π0(~γ) = πd∗∗(~γ) and πd(~γ) < π0(~γ) for all d ∈ (0, d∗∗).

One distinction from the Hunt-Bowman model is that all four parameters are present in both

monotonic case and hormetic case. However, the nonlinear predictor may cause over-fitting,

particularly when the number of experimental doses is small. To avoid fitting a hormetic

curve to monotonic empirical points, we may impose some restrictions on ΓH . In particular,

we may be reluctant to allow d∗ < d1 and d∗∗ < d2 based on an experimental design with

a small number of experimental doses. In addition, we may not be practically interested in

extremely small hormetic effects (i.e. minimal hormetic effect). For example, if we measure

a hormetic effect by the odds ratio comparing the odds of toxicity at doses d = 0 and d = d∗,

η(~γ) =
π0(~γ)

1− π0(~γ)

1− πd∗(~γ)

πd∗(~γ)
, (5.12)

we may be interested in a hormetic case where η(~γ) exceeds some threshold. To this end,

we define a restricted hormetic zone as

Γ
(R)
H = {~γ ∈ ΓH : d∗(~γ) ≥ d∗L, d

∗∗(~γ) ≥ d∗∗L , η(~γ) ≥ ηL}
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for some d∗L ≥ d1, d∗∗L ≥ d2, and ηL > 1. In other words, Γ
(R)
H is the hormetic zone of practical

importance, and ΓH − Γ
(R)
H becomes the hormetic zone of indifference.

The role of each parameter in the multistage model is as follows: The background risk

π0(γ0) = 1 − e−γ0 is completely determined by γ0, and the sign of γ1 determines the class

of a dose-response relationship. If ~γ ∈ ΓM , we have γ1 ≥ 0. In this case, γ2 and γ3 provide

additional flexibility in a strictly monotonic dose-response curve. If ~γ ∈ ΓH , we have γ1 < 0.

In this case, γ3 controls the shape of the hormetic zone. Defining ρ ≡ d∗/d∗∗ ∈ (0, 1), the ratio

of the most beneficial dose to the length of the hormetic zone, we have γ3 = log(0.5) / log(ρ)

from Equations (5.10) and (5.11). Then, γ3 = 1 (i.e. ρ = 0.5) if the hormetic zone is

symmetric and γ3 6= 1 (i.e. ρ 6= 0.5) if the hormetic zone is asymmetric.

A test of the hypothesis H0 : ~γ ∈ ΓM (i.e. strict monotonicity) versus H1 : ~γ ∈ ΓH (i.e.

hormesis) is equivalent to testing H0: γ1 ≥ 0 versus H1: γ1 < 0 for ~γ ∈ ΓM ∪ ΓH . If

we consider the restricted hormetic zone Γ
(R)
H , the sign of γ1 distinguishes between strict

monotonicity and hormesis in the same manner.

The parameterization in Equation (6.2) dose not allow a threshold case, but an arbitrary

value of γ3 > 1 generates a threshold-like curve. If one wants to classify a dose-response

relationship into three classes including a threshold case, we may partition ΓM∪ΓH into three

regions, the zone of strict monotonicity, the zone of hormesis, and the zone of indifference.

However, the choice of boundaries for defining the corresponding parameter space regions

is not trivial, and it is also necessary to consider scientific and practical importance of

distinguishing the threshold case from the monotonic and hermetic cases.

Prior.

Unlike the prior specification under the Hunt-Bowman model, we do not need a spike and slab

prior under the multistage model. Instead, we specify a conditional joint prior distribution
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for (γ0, γ1, γ2) given γ3 using a conditional mean prior. Operationally, we can arbitrarily

select three doses, say d−3 < d−2 < d−1, and specify three independent Beta priors as

πdi(~γ) = 1− e−
∑2
m=0 γmd

mγ3
i ∼ Beta(ti, ui)

for i = −3,−2,−1. To transform from the three independent Beta distributions to the

conditional joint distribution of (γ0, γ1, γ2) given γ3, it can be shown that the determinant

of the Jacobian matrix is

det(J) = (c−1,0 − c−2,0 + c−2,−1)
−1∏
i=−3

{1− πdi(~γ)} ,

where cj,k = (djdk)
γ3(dk−dj). By letting c(γ3) = | c−1,0− c−2,0 + c−2,−1 | the conditional joint

prior density function of (γ0, γ1, γ2) given γ3 is

f(γ0, γ1, γ2 | γ3) = c(γ3)
−1∏
i=−3

Γ(ti + ui)

Γ(ti) Γ(ui)

(
1− e−

∑2
m=0 γmd

mγ3
i

)ti−1 (
e−

∑2
m=0 γmd

mγ3
i

)ui
.

(5.13)

Based on a prior belief about γ3, which determines the shape of a hormetic zone as described

in the previous section, we let γ3 ∼ f(γ3) for γ3 > 0. Then the joint prior density function

is given by f(~γ) = f(γ3) f(γ0, γ1, γ2 | γ3). Similar to the prior specification described in

Section 5.2.1, we consider ti − 1 = yi and ui = ni − yi as pseudo observations at the fixed

dose di for i = −3,−2,−1.
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Posterior.

Using the same form of the likelihood function in Equation (5.8), the joint posterior density

function of ~γ is given by

f(~γ | ~y) ∝ f(γ3) c(γ3)
I∏

i=−3

(
1− e−

∑2
m=0 γmd

mγ3
i

)yi (
e−

∑2
m=0 γmd

mγ3
i

)ni−yi

for ~γ ∈ ΓM ∪ ΓH for the unrestricted hormetic zone or ~γ ∈ ΓM ∪ Γ
(R)
H for the restricted

hormetic zone. As such, posterior inference for the hypothesis of hormesis may be based on

P (γ1 < 0 | ~y) = 1− P (γ1 ≥ 0 | ~y).

5.2.3 Nonparametric Models with Bayesian Model Averaging

Parameterization.

Suppose we have I + 1 experimental doses d0 < d1 < · · · < dI , where d0 = 0 is the

control group. We let Mj denote the jth dose-response model and πij = πdi,j denote the

probability of a toxic event at dose di under Mj for i = 0, 1, . . . , I. We do not introduce

any mathematical relationship between di and πij. Instead we consider I nonparametric

models, say M0, . . . ,MI−1. Without loss of generosity, let Mj denote a model such that

min(π0j, π1j, . . . , πIj) = πjj for j = 0, 1, . . . , I − 1. By restricting that a dose-response

curve cannot have a negative slope once it passes its nadir, M1, . . . ,MI−1 represent hormetic

models with the nadirs at d1, . . . , dI−1, respectively, and M0 represents a strictly monotonic

model. It is difficult to believe that a nadir of a hormetic zone is exactly located at some

experimental dose di, but this formulation is based on convenience. In this nonparametric

modeling, the hypothesis testing for monotonicity versus hormesis is equivalent to H0: M0

versus H1:
⋃I−1
j=1 Mj.
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Prior.

We let ~πj = (π0j, π1j, . . . , πIj) denote the vector of parameters under Mj for j = 0, 1, . . . , I−

1. For a joint prior distribution of ~πj, we consider a series of conditional truncated Beta

distributions. We say π ∼ TB(a, b, l, r) if the probability density function is

f(π) =
g(π)∫ r

l
g(π) dπ

,

where

g(π) =
Γ(a+ b)

Γ(a) Γ(b)
πa−1 (1− π)b−1

for π ∈ (l, r) and g(π) = 0 for π /∈ (l, r). For the control dose group, we assume a Beta

distribution which is equivalent to π0j ∼ TB(a0j, b0j, 0, 1), and this prior distribution may

be constant over Mj based on the prior knowledge regarding the prevalence of a toxic event

in the absence of the toxin. If πi+1,j shall be greater than πij, we assume

πi+1,j | πij ∼ TB(aij, bij, πij, rij)

for some rij ∈ (πij, 1). If πi+1,j shall be smaller than πij, we assume

πi+1,j | πij ∼ TB(aij, bij, lij, πij)

for some lij ∈ (0, πij). To accept a wide range of dose-response curves, we may let lij = 0

and rij = 1. By the multiplication rule, the joint prior density function of ~πj under Mj is

f(~πj |Mj) = f(π0j)
I∏
i=1

f(πij | πi−1,j)

for j = 0, 1, . . . , I − 1.
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In addition to the prior specification on each ~πj, we assign the prior model probability

P (Mj) > 0 such that
∑I−1

j=0 P (Mj) = 1. This probability assignment shoud reflect the prior

plausibility of each hypothesis as P (H0) = P (M0) and P (H1) =
∑I−1

j=1 P (Mj). For example,

P (M0) = 1/2 and P (Mj) = 1
I−1

for j = 1, . . . , I−1 reflect the same degree of prior belief for

monotonicity and hormesis, and they reflect the same degree of prior belief for each nadir

conditioning on hormesis.

Posterior.

The posterior probabilities of interest are

P (H0 | ~y) = P (M0 | ~y)

and

P (H1 | ~y) =
I−1∑
j=1

P (Mj | ~y) .

Appealing to Bayesian model averaging (BMA), each posterior model probability is

P (Mj | ~y) =
f(~y |Mj)P (Mj)∑I−1
j=0 f(~y |Mj)P (Mj)

,

where f(~y |Mj) is the marginal likelihood function under Mj. That is,

f(~y |Mj) =

∫
Ωj

f(~y | ~πj,Mj) f(~πj |Mj) d~πj

where Ωj is a subset of (0, 1)× · · · × (0, 1) based on the truncations under Mj and

f(~y | ~πj,Mj) =
I∏
i=0

ni!

yi! (ni − yi)!
(πij)

yi (1− πij)ni−yi
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is the likelihood function under Mj.

