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Abstract

Robust Control of the Sit-To-Stand Movement for Powered Lower Limb Orthoses

by

Octavio Narvaez Aroche

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Andrew Packard, Chair

Safety in the execution of the sit-to-stand movement is a key feature for wide adoption of
powered lower limb orthoses that assist the mobility of patients with complete paraplegia. This
work provides techniques for planning the motion of these medical devices to yield biomechanically
sound configurations, designing tracking controllers for the reference trajectories of the movements,
evaluating the robustness of the controllers against parameter uncertainty, and assessing the ability
of a proxy for the user to coordinate with the control input during rehabilitation and physical therapy
sessions. Although our ideas can be applied to analyze any powered orthosis in the market, the
featured numerical simulations consider a minimally actuated orthosis at the hips.

The orthosis and its user are modeled as a three-link planar robot. The reference trajectories for
the angular position of the links are defined from the desired behavior for the Center of Mass of the
system, and the corresponding input trajectory is obtained using a computed torque method with
control allocation. With the Jacobian linearization of the dynamics about the reference trajectories,
a pool of finite time horizon LQR gains are designed assuming that there is control authority over
the actuators of the orthosis, and the torque and forces that are applied by the user. Conducting
reachability analysis, we define a performance metric for the robustness of the closed-loop system
against parameter uncertainty, and choose the gain from the pool that optimizes it. Replacing the
presumed controlled actions of the user with an Iterative Learning Control algorithm as a substitute
for human experiments, we find that the algorithm obtains torque and forces that result in successful
sit-to-stand movement, regardless of parameter uncertainty, and factors deliberately introduced to
hinder learning. Thus we conclude that it is reasonable to expect that the superior cognitive skills of
real users will enable them to synchronize with the controller of the hips through training. Further
tests are performed to verify the robustness of the system in feedback with the LQR gain in the
presence of measurement noise, and model uncertainty.

We believe that our tests can set a good benchmark to systematically choose actuators for fitting
a large variety of users, and develop a protocol for assessing the robustness of the sit-to-stand
movement in clinical trials. This would then help to close the gap between these medical devices
and standing wheelchairs, which still remain the most reliable mobility solution for patients with
complete paraplegia.
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i

¿Qué es la vida? Un frenesí.
¿Qué es la vida? Una ilusión,

una sombra, una ficción;
y el mayor bien es pequeño;
que toda la vida es sueño,
y los sueños, sueños son.

Fragmento del monólogo de Segismundo en
"La Vida es Sueño" por Calderón de la Barca.

Para los soñadores... No hay muros que nos detengan.

What is life? A frenzy.
What is life? An illusion,

a shadow, a fiction;
and the greatest good is but small;

that all life is a dream,
and dreams themselves, are dreams.

Excerpt from the reflections of Segismundo in
"Life is a Dream" by Calderón de la Barca.

For the dreamers... No walls can stop us.
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Chapter 1

Introduction

Wearable robots are complex biomechatronics systems that must work in synchrony with the body
of its user in order to perform a mechanical task. They can be worn in series to replace missing
extremities (powered prostheses), or in parallel to provide power augmentation or rehabilitation
(powered orthoses) [1]. Powered lower limb orthoses (PLLOs) are wearable robots designed as
medical devices that aid the mobility and enhance the strength of the legs or their individual joints
to assist standing and/or walking. We study a class of these orthoses (also referred to as medical
exoskeletons) whose purpose is to restore the gait of people with complete paralysis of the lower
part of the body (≈ 114,000 individuals in the USA [2]), by providing physical support and load
transfer to the ground with externally coupled rigid links. Their users must have good mobility
in hands, arms, and shoulders; as well as healthy enough skeletal, cardiovascular, vestibular, and
visual systems to tolerate standing.

The majority of state of the art PLLOs such as EksoGT [3], HAL [4], Indego [5], ReWalk [6],
and Roki [7] provide actuation at the hips and knees, and rely on the interaction of their users
with the ground by means of crutches. Inspired by the gait of bilateral transfemoral amputees with
passive knee prostheses [8], PhoeniX [9] uses a minimally actuated architecture where torque is
exclusively applied at the hips as a key feature to reduce mass, design complexity, and ultimately
cost [10]. Resembling fully actuated bipedal robots, ATALANTE [11], and REX [12] are equipped
with actuators at the hips, knees, and ankles to allow hands-free walking.

By enabling people with paraplegia to perform ambulatory functions, PLLOs target to prevent
conditions that arise from prolonged sitting, e.g., osteoporosis, muscular atrophy, pressure ulcers,
decreased blood flow to the legs, renal and urinary tract calculi, and decreased gastrointestinal
activity. Nevertheless, in order to be able to walk, users need to safely perform the sit-to-stand
movement first.

The sit-to-stand (STS) movement is the sequence of actions that are executed for rising from a
chair, in order to stabilize the center of mass (CoM) of the human body directly above the support
polygon created by the contact of the feet with the ground. Biomechanically, it is considered a
complex daily living activity because it requires adequate position and torque control at each joint
of the legs, precise spatial and temporal coordination of all body segments with feedback from the
equilibrium sense [13], and demands more strength and greater ranges of motion than walking or
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Figure 1.1: Phases of a sit-to-stand movement for a powered lower limb orthosis.

stair climbing [14].
The STS movement is studied in three distinctive phases: preparation, ascension, and stabi-

lization, as illustrated in Figure 1.1. In the preparation phase the user donning the PLLO reaches
for crutches with the intention to rise, moves to the edge of the chair, leans the torso forward, and
puts the crutches in a comfortable position for propelling upwards. Ascension starts at seat-off and
ends when the links of the shanks and thighs segments almost align with the vertical, and the torso
has a slight forward tilt, with all angular velocities close to zero in order to facilitate stabilization
about the standing position. Once equilibrium is reached, the crutches are no longer required for
support. Ascension is the most challenging phase because it requires precise coordination between
the actuators of the PLLO and the loads applied by the upper limbs of the user to avoid sit-back or
step failures [15].

Most of the publications on the control of assistive devices focus almost entirely on their walking
strategies and scarcely mention the STSmovement (e.g., [16–19]). Therefore, this dissertation aims
to provide analysis tools for the ascension phase of PLLOs that can be used to determine the reference
trajectories that better balance the input applied by the actuators available in the device, and the
loads required from the user; predict if a controller could overcome the daily changes in the weight
of a user without dangerous degradation of its performance; and evaluate if a user would be able to
learn how to coordinate with the input commanded by a controller. These have all been previously
identified as key technical challenges to yield the desired rehabilitation of the users of assistive
devices [20]. The content and contributions of each chapter are briefly described below.

Chapter 2 presents a strategy for planning the ascension phase of the sit-to-stand movement
of powered lower limb orthoses (PLLOs). Modeling the system as a three rigid link planar robot,
we rely on its kinematic equations to obtain a transformation that allows us to compute reference
trajectories for the angular positions, velocities, and accelerations of the links, starting from a
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desired kinematic behavior for the center of mass of the robot and the link representing the thighs
segment. Our STS motion planning strategy reduces the task to only choosing initial and final
points with zero slope boundary conditions that result in simulations of biomechanically sound
movements. The material in this chapter is reported in [21].

Chapter 3 derives feedback linearization and finite time horizon LQR controllers to track the
reference trajectories of STS movements under the provisional assumption that the controllers have
authority not only over the torque of the actuators of the PLLO, but also over the torque and forces
at the shoulders of the user. The material in this chapter is reported in [21, 22].

Chapter 4 provides a performance metric to quantify the robustness against parameter un-
certainty of a controller for the ascension phase of a PLLO using a sensitivity-based reachability
analysis for computing over-approximations of reachable sets. We select from a pool of finite
horizon LQR controllers the one that optimizes the robust performance metric. The material in this
chapter is reported in [23].

Chapter 5 proposes an ILC algorithm to simulate the loads at the shoulders that would be
applied by a user, when being trained to perform the ascending phase of the STS movement in
closed-loop with an optimal controller driving the actuators of the PLLO. To avoid identification
experiments that would expose the user to non validated controllers, we tune the internal gains of the
ILCwith a reinforcement learning approach. We confirm through simulations that the simple proxy
for the user achieves successful STS movements after a reasonable number of iterations despite
considerable weight fluctuations and factors hindering learning. The material in this chapter is
expanded on from [24].

Chapter 6 derives finite time horizon LQG controllers to track the reference trajectories of STS
movements in the presence of measurement noise, considering different configurations of rotary
encoders at the joints of the PLLO to identify the output that in feedback with the controller gives
the best robustness against parameter uncertainty.

Chapter 7 tests the robustness in the presence of model uncertainty of the finite time horizon
LQR controller chosen with the proposed performance metric, by modeling the system with a
four-link planar robot that allows the movement of the neck, and head of the user with respect to
the torso.

Note that the contents of Chapters 5 and 7 provide analysis tools to assess the performance of
the controller that is to be implemented in the PLLO with the results in Chapters 2, 3, 4, and 6.
This is discussed in detail as part of the conclusions in Chapter 8.

Companies producing PLLOs for people with complete paraplegia are moving towards stand-
alone mobility solutions that can be operated outside of rehabilitation centres, and without the
supervision of a specially trained physical therapist. This calls for extensive clinical trials for
certifying the safety and feasibility of their designs to stand up and walk under a wide variety of
conditions, as was done in [25, 26] to certify the potential benefits on gait function and balance.
Even though our simulations cannot replace such tests, they can be valuable tools for improving
both the mechanical design and control strategies of the devices prior to a comprehensive training
protocol for the STS movement.
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1.1 Notation
Denote ci := cosθi, ci j := cos

(
θi + θ j

)
, ci j k := cos

(
θi + θ j + θk

)
, ci j kl := cos

(
θi + θ j + θk + θl

)
, and

similarly for sin (·).

For a,b ∈ Rn we use the notation a ≤ b to mean ai ≤ bi ∀i, with similar element-wise definitions
for ≤, ≥, and >.

Define an interval of Rn as [a,b] := {ξ ∈ Rn |a ≤ ξ ≤ b} ⊆ Rn, and compute its volume
vol([a,b]) ∈ R as:

vol([a,b]) =
∏

i∈{1,...,n}
(bi − ai).

Define the saturation of c ∈ Rn over the interval [a, b] ⊆ Rn as the element-wise min/max
operation:

sat (c, [a, b]) :=min (b, max (a, c)) .

For matrices Λ, Λ,Λ ∈ Rn×m we write Λ ∈
[
Λ, Λ

]
if Λi j ∈

[
Λi j, Λi j

]
∀(i, j) ∈ {1, . . .,n} ×

{1, . . .,m}.

The center of the interval matrix
[
Λ, Λ

]
is represented by Λ̂.

The finite time horizon 2-norm of a signal v : [0,T] → Rn is defined as

‖v‖2,[0,T] :=
(∫ T

0 v (t)> v (t) dt
)1/2

.

If ‖v‖2,[0,T] is finite then v ∈ L2 [0,T].
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1.2 Acronyms
STS sit-to-stand.

STS 1 ascending phase of a sit-to-stand movement starting with the shanks and torso segments
parallel to the vertical, and the thighs segment parallel to the horizontal, by using the initial
condition θ̂ (t0) = [90[◦]; −90[◦]; 90[◦]].

STS 2 ascending phase of a sit-to-stand movement starting with the thighs segment parallel to the
horizontal, and the center of mass vertically aligned with the ankle joints, by using the initial
condition θ̂ (t0) = [120[◦]; −120[◦]; 111[◦]].

PLLO powered lower limb orthosis.

PLLOs powered lower limb orthoses.

CoM center of mass.

CoMs centers of mass.

LQR linear-quadratic regulator.

LTV linear time-varying.

ILC Iterative Learning Control.

LQG linear-quadratic Gaussian.
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Chapter 2

Sit-To-Stand Motion Planning

Based on the evidence that three rigid link dynamic models have been used to accurately describe
the STSmovement of different subjects [15], wemodel the system comprised of a PLLO and its user
as a three-link planar robot, where the interaction of the subject with the ground through crutches
is represented by reactive loads acting on the location of the shoulder joints. Since biomechanical
studies measure the kinematics of the CoM of the human body to classify and assess the dynamic
balance of the STS movement [27] rather than joint angles, we propose to plan the ascension
phase of the STS movement in terms of the desired trajectory for the position of the CoM of the
three-link robot, and the angular position of the link representing the segment of the thighs. In
order to determine the angular configurations of the remaining links (representing the segments of
the shanks, and the torso) required for the desired motion, we use the kinematic equations of the
three-link robot to derive a nonlinear mapping that is valid for all feasible and realistic ascension
maneuvers. With reference trajectories for the angular positions, velocities, and accelerations of
the links at hand, we use a computed torque approach for obtaining reference trajectories for the
input. To illustrate our motion planning method, we compute reference trajectories for two relevant
STS movements, considering the three main architectures of commercially available PLLOs.

2.1 Model for Powered Lower Limb Orthoses and their Users
Assuming sagittal symmetry, no movement of the neck, and head relative to the torso, and that the
feet are fixed to the ground, we model the user, crutches and PLLO as a three-link planar robot
with revolute joints coaxial to the ankles, knees and hips, as shown in Figure 2.1. θ1 is the angular
position of link 1 (shanks) measured from the horizontal, θ2 is the angular position of link 2 (thighs)
relative to link 1, and θ3 is the angular position of link 3 (torso, neck, and head) relative to link 2.
The system parameters are the masses of the links m1, m2, and m3; the moments of inertia about
their respective CoMs I1, I2, and I3; their lengths l1, l2, and l3; and the distances of their CoMs
from the joints lc1 , lc2 , and lc3 . Depending on its architecture, the actuators of an orthosis might
exert torque about the ankles τa, knees τk , and hips τh. The torque τs, horizontal force Fx , and
vertical force Fy aim to capture the inertial and gravitational forces of the arms, as well as the loads
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Figure 2.1: Three-link planar robot for modeling PLLOs during a STS movement.

applied on the shoulders by the user.
The Euler-Lagrange equations of the three-link planar robot in Figure 2.1 were obtained by

using the symbolic multibody dynamics package PyDy (short for Python Dynamics) [28]. In terms
of the joint angles θ := [θ1; θ2; θ3] ∈ R

3, the m external torques and forces of the PLLO lumped
in the input of the system u ∈ Rm, and parameter

p :=
[
m1; m2; m3; I1; I2; I3; l1; l2; l3; lc1; lc2; lc3

]
∈ R12, (2.1)

the Euler-Lagrange equations can be written as

M (θ, p) Üθ +F
(
θ, Ûθ, p

)
= Aτ (θ, p)u, (2.2)

where M (θ, p) ∈ R3×3, M (θ, p) � 0 is the symmetric mass matrix of the system, F
(
θ, Ûθ, p

)
∈ R3

is the vector of energy contributions due to the acceleration of gravity and Coriolis forces, and
Aτ (θ, p) ∈ R3×m is the generalized force matrix, whose entries relative to the loads contained in u
are described below.

For notational convenience define the coefficients

k0 (p) := (m1+m2+m3)
−1 , k1 (p) := lc1m1+ l1 (m2+m3),

k2 (p) := lc2m2+ l2m3, k3 (p) := lc3m3,

their explicit dependence with respect to the parameter p is omitted onwards for compactness.
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The entries of the symmetric mass matrix M (θ, p) ∈ R3×3 in (2.2) are

M11 =I1+ I2+ I3+ l2
c1m1+m2

(
l2
1 +2l1lc2c2+ l2

c2

)
+m3

(
l2
1 +2l1l2c2+2l1lc3c23+ l2

2 +2l2lc3c3+ l2
c3

)
M12 =I2+ I3+ lc2m2

(
l1c2+ lc2

)
+m3

(
l1l2c2+ l1lc3c23+ l2

2 +2l2lc3c3+ l2
c3

)
M13 =I3+ lc3m3

(
l1c23+ l2c3+ lc3

)
M22 =I2+ I3+ l2

c2m2+m3

(
l2
2 +2l2lc3c3+ l2

c3

)
M23 =I3+ lc3m3

(
l2c3+ lc3

)
M33 =I3+ l2

c3m3.

The vector of energy contributions due to the acceleration of gravity g := 9.81 [m/s2] and Coriolis
forces F

(
θ, Ûθ, p

)
∈ R3 is

F
(
θ, Ûθ, p

)
=Ω (θ, p)


Ûθ2
1(

Ûθ1+ Ûθ2
)2(

Ûθ1+ Ûθ2+ Ûθ3
)2

 +g


k1c1+ k2c12+ k3c123
k2c12+ k3c123

k3c123

 ,
with Ω (θ, p) ∈ R3×3 defined as

Ω (θ, p) :=


l1 (k2s2+ k3s23) −k2l1s2+ k3l2s3 −k3 (l1s23+ l2s3)
l1 (k2s2+ k3s23) k3l2s3 −k3l2s3

l1k3s23 k3l2s3 0

 .
For minimally actuated PLLOs at the hips [9], where u =

[
τh; τs; Fx; Fy

]
, the generalized

force matrix Aτ (θ, p) ∈ R3×4 is

Aτ (θ, p) =


0 −1 −l1s1− l2s12− l3s123 l1c1+ l2c12+ l3c123
0 −1 −l2s12− l3s123 l2c12+ l3c123
1 −1 −l3s123 l3c123

 . (2.3)

For PLLOs with actuators at the knees and hips [3–7], where u =
[
τk ; τh; τs; Fx; Fy

]
, the

generalized force matrix Aτ (θ, p) ∈ R3×5 is

Aτ (θ, p) =


0 0 −1 −l1s1− l2s12− l3s123 l1c1+ l2c12+ l3c123
1 0 −1 −l2s12− l3s123 l2c12+ l3c123
0 1 −1 −l3s123 l3c123

 . (2.4)

For hands-free, fully actuated PLLOs [11, 12], where u := [τa; τk ; τh], the generalized force
matrix is the identity Aτ (θ, p) = I3.

Three rigid link dynamic models of this form have been used to accurately describe the STS
movement of human subjects [15].
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2.2 Kinematics of the Center of Mass of the Three-Link Robot
The position [xCoM; yCoM] ∈ R

2, velocity [ ÛxCoM; ÛyCoM] ∈ R
2, and acceleration [ ÜxCoM; ÜyCoM] ∈ R

2 coordi-
nates of the CoM of the three-link robot, relative to the inertial frame î ĵ in Figure 2.1, are

xCoM = k0 (k1c1+ k2c12+ k3c123), (2.5)
yCoM = k0 (k1s1+ k2s12+ k3s123), (2.6)

ÛxCoM = − Ûθ1yCoM− Ûθ2k0 (k2s12+ k3s123)− Ûθ3k0k3s123, (2.7)
ÛyCoM = Ûθ1xCoM+ Ûθ2k0 (k2c12+ k3c123)+ Ûθ3k0k3c123, (2.8)

ÜxCoM = − Ûθ
2
1 xCoM− Ûθ

2
2k0 (k2c12+ k3c123)− Ûθ

2
3k0k3c123−2 Ûθ1 Ûθ2k0 (k2c12+ k3c123)

−2
(
Ûθ1+ Ûθ2

)
Ûθ3k0k3c123− Üθ1yCoM− Üθ2k0 (k2s12+ k3s123)− Üθ3k0k3s123, (2.9)

ÜyCoM = − Ûθ
2
1yCoM− Ûθ

2
2k0 (k2s12+ k3s123)− Ûθ

2
3k0k3s123−2 Ûθ1 Ûθ2k0 (k2s12+ k3s123)

−2
(
Ûθ1+ Ûθ2

)
Ûθ3k0k3s123+ Üθ1xCoM+ Üθ2k0 (k2c12+ k3c123)+ Üθ3k0k3c123. (2.10)

If the position of the CoM is given for specific values of the parameters in p, (2.5) and (2.6)
constitute a system of 2 equations in 3 unknowns. In order to have the same number of equations
and unknowns, we could choose to give the angular position of any link. STS movements of
healthy individuals exhibit continuous extension of the knee joints that can be approximated using
simple monotonically increasing functions to describe the angular position of link 2 in Figure 2.1,
whereas the joints at the ankles and hips have a more complex behavior. Therefore, defining
z := [θ2; xCoM; yCoM], we derive a transformation h1 : R3×R12→ R3 of the form

θ = h1 (z, p),

that we can use to compute reference trajectories in the space of θ from natural looking STS
movements planned in the space of z.

2.3 Transformation from the Space of z to the Space of θ
From equations (2.5) and (2.6), the position of the CoM of the three-link robot can be expressed as
a sum of three vectors whose geometric representation is shown in Figure 2.2:[

xCoM

yCoM

]
= k0k1

[
c1
s1

]
+ k0k2

[
c12
s12

]
+ k0k3

[
c123
s123

]
=: r1+ r2+ r3. (2.11)
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Figure 2.2: Geometric representation of vectors and angles used for expressing θ1 and θ3 as a
function of [xCoM; yCoM] and θ2.

According to the angles drawn in Figure 2.2, we can establish the following relationships:

α = θ2− π,

β = arctan
(
yCoM

xCoM

)
, (2.12)

θ1 = β−φ+ϕ, (2.13)
θ3 = β+ψ−(θ1+ θ2), (2.14)

where for feasible and realistic STS movements φ ≥ 0, and ϕ,ψ ∈
[
− π2,

π
2
]
.

Applying the law of cosines to the triangle formed by vectors r1+r2, r3, and [xCoM; yCoM], as well
as using the trigonometric identity c2 = c12c1+ s12s1, we have

φ (z) = arccos
©­­«
‖r3‖

2− ‖r1+ r2‖
2−

(
x2

CoM+ y
2
CoM

)
−2 ‖r1+ r2‖

√
x2

CoM+ y
2
CoM

ª®®¬
= arccos

©­­«
(k0k3)

2− k2
0
(
k2

1 + k2
2 +2k1k2c2

)
−

(
x2

CoM+ y
2
CoM

)
−2k0

√
k2

1 + k2
2 +2k1k2c2

√
x2

CoM+ y
2
CoM

ª®®¬ . (2.15)
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From the law of sines, for the triangle of vectors r1, r2, and r1+ r2, we know

ϕ (z) = arcsin
(
‖r2‖ sinα
‖r1+ r2‖

)
= arcsin

©­­«
k2 sin (θ2− π)√

k2
1 + k2

2 +2k1k2c2

ª®®¬, (2.16)

ψ (z) = arcsin
(
‖r1+ r2‖ sinφ (z)

‖r3‖

)
= arcsin

©­­«
√

k2
1 + k2

2 +2k1k2c2 sinφ (z)

k3

ª®®¬ . (2.17)

Plugging (2.12), (2.15), and (2.16) into (2.13), as well as (2.12), and (2.17) into (2.14), we define
the transformation h1 : z, p→ θ as

θ =


arctan

(
yCoM
xCoM

)
−φ (z)+ϕ (z)

θ2

arctan
(
yCoM
xCoM

)
+ψ (z)− (θ1 (z)+ θ2)

 =: h1 (z, p) . (2.18)

Because this transformation relies on the triangulation of the vectors in equation (2.11), it does not
hold in the vertical position, where θ1 =

π
2 and θ2 = θ3 = 0.

