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Abstract

Human-caused global change produces biotic and abiotic conditions that

increase the uncertainty and risk of failure of restoration efforts. A focus of

managing for resiliency, that is, the ability of the system to respond to distur-

bance, has the potential to reduce this uncertainty and risk. However, identify-

ing what drives resiliency might depend on how one measures it. An example

of a system where identifying how the drivers of different aspects of resiliency

can inform restoration under climate change is the northern coast of

California, where kelp experienced a decline in coverage of over 95% due to

the combination of an intense marine heat wave and the functional extinction

of the primary predator of the kelp-grazing purple sea urchin, the sunflower

sea star. Although restoration efforts focused on urchin removal and kelp

reintroduction in this system are ongoing, the question of how to increase the

resiliency of this system to future marine heat waves remains open. In this

paper, we introduce a dynamical model that describes a tritrophic food chain

of kelp, purple urchins, and a purple urchin predator such as the sunflower

sea star. We run a global sensitivity analysis of three different resiliency

metrics (recovery likelihood, recovery rate, and resistance to disturbance) of
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the kelp forest to identify their ecological drivers. We find that each metric

depends the most on a unique set of drivers: Recovery likelihood depends the

most on live and drift kelp production, recovery rate depends the most on

urchin production and feedbacks that determine urchin grazing on live kelp,

and resistance depends the most on feedbacks that determine predator

consumption of urchins. Therefore, an understanding of the potential role of

predator reintroduction or recovery in kelp systems relies on a comprehensive

approach to measuring resiliency.

KEYWORD S
disturbance, kelp forest, resiliency metrics, restoration, trophic model

INTRODUCTION

The ecological disturbance produced by human-caused
global change challenges the traditional view of ecological
management and restoration that targets historical repre-
sentation. New climate regimes may produce conditions
where restoring to a historical representation may not be
possible (Harris et al., 2006). In addition to changes in
abiotic conditions, population extinctions and invasive
species can lead to novel, unobserved ecosystem states that
might cause managers to set new ecosystem-level goals
for these new states (Hobbs et al., 2009). These changes
increase the uncertainty of the fate of ecosystems, which
makes the decision-making process more challenging over-
all (Polasky et al., 2011). To address these challenges, a
growing literature has proposed a focus of management
goals on ecological resiliency, that is, the ability of the
system to respond to disturbance (Chapin et al., 2010;
Millar et al., 2007; Spears et al., 2015). Achieving this
goal of managing for ecological resiliency relies on an
understanding of the ecological drivers of this resiliency
(Scheffer & Carpenter, 2003).

Identifying drivers of resiliency can depend on how
one measures it (Donohue et al., 2016). One metric of
resiliency is the recovery likelihood, which is the likelihood
of maintaining a target, undisturbed state (Holling, 1973). A
second, another commonly used metric is the rate at which
the ecosystem returns to an undisturbed state after distur-
bance (Holling, 1996). The third metric is resistance to
disturbance, that is, the amount that a system changes for a
given level of disturbance (Nolting & Abbott, 2016). If alter-
native stable states are relevant to the system (i.e., multiple
states are possible under the same environmental condi-
tions), then these metrics can be measured by the size of
the basin of attraction of the state of interest for recovery
likelihood, how long it takes to move from one state to the
other after disturbance for the recovery rate (Arani
et al., 2021), or how much disturbance is required to move

from one state to the other for resistance (Nolting &
Abbott, 2016). Resilience in general depends on an
array of drivers such as diversity, functional redun-
dancy, modularity, and the tightness of feedback loops
(Ives & Carpenter, 2007; Levin & Lubchenco, 2008;
Steiner et al., 2006; Walker, 1995). Resolving how dif-
ferent resiliency metrics depend on different drivers
and their associate processes can then inform a com-
prehensive approach to managing for multiple aspects
of resiliency by targeting an array of complementary
drivers and ecological processes. Given multiple resil-
ience metrics, a question is then whether or not
they differ in their dependence on different drivers
(Ingrisch & Bahn, 2018; Quinlan et al., 2016).

Feedback loops and their effect on resiliency depend
on an array of community processes (Folke et al., 2004).
In particular, feedback loops can arise from either con-
sumptive effects (CEs) or nonconsumptive effects (NCEs)
that alter consumption through behavioral or other mod-
ifications. CEs affect the strength of species interactions
that determine how a disturbance might cascade through
a system by reducing the density of specific populations
through consumption. An example of this in a three-level
system would be a disturbance-driven decline in top
predators, leading prey to overconsume basal resources
(Rudman et al., 2016). NCEs can change the strength
of CEs and therefore change the effect of disturbance
cascading through a system. For example, disease
transmission between trophic levels or fear of preda-
tion by herbivores can suppress the CEs of its trophic
level and therefore overconsumption, which can lead
to a more resilient system (Bestion et al., 2015; Sharp &
Angelini, 2021).