5.3 Simulations

In this section, we investigate sensitivity and specificity of the Hunt-Bowman model, the

multistage model, and the BMA-based nonparametric method in the context of hypothesis

testing for hormesis.

5.3.1 Scenarios

We consider two monotonic scenarios and seven hormetic scenarios with various shapes of a

hormetic zone. Scenario 1 is a threshold case which is generated under the Hunt-Bowman

model with ~θ = (α, β0, β1, τ) = (0,−1.386, 4, 0.125). Scenario 2 is a strictly monotonic case

which is generated under the multistage model with ~γ = (γ0, γ1, γ2, γ3) = (0.223, 0, 1.5, 2).

The two monotonic scenarios are presented in Figure 5.1a. Scenarios 1 and 2 serve as

references when we evaluate specificity (i.e. concluding H0 when H0 is true) and sensitivity

(i.e. concluding H1 when H1 is true) in the context of hypothesis testing. A model tending

to yield a large P (H1 | ~y) under a monotonic scenario tends to yield a large P (H1 | ~y) under

a hormetic scenario as well, therefore we need some monotonic scenarios for comparison.

Scenarios 3 to 5 are hormetic cases generated under the Hunt-Bowman model. The re-

spective true parameters are ~θ = (−3,−1.386, 4, 0.125), ~θ = (−2,−1.386, 4, 0.25), and

~θ = (−1,−1.386, 4, 0.5) so that the hormetic zone is shortest in Scenario 3 and longest in Sce-

nario 5 among the three scenarios. All three hormetic zones are symmetric as shown in Figure

5.1b. Scenarios 6 and 7 are hormetic cases generated under the multistage model. The re-

spective parameter values are ~γ = (0.223,−1.386, 2.773, 1) and ~γ = (0.223,−2.045, 8.180, 1).

By fixing γ3 = 1, the hormetic zones are symmetric, and the hormetic zone in Scenario 6
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Figure 5.1: Simulation scenarios.
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is shorter than the hormetic zone in Scenario 7 as shown in Figure 5.1c. Scenarios 8 and 9

are hormetic cases generated under the multistage model as well. The respective parameter

values are ~γ = (0.223,−0.827, 1.145, 0.431) and ~γ = (0.223,−0.981, 1.962, 0.5). Since γ3 6= 1,

the hormetic zones are asymmetric as shown in Figure 5.1d.

For each scenario, six experimental doses are geometrically spaced at d0 = 0, d1 = 1/16,

d2 = 1/8, d3 = 1/4, d4 = 1/2, and d5 = 1, and ni = 50 animals are allocated at each

experimental dose which sum to the sample size of
∑5

i=0 ni = 300.

5.3.2 Models Compared

We compare five different models with respect to the performance of hypothesis testing for

hormesis. The first model is the Hunt-Bowman model which is denoted by HB. The second

model is the multistage model with the unrestricted parameter space ΓM ∪ ΓH which is

denoted by MS, and the third model is the multistage model with the restricted parameter

space ΓM ∪ Γ
(R)
H which is denoted by MSR. The MSR model rules out minimal hormetic

effects by setting the lower bounds d∗L = d1 = 1/16, η∗L = d2 = 1/8, and γL = 1.2 in

Equation (5.12). The fourth and fifth models are based on the nonparametric approach with

BMA. We elicit vague priors in the fourth model and denote it by BMAV, and we elicit

relatively strong priors in the fifth model and denoted it by BMAS (see Section 5.3.3 for

detail explanation).

5.3.3 Priors

To elicit large uncertainty under the HB model, we specify f+(τ) = 1 for τ ∈ (0, 1) and

p0 = 0.5 in Equation (5.4). In other words, we express P (H0) = P (H1) and the length

of hormetic zone can be anywhere within the experimental range before observing data.

101



Then, we specify (d−2, r−2, s−2) = (0.2, 1.01, 1.10) and (d−1, r−1, s−1) = (0.8, 1.10, 1.01) in

Equation (5.5). This specification adds small numbers of pseudo observations at d−2 = 0.2

and d−1 = 0.8.

Similarly, to elicit large uncertainty under the MS and MSR models, we a priori assume

(dj, tj, uj) = (0.2, 1.01, 1.10), (0.5, 1.05, 1.05), (0.8, 1.10, 1.01) for j = −3,−2,−1 in Equation

(5.13). This specification also adds small numbers of pseudo observations at the three chosen

doses. Then we elicit a nearly flat prior on γ3 using the Γ(0.001, 0.001) prior.

For the BMAV model (V stands for “vague”), we specify (aij, bij) = (1.01, 1.10) for i =

0, 1, 2, 3, (a4j, b4j) = (1.05, 1.05), and (a5j, b5j) = (1.10, 1.01). This vague prior is comparable

to the prior specifications in the parametric models with large uncertainty. For the BMAS

model (S stands for “strong”), we specify (aij, bij) = (2.64, 7.55) for i = 0, 1, 2, 3, (a4j, b4j) =

(1.53, 1.53), and (a5j, b5j) = (5.38, 1.49). This strong prior reasonably well assumes the

trajectory of the dose-response curves in the simulation all scenarios. For both BMAV and

BMAS, we have one monotonic model M0 and four hormetic models Mi with the nadirs

at di for i = 1, 2, 3, 4. For prior model probabilities we let P (H0) = P (H1) = 1/2 and

P (Mi) = 1/8 for i = 1, 2, 3, 4. When πi+1,j > πij, we let πi+1,j ∈ (πij, 1) under the truncated

Beta distribution. When πi+1,j < πij, we let πi+1,j ∈ (0, πij).

5.3.4 Receiver Operating Characteristic Curve in Hypothesis Test-

ing

Suppose we conclude H1 when P (H1 | ~y) ≥ q for some q. By repeating simulated trials

and computing P (H1 | ~y) under a null scenario and an alternative scenario, we can plot one

minus specificity on the x-axis and sensitivity on the y-axis by varying the decision threshold

q from zero to one. In our setting, sensitivity is the probability of concluding H1 under

an alternative scenario (Scenarios 3 to 9), and specificity is the probability of concluding
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H0 under a null scenario (Scenario 1 and 2). This plot is known as a receiver operating

characteristic (ROC) curve in the context of hypothesis testing, and a large area under the

curve indicates a plausible operating characteristic. Since we have two null scenarios, we can

obtain two areas under ROC curves for each hormetic scenario. When Scenario 1 serves as

the reference (which is generated under HB), the area is denoted by A1. When Scenario 2 is

serves as the reference (which is generated under MS), the area is denoted by A2.

5.3.5 Results

The simulation results are summarized in Table 5.1. In the tables, E [P (H1 | ~yn)] denotes the

average posterior probability for hormesis, and A1 and A2 denote the area under the ROC

curve in each hormetic scenario when Scenario 1 and Scenario 2 served as the reference for

a monotonic scenario, respectively. In the two monotonic scenarios, the HB model, BMAV

model and BMAS model tended to yield relatively large P (H1 | ~y) on average when compared

to the MS and MSR models. In Scenario 1, we obtained E [P (H1 | ~yn)] = 0.708, 0.334, 0.167,

0.816, and 0.768 in the HB, MS, MSR, BMAV and BMAS models, respectively. In Scenario 2,

the respective results were 0.860, 0.348, 0.201, 0.846, and 0.813. By the restricted hormetic

zone, the MSR model yielded smaller P (H1 | ~yn) than the MS model on average in both

monotonic scenarios.

In the three hormetic scenarios generated by the HB model, Scenarios 3 to 5, the BMAV and

BMAS models outperformed the three parametric models based on both A1 and A2. Despite

the true model was the HB model, the performances of MS and MSR were comparable to

the HB model (see Table 5.1).

In the next two hormetic scenarios generated by the MS model with symmetric hormetic

zones, Scenarios 6 and 7, the performances of BMAS and BMAV were robust yielding fairly

large A1 and A2. Again, the outperformance was regardless of the amount of prior informa-
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Table 5.1: Simulation results

Scenario Truth Length of Hormetic Zone Model E [P (H1 | ~y)] A1 (relative to HB) A2 (relative to MS)

3 HB 1/8

HB 0.809 0.633 0.375
MS 0.434 0.609 0.580

MSR 0.229 0.501 0.458
BMAV 0.914 0.650 0.579
BMAS 0.883 0.656 0.572

4 HB 1/4

HB 0.943 0.860 0.653
MS 0.668 0.850 0.842

MSR 0.575 0.818 0.827
BMAV 0.994 0.926 0.887
BMAS 0.994 0.957 0.925

5 HB 1/2

HB 0.989 0.966 0.881
MS 0.832 0.962 0.968

MSR 0.792 0.922 0.959
BMAV 0.999 0.968 0.943
BMAS 1.000 0.987 0.971

6 MS 1/4

HB 0.998 0.992 0.967
MS 0.876 0.972 0.978

MSR 0.850 0.933 0.971
BMAV 1.000 0.974 0.952
BMAS 1.000 0.988 0.973

7 MS 1/2

HB 0.987 0.960 0.866
MS 0.610 0.783 0.771

MSR 0.545 0.795 0.799
BMAV 0.988 0.905 0.862
BMAS 0.989 0.934 0.892

8 MS 1/2

HB 0.973 0.913 0.715
MS 0.877 0.975 0.981

MSR 0.831 0.928 0.964
BMAV 0.999 0.970 0.946
BMAS 1.000 0.988 0.974

9 MS 1/4

HB 0.902 0.777 0.521
MS 0.694 0.880 0.877

MSR 0.520 0.781 0.784
BMAV 0.985 0.878 0.828
BMAS 0.986 0.922 0.876

tion we considered. The areas A1 and A2 in the HB models were comparable to the areas

in the BMAS model, and the HB model performed better than the MS and MSR models

in Scenario 7. The MS or MSR model did not yield the largest A1 and A2 among the five

models despite Scenarios 6 and 7 were generated under the MS model (see Table 5.1).

