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Abstract.We prove that the grades of simple modules indexed by boolean permutations,
over the incidence algebra of the symmetric group with respect to the Bruhat order, are
given by Lusztig’s a-function. Our arguments are combinatorial, and include a description
of the intersection of two principal order ideals when at least one permutation is boolean.
An important object in our work is a reduced word written as minimally many runs of con-
secutive integers, and one step of our argument shows that this minimal quantity is equal
to the length of the second row in the permutation’s shape under the Robinson–Schensted
correspondence. We also prove that a simple module over the above-mentioned incidence
algebra is perfect if and only if its index is the longest element of a parabolic subgroup.
Keywords. Incidence algebra, grade, boolean permutation, a-function, principal ideal, sym-
metric group
Mathematics Subject Classifications. 20F55, 06A07, 05E15

1. Introduction and description of results

Homological invariants are very helpful tools for understanding both structure and properties
of algebraic objects. The most common such invariants used in representation theory of finite
dimensional algebras are projective and injective dimensions that describe the lengths of the
minimal projective resolution and injective coresolution of a module, respectively. A slightly
less common such invariant is the grade of a module; that is, the minimal degree of a non-
vanishing extension to a projective module. The latter invariant is important in the theory of
Auslander regular algebras, see [12].
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Incidence algebras of finite posets are important examples of finite dimensional algebras.
The main result of [12] asserts that the incidence algebra of a finite lattice is Auslander regular
if and only if the lattice is distributive.

Finite Weyl groups play an important role in modern representation theory. They come
equipped with a natural partial order called the Bruhat order. Unfortunately, with the exception
of a handful of degenerate cases, the Bruhat order on aWeyl group is not a lattice. InMarch 2021,
Rene Marczinzik gave a talk at Uppsala Algebra Seminar in which he addressed the problem
of Auslander regularity of incidence algebras of Weyl groups with respect to the Bruhat order
(to the best of our knowledge, the problem is still open for symmetric groups in the general
case). In connection to this, he presented results of computer calculations of grades of simple
modules over the incidence algebras of the symmetric group in small ranks. From these lists, one
could observe that the grades of simple modules are often (but not always) given by Lusztig’s
a-function from [18]. In the case of the symemtric group (i.e. in typeA), Lusztig’s a-function is
uniquely determined by the properties that it is constant on all two-sided Kazhdan–Lusztig cells
and coincides with the usual length function on the longest elements in all parabolic subgroups.
In several contexts, see [14, 20, 21], this function describes homological invariants of algebraic
objects naturally indexed by the elements of the symmetric group (or, more generally, of a finite
Weyl group).

The main result of the present paper is the following theorem.

Theorem 1.1. The grades of simple modules indexed by boolean permutations, over the inci-
dence algebra of the symmetric group with respect to the Bruhat order, are given by Lusztig’s
a-function.

We note that the original definition of the a-function reflects some subtle numerical proper-
ties of the multiplication of the elements in the Kazhdan–Lusztig bases of the Hecke algebra of a
Coxeter group. We do not see any immediate connection between the Kazhdan–Lusztig bases of
the Hecke algebra and the incidence algebra of the symmetric group with respect to the Bruhat
order. Therefore appearance of the a-function in Theorem 1.1 is rather mysterious.

Our proof of this result is combinatorial. Projective resolutions of simple modules over the
incidence algebras of Weyl groups can be constructed using the BGG complex from [1] (that
is, the singular homology complex). We use the Serre functor to relate the grade of the simple
module Lv, where v is a permutation, to the homology of the complex obtained by restricting the
BGG complex to the intersection B(v) ∩B(w) of two principal ideals in the symmetric group,
wherew is an arbitrary permutation. For boolean v, we describeB(v)∩B(w) in Proposition 3.7
with a more precise version in Corollary 3.8 under the additional assumption that w is also
boolean.

Using this explicit description, we proceed with combinatorial analysis of the restricted BGG
complex. In fact, we show that this restricted BGG complex is either exact or has exactly one
non-zero homology which, moreover, is one-dimensional. For a fixed v, the extreme degree in
which such non-zero homology can appear is given by a combinatorial invariant of v that we call
the number of runs in v, introduced in Subsection 5.2. The connection between the homology
and the number of runs is established in Theorem 5.14.

It is an easy combinatorial exercise to show that the number of runs for a boolean permutation
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coincides with Lusztig’s a-function, and this is presented in Section 6. This is, essentially, what
one needs to prove Theorem 1.1.

The paper is organized as follows. In Section 2, we collected some basics on the Bruhat order
and boolean permutations. In Section 3, we study combinatorics of intersections B(v)∩B(w),
for boolean v, and show how they can be determined either from reduced words or from the
permutations’ one-line notations. In Section 4, we describe in detail the algebraic motivation
and setup of the problem we study. Section 5 contains combinatorial analysis of the homology
of the BGG complex restricted toB(v)∩B(w). The crucial results of that section give a method
for deleting letters from a reduced word without losing the boolean elements in an order ideal,
and description of a permutation w := w(v) for which the intersection complex has the desired
homology. Finally, in Section 6 we combine all of the pieces necessary for the proof of Theo-
rem 1.1. In the last section of the paper we briefly address what little is known for non-boolean
permutations. In particular, we show that Lusztig’s a-function gives the grade of the simple
module indexed by the longest elements of a parabolic subgroup. From this we deduce that a
simple module is perfect (in the sense that its grade coincides with its projective dimension) if
and only if the index of this module is the longest element of a parabolic subgroup.

2. Bruhat order and boolean elements

The symmetric groupSn of permutations of [1, n] := {1, 2, . . . , n} is a Coxeter group with the
natural distinguished set of Coxeter generators given by the simple reflections {σi := (i, i+ 1) :
i ∈ [1, n − 1]}. A reduced decomposition of a permutation w is a product w = σi1 · · ·σi`
such that ` is minimal (in which case it is called the length of w). To save notation, we can
equivalently consider reduced words of a permutation by looking only at the subscripts in a
reduced decomposition. In this paper, we will let R(w) denote the set of reduced words of a
permutation w. Because both permutations and reduced words can be represented by strings
of integers, we will write [s] to indicate that a string s represents a reduced word. We think of
permutations as maps, and we compose maps from right to left.

Example 2.1. For the permutation with one-line notation 4132 ∈ S4, we have

R(4132) = {[3213] , [3231] , [2321]}.

Reduced words represent products of simple reflections, so we can use them interchangeably
with the permutations they represent. For example, we can write

4132 = [3213] = [3231] = [2321] .

It is well-known that any two reduced words for a given permutation are related by a sequence
of commutation and braid moves [19, 33], as we can see in the previous example.

The Bruhat order gives a poset structure to the symmetric group, and it can be defined in
terms of reduced words.

Theorem 2.2 ( [2, Theorem 2.2.2]). Let u,w be permutations, and [s] ∈ R(w). Then u 6 w in
the Bruhat order if and only if a subword of [s] is a reduced word for u.
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Various structural aspects of this poset have been studied, related to its principal order ideals
and intervals (see, for example, [2, 3, 7, 9, 10, 27, 28, 31]). Despite this interest and literature,
there has been very little attention paid to the intersection of principal order ideals in this poset.

Definition 2.3. For a permutation w ∈ Sn, write B(w) for the principal order ideal of w in the
Bruhat order.

As studied by Ragnarsson and the second author [23, 24], and Hultman and Vorwerk in the
case of involutions [11], the so-called boolean elements of the symmetric group have particularly
interesting properties.

Definition 2.4. A permutation v is boolean if its principal order ideal B(v) is isomorphic to a
boolean algebra.

Although boolean elements can be defined analogously for anyCoxeter group, we are focused
on permutations in this work. As shown in [27], boolean permutations can be characterized in
several ways.

Theorem 2.5. The following statements are equivalent:

• the permutation v is boolean,

• the permutation v avoids the patterns 321 and 3412, and

• reduced words for the permutation v contain no repeated letters.

In this work we will consider intersections of principal order ideals B(v) ∩ B(w), when v
is boolean. First, we will describe the elements of this intersection, and then we will look at its
topology.

3. Intersection ideals

3.1. Orientation and intersecting ideals

Throughout this section, let v ∈ Sn be a boolean permutation.

Definition 3.1. The support of a permutation w is the set of distinct letters appearing in its
reduced words. This will be denoted supp(w).

Thus a permutation is boolean if and only if its length is equal to the size of its support. For
an arbitrary permutation w, we can make the following observation about how supp(w) might
impact the poset B(w).

Let x be a word and I a subset of letters appearing in x. We will denote by xI the subword
of x consisting of all letters from I .