The Northeast Pacific kelp system provides a useful
example for identifying how the drivers of different
aspects of resiliency can inform management under
climate change. This part of the coast experienced a severe
marine heat wave, where increased water temperatures
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negatively impacted the growth rate of kelp while increasing
the grazing rates of the purple sea urchin Strongylocentrotus
purpuratus (Murie & Bourdeau, 2021; Simonson et al., 2015).
Furthermore, the functional extinction of a primary predator
of the purple urchins, the sunflower sea star Pycnopodia
helianthoides, on the California coast due to the sea star
wasting disease released urchins from predation, which
led to an overall increased consumption of kelp (Hamilton
et al., 2021; Rogers-Bennett & Catton, 2019). In addition to
these cascading CEs, three NCEs affect grazing outcomes.
First, the presence of cues of some predators such as the
spiny lobster in Southern California (Matassa, 2010) and
sunflower sea stars (Freeman, 2006) induces a fear effect
on sea urchins, which reduces foraging activity to reduce
predation risk. Second, sea urchins exhibit a preference for
drift kelp (pieces of kelp that break off and drift to the sea
floor) over live kelp, where sea urchin direct grazing pres-
sure on extant kelp populations is greater when kelp den-
sity is too low to produce sufficient drift kelp (Kriegisch
et al., 2019; Randell et al., 2022). Third, at low kelp densities,
starved urchins with poor nutritional condition are consumed
at higher rates by Pycnopodia than well-fed urchins in kelp
forests (Galloway et al., 2023). Through this combination of
events, CEs, and NCEs, kelp coverage on the northern coast
of California has declined by over 95% (McPherson
et al., 2021; Rogers-Bennett & Catton, 2019).

Restoration efforts focused on urchin removal and
kelp reintroduction are underway. These restoration
efforts have the potential to enhance near-term kelp
recovery (Arroyo-Esquivel et al., 2023; Ward et al., 2022).
However, in the longer term, climate might increase distur-
bance through increased marine heat wave intensity or
severity (Prochaska et al., 2023) or disease severity (Scavia
et al., 2002). This raises the question of how current and
possible further restoration efforts (e.g., the reintroduction
of a sea urchin predator) might affect the resiliency of the
kelp forest to future disturbance.

Here, we quantify how different metrics of resiliency
are affected by different ecosystem processes, using the
Northern California kelp forest as an example system.
To do this, we build a kelp–urchin–predator food
chain model, described in detail in the Model section,
that incorporates the NCE feedbacks of predator fear
response by urchins to predatory sea stars, drift kelp
preference by urchins, and starvation-dependent preda-
tion susceptibility of sea urchins. We then use this
model to analyze how the different ecological processes
included in this model affect three resiliency metrics:
recovery likelihood, recovery rate, and resistance to
disturbance to a kelp forest state. Finally, we consider
how these ecological processes might connect to resto-
ration interventions such as future consideration of the
reintroduction of an urchin predator.

METHODS

Model

Our model follows the growth rates for densities of live
kelp A, drift kelp D, urchin U, and a predator S through
time (Figure 1). Throughout this paper, we base the pred-
ator dynamics and parameters on sunflower sea stars. In
the Discussion section, we also discuss how our model
outcomes might relate to those in the case wherein the
predator was the sea otter Enhydra lutris, which has been
locally extinct on the California north coast since the
mid-1800s (Lubina & Levin, 1988). Our model describes
the interactions between live kelp, urchin, and predator
densities based on a Rosenzweig–MacArthur three-species
food chain (Rosenzweig & MacArthur, 1963). We
incorporate NCEs by multiplying the functional forms
of consumption by a factor dependent on a specific
population density. We model the fear response of
urchins to predators and drift kelp preference using the
functional form for fear factor described by Sasmal and
Takeuchi (2020), whereas the starvation-dependent
predation susceptibility of urchins is a function of kelp

F I GURE 1 Overview of the model dynamics. The model

describes the dynamics of a tritrophic food chain, where the

resource (kelp) is divided into two groups: live kelp and drift kelp.

The open arrows represent the energy flows from one stage of the

food chain to the next one (consumptive effects [CEs]), whereas the

solid black arrows represent nonconsumptive effects (NCEs) that

modify these consumption rates, and the origin of the arrow

describes which density affects the indicated consumption rate.

Diagram images thanks to Jane Thomas, IAN Image Library

(https://ian.umces.edu/imagelibrary/) under license CC BY-SA 4.0.
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with a factor that modifies the predator predation rate
on sea urchins.