In the last two hormetic scenarios generated by the MS model with asymmetric hormetic

zones, Scenarios 8 and 9, the performances of BMAS and BMAV were also shown to be ro-

bust with respect to both A1 and A2. On the other hand, the HB model showed the impact
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of model misspecification in the asymmetric cases. The areas A1 and A2 were consistently

smallest among the five models in these two scenarios. The MS model exhibited the plau-

sible results, but it was not substantially superior to the nonparametric models despite the

scenarios belonged to its own parameterization (see Table 5.1).

In summary, the BMA-based models which require the least assumptions about a dose-

response curve showed robust results across all scenarios considered. It is difficult to compare

the superiority between the HB and MS models when a true hormetic zone is symmetric. The

HB model well tolerated model misspecification as long as a hormetic zone was symmetric

(Scenarios 6 and 7), but it did not when a hormetic zone was asymmetric (Scenarios 8 and

9).

We repeated the same set of simulation scenarios with the smaller sample size of ni = 30 for

each dose group. The estimated areas A1 and A2 were generally smaller due to the reduced

amount of data, but the relative operating characteristics were preserved.

5.4 Applications

Cadmium compounds have been known to be associated with human prostate and renal

cancers. Waalkes et al studied cadmium carcinogenesis by injecting one of seven experimental

doses into male rates [63]. The seven dose groups were (0, 1, 2.5, 5, 10, 20, 40) in µmol/kg.

By dividing each dose by the maximum dose 40 µmol/kg, the experimental doses transforms

to (0, 0.025, 0.625, 0.125, 0.25, 0.5, 1), respectively. This experimental doses are similar to

Scenarios 8 and 9 in Section 5.3 with the additional dose d1 = 0.025 between d0 = 0 and

d2 = 0.625. We focus on the development of testicular tumors as an outcome of interest

among multiple toxic outcomes measured in the study. Therefore, the respective sample

sizes and observed numbers of events at the experimental doses were (45, 30, 29, 30, 30,
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Figure 5.2: Estimated dose-response curves using the posterior means
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29, 29) and (8, 1, 3, 3, 4, 21, 24), respectively. The respective observed proportions of

the incidence were (0.178, 0.033, 0.103, 0.100, 0.133, 0.724, 0.828). Based on this empirical

trend, the possibility of hormesis was extensively discussed in Zapponi and Marcello [71].

For the BMA model, we used similar vague priors used for the BMAV model in Section

5.3.3. We specified P (H0) = P (H1) with the uniform P (Mj) for j = 1, . . . , 5. For the hyper-

parameters in truncated Beta distributions, we chose (aij, bij) = (1.01, 1.10) for i = 0, . . . , 4,

(a5j, b5j) = (1.05, 1.05), and (a6j, b6j) = (1.10, 1.01) to express large uncertainty under all

Mj. Given the data, we estimated P (H1 | ~y) ≈ 1. When we altered the hyper-parameters to

(aij, bij) = (2.64, 7.55) for i = 0, . . . , 4, (a5j, b5j) = (1.53, 1.53), and (a6j, b6j) = (5.38, 1.49),

we obtained P (H1 | ~y) = 0.998. We attempted various strong priors, and they altered the

posterior probabilities in various degrees while they maintained P (H1 | ~y) closed to one.
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For the three parametric models, HB, MS, and MSR, we used the same priors as described

in Section 5.3.3. The fitted dose-response curves are presented in Figure 5.2. Figure 5.2a

presents the fitted curves conditioning on monotonicity, and Figure 5.2b presents the fitted

curves conditioning on hormesis. The posterior probability for hormesis was 0.877, 0.821,

and 0.851 under HB, MS, and MSR, respectively. We did not observe sudden changes in

P (H1 | ~y) from various priors we attempted in a reasonable range.

For additional analyses using the parametric models, we estimated the length of hormetic

zone which is denoted by τ under the HB model and d∗∗ under the MS and MSR models

as defined in Equation (5.11). The posterior mean was 0.122 with 95% credible interval

(CI) of (0.030, 0.272) under HB, 0.183 with 95% CI of (0.042, 0.315) under MS, and 0.200

with 95% CI of (0.103, 0.319). The estimated hormetic zone was the shortest under the

HB model potentially due to model misspecification. The empirically shown hormetic zone

in Figure 5.2b does not seem to be symmetric. The difference in the estimation under MS

and MSR was small, but the estimated hormetic zone was slightly longer under MSR by

disregarding too short hormetic zone and minimal hormetic effect in Γ
(R)
H . In addition, the

posterior interval was shorter under MSR than under MS. When we compare to the empirical

points where the observed proportion at d4 = 0.25 (0.133) is still smaller than the observed

proportion at the control dose d0 = 0 (0.178), the three model-specific posterior means seem

to underestimate the length of hormetic zone. In particular, the 95% CI from the HB model

barely covers d4 = 0.25.

5.5 Discussions

We compared the three different models for hypothesis testing for hormesis. The Hunt-

Bowman model is inflexible in a sense it cannot model an asymmetric hormetic zone, but it

is flexible in a sense that it can fit a hormetic zone and a monotonic zone separately. The
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multistage model is flexible in a sense that it can approximate various shapes of hormetic

zones, but it is inflexible in a sense that it needs to model the two zones simultaneously. The

nonparametric approach using BMA is plausible in both aspects.

When we compare the simulation results with 50 animals per dose level and the simulation

results with 30 animals per dose level (six dose groups total), the BMA-based nonparametric

approach seems most appealing among the models we compared here. If the BMA method

is our choice, however, we need to carefully choose a joint prior even in a lack of prior

information because marginal likelihood is sensitive to a prior specification. When we have

sufficiently large sample sizes, we may gain efficiency by imposing further restrictions on

unreasonable prior dose-response paths based on available prior knowledge.

Though we could not exhaust all possible dose-response curves in the simulation studies, we

could learn that the parametric approaches may not be reliable particularly under poorly

designed studies. A parametric approach is heavily influenced by leverage points, and ex-

perimental designs with too much information at high doses may be an issue for detecting

hormesis under a parametric model. We may be able to create a scenario with an assy-

metric hormetic zone such that the MS model performs poorer than the HB model. Dette

et al proposed optimal experimental designs for hormesis studies, but an optimal design is

not necessarily optimal under model misspecification [23]. To reduce the impact of model

misspecification in parametric approach and to gain more efficiency in nonparametric ap-

proach, an efficient experimental design in a nonparametric framework is a focus of our future

research.
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Chapter 6

Experimental Designs for Detecting

Hormesis

Though scientists have been interested in hormesis, most existing studies from poor exper-

imental design with regards to testing for hormesis. We now turn our focus to situations

where we are able to control the distribution of the number of observations at each experi-

mental dose. In Chapter 6, we develop and apply Bayesian optimal designs and also consider

a new robust design based on Bayesian decision theory.

6.1 Introduction

Most existing datasets have not been collected in order to efficiently test for the presence of

hormesis. In particular, many studies suffer from a lack of experimental doses that are equally

spaced over the dose range, and allocate observations uniformly over these points. As with

any other inferential procedure, a large sample size and a large number of experimental doses

are preferable for maximising one’s ability to detect hormesis. However, in most practical
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cases logistics demand that risk assessment studies utilise a relatively small fixed sample size

and a fixed number of experimental doses. Given this constraint, statistical design strategies

to improve sensitivity for detecting hormesis are needed.

Calabrese and Baldwin [11] established quantitative criteria to categorize datasets from no

evidence to high evidence for hormesis. Their method was based on an estimated hormetic

zone, the number of experimental doses below an estimated hormetic zone, statistical sig-

nificance of stimulatory responses, its practical significance and replicability of the findings.

Extensive discussions regarding hormetic effects of toxic agents have followed [10, 14, 15, 19].

On the other hand, some investigators have pointed out a lack of formal procedures (i.e.

statistical hypothesis testing) and possible caveats for claiming hormesis as the a priori

dose-response relationship in risk assessments [21, 61, 42].

Multiple dose-response models based on various statistical frameworks have been developed

to model a non-monotonic dose-response relationship [32, 33, 53, 8, 7, 37]. While many

statistical methods have mainly focused on analyzing observed data, Dette et al. [23] pro-

posed Bayesian optimal experimental designs for testing for hormesis. In their approach, a

decision (i.e. allocation of doses for assessing response) is made prior to the initiation of

the experiment rather than sequentially updating the dose allocation criteria periodically as

observed responses are obtained. The method proposed by Dette et al. [23] considered a

criterion-robust design that maximized the worst performance of a single criterion among

multiple criteria, and addressed potential model misspecification by considering multiple

models. One drawback of this approach is that robustness is achieved at the cost of design

complexity due to the need to specify multiple criteria and models. Ideally, one would like

to achieve reasonable efficiency for assessing hormesis by specifying a single criteria/model.

In the current work we consider the use of Bayesian decision theoretic designs for efficient dose

allocation when inference regarding the presence of a hormetic dose-resoponse relationship

is of interest. Specifically, we explore two possible choices for the loss function as criteria for
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dose allocation. The first is a c-optimal design [16, 22] based upon a multistage model with

a modification to include a flexible hormetic zone [1, 20, 37]. In the multistage model, the

existence of a hormetic effect is determined by a single parameter. As such, the c-optimal

design seeks to maximise statistical information regarding this determinant parameter. The

second loss function is based upon Shannon’s entropy [55] and is independent of parametric

assumptions for the dose-response model. A Bayesian theoretic approach based upon a single

loss function provides a simple design specification. Further, implementing the design by

specifying a flexible parametric dose-response model (the c-optimal design) or by specifying

the loss function to be free of parametric assumptions regarding the model (Shannon’s loss)

provides robustness to model misspecification. Finally, to account for uncertainty in model

specification at the study design stage (before observed data are gathered), we consider a

group sequential approach where a series of dose allocation decisions are made periodically

as observed responses are obtained.