Lemma 3.2. Suppose that w is a permutation with supp(w) = X t Y , such that either

• x and y commute for all x ∈ X and y ∈ Y , in which case let [s] ∈ R(w) be any reduced
word; or
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• there is exactly one pair of noncommuting letters (x0, y0) ∈ X × Y , and there exists
[s] ∈ R(w) in which all appearances of x0 are to the left of all appearances of y0.

Then both [sX ] and [sY ] are reduced words, and B(w) can be written as a direct product:

B(w) ∼= B([sX ])×B([sY ]).

Proof. The [s] ∈ B(w) described in the statement of the lemma can be transformed via com-
mutations into [sXsY ] ∈ B(w). The result follows.

Theorem 2.5 means that Lemma 3.2 can be applied to any boolean permutation.
The goal of this section is to describe B(v) ∩ B(w) for arbitrary permutations w. Because

v is boolean, the ideal B(v) is determined by:

• the support of v,

• the pairs of noncommuting (i.e., consecutive) letters appearing in the support, and

• the order in which noncommuting letters appear in elements of R(v).

Note that this last item is well-defined because all letters are distinct. Therefore, if k appears to
the left of k+ 1 in one element of R(v), then in fact k appears to the left of k+ 1 in all elements
of R(v).

When looking at the principal order ideal of a boolean permutation v, we might want to
consider the permutations covering an element u in that ideal. By Theorems 2.2 and 2.5 we
can think of such an element as being obtained from some [s] ∈ R(u) by inserting a letter k in
such a way as to be consistent with elements of R(v). The lack of repeated letters among those
elements means that there is no ambiguity about how to insert k. When such an element exists,
we will write it as

uf σk.

The support of a permutation can be read off from any of its reduced words. It can also be
detected from the one-line notation of the permutation, as described in the following lemma.

Lemma 3.3 (cf. [29, Lemma 2.8]). For any w ∈ Sn, the following statements are equivalent:

• k ∈ supp(w),

• {w(1), . . . , w(k)} 6= {1, . . . , k}, and

• {w(k + 1), . . . , w(n)} 6= {k + 1, . . . , n}.

Several facts about B(v) ∩B(w) follow directly from Theorem 2.2.

Lemma 3.4. Consider v, w ∈ Sn, where v is boolean.

(a) The length 1 elements of B(v) ∩B(w) are supp(v) ∩ supp(w).

(b) Each element of B(v) ∩B(w) is itself a boolean permutation.
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(c) The intersection B(v) ∩B(w) is an order ideal.

Part (c) of Lemma 3.4 means that we will understand B(v) ∩ B(w) once we can describe
its maximal elements. To do this, we must understand which subsets of supp(v) ∩ supp(w)
will describe an element of B(v) ∩ B(w). The only concern arises from consecutive letters in
supp(v)∩ supp(w). If there are such letters, then they appear in a particular order in all elements
of R(v). If they can appear in the same order in an element of R(w), then they can appear
together in an element of B(v)∩B(w). If they never appear in that same order, in any elements
of R(w), then these two letters cannot appear together in any element of B(v) ∩B(w).

Definition 3.5. Consider a permutation w with k, k + 1 ∈ supp(w). If all appearances of k are
to the left of all appearances of k + 1 in reduced words for w, then k and k + 1 have increasing
orientation in w. If all appearances of k are to the right of all appearances of k + 1, then they
have decreasing orientation. Otherwise, their orientation is interlaced. Two orientations match
unless one is increasing and the other is decreasing.

3.2. Maximal selfish subsets

For a positive integer k, let us consider the set of integers [1, k]. Denote by Qk the set of all
subsets X ⊂ [1, k] that are maximal with respect to inclusions and that have the following
property, which we call selfishness:

• if i ∈ X , then i± 1 6∈ X .

Here is the list of Qk, for k = 1, 2, 3, 4, 5:

Q1 =
{
{1}
}
,

Q2 =
{
{1}, {2}

}
,

Q3 =
{
{1, 3}, {2}

}
,

Q4 =
{
{1, 3}, {2, 4}, {1, 4}

}
, and

Q5 =
{
{1, 3, 5}, {2, 5}, {2, 4}, {1, 4}

}
.

We denote by Q′k the set of all X ∈ Qk such that k ∈ X and we set Q′′k := Qk \Q′k.

Proposition 3.6.

(a) For k > 2, the map X 7→ X \ {k} is a bijection from Q′k to Qk−2.

(b) For k > 3, the map X 7→ X \ {k − 1} is a bijection from Q′′k to Qk−3.

(c) For k > 3, we have |Qk| = |Qk−2|+ |Qk−3|.

Proof. If k ∈ X , then k−1 6∈ X due to selfishness. Therefore Y := X\{k} is a selfish subset of
[1, k−2]. If Y were not maximal, we would be able to add to it some element i ∈ [1, k − 2] pre-
serving its selfishness. Since k− 1 6∈ X , the subsetX ∪{i} would also be selfish, contradicting
the maximality of X . Therefore Y ∈ Qk−2.
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Conversely, given Y ∈ Qk−2, the set X := Y ∪ {k} is, clearly, selfish. By the maximality
of Y , we cannot add to X any i ∈ [1, k − 2] without violating selfishness. Clearly, we cannot
add k − 1 either since k ∈ X . Therefore X ∈ Q′k. This proves Claim (a).

Note thatX ∈ Q′′k implies k−1 ∈ X , for otherwiseX ∪{k}would be selfish, contradicting
the maximality of X . Therefore Q′′k = Q′k−1 and Claim (b) follows from Claim (a) applied to
Q′k−1. Claim (c) follows from Claims (a) and (b).

From Proposition 3.6(c), it follows that the sequence {|Qk| : k > 1} is the (suitably offset-
ted) Padovan sequence [22, A000931].

The above concept has a natural generalization to an arbitrary finite subset U of Z>0 (a
universe). We can consider selfish subsets of such a U , maximal with respect to inclusions. We
denote the set of all such subsets by Q(U). The set U has a unique decomposition

U =
∐
i

Ui

of minimal length into a disjoint union of interval subsets (i.e., each Ui is of the form [p, p+ q]).
The minimality of the length means that Ui ∪ Uj is not an interval subset for any i 6= j.

It is clear that maximal selfish subsets of U are just the unions of maximal selfish subsets
of the individual Ui’s, and the maximal selfish subsets in each Ui are completely described by
Proposition 3.6.

3.3. Intersections with principal ideals of boolean elements

Our next step is to describeB(v)∩B(w), for an arbitrary permutation w. As initially presented,
this will require understanding properties about the reduced words for v and w. However, fol-
lowing the theorem, we will show how it can also be determined from the one-line notations for
v and w.

Let v, w ∈ Sn be such that v is boolean and fix some [s] ∈ R(v). Denote byW(v, w) the
set of all minimal subwords of [s] of the form

[
i(i+ 1) · · · (i+ j)

]
or
[
(i+ j) · · · (i+ 1)i

]
with

the following properties:

• if
[
i(i+ 1) · · · (i+ j)

]
is a subword of [s], then

[
i(i+ 1) · · · (i+ j)

]
66 w while both[

i(i+ 1) · · · (i+ j − 1)
]
6 w and

[
(i+ 1)(i+ 2) · · · (i+ j)

]
6 w;

• if
[
(i+ j) · · · (i+ 1)i

]
is a subword of [s], then

[
(i+ j) · · · (i+ 1)i

]
66 w while both[

(i+ j − 1) · · · (i+ 1)i
]
6 w and

[
(i+ j) · · · (i+ 2)(i+ 1)

]
6 w.

Further, denote byW(v, w)↑ the set of all maximal subwords of [s] which do not have any of the
elements inW(v, w) as subwords. In other words,W(v, w)↑ is the set of maximal elements in
the complement to the filter generated byW(v, w) inside B(v). Note thatW(v, w) contains all
simple reflections from supp(v) \ supp(w).

For example, if v = [321] and w = [2132], then we have W(v, w) = {[321]} and, con-
sequently, W(v, w)↑ = {[21] , [31] , [32]}. Similarly, if v = [32145] and w = [4521324], then
W(v, w) = {[321] , [345]} andW(v, w)↑ = {[2145] , [314] , [315] , [324] , [325]}.
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Proposition 3.7. For v, w ∈ Sn with v boolean and [s] ∈ R(v), the setW(v, w)↑ is exactly the
set of all maximal elements in B(v) ∩B(w).

Proof. Each minimal element inSn \B(w) is, by definition, join irreducible. It is well-known,
see [17], that join irreducible elements in Sn are exactly the elements with unique left descent
and unique right descent (i.e. the so-called bigrassmannian elements, see also [15,16] for more
details). From the classification of all bigrassmannian elements in Sn (see, for example, [15,
Figure 7]), it follows that the boolean bigrassmannian elements are exactly the elements of the
form

[
i(i+ 1) · · · (i+ j)

]
or
[
(i+ j) · · · (i+ 1)i

]
.