We assume that live kelp density follows a logistic
growth model with a growth rate r and a carrying capac-
ity K. To account for the urchin preference for drift kelp
(Kriegisch et al., 2019), we assume that kelp active graz-
ing by urchins follows a Type I (linear) Holling func-
tional response with a baseline grazing rate αA multiplied
by a decreasing factor of drift kelp density. In particular,
we assume that the proportion of total grazing time that
urchins graze on live kelp A is inversely related to drift
kelp availability D modified by a factor κD, which modu-
lates the strength of drift kelp preference; urchins spend
the remaining proportion of the total grazing time
passively subsisting on drift kelp with a cryptic behavior
(e.g., hiding in crevices). In addition, we incorporate fear
of predation by reducing the active grazing rate by a
factor depending on predator density with a fear parame-
ter κS. Finally, we assume that live kelp biomass breaks
off into drift kelp following a density-independent
rate δA.

To model the rate of change in drift kelp density, we
assume that a fraction εD of the live kelp biomass that
breaks off into drift kelp is retained by the system. This
drift kelp is then consumed by urchins following a Type I
Holling functional response with a baseline consumption
rate αD multiplied by an increasing factor of drift kelp
density based on the proportional distribution of grazing
time with the modifying factor κD described in the previ-
ous paragraph. Finally, we assume that drift kelp
degrades at a density-independent rate δD.

Urchins reproduce based on energetic gain through
consumption of kelp, from either direct active grazing or
drift kelp consumption, with a conversion efficiency εU .
Urchins are consumed by predators following a Type II
(saturating) Holling functional response with a baseline
predation rate αU and a saturation parameter γU .
Laboratory analyses show that sea stars consume more
urchins when urchins are starving, likely due to a faster
handling time (Galloway et al., 2023). We assume that
urchin susceptibility to predation is directly linked to
kelp density, where we model the predation of urchins as
a decreasing function of kelp density for both live and
drift kelp, similar to the fear of predations by urchins,
with a parameter κA. Finally, we assume that urchins
naturally die with a density-independent death rate δU .

Predators reproduce based on energetic gain through
predation of urchins with a baseline conversion efficiency
εS. Although sea stars consume fewer urchins when
urchins are not starving (i.e., in a low predation susceptibil-
ity due to high kelp availability), non-starving urchins are
more nutritious due to a higher gonad content, which
increases predator energetic gain (Murie & Bourdeau, 2021).

We model this by increasing the conversion efficiency with
kelp density by a factor β. Finally, predators naturally die
with a density-independent death rate δS.

Our system dynamics are then

dS
dt

¼ εS 1+ β A+Dð Þð ÞαUUS
1+ γUU

1
1+ κA A+Dð Þ − δSS,

dU
dt

¼ 1
1+ κDD

εUαAAU
1

1+ κSS
+ 1−

1
1+ κDD

� �
εUαDDU

−
αUUS

1+ γUU
1

1+ κA A+Dð Þ − δUU,

dD
dt

¼ εDδAA− 1−
1

1+ κDD

� �
αDDU − δDD,

dA
dt

¼ rA 1−
A
K

� �
−

1
1+ κDD

αAAU
1

1+ κSS
− δAA:

ð1Þ

To simplify our analysis, we assume that drift kelp
reaches equilibrium (i.e., drift kelp reaches a state in
which its density does not change in time) faster than the
other dynamics in the system. This allows us to use
the simplifying assumption dD=dt¼ 0 at a drift kelp
density D� ¼D� A,Uð Þ. This reduces our system to

dS
dt

¼ εS 1+ β A+D�ð Þð ÞαUUS
1+ γUU

1
1+ κA A+D�ð Þ − δSS,

dU
dt

¼ 1
1+ κDD� εUαAAU

1
1+ κSS

+ 1−
1

1+ κDD�

� �
εUαDD�U

−
αUUS

1+ γUU
1

1+ κA A+D�ð Þ − δUU,

dA
dt

¼ rA 1−
A
K

� �
−

1
1+ κDD�αAAU

1
1+ κSS

− δAA:

ð2Þ

Parameter estimation

We numerically analyze System 2 using parameter values
from a variety of sources for bull kelp (Nereocystis
luetkeana) systems as our baselines (Table 1). For kelp
growth dynamics, we use the growth factor, carrying
capacity, and drift kelp production parameters of
Arroyo-Esquivel et al. (2023) as a baseline. To convert
these parameters from kelp coverage to kelp biomass, we
use a conversion factor of 1.3709 kg kelp/m2 per plant/m2

based on the data found by Stekoll et al. (2006). We then
calibrate the parameters so that, in the absence of urchins,
kelp reaches carrying capacity after a span of approximately
18 weeks as observed by Foreman (1984).

For the parameters of drift kelp preference κD, the
consumption rates of live kelp αA, and drift kelp αD, we
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estimate the parameters using the data of Randell (2021).
For the proportion of drift kelp retained ε and escape rate
δD, we also use the parameters of Randell (2021).