From equations (2.7) and (2.8), the velocity of the CoM of the three-link robot is[
ÛxCoM

ÛyCoM

]
= k0 Ûθ2

[
−k2s12− k3s123
k2c12+ k3c123

]
+

[
−yCoM −k0k3s123
xCoM k0k3c123

] [
Ûθ1
Ûθ3

]
.

The determinant k0k3s123xCoM − k0k3c123yCoM = 0 if θ1 + θ2 + θ3 = arctan
(
yCoM
xCoM

)
, and according to

expressions (2.12) and (2.14) this condition will hold if and only if ψ = 0; which requires vectors
r1+r2 and r3 to be aligned. In the case of feasible and realistic STS movements, this will only occur
in the vertical position. For all other configurations, we calculate the angular velocities of links 1
and 3 as [

Ûθ1
Ûθ3

]
=

[
−yCoM −k0k3s123
xCoM k0k3c123

]−1 ( [
ÛxCoM

ÛyCoM

]
− k0 Ûθ2

[
−k2s12− k3s123
k2c12+ k3c123

] )
=: V (z, Ûz, p),

so that the transformation h2 : z, Ûz, p→ Ûθ is defined

Ûθ =


1 0
0 0
0 1

 V (z, Ûz, p)+


0
Ûθ2
0

 =: h2 (z, Ûz, p) .

From equations (2.9) and (2.10), the acceleration of the CoM is[
ÜxCoM

ÜyCoM

]
= a (h1 (z, p), h2 (z, Ûz, p), Üz, p)+

[
−yCoM −k0k3s123
xCoM k0k3c123

] [
Üθ1
Üθ3

]
,
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where

a
(
θ, Ûθ, Üz, p

)
:=−

[
xCoM k0 (k2c12+ k3c123) k0k3c123
yCoM k0 (k2s12+ k3s123) k0k3s123

] 
Ûθ2
1
Ûθ2
2
Ûθ2
3

 −2k0 Ûθ1 Ûθ2

[
k2c12+ k3c123
k2s12+ k3s123

]
−2k0k3

(
Ûθ1+ Ûθ2

)
Ûθ3

[
c123
s123

]
+ k0 Üθ2

[
−k2s12− k3s123
k2c12+ k3c123

]
.

Thus [
Üθ1
Üθ3

]
=

[
−yCoM −k0k3s123
xCoM k0k3c123

]−1 ( [
ÜxCoM

ÜyCoM

]
− a (h1 (z, p), h2 (z, Ûz, p), Üz, p)

)
and we can define the transformation h3 : z, Ûz, Üz, p→ Üθ as

Üθ =


1 0
0 0
0 1


[
−yCoM −k0k3s123
xCoM k0k3c123

]−1 ( [
ÜxCoM

ÜyCoM

]
− a (h1 (z, p), h2 (z, Ûz, p), Üz, p)

)
+


0
Üθ2
0


=: h3 (z, Ûz, Üz, p) .

For compactness, we use

h (z, Ûz, Üz, p) := [h1 (z, p) ; h2 (z, Ûz, p) ; h3 (z, Ûz, Üz, p)] (2.19)

to denote the transformation from the space of z to the space of θ.

2.4 Reference Trajectories for the Sit-To-Stand Movement
To plan the ascension phase of the STS movement for PLLOs according to the desired angular
position of the second link, and the position coordinates of the CoM of the three-link robot
in Figure 2.1, we compute the reference trajectory ẑ (t) :=

[
θ̂2(t); x̂CoM (t) ; ŷCoM (t)

]
over the time

horizon t ∈
[
t0, t f

]
as

θ̂2 (t) = θ̂2 (t0)+
(
θ̂2

(
t f

)
− θ̂2 (t0)

)
Θ

(
t, t f

)
,

x̂CoM (t) = x̂CoM (t0)+
(
x̂CoM

(
t f

)
− x̂CoM (t0)

)
Θ

(
t, t f

)
,

ŷCoM (t) = ŷCoM (t0)+
(
ŷCoM

(
t f

)
− ŷCoM (t0)

)
Θ

(
t, t f

)
.

(2.20)

For a rest-to-rest maneuver from ẑ (t0) to ẑ
(
t f

)
, define Θ

(
t, t f

)
:= −2 t3

t3
f

+ 3 t2

t2
f

; which is the only

cubic polynomial satisfying ÛΘ
(
t0, t f

)
= ÛΘ

(
t f , t f

)
= 0, Θ

(
t0, t f

)
= 0, and Θ

(
t f , t f

)
= 1.

STS movements planned in the space of z are mapped into reference trajectories in the space of
θ by plugging the nominal value of the parameter p̂, together with the evaluation of (2.20), and its
first and second time derivatives for all t ∈

[
t0, t f

]
into transformation (2.19). So that[

θ̂ (t) ; Û̂θ (t) ; Ü̂θ (t)
]
= h

(
ẑ (t), Û̂z (t), Ü̂z (t), p̂

)
. (2.21)
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We apply the computed torque method [29] to get reference trajectories for the input û (t) ∈ Rm.
However, as the system of equations in (2.2) is underdetermined when m > 3, a control allocation
problem [30] is solved at every t ∈

[
t0, t f

]
to minimize the 2-norm of the input weighted by

Wu ∈ R
m×m in the presence of box constraints u, u ∈ Rm:

û (t) = argmin
ξ∈Rm

1
2
‖Wu ξ‖

2
2 (2.22)

subject to

Aτ
(
θ̂ (t), p̂

)
ξ = M

(
θ̂ (t), p̂

)
Ü̂θ (t)+F

(
θ̂ (t), Û̂θ (t), p̂

)
u ≤ ξ ≤ u.

This formulation allows to find reference trajectories for the inputs of every possible architecture
of PLLO.

Different values for Wu, u, and u might lead to different û (t) for the same θ̂(t), Û̂θ(t), Ü̂θ(t), and p̂.
Since a subject pushes the crutches down to propel upwards during a STS movement, the constraint
Fy (t) ≥ 0 must always be imposed.

2.5 Reference Trajectories of Two Relevant Sit-To-Stand
Movements for Different Architectures of PLLOs

There are two main strategies to execute STS movements, they are referred in the biomechanical
literature as dynamic and quasi-static [13]. In a dynamic STS movement the torso generates
forward momentum and transfers it into vertical momentum while ascending. In a quasi-static STS
movement the CoM is vertically aligned with the feet prior to seat-off, and then the leg joints are
slowly extended. Most healthy people use the quasi-static strategy because it is safer and reduces
the overall work; however, people with reduced knee strength tend to use a dynamic strategy. We
illustrate the motion planning method detailed in this chapter by obtaining reference trajectories
of two ascension movements that mimic these strategies for three architectures of commercially
available PLLOs.

The ascension phase of the dynamic STS movement (STS 1) starts with the shanks and torso
segments parallel to the vertical, and the thighs segment parallel to the horizontal, as depicted in
Figure 2.3a. Setting θ̂ (t0) = [90[◦]; −90[◦]; 90[◦]] and considering the nominal parameter values

p̂ = [9.68 [kg] ; 12.59 [kg] ; 44.57 [kg] ;1.16
[
kg ·m2] ; 0.52

[
kg ·m2] ; 2.56

[
kg ·m2] ; . . .

0.53 [m] ; 0.41 [m] ; 0.52 [m] ;0.27 [m] ; 0.21 [m] ; 0.26 [m]], (2.23)

the corresponding initial position of the CoM of the three-link robot from (2.5) and (2.6) is
[x̂CoM (t0) ; ŷCoM (t0)] = [0.31; 0.67][m]. The quasi-static STS movement (STS 2) starts as shown in
Figure 2.3b with the CoM of the robot and ankle joints vertically aligned by choosing the ini-
tial condition θ̂ (t0) = [120[◦]; −120[◦]; 111[◦]], which gives [x̂CoM (t0) ; ŷCoM (t0)] = [0.31; 0.67][m]
using p = p̂ in (2.5) and (2.6).
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For both movements ẑ
(
t f

)
= [−5[◦];0[m];0.97[m]], so that the final positions of the three links

place the CoM of the robot directly above the ankle joints (Figure 2.3c). Due to the lack of data
on comfortable STS duration for subjects with complete spinal cord injuries, we pick one reported
in [31] for stroke patients; leading to a finite time horizon between t0 := 0[s] and t f := 3.5[s].

(a) Initial position for STS 1. (b) Initial position for STS 2.

(c) Final position for STS 1 & 2.

Figure 2.3: Rest-to-rest positions for planning two relevant STS movements for PLLOs. The red
dashed lines represent the reference trajectories of the CoM of the three-link robot in blue.

Plugging ẑ (t0) and ẑ
(
t f

)
for STS 1 & 2 into (2.20), and calculating the first and second time

derivatives of the resulting cubic polynomials, we obtain ẑ (t), Û̂z (t), and Ü̂z (t), which are shown in
Figure 2.4. The corresponding reference trajectories in the space of θ are computed from (2.21) for
t ∈

[
t0, t f

]
and shown in Figure 2.5, where θ̂2 (t), Û̂θ2 (t), and Ü̂θ2 (t) are omitted to avoid redundancy.
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(a) Reference for angular position of link 2. (b) Reference for horizontal position of the CoM.

(c) Reference for vertical position of the CoM. (d) Reference for angular velocity of link 2.

(e) Reference for horizontal velocity of the CoM. (f) Reference for vertical velocity of the CoM.

Figure 2.4: Reference trajectories in the space of z.
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(g) Reference for angular acceleration of link 2. (h) Reference for horizontal acceleration of the CoM.

(i) Reference for vertical acceleration of the CoM.

Figure 2.4: Reference trajectories in the space of z (continued).

While the cubic expressions used to determine ẑ (t) in Figures 2.4a to 2.4c are simple, merely
connecting starting and final points with zero slope boundary conditions, θ̂1 (t) and θ̂3 (t) in Fig-
ures 2.5a and 2.5b are complex in shape, and it is not apparent how one would intuitively choose
them as references. Moreover, stick figure animations of STS 1 & 2 following the angular trajec-
tories in Figures 2.4 and 2.5 display flexion and extension of the ankles and hips that provide a
natural look. By contrast, using cubic expressions to directly define θ̂ (t) leads to unrealistic STS
movements as shown in Appendix A. This is the prime motivation for having derived the trans-
formation (2.19), we plan the STS motion in the space of z instead of θ to obtain biomechanically
sound trajectories.
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(a) Reference for angular position of link 1. (b) Reference for angular position of link 3.

(c) Reference for angular velocity of link 1. (d) Reference for angular velocity of link 3.

(e) Reference for angular acceleration of link 1. (f) Reference for angular acceleration of link 3.

Figure 2.5: Reference trajectories in the space of θ.
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In order to solve for û (t) ∈ Rm, we must take into account specific architectures of PLLOs to
pick proper Aτ (θ, p), Wu, u, and u in (2.22). The choices for the entries of Wu enforce that the
contributions from τa (t), τk (t), τh (t), τs (t), and Fy (t) outweigh Fx (t). For minimally actuated
PLLOs at the hips [9] we use the generalized force matrix in (2.3), and Wu = diag ([1,1,10,1]). For
PLLOs with actuators at the knees and hips [3–7] we use the generalized force matrix in (2.4), and
Wu = diag ([1,1,1,10,1]). For hands-free, fully actuated PLLOs [11,12] we have Aτ (θ, p)=Wu = I3.
Because the user of the PLLO always pushes the crutches down to propel upwards, we only impose
the constraint Fy (t) ≥ 0 and leave all other inputs unconstrained.

Solving (2.22) over t ∈
[
t0, t f

]
for the reference trajectories of STS 1 & 2 in the space of θ, we

obtain the reference trajectories for the inputs of the different PLLOs. From the plots in Figure 2.6,
we can tell that executing STS 2 with a minimally actuated PLLO would require applying a vertical
force greater than the weight of the user, while executing STS 1 would keep it within a comfortable
level.

(a) Torque at the hips. (b) Torque at the shoulders.

(c) Horizontal force at the shoulders. (d) Vertical force at the shoulders.

Figure 2.6: Reference input for a minimally actuated PLLO at the hips.
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(a) Torque at the knees. (b) Torque at the hips.

(c) Torque at the shoulders. (d) Horizontal force at the shoulders.

(e) Vertical force at the shoulders.

Figure 2.7: Reference input for a PLLO actuated at the knees and hips.
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Figure 2.7 shows that performing STS 1 with a PLLO actuated at the knees and hips drastically
reduces the torque at the knees, with increased loads at the shoulders and torque at the hips; in
contrast, STS 2 leans heavily on the torque at the knees to reduce the participation of all other
inputs.

Figure 2.8 highlights that a fully actuated PLLO relies mostly on the torque at the knees to
accomplish both STS movements, with STS 1 involving a large torque at the ankles.

(a) Torque at the ankles. (b) Torque at the knees.

(c) Torque at the hips.

Figure 2.8: Reference input for a hands-free fully actuated PLLO.

The comparison of the reference trajectories of the inputs for different PLLOs illustrates that
our motion planning algorithm can also be a great analysis tool to provide valuable insight during
the design stage of the devices, especially assisting to set the specifications of the actuators.
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Other strategies for planning the STS movement of PLLOs are available in the literature. For
example, the STS movement of the Robot Suit HAL [4] is planned in terms of the center of
pressure, and the angles of hips and knees, without assuming sagittal symmetry. The desired
center of pressure is fixed in front of the ankles, the reference trajectories for the knees are tuned
from motion capture of a healthy person, and the trajectories for the hips are updated online,
with measurements of the angles of the knees and ankles. The torque applied at the joints is then
governed by a PD controller with feedback of the error with respect to the reference trajectories [32].

Our motion planning strategy does not rely on data collected from healthy subjects. The
reference trajectories for the PLLOs are specifically adapted to the physical characteristics of the
user by the definition of the parameter values in p̂, and the time horizon for the ascension phase of
the STS movement can be changed to offer a comfortable feeling.

In the next chapter we design feedback controllers for tracking the reference trajectories obtained
in this section for a minimally actuated PLLO at the hips.
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Chapter 3

Tracking Controllers

This chapter presents the design of feedback controllers for the ascension phase of STS movements
for PLLOs under the provisional assumption that the controller has authority not only over the
torque of the actuators available in the PLLO, but also over the torque and forces at the shoulders
of the user. This assumption will be removed in Chapter 5.

The first controller uses feedback linearization of the Euler-Lagrange equations of the three-link
robot, which due to our choice of input, also requires solving a control allocation program. The
second controller is a finite time horizon LQR.

As an initial assessment of the robustness of the controllers, we simulate a minimally actuated
PLLOat the hips tracking the reference trajectories of the two relevant STSmovements of Section 2.5
in the presence of parameter uncertainty, i.e., when p in (2.2) is an unknown constant lying within
an interval p ∈

[
p, p

]
⊆ R12.

There is no guarantee that a particular choice of weight matrices in the design of the finite time
horizon LQR controller achieves a safe STS movement in the presence of parameter uncertainty,
i.e., when p is an unknown constant lying within an interval, due to manufacturing variability of
the links of the PLLO and weight fluctuations of its user. Therefore, the weight matrices of the
LQR controller are chosen from a pool of candidates as to optimize a performance metric involving
induced gains that measure the deviation of variables of interest in LTV systems, at specific times,
caused by perturbation signals modeling the variation of the parameters. The deduction of such
LTV systems follows from the nonlinear dynamics model, the reference trajectories obtained from
our motion planning strategy, and the kinematic equations of the CoM of the three-link robot.
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3.1 Feedback Linearization with Control Allocation
If the input u ∈ Rm satisfies

Aτ (θ, p)u = M (θ, p)
(
−Kp

(
θ − θ̂ (t)

)
−Kd

(
Ûθ − Û̂θ (t)

)
+ Ü̂θ (t)

)
+F

(
θ, Ûθ, p

)
, (3.1)

then the dynamics of the three-link robot described by M (θ, p) Üθ +F
(
θ, Ûθ, p

)
= Aτ (θ, p)u, result in

a linear differential equation governing the tracking error of the form

Üθ − Ü̂θ (t)+Kd

(
Ûθ − Û̂θ (t)

)
+Kp

(
θ − θ̂ (t)

)
= 0.

With the synthetic input v (t) ∈ R3, defined as

v (t) := −Kp

(
θ − θ̂ (t)

)
−Kd

(
Ûθ − Û̂θ (t)

)
, (3.2)

the feedback linearized [33] equations are Üθ − Ü̂θ (t) = v (t). The gain matrices Kp,Kd ∈ R
3×3 can be

chosen from a LQR optimal gain for the system[
Ûθ − Û̂θ (t)
Üθ − Ü̂θ (t)

]
=

[
0 I3
0 0

] [
θ − θ̂ (t)
Ûθ − Û̂θ (t)

]
+

[
0
I3

]
v (t), (3.3)

which achieves asymptotically zero tracking error of the reference trajectories. For notational
purposes define

b
(
t, θ, Ûθ, p

)
:= M (θ, p)

(
−Kp

(
θ − θ̂ (t)

)
−Kd

(
Ûθ − Û̂θ (t)

)
+ Ü̂θ (t)

)
+F

(
θ, Ûθ, p

)
.

Since (3.1) is underdetermined for m > 3, to compute the feedback linearizing input we solve the
control allocation [30] at every time t ∈

[
t0, t f

]
with the constrained least-squares program

u (t) = argmin
ξ∈Rm

1
2
‖Wu ξ‖

2
2 . (3.4)

subject to

Aτ
(
θ̂ (t), p̂

)
ξ = b

(
t, θ, Ûθ, p̂

)
u ≤ ξ ≤ u

The nominal parameter p̂, user specified weights Wu ∈ R
m×m, and box constraints u,u ∈ Rm were

described in Section 2.4.
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3.2 Finite Time Horizon LQR
Defining the state x ∈ R6 as x :=

[
θ; Ûθ

]
, we first note from (2.2) that the first order dynamics of the

three-link planar robot are

Ûx (t) =
[

Ûθ (t)
M−1 (θ (t), p)

(
Aτ (θ (t), p)u (t)−F

(
θ (t), Ûθ (t), p

) ) ]
=: f (x (t), p,u (t)) . (3.5)

Next we linearize (3.5) to design a finite time horizon LQR controller for tracking the reference
state trajectory x̂ (t) :=

[
θ̂ (t), Û̂θ (t)

]
obtained from (2.20) and (2.21). The state deviation variable

δx (t) := x (t)− x̂ (t) satisfies
Ûδx (t) = f (x (t), p,u (t))− f (x̂ (t), p̂, û (t)),

which can be approximated with a first order Taylor series expansion of f (x (t), p,u (t)) about x̂ (t),
nominal parameter p̂, and reference input trajectory û (t):

Ûδx (t) ≈
∂ f (x, p,u)

∂x

���� x = x̂ (t)
p = p̂
u = û (t)

(x (t)− x̂ (t))+
∂ f (x, p,u)

∂p

���� x = x̂ (t)
p = p̂
u = û (t)

(p− p̂)

+
∂ f (x, p,u)

∂u

���� x = x̂ (t)
p = p̂
u = û (t)

(u (t)− û (t))

=: A(t)δx (t)+B1 (t)δp+B2 (t)δu (t) . (3.6)

From [34], for unconstrained δu (t), symmetric matrices Q, S � 0, and R � 0, the optimal control
of the stabilizable linear time-varying system in (3.6) with quadratic cost

JLQR =
1
2
δ>x

(
t f

)
Sδx

(
t f

)
+

1
2

∫ t f

t0

(
δ>x (t)Qδx (t)+ δ>u (t)Rδu (t)

)
dt (3.7)

exists, and is unique, given by the time-varying formula

δu (t) = −R−1B>2 (t)P (t)δx (t)
=: −KLQR (t)δx (t),

(3.8)

where P (t) ∈ R6×6 is the solution of the Riccati matrix differential equation
ÛP (t) =−P (t) A(t)− A> (t)P (t)+P (t)B2 (t)R−1B>2 (t)P (t)−Q, (3.9)

with the boundary condition P
(
t f

)
= S.

The nonlinear dynamics of the three-link robot under state feedback control with the time-
varying matrix gain KLQR (t) ∈ Rm×6, become

Ûx (t) = f
(
x (t), p, û (t)−KLQR (t) (x (t)− x̂ (t))

)
=: ϕ (t, x, p) . (3.10)
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3.3 Simulation of Two Relevant Sit-To-Stand Movements
Under Parameter Uncertainty

We illustrate the behavior of the three-link robot model in Figure 2.1 under the action of the
pair of tracking controllers presented in the previous sections. From the three architectures of
PLLOs discussed in Chapter 2, we take into account the minimally actuated PLLO at the hips.
This architecture allows the users of [9] attaining dynamically stable level-ground gait cycles
that look more natural when compared to the ones achieved with PLLOs equipped with more
actuators. Nevertheless, it demands the application of greater loads with the arms to perform STS
movements (as can be concluded from the comparison of Figures 2.6, 2.7, and 2.8), and makes
it more challenging to design controllers that guarantee a safe transition to the standing position
in the presence of parameter uncertainties, mainly due to weight fluctuations of the users and
manufacturing variability of the links of the PLLO.

The gain matrices of the synthetic input in (3.2) are obtained from the LQR optimal gain for
the error dynamics (3.3) using the weight matrices Q := I6, and R := 1

100 I3. When solving the
control allocation problem in (3.4) to obtain the feedback linearizing input, we want to reflect
that the contributions from the torque at the hips τh (t), the torque at the shoulders τs (t), and the
vertical force Fy (t) outweigh the horizontal force Fx (t); we do this by considering the matrix
Wu = diag ([1,1,10,1]) and, because the user always pushes the crutches down to propel upwards,
we specify the constraint Fy (t) ≥ 0. All other inputs are unconstrained.

Applying the feedback linearizing input to the three-link robot model in (2.2) with the general-
ized force matrix in (2.3) for tracking the movements STS 1 & 2 defined in Section 2.5, we obtain
the simulations in Figures 3.1 to 3.3. The dashed white lines represent the evolution of the variables
when the parameters of the system equal their nominal values p = p̂; thus overlapping with the
reference trajectories for STS 1 & 2. The collection of continuous lines represent the evolution of
the variables when the values for p are randomly chosen, within the interval

[
p, p

]
in Table 3.1, by

Latin hypercube sampling [35] of 200 experiments.

Table 3.1: Nominal values of the parameters of the three-link robot and bounds for their uncertainties
in an initial robustness assessment of the controllers

Link mi [kg] Ii
[
kg ·m2] li [m] lci [m]

1 9.68±0.1 1.16±0.1 0.53±0.01 l1
2 ±0.01

2 12.59±0.1 0.52±0.1 0.41±0.01 l2
2 ±0.01

3 44.57±0.1 2.56±0.1 0.52±0.01 l3
2 ±0.01
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(a) Angular position of link 1 relative to the horizontal. (b) Angular position of link 2 relative to link 1.