This implies that the minimal elements in the complement toB(v)∩B(w) inB(v) are all of
the form

[
i(i+ 1) · · · (i+ j)

]
or
[
(i+ j) · · · (i+ 1)i

]
, for some i and j. Now the claim of the

proposition follows directly from the definitions of the setsW(v, w) andW(v, w)↑.

In the special case of the intersection of two boolean principal ideals, we can make the state-
ment of Theorem 3.7 more precise. Fix permutations v, w ∈ Sn such that v is boolean. Choose
any element [s] ∈ R(v). Denote by V(v, w) the set of all letters k for which there is x ∈ {k±1}
such that the orientation of the pair {k, x} in v and w does not match.

Corollary 3.8. For v, w ∈ Sn with both v andw boolean and [s] ∈ R(v), the maximal elements
in the order ideal B(v) ∩B(w) are exactly the subwords of [s] whose support is of the form(

(supp(v) ∩ supp(w)) \ V(v, w)
)
∪X, for some X ∈ Q(V(v, w)). (3.1)

Proof. For boolean w, the two conditions[
i(i+ 1) · · · (i+ j − 1)

]
6 w and

[
(i+ 1)(i+ 2) · · · (i+ j)

]
6 w, with j > 1,

imply
[
i(i+ 1) · · · (i+ j)

]
6 w. Similarly, the two conditions[

(i+ j − 1) · · · (i+ 1)i
]
6 w and

[
(i+ j) · · · (i+ 2)(i+ 1)

]
6 w, with j > 1,

imply
[
(i+ j) · · · (i+ 1)i

]
6 w. This means that the setW(v, w) consists of elements of the

form [i(i+ 1)] or [(i+ 1)i]. It follows directly from the definitions that Formula (3.1) describes
exactly the elements ofW(v, w)↑. Now the claim follows from Proposition 3.7.

In fact, the previous argument shows that we can use this construction whenever there are no
minimal subwords having j > 1, using the notation at the beginning of this section.

Corollary 3.9. For v, w ∈ Sn with v boolean and [s] ∈ R(v), if all elements ofW(v, w) have
j = 1, then the maximal elements in the order ideal B(v) ∩ B(w) are exactly the subwords of
[s] whose support is of the form(

(supp(v) ∩ supp(w)) \ V(v, w)
)
∪X, for some X ∈ Q(V(v, w)). (3.2)
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3.4. The same property via one-line notation

The relative order(s) of k and k+1 can be read off by looking at reduced words of a permutation,
but it would be nice if they could also be determined directly from its one-line notation. We use
the next results to show how that can be done.

Proposition 3.10. Consider a permutation w, with {k, k+ 1} ⊆ supp(w). Then, exactly one of
the following possibilities holds.

(i) k and k + 1 are interlaced in w, meaning that w has a reduced word with one of the
following forms:[

· · · k · · · (k + 1) · · · k · · ·
]

or
[
· · · (k + 1) · · · k · · · (k + 1) · · ·

]
(ii) k and k + 1 have either increasing or decreasing orientation in w, meaning that w has a

reduced word with one of the following forms:[(
letters 6 k

)(
letters > k + 1

)]
or

[(
letters > k + 1

)(
letters 6 k

)]
Proof. Reduced words for w contain both k and k+1. Suppose that some [s] ∈ R(w) interlaces
k and k + 1. Then no sequence of commutation and braid moves can produce a word in which
all appearances of k are to one side of all appearances of k + 1, so w has no reduced words of
the forms shown in (ii). Alternatively, suppose that no elements of R(w) interlace k and k + 1.
Thus, in each element of R(w), all appearances of k are to one side of all appearances of k+ 1.
Suppose, without loss of generality, that [s] ∈ R(w) has the form s = αβ, where α contains k
but not k+1, and β contains k+1 but not k. Then, as in [30], we can use commutations to push
all x > k + 1 in α to the right and all x < k in β to the left, in order to find an element of R(w)
having one of the forms depicted in (ii).

As discussed previously, these increasing or decreasing orientations restrict which elements
can appear in an intersection of principal order ideals. We now describe how to identify a per-
mutation having this property.

Theorem 3.11. Consider a permutation w ∈ Sn, with {k, k + 1} ⊆ supp(w).

(a) A reduced word for w has the form[(
letters 6 k

)(
letters > k + 1

)]
(that is, k and k+ 1 have increasing orientation in w) if and only if there exists x < k+ 1
such that {w(1), . . . , w(k)} = [1, k + 1] \ {x} and w−1(x) > k + 1.

(b) A reduced word for w has the form[(
letters > k + 1

)(
letters 6 k

)]
(that is, k and k+ 1 have decreasing orientation in w) if and only if there exists y > k+ 1
such that {w(k + 2), . . . , w(n)} = [k + 1, n] \ {y} and w−1(y) < k + 1.
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(c) The letters k and k + 1 are interlaced in w if and only if there exists i ∈ [1, k] and
j ∈ [k + 2, n] such that w(i) > k + 1 and w(j) < k + 1.

Proof. Consider part (a) of the theorem.
Suppose that w has such a reduced word. This reduced word indicates that w = tu, where

supp(t) ⊆ [1, k] and supp(u) ⊆ [k + 1, n − 1]. Moreover, because {k, k + 1} ⊆ supp(w), we
must have k ∈ supp(t) and k+1 ∈ supp(u). The permutation u fixes all i < k+1. On the other
hand, by Lemma 3.3, u(k+ 1) > k+ 1 and u−1(k+ 1) = y > k+ 1. Similarly, the permutation
t fixes all i > k + 1, with t(k + 1) < k + 1 and t−1(k + 1) = x < k + 1. Thus in the product
w = tu, we have

w(y) = tu(y) = t(k + 1) < k + 1.

Moreover, for all z 6= y, either u fixes z or t fixes u(z). In particular, w(x) = tu(x) = t(x) =
k + 1, completing the proof of this direction.

Now suppose that there exists x < k + 1 such that {w(1), . . . , w(k)} = [1, k + 1] \ {x} and
i := w−1(x) > k + 1. Consider the permutation

u := (σkσk−1 · · ·σx)w(σi−1σi−2 · · ·σk+1). (3.3)

The factor on the right in Equation (3.3) slides x leftward in the one-line notation forw, swapping
it with w(j) > k + 1 > x at each step, until x is sitting in position k + 1 of the permutation.
Recall the hypotheses on w. The factor on the left in Equation (3.3) swaps the value x with
the value x + 1 in the one-line notation, then x + 1 with x + 2, and so on, always moving
the larger value into position k + 1 from somewhere to the left of that position. Therefore
`(u) = `(w)− (k − x+ 1)− (i− k − 1) = `(w) + x− i. After all of these transpositions, the
resulting permutation u fixes k+1, and u(i) ∈ [1, k] for all i ∈ [1, k]. Therefore, by Lemma 3.3,
we have k, k + 1 6∈ supp(u), and thus there exists some [αβ] ∈ R(u) in which α contains only
letters less than k and β contains only letters that are greater than k + 1. Hence[

x(x+ 1) · · · (k − 1)kαβ(k + 1)(k + 2) · · · (i− 2)(i− 1)
]
∈ R(w),

and this is the desired reduced word.
Part (b) follows from part (a) using conjugation by w0 (which acts on Sn by reversing the

one-line notation).
Now consider part (c) of the theorem.
Suppose, first, that there is no such i. Because {k, k + 1} ⊆ supp(v), Lemma 3.3 says that

{w(1), . . . , w(k)} 6= [1, k] and {w(1), . . . , w(k + 1)} 6= [1, k + 1]. Thus, if there is no such i,
then we must have w(h) = k + 1 for some h < k + 1, w(k + 1) > k + 1, and w(q) ∈ [1, k] for
all q ∈ [1, k] \ {h}. But then w has the form described in part (a) of the current theorem, and
so, by Proposition 3.10, the letters k and k + 1 are not interlaced in w. Similarly, if there is no
such j, then the result will follow from part (b) of the current theorem.

Now suppose that there are such i and j. Then the permutationw has neither form from parts
(a) or (b) of the current theorem, so, by Proposition 3.10, the letters k and k + 1 are interlaced
in w.
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Lemma 3.3 gave a method for detecting the support of a permutation from its one-line nota-
tion. Theorem 3.11 gives a method for determining the orientation of any {k, k+1} ⊆ supp(w)
from the one-line notation of w, as well. In some ways, this is an analogy to Theorem 2.5, which
equates reduced word properties with pattern-avoiding (one-line notation) properties.