We estimate the parameter values of predator dynam-
ics based on data from experimental tests for the
sunflower sea star. We determine the effect of fear of pre-
dation κS by comparing the ratio of active grazing rates
with and without sea stars with the ratio of sea stars to
sea urchins used by Whippo et al. (2024) (1:7). The base-
line parameters for urchin predation αU and γU and the
effect of urchin starvation on predator predation κA are
based on the experimental tests of Galloway et al. (2023).

Finally, we estimate the death rate of the urchins using
a baseline average lifespan of 50 years (Ebert, 2010). The
parameters for conversion efficiencies of urchins εU and
the predator εS and β, as well as the natural death rate of
the predator δS, were not possible to determine from the
available data and are best guesses based on the expert
opinion of the authors.

Metrics of resiliency

To quantify the resiliency of the kelp forest state, we use
three different metrics. We illustrate these metrics with a
ball-and-cup diagram, which is a heuristic visualization

tool where the ball represents the current state of the
system, and each cup represents an alternative stable
state (Beisner et al., 2003) (see Figure 2). In this diagram,
disturbances move the ball through the landscape of
alternative stable states, where such movement can come
from direct manipulation or through stochastic events
(such as extreme heat waves or anomalous grazer or
disease outbreaks). Resiliency metrics describe different
components of a return to a basal state, determined by
the cup in which it currently sits (target state or alterna-
tive stable state). The ball (the community state) transi-
tions between states by moving past a hill through
disturbance. How difficult it is to escape the cup after
disturbance events depends on properties of the cup such
as its width, steepness, and depth.

First, we measure the recovery likelihood (basin of
attraction for the target state) as the proportion of initial
community densities leading to the kelp forest state
(Holling, 1973). We illustrate this metric in the ball-
and-cup diagram (Figure 2) as the width of the cup, where
a wider cup will include more possible states that eventu-
ally return to the kelp forest stable state. To measure this
attribute, we create a grid of different kelp A, urchin U ,
and predator S initial population densities. For each
combination of initial densities, we run our System 2
for 1000weeks. Then, our recovery likelihood is the

TAB L E 1 Description of the parameters of our model, including the baseline values and the distribution of values explored in the global

sensitivity analysis.

Parameter Description Baseline value Distribution of values explored

r Growth rate of kelp at low densities 2.5 g kelp (week)−1 Normal 2:5, 1:5ð Þ
K Carrying capacity of kelp 10,000 g kelp Normal 10,000, 5000ð Þ
κD Effect of drift presence on the urchin grazing rate 1.95 g kelp−1 Bernoulli 0:9ð Þ×Normal 2, 1ð Þ
αA Urchin grazing rate at low kelp densities 0.025 (urchins week)−1 LogNormal − 3:7, 1ð Þ
κS Effect of fear of predation on the urchin grazing rate 0.81 (sea stars)−1 Bernoulli 0:9ð Þ×LogNormal − 0:2, 1ð Þ
δA Conversion rate of live kelp biomass to drift kelp 1.8 week−1 LogUniform 0:018, 5ð Þ
δD Drift kelp escape rate 0.3 week−1 LogUniform 10− 3, 1ð Þ
εD Proportion of drift kelp retained in the system 0.7 Uniform 0, 1ð Þ
εU Conversion efficiency from grams of grazed kelp to

urchins
0.1 LogUniform 10− 5, 10− 1ð Þ

αD Drift kelp consumption rate by urchins 0.062 (urchins week)−1 LogNormal − 2:7, 1ð Þ
αU Predator predation rate at low urchin counts 4.77 (sea stars week)−1 Uniform 0,10ð Þ
γU Predator predation saturation constant 3.42 (sea star)−1 LogUniform − 2, 3ð Þ
κA Starvation effect on urchin susceptibility to predation 0.00013 (g kelp)−1 Bernoulli 0:9ð Þ×LogNormal − 8, 1ð Þ
δU Natural death rate of urchins 0.0004 week−1 LogNormal − 8, − 4,ð Þ
β Impact of kelp density on nutritional value of urchins 0.1 Bernoulli 0:9ð Þ×LogUniform − 2, 2ð Þ
εS Conversion proportion from urchins predated to

predators
0.1 LogUniform 10− 5, 10− 1ð Þ

δS Natural death rate of predators 10−4 week−1 LogUniform − 9, − 2ð Þ
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proportion of our grid of initial conditions where the final
kelp density exceeds 95% of the equilibrium kelp density
in the kelp forest stable state.

Second, we measure the recovery rate as the rate at
which our system returns to the stable kelp forest state
after a disturbance event. We illustrate this metric in the
ball-and-cup diagram (Figure 2) with the steepness of
the cup, where a steeper cup will lead to the ball
returning faster to the bottom of the cup. This metric is
the real part of the dominant eigenvalue of the Jacobian
matrix of Model 2 evaluated at the kelp forest state
(Neubert & Caswell, 1997).