(c) Angular position of link 3 relative to link 2. (d) Angular velocity of link 1.

(e) Angular velocity of link 2. (f) Angular velocity of link 3.

Figure 3.1: Angular positions and velocities of the links of the robot under feedback linearization
and control allocation for two relevant STS movements.
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(a) Torque applied at the hips by the PLLO. (b) Torque at the shoulders of the user.

(c) Horizontal force at the shoulders of the user. (d) Vertical force at the shoulders of the user.

Figure 3.2: Feedback linearizing input for two relevant STS movements.

Since the feedback linearizing input is calculated with p̂, the deviation of the solid curves from
the reference trajectories is expected with p, p̂; nevertheless, it is a positive feature of the controller
to find that the observed offsets do not lead to sit-back or step failures [15] nor to a condition of
hyperextension of the knees, since all trajectories end in a small neighborhood of the final desired
state and keep θ2 (t) ≤ 0. Based solely on the observed variance from the reference trajectories,
STS 2 appears to be more sensitive to parameter uncertainty than STS 1, this is more noticeable in
Figure 3.3b.

From the plots in Figure 3.2, we can tell that STS 1 significantly reduces Fy (t) when compared
to STS 2, which in turn requires a greater magnitude of τh (t). The values of Fx (t) differ by one
order of magnitude from Fy (t) and remain within approximately the same range in both movements,
what is also observed for τs (t). It is interesting that for every STS 2 trajectory Fy (t) decreases from
a maximum value observed at seat-off, while STS 1 trajectories peak over t ∈ [0.75,2.25] [s].
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(a) Position trajectories of the three-link robotCoM. (b) Velocity trajectories of the three-link robot
CoM.

Figure 3.3: Center of Mass trajectories achieved with feedback linearization and control allocation
for two relevant STS movements.

Although the simulations with feedback linearization exhibit acceptable tracking errors for the
angular positions and velocities of the links in the presence of parameter uncertainties, we observe
a high sensitivity in the variability of the required control input. Since the upper body loads at the
joint of the shoulders τs (t), Fx (t), and Fy (t) are expected to be executed by the user for successfully
completing the movements and there is no feedback control/computer authority over them, a key
concern that arises is to find a controller that reduces their deviation from reference trajectories
without compromising the desired kinematics for the CoM, especially in the final standing position,
in order to decrease the likelihood of observing sit-back or step failures [15]. To address this issue
we resort to induced gains for LTV systems from [36] to evaluate the behavior of the three-link
robot under different finite time horizon LQR controllers. The use of induced gains for robustness
analysis of nonlinear systems was first explored in [37].

The linearization of the three-link robot dynamics under finite time horizon LQR control
in (3.10) about x̂ (t), p̂, and û (t) is

Ûδx (t) =
(
A(t)−B2 (t)KLQR (t)

)
δx (t)+B1 (t)δp. (3.11)

In order to define a metric that captures the effect of constant, uncertain parameters on the per-
formance of this linear system, and to minimize the deviation of the variables of interest in the
space of z from their reference trajectories δz :=

[
z (t)− ẑ (t) ; Ûz (t)− Û̂z (t)

]
, we construct the extended

LTV system in Figure 3.4. The input signal d : [0, t] → R12 is assigned to be drawn from L2 [0, t]
with a given norm ‖d‖2,[0,t] ≤ d for a fixed horizon at t ∈

[
0, t f

]
. The output e ∈ R6 is the linear

approximation of δz weighted by We ∈ R
6×6.
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Figure 3.4: Extended LTV system for robust performance analysis against parameter uncertainty.

In terms of x and p, the variables of interest in the space of z are computed from (2.5) to (2.8)
as

[
z
Ûz

]
=



θ2
xCoM

yCoM
Ûθ2
ÛxCoM

ÛyCoM


=



θ2
k0 (k1c1+ k2c12+ k3c123)
k0 (k1s1+ k2s12+ k3s123)

Ûθ2
− Ûθ1yCoM− Ûθ2k0 (k2s12+ k3s123)− Ûθ3k0k3s123
Ûθ1xCoM+ Ûθ2k0 (k2c12+ k3c123)+ Ûθ3k0k3c123


=: <(x, p) .

The deviation from their desired trajectories

δz (t) = <(x (t), p)−<(x̂ (t), p̂)
is approximated by a first order Taylor series expansion of <(x, p) about x̂ (t) and p̂:

δz (t) ≈ C (t)δx (t)+D (t)δp, (3.12)

with

C (t) :=
∂<(x, p)
∂x

���� x = x̂ (t)
p = p̂

, D (t) :=
∂<(x, p)
∂p

���� x = x̂ (t)
p = p̂

.

Although δp := p− p̂ is an unknown constant, for the purpose of this analysis it is treated as a
time-varying perturbation signal, modeled by the output of the strictly proper system Wd:

Ûη (t) = Adη (t)+Bdd (t)
δp (t) = Cdη (t),

(3.13)

where η ∈ R12, Ad := −aI12, Bd := I12, and Cd := a
2 diag

(
p− p

)
. For a bandwidth of 50[Hz] we set

a := 100π, and penalize the deviations of the variables of interest withWe := diag ([1,1,1,10,10,10]).
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Defining

Ã(t) :=
[

A(t)−B2 (t)KLQR (t) B1 (t)Cd
0 Ad

]
, B̃ (t) :=

[
0

Bd

]
,

C̃ (t) :=
[

WeC (t) WeD (t)Cd
]
,

the state space realization of the extended LTV system in Figure 3.4 is[
Ûδx (t)
Ûη (t)

]
= Ã(t)

[
δx (t)
η (t)

]
+ B̃ (t)d (t)

e (t) = C̃ (t)
[
δx (t)
η (t)

]
,

(3.14)

and its finite-horizon L2-to-Euclidean gain [36] is

γ[0,t] := sup
{
‖e (t)‖2
‖d‖2,[0,t]

���� [ δx (0)
η (0)

]
= 0,0 , d ∈ L2 [0, t]

}
.

If γ[0,t] is bounded by γ, then ‖e (t)‖2 ≤ γ ‖d‖2,[0,t] and hence e(t) is contained in a sphere of
radius γ d at the fixed time t ∈

[
0, t f

]
. The most important feature of the LQR controller is to

guarantee a safe transition to the standing position in the presence of parameter uncertainty by the
end of the ascension phase, without loosing track of the reference trajectories. For this purpose, we
choose the performance metric:

JG := (1−α)γ[0,tm]+αγ[0,t f ], (3.15)

where α ∈ [0,1] weights the induced gains at an intermediate time tm and the final time t f .
Since JG depends on the choice of Q, R, S in the design of the LQR controller (3.8)-(3.9), we

choose finite sets of candidates Q ⊂ R6×6, R ⊂ R4×4 and S ⊂ R6×6, draw an element from each
of them, obtain their corresponding finite horizon LQR gain, and compute JG with α := 0.7 and
tm := 2 [s]. Taking a brute force approach, the weight matrices

Q∗,R∗,S∗ = argmin
Q∈Q,R∈R,S∈S

JG (Q,R,S) (3.16)

characterize the best LQR gain from the pool of candidates K∗LQR (t), relative to (3.15).
The finite time horizon LQR controllers tested for tracking STS 1 & 2 with the input configura-

tion of a minimally actuated PLLO at the hips, are obtained from a pool of weight matrices limited
to be diagonal, positive definite, with their entries sampled from a Latin hypercube of 16 variables
and 1350 experiments. The entries of Q andS are in

(
0,104) , while the entries of R belong to (0,1).

After numerically computing the linearizations in (3.6) and (3.12) about the reference trajectories,
we use the tools documented in [37] to obtain the finite time horizon LQR optimal gain in (3.8),
and the induced gains in (3.15). The argmin triplets in (3.16) for the STS movements are:

Q∗1 = diag ([3237, 5534, 6546, 7918, 4003, 8516]),
R∗1 = diag ([0.366, 0.016, 0.143, 0.155]), (3.17)
S∗1 = diag ([1068, 5396, 1324, 9467, 3975, 5819]),
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Q∗2 = diag ([3766, 9550, 2932, 8378, 9552, 9242]),
R∗2 = diag ([0.112, 0.025, 0.360, 0.305]), (3.18)
S∗2 = diag ([9565, 820, 5316, 5779, 6083, 8877]) .

Their corresponding performance metrics are JG1 = 0.1571, and JG2 = 0.1553.
The simulations of the nonlinear system (3.10) in state feedback with K∗LQR1 (t) ∈ R

4×6 for STS 1,
and K∗LQR2 (t) ∈ R

4×6 for STS 2 are in Figures 3.5 to 3.7. The dashed white lines represent the
evolution of the variables when p = p̂. The collection of continuous lines represents the evolution
of the variables for the same 200 sets of p ∈

[
p, p

]
used for assessing the performance of the

minimally actuated PLLO under feedback linearization. Comparing these results with the ones in
Figures 3.1 to 3.3, it is clear that the LQR optimal gains dramatically improve tracking, with most
of the trajectories essentially overlapping with the references of both STS movements, regardless
of the parameter uncertainty.

Note that the variation of the lengths and masses of the links from their nominal values causes
the initial conditions for xCoM and yCoM in Figure 3.7a not being the same across simulations, despite
each STS movement having a single initial condition for x. In the same figure, it is interesting to
observe how the selected LQR controller for STS 2, whose performance metric is slightly smaller
than the one for the controller of STS 1, effectively decreases the Euclidean norm of the position
of the CoM at the end of the finite horizon, in accordance to the induced gain at t f in (3.15). Given
that all the final positions of the CoM are approximately aligned with the ankle (with an error less
than or equal to 5[mm] in xCoM) and the magnitude of its final velocity in Figure 3.7b is less than
or equal to 1[cm/s], there is no risk of sit-back or step failures during the STS movements with the
proposed LQR optimal gains.

Even though it might seem unrealistic that users would be able to exactly mimic the inputs
from the LQR controllers in Figures 3.6b to 3.6d, we believe that it should be easier for them,
through training, to achieve a good coordination with the PLLO and consistently execute safe STS
movements if the required loads at their shoulders do not vary much with parameter changes, e.g.,
due to daily weight fluctuation, mechanical wear of the braces or links. This idea will be further
developed in Chapter 5 using an ILC algorithm as a proxy for human user.

The parameter uncertainties considered for the initial robustness assessment of the tracking
controllers in Table 3.1 are small. In the next chapter we increase the parameter uncertainties and
evaluate finite horizon LQR gains with a robust performance metric that takes into account the
nonlinearities in both the dynamics of the system (3.10), and the mappings to compute the position
and velocity of the CoM of the three-link robot in (2.5) to (2.8).
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(a) Angular position of link 1 relative to the horizontal. (b) Angular position of link 2 relative to link 1.

(c) Angular position of link 3 relative to link 2. (d) Angular velocity of link 1.

(e) Angular velocity of link 2. (f) Angular velocity of link 3.

Figure 3.5: Angular positions and velocities of the links of the robot in state feedback with K∗LQR1 (t)
and K∗LQR2 (t) for tracking two relevant STS movements.
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(a) Torque applied at the hips by the PLLO. (b) Torque at the shoulders of the user.

(c) Horizontal force at the shoulders of the user. (d) Vertical force at the shoulders of the user.

Figure 3.6: Inputs from the finite time horizon LQR controllers chosen using the performance
metric JG for tracking two relevant STS movements.
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(a) Position trajectories of the three-link robot CoM. (b) Velocity trajectories of the three-link robot CoM.

Figure 3.7: Center of Mass trajectories achieved with the finite time horizon LQR controllers
chosen using the performance metric JG for tracking two relevant STS movements.

The technique presented in this chapter to evaluate the performance of a nonlinear system
in closed-loop with a finite horizon LQR gain can be directly applied without modification to
other systems that undergo finite-time trajectories, e.g., robotic manipulators, and space launch
vehicles [38]. We summarize the main tasks as follows:

• Calculate reference trajectories for the state, input, and other variables of interests of the
system from its nonlinear equations, with the nominal values of its parameters.

• Obtain linear expressions for the deviations of states and other variables of interests, about
the reference trajectories and nominal parameters.

• Considering a finite horizon LQR controller for the Jacobian linearization of the dynamics,
construct a LTV system with a perturbation signal to model the parameter variation as its
input, and the deviation from the variables of interest as output.

• Define a performance metric to assess the robustness of the LTV system over a finite time
horizon involving the induced gains in [37].

• Choose finite sets of weight matrices candidates and search for those that lead to the LQR
gain that optimizes the robust performance metric.

• Use the best time-varying LQR gain for tracking the reference trajectories under the nonlinear
dynamics of the system subject to parameter uncertainty.

• If the simulations are not satisfactory, choose different sets of weight matrices candidates to
improve the robust performance metric.
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Chapter 4

Robust Performance Under Parameter
Uncertainty

This chapter provides a performancemetric to quantify the robustness against parameter uncertainty
of a controller for the ascension phase of PLLOs. The robustness is evaluated through the use of
reachability analysis, which deals with the problem of bounding the trajectories of a system, given
a set of initial states, and a set of admissible parameters.

Since a reachable set can rarely be computed exactly except in simple cases [39], we instead rely
on the computation of over-approximations, for which various methods and representations exist,
such as ellipsoids [40], polytopes [41] or level-sets [42]. The considered approach is based on the
results presented in [43], where the computation of interval over-approximations for an uncertain
system relies on its sensitivity matrices, i.e., the partial derivatives of its trajectories with respect
to the uncertain parameters.

A proper evaluation of the robustness of a controller for the STS movement of a PLLO should
not be limited to quantify the deviation from reference trajectories of the angular positions and
velocities of the links, but also include the deviations of the position and velocity of the CoM, and
the control input. Therefore, we extend the method in [43] to be able to apply the reachability
analysis to auxiliary static systems, such as those defined by an output function or a feedback
controller. The over-approximations for the reachable sets of the variables of interest become the
basis of our proposed robust performance metric.

The reachability analysis of the dynamics of the three-link robot under state feedback with the
LQR gain obtained from (3.16) for tracking STS 1, shows that the parameter uncertainties due to
fluctuations of ±5% of the nominal weight of the user lead to undesired variations of the required
loads at the shoulders. Based on our robust performance metric to evaluate a pool of controller
candidates, we choose a finite horizon LQR gain that effectively addresses this shortcoming.
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4.1 Sensitivity-based Reachability Analysis Under Parameter
Uncertainty

Consider a continuous-time, time-varying system

Ûη = g(t, η, ρ) (4.1)

with state η ∈ Rnη , constant but uncertain parameter ρ ∈
[
ρ, ρ

]
⊆ Rnρ , and continuously differen-

tiable vector field g : R×Rnη ×Rnρ → Rnη . The state reached by this system at time t ≥ t0 from
fixed initial state η0 is

Φ(t; t0, η0, ρ) := η0+

∫ t

t0
g (s, η (s, ρ), ρ) ds.

We denote the reachable set under parameter uncertainty as

Reach
(
t,
[
ρ, ρ

] )
:=

{
Φ(t; t0, η0, ρ) | ρ ∈

[
ρ, ρ

]}
⊆ Rnη,

and the sensitivity function of the state trajectories with respect to the parameter as

S(t; t0, η0, ρ) :=
∂Φ(t; t0, η0, ρ)

∂ρ
∈ Rnη×nρ . (4.2)

We take the following lemma from [43].

Lemma 1 Assume that there exist S, S : [t0,+∞) → Rnη×nρ such that S(t; t0, η0, ρ) ∈
[
S(t), S(t)

]
for all t ≥ t0, and ρ ∈

[
ρ, ρ

]
. Let the functions r, r : [t0,+∞)→ Rnη be defined as

r i(t) := Φi(t; t0, η0, π
i(t))− di(t)(πi(t)− πi

(t)),

r i(t) := Φi(t; t0, η0, π
i
(t))+ di(t)(πi(t)− πi

(t)),
(4.3)

where the j th elements of the parameter values πi(t), πi
(t) ∈

[
ρ, ρ

]
and row vector di(t) ∈ Rnρ are

determined according to the sign of the entries of the center of the interval matrix
[
S(t), S(t)

]
as

πi
j(t) := ρ j

, πi
j(t) := ρ j,

di
j(t) :=min

(
0, Si j(t)

)  if Ŝi j(t) ≥ 0;

πi
j(t) := ρ j, π

i
j(t) := ρ j

,

di
j(t) :=max

(
0, Si j(t)

)  if Ŝi j(t) < 0.

(4.4)
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Then
[
r(t), r(t)

]
is an interval over-approximation of the reachable set of states at time t ≥ t0, so

that
Reach

(
t,
[
ρ, ρ

] )
⊆

[
r(t), r(t)

]
.

If in addition di
j(t) = 0 ∀(i, j) ∈ {1, . . .,nη} × {1, . . .,nρ}, then

[
r(t),r(t)

]
is the smallest interval

containing Reach
(
t,
[
ρ, ρ

] )
.

We aim to compute over-approximations of reachable sets not only for the state η of the system
dynamics in (4.1), but also of other variables of interests that are described by static mappings of η
and the parameter ρ. To clearly distinguish such over-approximations, and the functions required in
Lemma 1, we write the variables of interest as superscripts, e.g., Φη, Sη, rη, and rη for conducting
the over-approximation of Reachη

(
t,
[
ρ, ρ

] )
.

In order to apply the reachability analysis in the space of η, we need to find bounds for the
sensitivity matrix of (4.1) at each time t ∈

[
t0, t f

]
where rη(t) and rη(t) are to be computed. The

sensitivity function Sη(t; t0, η0, ρ) along the state trajectory Φη(t; t0, η0, ρ) satisfies

ÛSη(t; t0, η0, ρ) =
∂g(t, η, ρ)

∂η

����
η=Φη(t;t0,η0,ρ)

Sη(t; t0, η0, ρ) +
∂g(t, η, ρ)

∂ρ

����
η=Φη(t;t0,η0,ρ)

, (4.5)

with zero initial condition Sη (t; t0, η0, ρ) = 0nη×nρ [44]. The sensitivity bounds
[
Sη(t), S

η
(t)

]
can be

estimated through a sampling approach consisting in first numerically solving thematrix differential
equation (4.5) for a finite set of randomly chosen parameters P ⊂ [ρ, ρ]. Then, an approximation[
Sη(t),S

η
(t)

]
of the sensitivity bounds

[
Sη(t), S

η
(t)

]
is obtained by minimizing/maximizing the i j

entries of the solutions for Sη(t; t0, η0, ρ) over all ρ ∈ P, at time t:

S
η

i j(t) =max
ρ∈P

Sηi j(t; t0, η0, ρ),

Sηi j(t) =min
ρ∈P

Sηi j(t; t0, η0, ρ).
(4.6)

The boundedness assumption on (4.2) required in Lemma 1, i.e.,
[
Sη(t),S

η
(t)

]
⊆

[
Sη(t), S

η
(t)

]
,

is not guaranteed to hold. However, a more reliable approximation may be found by iteratively
enlarging the bounds through a falsification approach. An iteration of the falsification at time t
looks for ρ ∈

[
ρ, ρ

]
whose sensitivity does not lie within the bounds determined from sampling,

which is achieved by solving the optimization problem

JF (t) := min
ρ∈

[
ρ,ρ

]
(
min

i, j

(
1
2

(
S
η

i j(t)− Sηi j(t)
)
−

���Sηi j(t; t0, η0, ρ)−
1
2

(
Sηi j(t)+ S

η

i j(t)
)���)) . (4.7)

The cost function used in this minimization problem is defined for each pair (i, j) ∈ {1, . . .,nη} ×
{1, . . .,nρ} by an inverted and translated absolute value function, such that it returns a negative value
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if and only if Sη(t; t0, η0, ρ) <
[
Sη(t),S

η
(t)

]
. As a result, finding JF(t) < 0 means that there exists a

pair (i, j) for which the bounds from sampling
[
Sη(t),S

η
(t)

]
have been falsified, and they need to

be updated according to Sηi j(t; t0, η0, ρ
∗), where ρ∗ ∈

[
ρ, ρ

]
is the optimizer associated with a local

minimum found for (4.7). This falsification procedure is then repeated until we obtain JF(t) ≥ 0.
Although falsification can help to improve the approximation of the sensitivity bounds, it cannot

provide formal guarantees that
[
Sη(t),S

η
(t)

]
⊆

[
Sη(t), S

η
(t)

]
is satisfied, because the optimization

problem can only find local minima. There exists an alternative approach based on interval analysis
presented in [43] for which such guarantees are provided, but it has been shown to be of limited
practical use, due to the overly conservative nature of the obtained sensitivity bounds.