We can use this orientation detection to construct the maximal elements of B(v) ∩ B(w)
when v and w are both boolean, following Corollary 3.8. Moreover, by Corollary 3.9, we can
also use it with no conditions on w, when all subwords discussed at the beginning of Section 3.3
have j = 1.

Example 3.12. Consider the boolean permutation v = 312647895 ∈ S9 and the non-boolean
permutation w = 325184769 ∈ S9, both written in one-line notation. Using Lemma 3.3, we
can compute

supp(v) = {1, 2, 4, 5, 6, 7, 8} and supp(w) = {1, 2, 3, 4, 5, 6, 7}.

The intersection of these sets is {1, 2, 4, 5, 6, 7}, so we check four orientations using Theo-
rem 3.11.

Consecutive Orientation Orientation
generators in v in w

{σ1, σ2} decreasing interlaced

{σ4, σ5} decreasing increasing

{σ5, σ6} increasing decreasing

{σ6, σ7} increasing interlaced

Themiddle column of the table tells us that the only subword we need to worry about is [567], but
the rightmost column shows that, in fact, the subwords discussed at the beginning of Section 3.3
all have j = 1. Thus we can use Corollary 3.9, with V(v, w) = {4, 5, 6}. Therefore, the
maximal elements of B(v) ∩B(w) are defined from any [s] ∈ R(v) by deleting 8 (which is not
in supp(w)), and then by deleting the complement of a maximal selfish subset of {4, 5, 6} (i.e.,
either deleting 5 or deleting both 4 and 6). So if we take [s] = [5214678], then the maximal
elements of the intersection are defined by

[521�A4�A67�A8] = 312465879 and [�A521467�A8] = 312547869.

In other words,

B(312647895) ∩B(325184769) = B([5217]) ∪B([21467]).

The most extreme case of non-matching orientation is that of the boolean element v and
w = v−1, here is an example.
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Example 3.13. Consider v = 312647895 = [5214678] ∈ S9, as in Example 3.12. Then,
following Subsection 3.2 and Corollary 3.8, we have supp(v) = [1, 2] ∪ [4, 8]. The eight maxi-
mal elements of B(v) ∩ B(v−1) have reduced decompositions defined by the product {1, 2} ×
{468, 47, 57, 58}, as discussed in Section 3.2. That is,

B(v) ∩B(v−1) = B([1468]) ∪B([147]) ∪B([157]) ∪B([158])

∪B([2468]) ∪B([247]) ∪B([257]) ∪B([258]).

4. Motivation: Incidence algebras and grades of simple modules

4.1. Incidence algebras and their modules

Let us fix an algebraically closed field k. As usual, we denote by ∗ the classical k-duality
Homk(−,k).

Let (P,≺) be a finite poset. Consider the incidence algebra I(P) over k. The algebra I(P)
can be described by its Gabriel quiver Γ that has

• the elements of P as vertices;

• the arrows p→ q, for each pair (p, q) ∈ P2 such that p covers q;

and the relations that, for any (p, q) ∈ P2, all paths from p to q coincide.
As usual, the simple I(P)-modules are in bijection with the elements in P. Given p ∈ P,

the corresponding simple module Lp is one-dimensional at p and zero-dimensional at all other
vertices. Furthermore, all arrows from the Gabriel quiver act on Lp as the zero linear maps.

The indecomposable projective cover Pp of Lp is supported on the ideal P�p, is one-dimen-
sional at each point of this ideal and zero-dimensional at all other points, and all arrows between
the elements of P�p act as the identity linear transformations.

Dually, the indecomposable injective envelope Ip of Lp is supported on the coideal (that is,
a filter) P�p, is one-dimensional at each point of this coideal and zero-dimensional at all other
points, and all arrows between the elements ofP�p operate as the identity linear transformations.
See Subsection 4.5 for an example.

We denote by I(P)-mod the category of finite dimensional (left) I(P)-modules, which we
identify with the category of modules over the above quiver satisfying the above relations.

4.2. Grades of simple modules

Since the Gabriel quiver of I(P) is acyclic, the algebra I(P) has finite global dimension. In
particular, for each 0 6= M ∈ I(P)-mod, the following invariant, called grade, is well-defined
and finite:

grade(M) := min{i : ExtiI(P)(M, I(P)) 6= 0} 6 proj.dim(M).

Of special interest for us will be the grades of the simple modules Lp, where p ∈ P.
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4.3. Grades via the Serre functor

Consider the bounded derived category Db(I(P)) of I(P)-mod. Since I(P) has finite global
dimension, the category Db(I(P)) has a Serre functor S given by the left derived functor of
tensoring with the dual bimodule I(P)∗. The functor S is a self-equivalence of Db(I(P)),
see [5, 8]. We have SPp ∼= Ip, for each p ∈ P.

Lemma 4.1. For 0 6= M ∈ I(P), the grade of M coincides with the minimal i such that the
−i-th homology of the complex SM is non-zero.

Proof. By definition, the grade ofM is the minimal value of i such that

HomDb(I(P))(M, I(P)[i]) 6= 0.

Applying the equivalence S, we obtain

HomDb(I(P))(SM, SI(P)[i]) 6= 0.

It remains to note that SI(P) is an injective cogenerator of I(P)-mod and hence taking homo-
morphisms into it detects the homology.

Lemma 4.1 suggests that, to determine the grade ofLp, one needs to take aminimal projective
resolution of Lp, apply S to it and then understand the homology of the obtained complex.

4.4. Incidence algebras for Bruhat posets of finite Weyl groups

Assume now that char(k) = 0.
LetW be a finite Weyl group and S a fixed set of simple reflections inW . ThenW is a poset

with respect to the Bruhat order 6. This poset has the minimum element e and the maximum
element w0, the longest element of W . We denote by ` : W → Z>0 the associated length
function. For simplicity, we denote by A the k-algebra I((W,6)). The algebra A is the main
protagonist in our motivation.

We would like to determine grade(Lw), for each w ∈ W . Taking into account the obser-
vations in the previous subsection, let us start with a description of projective resolutions of the
modules Lw, where w ∈ W .

For i > 0, denote by Vi the formal vector space with basis {vw : `(w) = i}. By [1], for each
i, there exists a linear map di : Vi → Vi+1 such that

• the vx-vy-coefficients of di is non-zero if and only if y 6 x;

• all such non-zero coefficients are ±1;

• di+1 ◦ di = 0, for all i.

The associated complex
0→ V0 → V1 → · · · → V`(w0) → 0

is exact and is called a BGG complex. It has the property that its restriction to the part supported
at a principal (co)ideal is exact (unless it is the ideal of the minimum element, respectively
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the coideal of the maximum element). This complex can also be interpreted as the singular
homology complex forW .

For i > 0, denote by Q(w, i) the direct sum of all Px, where x 6 w and `(w)− `(x) = i.

Proposition 4.2. There is a projective resolution of Lw of the form

· · · → Q(w, 2)→ Q(w, 1)→ Q(w, 0)→ 0, (4.1)

where, for a summand Px in Q(w, i) and Py in Q(w, i− 1) such that x 6 y, the map from Px to
Py is given by the corresponding coefficient in the BGG complex.

Proof. This follows directly from the properties of the BGG complex listed above.

For i > 0, denote by F (w, i) the direct sum of all Ix, where x 6 w and `(w) − `(x) = i.
Applying S to (4.1) results in a complex

· · · → F (w, 2)→ F (w, 1)→ F (w, 0)→ 0, (4.2)

with the property that, for a summand Ix in Q(w, i) and Iy in Q(w, i − 1) such that x 6 y, the
map from Ix to Iy is given by the corresponding coefficient in the BGG complex.

Now we want to understand the homology of (4.2), or, more precisely, the rightmost degree
in which non-zero homology appears. This determines the grade of Lw.

For u ∈ W , let us restrict (4.2) to the vertex u. Recall that the injective module Ix, for
x ∈ W , is supported at W>x. Therefore, each Ix ∈ Q(w, i) such that x 6 u contributes one
dimension for the vertex u at position −i of the complex (4.2). That is, the restriction of (4.2)
to u is the complex

· · · → F (w, 2)u → F (w, 1)u → F (w, 0)u → 0, (4.3)

where F (w, 2)u is the sum of one-dimensional spaces indexed by x such that x 6 w, x 6 u
and `(w) − `(x) = i, and the differential is the restriction of the differential from the BGG
complex. In other words, this is exactly the restriction of the BGG complex toW6w ∩W6u, and
our goal is to minimize, over all possible u, the absolute value of the rightmost degree in which
this complex has non-zero homology.