Finally, the third metric for resiliency that we
measure is the resistance of the kelp forest to distur-
bance. We illustrate this metric in the ball-and-cup dia-
gram (Figure 2) as the depth of the cup, where it takes a
larger disturbance to reach the top of a cup as the cup
gets deeper (Nolting & Abbott, 2016). To quantify this
resistance to stochasticity, we use the quasipotential
(introduced in the context of ecology by Nolting &
Abbott, 2016), which describes how much energy is
required to transition from a community state to the
other alternative stable state. Given that our system
models more than two population densities, we estimate
the quasipotential using the algorithm implemented in
the Python package PyRitz (Kikuchi et al., 2020). This
algorithm calculates the minimum energy required to
transition from one stable state to another using classical

mechanical principles. In this paper, we present the
quasipotential going from the kelp forest state to
the urchin barren state. Note that the quasipotential
going from the urchin barren state to the kelp forest
could be different and thus might have different drivers
as those found in this paper.

Note that all three resilience metrics are agnostic of
the source of disturbance; rather, they describe different
aspects of the system response to any outside factor that
has the potential to alter the state variables. For an applica-
tion to kelp forest systems, we are particularly interested in
disturbance caused by marine heat waves that might affect
kelp and urchin densities (Murie & Bourdeau, 2021;
Simonson et al., 2015) and disease outbreaks that might affect
predator densities (Hamilton et al., 2021; Rogers-Bennett &
Catton, 2019). However, the resilience metrics can account
for other possible sources of disturbance.

To explore the relative effect of each ecological pro-
cess and account for the uncertainty of our parameter
estimates, we run a global sensitivity analysis (GSA;
described in Harper et al., 2011) for the three different
metrics of resiliency as described above. The GSA algo-
rithm consists of sampling the parameters of the model
from a given distribution, which are then used to mea-
sure the different metrics of resiliency. The most impor-
tant parameters that determine a given resiliency metric
are then identified using the importance metric of a ran-
dom forest analysis. The importance metric of a random
forest is a relative measure of how much varying each
individual parameter leads to a difference in the value of
the specific metric of resiliency predicted by the trained
random forest. This metric provides a relative compari-
son of parameter effects within each metric; absolute
values are arbitrary and therefore cannot be compared
across metrics. We sample parameters from empirical
distributions determined by our parameter estimates and
the confidence in these parameters. For the parameters
with more certainty in their estimation, we use either
Normal or LogNormal distributions, while we use Uniform
or LogUniform distributions for less certain parameters.
For the parameters related to NCEs (κD,κS,β,κA), we
oversample the value 0 to include simulations where cer-
tain NCEs are excluded; this lets our GSA measure the
effect of the presence versus the absence of each NCE as
well as the effect of its strength when present. To do this,
we multiply the sampled numerical value of the NCEs by
an independent Bernoulli distribution with a probability
of 10% of being 0. The numerical values chosen for these
empirical distributions are chosen close to the estimated
values for more certain parameters and are chosen to
cover a broad range of orders of magnitude for less uncer-
tain parameters. These and the rest of the distributions
used in the GSA are provided in Table 1. We also use the

F I GURE 2 Ball-and-cup diagram that illustrates our resiliency

metrics. Each cup is a possible system state, where the ball

represents the present states as affected by disturbance on system

dynamics, and the arrows represent the resiliency metrics: (a) the

width of the cup to measure the recovery likelihood (basin of

attraction to the target state), (b) steepness of the cup to measure

the recovery rate (leading eigenvalue of the Jacobian of the system

at the equilibrium for the target state), and (c) depth of the cup to

measure resistance (amount of change expected per perturbation,

i.e., quasipotential).
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GSA to identify the top two most influential parameters
for each resiliency metric for exploration in the local
sensitivity analyses, with all the other parameters set to
their baseline values, described in the section Parameter
estimation. Notice that these local sensitivity analyses
may not fully display the variability in these metrics,
which are calculated by complex interactions of different
parameters. However, these local sensitivity analyses
provide a simple perspective on how varying one single
parameter can affect the different resilience metrics. To
preserve this simplicity, we present in the main text the
single-variable local sensitivity analysis and in Appendix S1
a more complex variation of parameters obtained from the
parameters sampled for the GSA.

RESULTS

From our GSA, we find that each resiliency metric
(recovery likelihood, recovery rate, and resistance)
depends most on a different set of ecological drivers.
The main drivers of recovery likelihood are drift produc-
tion (δA) and kelp growth (r) as well as, to a lesser extent
than kelp growth, how the energy provided by kelp is
transferred through the food chain (conversion efficien-
cies of kelp to urchin εU and urchin to predator εS)
(Figure 3). This suggests that the kelp forest is more
likely to recover if kelp can either grow fast enough to
survive active grazing or produce enough drift kelp that
will deter urchins from actively grazing it.