Applying Lemma 1 with the updated sensitivity bounds Sη,S
η : [t0,+∞)→ Rnη×nρ thus results

in two functions rη,rη : [t0,+∞)→ Rnη over-approximating the reachable set of (4.1) at each time
t ≥ t0:

Reachη
(
t,
[
ρ, ρ

] )
:=

{
Φ
η(t; t0, η0, ρ) | ρ ∈

[
ρ, ρ

]}
⊆

[
rη(t), rη(t)

]
. (4.8)

Consider now a map ζ : Rnη ×

[
ρ, ρ

]
→ Rny defining the output y = ζ(η, ρ) of (4.1) according

to its state η and parameter ρ. A reachability analysis on the output y ∈ Rny is done by applying
Lemma 1 to the static system describing the evolution of y in terms of the trajectories of η:

Φ
y(t; t0, η0, ρ) :=ζ(Φη(t; t0, η0, ρ), ρ). (4.9)

Following the definition in (4.2), the sensitivity of output ywith respect to parameter ρ is determined
by using the chain rule on ζ :

Sy (t; t0, η0, ρ) :=
∂Φy (t; t0, η0, ρ)

∂ρ

=
∂ζ (Φη (t; t0, η0, ρ), ρ)

∂ρ

=
∂ζ (η, ρ)

∂η

����
η=Φη(t;t0,η0,ρ)

∂Φη (t; t0, η0, ρ)

∂ρ
+
∂ζ (η, ρ)

∂ρ

����
η=Φη(t;t0,η0,ρ)

=
∂ζ (η, ρ)

∂η

����
η=Φη(t;t0,η0,ρ)

Sη (t; t0, η0, ρ)+
∂ζ (η, ρ)

∂ρ

����
η=Φη(t;t0,η0,ρ)

. (4.10)

With knowledge of Sη (t; t0, η0, ρ) from the solution to (4.5), and the mapping ζ :Rnη ×[ρ, ρ]→Rny ,
the sensitivity bounds Sy,S

y : [t0,+∞) → Rny×nρ can be computed. Thus we use Sy,S
y in (4.4)

to apply Lemma 1 on the static system (4.9) and obtain over-approximation functions r y,r y :
[t0,+∞)→ Rny , such that for each time t ≥ t0

Reachy
(
t,
[
ρ, ρ

] )
:=

{
Φ

y(t; t0, η0, ρ) | ρ ∈
[
ρ, ρ

]}
⊆

[
r y(t),r y(t)

]
. (4.11)
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Assuming that (4.1) is actually a closed-loop system obtained from the use of a feedback
controller u = K (t, η, ρ) with K : [t0,+∞)×Rnη ×Rnρ → Rnu , we can apply the same approach as
for the output y, by defining the static system

Φ
u(t; t0, η0, ρ) :=K(t,Φη(t; t0, η0, ρ), ρ). (4.12)

The sensitivity of input u with respect to parameter ρ is obtained similarly to Sy in (4.10):

Su (t; t0, η0, ρ) :=
∂Φu (t; t0, η0, ρ)

∂ρ

=
∂K(t,Φη(t; t0, η0, ρ), ρ)

∂ρ

=
∂K (t, η, ρ)

∂η

����
η=Φη(t;t0,η0,ρ)

Sη (t; t0, η0, ρ)+
∂K (t, η, ρ)

∂ρ

����
η=Φη(t;t0,η0,ρ)

, (4.13)

which then leads to sensitivity bounds Su,S
u : [t0,+∞) → Rnu×nρ for the static system (4.12) that

are used in Lemma 1 to obtain over-approximation functions ru,ru : [t0,+∞)→ Rnu , such that for
each time t ≥ t0 we have

Reachu
(
t,
[
ρ, ρ

] )
:=

{
Φ

u(t; t0, η0, ρ) | ρ ∈
[
p, p

]}
⊆

[
ru(t),ru

(t)
]
. (4.14)

4.2 Numerical Application of the Reachability Analysis
Given fixed x0 := x(t0) for the nonlinear dynamics of the three-link robot under finite time horizon
LQR control in (3.10), the sensitivity function Sx(t; t0, x0, p) of the state trajectory Φx(t; t0, x0, p)
over the horizon

[
t0, t f

]
for a STS movement, satisfies the differential equation

ÛSx(t; t0, x0, p) =
∂ϕ(t, x, p)

∂x

����
x=Φx(t;t0,x0,p)

Sx(t; t0, x0, p) +
∂ϕ(t, x, p)

∂p

����
x=Φx(t;t0,x0,p)

, (4.15)

with zero initial condition Sx (t; t0, x0, p) = 06×12.
Define the output y := [xCoM; yCoM; ÛxCoM; ÛyCoM], and consider the gain K∗LQR1 (t) ∈ R

4×6 obtained for
tracking STS 1 in Section 3.3. The successors of the output, and input of the minimally actuated
PLLO at the hips are

Φ
y(t; t0, x0, p) =ζ (Φx (t; t0, x0, p), p), (4.16)

Φ
u(t; t0, x0, p) =û(t)−K∗LQR1(t) (Φ

x (t; t0, x0, p)− x̂(t)), (4.17)

where the static mapping ζ : R6×R12→ R4 is defined from the kinematic equations (2.5) to (2.8)
as

ζ (x, p) :=


k0 (k1c1+ k2c12+ k3c123)
k0 (k1s1+ k2s12+ k3s123)

− Ûθ1yCoM− Ûθ2k0 (k2s12+ k3s123)− Ûθ3k0k3s123
Ûθ1xCoM+ Ûθ2k0 (k2c12+ k3c123)+ Ûθ3k0k3c123

 . (4.18)
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From (4.10) and (4.13), the sensitivity functions for the output y and input u are

Sy (t; t0, x0, p) :=
∂ζ (x, p)
∂x

����
x=Φx(t;t0,x0,p)

Sx (t; t0, x0, p)+
∂ζ (x, p)
∂p

����
x=Φx(t;t0,x0,p)

∈ R4×12, (4.19)

Su (t; t0, x0, p) := −K∗LQR1 (t)S
x (t;0, x0, p) ∈ R4×12. (4.20)

The goal of this section is to apply Lemma 1 to compute over-approximation functions
for the reachable sets of the state Reachx

(
t,
[
p, p

] )
⊆

[
r x(t), r x

(t)
]
, output Reachy

(
t,
[
p, p

] )
⊆[

r y(t), r y(t)
]
, and input Reachu

(
t,
[
p, p

] )
⊆

[
ru(t), ru

(t)
]
, at each time t in Ts := {0 : 0.01 : 3.5} [s].

The parameter uncertainties lie within the interval
[
p, p

]
⊆ R12 in Table 4.1, whose bounds were

calculated with anthropometric data from [45] for a user with a nominal weight and height of 50[kg]
and 1.75[m].

Table 4.1: Bounds for the parameter uncertainty of the three-link robot for a fluctuation of ±5% in
the nominal weight of the user, and a variation of ±1[cm] in the nominal lengths of the links

Link mi [kg] Ii
[
kg ·m2] li [m] lci [m]

1 [9.2,10.2] [1.10,1.21] [0.52,0.54] [0.23,0.30]

2 [11.9,13.2] [0.49,0.54] [0.40,0.42] [0.18,0.23]

3 [42.3,46.8] [2.39,2.65] [0.51,0.53] [0.24,0.28]

Randomly drawing a set Pb ⊂

[
p, p

]
of 500 parameter values from a Latin hypercube, the

first step in the analysis is to numerically solve the sensitivity equation (4.15) over the time
horizon [0,3.5] for all p ∈ Pb. The sensitivity bounds Sx, S

x
: [0,3.5] → R6×12 are estimated by

minimizing/maximizing the entries of the solutions for Sx(t;0, x0, p) at each t ∈ Ts as in (4.6), and
then we attempt to refine them through the falsification approach. The time spent in a single
falsification iteration over the bounds estimated by sampling

[
Sx (t),S

x
(t)

]
for the first 17 elements

in Ts are shown in Figure 4.1, together with the calculated cost JF (t). It can be seen that the
falsification is done quickly for the first few time steps, but going further into Ts, it grows to the
point where it becomes unpractical to continue executing it. In addition, the positive values of
JF (t) mean that no enlargement of the sensitivity bounds is achieved over the first iteration. On the
basis of these observations, and that falsification does not provide formal guarantees of satisfying[
Sx(t),S

x
]
⊆

[
Sx(t), S

x
(t)

]
, the results that follow only rely on the sampling approach with the

assumption that
[
Sx(t),S

x
(t)

]
are close enough to an over-approximation of

[
Sx(t), S

x
(t)

]
. A

consequence of this assumption is that even though the reachability analysis result in Lemma 1
might not always be a true over-approximation of the reachable set, it still provides an accurate
measure of the worst-case performances for the closed-loop system (3.10).
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Figure 4.1: Length of a falsification iteration for the state sensitivity bounds at time t ∈ [0,0.16],
and cost JF (t).

Once [Sx(t),S
x
(t)] are known, Lemma 1 is applied to obtain the over-approximation functions

r x(t), r x
(t) for every t ∈ Ts, which are displayed in green in Figure 4.2. To visualize their tightness,

the plots also provide, in blue, the trajectories of the closed-loop system (3.10) for a set Ps ⊆ [p, p]
of 500 values of p from a Latin hypercube sampling (note that this set is different from Pb). The
reference trajectory Φx(t;0, x0, p̂) for STS 1, with the nominal parameter p̂ in (2.23), is in red.
The over-approximations for θ1 (t) in Figure 4.2a show that the terminal position of the shank
segment under the parameter uncertainties will only be slightly off the vertical (±0.5◦), easing
the stabilization phase for completing standing. The ones for θ2 (t) in Figure 4.2b do not become
positive, meaning that the controller will not cause the PLLO to hyperextend the knees of the user.
Also, since θ3 (t) in Figure 4.2c never goes negative, and only approaches zero at the end of the
horizon, the torso will have natural configurations while ascending.
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(a) Angular position of link 1 relative to the horizontal. (b) Angular position of link 2 relative to link 1.

(c) Angular position of link 3 relative to link 2. (d) Angular velocity of link 1.

(e) Angular velocity of link 2. (f) Angular velocity of link 3.

Figure 4.2: Over-approximation functions of the successorsΦx (t;0, x0, p) at every t ∈ Ts for a PLLO
actuated at the hips in state feedback with K∗LQR1 (t).
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Define

k4 (θ, p) := k0 (p) (k2 (p) s12+ k3 (p) s123),

k5 (θ, p) := k0 (p) k3 (p) s123,

k6 (θ, p) := k0 (p) (k2 (p)c12+ k3 (p)c123),

k7 (θ, p) := k0 (p) k3 (p)c123,

k8
(
θ, Ûθ, p

)
:= k0 (p)

(
(k2 (p) s12+ k3 (p) s123) Ûθ2+ lc3m3s123 Ûθ3

)
,

k9
(
θ, Ûθ, p

)
:= k0 (p)

(
(k2 (p)c12+ k3 (p)c123) Ûθ2+ lc3m3c123 Ûθ3

)
,

whose explicit dependence with respect to θ, Ûθ, and p is omitted onwards for compactness. The
partial derivative of (4.18) with respect to x is written as

∂ζ (x, p)
∂x

=

[
ζ x
11 0
ζ x
21 ζ x

11

]
∈ R4×6, (4.21)

with entries ζ x
i j ∈ R

2×3 given by

ζ x
11 =

[
−yCoM −k4 −k5
xCoM k6 k7

]
,

ζ x
21 = −

[
xCoM Ûθ1+ k6 Ûθ2+ k7 Ûθ3 k7 Ûθ3− k6

(
Ûθ1+ Ûθ2

)
−k7

(
Ûθ1+ Ûθ2+ Ûθ3

)
yCoM Ûθ1+ k4 Ûθ2+ k5 Ûθ3 k5 Ûθ3− k4

(
Ûθ1+ Ûθ2

)
−k5 (θ, p)

(
Ûθ1+ Ûθ2+ Ûθ3

) ]
.

The partial derivative of (4.18) with respect to p is
∂ζ (x, p)
∂p

=

[
ζ

p
11 0 ζ

p
13 ζ

p
14

ζ
p
21 0 ζ

p
23 ζ

p
24

]
∈ R4×12, (4.22)

where the entries ζ p
i j ∈ R

2×3 are

ζ
p
11 = k0

[
lc1c1− xCoM l1c1+ lc2c12− xCoM l1c1+ l2c12+ lc3c123− xCoM

lc1s1− yCoM l1s1+ lc2s12− yCoM l1s1+ l2s12+ lc3s123− yCoM

]
,

ζ
p
13 = k0

[
(m2+m3)c1 m3c12 0
(m2+m3) s1 m3s12 0

]
,

ζ
p
14 = k0

[
m1c1 m2c12 m3c123
m1s1 m2s12 m3s123

]
,

ζ
p
21 = k0 Ûθ1

[
yCoM− lc1s1 yCoM−(l1s1+ lc2s12) yCoM−(l1s1+ l2s12+ lc3s123)
lc1c1− xCoM l1c1+ lc2c12− xCoM l1c1+ l2c12+ lc3c123− xCoM

]
+ k0 Ûθ2

[
0 −lc2s12 −(l2s12+ lc3s123)
0 lc2c12 l2c12+ lc3c123

]
+ k0

[
k8 k8 k8− lc3s123 Ûθ3
−k9 −k9 lc3c123 Ûθ3− k9

]
,

ζ
p
23 = k0

[
−(m2+m3) s1 Ûθ1 −m3s12

(
Ûθ1+ Ûθ2

)
0

(m2+m3)c1 Ûθ1 m3c12
(
Ûθ1+ Ûθ2

)
0

]
,

ζ
p
24 = k0

[
−m1s1 Ûθ1 −m2s12

(
Ûθ1+ Ûθ2

)
−m3s123

(
Ûθ1+ Ûθ2+ Ûθ3

)
m1c1 Ûθ1 m2c12

(
Ûθ1+ Ûθ2

)
m3c123

(
Ûθ1+ Ûθ2+ Ûθ3

) ]
.



CHAPTER 4. ROBUST PERFORMANCE UNDER PARAMETER UNCERTAINTY 44

To determine Sy,S
y : [0,3.5] → R4×12 we plug (4.21), (4.22), and the solutions to (4.15) for all

p ∈ Pb into (4.19), and then compute the extremal values of the entries of the sensitivity matrices
at each t ∈ Ts. With the estimates for

[
Sy(t), S

y
(t)

]
we use Lemma 1 on (4.16) to calculate the

over-approximation functions r y(t), r y(t) shown in Figure 4.3 in green. The reference trajectory
Φy(t;0, x0, p̂) is in red, and the trajectories Φy(t;0, x0, p) for all p ∈ Ps are in blue. It is clear that
the good trajectory tracking in the space of x observed in Figure 4.2, does not translate well under
parameter uncertainty into the space of y. The bounds for yCoM (t) in Figure 4.3b are up to ±5[cm]
from its reference trajectory, while ÛyCoM (t) in Figure 4.3d can exhibit deviations of ±2[cm/s].

(a) xCoM coordinate of the position of the three-link
robot CoM.

(b) yCoM coordinate of the position of the three-link
robot CoM.

(c) ÛxCoM coordinate of the velocity of the three-link
robot CoM.

(d) ÛyCoM coordinate of the velocity of the three-link
robot CoM.

Figure 4.3: Over-approximation functions of the successors Φy (t; t0, x0, p) at every t ∈ Ts for a
PLLO actuated at the hips in state feedback with K∗LQR1 (t).
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Figure 4.4a shows the bounds of the over-approximation interval
[
r y(t),r y(t)

]
for the position of

the CoM [xCoM; yCoM] at t0 = 0[s] (cyan), t = 1.75[s] (magenta), and t f = 3.5[s] (green). The clouds
of successors Φy(t;0, x0, p) for p ∈ Ps are in blue for each of these three time instants. The nominal
trajectory for STS 1 is in red. Note that despite having a single initial state x0 for the closed-loop
system (3.10), the over-approximation

[
r y(0),r y(0)

]
at t0 = 0 is not reduced to a single point, due

to the effect of the parameter uncertainty p ∈
[
p, p

]
on the initial position of the CoM through the

mapping y(0) = ζ(x0, p). The size of the box enclosing the final position of the CoM allows to
assess that there is no risk of sit-back or step failures.

Figure 4.4b depicts the bounds of the over-approximation interval
[
r y(t),r y(t)

]
for the velocity

of the CoM [ ÛxCoM; ÛyCoM]. The reference trajectory in red goes from [0;0] at t0 = 0[s], to [−0.13;0.13]
at t = 1.75[s], and back to [0;0] at t f = 3.5[s]. In this plane, the projection of

[
r y(0),r y(0)

]
is

reduced to the single state {[0;0]} due to the starting conditions at rest Ûθ1(0) = Ûθ2(0) = Ûθ3(0) = 0.
Notice that the projection of

[
r y(3.5),r y(3.5)

]
at the final time is almost flat, since ÛyCoM(3.5) goes

close to 0 for every p ∈ [p, p], which is beneficial to avoid the feet to lose contact with the ground.

(a) Position trajectories of the three-link robot CoM. (b) Velocity trajectories of the three-link robot CoM.

Figure 4.4: Over-approximations for the CoM trajectories achieved with K∗LQR1 (t) at three time
instants of STS 1.

The estimates for
[
Su(t), S

u
(t)

]
are obtained by plugging the solutions of (4.15) into (4.20), and

minimizing/maximizing the entries of thematrices over all p ∈ Pb at every t ∈Ts. ApplyingLemma1
on (4.17) with Su,S

u : [0,3.5] → R4×12, allows to compute the over-approximation functions ru(t),
ru
(t) shown in green in Figure 4.5, alongside the reference input û(t) in red, and the trajectories
Φu(t;0, x0, p) for the 500 random p ∈ Ps in blue. Since the inputs related to the upper body loads
at the joint of the shoulders are expected to be learnt by the user through training, it is not a good
feature of this particular finite time horizon LQR controller that the over-approximations for τs (t),
Fx (t), and Fy (t) exhibit deviations of up to ±40[N.m], ±10[N], and ±13[N], respectively. Although
it could be feasible to apply such loads, the predicted variability under parameter uncertainty might
make it difficult for a user to properly time the actions for a successful ascending phase.



CHAPTER 4. ROBUST PERFORMANCE UNDER PARAMETER UNCERTAINTY 46

(a) Torque applied at the hips by the PLLO. (b) Torque at the shoulders of the user.

(c) Horizontal force at the shoulders of the user. (d) Vertical force at the shoulders of the user.

Figure 4.5: Over-approximation functions of the successors Φu (t; t0, x0, p) at every t ∈ Ts for a
PLLO actuated at the hips in state feedback with K∗LQR1 (t).

Despite conducting the reachability analysis with sensitivity bounds estimated from the finite
set Pb, which are not guaranteed to contain all possible sensitivity values over the parameter
interval

[
p, p

]
, Figures 4.2 to 4.5 show that all the trajectories simulated with random parameters

in blue Φx (t;0, x0, p), Φy (t;0, x0, p), and Φu (t;0, x0, p) are indeed contained within their computed
over-approximations ∀t ∈ Ts, and are overly conservative only for Fx (t) in Figure 4.5c.

Figures 4.3c and 4.3d highlight that the over-approximations obtained with Lemma 1 may
present non-smooth behaviors. This is due to the definition of the compensation term di

j(t) in (4.4),
which may have non-continuous jumps over time between a constant value at 0, and the sensitivity
bound functions Si j,Si j : [t0, t f ] → R. As an illustration, Figure 4.6 presents a zoom of Figure 4.3d,
where two such non-smooth behaviors are visible on the bounds of the over-approximation (in
green) corresponding to the jump from 0 to S

y

48 at time t = 0.62[s] and the jump from S
y

48 to Sy
48 at

time t = 0.63[s].
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Figure 4.6: Effect of di
j(t) on over-approximation bounds.

Aworkstation of 4 cores at 2.7[GHz] runningMatlab Parallel Toolbox completes the sensitivity-
based reachability analysis of this section in 5.9[h]. 1.05[h] are spent in solving the sensitivity
equation (4.15) for p ∈ Pb. Computing Sx,S

x : [0,3.5] → R6×12 and r x,r x : [0,3.5] → R6 take
1.92[h], Sy,S

y : [0,3.5]→R4×12 and r y,r y : [0,3.5]→R4 take 1.89[h], and Su,S
u : [0,3.5]→R4×12

and ru,ru : [0,3.5] → R4 take 1.03[h].

4.3 Robust Performance Metric
To evaluate the robustness against parameter uncertainty of controllers for the STS movement
of PLLOs, we propose a performance metric for assessing the worst-case deviations of the state
x(t), output y(t) := [xCoM(t); yCoM(t); ÛxCoM(t); ÛyCoM(t)], and input u(t) from their desired trajectories
x̂(t), ŷ(t) := ζ (x̂(t), p̂), and û(t), based on over-approximations of their reachable sets at particular
instants of time within the horizon

[
t0, t f

]
.

For [a, b] ⊆ Rn, and c ∈ Rn, let ν ([a, b],c) ∈ R be

ν ([a, b],c) :=
∏

i={1,...,n}

����ai + bi

2
− ci

���� .
To evaluate the worst-case performance for tracking x̂(t), û(t), and ŷ(t), we propose the metric:

JP :=
∑
t∈TP

w>v



vol
( [

r x(t), r x
(t)

] )
vol

( [
r y(t), r y(t)

] )
vol

( [
ru(t), ru

(t)
] )


+

∑
t∈TP

w>o



ν
( [

r x(t), r x
(t)

]
, x̂(t)

)
ν
( [

r y(t), r y(t)
]
, ŷ(t)

)
ν
( [

ru(t), ru
(t)

]
, û(t)

)


, (4.23)
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where TP ⊆
[
t0, t f

]
is the set of time instants where the over-approximation functions are computed,

wv ∈ R
3 weighs the volumes enclosed by the intervals defined by such functions, and wo ∈ R

3 weighs
the volumes of the offsets between the center of the intervals and their reference trajectories.

To have a baseline value for JP, we choose TP := {0,0.875,1.75,2.625,3.5}[s], and compute∑
t∈TP vol

( [
r x(t), r x

(t)
] )
,

∑
t∈TP ν

( [
r x(t), r x

(t)
]
, x̂(t)

)
,∑

t∈TP vol
( [

r y(t), r y(t)
] )
,

∑
t∈TP ν

( [
r y(t), r y(t)

]
, ŷ(t)

)
,∑

t∈TP vol
( [

ru(t), ru
(t)

] )
,

∑
t∈TP ν

( [
ru(t), ru

(t)
]
, û(t)

)
,

for the system in (3.10) under state feedback with the finite horizon LQR gain K∗LQR1 (t), whose
reachability analysis was performed in the previous section. Using the reciprocals of these values,
we set the weights in (4.23) to

wv := [6.98×107; 9.67×10−7; 9.71×104],

wo := [1.85×1018; 7.24; 1.07×1013],
(4.24)

so that the performance metric for this baseline controller is JP = 6. The large difference in the
order of magnitude of the weight entries is due to the units and dimensionality of the hypercubes
from which they are calculated.

4.4 Optimal Finite Time Horizon LQR Relative to Robust
Performance Metric

The analysis in Section 4.2 highlighted the weaknesses of the controller with the state feedback
gain K∗LQR1 (t) to track the reference trajectories for the kinematics of the CoM, and guarantee small
variations of the inputs at the joint of the shoulders, in the presence of the parameter uncertainty
from Table 4.1. This is noticed in the large projections of the over-approximation bounds in Figures
4.5b to 4.5d. Since in practice, the loads on shoulders are applied by the user with no intervention
of the controller, it is desirable to observe small differences between the bounds set by the over-
approximations while aiming to minimize the training time needed for the user to perform safe,
and autonomous STS movements. We thus exploit the performance metric in (4.23) for choosing
a more suitable finite time horizon LQR gain for implementation.

Computing the over-approximation functions in (4.23) is too expensive to implement a derivative
free optimization method, such as the one used in Section 5.2 to tune the ILC gains. Hence here
we opt for a brute force approach analogous to (3.16), where we construct sets of 300 diagonal,
positive definite matrices of LQR weight candidates Q ⊂ R6×6, R ⊂ R4×4, and S ⊂ R6×6. Their
entries are randomly drawn from a Latin hypercube of 300 samples on 16 variables, with the values
for Q and S in (0,100), and the ones for R in (0,0.01). Each of the sampled triplets of weights are
plugged into (3.9), which is solved with the tools in [37] to obtain their corresponding time-varying
matrix gain KLQR (t) from (3.8). Then the technique described in Section 4.2 is applied to find the
over-approximation functions ∀t ∈ TP, and calculate JP for every controller. The triplet of weight
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matrices

Q?,R?,S? = argmin
Q∈Q,R∈R,S∈S

JP (Q,R,S) (4.25)

characterizes the best LQR gain for tracking STS 1 from the pool of candidates, with respect to the
performance metric. The values found after 8.2 days of computation with a workstation of 4 cores
at 2.7[GHz] running Matlab Parallel Toolbox, are

Q? = diag ([80, 95, 95, 68, 90, 84]),

R? = diag
( [

1.0×10−3, 2.0×10−4, 6.0×10−4, 4.4×10−3] ) ,
S? = diag ([30, 37, 19, 29, 92, 82]) .