Our setup is such that the vertex w is placed at the homological position 0. In particular, the
vertex e is placed at position −`(w). Taking u = e, we get a complex concentrated in position
−`(w), which means that `(w) is an upper bound for our answer.

If e 6= w 6 u, thenW6w∩W6u = W6w which implies that (4.3) is exact. Similarly, the case
e 6= u 6 w gives an exact complex (4.3). Therefore the interesting case to consider is e 6= u,
e 6= w, and u and w are not comparable with respect to the Bruhat order.

As was pointed out to us by Axel Hultman, if there is a simple reflection s such that sw < w
and su < u or such that ws < w and us < u, then the description of the differential in the
BGG complex implies, by induction, that (4.3) is exact (we will explain this in more detail in
Subsection 4.7 below). Therefore the really interesting case is when u and w neither have any
common elements in their left descent sets nor any common elements in their right descent sets.
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4.5. A2 example

Consider W of Weyl type A2 with S = {s, t}. In this case we have W = {e, s, t, st, ts, w0 =
sts = tst}. The Gabriel quiver of the corresponding incidence algebra and the coefficients in
the associated BGG complex look as follows:
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And here is the list of indecomposable projective modules over the incidence algebra (all black
arrows represent the identity linear transformations):
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Finally, here is the list of indecomposable injective modules over the incidence algebra:
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For w = e, we have Le = Pe. Applying S, we get the complex 0 → Ie → 0 with Ie at the
homological position 0. This implies that grade(Le) = 0.

For w = s, the projective resolution of Ls is 0 → Pe → Ps → 0. Applying S, we get the
complex 0 → Ie → Is → 0 with Is at the homological position 0. Since the map Ie → Is is
surjective, we have that grade(Ls) = 1. Similarly, grade(Lt) = 1.
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For w = st, the projective resolution of Ls is 0→ Pe → Ps ⊕ Pt → Pst → 0. Applying S,
we get the complex
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with Ist at the homological position 0. The restriction of this complex to the vertex ts (shown in
red) gives the complex

0→ k→ k⊕ k→ 0→ 0,

supported atW6st ∩W6ts = {e, s, t}. It has non-zero homology at position −1. The only other
restriction to a vertex resulting in a non-zero homology is that to e (shown in blue) which gives
the complex

0→ k→ 0⊕ 0→ 0→ 0,

supported at W6st ∩ W6e = {e}. It has non-zero homology at position −2. By taking the
minimum of 1 and 2, we obtain grade(Lst) = 1. Similarly, grade(Lts) = 1.

Forw = w0, the projective resolution ofLw0 is 0→ Pe → Ps⊕Pt → Pst⊕Pts → Pw0 → 0.
Applying S, we get the complex
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with Iw0 at the homological position 0. The restriction of this complex to the vertex e (shown in
blue) gives the complex

0→ k→ 0⊕ 0→ 0⊕ 0→ 0→ 0,

supported atW6w0 ∩W6e = {e}. It has non-zero homology at position −3 and hence

grade(Lst) = 3.

To sum up, here are the values of the grade function in type A2:

w e s t st ts w0

grade(Lw) 0 1 1 1 1 3

One could observe that these values coincide with the values of Lusztig’s a-function from
[18] in this case. We will come back to this observation in more detail at the end of the paper.
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4.6. Connection to Auslander regularity

Our interest in the grades of simplemodules stems from the theory of Auslander regular algebras,
see [12]. It is shown in [12] that the incidence algebra of a lattice is Auslander regular if and
only if the lattice is distributive. The poset (W,6) is not a lattice, in general, and, outside type
A there are reasons why, generically, the incidence algebra of (W,6) is not Auslander regular.
In type A this question is still open (as was mentioned by Rene Marczinzik at a seminar talk in
Uppsala in March 2021) and the research presented in this paper is originally motivated by that
problem. Grades of simple modules are essential homological invariants for this theory and they
behave especially nicely for some Auslander regular algebras, see [12] for details.

4.7. Matchings

Let Q be a convex subset ofW in the sense that x, y ∈ Q with x 6 y implies [x, y] ⊆ Q. Then
we can restrict the BGG complex to its part supported at Q; i.e., to the linear span of all vectors
indexed by the elements in Q. Let us denote this complex by V Q

• .

Lemma 4.3. Assume that the poset (Q,6) admits a filtration

∅ = Q0 ⊂ Q1 ⊂ · · · ⊂ Ql = Q (4.4)

by coideals such that eachQi \Qi−1 = {xi, yi}, where xi < yi and `(xi) = `(yi)− 1. Then V Q
•

is exact.

Proof. The filtration (4.4) gives rise to a filtration of V Q
• by subcomplexes with subquotients of

the form
0→ C〈yi〉 → C〈xi〉 → 0. (4.5)

From the definition of the BGG complex we see that the map C〈yi〉 → C〈xi〉 is non-zero and
therefore (4.5) is homotopic to zero. The claim follows.

We will call the decomposition of Q into the subsets {xi, yi} given by Lemma 4.3 a perfect
matching. The already mentioned observation by Axel Hultman was that existence of a simple
reflection s such that sv < v and sw < w obviously implies that B(v) ∩ B(w) has a perfect
matching by the pairs {x, sx}. In particular, V B(v)∩B(w)

• is exact in this case. Similarly in the
case of right descents; i.e., for vs < v and ws < w.

Lemma 4.4. Assume that the poset (Q,6) admits a filtration

∅ = Q0 ⊂ Q1 ⊂ · · · ⊂ Ql = Q

by coideals such that each Qi \Qi−1 = {xi, yi}, where xi < yi and `(xi) = `(yi)− 1, with the
exception of one i for which we get a singleton z. Then V Q

• has exactly one non-zero homology,
namely in the homological position `(z) and this homology is one-dimensional.

Proof. Similarly to the proof of Lemma 4.3, all matched pairs will give subquotient complexes
that are homotopic to zero, so the one-dimensional homology will be concentrated at the unique
unmatched singleton.

We will call a decomposition of Q given by Lemma 4.4 an almost perfect matching.



18 Volodymyr Mazorchuk, Bridget Eileen Tenner

5. Matchings in intersections

5.1. Preliminaries

Throughout this section, let v ∈ Sn be a boolean permutation. As discussed in Section 4, we
want to find a permutation w ∈ Sn such that there is an almost perfect matching of the elements
of B(v) ∩ B(w), in which the singleton element is of highest possible rank. Such a w will be
called an optimal partner for v, and that highest possible rank is the optimal rank of v, denoted
ork(v). Note that there always exists an intersection B(v) ∩ B(w) that can be almost perfectly
matched, because we could let w be the identity permutation. So ork(v) always exists.

We will also show in Proposition 5.12 that, for any w, the poset B(v) ∩ B(w) has either a
perfect matching or an almost perfect matching. We begin by formalizing a fact mentioned in
the previous section.

Lemma 5.1. An optimal partner for v 6= e can never be greater than or equal to v in the Bruhat
order.

Proof. A principal order ideal containing more than one element always has zero homology. If
v ∈ B(w), then B(v) ∩ B(w) = B(v), which would mean that w is not an optimal partner for
v.

As an immediate corollary, we record a property of the optimal rank function.

Corollary 5.2. For any v that is not the identity permutation, ork(v) < `(v).

Recall Lemma 3.2, which gives a way to decompose order ideals based on their commuting
subsets of support. Suppose, for the moment, that supp(v) = X t Y as in that lemma. For
[s] ∈ R(w), define [sX ] and [sY ] accordingly, and we then observe that B(v) ∩ B(w) would be
isomorphic to (B([sX ])∩B(w))× (B([sY ])∩B(w)). Therefore, if there is a perfect matching
of B([sX ]) ∩ B(w), then we can construct a perfect matching of B(v) ∩ B(w), as a product of
the matching filtration ofB([sX ])∩B(w) with any filtration ofB([sY ])∩B(w) by coideals with
singleton subquotients. Therefore, we can often assume that supp(v) = [1, n− 1].

5.2. Runs

We begin with an influential special case.

Definition 5.3. A sequence of consecutive integers that is either increasing or decreasing is a
run.

Lemma 5.4. Suppose that the run
[
a(a+ 1) · · · (a+ b)

]
(resp.,

[
(a+ b) · · · (a+ 1)a

]
) is a re-

duced word for v. Then an optimal partner for v is[
(a+ 1)(a+ 2) · · · (a+ b)a(a+ 1) · · · (a+ b− 1)

]
(resp.,

[
(a+ b− 1) · · · (a+ 1)a(a+ b) · · · (a+ 2)(a+ 1)

]
) if b > 0, and an optimal partner is

the identity if b = 0.
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Proof. It is sufficient to consider a = 1.
The case b = 0 follows from Lemma 5.1.
Now suppose that b > 0, and, without loss of generality, that v =

[
12 · · · (1 + b)

]
. Consider

the permutation w :=
[
23 · · · (1 + b)12 · · · b

]
. Using Theorem 2.2, we see that

B(v) ∩B(w) = B(v) \ {v}.