If we vary the two most important parameters identi-
fied by the GSA of recovery likelihood with all other
parameters at their baseline values, we observe that the
recovery likelihood is a step function of each parameter
with the breaking point being where kelp grows at the
same rate as it produces drift kelp (r¼ δA) (Figure 4).
This is caused by the direct link between drift kelp pro-
duction and kelp mortality in our model. A high per
capita drift kelp production implies a high mortality rate,
which then leads to a decreased recovery likelihood due
to a reduced population replacement of kelp. This trend
remains even if we look at a broader range of parameters
by varying both kelp growth and drift kelp production
(Appendix S1: Figure S1). When other parameters are
varied, mainly the other parameters identified as most
important by the GSA such as consumption conversion
efficiencies and urchin preference for drift kelp (Figure 3),
these parameters influence how likely it is for kelp to
recover.

From our GSA, the recovery rate depends on a combi-
nation of parameters such as the kelp to urchin conver-
sion efficiency (εU), drift kelp escape rate (δD), and the
fear response of urchins to predators (κS) (Figure 5).

These results suggest that the recovery rate of the kelp
forest is mainly determined by how fast urchins can
actively graze live kelp stipes and how strong the feed-
backs that limit their grazing activity (fear of predation
and drift kelp preference) are.

Under baseline parameter values, we do not observe a
local effect of either the kelp to urchin conversion efficiency
or the drift escape rate on the recovery rate (Figure 6). The
recovery rate is affected by a combination of more than
these two parameters explored in the GSA. Specifically,
recovery rate noticeably increases for some parameter com-
binations at high urchin efficiency and drift kelp retention
(low drift kelp escape rates) (Appendix S1: Figure S2).

Finally, the GSA shows that the kelp forest resistance
depends the most on an interaction of the feedback pro-
duced by increased predation susceptibility with urchin
starvation (κA) and drift kelp interactions, with the drift
kelp consumption rate (αD) as the second most important
parameter (Figure 7). This occurs because both the predator
consumption of urchins (directly linked to urchin suscepti-
bility to predation) and drift kelp production are deterrents
of urchin active grazing, which means that as urchin active
grazing decreases, a disturbed kelp will be less affected by
direct grazing, which is the main factor that leads to the
kelp decline and transition to urchin barrens.

This influence of urchin predation and grazing is
supported by looking at the trends of resistance to distur-
bance as we vary the two parameters given baseline
values for all other parameters (Figure 8). Here, we
observe that the degree to which urchin starvation
increases predation susceptibility has an impact on the
resistance to disturbance, which slightly increases until it
reaches a maximum, after which the resistance slowly
starts to decline. This illustrates a possible trade-off
between a reduced grazing intensity by increased preda-
tion rate and a decreased nutritional value of starved
urchins. In the case of the drift kelp consumption rate,
an increasing consumption of drift kelp initially produces
a rapid increase in the resistance to disturbance. This
suggests that the kelp forest is more resistant when
urchin active grazing is suppressed by higher drift prefer-
ence. Varying all the parameters through a wider range
does not show a clear trend, and in some scenarios, the
kelp forest can be highly resistant to disturbance at low
predation rates and vice versa, suggesting that resistance
to disturbance is highly influenced by interactions with
other parameters (Appendix S1: Figure S3).

DISCUSSION

In this work, we have found that different resiliency metrics
are driven by different ecological factors and interactions
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between them. For our resiliency metrics, we measured the
proportion of conditions from which the system can return
to the kelp forest state (recovery likelihood), the rate at
which the system returns to this state (recovery rate), and
how much disturbance is needed to transition the sys-
tem from a kelp forest state to an urchin barren state
(resistance to disturbance). We find that recovery likeli-
hood depends the most on drift kelp through its relation
to self-replacement of the kelp population, which
requires kelp growth to outpace loss to drift. Recovery
rate is affected the most by grazing activity as it depends
on a combination of drift kelp retention, which is
directly linked to a combination of oceanographic fac-
tors such as seabed topography (Randell et al., 2022),

turbulent mixing in the seabed (Layton et al., 2019), and
fear of predation. Similarly, resistance to disturbance
depends the most on a suppression in grazer density
and grazing activity due to an increased drift kelp con-
sumption rate and the degree to which urchin starvation
increases predation susceptibility.