(4.26)

Their matrix gain K?
LQR (t) leads to J?P = 1.31. The improvement in tracking the reference trajectories

using this controller over the baseline is illustrated in Figures 4.7 to 4.9 through simulations of STS 1
for the same set of 500 random p ∈ Ps used to verify the over-approximations for Φx(t;0, x0, p),
Φy(t;0, x0, p), andΦu(t;0, x0, p) in Section 4.2. The dashed red lines are the reference trajectories for
the STS movement, the continuous lines in blue are obtained with the baseline controller K∗LQR1 (t)
from Section 3.3, and the ones in green result from using K?

LQR (t). Although the deviations of the
green trajectories from the references are expected to be smaller than the deviations of the blue
trajectories at the time instants in TP, the same behavior holds gracefully along the entire horizon.
With the choice of weights in (4.24) for the performance metric in 4.23, the most significant
improvement is observed at tracking F̂y (t) in Figure 4.9d.



CHAPTER 4. ROBUST PERFORMANCE UNDER PARAMETER UNCERTAINTY 50

(a) Angular position of link 1 relative to the horizontal. (b) Angular position of link 2 relative to link 1.

(c) Angular position of link 3 relative to link 2. (d) Angular velocity of link 1.

(e) Angular velocity of link 2. (f) Angular velocity of link 3.

Figure 4.7: State trajectories of the three-link robot when controlled with the baseline gain (blue),
and the optimal gain relative to the performance metric JP (green) for all p ∈ Ps.
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(a) xCoM coordinate of the position of the three-link
robot CoM.

(b) yCoM coordinate of the position of the three-link
robot CoM.

(c) ÛxCoM coordinate of the velocity of the three-link
robot CoM.

(d) ÛyCoM coordinate of the velocity of the three-link
robot CoM.

Figure 4.8: Output trajectories of the three-link robot when controlled with the baseline gain (blue),
and the optimal gain relative to the performance metric JP (green) for all p ∈ Ps.
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(a) Torque applied at the hips by the PLLO. (b) Torque at the shoulders of the user.

(c) Horizontal force at the shoulders of the user. (d) Vertical force at the shoulders of the user.

Figure 4.9: Input trajectories of the three-link robot when controlled with the baseline gain (blue),
and the optimal gain relative to the performance metric JP (green) for all p ∈ Ps.

In the next chapter we assess through numerical simulation if K?
LQR (t) would be suitable for

clinical implementation, using an Iterative Learning Control (ILC) algorithm as a proxy for the
human loads at the shoulders τs, Fx , and Fy.
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Chapter 5

Iterative Learning Control as a Proxy for
User Action

Although the feedback controller

u(t) = û(t)−K?
LQR(t)(x(t)− x̂(t)) (5.1)

obtained in Section 4.4 is the optimal choice from a batch of candidates, actual execution of the
STS movement relies on the interaction of two agents driving different control inputs of the system.
More precisely, of the 4-dimensional control input u = [τh;τs; Fx; Fy], only the torque at the hips
τh is executed by the actuators of the PLLO under the authority of its onboard computer, while
the three other controls (torque τs, horizontal Fx , and vertical Fy forces at the shoulders) are to be
applied solely by the user interacting with the ground through crutches. Thus, unlike the accurate
computer implementation at the hips, the human implementation at the shoulders will rely on a
limited perception of the state of the system due to paraplegia, and no preconceived knowledge
of reference trajectories. Therefore, a controller which is optimal in simulations for (3.10), when
assuming perfect state feedback and actuation by the user, is not guaranteed to work experimentally.

The purpose of this chapter is thus to assess whether a proxy for the user actions can learn to
cooperate with the LQR controller in (5.1) through repeated trials and achieve a safe STSmovement.
For this, we use an Iterative Learning Control (ILC) algorithm to represent the actions of the user
while training with the PLLO to perform the STS movement during rehabilitation and physical
therapy sessions. We believe that evaluating the performance of a controller for the hips combined
with an ILC controller for the shoulders is a reasonable test prior to actual implementation of the
PLLO.
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5.1 Iterative Learning Control Algorithm
We start by rewriting the dynamics in (3.5) to better encompass the separate actions of the controller
of the PLLO and the user. This is done by plugging the closed-loop expression for the input at
the hips obtained from the finite horizon LQR controller in (5.1), and leaving the input of the
user in open-loop. For a more realistic representation, this model also incorporates saturation
of the inputs; so far, constraints on their values have only been taken into account while solving
the control allocation in (2.22) for û(t). We assume the user has healthy enough vestibular and
visual systems, and adequate proprioception of the upper body to know the angular position θ3(t),
velocity Ûθ3(t), and acceleration Üθ3(t) of the torso; and that the PLLO is instrumented to display in
a monitor the real time trajectories of the position [xCoM(t); yCoM(t)], velocity [ ÛxCoM(t); ÛyCoM(t)], and
acceleration [ ÜxCoM(t); ÜyCoM(t)] of the CoM, together with their references. This is in similar fashion
as for the Robot Suit HAL, where users can see plots of the desired center of pressure and its actual
position during training of the STS movement, in order to achieve proper synchronization with the
device [32].

The input applied at the hips with state feedback from the finite horizon LQR controller, and
within the limits of operation of the PLLO actuators, is

τ?h (t, x) := [1 0 0 0]sat
(
û (t)−K?

LQR (t) (x− x̂ (t)),
[
u, u

] )
. (5.2)

Denote the loads at the shoulders as µ := [τs; Fx; Fy] ∈ R
3, and the output measured by the user

as Υ :=
[
θ3; xCoM; yCoM; Ûθ3; ÛxCoM; ÛyCoM; Üθ3; ÜxCoM; ÜyCoM

]
∈ R9. Taking D1 ∈ R

3×4 as D1 := [03×1 I3],
we define µ̂(t) := D1û(t), µ := D1u, and µ := D1u, from the input bounds

u := [−200 [N ·m] ; −175 [N ·m] ; −40 [N] ; 0 [N]],
u := [200 [N ·m] ; 50 [N ·m] ; 40 [N] ; 650 [N]] .

(5.3)

Υ can be determined from the state x, angular acceleration of the links Üθ, and parameter p with a
mapping Ψ : R6×R3×R12→ R9 that clusters the kinematic equations of the CoM of the three-link
robot in (2.5) to (2.10). Plugging τ?h (t, x) into (3.5), the nonlinear dynamics of the system with user
input µ and output Υ are

Ûx (t) = f
(
x (t), p,

[
τ?h (t, x)
µ (t)

] )
=: Ξ (t, x(t), p, µ(t))

Υ (t) = Ψ
(
x(t), Üθ(t), p

)
. (5.4)

The algorithm to emulate the loads applied at the shoulders by a user, over N ascension attempts
with the PLLO, is built upon the general current-iteration ILC referred to in [46]. Translating such
control strategy to our problem, for successive iterations indexed by j ∈ {1, . . ., N}, the user input
µ j(t) at t ∈ [t0, t f ] is given by

µ j(t) := γ j µ
j−1(t)+ L

(
Υ̂(t)−Υ j−1(t)

)
+K

(
Υ̂(t)−Υ j(t)

)
, (5.5)
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where γ j ∈ R
3×3, L,K ∈ R3×9, Υ̂ (t) := Ψ

(
x̂ (t), Ü̂θ(t), p̂

)
is the desired trajectory for Υ (t) during the

ascension phase of the STS movement, and Υ0(t) := Υ̂(t).

Figure 5.1: Basic ILC algorithm to emulate the loads applied at the shoulders by a user of a PLLO
with feedback gain K , feedforward gain L, and recalling matrix γ j .

The block diagram in Figure 5.1 shows that the feedforward component of this basic learning
algorithm consists of two terms relying on the memory of the user about the past-iteration j − 1.
The feedforward gain L modifies the input µ j(t) according to the error of the output Υ̂(t)−Υ j−1(t),
while the recalling matrix γ j is inspired by [47] and is used to capture the ability of the user to
remember and execute µ j−1(t). If γ j = I3 then µ j−1(t) is perfectly incorporated into µ j(t), but
if γ j , I3 we will interpret the mismatch between the values of γ j µ

j−1(t) and µ j−1(t) to be the
consequence of either a memory flaw, an imperfect execution of the required loads at the shoulders,
or a combination of both. The feedback component changes the input of the user by multiplying
the error of the outputs at the current-iteration j by the feedback gain K . Although at the beginning
of training there is no preconceived notion of the input that needs to be exerted to attempt a STS
movement with the PLLO, we consider that the values µ̂(t0) and µ̂(t f ) are known to the user, so
that the ILC can be initialized with the linear interpolation

µ0(t) =
µ̂(t f )− µ̂(t0)

t f − t0
(t − t0)+ µ̂(t0). (5.6)

When the input µ j(t) from the basic ILC algorithm in (5.5) acts on (5.4), the state trajectory
x(t) might lead to a configuration of the links of the PLLO which is harmful for the user, or even
mechanically impossible to reach. To elaborate on this situation, we delimit the feasible ranges of
motion for the user and the PLLO with the state bounds

x := [80 [◦] ; −120 [◦] ; 0 [◦] ; −20 [◦/s] ; −5 [◦/s] ; −70 [◦/s]],
x := [120 [◦] ; 0 [◦] ; 130 [◦] ; 10 [◦/s] ; 60 [◦/s] ; 20 [◦/s]],

(5.7)

and let t j
s ∈ [t0, t f ] be the maximum value such that the state at iteration j satisfies x(t) ∈

[
x, x

]
for

all t ∈ [t0, t j
s ]. To account for situations where the user would need to abort execution of the STS

movement due to safety concerns, we stop the ongoing iteration when x(t) goes out of bounds, reset
the state of the system to the initial condition x0, and proceed to the next one.
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Suppose the human input caused the STS movement in the past-iteration j − 1 to stop prema-
turely, so that t0 < t j−1

s < t f . In this scenario, the error Υ̂(t)−Υ j−1(t) and µ j−1(t) in (5.5) only exist
for t ∈

[
t0, t

j−1
s

]
. In order to compute µ j(t) for t > t j−1

s , define Γ j(t) ∈ R3 for j ∈ {1, . . ., N} as

Γ
j(t) :=

{
γ j µ

j−1(t)+ L
(
Υ̂(t)−Υ j−1(t)

)
+K

(
Υ̂(t)−Υ j(t)

)
, t < t j−1

s

α j t + β j, t ≥ t j−1
s

, (5.8)

where α j := µ̂(t f )−µj−1(t j−1
s )

t f −t j−1
s

and β j := µ̂(t f ) −α
j t f implement a linear extrapolation of time for the

human input, between µ j−1(t j−1
s ) and µ̂(t f ). This is to simulate the torque and forces that the user

would begin to apply at t j−1
s while attempting to counteract the negative effects of the past-iteration

input on the ascension. For initialization purposes, t0
s := t f .

Adding saturation to the extremal loads that the user is physically capable of exerting at the
shoulders, we complete our ILC algorithm as:

µ j(t) := sat
(
Γ

j(t),
[
µ, µ

] )
. (5.9)

5.2 Tuning the ILC gains
We reason that if we can find ILC gains for simulating a realistic ascension phase, then a real user,
who has a more complex learning process and has tuned the muscles for the precise movement of
the upper limbs since birth, would be able to coordinate with the controller for the hips of the PLLO
through training and complete a successful STS movement. Therefore, we resort to a reinforcement
learning approach to numerically search for the values of the feedforward L and feedback K gains
in (5.8).

Define the j th iteration cost

J j
L :=

{
∞, t j

s < t f∫ t f
t0

(

Υ̂(t)−Υ j(t)




2+wµ



 Ûµ j(t)




2

)
dt, t j

s = t f
, (5.10)

where the weight wµ := 10−4 is used to account for the different units of Υ j(t) and Ûµ j(t). If
a particular choice of gains causes the final iteration N to stop the STS movement prematurely(
tN
s < t f

)
, it must be discarded for modeling the behavior of the user. Otherwise

(
if tN

s = t f
)
, the

quality of its corresponding ILC algorithm should be assessed, based on the deviation of the output
in (5.4) from its desired trajectory Υ̂(t), and the rate of change of the input ÛµN (t) ∈ R3. With the
nominal parameter p = p̂ in (5.4), a time step of 4 [ms] for computing a discrete version of the
iteration cost J j

L , γ j = I3 for all j ∈ {1, . . ., N}, and N := 30 iterations, we select the gains in (5.8) as

K?, L? := argmin
K,L∈R3×9

JN
L (K, L) . (5.11)
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There are two major difficulties for computing the solution to (5.11). The first is that the
problem is in general non-convex and hence global minimization is intractable. The second is that
computing derivatives with respect to K and L is cumbersome. The first issue is typically dealt
with in practice via heuristic local search; we find this to be effective for our problem. To deal with
the second issue, we apply a standard technique from the optimization literature for minimizing a
function using only black-box function calls, which we describe briefly.

Suppose we want to minimize g : Rn → R over η ∈ Rn. For σ > 0, we define a smoothed
function Gσ(η) := Eξ {g (η+σξ)}, where ξ ∼ N(0, In) is an isotropic Gaussian random vector, and
E denotes the expectation. Under reasonable regularity conditions on g, a standard calculation
shows that the gradient of Gσ is given by

∇Gσ(η) = Eξ

{
g(η+σξ)−g(η−σξ)

2σ
ξ

}
.

That is, we can differentiate Gσ(η) by only using function calls of g. We can interpret this as a
finite-difference method applied in a random direction. Furthermore, it is clear that as σ→ 0,
Gσ(η) approaches g(η). Hence, optimizing Gσ is a reasonable proxy for optimizing g; this is
made formal in [48]. The most basic way to apply derivative free optimization is to run stochastic
gradient descent:

ηk+1 = ηk − ρk
g(ηk +σξk)−g(ηk −σξk)

2σ
ξk , (5.12)

where {ρk}k≥0 is an appropriate sequence of step sizes and {ξk}k≥0 is an independent and identically
distributed sequence of N(0, In) random vectors. We apply a slightly modified version of (5.12)
as described in [49]. First, at every iteration k we draw nd random directions {ξi

k}
nd
i=1. We then

sort the indices i = 1, ...,nd in ascending order with the value assigned to each index given by
min

(
g(ηk +σξ

i
k),g(ηk −σξ

i
k)

)
, and compute the update direction as:

ηk+1 = ηk −
ρk

nt

nt∑
i=1

g
(
ηk +σξ

(i)
k

)
−g

(
ηk −σξ

(i)
k

)
2σnt

ξ
(i)
k . (5.13)

Here, nt ≤ nd , ξ(i)k denotes the sorted directions, and σnt denotes the empirical standard deviation
of the 2nt costs used in the update.

We run this method for 10,000 iterations with g = JN
L , nd = 30, nt = 10, σ = 0.01, and ρk ≡ 0.04

on a machine with 72 physical cores running at 2.10 [GHz]. After approximately two days of
computation, we obtain the gains

K? =


−104.6 −56.53 73.46 −115.3 −210 66.66 0.729 −4.647 1.569
64.05 −24.18 −52.05 −16.31 165.7 −28.16 0.049 0.138 −4.384
29.36 20.89 141.7 47.26 −31.51 126.8 0.2208 −5.419 −3.226

 ,
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L? =


0.523 7.495 47.08 −1.319 −5.141 −29.98 −1 −1.616 −2.123
−4.673 −26.10 −26.80 1.215 −2.939 26.57 0.1023 4.034 4.459
−76.22 −60.77 109.9 16.94 9.401 128.8 −0.3326 8.539 3.776

 .
The values of (5.10) achieved over 30 iterations of the ILC algorithm are shown in Figure 5.2,
where blue crosses identify the iterations that terminate prematurely and are assigned a cost of
∞. After 9 unsuccessful attempts to complete the movement STS 1 in Section 2.5, the cost per
iteration decreases monotonically and reaches a final value of J?L := 8.29 when µ30(t) is applied.
As a reference, plugging ΥN (t) = Υ̂(t) and ÛµN (t) = Û̂µ(t) into (5.10) gives ĴL = 8.75.

Figure 5.2: Cost J j
L attained by plugging K? and L? into the ILC algorithm with γ j = I3, and p = p̂.

Figures 5.3 to 5.5 show the trajectories of x =
[
θ1;θ2;θ3; Ûθ1; Ûθ2; Ûθ3

]
, y = [xCoM; yCoM; ÛxCoM; ÛyCoM],

and u =
[
τh;τs; Fx; Fy

]
for the three-link robot model in (5.4) simulated under µ30(t) in green. The

dashed red lines are their respective reference trajectories x̂ (t), ŷ (t), and û (t).
The ILC algorithm with gains K? and L? achieves almost perfect tracking of θ̂3 (t), Û̂θ3 (t), and

ŷ(t); as a consequence, the plots in Figures 5.3c, 5.3f, and 5.4, show the trajectories in green
essentially overlapping with the red ones. Deviations from the reference in Figures 5.3a, 5.3b,
5.3d, and 5.3e are expected because θ1, θ2, Ûθ1, and Ûθ2 are not included in the output measured by
the user Υ and hence their values are not penalized in (5.10). Nevertheless, θ1 is off the vertical
at the end of the ascension just by 0.5[◦], with the absolute values of both angular velocities less
than 1.2[◦/s], which should not compromise the ability of a controller for the stabilization phase to
reach the standing position with ease. As θ2(t) remains less than zero for the entire time horizon,
there is no hyperextension of the knees, and thus the input µ30(t) should not pose a threat to the
physical integrity of the user.
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(a) Angular position of link 1 relative to the horizontal. (b) Angular position of link 2 relative to link 1.

(c) Angular position of link 3 relative to link 2. (d) Angular velocity of link 1.

(e) Angular velocity of link 2. (f) Angular velocity of link 3.

Figure 5.3: State of the system for input trajectories µ j (t) obtained from the ILC algorithm with
gains K? and L?, nominal parameter p̂, and different values of γ j .
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(a) xCoM coordinate of the position of the CoM. (b) yCoM coordinate of the position of the CoM.

(c) ÛxCoM coordinate of the velocity of the CoM. (d) ÛyCoM coordinate of the velocity of the CoM.

(e) Position trajectories of the three-link robot CoM. (f) Velocity trajectories of the three-link robot CoM.

Figure 5.4: Position and velocity of the three-link robot CoM for input trajectories µ j (t) obtained
from the ILC algorithm with gains K? and L?, nominal parameter p̂, and different values of γ j .



CHAPTER 5. ITERATIVE LEARNING CONTROL AS A PROXY FOR USER ACTION 61

(a) Torque applied at the hips by the PLLO with state
feedback from K?

LQR (t).
(b) Torque applied at the shoulders by the ILC algo-
rithm.

(c) Horizontal force applied at the shoulders by the
ILC algorithm.

(d) Vertical force applied at the shoulders by the ILC
algorithm.

Figure 5.5: Loads applied at the hips and shoulders for input trajectories µ j (t) obtained from the
ILC algorithm with gains K? and L?, nominal parameter p̂, and different values of γ j .

Even though the tracking errors for the angular position and velocity of the links of the shanks
and thighs do not directly affect the computation of µ j(t) in (5.9), they do determine (together with
the tracking errors of the angular position and velocity of the torso) the value of the torque at the
hips through the state feedback of the finite horizon LQR, causing it to differ from τ̂h(t) in Figure
5.5a. It is especially interesting that although we did not consider µ̂(t) in (5.10), both the torque
and horizontal force at the shoulders in Figures 5.5b and 5.5c follow their reference trajectories
reasonably well, within errors of 15[N ·m], and 10[N], respectively. The absolute value of the
torque applied at the hips in Figure 5.5a is in general greater than τ̂h(t), which compensates for
lower vertical forces attained in Figure 5.5d relative to F̂y(t). Observing the rate of change of
the vertical force ÛFy (t) from Ûµ30(t) in Figure 5.5d, we can infer that J?L < ĴL is mostly due to the
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difference of its values over time with respect to Û̂Fy(t). Although F̂y(t) remains constant for about
1[s], it decreases 165[N] in 1.4[s], while the trajectory in green decreases 150[N] over 2.5[s] for a
lower average rate of change.

5.3 ILC Robustness Evaluations
The results discussed above indicate that the ILC in (5.9) is able to successfully coordinate with the
LQR controller driving the actuators at the hips in (5.2) to complete the desired ascension phase
with no risk of sit-back or step failures [15]. Moreover, it does so exhibiting input trajectories
that could be realistically executed by both the PLLO and the user after 30 learning iterations.
Since the gains K? and L? that make this behavior possible were found considering a constant
recalling matrix γ j = I3 in (5.8) across every iteration, and the nominal value of the parameter p̂
in (5.4), the purpose of this section is to evaluate the robustness of the ILC algorithm to perform
the STS movement in two scenarios: imperfect recalling and execution of µ j−1(t), and parameter
uncertainty.

For the imperfect recalling and execution of µ j−1(t) we plug the iteration-varying matrix
γ j = I3 + q j−1ϑ j in (5.5), with q := 0.6, and randomly sample the entries of ϑ j ∈ R

3×3 at every
iteration j ∈ 1, . . .,N within the interval [−0.05,0.05]. While the off-diagonal entries in ϑ j couple
the loads at the shoulders, the decay to zero of the power function q j−1 as the number of trials
increases, captures the idea that a user would eventually recall and apply the appropriate values of
µ j−1(t). With the nominal parameter value p̂, and starting the learning algorithm from the linear
interpolation in (5.6), the values of (5.10) achieved over 30 iterations of the ILC algorithm are
shown in Figure 5.6. Since the minimum value of J j

L is observed at iteration 25, Figures 5.3 to 5.5
depict the behavior of the system under µ25(t) in blue lines.

Figure 5.6: Cost J j
L attained by plugging K? and L? into the ILC algorithm with γ j = I3+ q j−1ϑ j ,

and p = p̂.



CHAPTER 5. ITERATIVE LEARNING CONTROL AS A PROXY FOR USER ACTION 63

Despite degraded tracking of θ̂1 (t), θ̂2 (t), Û̂θ1 (t), and Û̂θ2 (t)when compared to µ30(t) in Figure 5.3,
the system (5.4) under µ25(t) still manages to complete the ascension phase of STS 1 with very
good tracking of the position and velocity of the CoM in Figure 5.4. The control inputs of the
PLLO and those from the ILC algorithm in Figure 5.5 remain between the bounds

[
u,u

]
, verifying

that K? and L? still lead to realistic input trajectories with γ j , I3, although their oscillations and
sudden changes do result in an increased value of the cost J25

L = 15.49.
We now study the effect of parameter uncertainty after the ILC algorithm has completed 30

iterations under the nominal value of the parameter p̂, and constant recalling matrix γ j = I3. For
this purpose, we set the new µ0(t) in (5.8) equal to the trajectories in green from Figures 5.5b
to 5.5d, and simulate the system in (5.4) under the action of (5.9) for the set of 500 parameter
values Ps ⊂ R

12 obtained from Latin hypercube sampling in Section 4.2, and the parameter bounds
p, p ∈ R12 in Table 4.1. Keeping track of the cost J j

L over j = {1, . . .,30} for each sampled parameter,
we identify the iterations where the ILC algorithm reaches the minimum values, and present their
corresponding simulations in Figures 5.7 to 5.9. The trajectories for all p ∈ Ps are in blue, the results
for the lower bound p after 14 iterations are in magenta, and the ones for the upper bound p after 16
are in green. The costs associated with the parameter bounds are J14

L := 59.59, and J16
L := 28.31.