The setB(v) is a union of left cosets for the parabolic subgroup generated by σ1. We can consider
the restriction of the Bruhat order to the set of minimal coset representatives. Any filtration of
the latter poset by coideals with singleton subquotients extends in the obvious way to a filtration
of B(v) by coideals with subquotients being exactly the cosets. This gives a perfect matching
for B(v). Removing v, which must belong to the first coset in the filtration, we obtain an almost
perfect matching for B(v) \ {v}. The unmatched element σ1v has length `(v) − 1, and hence
this must be the optimal rank, by Corollary 5.2. Thus w must be an optimal partner for v.

We demonstrate Lemma 5.4 with an example.

Example 5.5. Consider v = 51234 = [4321]. Then w = 45123 = [321432] is an optimal
partner for v. The poset B(v) ∩ B(w) is shown in Figure 5.1, with thick lines indicating the
almost perfect matching from Lemma 5.4.

e

[1] [2] [3] [4]

[21] [31] [41] [32] [42] [43]

[321] [421] [431] [432]

Figure 5.1: A matching of the elements of B([432]) ∩ B([321432]), in which only [432] is
unmatched.

The cases b = 0 and b > 0 in the previous lemma share an important property.

Corollary 5.6. If v is boolean and has a reduced word that is a run, then ork(v) = `(v)− 1.

Lemma 5.4 seems to consider a very particular situation. However, because we are assuming
that v is boolean, we can actually view any [s] ∈ R(v) as a product of disjoint runs.

Example 5.7. R(24153) = {[1324] , [3124] , [1342] , [3142] , [3412]}. The first element of that
set can be viewed as the concatenation of three runs: 1 · 32 · 4, whereas the last element can be
viewed as the concatenation of two runs: 34 · 12. Of course, we could also write 1 · 3 · 2 · 4 and
so on, but this inefficiency is not helpful, as described below.
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5.3. Optimal ranks

Corollary 5.6 suggests that the optimal rank of v might be related to the fewest number of runs
needed to form a reduced word for v, and indeed that is the main result of this section.

Definition 5.8. Fix a boolean permutation v. Let run(v) be the fewest number of runs needed
in any concatenation forming a reduced word for R(v). A reduced word [s] ∈ R(w) that can be
written as the concatenation of run(v) runs is an optimal run word for v.

Recalling Example 5.7, we have that run(24153) = 2, and [3412] is an optimal run word for
24153.

Example 5.9. If v is boolean and, additionally, a product of pairwise commuting simple reflec-
tions, then run(v) = `(v) and any reduced word of v is an optimal run word. In this case it is
also easy to prove that ork(v) = 0. Indeed, for any w, we obviously have B(v)∩B(w) = B(u),
where u is the product of simple reflections in supp(v) ∩ supp(w). Hence, if u 6= e, the set
B(u) has a perfect matching. If u = e, thenB(u) has an almost perfect matching with singleton
of length 0.

The main result of this section will determine the optimal rank and an optimal partner for
any boolean permutation. Before doing so, we will give an upper bound on the optimal rank,
using a handy lemma.

Lemma 5.10. Fix a reduced word [s] = [s1 · · · sl] ∈ R(w) and i ∈ [1, l]. Set ŝ := s1 · · · ŝi · · · sl.
There exists a unique maximal w′ ∈ B(w) having a reduced word that is a subword of ŝ. In
other words, the permutations whose reduced words are subwords of ŝ form a principal order
ideal. Moreover, the boolean elements of B(w) with a reduced word that can be written as a
subword of ŝ are exactly the boolean elements of B(w′).

Proof. It is easy to check that the lemma holds for permutations of small lengths. In particular,
if `(w) = 1 then w′ = e. Suppose now that the result is true for all permutations u with
`(u) < `(w).

If i = l, then ŝ is necessarily reduced. Therefore we have w′ = [ŝ], and the property for
boolean elements follows immediately.

Now suppose that i < l. Define the string t := s1 · · · sl−1 and set u := [t], noting that
`(u) = l − 1 < `(w). Set t̂ := s1 · · · ŝi · · · sl−1, and let u′ ∈ B(u) be the permutation produced
by the inductive hypothesis. Define a permutation w as follows:

w :=

{
u′σsl if `(u′σsl) > `(u′), and
u′ if `(u′σsl) < `(u′).

(5.1)

By definition, this w has a reduced word that is a subword of ŝ. It remains to establish that w is
maximal with this property and that B(w) ⊂ B(w) contains the necessary boolean elements.

Let x be maximal among permutations having reduced words that are subwords of ŝ. Fix
[q] ∈ R(x) such that q is a subword of ŝ and, if possible, the rightmost letter of q is not sl.
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If q does not end with sl, then q is a subword of t̂. Maximality of u′ means that x = u′.
Because this x is maximal, we must have that `(u′σsl) < `(u′), and so x = w.

On the other hand, suppose that it is impossible to write q in this way, and so q = q′sl for a
subword q′ of t̂. This means that [q′] 6 u′ in the Bruhat order, and σsl is not a right descent of
u′. But then w = u′σsl , and so we must have [q′] = u′ by maximality. Therefore x = [q′sl] = w.

Therefore, w′ := w is the desired permutation.
We now use the inductive hypothesis and Equation (5.1) to prove the second half of the

lemma. Let v be a boolean permutation with a reduced word that is a subword of ŝ. If v actually
has a reduced word that is a subword of t̂, then v ∈ B(u′) ⊆ B(w′) by the inductive hypothesis.
If v has no such reduced word, then it must be the case that w′ = u′σsl . Fix [r] ∈ R(v) such
that r is a subword of ŝ. Then r is a concatenation of r′ ⊆ t̂ and sl. By the inductive hypothesis,
[r′] ∈ B(u′) and hence v = [r′ · sl] ∈ B(u′σsl) = B(w′).

We demonstrate Lemma 5.10 with an example.

Example 5.11. Let w = 4321 and [s] = [321232] ∈ R(w), with i = 3. Thus ŝ = 32232. The
proof of Lemma 5.10 builds the permutation w′ inductively from permutations u′1, . . . , u′5 = w′

as follows.
j 1 2 3 4 5

u′j [3] [32] [32] [323] [323]

The idealB(w) has thirteen boolean elements, five of which can be formed from subwords of ŝ:

{e, [2], [3], [23], [32]}. (5.2)

The boolean elements of B([232]) are exactly the five permutations listed in (5.2).

The ability to delete letters from a reduced word without losing particular elements from its
principal order ideal is important for the inductive step in the following proposition.

Proposition 5.12. For any boolean permutation v, we have ork(v) 6 `(v)− run(v).

Proof. We prove this result by induction on `(v), and it is easy to verify that the proposition
holds for `(v) 6 2. In fact, we also know that the proposition holds whenever run(v) = 1, by
Corollary 5.6. Suppose, inductively, that for any boolean u with `(u) < `(v), any intersection
B(u) ∩ B(y) either has a perfect matching or has an almost perfect matching with a single
unmatched element of rank at most `(u)− run(u).

Fix [s] ∈ R(v) and an arbitrary permutation w. We want to show that B(v) ∩ B(w) either
has a perfect matching or has an almost perfect matching with a single unmatched element of
rank at most `(v) − run(v). Set m := max(supp(v) ∩ supp(w)). For z ∈ B(v) ∩ B(w) with
m 6∈ supp(z), we match z ←→ z f σm whenever z f σm exists. Similarly to the proof of
Lemma 5.4, this matching is inherited from the filtration with respect to the Bruhat order on
the set of shortest coset representatives for the parabolic subgroup generated by σm. If z f σm
always exists, then this matches all elements of B(v) ∩B(w) and we are done.

Now suppose that this matching does not account for all elements of B(v) ∩ B(w), and let
X be the set of as-yet-unmatched elements. None of these elements have m in their supports.
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Moreover, because it is impossible to introduce m anywhere in their reduced words remaining
inside B(v) ∩ B(w), they must all have (at least) m − 1. Let m′ < m be maximal such that
the subword [s][m′,m] does not appear in any element of R(w). (Note that [m′,m] ⊆ supp(v) ∩
supp(w), by maximality ofm′.) Then

q :=
[
s[m′,m−1]

]
∈ X,

and any x ∈ X must include
[
s[m′,m]

]
in its reduced words, so x is greater than or equal to q in

the Bruhat order. ThusX is a filter; that is,X is the principal coideal ofB(v)∩B(w) generated
by q. This is very good news as it now allows us to construct the matching we are looking for,
inductively. Note that

`(q) = m− 1−m′ + 1 = m−m′.
Let v′ :=

[
s[1,m′−1]

]
be the permutation obtained by deleting the letters [m′,m] from reduced

words for v. Without loss of generality, suppose that m′ − 1 does not appear to the right of m′
in elements of R(v). The permutation v was boolean, so v′ is boolean and

`(v′) = `(v)− (m−m′ + 1).