This difference in the influence of different ecological
factors when resiliency is measured with different methods
is a challenge of quantifying resiliency as noted by Quinlan
et al. (2016) and Ingrisch and Bahn (2018). These studies
postulate that using a single metric of resiliency limits a
complete understanding of the drivers of ecosystem
resiliency. To overcome this, both studies propose an
assessment of resiliency using multiple metrics, as we

F I GURE 3 Importance ranking of the parameters of Model 2 from the global sensitivity analysis of the recovery likelihood of the kelp

forest. See Table 1 for more detailed parameter definitions.
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have done here. By understanding how each different met-
ric describes a different part of the ecosystem dynamics,
we can understand the complementary roles of different
restoration approaches connected to different ecological
drivers in determining overall system resiliency.

In our Northern California kelp forest model system,
the restoration approach currently underway is primarily
urchin removal (Ward et al., 2022), with kelp reintroduction
undergoing pilot trials; sunflower sea star reintroduction
requires further research on feasibility. Our model sug-
gests that each of these strategies can influence a different
aspect of kelp forest recovery and persistence under future

disturbance. Given its connection to kelp growth and drift
kelp production, kelp reintroduction could particularly
promote recovery likelihood and rate according to our
model, which is in line with our previous modeling indicat-
ing its role in kelp forest recovery (Arroyo-Esquivel
et al., 2023). The role of at least one aspect of drift kelp pro-
cesses (production and retention, which affect drift kelp
availability to influence urchin grazing, as well as drift kelp
consumption by urchins) in all three resilience metrics also
reflects the potential efficacy of drift kelp supplementation,
an emerging topic of investigation in California kelp forest
systems, in achieving restoration goals. Urchin removal

F I GURE 4 Trends of recovery likelihood as the top two most important parameters identified by the GSA (Figure 3) vary while the

other parameters are fixed at their baseline value. See Table 1 for the baseline values of the other parameters.
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might also have an analogous impact to that of drift kelp
preference in reducing the active grazing pressure that
live kelp experiences; its potential role here echoes the
efficacy found in other models and data (Arroyo-Esquivel
et al., 2023; Ward et al., 2022).

Our model further suggests that any future possibility
of sea star reintroduction, which then promotes urchin
consumption as it depends on urchin susceptibility and
induces urchin fear responses, could particularly promote
kelp forest resistance to future disturbance and recovery
rate. Therefore, even if kelp forest recovery is achievable
with the currently available tools of urchin removal and
kelp reintroduction, development of sea star reintroduction
approaches might still influence the persistence of any

recovered kelp forests, especially given expectations of
increased marine heat wave disturbances (Prochaska
et al., 2023), an influence that requires a comprehensive
analysis of resilience to identify.

The role of sea star reintroduction or recovery and its
associated NCEs on the resistance to disturbance events
is consistent with other analyses of food chains. In these
analyses, the presence of top-chain predators leads to a
food chain that is more resistant to disturbances such as
heat waves (Sentis et al., 2013) or nutrient enrichment
(Llope et al., 2011). These results, in addition to our find-
ing that sea star predation response to urchin suscepti-
bility to predation is the main driver of resistance to
disturbance, suggest that one of the main roles of a

F I GURE 5 Importance ranking of the parameters of Model 2 from the global sensitivity analysis of the recovery rate of the kelp forest.

See Table 1 for more detailed parameter definitions.
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predator in determining ecosystem resiliency is to
enhance a top-down control over herbivores, which
reduces the possibilities of overgrazing of the autotrophs
in the population. Our analysis also shows that recovery
rate is affected by suppression of grazers due to a fear
effect induced by predators, which is consistent with that
of other studies (Frank et al., 2011; Galloway et al., 2023).
We did not find that this was the case in recovery likeli-
hood, although other studies suggest that predation can
play an important role in increasing recovery likelihood
(Ripple & Beschta, 2003). It could be the case that

predation plays an important role as well in recovery
likelihood for our system. However, in our model, this is
overshadowed by the effects of drift kelp preference by
urchins. Note that the roles of urchin fear response and
urchin susceptibility to predation effects in resistance
and recovery rate echo the importance of NCEs in system
resilience found elsewhere (Bestion et al., 2015; Sharp &
Angelini, 2021).

It is important to note that the restoration interven-
tions currently underway or planned in the Northern
California kelp forest focus on changing the state of the

F I GURE 6 Trends of recovery rate as the top two most important parameters identified by the global sensitivity analysis (GSA)

(Figure 5) vary while the other parameters are fixed at their baseline value. See Table 1 for the baseline values of the other parameters.

ECOLOGY 11 of 17



system (e.g., urchin removal reduces the density of urchins
present, or kelp outplanting increases kelp density) with
underlying parameters remaining unchanged. Any resto-
ration plan that focused on permanently changing the
parameters of the system (such as continual urchin
removal to increase the natural death rate of urchins)
could lead to a “conservation-reliant” system where the
state of the system would not be able to be sustained in
the absence of human intervention (Scott et al., 2005).
However, temporarily engaging in some interventions,
such as those mentioned in the previous paragraph, could
alter these parameters during crucial post-disturbance or
recovery phase periods.