The evolution of the system with the original input obtained without parameter uncertainty is in
dashed red lines.

It is clear that themismatch of the parameter values with respect to p̂ causes significant deviation
from the reference trajectories x̂(t) in Figure 5.7, and ŷ(t) in Figure 5.9. In particular, Figures 5.8e
and 5.8f show that at the end of the ascension phase

[
xCoM

(
t f

)
; yCoM

(
t f

) ]
⊆ [[−0.1;0.94], [0.1;1]]

[m], and
[
ÛxCoM

(
t f

)
; ÛyCoM

(
t f

) ]
⊆ [[−0.09;−0.02], [0.1;0]] [m/s]. Given that there are final positions

of the CoM that are not vertically aligned with the ankle joint, and the terminal velocities of the
CoM are nonzero, we can predict that the stabilization phase for the STS 1 movement would be
more challenging. Nevertheless, all trajectories for θ2 in Figure 5.7b are less than zero, so that
the integrity of the knee joints is preserved. Figures 5.9b to 5.9d exhibit that the inputs obtained
with the ILC algorithm are very sensitive to parameter uncertainty. However, the LQR controller
enhances the torque applied at the hips in Figure 5.9a helping to keep all the loads at the shoulders
within admissible bounds.

According to the larger offsets from the desired position and velocity of the CoM that exhibit
the trajectories for p with respect to p in Figures 5.8e and 5.8f, we can tell that the stabilization
phase for a situation where the total mass of the user decreases by 5% of its nominal value, might
be more challenging than the one where the total mass increases by the same amount. Figures 5.9c
and 5.9d show that an increased mass of the user requires applying forces of larger magnitude at
the shoulders. The oscillations and sudden changes of the loads in magenta and green of Figures
5.9b to 5.9d, together with the deviations of their corresponding trajectories from ŷ(t) in Figure 5.8,
contribute to the higher values of J14

L and J16
L relative to J?L . It is interesting that the most abrupt

changes of Ûµ14(t) happen when the velocity of the CoM achieves its maximum (approximately at
1.77[s]), and in the last 0.1[s] of the ascension phase.
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(a) Angular position of link 1 relative to the horizontal. (b) Angular position of link 2 relative to link 1.

(c) Angular position of link 3 relative to link 2. (d) Angular velocity of link 1.

(e) Angular velocity of link 2. (f) Angular velocity of link 3.

Figure 5.7: State of the system for input trajectories µ j (t) obtained from the ILC algorithm with
gains K? and L?, γ j = I3, and different values of the parameter p.
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(a) xCoM coordinate of the CoM. (b) yCoM coordinate of the CoM.

(c) ÛxCoM coordinate of the velocity of the CoM. (d) ÛyCoM coordinate of the velocity of the CoM.

(e) Position trajectories of the three-link robot CoM. (f) Velocity trajectories of the three-link robot CoM.

Figure 5.8: Position and velocity of the three-link robot CoM for input trajectories µ j (t) obtained
from the ILC algorithm with gains K? and L?, γ j = I3, and different values of the parameter p.
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(a) Torque applied at the hips by the PLLO with state
feedback from K?

LQR (t).
(b) Torque applied at the shoulders by the ILC algo-
rithm.

(c) Horizontal force applied at the shoulders by the
ILC algorithm.

(d) Vertical force applied at the shoulders by the ILC
algorithm.

Figure 5.9: Loads applied at the hips and shoulders for input trajectories µ j (t) obtained from the
ILC algorithm with gains K? and L?, γ j = I3, and different values of the parameter p.

We conclude that the finite time horizon LQR controller found in Section 4.4 by using our robust
performance metric works in harmony with the ILC algorithm substituting for the shoulder actions.
It is remarkable that we incur only limited performance degradation for tracking the reference
trajectories under scenarios of flawed memory and lack of coordination at the shoulders, and that
even in the presence of extreme parameter uncertainties all simulations exhibit safe, realistic, and
successful STS 1 movements.
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5.4 ILC Algorithm with a Reduced Number of Variables in
the Output Measured by the User

In this section we will explore the effects on the performance of the ILC algorithm described in
Section 5.1 when the output measured by the user Υ does not include the angular acceleration of
the torso Üθ3(t), nor the acceleration of the CoM [ ÜxCoM(t); ÜyCoM(t)].

Redefining Υ := [θ3; xCoM; yCoM; Ûθ3; ÛxCoM; ÛyCoM] ∈ R
6, its value can be determined from the state

x, and parameter p with a mapping Ψ : R6 ×R12→ R6 that lumps the kinematic equations of the
CoM of the three-link robot in (4.18). The nonlinear dynamics of the system with user input µ and
the output with the reduced number of variables Υ are

Ûx (t) = Ξ (t, x, p, µ)
Υ (t) = Ψ (x(t), p) . (5.14)

The desired trajectory for Υ (t) during the ascension phase of the STS movement is computed as
Υ̂ (t) = Ψ (x̂ (t), p̂).

Setting p = p̂ in (5.14), we use the ILC algorithm in (5.8) and (5.9) with γ j = I3 to emulate the
loads applied at the shoulders by a user over N = 30 ascension attempts, and solve (5.11) to tune the
gains L,K ∈ R3×6 for the updated output Υ ∈ R6. Running the stochastic gradient descent method
in (5.13) for 10,000 iterations with g = JN

L , B = 30, Bt = 10, σ = 0.01, and ρk ≡ 0.04 on a machine
with 72 physical cores running at 2.10 [GHz] we obtain the values

K? =


−100.6 −53.26 71.59 −123.9 −208.5 66.02
57.98 −21.06 −47.92 −24.67 166.9 −31.92
28.86 20.20 139.9 46.62 −29.75 123.5

 ,
L? =


−0.6381 2.376 46.31 −2.514 −5.255 −28.89
−2.948 −29.34 −25.24 2.851 −3.559 24.48
−73.09 −58.25 114.1 19.82 13.09 126.9

 ,
with a cost of J?L = 8.66 when µ30(t) is applied, which is less than the reference ĴL = 8.75, but
greater than the cost of 8.29 obtained with the original definition of Υ ∈ R9 in Section 5.2.

Figures 5.10 and 5.11 show in black the phase planes for the state x, position and velocity of
the CoM in the sagittal plane, and input trajectories u(t) of the three-link robot model in (5.14)
simulated under µ30(t). The ILC algorithm with K?, L? ∈ R3×6 achieves almost perfect tracking
of Υ̂(t) ∈ R6; as a consequence, Figures 5.10c, 5.10d, and 5.10e show the trajectories in black
essentially overlapping with the red dashed lines. Deviations from the reference in the phase planes
θ1− Ûθ1 (Figure 5.10a) and θ2− Ûθ2 (Figure 5.10b) are expected, since they are not penalized in (5.10).
Nevertheless, θ1 is off the vertical at the end of the ascension just by 0.5[◦], with the absolute values
of both angular velocities less than 1.2[◦/s], which should not compromise the ability of a controller
for the stabilization phase to reach the standing position with ease. As θ2(t) remains less than zero
for the entire trajectory, there is no hyperextension of the knees, and thus the input µ30(t) should not
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pose a threat to the physical integrity of the user. Even though the tracking errors for the angular
position and velocity of the shanks and thighs links do not directly affect the computation of µ j(t)
in (5.9), they do determine (together with the tracking errors of the angular position and velocity of
the torso) the value of the torque at the hips through the state feedback of the LQR, hence causing it
to differ from τ̂h(t) in Figure 5.11a. It is especially interesting that although we did not consider µ̂(t)
in (5.10), both the torque and horizontal force at the shoulders in Figures 5.11b and 5.11c follow
their reference trajectories reasonably well, within errors of 15[N.m], and 10[N], respectively. The
absolute value of the torque applied at the hips in Figure 5.11a is in general greater than τ̂h(t), which
compensates for lower vertical forces attained by µ30

3 (t) in Figure 5.11d relative to F̂y(t). From
the rate of change Ûµ30

3 (t) observed in Figure 5.11d, we can infer that J?L < ĴL is mostly due to the
difference of its values over time with respect to Û̂Fy(t). Although F̂y(t) remains constant for about
1[s], it decreases 165[N] in 1.4[s], while µ30

3 (t) decreases 155[N] over 2.5[s] for a lower average
rate of change.

Despite the reduced number of variables in the output measured by the user, the results discussed
above indicate that the ILC input in (5.9) is still able to successfully coordinate with the LQR
controller driving the actuators at the hips in (5.2) to complete STS 1, with no risk of sit-back
or step failures [15] under nominal parameter conditions. Moreover, it does so exhibiting input
trajectories that could be realistically executed by both the PLLO and the user after 30 learning
iterations.

To test the ILC algorithm under imperfect recalling and execution of µ j−1(t) we plug the
iteration-varying matrix γ j = I3 + q j−1ϑ j in (5.8), with q := 0.8, and randomly sample the entries
of ϑ j ∈ R

3×3 at every iteration j ∈ 1, . . .,N within the interval [−0.05,0.05]. With the nominal
parameter value p̂, starting the learning algorithm from the linear interpolation in (5.6), and
applying 30 iterations, we obtained the behavior of the system (5.14) shown in blue in Figures 5.10
and 5.11. The degraded tracking of Υ̂(t) and x̂(t) is evident in Figures 5.10a to 5.10e. However,
the trajectory of the CoM position in Figure 5.10d shows that it is still possible to complete the
ascension. Furthermore, Figure 5.10b affirms that the integrity of the knee joints will be preserved.
Judging from the deviation from the reference in the phase plane for the angular position and
velocity of the shanks in Figure 5.10a, and most importantly the non-zero final velocity of the CoM
observed in Figure 5.10e, we predict that the stabilization phase of this STS movement would be
more challenging than the one obtained for µ30(t) when γ j = I3. The control inputs of the PLLO
(Figure 5.11a) and those obtained in the ILC algorithm (Figures 5.11b to 5.11d) remain between the
bounds in (5.3), verifying that K?, L? ∈ R3×6 still attain realistic trajectories after the same number
of iterations with γ j , I3, although their oscillations and sudden changes do lead to an increased
value for the cost in (5.10) of J30

L = 40.
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(a) Phase plane of trajectories θ1(t) and Ûθ1(t). (b) Phase plane of trajectories θ2(t) and Ûθ2(t).

(c) Phase plane of trajectories θ3(t) and Ûθ3(t). (d) Trajectories for the position of the CoM in the sagit-
tal plane.

(e) Trajectories for the velocity of the CoM in the sagit-
tal plane.

Figure 5.10: Phase planes for the state x, position, and velocity of the CoM obtained from the ILC
algorithm with Υ := [θ3; xCoM; yCoM; Ûθ3; ÛxCoM; ÛyCoM] ∈ R

6.
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(a) Torque applied at the hips by the LQR controller. (b) Torque applied at the shoulders by the ILC algo-
rithm.

(c) Horizontal force applied at the shoulders by the
ILC algorithm.

(d) Vertical force applied at the shoulders by the ILC
algorithm.

Figure 5.11: Loads applied at the hips of the PLLO and shoulders of the user under the action of
the ILC algorithm with Υ := [θ3; xCoM; yCoM; Ûθ3; ÛxCoM; ÛyCoM].

We now study the effect of parameter uncertainty after the ILC algorithm has completed 30
iterations under the nominal value of the parameter p = p̂, and constant recalling matrix γ j = I3.
For this purpose, we set the new µ0(t) in (5.8) equal to the trajectories in black from Figures 5.11b
to 5.11d, and simulate the system in (5.14) under the action of (5.9) for two different parameter
values:

pL := [9.2 [kg] ; 11.2 [kg] ; 42.3 [kg] ;1.10
[
kg ·m2] ; 0.49

[
kg ·m2] ; 2.40

[
kg ·m2] ; . . .

0.529 [m] ; 0.409 [m] ; 0.519 [m] ;0.23 [m] ; 0.17 [m] ; 0.24 [m]],

pU := [10.2 [kg] ; 13.2 [kg] ; 46.8 [kg] ;1.21
[
kg ·m2] ; 0.54

[
kg ·m2] ; 2.65

[
kg ·m2] ; . . .

0.531 [m] ; 0.411 [m] ; 0.521 [m] ;0.30 [m] ; 0.23 [m] ; 0.28 [m]].
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All entries match the bounds in Table 4.1, except for the ones representing the lengths of the links,
which come from subtracting (for pL), and adding (for pU) 1[mm] to the nominal lengths in p̂. This
choice puts more emphasis on studying changes in performance stemming from fluctuations of the
total mass of the user, rather than from variations on the length of the links, since, in practice, the
latter are only expected to occur due to wear of mechanical components after an extended period of
use, while the former are bound to happen several times through the day. Keeping track of the cost
J j

L over j = {1, . . .,30}, we identify the iterations where the ILC algorithm attains the minimum
values, and present their corresponding simulations in Figures 5.10 and 5.11. The results for pL

after 13 iterations are in magenta, while the ones for pU after 18 are in green. The associated costs
are J13

L := 27.9 and J18
L := 29.1.

Since x̂(t) and Υ̂(t) are determined based on the nominal value p̂, the reference for the position
of the CoM in Figure 5.10d cannot be perfectly tracked with the mismatch in the parameter values.
Their simulations run approximately parallel to the reference, with the lower bounds for lci in pL

causing its trajectory to be below it, and the upper bounds for lci in pU putting its trajectory above.
Although the velocities of the CoM for both parameter values in Figure 5.10e also deviate from the
reference, zero velocity is achieved at the end of the movements, which together with the behavior
observed in the phase plane in Figure 5.10b, proves that the proxy for the user action can safely
complete the ascension phase. According to the larger offsets from the final desired state that exhibit
the trajectories for pU with respect to pL in Figures 5.10a to 5.10c, we predict that the stabilization
phase for a situation where the total mass of the user increases by 5% of its nominal value, might
be more challenging than the one where the total mass decreases by the same amount. Figures
5.11a and 5.11b show that an increased mass of the wearer also requires larger contributions from
the torque executed by the PLLO at the hips and the torque applied by the user at the shoulders.
The oscillations and sudden changes of the force profiles (in magenta, and green) in Figures 5.11c
and 5.11d, together with the deviations from Υ̂(t) in Figures 5.10c to 5.10e, contribute to the larger
values of J13

L and J18
L relative to J?L . It is interesting that the most abrupt changes of Ûµ13(t) happen

when the velocity of the CoM achieves its maximum (approximately at 1.77[s]), and in the last 0.1[s]
of the ascension; where Ûµ18(t) also experiences its most significant changes. To further analyze the
effect of parameter uncertainty on the performance of our proposed ILC algorithm in (5.9), we also
considered 500 random parameter values p ∈ [pL, pU] from a Latin Hypercube sampling to perform
analogous evaluations to the ones in Figures 5.7 to 5.9. All simulations exhibited safe, realistic,
and successful ascending STS movements.
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Chapter 6

Output Feedback

Resume the assumption (used in Chapters 3 and 4) that the controller of a PLLO has authority
not only over the torque of the actuators available in its architecture, but also over the torque and
forces at the shoulders of the user, this chapter presents the design of an output feedback controller
for the ascension phase of the STS movement. Since the controller relies on a Kalman-Bucy filter
to estimate from a noisy output the deviation of the system from its reference trajectory, and then
takes such estimate to implement the state feedback from the finite time horizon LQR in Section
3.2, this controller is referred as a finite time horizon LQG (linear-quadratic Gaussian). In order to
make the estimation of the Kalman-Bucy filter robust against parameter uncertainty, we regard the
deviation of the parameters of the three-link robot from its nominal values as process noise in the
Jacobian linearization of the system.

Our main motivation for designing output feedback controllers for PLLOs is to evaluate if we
can attain successful and safe STS movements with the finite time horizon LQR gain in (3.8) when
readings of the full state of the system x ∈ R6 are not available due to hardware constraints. In
particular when the installation of angular velocity sensors at the revolute joints is to be avoided,
and the number of angular position sensors must be minimized in order to decrease the complexity
of the mechatronics design. Hence, we use finite time horizon LQG controllers to track STS 1 with
the minimally actuated PLLO at the hips for each one of the seven outputs that can be obtained when
using rotary encoders at the joints of the PLLO to acquire measurements of the angular positions
θ1, θ2, and θ3 in Figure 2.1. By analyzing the performance of the nonlinear dynamics of the
three-link robot through simulations with the controllers in the presence of parameter uncertainty,
and measurement noise, we conclude on the most suitable configuration for the sensors to provide
robust STS movements.
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6.1 Finite Time Horizon LQG
Consider the Jacobian linearization of the system (3.5) about the reference state trajectory x̂ (t),
nominal parameter p̂, and reference input trajectory û (t) presented in (3.6) using the deviation
variables δx (t) := x (t) − x̂ (t), δp := p− p̂, and δu (t) := u (t) − û (t). Even though δp is an
unknown constant over the execution of a STS movement, in this section we assume it to be a
stochastic process disturbance δp : R→ R12. Therefore, the linear dynamics of the state deviation
δx ∈ R

6 with output δy ∈ Rno subject to white measurement noise v : R→ Rno are

Ûδx (t) = A(t)δx (t)+B1 (t)δp (t)+B2 (t)δu (t)
δy (t) = C1 (t)δx (t)+ v (t),

(6.1)

where A(t) ∈ R6×6, B1 (t) ∈ R6×12, B2 (t) ∈ R6×m, and C1 (t) ∈ Rno×6. The signals δp (t) and v (t)
are independent, Gaussian distributed, with zero mean, and known covariances, as reflected in the
following statistical properties for all t ∈

[
t0, t f

]
:

E
{
δp (t)

}
= 0, E

{
δp (t)δ>p (t)

}
=Qn ∈ R

12×12,

E {v (t)} = 0, E
{
v (t)v> (t)

}
= Rn ∈ R

no×no .

Let δ̃x (t) ∈ R6 be the estimate of δx (t) in terms of the set of outputs gathered up to time t.
Defining the set of stochastic outputs asYt :=

{
δy (τ) : 0 ≤ τ ≤ t

}
, we can write δ̃x (t) :=E {δx (t)|Yt}.

From [50], the dynamics of the linear observer that minimizes the cost

JKF =E
{

δx (τ)− δ̃x (τ)



2
2,[0,t]

���Yt

}
,

are
Û̃δx (t) = (A(t)− LKF (t)C1 (t)) δ̃x (t)+B2 (t)δu (t)+ LKF (t)δy (t)

= (A(t)− LKF (t)C1 (t)) δ̃x (t)+B2 (t)δu (t)+ LKF (t) (C1 (t)δx (t)+ v (t)) (6.2)

with zero initial condition δ̃x (0) = 0. The time-varying matrix gain LKF (t) ∈ R6×no is known as the
Kalman-Bucy filter gain, and is given by

LKF (t) = Pn (t)C>1 (t)R
−1
n , (6.3)

where Pn (t) ∈ R6×6 is the solution of the Riccati matrix differential equation

ÛPn (t) =A(t)Pn (t)+Pn (t) A> (t)−Pn (t)C>1 (t)R
−1
n C1 (t)Pn (t)+B1QnB>1 , (6.4)

with the boundary condition Pn
(
t f

)
= 0.

Using the finite time horizon LQR gain KLQR (t) ∈ Rm×6 in (3.8), the nonlinear dynamics of the
three-link robot under finite time horizon LQG control become

Ûx (t) = f
(
x (t), p, û (t)−KLQR (t) δ̃x

)
. (6.5)
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6.2 Simulation of a PLLO Under Finite Time Horizon LQG
with Different Configurations for the Rotary Encoders

The time-varyingmatrices A(t) ∈R6×6, B1 (t) ∈R6×12, and B2 (t) ∈R6×4 in the Jacobian linearization
for the minimally actuated PLLO at the hips in (6.1) are computed as in (3.6) for the STS 1 reference
trajectories obtained in Section 2.5 for t ∈ [0,3.5] [s]. The values of the output matrix C1 (t) ∈ Rno×6

that characterize the seven different outputs δy ∈ Rno that can be acquired from rotary encoders at
the joints of the ankle, knee, and hip to measure the angular positions of the links are in Table 6.1.

Table 6.1: Configuration of rotary encoders and output matrices for designing the finite time
horizon LQG controllers to track the reference trajectories of STS 1

LQG no Location of rotary encoders C1 (t) ∈ Rno×6

1 1 Ankle.
[

1 0 0 0 0 0
]

2 1 Knee.
[

0 1 0 0 0 0
]

3 1 Hip.
[

0 0 1 0 0 0
]

4 2 Ankle, and knee.
[

1 0 0 0 0 0
0 1 0 0 0 0

]
5 2 Knee, and hip.

[
0 1 0 0 0 0
0 0 1 0 0 0

]
6 2 Ankle, and hip.

[
1 0 0 0 0 0
0 0 1 0 0 0

]
7 3 Ankle, knee, and hip.


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


With the bounds for the parameter uncertainty p ∈

[
p, p

]
in Table 4.1 we set

Qn =
1
9

(
diag

(
max

(
p̂− p, p− p̂

)))2
, (6.6)

where the max operator returns the element-wise maximum over its two vector arguments. For the
covariance of v (t) we consider rotary encoders common in robotics applications with an accuracy
of ±0.02[◦] such as [51], so that

Rn =

(
0.02 [◦]

3

)2
Ino =

(
0.02π
540

)2
Ino . (6.7)

To compute the Kalman-Bucy filter gains LKF (t) ∈ R6×no for the finite time horizon LQG
controllers, identified with the numbers 1-7, we solve the Riccati matrix differential equation in 6.4
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with the numerical tools described in [37] for their corresponding values of C1 (t), and substitute
the solution for Pn (t) in (6.3). All the controllers use the finite time horizon LQR gain K?

LQR (t) from
Section 4.4.

Setting p = p̂ in (6.5), and sampling the noise measurement at every t ∈ [0,3.5] [s] so that
v(t) ∼ N (0,Rn), we simulate the response of the three-link robot with the LQG controllers for the
different configurations of the sensors by simultaneously solving the differential equations for the
nonlinear dynamics in (6.5) starting from x (0) = x̂ (0), and the linear observer in (6.2) with zero
initial condition. The results are depicted in Figures 6.1 to 6.3 with the reference trajectories shown
in red dashed lines.

Despite the presence of measurement noise, the trajectories in Figure 6.1 show that the LQG
controllers with outputs comprising measurements from a single rotary encoder (no = 1) are the
only ones that lead to noticeable deviations of the system in (6.5) from the state reference x̂ (t).
Among these controllers, the one using readings of θ1 (LQG 1) causes the smallest deviations, and
the one using readings of θ3 (LQG 3) causes the largest deviations.