Take a reduced word for w, look for all substrings that match reduced words for q, and mark the
rightmost copy ofm′ used in any of these. Working iteratively, delete eachm′ − 1 that appears
to the right of the markedm′, using Lemma 5.10 to produce a reduced word after each deletion.
When there are no more copies of m′ − 1 appearing to the right of the marked m′, write w′ for
the permutation described by the resulting reduced word.

We defined v′ and w′ for the purpose of our inductive argument: the filter X is isomorphic
to B(v′) ∩ B(w′), with [x1 · · · xl] ∈ B(v′) ∩ B(w′) corresponding to q f σx1 f · · · f σxl .
By the inductive hypothesis, ork(v′) 6 `(v′) − run(v′), so the poset B(v′) ∩ B(w′) has either
a perfect matching or an almost perfect matching with an unmatched element of rank at most
`(v′)− run(v′).

By definition of m′ and q, the sequences
[
s[m′+1,m]

]
and

[
s[m′,m−1]

]
both appear in reduced

words for w, but
[
s[m′,m]

]
does not. The only way for this to happen is for [m′,m] to be a run in

[s] (and for reduced words for w to contain a subsequence as in Lemma 5.4). Thus

run(v′) > run(v)− 1.

By the inductive hypothesis, the intersectionB(v′)∩B(w′) either has a perfect matching or it has
an almost perfect matching with an unmatched element of rank at most `(v′)− run(v′). Transfer
this matching onto X ⊂ B(v) ∩ B(w). This, together with the initial matching z ←→ z f σm,
produces either a perfect matching of B(v)∩B(w) or an almost perfect matching whose single
unmatched element has rank at most

`(q) + ork(v′) 6 `(q) + `(v′)− run(v′)

6 (m−m′) + `(v)− (m−m′ + 1)− (run(v)− 1)

= `(v)− run(v),

completing the proof.
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We demonstrate how this bound can work, along with the inductive argument.

Example 5.13. We proceed with two examples, using the notation of Proposition 5.12.

(a) Let v = 2341 = [123] and w = 4123 = [321], som = 3 andm′ = 2. We match

∅ ←→ [3]

[1] ←→ [13]

and X = {[2]}. Then q :=
[
123[2,2]

]
= [2] and v′ :=

[
123[1,1]

]
= [1], and ork(v′) = 0.

Lemma 5.10 gives w′ = [32], and hence B(v′) ∩ B(w′) = ∅ ∼= X . This example is
depicted in Figure 5.2.

e

[1]
[2]

[3]

[13]

Figure 5.2: The intersection B([123]) ∩ B([321]), and the matching described by Proposi-
tion 5.12. The sole element of the filterX , described in the proof of that proposition, is circled in
red. The unmatched element in this almost perfect matching has rank 1 < `([123])− run([123]).

(b) Let v = 314562 = [23451] and w = 235614 = [412534], som = 5 andm′ = 3. Then we
match

∅ ←→ [5]

[1] ←→ [15]

[2] ←→ [25]

[3] ←→ [35]

[4] ←→ [45]

[13] ←→ [135]

[14] ←→ [145]

[23] ←→ [235]

[24] ←→ [245]

and X = {[34] , [134] , [234]}. Then q :=
[
23451[3,4]

]
= [34] and v′ :=

[
23451[1,2]

]
=[21],

and ork(v′) = 1. Lemma 5.10 gives w′ = w, and hence

B(v′) ∩B(w′) = {∅, [1] , [2]} ∼= X.

This example is depicted in Figure 5.3.
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e

[1] [2]
[3] [4]

[5]

[13] [14] [15] [23]
[24] [25]

[34] [35] [45]

[134] [135] [145] [234] [235] [245]

Figure 5.3: The intersection B([23451]) ∩ B([412534]), and the matching described by
Proposition 5.12. The filter X , described in the proof of that proposition, and its match-
ing are marked in red. The unmatched element in this almost perfect matching has rank
3 = `([23451])− run([23451]).

5.4. Optimal rank and optimal partner

We are now ready to describe the optimal rank and an optimal partner for any boolean permuta-
tion.

Theorem 5.14. Let v be a boolean permutation, and let [s] be an optimal run word for v. Write
s as a concatenation

r1 · · · rrun(v),

where the ri are runs. For each i, let [ti] be the optimal partner for [ri] as determined by
Lemma 5.4. Then w :=

[
t1 · · · trun(v)

]
is an optimal partner for v, and

ork(v) = `(v)− run(v).

Proof. With v and w as described, we have that B(v) ∩ B(w) = B(v) \ Q, where Q is the set
of elements involving at least one full run ri.

For each i, set [ai, ai+ bi] := supp([ri]). We can now describe an almost perfect matching of
B(v)∩B(w). Consider an element z ∈ B(v)∩B(w). We define the matching by examining how
much of [ai, ai+bi] is contained in supp(z), starting with i = 1 and increasing i as needed. If we
reach an i for which bi = 0, we immediately increase i because ti = ∅ and [ai] 6∈ B(v)∩B(w).
So in the following outline, assume that each bi > 0.

• Consider z ∈ B(v) ∩B(w). If a1 6∈ supp(z) and [a1 + 1, a1 + b1] 6⊆ supp(z), then match
z ←→ z f σa1 similarly to the proof of Lemma 5.4.

• The elements in B(v) ∩ B(w) that are not yet matched are exactly those that contain all
of [a1 + 1, a1 + b1] in their supports. These form a coideal, so we can proceed inductively.
Now let z be such an element. If a2 6∈ supp(z) and [a2 +1, a2 +b2] 6⊆ supp(z), then match
z ←→ z f σa2 similarly to the proof of Lemma 5.4.
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• The elements in B(v) ∩ B(w) that are not yet matched are exactly those that contain all
of [a1 + 1, a1 + b1] ∪ [a2 + 1, a2 + b2] in their supports. These form a coideal, so we can
proceed inductively. Now let z be such an element and repeat the process with i = 3.

• And so on.

At the end of this process, after i = run(v), we have an almost perfect matching of
B(v) ∩B(w), and the only unmatched element is u :=

[
r̂1 · · · r̂run(v)

]
, where r̂i is the run i

with the element ai removed. Note that `(u) = `(v) − run(v). By Proposition 5.12, this com-
pletes the proof.

It is illuminating to see Theorem 5.14 demonstrated in an example. The example is, perhaps,
too big for drawing the full poset, but we can describe the key pieces.

Example 5.15. Let v = 5123678(12)49(10)(11) =
[
(11)43(10)5216798

]
∈ S12. Our first

step is to find an optimal run word for v. There are several options for this, including the words[
(11)(10)945678321

]
and

[
(11)(10)943215678

]
. In particular, `(v) = 11 and run(v) = 3, so the

theorem predicts ork(v) = 8. Using
[
(11)(10)945678321

]
, the theorem produces the optimal

partner w =
[
(10)9(11)(10)567845672132

]
, and the single unmatched element in the almost

perfect matching of B(v)∩B(w) described in the proof of Theorem 5.14 is
[
(11)(10)567832

]
,

which does indeed have length 8.

6. The main result

6.1. The minimal number of runs via the Robinson–Schensted correspondence

The Robinson–Schensted correspondence provides a bijection

RS : Sn →
∐
λ`n

SYTλ × SYTλ

between Sn and the set of pairs of standard Young tableaux of the same shape (this shape is
supposed to be a partition of n). We fix such a bijection given by Schensted’s insertion algorithm,
see [25, 26]. For w ∈ W , we have RS(w) = (P,Q), where P is the insertion tableau and Q is
the recording tableau, see [25] for details. We denote by λ(w) the shape of P , by Rowi(w) the
contents of its ith row, and λi(w) := |Rowi(w)|.

Recall from Theorem 2.5 that boolean permutations avoid the pattern 321. The main result
of [26] therefore gives restrictions on their shapes.

Corollary 6.1.

(a) For any permutation w, the number λ1(w) is the length of a longest increasing subse-
quence in w.

(b) If w is boolean, then λ(w) has at most two rows.

We start with the following observation.
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Lemma 6.2. Let w, x ∈ Sn be permutations such that x = [r] for a run r. Then we have
|λ1(wx)− λ1(w)| 6 1.