The remainder of Chapter 6 is organized as follows: Section 6.2 describes a Bayesian decision

theoretic approach to the design of hormesis studies under a multistage model. The approach

allows for a group sequential allocation scheme in which a series of dose allocation decisions

are made periodically with model parameter information updated as observed responses are

obtained. Section 6.3 defines and illustrates the use of loss functions based upon a c-optimal

design under the multistage model and based upon Shannon’s entropy. Section 6.4 presents

simulation studies to compare the operating characteristics of the proposed designs and

investigates the effect of increasing the number of possible experimental dose points under

the proposed methods. Section 6.5 provides a brief discussion of the role of optimal design

in risk assessment studies and considers avenues for future research.
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6.2 Methods

Bayesian decision theory is a fundamental approach to decision making based on prior knowl-

edge combined with observed data. In the decision theoretic approach, we need four compo-

nents including an action space (i.e. a set of experimental doses in the current context), a

likelihood function, a prior density function and a loss function. Given the four components,

a decision (i.e. dose allocation) is made in order to minimize the expected loss.

6.2.1 Action Space

We denote a discrete action space by D = {d1, . . . , dI} with d1 < · · · < dI , where d1 = 0

(the control dose group) and dI = 1 (the highest dose group) without loss of generosity. If

we need to make k simultaneous decisions, the action space expands to Dk = D × · · · × D.

6.2.2 Likelihood Function

We denote n independent Bernoulli random variables by ~Yn = (Y1, . . . , Yn), where Yi = 1

if the ith experimental unit allocated at dose xi ∈ D shows a prespecified toxic event and

Yi = 0, otherwise. The probability of Y = 1 associated with dose x is denoted by πx. If πx

is completely characterized by a vector of model parameters, ~β, we write πx(~β). Then the

likelihood function after observing ~Yn = ~yn is

l(~β) =
n∏
i=1

{
πxi(

~β)
}yi {

1− πxi(~β)
}1−yi

. (6.1)

We parameterize a dose-response relationship by

πx(~β) = 1− exp
{
−
(
β0 + β1x

β3 + β2x
2β3
)}

(6.2)
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for dose x ≥ 0. This parameterization is modified from the monotonic multistage model using

a linear predictor
∑M

m=0 βmx
m with nonnegative coefficients [20]. As opposed to the linear

predictor
∑2

m=0 βmx
m, the non-linear predictor

∑2
m=0 βm(xβ3)m allows for an asymmetric

hormetic zone. The parameter space for ~β = (β0, β1, β2, β3) is a subset of (0,∞)×(−∞,∞)×

(0,∞) × (0,∞), with restrictions imposed to guarantee πx(~β) ∈ (0, 1). In model (6.2), the

sign of β1 determines whether a dose-response relationship is monotonic (iβ1 ≥ 0) or hormetic

(β1 < 0). Thus the monotonic parameter space is

ΩM =
{
~β ∈ (0,∞)× [0,∞)× (0,∞)× (0,∞)

}
,

and it can be shown that the hormetic parameter space is

ΩH =

{
~β ∈ (0,∞)× (−∞, 0)× (0,∞)× (0,∞) :

β2
1

β0β2

< 4

}
.

The entire parameter space is the union of the two disjoint parameter spaces,

Ω = ΩM ∪ ΩH =
{
~β ∈ (0,∞)× (−∞,∞)× (0,∞)× (0,∞) : 0 < πx(~β) < 1

}
.

Under model (6.2), the background risk is given by π0(~β) = 1−e−β0 , and serves as a reference

for a hormetic effect at low doses. Specifically, in the presence of hormesis the hormetic zone

is defined as the set of all doses x such that πx(~β) < π0(~β). The length of hormetic zone is

defined as the value δ such that πδ(~β) = πα(~β) and πx(~β) < π0(~β) for all x ∈ (0, δ), while the

most beneficial dose is defined as the dose α which produces the lowest probability of a toxic

event. Under model (6.2), the length of the hormetic zone is given by δ(~β) = (−β1/β2)1/β3 ,

and the most benefical dose is given by α(~β) = (−β1/2β2)1/β3 . Finally, it is common to

quantify the maximal hormetic effect by the odds ratio comparing the odds of response at

the control dose to the odds of response at the most beneficial dose. Thus, letting γ denote
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the maximal hormetic effect, based upon model (6.2) we have

γ(~β) =

(
π0(~β)

1− π0(~β)

)(
1− πα(~β)

πα(~β)

)
.

For the remainder of the chapter we simplify notation by suppressing the dependence of α,

δ, and γ on ~β with the understanding that each parameter is derived from the multistage

model given in (6.2).

Finally, it should be noted that the four-parameter multistage model given in (6.2) with the

non-linear predictor may be overly flexible in a sense that an estimated ~β may belong to

ΩH , despite a monotonic empirical dose-response relationship. To control over flexibility and

disregard practically unimportant hormetic effects, we can consider the restricted parameter

space Ω∗ = ΩM ∪ Ω∗H , where

Ω∗H =
{
~β ∈ ΩH : α ≥ αL, δ ≥ δL, γ ≥ γL

}

for some αL ≥ d2, δL ≥ d3, and γL > 1.

6.2.3 Prior Density Function

Here we consider the specification of prior distributions for the parameters defining the

multistage model presented in Section 6.2.2. It is generally difficult to elicit prior knowledge

directly through ~β from subjet-matter experts. For a tractable prior elicitation, we consider

a similar approach to a conditional mean prior [6] which allows specification of the full prior

distribution by placing a prior probability distribution on the response at three arbitrary dose

levels. More specifically, we choose three arbitrary doses, say x−2 < x−1 < x0, and specify

three independent Beta distributions πxi ∼ Beta(ai, bi) for i = −2,−1, 0. For mathematical

convenience, we fix β3 then transform the joint probability distributions of (πx−2 , πx−1 , πx0)
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to the conditional joint probability distribution of (β0, β1, β2) given β3. The transformation

leads to

f(β0, β1, β2 | β3) ∝ I ~β ∈Ω∗

0∏
i=−2

{
πxi(

~β)
}ai−1 {

1− πxi(~β)
}bi

, (6.3)

where I ~β ∈Ω∗ = 1 if ~β ∈ Ω∗ and I ~β ∈Ω∗ = 0 otherwise. Then, we choose a functional form of

f(β3) for β3 > 0.

If an investigator desires to express informative prior knowledge, it will be important to

understand the intepretation of β3. By denoting ρ = α/δ ∈ (0, 1), the ratio ρ determines

the degree of asymmetry in the hormetic zone under the model. Then it can be shown that

β3 = log(0.5) / log(ρ). Based on this result, β3 = 1 implies a symmetric hormetic zone,

β3 = 0.5 (i.e. ρ = 0.25) implies the most beneficial dose α is closer to the control dose and

β3 = 2.41 (i.e. ρ = 0.75) implies α is closer to the end of the hormetic zone δ.

6.2.4 Loss Functions

In this section, we discuss two loss functions. The first loss functions is devised from Bayesian

c-optimal designs. A Bayesian c-optimal design seeks precise estimation of a parameter of

interest, and it particularly minimizes the expected asymptotic variance of the maximum

likelihood estimator under an assumed parametric model [16, 22]. With our current focus

on optimal design to infer the presence of hormesis, we are specifically interested in precise

estimation of β1 under the multistage model. The second loss function we present is based

upon Shannon entropy and is defined independent of any parametric assumptions regarding

the dose-response model.
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c-Optimal Design for the Determinant Parameter

The expected Fisher information matrix based on n allocated doses, say ~xn = (x1, . . . , xn),

is denoted by I(~xn; ~β). Its inverse is denoted by I−1(~xn; ~β). To maximize information about

β1, the determinant for hormesis, the loss function of the c-optimal design is given by

Lβ1(~xn; ~β) =
{
I−1(~xn; ~β)

}
22
,

the (2, 2)th element of the inverted matrix. See Appendix A.6 for a more explicit expression.

This loss function is referred to hereafter as β1-loss and is simply denoted by Lβ1 .

c-Optimal Design for the Most Beneficial Dose

To maximize information about α, the most beneficial dose in the presence of hormesis (i.e.

given β1 < 0), the loss function of the c-optimal design is given by

Lα(~xn; ~β) = ~gT (~β) I−1(~xn; ~β) ~g(~β)

with the gradient vector

~gT (~β) =
α

β3

(
0 β−1

1 −β−1
2 −log(α)

)
.

Shannon-Loss

In contrast to the β1-loss function that is derived under model (6.2), the following loss

function is specified via point-wise assumptions at given experimental doses. For i = 1, . . . , I,

we let π∗di = max {π0, πdi} which is non-decreasing with respect to di ∈ D. Further, we

let mi =
∑n

j=1 Ixj=di , the number of experimental units allocated at di ∈ D among n
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experimental units. Defining pi = (mi + 1) π∗di and normalizing by

p∗i =
pi∑I
i=1 pi

,

(p∗1, . . . , p
∗
I) forms a legitimate discrete probability distribution on the finite supportD. Based

on the Shannon’s entropy [55], we consider the loss function

Ls(~xn) = −

(
−

I∑
i=1

p∗i log(p∗i )

)
=

I∑
i=1

p∗i log(p∗i ) .