It is remarkable that regardless of their different levels of success at tracking x̂ (t), every LQG
controller manages to complete STS 1 in the absence of parameter uncertainty showing no signs of
hyperextension of the knees in Figure 6.1b, and excellent tracking of the reference trajectory for the
position of the CoM in Figures 6.2a, 6.2b, and 6.2e. However, the controllers with no = 1 do show
deviations from the reference trajectory for the velocity of the CoM in Figures 6.2c, 6.2d, and 6.2f.

Given the errors for tracking x̂ (t) registered with LQG 1, 2, and 3, deviations from the input
reference trajectory û (t) with these controllers are expected. Although the deviations induced
by LQG 1 can be neglected, LQG 2, and 3 behave very poorly, applying large spikes of loads
in Figures 6.3a to 6.3c with significant oscillations. It can be seen in Figure 6.3c that the only
controller with no > 1 making the horizontal force at the shoulder to jitter is LQG 5, which has no
rotary sensor at the ankle joint.

To test the robustness against parameter uncertainty of the LQG controllers for the different
configurations of the rotary encoders, we opted to perform simulations under multiple bounds for
the values of p in (6.5). Starting from the bounds for a fluctuation of ±5% in the nominal weight
of the user in Table 4.1, we use Latin hypercube sampling to pick 500 random values of p ∈

[
p, p

]
,

which we denote as the set Pg. If the nonlinear system in (6.5) completes STS 1 with its input and
state trajectories within the bounds in (5.3) and (5.7) for all p ∈ Pg, we infer that the tested LQG
controller is robust to the parameter uncertainty in the sampled bounds. If there are values of p
whose trajectories do not complete the STS 1 movement, we shrink the interval

[
p, p

]
decreasing

the fluctuations assumed from the nominal weight of the user by one percent, recompute Qn from
(6.6) and the Kalman-Bucy filter gain in (6.3), update Pg by Latin hypercube sampling of 500
values of p within the new bounds, and simulate (6.5) for all p ∈ Pg. If the three-link robot in
output feedback with the LQG controller is still not robust to the parameter uncertainty, we repeat
the procedure above, and stop when the bounds for p reflect no fluctuation from the nominal weight
of the user. The LQR gain K?

LQR (t), the value for Rn in (6.7), the measurement noise v(t) ∼N (0,Rn),
and the uncertainty of ±1[cm] for the lengths of the links are fixed across every iteration.
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(a) Angular position of link 1 relative to the horizontal. (b) Angular position of link 2 relative to link 1.

(c) Angular position of link 3 relative to link 2. (d) Angular velocity of link 1.

(e) Angular velocity of link 2. (f) Angular velocity of link 3.

Figure 6.1: State trajectories of the three-link robot using the LQG controllers for the seven output
configurations in the presence of measurement noise, and no parameter uncertainty with p = p̂.
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(a) xCoM coordinate of the position of the three-link
robot CoM.

(b) yCoM coordinate of the position of the three-link
robot CoM.

(c) ÛxCoM coordinate of the velocity of the three-link
robot CoM.

(d) ÛyCoM coordinate of the velocity of the three-link
robot CoM.

(e) ÛxCoM coordinate of the velocity of the three-link
robot CoM.

(f) ÛyCoM coordinate of the velocity of the three-link
robot CoM.

Figure 6.2: Trajectories of the three-link robot CoM using the LQG controllers for the seven output
configurations in the presence of measurement noise, and no parameter uncertainty with p = p̂.
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(a) Torque applied at the hips by the PLLO. (b) Torque at the shoulders of the user.

(c) Horizontal force at the shoulders of the user. (d) Vertical force at the shoulders of the user.

Figure 6.3: Input trajectories of the three-link robot using the LQG controllers for the seven output
configurations in the presence of measurement noise, and no parameter uncertainty with p = p̂.

The tests against parameter uncertainty for the seven finite time horizon LQG designs take
8.34[h] using a node in the Savio cluster with 28 cores at 2.4[GHz] running Matlab Parallel
Toolbox. LQG 4 is robust to fluctuations of ±1% from the nominal weight of the user, which are
bounded by the parameter values in Table 6.2. LQG 7 is robust to fluctuations of ±5% from the
nominal weight of the user in Table 4.1. The remaining LQG controllers reach the end of the test,
failing to complete STS 1 for all sampled p ∈ Pg.

To further analyze if LQG 1, 2, 3, and 5 could be robust against small variations from p̂, we
sampled a set Pg from an interval encompassing fluctuations of ±0.1% from the nominal weight of
the user and ±1[mm] for the lengths of the links. Nevertheless, even in the face of this minuscule
deviations with no practical meaning, the simulations of (6.5) cannot complete STS 1 for some
values of p ∈ Pg. Thus, we declare these controllers not robust to parameter uncertainty. Their
corresponding configurations of rotary encoders at the joints of the PLLO also proved to be the
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most sensitive to noise in Figure 6.3.
LQG 6 is found to be robust by shrinking the fluctuations from the nominal weight of the user to

±0.05%, and the variation in length of the links to ±1[cm]; which makes the configuration of rotary
sensors at the ankle and knee used in LQG 4, the one that leads to the best performance among
the controllers with no = 2. Figures 6.4 to 6.6 show in blue the trajectories for the state, CoM, and
input of the three-link robot under the action of LQG 4 for the 500 p ∈ Pg bounded by the values in
Table 6.2. The reference trajectories for STS 1 are in red. We can tell that the LTV observer in (6.2)
is able to overcome the deviations δp, and measurement noise v (t) with the choice of weights in
(6.6) and (6.7) for computing the Kalman-Bucy filter gain in (6.3), so that it can estimate δx within
an error suitable for completing STS 1 movements without compromising the knee of the users
by keeping θ2 (t) < 0 in Figure 6.4b. The trajectories of θ (t) in Figures 6.4a to 6.4c are smooth,
and the ones for Ûθ (t) in Figures 6.4d to 6.4f only experience small oscillations that do not induce
sudden changes in the loads of Figures 6.6a to 6.6c. However, since the fluctuation for the mass of
the user in this scenario is very limited, the only reason to rely in two rotary sensors for controlling
the PLLO is if the requirement to reduce the number of components in the mechatronics design
surpasses the requirement to guarantee the robustness of the STS movement for a wider parameter
uncertainty.

Table 6.2: Bounds for the parameter uncertainty of the three-link robot for a fluctuation of ±1% in
the nominal weight of the user, and a variation of ±1[cm] in the nominal lengths of the links

Link mi [kg] Ii
[
kg ·m2] li [m] lci [m]

1 [9.58,9.78] [1.14,1.16] [0.52,0.54] [0.23,0.30]

2 [12.5,12.7] [0.51,0.52] [0.39,0.42] [0.18,0.23]

3 [44.1,45.0] [2.49,2.55] [0.51,0.53] [0.24,0.28]

Figures 6.7 to 6.9 include the results from the simulation of LQG 7 for the 500 p ∈ Pg bounded
by the values in Table 4.1 in blue, and the reference trajectories for STS 1 in red. Although the
volumes of the tunnels enclosing the simulations for the state, position and velocity of the CoM,
and the inputs of the system with this controller are larger when compared to the volumes of the
corresponding tunnels for the trajectories of the system under state feedback with K?

LQR (t) shown in
green in Figures 4.7 to 4.9, the degradation in tracking performance does not cause hyperextension
of the knees in Figure 6.7b, nor saturation of the inputs in Figure 6.9. Furthermore, Figures 6.8c and
6.8d show that at the end of the STS movements ÛyCoM(3.5) ≈ 0[cm/s], and | ÛxCoM(3.5)| ≤ 2.4[cm/s]
for all p ∈ Pg, what contributes to ease the stabilization phase.

We can conclude that a minimally actuated PLLO at the hips using the finite time horizon LQG
controller in Section 6.1 requires three rotary encoders providing readings of θ1, θ2, and θ3 in Figure
2.1 to execute the STS 1 movement under the parameter uncertainty in Table 4.1, for which the
finite time horizon LQR gain K?

LQR (t) was optimized in Section 4.4. We identify the corresponding
Kalman-Bucy filter gain as L?KF (t) ∈ R

6×3.
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(a) Angular position of link 1 relative to the horizontal. (b) Angular position of link 2 relative to link 1.

(c) Angular position of link 3 relative to link 2. (d) Angular velocity of link 1.

(e) Angular velocity of link 2. (f) Angular velocity of link 3.

Figure 6.4: State trajectories of the three-link robot using the LQG 4 controller with noisy mea-
surement of θ1, and θ2 for all p ∈ Ps sampled within the bounds in Table 6.2.
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(a) xCoM coordinate of the position of the three-link
robot CoM.

(b) yCoM coordinate of the position of the three-link
robot CoM.

(c) ÛxCoM coordinate of the velocity of the three-link
robot CoM.

(d) ÛyCoM coordinate of the velocity of the three-link
robot CoM.

(e) ÛxCoM coordinate of the velocity of the three-link
robot CoM.

(f) ÛyCoM coordinate of the velocity of the three-link
robot CoM.

Figure 6.5: Trajectories of the three-link robot CoM using the LQG 4 controller with noisy
measurement of θ1, and θ2 for all p ∈ Ps sampled within the bounds in Table 6.2.
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(a) Torque applied at the hips by the PLLO. (b) Torque at the shoulders of the user.

(c) Horizontal force at the shoulders of the user. (d) Vertical force at the shoulders of the user.

Figure 6.6: Input trajectories of the three-link robot using the LQG 4 controller with noisy mea-
surement of θ1, and θ2 for all p ∈ Ps sampled within the bounds in Table 6.2.
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(a) Angular position of link 1 relative to the horizontal. (b) Angular position of link 2 relative to link 1.

(c) Angular position of link 3 relative to link 2. (d) Angular velocity of link 1.

(e) Angular velocity of link 2. (f) Angular velocity of link 3.

Figure 6.7: State trajectories of the three-link robot using LQG 7 with noisy measurement of θ1,
θ2, and θ3 for all p ∈ Ps sampled within the bounds in Table 4.1.
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(a) xCoM coordinate of the position of the three-link
robot CoM.

(b) yCoM coordinate of the position of the three-link
robot CoM.

(c) ÛxCoM coordinate of the velocity of the three-link
robot CoM.

(d) ÛyCoM coordinate of the velocity of the three-link
robot CoM.

(e) ÛxCoM coordinate of the velocity of the three-link
robot CoM.

(f) ÛyCoM coordinate of the velocity of the three-link
robot CoM.

Figure 6.8: Trajectories of the three-link robot CoM using LQG 7 with noisy measurement of θ1,
θ2, and θ3 for all p ∈ Ps sampled within the bounds in Table 4.1.
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(a) Torque applied at the hips by the PLLO. (b) Torque at the shoulders of the user.

(c) Horizontal force at the shoulders of the user. (d) Vertical force at the shoulders of the user.

Figure 6.9: Input trajectories of the three-link robot using LQG 7 with noisy measurement of θ1,
θ2, and θ3 for all p ∈ Ps sampled within the bounds in Table 4.1.
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Chapter 7

Robustness Against Model Uncertainty

The design of the finite time horizon LQR gain K?
LQR (t) in Section 4.4 is based on the dynamics of

the three-link planar robot introduced in Section 2.1. One of the assumptions taken into account
for the use of this simplified model is that the position of the neck, and head relative to the torso
remain fixed during the STS movement. However, in practice, achieving this behavior requires the
active intervention of the neck muscles.

To capture the relative movement of the neck and head with respect to the torso, we add a link
to our model with a revolute joint coaxial to the location of an intervertebral joint in the thoracic
spine of the user, so that the STS movement of the system is now represented with a four-link planar
robot. After making the proper adjustments to the values of the parameters of the four-link robot
to make it match the behavior of the three-link robot when the links of the torso, and the neck and
head are aligned, we design a finite time horizon LQR controller for a minimally actuated PLLO at
the hips to track the STS 1 movement defined in Section 2.5.

The state feedback controller has command over the torque at the hips of the PLLO, the torque
at the shoulders of the user, the horizontal and vertical forces at the shoulder, and the torque at
the neck. The LQR gain is obtained by using the values of the weights for computing K?

LQR (t),
and its robustness in the presence of parameter uncertainty is assessed through simulation of the
four-link robot model in closed-loop with the controller for the same variation of weight and length
of the links considered in Section 4.2. Since the good performance observed for tracking STS 1 in
Section 4.4 holds despite the dynamics of the fourth link, we claim that the controller chosen with
the reachability-based performance metric in (4.23) is robust against model uncertainty.
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7.1 Four-link Robot Model
The four-link planar robotwith revolute joints coaxial to the ankles, knees, hips, and an intervertebral
thoracic joint of the user of a PLLO is shown in Figure 7.1. The feet are assumed to be fixed to the
ground and the movement of the limbs is considered to have sagittal symmetry. θ1 is the angular
position of link 1 (shanks) measured from the horizontal, θ2 is the angular position of link 2 (thighs)
relative to link 1, θ3 is the angular position of link 3 (torso) relative to link 2, and θ4 is the angular
position of link 4 (neck and head) relative to link 3. The system parameters are the masses of the
links m1, m2, m′3, and m4; the moments of inertia about their respective CoMs I1, I2, I′3, and I4;
their lengths l1, l2, ln, and l4; the distances of their CoMs from the joints lc1 , lc2 , l′c3 , and lc4; and
the distance between the joints of the hips and shoulders l3. According to the architecture of a
minimally actuated PLLO at the hips, the actuators of the orthosis exert the torque τh. The torque
τs, horizontal force Fx , and vertical force Fy aim to capture the inertial and gravitational forces of
the arms, as well as the loads applied on the shoulders by the user. The torque applied by the user
to move the neck and head is labeled τn.

Figure 7.1: Four-link planar robot for modeling PLLOs during a STS movement.

Lumping the parameters of the system in

p̃ :=
[
m1; m2; m′3; m4; I1; I2; I′3; I4; l1; l2; l3; ln; l4; lc1; lc2; l′c3; lc4

]
∈ R17, (7.1)
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we define the coefficients

k10 (p̃) :=
(
m1+m2+m′3+m4

)−1
, k11 (p̃) := lc1m1+ l1

(
m2+m′3+m4

)
,

k12 (p̃) := lc2m2+ l2
(
m′3+m4

)
, k13 (p̃) := l′c3m′3+ lnm4, k14 (p̃) := lc4m4,

whose explicit dependence with respect to p̃ is omitted onwards for compactness.
The Euler-Lagrange equations of the four-link planar robot in Figure 7.1 were obtained

by using the symbolic multibody dynamics package PyDy [28]. In terms of the joint angles
θ̃ := [θ1; θ2; θ3; θ4] ∈ R

4, input u =
[
τh; τs; Fx; Fy; τn

]
∈ R5, and p̃ the Euler-Lagrange

equations of the four-link planar robot modeling the PLLO are

M̃
(
θ̃, p̃

) Ü̃θ + F̃
(
θ̃, Û̃θ, p̃

)
= Ãτ

(
θ̃, p̃

)
u, (7.2)

where M̃
(
θ̃, p̃

)
∈ R4×4, M̃

(
θ̃, p̃

)
� 0 is the symmetric mass matrix of the system, F̃

(
θ̃, Û̃θ, p̃

)
∈ R4

is the vector of energy contributions due to the acceleration of gravity and Coriolis forces, and
Ãτ (θ, p̃) ∈ R4×5 is the generalized force matrix.

The entries of the symmetric mass matrix M̃
(
θ̃, p̃

)
∈ R4×4 in (7.2) are

M̃11 =I1+ I2+ I′3+ I4+ l2
c1m1+m2

(
l2
1 +2l1lc2c2+ l2

c2

)
+m′3

(
l2
1 +2l1l2c2+2l1l′c3c23+ l2

2 +2l2l′c3c3+
(
l′c3

)2
)

+m4

(
l2
1 +2l1l2c2+2l1lc4c234+2l1lnc23+ l2

2 +2l2lc4c34+2l2lnc3+ l2
c4 +2lc4 lnc4+ l2

n

)
M̃12 =I2+ I′3+ I4+ lc2m2

(
l1c2+ lc2

)
+m′3

(
l1l2c2+ l1l′c3c23+ l2

2 +2l2l′c3c3+
(
l′c3

)2
)

+m4

(
l1l2c2+ l1lc4c234+ l1lnc23+ l2

2 +2l2lc4c34+2l2lnc3+ l2
c4 +2lc4 lnc4+ l2

n

)
M̃13 =I′3+ I4+ l′c3m′3

(
l1c23+ l2c3+ l′c3

)
+m4

(
l1lc4c234+ l1lnc23+ l2lc4c34+ l2lnc3+ l2

c4 +2lc4 lnc4+ l2
n

)
M̃14 =I4+ lc4m4

(
l1c234+ l2c34+ lc4 + lnc4

)
M̃22 =I2+ I′3+ I4+ l2

c2m2+m′3

(
l2
2 +2l2l′c3c3+

(
l′c3

)2
)

+m4

(
l2
2 +2l2lc4c34+2l2lnc3+ l2

c4 +2lc4 lnc4+ l2
n

)
M̃23 =I′3+ I4+ l′c3m′3

(
l2c3+ l′c3

)
+m4

(
l2lc4c34+ l2lnc3+ l2

c4 +2lc4 lnc4+ l2
n

)
M̃24 =I4+ lc4m4

(
l2c34+ lc4 + lnc4

)
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M̃33 =I′3+ I4+
(
l′c3

)2
m′3+m4

(
l2
c4 +2lc4 lnc4+ l2

n

)
M̃34 =I4+ lc4m4

(
lc4 + lnc4

)
M̃44 =I4+ l2

c4m4.

The vector of energy contributions due to the acceleration of gravity g := 9.81 [m/s2] and Coriolis
forces F̃

(
θ̃, Û̃θ, p̃

)
∈ R4 is

F̃
(
θ̃, Û̃θ, p̃

)
= Ω̃

(
θ̃, p̃

) 
Ûθ2
1(

Ûθ1+ Ûθ2
)2(

Ûθ1+ Ûθ2+ Ûθ3
)2(

Ûθ1+ Ûθ2+ Ûθ3+ Ûθ4
)2


+g


k11c1+ k12c12+ k13c123+ k14c1234

k12c12+ k13c123+ k14c1234
k13c123+ k14c1234

k14c1234

 ,
with Ω̃

(
θ̃, p̃

)
∈ R4×4 defined as

Ω̃
(
θ̃, p̃

)
:=


l1 (k12s2+ k13s23+ k14s234) −k12l1s2+ l2 (k13s3+ k14s34)
l1 (k12s2+ k13s23+ k14s234) l2 (k13s3+ k14s34)

l1 (k13s23+ k14s234) l2 (k13s3+ k14s34)
k14l1s234 k14l2s34

. . .

−k13 (l1s23+ l2s3)+ k14lns4 −k14 (l1s234+ l2s34+ lns4)
−k13l2s3+ k14lns4 −k14 (l2s34+ lns4)

k14lns4 −k14lns4
k14lns4 0

 .
The generalized force matrix Ãτ

(
θ̃, p̃

)
∈ R4×5 is

Ãτ
(
θ̃, p̃

)
=


0 −1 −l1s1− l2s12− l3s123 l1c1+ l2c12+ l3c123 0
0 −1 −l2s12− l3s123 l2c12+ l3c123 0
1 −1 −l3s123 l3c123 0
0 0 0 0 1

 . (7.3)

In order to draw valid comparisons in our study, p̃ must be chosen so that the dynamics of the
four-link robot in (7.2) match the dynamics of the three-link robot in (2.2) when the links 3 and 4
in Figure 7.1 are aligned with each other, i.e., when θ4 = 0[◦], Ûθ4 = 0[◦/s], and Üθ4 = 0[◦/s2]. To
achieve this behavior we plug the values of the parameters for the three-link robot m1, m2, I1, I2,
l1, l2, l3, lc1 , and lc2 used for (2.1) into (7.1), and then compute m′3, I′3, and l′c3 based on the choice
of m4, I4, lc4 , ln, and the values of m3, I3, and lc3 used for the three-link robot in Figure 2.1.
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From the conservation of mass of the torso, neck, and head, it is clear that m′3 must satisfy

m′3 = m3−m4. (7.4)

To compute l′c3 we rely on the position [x̃CoM; ỹCoM] ∈ R
2, and velocity

[
Û̃xCoM; Û̃yCoM

]
∈ R2 coordi-

nates of the CoM of the four-link robot, relative to the inertial frame î ĵ in Figure 7.1:

x̃CoM =k10 (k11c1+ k12c12+ k13c123+ k14c1234), (7.5)
ỹCoM =k10 (k11s1+ k12s12+ k13s123+ k14s1234), (7.6)

Û̃xCoM =− Ûθ1 ỹCoM− Ûθ2k10 (k12s12+ k13s123+ k14s1234)

− Ûθ3k10 (k13s123+ k14s1234)− Ûθ4k10k14s1234, (7.7)
Û̃yCoM = Ûθ1 x̃CoM+ Ûθ2k10 (k12c12+ k13c123+ k14c1234)

+ Ûθ3k10 (k13c123+ k14c1234)+ Ûθ4k10k14c1234, (7.8)

When θ4 = 0[◦] the horizontal position of the CoM in (7.5) becomes

x̃CoM =

(
lc1m1+ l1

(
m2+m′3+m4

))
c1+

(
lc2m2+ l2

(
m′3+m4

))
c12+

(
l′c3m′3+ lnm4

)
c123+ lc4m4c1234

m1+m2+m′3+m4

=

(
lc1m1+ l1 (m2+m3)

)
c1+

(
lc2m2+ l2m3

)
c12+

(
l′c3m′3+ lnm4+ lc4m4

)
c123

m1+m2+m3

= k0

(
k1c1+ k2c12+

(
l′c3m′3+

(
ln+ lc4

)
m4

)
c123

)
, (7.9)

and to make it equal to the expression for the horizontal position of the CoM of the three-link robot
in (2.5), the distance from the joint of the hips to the CoM of the link 3 in Figure 7.1 has to be

l′c3 =
m3lc3 −

(
ln+ lc4

)
m4

m′3
, (7.10)

which also guarantees that ỹCoM = yCoM, Û̃xCoM = ÛxCoM, and Û̃yCoM = ÛyCoM when θ4 = 0[◦], and Ûθ4 = 0[◦/s].
Once that we know the value for l′c3 , the remaining moment of inertia in p̃ is computed from the

parallel-axis theorem as

I′3 = I3− I4−m4

(
ln+ lc4 − l′c3

)2
. (7.11)

It can be verified that plugging (7.4), (7.10), (7.11), and setting θ4 = 0 [◦], Ûθ4 = 0 [◦/s], and
Üθ4 = 0

[
◦/s2] into (7.2) make the first three equations in (7.2) match the dynamics of the three-link

robot in (2.2).
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7.2 Reference Trajectories for the STS Movement of the
Four-link Robot

Let θ̂4 (t) := 0 [◦], Û̂θ4 (t) := 0 [◦/s], and Ü̂θ4 (t) := 0
[
◦/s2] for all t ∈

[
t0, t f

]
. Using the reference

trajectories for STSmovements θ̂ (t), Û̂θ (t), and Ü̂θ (t) obtained in Section 2.4, the reference trajectories
in the joint space of the four-link robot in Figure 7.1 are

ˆ̃θ (t) :=
[
θ̂ (t) ; θ̂4 (t)

]
∈ R4,

Û̃̂
θ (t) :=

[
Û̂θ (t) ; Û̂θ4 (t)

]
∈ R4,

Ü̃̂
θ (t) :=

[
Ü̂θ (t) ; Ü̂θ4 (t)

]
∈ R4. (7.12)

Since we assume that the torque applied by the user of the PLLO at the thoracic intervertebral
joint aims to keep the neck, and head aligned with the torso during the STS movement, to compute
the reference trajectory τ̂n (t) ∈ R we treat the links 3, and 4 as a single rigid body, and draw the
free-body diagram for writing the Newton-Euler equations of motion that allow to find the internal
forces Fnx , Fny , and torque τn across the intervertebral joint, as it is shown in Figure 7.2.