Proof. Let w = a1 · · · an in one-line notation, and suppose that x =
[
p(p+ 1) · · · (p+ q)

]
.

Then the one-line notation of wx is as follows, using red to mark the part that changes when
multiplying w 7→ wx:

a1 · · · ap−1ap+1ap+2 · · · ap+q+1apap+q+2 · · · an. (6.1)

This means that we only change the relative order of one element, ap, compared to the ele-
ments in {ap+1, . . . , ap+q+1}, leaving all other relative orders intact. Therefore the length of the
longest increasing subsequence can change by at most 1. Similar arguments apply to the run[
p(p− 1) · · · (p− q)

]
.

The previous lemma lets us relate the size λ1(v) to the number of runs run(v).

Corollary 6.3. For any boolean v ∈ Sn, we have n − λ1(v) 6 run(v). In particular, we have
λ2(v) 6 run(v).

We are now ready to equate λ2(v) to a statistic we have already encountered, when v is
boolean.

Theorem 6.4. For any boolean permutation v, we have λ2(v) = run(v).

Proof. It is enough to prove the claim under the assumption that supp(v) contains all simple
reflections, for otherwise we canwrite v as a product of two shorter commuting boolean elements
and use induction.

We induct on the length of v. If v contains just one simple reflection, the claim is obvious.
If `(v) > 1 then, up to taking the inverse of v, we may assume that 2 appears to the left of
1 in any reduced word for v. Let k > 2 be maximal with the property that i + 1 appears to
the left of i in any reduced word for v, for all i < k. Then v =

[
k(k − 1) · · · 21

]
v′, where

supp(v′) = [k + 1, n− 1] and, clearly, run(v) 6 run(v′) + 1.
The permutation v′ fixes all i 6 k, and hence 12 · · · k belongs to any longest increasing sub-

sequence in the one-line notation of v′. Multiplying v′ by
[
k(k − 1) . . . 21

]
moves 1 rightward

past 2, 3, . . . , k, v′(k+1) in the one-line notation. Since 1 is the smallest element, this operation
can only keep or reduce the length of an increasing subsequence, compared to what had appeared
in v′. In fact, because k > 2, this produces the inversion 2 > 1 in v and hence necessarily makes
all longest increasing subsequences in v strictly shorter than what had been in v′. Specifically,
removing the 1 in a longest increasing subsequence for v′ produces an increasing subsequence
for v which is shorter by exactly one term. It follows that row2(v) = row2(v

′) + 1. Combining
this with Corollary 6.3 and run(v) 6 run(v′) + 1, by induction we have run(v) = run(v′) + 1.
This implies row2(v) = run(v), proving the claim.
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6.2. Lusztig’s a-function for the symmetric group

In [18], Lusztig introduced the function a : W → Z>0, where W is a Coxeter group, with the
following properties:

• a is constant on two-sided Kazhdan–Lusztig cells inW ;

• a(w) 6 `(w), for all w ∈ W ;

• a(w) = `(w) if w is the longest element of some parabolic subgroup ofW .

In the special case of a symmetric groups, it is well-known, see [13], that two permutations v
and w belong to the same two-sided Kazhdan–Lusztig cell if and only if sh(v) = sh(w).

Given a partition λ ` n, consider the transposed partition µ := λt = (µ1, µ2, . . . , µm).
Consider the parabolic subgroupWµ ofSn given bySµ1 ×Sµ2 × · · ·×Sµm . Then it is easy to
check that the Robinson–Schensted correspondent of the longest element inWµ has shape λ. In
particular, each two-sided Kazhdan–Lusztig cell contains the longest element of some parabolic
subgroup. Therefore the properties of a listed above determine the function a for Sn uniquely.

Lemma 6.5. Let w ∈ Sn be such that sh(w) = λ. Then, for µ = λt, we have

a(w) =
m∑
i=1

µi(µi − 1)

2
.

Proof. This follows directly from the above and the fact that the length of the longest element
in Sk equals k(k−1)

2
, for any k.

Corollary 6.6. If v ∈ Sn is boolean and sh(v) = λ, then a(v) = λ2(v).

Proof. If v is boolean, λ has at most two rows. Therefore µ = λt = (2λ2 , 1n−2λ2). Now the
claim follows directly from Lemma 6.5.

6.3. Grades of simple modules for boolean elements via Lusztig’s a-function

We can now prove our main result.

Theorem 6.7. Let v ∈ Sn be boolean. Then grade(Lv) = a(v).

Proof. After the discussion in Section 4, the claim follows by combining Theorems 5.14 and 6.4
with Corollary 6.6.

We note that Lusztig’s a-function describes various homological invariants in BGG category
O, see [14, 20, 21].
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7. Grades of simple modules for non-boolean elements

7.1. Longest elements in parabolic subgroups

We conclude by remarking upon how this work does and does not extend to non-boolean ele-
ments. Rene Marczinzik has computed the grades of all simple modules forS4 (over C) using a
computer. In that case it turns out that grade(Lw) 6= a(w), for the (non-boolean) permutations
w = [2132] and w = [12321]. This means that Theorem 6.7 does not generalize to all elements
ofW . It does, however, hold true in another special case, in some sense, the “opposite extreme”
of the boolean elements.

Theorem 7.1. Let v ∈ Sn be the longest element of some parabolic subgroup. Then

grade(Lv) = a(v) = `(v).

Proof. If v = e, then the claim is obvious. Therefore we assume v 6= e. Let w ∈ Sn. Consider
some reduced word [s] ∈ R(w). Let [x] be the shortest prefix of [s] with the property that no
simple reflection in the suffix of [s], defined as the complement to [x], belongs to the support of
v. From the subword property (see Theorem 2.2), it follows thatB(v)∩B([x]) = B(v)∩B(w).
We have to consider two cases.

Case 1: [x] = e. In this case B(v) ∩ B([x]) = {e} and hence the corresponding complex
(4.3) is concentrated in one degree, namely, in degree −`(v).

Case 2: [x] 6= e. In this case, due to the minimality of [x], the rightmost letter of x belongs to
the support of v. Therefore the right descent set of [x] contains a simple reflection that belongs to
the support of v. Since v is the longest element in some parabolic subgroup, its support coincides
with both its left descent set and its right descent set. In particular, [x] and v have a common
simple reflection in the right descent set. As explained in Subsection 4.7, this implies exactness
of (4.3). Consequently, this case does not effect the computation of grade(Lv).

It follows that grade(Lv) = `(v) and the claim of the theorem now follows from the property
a(v) = `(v), for v the longest element of a parabolic subgroup.

Remark 7.2. One could observe that the permutations w = [2132] and w = [12321] are exactly
the two elements of S4 for which the corresponding Kazhdan–Lusztig polynomial Pe,w is non-
trivial. By a result of Deodhar, see [6], this condition is equivalent to nonsingularity of the
Schubert variety for w.

Unfortunately, at the present stage we do not know whether it is reasonable to extrapolate
this observation to a guess for higher ranks. In order to investigate this kind of guess, we need
a better understanding of the combinatorial structure of intersections of principal Bruhat ideals.
Maybe the recent preprints [4,32], which appeared after the preprint version of the present paper,
will be helpful.

7.2. Classification of perfect simple module

Recall that a module is called perfect if its grade coincides with its projective dimension. The-
orem 7.1 leads to the following classification of perfect simple modules.
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Theorem 7.3. For w ∈ Sn, the module Lw is perfect if and only if w is the longest element in
some parabolic sugroup of Sn.

Proof. By Proposition 4.2, the projective dimension of Lw is given by `(w). This means that
the “if” part of the claim follows directly from Theorem 7.1.

To prove the “only if” part, suppose that w is not the longest element in any parabolic sub-
group. Let G be the minimal parabolic subgroup containing w. Let u ∈ G be minimal having
the property that u 6∈ B(w). Because w is not the maximum element of G, such u exists. Since
G is the minimal parabolic subgroup containing w, all simple reflections generating G belong
to the support of w, in particular, they are all less than w in the Bruhat order and hence cannot
coincide with u. This implies that `(u) > 1.

Consider B(w) ∩ B(u). By construction, we have B(w) ∩ B(u) = B(u) \ {u}. We know
that there is a perfect matching, call it F , of the elements of B(u). Restricting F to B(u) \ {u}
gives an almost perfect matching whose only unmatched element is u’s partner under F . This
unmatched element of B(w) ∩ B(u) has length `(u) − 1. Therefore the grade of w is at most
`(w)− (`(u)− 1) < `(w) which means that Lw is not perfect.

We note that both Theorem 7.1 and 7.3 are true, with the same proofs, for arbitrary finite
Weyl groups.
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