Because Shannon’s entropy is maximized when p∗i = 1/I, use of this loss function will

distribute experimental units so that a higher concentration of observations are made inside

an estimated hormetic zone relative to outside the zone. Note that the addition of one

to each mi in the definition of pi avoids an unbounded loss. If we assume a dose-response

relationship by the multistage model in Equation (6.2), the loss function Ls(~xn) is denoted by

Ls(~xn; ~β) as ~β completely determines (p∗1, . . . , p
∗
I). This loss function is referred to hereafter

as Shannon-loss and is simply denoted by Ls.

6.2.5 Posterior Density Function and Minimizing Average Loss

Let N denote the total sample size available in a dose-response study. Considering model

uncertainty and prior uncertainty, allocating all N experimental units at once may not be

an optimal strategy. On the other hand, making N truly sequential decisions may not be

practical, particularly when observing a toxic event may require a long period of time. As

such, we consider making a series of decisions in groups, and we illustrate a two-phase design

here. In a two-phase design, we spend n1 experimental units based on prior distributional

assumptions, realize the n1 independent Bernoulli random variables, spend the remaining

N − n1 = n2 experimental units based on the updated knowledge, realize the n2 indepen-
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dent Bernoulli random variables, then make final inference based on the complete set of N

observations together with the prior knowledge.

From Equations (6.2) and (6.3), the joint posterior density function of ~β is

f(~β | ~yn) ∝ I ~β ∈Ω∗ f(β3)
0∏

i=−2

{
πxi(

~β)
}ai−1 {

1− πxi(~β)
}bi n∏

i=1

{
πxi(

~β)
}yi {

1− πxi(~β)
}1−yi

,

where Ω∗ is the restricted parameter space given in Section 6.2.2, f(β3) is a prior density func-

tion of β3 and (ai, bi) are fixed hyperparameters for the Beta distributions for i = −2,−1, 0.

For a given loss function, Lβ1 or Ls, we decide ~x∗n1
= (x∗1, . . . , x

∗
n1

) such that the prior average

E
{
L(~x∗n1

; ~β)
}

=

∫
L(~x∗n1

; ~β) f(~β) d~β

is minimumized with respect to (x1, . . . , xn1) ∈ Dn1 . For given ~x∗n1
and observed ~yn1 , we

make a second decision (x∗n1+1, . . . , x
∗
N) such that the posterior average

E

{
L(~x∗N ; ~β)

∣∣∣∣ ~yn1

}
=

∫
L(~x∗N ; ~β) f(~β | ~yn1) d

~β

is minimized with respect to (xn1+1, . . . , xN) ∈ Dn2 . Through the posterior density function

f(~β | ~yn1) ∝ I ~β ∈Ω∗ f(β3)
0∏

i=−2

{
πxi(

~β)
}ai−1 {

1− πxi(~β)
}bi n1∏

i=1

{
πx∗i (

~β)
}yi {

1− πx∗i (~β)
}1−yi

,

the observed binary responses ~yn1 = (y1, . . . , yn1) at the allocated doses ~x∗n1
= (x∗1, . . . , x

∗
n1

),

together with the prior knowledge expressed at (x−2, x−1, x0), contribute to the second de-

cision (x∗n1+1, . . . , x
∗
N). After observing all responses ~yN at ~x∗N = (x∗1, . . . , x

∗
N), we make the

final inference based on f(~β | ~yN).
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6.3 Illustrations

In this section, we describe the distinguishable characteristics of β1-loss and Shannon-loss,

with respect to the distribution of experimental units using a hypothetical example. For

a conditional mean prior, we select x−2 = 0, x−1 = 0.2, and x0 = 0.5 and specify πx−2 ∼

Beta(2.6, 7.5), πx−1 ∼ Beta(1.5, 5.4) and πx0 ∼ Beta(1.5, 1.5). This is a prior that weakly

favours hormesis over monotonicity. A flat prior is used for β3. For an action space D,

we consider I = 11 evenly spaced experimental doses such that D =
{

0, 1
10
, . . . , 9

10
, 1
}

. We

assume that the true dose-response relationship is given by the four-parameter multistage

model with ~β = (0.22,−1.66, 4.15, 1). This yields a background risk of π0 = 0.2, most

beneficial dose of α = 0.2 with the minimum risk πα = 0.05, length of hormetic zone of

δ = 0.4, and maximal hormetic effect of γ = 4.26. For the restricted parameter space

Ω∗ = ΩM ∪ Ω∗H , we set αL = d2 = 0.1, δL = d3 = 0.2 and γL = 1.1. Using the two-phase

design with n1 = n2 = 100 (i.e. N = 200), we apply the two decision theoretic approaches

with the loss functions Lβ1 and Ls. For the purpose of illustration, we artificially generate

the most likely responses at each phase such that the observed number of toxic events at di

is the nearest integer to mi × πdi .

We obtain the results shown in Figure 6.1 by using Lβ1 and Figure 6.3 by using Ls. In each

figure, the dose allocations are marked by “o”, and the size of the symbol is relative to the

maximum of (m1, . . . ,m11). The number of experimental doses at each unit is provided at the

top of each figure. In addition, two estimated dose-response curves are drawn conditioning

on ~β ∈ ΩM and ~β ∈ Ω∗H . The fitted curve under ~β ∈ Ω∗H appears to be nearly perfect

because the most likely responses are generated under the model. As shown in Figure 6.1,

the resulting allocations are (86, 1, 25, 38, 0, 0, 0, 9, 11, 26, 3) using Lβ1 , and the posterior

probability of hormesis is P (Ω∗H | ~y200) = 0.998. Three quarters of the experimental units

are allocated inside the true hormetic zone (0, 0.4). As shown in Figure 6.2, allocated doses

using Lα are concentrated at the four doses (0, 0.3, 0.5, 1) with the respective group sizes
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(77, 47, 48, 26). Under the model assumption with β ∈ Ω∗H , the loss function achieves a

precise estimate of α by allocation around the estimated α rather than inside the estimated

hormetic zone. To this end, less than two thirds of the experimental units are allocated inside

the hormetic zone, and the posterior probability of hormesis is 0.967. Figure 6.3 shows that

Ls results in (36, 36, 36, 35, 27, 12, 6, 4, 3, 3, 2), and the posterior probability of hormesis

is 0.969. Approximately 85% of experimental units are allocated inside the hormetic zone as

the Shannon-loss function seeks to obtain relatively more information inside the estimated

hormetic zone.

Figure 6.1: Example of the Lβ1-Design.
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Figure 6.2: Example of the Lα-Design
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6.4 Simulations

We conducted simulation studies were conducted to compare four different designs with

respect to estimation of δ and sensitivity and specificity for testing the hypothesis of a

hormetic dose-response relationship based upon the posterior probability of hormesis. The

first two designs are the two-stage designs based on the decision theoretic approaches using

β1- and Shannon-loss. Both designs are implemented under the under the same action space

(I = 11 evenly spaced experimental doses such that D =
{

0, 1
10
, . . . , 9

10
, 1
}

), the same prior,

the same restrictions on the hormetic parameter space and n1 = n2 = 100 as in Section

3. The remaining two designs are balanced designs with I = 5 and I = 11 (i.e. the same

number of experimental units at each experimental units). We denote the designs as B5 and

B11, respectively. For the total sample size of N = 200, B5 a priori fixes 40 experimental
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Figure 6.3: Example of the Ls-Design

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Posterior

dose

pr
ob

ab
ili

ty

o
o o o

o

o

o

o

o

o o

36 36 36 35 27 12 6 4 3 3 2

Hormetic
Monotonic

0.969

units on D =
{

0, 1
4
, 1

2
, 3

4
, 1
}

and B5 a priori fixes m1 = m2 = 19 and m3 = · · · = m11 = 18.

B5 reflects a commonly implemented study design in risk assessment studies. B11 is included

in order to compare a balanced approach to the Bayesian decision theoretic designs under

the same action space.

6.4.1 Scenarios

Under the four-parameter multistage model, we generated Scenario 0 with ~β = (0.22, 0.00,

2.00, 2.00). The resulting dose-response curve is monotonic (i.e. ~β ∈ ΩM) and close to a

threshold dose-response relationship as π0(~β) = 0.197, π0.2(~β) = 0.200, π0.5(~β) = 0.292 and

π1(~β) = 0.891. We then generated hormetic Scenarios 1 to 9 with various ~β ∈ Ω∗H as shown
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in Figure 6.4. Scenarios 1 to 3 are representative cases for relatively long hormetic zones (see

Figure 6.4a), Scenarios 4 to 6 represent hormetic cases with moderate lengths of hormetic

zones (see Figure 6.4b), and Scenarios 7 to 9 represent hormetic cases with relatively short

hormetic zones (see Figure 6.4c). From Scenario 1 to Scenario 9, the length of hormetic

zone is non-increasing. Simulation results were based upon 1000 simulated studies for each

scenario.

6.4.2 Evaluation Methods

In each simulated trial of a hormetic case, we estimate α and δ. We evaluate the quality of

point estimation by bias, standard error, and root mean square error (RMSE) in percent. For

example, the percent bias in the estimation of δ is bias / α0×100%, where δ0 is the true value

of δ in each hormetic scenario. We also evaluate the coverage probability of 95% credible

intervals (CIs) by calculating the proportion of 95% CIs including the true parameter value.