Figure 7.2: Robot model with the torso, neck, and head as a single rigid link and a cut across the
thoracic intervertebral joint at a distance ln from the hips (left). Free-body diagram to calculate the
internal loads Fnx , Fny , and τn , at the location of the intervertebral joint (right).

The force equation for the free-body diagram in Figure 7.2 is[
Fnx
Fny

]
=

[
0

m4g

]
+m4ac4,
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where the acceleration of the CoM of the fourth link in the inertial frame î ĵ is

ac4 = l1

[
− Ûθ2

1 −
Üθ1

Üθ1 − Ûθ2
1

] [
c1
s1

]
+ l2

[
−

(
Ûθ1+ Ûθ2

)2
−

(
Üθ1+ Üθ2

)
Üθ1+ Üθ2 −

(
Ûθ1+ Ûθ2

)2

] [
c12
s12

]
+

(
ln+ lc4

) [
−

(
Ûθ1+ Ûθ2+ Ûθ3

)2
−

(
Üθ1+ Üθ2+ Üθ3

)
Üθ1+ Üθ2+ Üθ3 −

(
Ûθ1+ Ûθ2+ Ûθ3

)2

] [
c123
s123

]
.

Hence, the internal forces across the thoracic intervertebral joint are

Fnx = −m4
©­­«


l1c1
l2c12(

ln+ lc4

)
c123


> 

Ûθ2
1(

Ûθ1+ Ûθ2
)2(

Ûθ1+ Ûθ2+ Ûθ3
)2

 +


l1s1
l2s12(

ln+ lc4

)
s123


> 

Üθ1
Üθ1+ Üθ2
Üθ1+ Üθ2+ Üθ3


ª®®¬ (7.13)

Fny = m4
©­­«g−


l1s1
l2s12(

ln+ lc4

)
s123


> 

Ûθ2
1(

Ûθ1+ Ûθ2
)2(

Ûθ1+ Ûθ2+ Ûθ3
)2

 +


l1c1
l2c12(

ln+ lc4

)
c123


> 

Üθ1
Üθ1+ Üθ2
Üθ1+ Üθ2+ Üθ3


ª®®¬ .
(7.14)

From the moment equation for the free-body diagram in Figure 7.2 we have

τn = I4
(
Üθ1+ Üθ2+ Üθ3

)
−

[
−lc4c123
−lc4 s123

]
×

[
Fnx
Fny

]
= I4

(
Üθ1+ Üθ2+ Üθ3

)
+ lc4c123Fny − lc4 s123Fnx . (7.15)

Plugging (7.13), and (7.14) into (7.15) we obtain

τn = I4
(
Üθ1+ Üθ2+ Üθ3

)
+ lc4m4gc123

+ lc4m4c123
©­­«


l1c1
l2c12(

ln+ lc4

)
c123


> 

Üθ1
Üθ1+ Üθ2
Üθ1+ Üθ2+ Üθ3

 −


l1s1
l2s12(

ln+ lc4

)
s123


> 

Ûθ2
1(

Ûθ1+ Ûθ2
)2(

Ûθ1+ Ûθ2+ Ûθ3
)2


ª®®¬

+ lc4m4s123
©­­«


l1s1
l2s12(

ln+ lc4

)
s123


> 

Üθ1
Üθ1+ Üθ2
Üθ1+ Üθ2+ Üθ3

 +


l1c1
l2c12(

ln+ lc4

)
c123


> 

Ûθ2
1(

Ûθ1+ Ûθ2
)2(

Ûθ1+ Ûθ2+ Ûθ3
)2


ª®®¬

=: %
(
θ, Ûθ, Üθ, p̃

)
.

Therefore, the reference trajectory for the torque applied to the neck by the user during a STS
movement is computed as

τ̂n (t) = %
(
θ̂ (t), Û̂θ (t), Ü̂θ (t), ˆ̃p

)
(7.16)

for all t ∈
[
t0, t f

]
.

Using the input trajectories from Section 2.4, the input reference trajectory for the four-link
robot is

ˆ̃u (t) :=
[
τ̂h (t) ; τ̂s (t) ; F̂x (t) ; F̂y (t) ; τ̂n (t)

]
∈ R5. (7.17)



CHAPTER 7. ROBUSTNESS AGAINST MODEL UNCERTAINTY 93

7.3 Simulation of the Four-link Robot with Finite Time
Horizon LQR Control Under Parameter Uncertainty

Defining x̃ :=
[
θ̃; Û̃θ

]
∈ R8, the first order dynamics of the four-link planar robot in Figure 7.1 are

Û̃x (t) =

[
Û̃θ (t)

M̃−1 (
θ̃ (t), p̃

) (
Ãτ

(
θ̃ (t), p̃

)
u (t)− F̃

(
θ̃ (t), Û̃θ (t), p̃

)) ]
=: f̃ (x̃ (t), p̃,u (t)) . (7.18)

Next we linearize (7.18) to design a finite time horizon LQR controller for tracking the reference

state trajectory ˆ̃x (t) :=
[
ˆ̃θ (t), Û̃̂θ (t)

]
. The state deviation variable δ̃x (t) := x̃ (t)− ˆ̃x (t) satisfies

Û̃δx (t) = f̃ (x̃ (t), p̃,u (t))− f̃
( ˆ̃x (t), ˆ̃p, ˆ̃u (t)

)
,

which can be approximated with a first order Taylor series expansion of f̃ (x̃ (t), p̃,u (t)) about ˆ̃x (t),
nominal parameter ˆ̃p, and reference input trajectory ˆ̃u (t):

Û̃δx (t) ≈
∂ f̃ (x̃, p̃,u)

∂ x̃

���� x̃ = ˆ̃x (t)
p̃ = ˆ̃p
u = ˆ̃u (t)

(
x̃ (t)− ˆ̃x (t)

)
+
∂ f̃ (x̃, p̃,u)

∂ p̃

���� x̃ = ˆ̃x (t)
p̃ = ˆ̃p
u = ˆ̃u (t)

(
p̃− ˆ̃p

)
+
∂ f̃ (x̃, p̃,u)

∂u

���� x̃ = ˆ̃x (t)
p̃ = ˆ̃p
u = ˆ̃u (t)

(
u (t)− ˆ̃u (t)

)
=: Ã(t) δ̃x (t)+ B̃1 (t) δ̃p+ B̃2 (t) δ̃u (t) . (7.19)

From [34], for unconstrained δ̃u (t), symmetric matrices Q̃, S̃ � 0, and R̃ � 0, the optimal control
of the stabilizable linear time-varying system in (7.19) with quadratic cost

J̃LQR =
1
2
δ̃>x

(
t f

)
S̃δ̃x

(
t f

)
+

1
2

∫ t f

t0

(
δ̃>x (t)Q̃δ̃x (t)+ δ̃>u (t) R̃δ̃u (t)

)
dt (7.20)

exists, and is unique, given by the time-varying formula

δ̃u (t) = −R̃−1B̃>2 (t) P̃ (t) δ̃x (t)

=: −K̃LQR (t) δ̃x (t),
(7.21)

where P̃ (t) ∈ R8×8 is the solution of the Riccati matrix differential equation

Û̃P (t) =− P̃ (t) Ã(t)− Ã> (t) P̃ (t)+ P̃ (t) B̃2 (t) R̃−1B̃>2 (t) P̃ (t)− Q̃, (7.22)
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with the boundary condition P̃
(
t f

)
= S̃.

The nonlinear dynamics of the four-link robot under state feedback control with the time-varying
matrix gain K̃LQR (t) ∈ R5×8, become

Û̃x (t) = f̃
(
x̃ (t), p̃, ˆ̃u (t)− K̃LQR (t)

(
x̃ (t)− ˆ̃x (t)

) )
. (7.23)

Using the nominal parameter values of the three-link planar robot in (2.23), anthropometric
data from [45] for a subject with total body mass of 50 [kg] and 1.75 [m] height, and the expressions
in (7.4), (7.10), and (7.11), the nominal values for the parameters of the four-link robot are

ˆ̃p := [9.68 [kg] ; 12.59 [kg] ; 40.52 [kg] ; 4.05 [kg] ; . . .
1.16

[
kg ·m2] ; 0.52

[
kg ·m2] ; 1.86

[
kg ·m2] ; 0.03

[
kg ·m2] ; . . .

0.53 [m] ; 0.41 [m] ; 0.52 [m] ;0.58 [m] ;0.22 [m] ;0.27 [m] ; 0.20 [m] ; 0.22 [m] ; 0.05 [m]].

The trajectories ˆ̃x (t), and ˆ̃u (t) for computing the LTV system in (7.19) are obtained by plugging
the references for STS 1 presented in Section 2.5 into (7.12), (7.16), and (7.17).

Aswe look to retain the robust behavior of the PLLO to track the STS 1movement in the presence
of parameter uncertainty achieved with the optimal weights in (4.26), we fix the corresponding
entries of Q̃, S̃ ∈ R8×8, and R̃ ∈ R5×5 in (7.20) to the same values, so that

Q̃ = diag ([80, 95, 95, q̃1, 68, 90, 83, q̃2]),

R̃ = diag
( [

1×10−3, 2×10−4, 6×10−4, 4.4×10−3, r̃
] )
,

S̃ = diag ([30, 37, 19, s̃1, 29, 92, 82, s̃2]) .

For tuning the weights q̃1, q̃2, r̃, s̃1, s̃2 ∈ R we use a Latin Hypercube of a 1000 experiments in
5 variables to randomly sample their values within the intervals q̃1, q̃2, s̃1, s̃2 ∈ [0,100], and r̃ ∈[
1×10−4,1×10−2] . With the tools in [37] we solve the Riccati matrix differential equation in
(7.22) for each one of the thousand triplets of Q̃, R̃, S̃, compute their corresponding LQR gains
in (7.21), and simulate the system in (7.23) setting p̃ = ˆ̃p. Using a node in the Savio cluster with
28 cores at 2.4[GHz] running Matlab Parallel Toolbox, the simulations are completed in 4[h]. The
triplet of matrix weights that minimize |τn (t)| over t ∈ [0,3.5] [s] among all simulations are

Q̃∗ = diag ([80, 95, 95, 66.28, 68, 90, 83, 23.83]),

R̃∗ = diag
( [

1×10−3, 2×10−4, 6×10−4, 4.4×10−3, 4.4×10−3] ) ,
S̃∗ = diag

( [
30, 37, 19, 83, 29, 92, 82, 7.2×10−2] ) . (7.24)

We denote the LQR gain associated with these weights as K̃∗LQR (t).
To evaluate the robustness of the finite time horizon LQR controller for tracking STS 1 in

the presence of parameter uncertainty we take 500 values of ˆ̃p within the bounds
[

ˆ̃p, ˆ̃p
]
⊆ R17

in Table 7.1 by Latin hypercube sampling, and simulate the closed-loop system in (7.23) setting
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K̃LQR (t) = K̃∗LQR (t) for each of the sampled values of p̃ starting from rest, with the initial condition
θ̃ (0) = [90[◦]; −90[◦]; 90[◦]; 0[◦]]. Using a node in the Savio cluster with 28 cores at 2.4[GHz]
running Matlab Parallel Toolbox the simulations are completed in 1[h]. The trajectories obtained
for the different values of p̃ are shown in blue in Figures 7.3 to 7.6, while the reference trajectories
for the STS 1 movement are in red.

Table 7.1: Bounds for the parameter uncertainty of the four-link robot for a fluctuation of ±5% in
the nominal weight of the user, and a variation of ±1[cm] in the nominal lengths of the links

Link mi [kg] Ii
[
kg ·m2] li [m] lci [m] ln [m]

1 [9.2,10.2] [1.10,1.21] [0.52,0.54] [0.23,0.30] -

2 [11.9,13.2] [0.49,0.54] [0.40,0.42] [0.18,0.23] -

3 [38.5,42.5] [1.73,1.92] [0.51,0.53] [0.21,0.24] [0.57,0.59]

4 [3.85,4.25] [0.02,0.03] [0.21,0.23] [0.04,0.05] -

Despite the mismatch of p̃ from its nominal value ˆ̃p, we can tell from Figures 7.3d and 7.4d that
the movement of link 4 relative to link 3 is negligible with the feedback action of K̃∗LQR (t), this is
achieved keeping the absolute value of the torque applied at the neck in Figure 7.6e well below the
maximum of 836 [N.m] reported among the human subjects in [52], which leads to believe that the
user will indeed be able to generate a set of muscle actions to provide the torque commanded by
the LQR controller at the neck. Furthermore, since the excellent properties observed for tracking
the STS 1 reference trajectories in Section 4.4 also hold for the state, position and velocity of the
CoM, and input of the four-link robot model in Figure 7.1, we can conclude that, to the extend of
this study, the optimal controller K?

LQR (t) is robust to the model uncertainty derived from neglecting
the movement of the neck and head relative to the torso during its design stage.
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(a) Angular position of link 1 relative to the horizontal. (b) Angular position of link 2 relative to link 1.

(c) Angular position of link 3 relative to link 2. (d) Angular position of link 4 relative to link 3.

Figure 7.3: Angular positions of the links of the four-link robot under finite time horizon LQR
control, performing STS 1 in the presence of parameter uncertainty.
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(a) Angular velocity of link 1. (b) Angular velocity of link 2.

(c) Angular velocity of link 3. (d) Angular velocity of link 4.

Figure 7.4: Angular velocities of the links of the four-link robot under finite time horizon LQR
control performing STS 1 in the presence of parameter uncertainty.
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(a) Horizontal position of the four-link robot CoM. (b) Vertical position of the four-link robot CoM.

(c) Horizontal velocity of the four-link robot CoM. (d) Vertical velocity of the four-link robot CoM.

(e) Position of the CoM of the four-link robot. (f) Velocity of the CoM of the four-link robot.

Figure 7.5: Trajectories of the CoM of the four-link robot under finite time horizon LQR control
performing STS 1 in the presence of parameter uncertainty.
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(a) Torque at the hips. (b) Torque at the shoulders.

(c) Horizontal force at the shoulders. (d) Vertical force at the shoulders.

(e) Torque applied at the neck.

Figure 7.6: Input trajectories of the four-link robot under finite time horizonLQRcontrol performing
STS 1 in the presence of parameter uncertainty.
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Chapter 8

Conclusions

Our motion planning strategy shows that it is possible to obtain biomechanically sound STS
movements based on desired trajectories for the CoM of a three-link planar robot modeling the
PLLO and the user. This task reduces to only choosing initial and final points with zero slope
boundary conditions for the polynomials in time used to interpolate the trajectories. The advantage
of the strategy is that nomotion capture fromhealthy subjects is necessary for defining themovement
of the device, and that it can be customized relative to the values of the parameters describing the
system. The computed torque with control allocation approach can be used to obtain reference
input trajectories for any possible architecture of PLLO once that the reference trajectories in the
space of the angular joints are calculated.

The main assumption for designing the tracking controllers is that the computer has authority
over both the actuators of the PLLO, and the loads applied by the user at the shoulders. Choosing
a pool of candidates consisting of finite time horizon LQR controllers, we rely on our performance
metric based on reachability analysis to assess the robustness against parameter uncertainty of
the STS movement attained by each of the candidates. We denote the gain that optimizes the
performance metric as K?

LQR (t). For minimizing the number of sensors in the PLLO, we find
a Kalman-Bucy filter gain L?KF (t) that coupled with K?

LQR (t) in an LQG scheme, implements an
output feedback controller for the nonlinear dynamics of the three-link planar robot that leads to
successful simulations of the STS movement in the presence of parameter uncertainty, and noise
measurement. Once that these couple of time-varying gains are computed, one can proceed to
implement the controller in the PLLO.

Since in reality the loads at the shoulders are applied solely by the user, in order to evaluate
through simulation if a user would be able to coordinate with the control input commanded to the
actuators of the PLLO by K?

LQR (t) through training, we resorted to an ILC algorithm to abstract the
way in which a user shapes the loads applied at the shoulders over 30 consecutive trials to perform
the STS movement during rehabilitation and physical therapy sessions. The learning and feedback
gains of the ILC algorithm are tuned with 10,000 iterations of a gradient free optimization method
under the basis that a human would have tuned the gains for the precise movement of the upper
limbs in an optimal way, since birth. Because the simple ILC algorithm manages to synchronize
with the controller of the PLLO in our tests, despite the factors that are deliberately introduced to
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hinder learning, we conclude that taking further steps towards human testing with K?
LQR (t) as the

controller of the PLLO makes sense, as the learning process of an actual human is more complex.
Notice that this analysis does not result in changes on the implementation of the actual controller
in the PLLO.

Similarly to the test with the ILC as a proxy for human action at the shoulders, the tests against
model uncertainty only encourage moving forward with the implementation of the LQG scheme
with K?

LQR (t) and L?KF (t) in the actual PLLO, but do not introduce additional changes to the controller.
We believe that the techniques in this work can set a good framework to systematically choose

actuators of PLLOs to fit a larger variety of users, estimate if a prospective user has enough upper
body strength to safely perform the STS movement, quantitatively study sit-back or step failures,
and develop a protocol for better assessing the robustness of the STS movement in clinical trials.
This would then help to close the gap between PLLOs and standing wheelchairs, which still remain
the most reliable mobility solution for patients with complete paraplegia.

The feedback approach explored in this work has an explicit time dependance on the reference
trajectories; however, in practice, the user of a PLLO might pause or act at a different time scale,
whichmotivates exploring path dependant controllers in the future, such as the one proposed in [53].

Given the complexity of the closed-loop dynamics of the system, estimating the sensitivity
bounds for computing the over-approximation functions in the performance metric required a time
consuming sampling of the parameter interval. Improving this procedure is another appealing
research direction.

Additionally, the control problem could be formulated with a Linear Fractional Transformation
(LFT) framework, in order to apply a µ synthesis method [54] for obtaining a finite time horizon
controller that is inherently robust to both parameter, and model uncertainties.
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Appendix A

Motion Planning in the Space of θ

This appendix illustrates that using cubic expressions with zero slope boundary conditions to design
the reference trajectory θ̂ (t) :=

[
θ̂1(t); θ̂2(t); θ̂3(t)

]
for connecting the starting θ̂ (t0) and final θ̂

(
t f

)
angular positions of a STS movement leads to unrealistic configurations for the links of the robot
in Figure 2.1, which represent the segments of the shanks, thighs, and torso of a PLLO and its
user. For this purpose, we compute a reference trajectory in the space of θ over the time horizon
t ∈

[
t0, t f

]
as

θ̂ (t) = θ̂ (t0)+
(
θ̂
(
t f

)
− θ̂ (t0)

)
Θ

(
t, t f

)
, (A.1)

where Θ
(
t, t f

)
:= −2 t3

t3
f

+ 3 t2

t2
f

is the only cubic polynomial satisfying ÛΘ
(
t0, t f

)
= ÛΘ

(
t f , t f

)
= 0,

Θ
(
t0, t f

)
= 0, and Θ

(
t f , t f

)
= 1.

We obtain the reference trajectories for the STS movements in the space of θ by plugging
the initial and final angular positions for STS 1 and STS 2 defined in Section 2.5 into (A.1). To
solve (2.22) for û (t) we take into account the architecture of a minimally actuated PLLO at the
hips, Wu = diag ([1,1,10,1]), and the nominal parameter value p̂ in (2.23). The corresponding
trajectories for the CoM ŷ (t) are computed using x =

[
θ̂ (t) ; Û̂θ (t)

]
, and p = p̂ in (4.18). These

reference trajectories are shown in dashed white lines in Figures A.1 to A.3, where the collection
of continuous blue and red lines represent the behavior of the system (2.2) under the action of the
feedback linearizing input (3.4), and when the values for p are randomly chosen, within the interval[
p, p

]
in Table 3.1, by Latin hypercube sampling of 200 experiments.

Figures A.1a to A.1c show that the reference trajectory for STS 1 has no movement of the
shanks about the joint of the ankles, involves no flexion of the hips, and it can be inferred from
the almost mirrored evolution of θ2 (t) and θ3 (t) that the inclination of the torso with respect to
the vertical remains small. Although the corresponding torques and forces in Figure A.2 remain
within the admissible bounds in (5.3), and the trajectories of the CoM in Figures A.3 do not raise
concerns about sit-back or step failures [15] with the offsets caused by the parameter uncertainty,
the motion of the joints does look very stiff and unnatural for a human.
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(a) Angular position of link 1 relative to the horizontal. (b) Angular position of link 2 relative to link 1.

(c) Angular position of link 3 relative to link 2. (d) Angular velocity of link 1.

(e) Angular velocity of link 2. (f) Angular velocity of link 3.

Figure A.1: Angular positions and velocities of the links of the robot under feedback linearization
and control allocation for two relevant STS movements planned in the space of θ.
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(a) Torque applied at the hips by the powered lower
limb orthosis.

(b) Torque at the shoulders of the user.

(c) Horizontal force at the shoulders of the user. (d) Vertical force at the shoulders of the user.

Figure A.2: Feedback linearizing input for two relevant STS movements planned in the space of θ.

The extension of the ankles, knees, and hips observed in Figures A.1a to A.1c for STS 2 seems
plausible for a quasi-static strategy [13], and the corresponding loads in Figure A.2 remain within
the bounds in (5.3). Nevertheless, the backward displacement and velocity that exhibits the CoM in
Figures A.3e and A.3f make a back-sit failure bound to happen in the presence of greater parameter
uncertainties, deeming the reference trajectory in the space of θ unsuitable.

By giving direct consideration of proper extension of the knees and natural looking trajectories
of the CoM, our motion planning strategy in the space of z proves to be more suitable to set safe and
biomechanically sound reference trajectories for these STS movements, as exposed in Section 2.5.
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(a) Position trajectories of the three-link robotCoM. (b) Velocity trajectories of the three-link robot
CoM.

(c) Position trajectories of the three-link robotCoM. (d) Velocity trajectories of the three-link robot
CoM.

(e) Position trajectories of the three-link robotCoM. (f) Velocity trajectories of the three-link robot
CoM.

Figure A.3: Center of mass trajectories achieved with feedback linearization and control allocation
for two relevant STS movements planned in the space of θ.
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