While each resiliency metric has unique drivers, our
model suggests that the overarching mechanism that leads
to a more resilient kelp forest is the preference of drift kelp
by urchins. This behavior has been shown to be one of the
main factors suppressing the grazing activity of urchins as
field observations have shown that urchins tend to hide on
crevices in the presence of drift kelp (Dayton, 1985;
Kriegisch et al., 2019). This by itself hints to an increased
resiliency of the kelp forest due to the preference of urchins
to drift kelp. However, its ubiquity through all resiliency
metrics bolsters its role as a particularly important factor.

Through this work, we based our model parameters
on data from tank experiments using the sunflower sea

F I GURE 7 Importance ranking of the parameters of Model 2 from the global sensitivity analysis of the resistance to disturbance of the

kelp forest. See Table 1 for more detailed parameter definitions.
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star as an urchin predator, which was found to prey
more on starved urchins than fed urchins (Galloway
et al., 2023). Another predator that has been historically
present in the northern coast of California is the sea
otter E. lutris, which has been locally extinct since the
mid-1800s. Sea otters avoid hunting starving sea urchins
with low gonad content and prefer other types of prey
(Smith et al., 2021). However, otters do consume barren
urchins when they are at a particularly high density, as
observed in the Aleutian Islands (Stewart & Konar, 2012).

Furthermore, urchins in a recovered forest (the state
where urchin consumption has the most influence in our
model as that is where resistance is a relevant resilience
metric) will not be barren urchins and therefore are more
likely to be an attractive prey for sea otters. In addition,
predation-associated dynamics being the most important
factor in determining resistance to perturbations like
extreme weather events is consistent with the lower
impact of the 2015–2016 marine heat wave in Central
California, where a sea otter population exists, compared

F I GURE 8 Trends of resistance to disturbance as the top two most important parameters identified by the global sensitivity analysis

(GSA) (Figure 7) vary while the other parameters are fixed at their baseline value. See Table 1 for the baseline values of the other

parameters.
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with Northern California, where, in the absence of
sunflower sea stars, no functional predator population is
currently present (Beas-Luna et al., 2020). Therefore,
like sea stars, the effect of sea otters might be the
greatest for resistance of a kelp-dominated state as com-
pared with other aspects of resiliency.

In addition to our choice of predator, we have made
other assumptions to ensure that we have the simplest
model relevant to our central question. Our model focused
on the interactions of the kelp–purple urchin–predator
food chain. However, the temperate rocky reef of the
northern coast of California is home to other grazers of
kelp, as well as prey for the sunflower sea star, such
as red abalone, red urchins, and some crustaceans
(Springer et al., 2010). Including these species into our
model would probably reduce the relative importance of
drift kelp and predation rate of urchins by predators and
allow other parameters to gain importance. However,
given the evidence from other studies within and
beyond the kelp forest referenced throughout this paper,
we would not expect other ecological drivers to become
more important than the two main drivers found in our
work. Similarly, if our food chain included two urchin
predators (e.g., sea otters as well as sunflower sea stars),
we would not expect the competition of these predators
for urchins to significantly change these effects, as
trophic redundancy has been shown to promote kelp
resiliency in the southern coast of California (Eisaguirre
et al., 2020). This is further supported when considering
that sea otters tend to predate on different urchin sizes
than sea stars, making each predator complement each
other (Burt et al., 2018).

A more potentially impactful limitation of our model
is our representation of producer dynamics. Bull kelp is a
primarily annual species, where most kelp stipes grow
during spring and summer and decline through fall
and winter (Maxell & Miller, 1996). This seasonal,
discrete-time nature of bull kelp dynamics is not incorpo-
rated in this model and has the potential to reduce the range
of growth rate values explored in this work. Furthermore,
bull kelp is one of multiple macroalgal species than can have
a complex interplay of positive and negative interactions
(Liu & Gaines, 2022). Accounting for the interactions of kelp
with other species could allow the exploration of the roles of
diversity and redundancy as well as feedback loops in affect-
ing different aspects of resiliency. This is an open question
that will be explored in a future work.

In conclusion, we find that a comprehensive evaluation
of resilience with multiple metrics reveals complementary
roles of different ecological processes and therefore the
complementary roles of multiple restoration interven-
tions that might differentially affect these processes.
The difference in the drivers for resistance in particular,

as compared with the drivers of recovery likelihood and
recovery rate, suggests that restoration actions that
might successfully recover a target ecosystem state
might still leave it vulnerable to future disturbance.
Therefore, further investigation into the drivers of multiple
aspects of resilience in systems beyond California kelp for-
ests can help inform a restoration goal of protecting eco-
system structure and function given the ongoing global
change (Harris et al., 2006).
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