In each simulated trial, we conclude whether the dose-response relationship is monotonic

or hormetic based on P (Ω∗H | ~y200). Hormesis is concluded if P (Ω∗H | ~y200) ≥ q for some

threshold q ∈ (0, 1), and monotonicity is concluded otherwise. By repeating each scenario

a large number of times, we can estimate the area under a receiver operating characteristic

(ROC) curve in the context of hypothesis testing. If we let Πq denote the probability of

concluding hormesis for a fixed decision threshold q, Πq is one minus specificity in Scenario

0, and it is sensitivity in Scenarios 1 to 9. Using P (Ω∗H | ~y200) in each simulated trial, we can

estimate Πq for all q ∈ (0, 1) under each scenario. For each hormetic scenario, by varying q

from zero to one, we can plot Πq obtained in Scenario 0 on the x-axis and Πq obtained in the

hormetic scenario on the y-axis. Then we obtain the ROC curve and estimate the area under

the ROC curve (AUR) to quantify the performance of a design with respect to sensitivity

and specificity in hypothesis testing. An AUR close to 1 reflects a study design with nearly
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perfect discrimination between a hormetic and monotonic dose response relationship.

6.4.3 Results

For Scenarios 1 to 3, when the hormetic zones are relatively long, all four designs perform

fairly well with respect to parameter estimation and hypothesis testing. As shown in Table

6.1, all designs yield AURs greater than 0.9, except for the Lβ1-design in Scenario 3 which

results in an AUR of 0.830. With respect to percent RMSE, the B5-design shows the best

performance in estimation of δ, while all designs show satisfying coverage probabilities close

to 0.95. Scenarios 1 to 3 illustrate that the operating characteristics of each design are not

appreciably different when many experimental doses are located inside the true hormetic

zone. In particular, the B5-design, which resembles many past experiments, performs as the

Bayesian decision theoretic approaches or a balanced design with a larger action space.

We now focus on Scenarios 4 to 6, where approximately half of the experimental doses in

the action space lie within the true hormetic zone. In these cases, the Lβ1-design performs

relatively well, particularly with respect to hypothesis testing. The resulting AURs for the

Lβ1-design are consistently greater than the other designs. The B5-design reveals deficiencies

in these cases, particularly in Scenarios 5 and 6 as none of one thousand resulting 95% CIs for

δ covers the true values and the estimated AUR is close to 0.5 in Scenario 6. The Ls-design

consistently yields larger AURs than B11-design by allocating more experimental units inside

the hormetic zone. The resulting RMSEs are the smallest in the Lα-design while its resulting

AURs are relatively small.

We turn our focus to Scenarios 7 to 9 where, in general, the differences between the four

designs that were revealed in Scenarios 4 to 6 are amplified in the presence of a shorter

hermetic zone. The Lβ1-design yields the greatest AURs in Scenarios 7 and 8 among the

four designs, but it performs worse than Shannon-design in Scenario 9. In these three
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scenarios, the respective resulting AUR is 0.605, 0.743 and 0.306 for the Lβ1-design and

0.539, 0.703 and 0.429 for the Ls-design. Though the Ls design does not perform the best

in all scenarios, it performs well relative to the best design in each scenario with respect to

AURs. The resulting large positive biases for δ are potentially due to the two lower bounds

αL = 0.1 and δL = 0.2 in the restricted parameter space Ω∗H .

A summary of the resulting AURs across all nine scenarios is presented in Figure 6.5. The

figure illustrates that the Lβ1-design performs well when the hormetic zone is not too short,

while the Ls-design tends to be robust with respect to hypothesis testing across the various

hormetic zone lengths. In particular, the resulting AUR associated with Shannon-loss is

consistently greater than that of the B11-design. This should be an anticipated result, since

transferring some experimental units to doses within the hormetic zone increases the chance

of detecting hormesis. Finally, the resulting AUR of the B5-design decreases at the fastest

rate as the length of the hormetic zone decreases. This result is particularly concerning as it

is the primary design that has been utilised in past studies where the presence of hormesis

has been debated [71].

6.4.4 The Effect of the Number of Experimental Doses

Regardless of relative performance, a resulting AUR below 0.5 is undesirable. This occurs

for all of the designs under Scenario 9 because the hormetic zone occupies only 20% of the

experimental range and d2 = 1
10

is the only experimental dose with a hormetic effect. Under

this scenario, we investigate the effect of increasing the number of experimental doses, I,

and the sample size, N . We focus on the Ls-design with two stages, N = 200, 300, 400, 500

(n1 = n2 = N/2), and I = 5, 11, 22, 33, where the experimental doses are evenly spaced in

the standardised interval [0,1].

The resulting AURs using the four levels of I and the four levels of N are shown in Table 6.2.
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The resulting AUR is 0.82 with I = 22 and N = 300 which is comparable to the resulting

AUR, 0.78, with I = 11 and N = 500. Surprisingly, the resulting AUR is 0.69 with I = 22

and N = 200, which is slightly greater than the resulting AUR of 0.65 with I = 11 and

N = 400, despite having twice the maximal sample size. For N = 200, 300, 400, 500, I = 33

does not yield a larger AUR (0.68, 0.82, 0.89, 0.94, respectively) than I = 22 of the same N

(0.69, 0.82, 0.92, 0.96, respectively). Increasing N for I = 5 is not worthy as expected.

6.5 Discussions

We discussed the operating characteristics of the two Bayesian designs and the traditional

balanced designs, and we raised the issue of using the past designs particularly when the

number of experimental doses in the true hormetic zone is scarce. The c-optimal design, Lβ1 ,

was shown to be beneficial when two or more fixed experimental doses are inside the hormetic

zone. Overall, the Shannon-design, Ls, demonstrated a relatively robust performance across

all considered scenarios. When many experimental doses lie inside the hormetic zone, it

was seen that the results are not sensitive to the choice of design. On the other hand, the

disadvantage of an inefficient design is revealed as the number of experimental doses inside

the hormetic zone decreases.

Though we have not presented it in this chapter, we also investigated another c-optimal

design seeking precise estimation of α, the most beneficial dose, under the assumption of a

hormetic effect (i.e. β1 < 0). Interestingly, a relatively large number of experimental units are

allocated around the hormetic zone rather than inside the hormetic zone. Under a correctly

specified model together with the existence of hormesis, this is an efficient method to reduce

the variability in the estimate of the most beneficial does but it did not show satisfying results

with respect to the AUR for discriminating between a monotonic or hormetic dose-response

relationship.
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One advantage of Shannon-loss is the applicability to both parametric and non-parametric

models. Furthermore, since it does not target a specific objective under a specified model,

it generally shows robustness with respect to multiple objectives for risk assessment at low

dose. Further investigations and improvements remain necessary since a resulting AUR less

than 0.5 is not desirable in any case. One possible approach is to modify the loss function

so that more experimental units are allocated to the control dose. Currently we weigh the

importance of the control dose equal to the importance of any experimental dose inside an

estimated hormetic zone. However, a more accurate estimate of the background risk may

be desirable because the definition of a hormetic zone (and its existence) is relative to the

risk at the control dose. Another possible approach is to vary the action space at the time

of a new decision. In our numerical experiments, it appears that the relative length of the

true hormetic zone to the experimental range is a crucial factor for detecting hormesis. By

reducing the range of the action space based on updated knowledge, we may be able to

reduce unnecessary allocations at high doses. Of course, these modifications would add to

the complexity of implementing the designs and that tradeoff would need to be considered

in practice.

The extended simulation study of Scenario 9 in Section 4.4 shows that increasing the size

of the action space, I, achieves higher efficiency with the same or less N . In particular,

we demonstrated one case where doubling the density of the action space for for a given

sample size is more efficient than doubling the sample size for the same density. Kavlock

[36] addressed a similar point with respect to the estimation of a benchmark dose [26]. The

take-home message from this result is that dramatic savings in sample size can be obtained

by adding fairly minimal logistical effort, a finding that has broad scientific and ethical

implications in animal-based studies.
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Figure 6.4: Simulation scenarios
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Table 6.1: Simulation results

Estimation of α Estimation of δ
Scenario Design Bias (%) SE (%) RMSE (%) Coverage Bias (%) SE (%) RMSE (%) Coverage AUR

1

Lβ1 -33.7 20.4 39.4 0.859 -0.3 23.8 23.8 0.959 0.947
Lα -21.4 17.7 27.7 0.911 20.2 48.3 52.4 0.962 0.961
Ls -19.0 16.9 25.5 0.932 18.0 40.4 44.2 0.953 0.977
B11 -19.0 18.2 26.5 0.920 20.1 41.8 46.4 0.948 0.974
B5 -16.6 13.7 21.6 0.930 6.1 18.2 19.1 0.965 0.978

2

Lβ1 -30.2 20.0 36.3 0.852 -9.3 14.5 17.3 0.920 0.969
Lα -11.4 13.6 17.9 0.930 5.7 16.5 17.3 0.978 0.983
Ls -11.6 14.6 18.4 0.936 3.4 14.0 14.6 0.968 0.985
B11 -13.3 15.0 20.0 0.927 2.1 12.0 12.2 0.967 0.982
B5 -10.0 12.7 16.1 0.956 0.1 9.0 9.4 0.975 0.988

3

Lβ1 -35.2 21.6 41.2 0.823 -17.7 15.5 23.6 0.902 0.830
Lα -17.1 15.6 23.2 0.852 -0.4 11.6 11.3 0.969 0.933
Ls -17.2 16.5 23.7 0.866 -1.0 11.7 12.0 0.973 0.931
B11 -15.3 15.4 21.9 0.867 -2.1 10.0 10.0 0.980 0.925
B5 -11.2 13.3 17.3 0.891 -1.7 8.2 8.5 0.981 0.953

4

Lβ1 29.4 33.7 44.7 0.999 12.4 34.0 36.3 0.961 0.942
Lα 18.7 35.5 40.0 0.982 20.9 45.5 50.0 0.978 0.810
Ls 25.7 36.0 44.2 0.985 16.9 43.3 46.4 0.949 0.904
B11 23.3 37.2 44.2 0.994 19.2 36.1 40.9 0.968 0.884
B5 75.3 23.5 79.1 0.000 21.8 24.5 32.7 0.917 0.908

5

Lβ1 12.4 27.8 30.0 0.997 9.9 19.3 21.4 0.982 0.854
Lα 7.4 27.0 28.3 0.980 20.5 24.5 31.9 0.985 0.640
Ls 12.4 30.5 33.2 0.984 11.6 21.9 24.9 0.966 0.789
B11 5.1 26.9 27.4 0.997 13.5 20.4 24.5 0.972 0.739
B5 58.9 16.3 61.2 0.000 30.1 12.1 32.6 0.001 0.764

6

Lβ1 9.3 24.5 26.5 0.990 4.5 13.9 14.1 0.991 0.910
Lα 1.7 17.0 17.3 0.968 4.8 13.5 14.1 0.987 0.633
Ls 1.4 20.2 20.0 0.961 0.5 13.2 13.2 0.972 0.836
B11 0.3 20.7 21.2 0.973 2.0 14.3 14.1 0.989 0.766
B5 50.5 12.0 52.0 0.000 32.5 3.0 32.8 0.000 0.503

7

Lβ1 25.9 33.7 42.4 0.981 20.0 19.9 28.3 0.944 0.605
Lα 13.6 22.1 25.8 0.949 22.8 17.9 28.9 0.960 0.380
Ls 18.1 24.8 30.6 0.968 17.8 16.7 24.5 0.961 0.539
B11 14.7 25.4 29.4 0.976 21.6 17.3 27.7 0.961 0.506
B5 106.4 18.8 108.0 0.000 76.1 3.3 76.2 0.000 0.227

8

Lβ1 46.1 33.9 57.0 0.943 17.2 17.0 23.8 0.951 0.743
Lα 14.7 15.5 20.4 0.973 10.8 14.1 17.3 0.983 0.516
Ls 23.0 21.1 31.6 0.945 9.1 14.1 16.3 0.975 0.703
B11 20.4 21.0 28.9 0.960 13.9 14.6 20.0 0.979 0.598
B5 146.5 19.7 147.8 0.000 75.0 2.9 75.1 0.000 0.143

9

Lβ1 179.3 56.6 188.1 0.000 43.4 19.5 47.4 0.000 0.306
Lα 124.4 11.3 124.9 0.000 50.3 17.3 52.9 0.000 0.361
Ls 131.9 18.0 133.4 0.000 37.2 14.3 40.0 0.000 0.429
B11 139.7 24.4 141.4 0.000 50.7 19.2 54.3 0.000 0.265
B5 500.9 69.9 505.6 0.000 160.9 3.3 160.9 0.000 0.035

Table 6.2: Effects of the number of experimental doses and sample size

N = 200 N = 300 N = 400 N = 500
I = 5 0.0070 0.0145 0.0176 0.0216
I = 11 0.4324 0.5511 0.6500 0.7782
I = 22 0.6906 0.8187 0.9235 0.9574
I = 33 0.6833 0.8184 0.8937 0.9391
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Figure 6.5: Resulting areas under ROC curves

B B

B

B

B
B

B

B

B

Areas under ROC Curves

scenario (length of hormetic zone)

ar
ea

A A
A

A

A A

A

A

A

S S
S S

S
S

S

S

S

E E
E

E

E E

E

E

E

F F
F

F

F

F

F

F

F

1 2 3 4 5 6 7 8 9

0.
00

0.
25

0.
50

0.
75

1.
00

B
A
S
E
F

beta1−loss
alpha−loss
shannon−loss
balanced (11)
balanced (5)

( 0.9 ) ( 0.8 ) ( 0.7 ) ( 0.7 ) ( 0.5 ) ( 0.4 ) ( 0.3 ) ( 0.3 ) ( 0.2 )

130



Chapter 7

Summaries and Future Directions

7.1 Contributions to the Statistical Literature

7.1.1 Consensus Estimators

Often, multiple scientists are available for a scientific problem, and it is reasonable to incor-

porate multiple prior opinions to gain robustness. By comparing the two classes of consensus

estimators, we illustrated that the weighted posterior estimators are preferable when the true

parameter value is located well inside the multiple prior guesses while the consensus prior

estimators are preferable when the true parameter value is substantially closer to one prior

guess. It is because a consensus prior estimator allows updating the weight of each individual

posterior based on observed data, and it decreases bias while it increases variance. Chapter

2 contributes to broad scientific communities that the data-dependent weighting scheme can

be well justified in Bayesian framework.
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7.1.2 Balancing Individual- and Population-Level Ethics

In small-sample dose-finding studies, investigators may face a dilemma between individual-

and population-level ethics, and they shall consider the dilemma. The balancing point will

be debatable, and the degree of weighting each level of ethics shall depend on characteristics

of a new experimental treatment being investigated. In Chapter 3 we decomposed the

loss function which has been known to reflect population-level ethics discovered that it

indeed balances individual- and population-level ethics in a long-term. By modifying the

loss function with an adjustable parameter, trialists will be able to achieve a balance in

small-sample Phase I clinical trials.

7.1.3 Estimation of Benchmark Dose

In estimation of a benchmark dose, it has been common to rely on monotonic dose-response

models only. Various methods of averaging multiple monotonic dose-response models have

been widely discussed and practiced, and we added an alternative class of assumptions under

the multistage model. This idea can be extended to any generalized linear model equipped

in the current software in EPA. The main contribution of Chapter 4 is the illustration

of robustness gained by allowing both monotonicity and hormesis as possibilities in the

estimation of a benchmark dose.

7.1.4 Hypothesis Testing for Hormesis

In hypothesis testing for hormesis, we compared the parametric and nonparametric ap-

proaches by evaluating sensitivity and specificity through the receiver operating characteris-

tic curve. For the parametric approach, we considered the non-linear predictor which allows

flexible shapes of a hormetic zone. Compared to the existing Hunt-Bowman model, the new
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parameterization outperforms when the true hormetic zone is heavily asymmetric. Overall,

the nonparametric approach based on Bayesian model averaging shows robustness regardless

of the shape and the length of a hormetic zone. Chapter 5 enlightens potential issues of para-

metric modeling in the hypothesis testing including the effect of leverage in regression-based

modeling.

7.1.5 Experimental Designs for Detecting Hormesis

A satisfying result in hypothesis testing for hormesis cannot be achieved by flexible dose-

response models only but it also requires careful experimental designs. Based on Bayesian

decision theoretic approaches, we proposed the loss function for general purposes in toxico-

logic studies for cancer risk assessment focusing on low doses. It does not require a parametric

model as opposed to the Bayesian optimal designs. In practice, collected data are used for

multiple objectives, and this loss function will be suitable to this respect. In addition, using

a receiver operating characteristic curve, we illustrated the significant effect of adding more

experimental doses inside a hormetic zone. The results presented in Chapter 6 shall motivate

practitioners to carefully think about the importance of experimental designs.

7.2 Future Directions

7.2.1 BIGM for Late-Onset Toxicities

In Phase I clinical trials for investigating late-onset toxicities, it is possible that a new

patient enters the study before the complete observations of previous patients. Cheung and

Chappell [17] accounted for incomplete observations (i.e. toxic events have not observed

from previous patients before a new patient enters the study), and we can extend the BIGM
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to this situation as well. It is not discussed in this book, but the operating characteristics of

the BIGM are well preserved when we account for incomplete observations. We need more

investigations through various simulation scenarios including misspecification of a survival

model component in the likelihood function.

7.2.2 Semi-Parametric Models for Hormesis

In hypothesis testing for hormesis, it is possible to consider a semi-parametric approach. In

the setting of Phase I clinical trials, Yin and Yuan [70] specified multiple semi-parametric

models and applied Bayesian model averaging to provide robustness in the estimation of s

MTD. They considered a set of monotonic dose-response models, which is a common assump-

tion in Phase I clinical trials. We can extend the semi-parametric approach by combining

both monotonic and hormetic models in a model space.

7.2.3 Experimental Designs for Detecting Hormesis

In experimental designs for detecting hormesis, we already have learned that it is important

to allocate a relatively large number of experimental units inside the hormetic zone. On

the other hand, one possible reason that the Lβ1-design outperforms in many scenarios,

particularly when a hormetic zone is long, is that it allocates a relatively large number of

experimental units at the control group. It is somewhat intuitive because the definition of

hormesis is relative to the background risk. It may imply that we can improve the sensitivity

and the specificity of the Ls-design by allocating more experimental units to the control dose

group rather than the uniform distribution inside an estimated hormetic zone.
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Appendix A

Appendices

A.1 Description of the 3 + 3 Design

A cohort of three patients is allocated to an arbitrarily low dose level. A trial continues

until the following algorithm cannot find the next dose allocation among fixed experimental

doses:

• If no AE is observed, escalate one dose level.

• If one AE is observed, stay at the same dose level.

• If two or more AEs are observed, de-escalate one dose level.

• At most six patients are allocated to a dose level.

The dose level with the observed proportion of AEs less than (or equal to) one-third is de-

termined to be a MTD. A trial may be terminated without a determined MTD particularly

when a small number of experimental doses is available.
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A.2 Decomposition of the Loss Function in the IGM

Let z
(m)
n =

∑n
i=1 τix

m
i for m = 0, 1, 2. The inverse of In+1 is

I−1
n+1 =

 z
(0)
n + τn+1 z

(1)
n + τn+1xn+1

z
(1)
n + τn+1xn+1 z

(2)
n + τn+1x

2
n+1


−1

= ∆−1

 z
(2)
n + τn+1x
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n+1 −(z

(1)
n + τn+1xn+1)

−(z
(1)
n + τn+1xn+1) z

(0)
n + τn+1

 ,

with

∆ = (z(0)
n + τn+1)(z(2)

n + τn+1x
2
n+1)− (z(1)

n + τn+1xn+1)2

and the loss function with respect to xn+1 for given ~β is

LI(xn+1 | ~β) = ∇~hT I−1
n+1∇~h

∝
(z

(2)
n + τn+1x

2
n+1)− 2 MTDγ(z

(1)
n + τn+1xn+1) + MTD2
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n + τn+1)

(z
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n + τn+1) (z

(2)
n + τn+1x2
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(1)
n + τn+1xn+1)2

.

By completing square, the numerator of LI(xn+1 | ~β) is decomposed as

τn+1 (xn+1 −MTDγ)
2 + z(0)

n


(

MTDγ −
z
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n

z
(0)
n
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+
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−
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= τn+1 (xn+1 −MTDγ)
2 + z(0)

n

{
(MTDγ − µn)2 + σ2

n

}
.

By expanding each term and completing square, the denominator of LI(xn+1 | ~β) is decom-

posed as

{
z(0)
n z(2)

n − (z(1)
n )2

}
+ z(0)

n τn+1

{
(xn+1 − µn)2 + σ2

n

}
.
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Putting the numerator and denominator together, the expression in Equation (3.2) is imme-

diate.

A.3 Joint Prior Density Function

If we assume π0 ∼ Beta(a0, b0), then the prior density of β0 is

f(β0) ∝ (1− e−β0)a0−1e−b0β0 (A.1)

by the Jacobian transformation from π0 to β0 = −log(1 − π0). We introduce a latent

random variable ζ | θ ∼ Bernoulli(θ) with θ ∼ Beta(aθ, bθ) to indicate ζ = 1β1<0, so that

θ = P (β1 < 0) = P (ΩH). The density functions of ζ | θ and θ are

f(ζ | θ) = θζ(1− θ)1−ζ (A.2)

and

f(θ) ∝ θaθ−1(1− θ)bθ−1 , (A.3)

respectively. We consider a prior density function for β1 | ζ of the form

f(β1 | ζ) = 1ζ=1 f
−
1 (β1) + 1ζ=0 f

+
1 (β1) , (A.4)

where f−1 (·) and f+
1 (·) are some density functions with negative and nonnegative support,

respectively. Conditional on β0 and β1, we define the prior density of β2 as

f(β2 | β0, β1) = 1β1<0 f
ΩH
2 (β2) + 1β1≥0 f

+
2 (β2) , (A.5)

142



where f+
2 (·) is some density function with nonnegative support and fΩH

2 (·) is some density

function which is defined on ΩH given (β0, β1). One possible choice for f−1 (·), f+
1 (·), fΩH

2 (·),

and f+
2 (·) is the class of truncated normal density functions, though any density functions

with the appropriate support can be chosen.

Based upon the above likelihood function and prior density functions, the joint posterior

density of ~β, ζ, and θ is

f(~β, ζ, θ | ~y) ∝ L(~β) f(β0) f(β1 | ζ) f(ζ | θ) f(θ) f(β2 | β1, β0) .

Note that we have not introduced dependence between β0 and β1, but the two parameters are

dependent in the posterior through L(~β). Gibbs sampling can be used to obtain realizations

from the posterior distribution as presented in Appendix B.

A.4 Gibbs Sampling

Kuo and Cohen presented a Gibbs sampling algorithm for ~β = (β0, β1, . . . , βM) in the mul-

tistage model assuming βm ≥ 0 for m = 0, 1, . . . ,M [39]. However, the following algorithm

is presented for direct application to our proposed model with the modified parameter space

Ω = ΩM ∪ΩH . Recall that the boundary of ΩH depends on the values of the parameters. For

the posterior sampling, we employ Gibbs sampling in the order of β0 → θ → ζ → β1 → β2.

We first initialize all parameters. One reasonable ~β(0) is the OLSEs when we regress x and

x2 on

y∗ = −log(1− π∗) , π∗ =
y + 0.5

n+ 1
.
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For t = 1, . . . , T , the Gibbs procedure proceeds as follows:

• Step 1. Sample β
(t)
0 ∼ g(β0) where

g(β0) ∝ L(β0, β
(t−1)
1 , β

(t−1)
2 ) f(β0) f(β

(t−1)
2 | β(t−1)

1 , β0) .

• Step 2. Sample θ(t) ∼ Beta(aθ + ζ(t−1), bθ + 1− ζ(t−1)).

• Step 3. To sample ζ(t) ∈ {0, 1} from a discrete distribution, first consider the following

procedure.

– Let ζ = 1 and sample (β1, β2) ∼ g1(β1, β2) where

g1(β1, β2) ∝ L(β
(t)
0 , β1, β2) f−1 (β1) fΩH

2 (β2) .

Call the samples (β
[1]
1 , β

[1]
2 ) and evaluate g1(β

[1]
1 , β

[1]
2 ).

– Let ζ = 0 and sample (β1, β2) ∼ g0(β1, β2) where

g0(β1, β2) ∝ L(β
(t)
0 , β1, β2) f+

1 (β1) f+
2 (β2) .

Call the samples (β
[0]
1 , β

[0]
2 ) and evaluate g0(β

[0]
1 , β

[0]
2 ).

Then sample ζ(t) ∈ {0, 1} from the normalized probability mass function

P (ζ = z) =
gz(β

[z]
1 , β

[z]
2 )

g0(β
[0]
1 , β

[0]
2 ) + g1(β

[1]
1 , β

[1]
2 )

for z = 0, 1.

• Step 4. No additional computational work is needed to sample (β
(t)
1 , β

(t)
2 ). Let

β
(t)
j = β

[ζ(t)]
j
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for j = 1, 2.

A.5 Connection to BMA

Let P (ΩM) and P (ΩH) denote assigned prior probabilities for each class of assumption with

P (ΩM) +P (ΩM) = 1. By taking the product of Equations (A.1) to (A.5) and marginalizing

over ζ and θ, it can be shown that the joint prior density of ~β can be written in the form of

f(~β) = P (ΩM) fΩM (~β) + P (ΩH) fΩH (~β) ,

where

P (ΩM) =
Γ(aθ + bθ)

Γ(aθ) Γ(bθ)

Γ(aθ) Γ(bθ + 1)

Γ(aθ + bθ + 1)

and

P (ΩH) =
Γ(aθ + bθ)

Γ(aθ) Γ(bθ)

Γ(aθ + 1) Γ(bθ)

Γ(aθ + bθ + 1)
.
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Then, the posterior density function of ~β under the two-stage model with the parameter

space Ω = ΩM ∪ ΩH is

f(~β | ~y) =
f(~y | ~β)

[
P (ΩM) fΩM (~β) + P (ΩH) fΩH (~β)

]
∫

Ω
f(~y | ~β)

[
P (ΩM) fΩM (~β) + P (ΩH) fΩH (~β)

]
d~β

=
f(~y | ~β)

[
P (ΩM) fΩM (~β) + P (ΩH) fΩH (~β)

]
P (ΩM) fΩM (~y) + P (ΩH) fΩH (~y)

=
P (ΩM) f(~y | ~β) fΩM (~β)

P (ΩM) fΩM (~y)

P (ΩM) fΩM (~y)

P (ΩM) fΩM (~y) + P (ΩH) fΩH (~y)

+
P (ΩH) f(~y | ~β) fΩH (~β)

P (ΩH) fΩH (~y)

P (ΩH) fΩH (~y)

P (ΩM) fΩM (~y) + P (ΩH) fΩH (~y)

= fΩM (~β | ~y)P (ΩM | ~y) + fΩH (~β | ~y)P (ΩH | ~y) ,

where

P (ΩM | ~y) =
P (ΩM) fΩM (~y)

P (ΩM) fΩM (~y) + P (ΩH) fΩH (~y)
= P (β1 ≥ 0 | ~y)

and

P (ΩH | ~y) =
P (ΩH) fΩH (~y)

P (ΩM) fΩM (~y) + P (ΩH) fΩH (~y)
= P (β1 < 0 | ~y)

are the posterior probability of monotonicity and hormesis, respectively. In other words,

inference from the proposed two-stage model is equivalent to BMA. In the case of equal prior

probabilities, P (ΩM) = P (ΩH) = 0.5, where aθ = bθ, the posterior probabilities simplify to

P (ΩM | ~y) = fΩM (~y) / [fΩM (~y) + fΩH (~y)] and P (ΩH | ~y) = fΩH (~y) / [fΩM (~y) + fΩH (~y)],

weighed by the marginal likelihood.
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A.6 Detailed Expression of β1-Loss

Let πi ≡ πi(β) for concise notation. Let wi = (1 − πi)/πi be an unnormalized weight and

zi = xβ3i ∈ (0, 1) be a dose in the transformed dose space by the exponetiation of β3. Let

∆i = β1β3(xβ3−1
i + 2x2β3−1

i ). We further denote

sm =
n∑
i=1

wiz
m
i

for m = 0, 1, 2, 3, 4 and

tl,m =
n∑
i=1

wi∆
l
iz
m
i

for l = 1, 2 and m = 0, 1, 2. Then the expected Fisher information matrix is

I(~xn; ~β) =



s0 s1 s2 t10

s1 s2 s3 t11

s2 s3 s4 t12

t10 t11 t12 t02


.

It can be shown that the numerator of the (2, 2)th element of the inverted matrix is
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.
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The denominator is the determinant of I(~xn; ~β).
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